SelectionDAG.cpp revision b300d2aa3ef08b5074449e2c05804717f488f4e4
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/SetVector.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/StringExtras.h"
41#include <algorithm>
42#include <cmath>
43using namespace llvm;
44
45/// makeVTList - Return an instance of the SDVTList struct initialized with the
46/// specified members.
47static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
48  SDVTList Res = {VTs, NumVTs};
49  return Res;
50}
51
52static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
53  switch (VT.getSimpleVT()) {
54  default: assert(0 && "Unknown FP format");
55  case MVT::f32:     return &APFloat::IEEEsingle;
56  case MVT::f64:     return &APFloat::IEEEdouble;
57  case MVT::f80:     return &APFloat::x87DoubleExtended;
58  case MVT::f128:    return &APFloat::IEEEquad;
59  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
60  }
61}
62
63SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
64
65//===----------------------------------------------------------------------===//
66//                              ConstantFPSDNode Class
67//===----------------------------------------------------------------------===//
68
69/// isExactlyValue - We don't rely on operator== working on double values, as
70/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
71/// As such, this method can be used to do an exact bit-for-bit comparison of
72/// two floating point values.
73bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
74  return getValueAPF().bitwiseIsEqual(V);
75}
76
77bool ConstantFPSDNode::isValueValidForType(MVT VT,
78                                           const APFloat& Val) {
79  assert(VT.isFloatingPoint() && "Can only convert between FP types");
80
81  // PPC long double cannot be converted to any other type.
82  if (VT == MVT::ppcf128 ||
83      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
84    return false;
85
86  // convert modifies in place, so make a copy.
87  APFloat Val2 = APFloat(Val);
88  bool losesInfo;
89  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
90                      &losesInfo);
91  return !losesInfo;
92}
93
94//===----------------------------------------------------------------------===//
95//                              ISD Namespace
96//===----------------------------------------------------------------------===//
97
98/// isBuildVectorAllOnes - Return true if the specified node is a
99/// BUILD_VECTOR where all of the elements are ~0 or undef.
100bool ISD::isBuildVectorAllOnes(const SDNode *N) {
101  // Look through a bit convert.
102  if (N->getOpcode() == ISD::BIT_CONVERT)
103    N = N->getOperand(0).getNode();
104
105  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
106
107  unsigned i = 0, e = N->getNumOperands();
108
109  // Skip over all of the undef values.
110  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
111    ++i;
112
113  // Do not accept an all-undef vector.
114  if (i == e) return false;
115
116  // Do not accept build_vectors that aren't all constants or which have non-~0
117  // elements.
118  SDValue NotZero = N->getOperand(i);
119  if (isa<ConstantSDNode>(NotZero)) {
120    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
121      return false;
122  } else if (isa<ConstantFPSDNode>(NotZero)) {
123    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
124                bitcastToAPInt().isAllOnesValue())
125      return false;
126  } else
127    return false;
128
129  // Okay, we have at least one ~0 value, check to see if the rest match or are
130  // undefs.
131  for (++i; i != e; ++i)
132    if (N->getOperand(i) != NotZero &&
133        N->getOperand(i).getOpcode() != ISD::UNDEF)
134      return false;
135  return true;
136}
137
138
139/// isBuildVectorAllZeros - Return true if the specified node is a
140/// BUILD_VECTOR where all of the elements are 0 or undef.
141bool ISD::isBuildVectorAllZeros(const SDNode *N) {
142  // Look through a bit convert.
143  if (N->getOpcode() == ISD::BIT_CONVERT)
144    N = N->getOperand(0).getNode();
145
146  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
147
148  unsigned i = 0, e = N->getNumOperands();
149
150  // Skip over all of the undef values.
151  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
152    ++i;
153
154  // Do not accept an all-undef vector.
155  if (i == e) return false;
156
157  // Do not accept build_vectors that aren't all constants or which have non-~0
158  // elements.
159  SDValue Zero = N->getOperand(i);
160  if (isa<ConstantSDNode>(Zero)) {
161    if (!cast<ConstantSDNode>(Zero)->isNullValue())
162      return false;
163  } else if (isa<ConstantFPSDNode>(Zero)) {
164    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
165      return false;
166  } else
167    return false;
168
169  // Okay, we have at least one ~0 value, check to see if the rest match or are
170  // undefs.
171  for (++i; i != e; ++i)
172    if (N->getOperand(i) != Zero &&
173        N->getOperand(i).getOpcode() != ISD::UNDEF)
174      return false;
175  return true;
176}
177
178/// isScalarToVector - Return true if the specified node is a
179/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
180/// element is not an undef.
181bool ISD::isScalarToVector(const SDNode *N) {
182  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
183    return true;
184
185  if (N->getOpcode() != ISD::BUILD_VECTOR)
186    return false;
187  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
188    return false;
189  unsigned NumElems = N->getNumOperands();
190  for (unsigned i = 1; i < NumElems; ++i) {
191    SDValue V = N->getOperand(i);
192    if (V.getOpcode() != ISD::UNDEF)
193      return false;
194  }
195  return true;
196}
197
198
199/// isDebugLabel - Return true if the specified node represents a debug
200/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
201bool ISD::isDebugLabel(const SDNode *N) {
202  SDValue Zero;
203  if (N->getOpcode() == ISD::DBG_LABEL)
204    return true;
205  if (N->isMachineOpcode() &&
206      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
207    return true;
208  return false;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: assert(0 && "Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310const TargetMachine &SelectionDAG::getTarget() const {
311  return MF->getTarget();
312}
313
314//===----------------------------------------------------------------------===//
315//                           SDNode Profile Support
316//===----------------------------------------------------------------------===//
317
318/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
319///
320static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
321  ID.AddInteger(OpC);
322}
323
324/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
325/// solely with their pointer.
326static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
327  ID.AddPointer(VTList.VTs);
328}
329
330/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
331///
332static void AddNodeIDOperands(FoldingSetNodeID &ID,
333                              const SDValue *Ops, unsigned NumOps) {
334  for (; NumOps; --NumOps, ++Ops) {
335    ID.AddPointer(Ops->getNode());
336    ID.AddInteger(Ops->getResNo());
337  }
338}
339
340/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
341///
342static void AddNodeIDOperands(FoldingSetNodeID &ID,
343                              const SDUse *Ops, unsigned NumOps) {
344  for (; NumOps; --NumOps, ++Ops) {
345    ID.AddPointer(Ops->getNode());
346    ID.AddInteger(Ops->getResNo());
347  }
348}
349
350static void AddNodeIDNode(FoldingSetNodeID &ID,
351                          unsigned short OpC, SDVTList VTList,
352                          const SDValue *OpList, unsigned N) {
353  AddNodeIDOpcode(ID, OpC);
354  AddNodeIDValueTypes(ID, VTList);
355  AddNodeIDOperands(ID, OpList, N);
356}
357
358/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
359/// the NodeID data.
360static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
361  switch (N->getOpcode()) {
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::ARG_FLAGS:
364    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
365    break;
366  case ISD::TargetConstant:
367  case ISD::Constant:
368    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
369    break;
370  case ISD::TargetConstantFP:
371  case ISD::ConstantFP: {
372    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
373    break;
374  }
375  case ISD::TargetGlobalAddress:
376  case ISD::GlobalAddress:
377  case ISD::TargetGlobalTLSAddress:
378  case ISD::GlobalTLSAddress: {
379    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
380    ID.AddPointer(GA->getGlobal());
381    ID.AddInteger(GA->getOffset());
382    break;
383  }
384  case ISD::BasicBlock:
385    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
386    break;
387  case ISD::Register:
388    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
389    break;
390  case ISD::DBG_STOPPOINT: {
391    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
392    ID.AddInteger(DSP->getLine());
393    ID.AddInteger(DSP->getColumn());
394    ID.AddPointer(DSP->getCompileUnit());
395    break;
396  }
397  case ISD::SRCVALUE:
398    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
399    break;
400  case ISD::MEMOPERAND: {
401    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
402    MO.Profile(ID);
403    break;
404  }
405  case ISD::FrameIndex:
406  case ISD::TargetFrameIndex:
407    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
408    break;
409  case ISD::JumpTable:
410  case ISD::TargetJumpTable:
411    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
412    break;
413  case ISD::ConstantPool:
414  case ISD::TargetConstantPool: {
415    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
416    ID.AddInteger(CP->getAlignment());
417    ID.AddInteger(CP->getOffset());
418    if (CP->isMachineConstantPoolEntry())
419      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
420    else
421      ID.AddPointer(CP->getConstVal());
422    break;
423  }
424  case ISD::CALL: {
425    const CallSDNode *Call = cast<CallSDNode>(N);
426    ID.AddInteger(Call->getCallingConv());
427    ID.AddInteger(Call->isVarArg());
428    break;
429  }
430  case ISD::LOAD: {
431    const LoadSDNode *LD = cast<LoadSDNode>(N);
432    ID.AddInteger(LD->getMemoryVT().getRawBits());
433    ID.AddInteger(LD->getRawSubclassData());
434    break;
435  }
436  case ISD::STORE: {
437    const StoreSDNode *ST = cast<StoreSDNode>(N);
438    ID.AddInteger(ST->getMemoryVT().getRawBits());
439    ID.AddInteger(ST->getRawSubclassData());
440    break;
441  }
442  case ISD::ATOMIC_CMP_SWAP:
443  case ISD::ATOMIC_SWAP:
444  case ISD::ATOMIC_LOAD_ADD:
445  case ISD::ATOMIC_LOAD_SUB:
446  case ISD::ATOMIC_LOAD_AND:
447  case ISD::ATOMIC_LOAD_OR:
448  case ISD::ATOMIC_LOAD_XOR:
449  case ISD::ATOMIC_LOAD_NAND:
450  case ISD::ATOMIC_LOAD_MIN:
451  case ISD::ATOMIC_LOAD_MAX:
452  case ISD::ATOMIC_LOAD_UMIN:
453  case ISD::ATOMIC_LOAD_UMAX: {
454    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
455    ID.AddInteger(AT->getMemoryVT().getRawBits());
456    ID.AddInteger(AT->getRawSubclassData());
457    break;
458  }
459  } // end switch (N->getOpcode())
460}
461
462/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
463/// data.
464static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
465  AddNodeIDOpcode(ID, N->getOpcode());
466  // Add the return value info.
467  AddNodeIDValueTypes(ID, N->getVTList());
468  // Add the operand info.
469  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
470
471  // Handle SDNode leafs with special info.
472  AddNodeIDCustom(ID, N);
473}
474
475/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
476/// the CSE map that carries alignment, volatility, indexing mode, and
477/// extension/truncation information.
478///
479static inline unsigned
480encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM,
481                     bool isVolatile, unsigned Alignment) {
482  assert((ConvType & 3) == ConvType &&
483         "ConvType may not require more than 2 bits!");
484  assert((AM & 7) == AM &&
485         "AM may not require more than 3 bits!");
486  return ConvType |
487         (AM << 2) |
488         (isVolatile << 5) |
489         ((Log2_32(Alignment) + 1) << 6);
490}
491
492//===----------------------------------------------------------------------===//
493//                              SelectionDAG Class
494//===----------------------------------------------------------------------===//
495
496/// doNotCSE - Return true if CSE should not be performed for this node.
497static bool doNotCSE(SDNode *N) {
498  if (N->getValueType(0) == MVT::Flag)
499    return true; // Never CSE anything that produces a flag.
500
501  switch (N->getOpcode()) {
502  default: break;
503  case ISD::HANDLENODE:
504  case ISD::DBG_LABEL:
505  case ISD::DBG_STOPPOINT:
506  case ISD::EH_LABEL:
507  case ISD::DECLARE:
508    return true;   // Never CSE these nodes.
509  }
510
511  // Check that remaining values produced are not flags.
512  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
513    if (N->getValueType(i) == MVT::Flag)
514      return true; // Never CSE anything that produces a flag.
515
516  return false;
517}
518
519/// RemoveDeadNodes - This method deletes all unreachable nodes in the
520/// SelectionDAG.
521void SelectionDAG::RemoveDeadNodes() {
522  // Create a dummy node (which is not added to allnodes), that adds a reference
523  // to the root node, preventing it from being deleted.
524  HandleSDNode Dummy(getRoot());
525
526  SmallVector<SDNode*, 128> DeadNodes;
527
528  // Add all obviously-dead nodes to the DeadNodes worklist.
529  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
530    if (I->use_empty())
531      DeadNodes.push_back(I);
532
533  RemoveDeadNodes(DeadNodes);
534
535  // If the root changed (e.g. it was a dead load, update the root).
536  setRoot(Dummy.getValue());
537}
538
539/// RemoveDeadNodes - This method deletes the unreachable nodes in the
540/// given list, and any nodes that become unreachable as a result.
541void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
542                                   DAGUpdateListener *UpdateListener) {
543
544  // Process the worklist, deleting the nodes and adding their uses to the
545  // worklist.
546  while (!DeadNodes.empty()) {
547    SDNode *N = DeadNodes.pop_back_val();
548
549    if (UpdateListener)
550      UpdateListener->NodeDeleted(N, 0);
551
552    // Take the node out of the appropriate CSE map.
553    RemoveNodeFromCSEMaps(N);
554
555    // Next, brutally remove the operand list.  This is safe to do, as there are
556    // no cycles in the graph.
557    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
558      SDUse &Use = *I++;
559      SDNode *Operand = Use.getNode();
560      Use.set(SDValue());
561
562      // Now that we removed this operand, see if there are no uses of it left.
563      if (Operand->use_empty())
564        DeadNodes.push_back(Operand);
565    }
566
567    DeallocateNode(N);
568  }
569}
570
571void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
572  SmallVector<SDNode*, 16> DeadNodes(1, N);
573  RemoveDeadNodes(DeadNodes, UpdateListener);
574}
575
576void SelectionDAG::DeleteNode(SDNode *N) {
577  // First take this out of the appropriate CSE map.
578  RemoveNodeFromCSEMaps(N);
579
580  // Finally, remove uses due to operands of this node, remove from the
581  // AllNodes list, and delete the node.
582  DeleteNodeNotInCSEMaps(N);
583}
584
585void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
586  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
587  assert(N->use_empty() && "Cannot delete a node that is not dead!");
588
589  // Drop all of the operands and decrement used node's use counts.
590  N->DropOperands();
591
592  DeallocateNode(N);
593}
594
595void SelectionDAG::DeallocateNode(SDNode *N) {
596  if (N->OperandsNeedDelete)
597    delete[] N->OperandList;
598
599  // Set the opcode to DELETED_NODE to help catch bugs when node
600  // memory is reallocated.
601  N->NodeType = ISD::DELETED_NODE;
602
603  NodeAllocator.Deallocate(AllNodes.remove(N));
604}
605
606/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
607/// correspond to it.  This is useful when we're about to delete or repurpose
608/// the node.  We don't want future request for structurally identical nodes
609/// to return N anymore.
610bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
611  bool Erased = false;
612  switch (N->getOpcode()) {
613  case ISD::EntryToken:
614    assert(0 && "EntryToken should not be in CSEMaps!");
615    return false;
616  case ISD::HANDLENODE: return false;  // noop.
617  case ISD::CONDCODE:
618    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
619           "Cond code doesn't exist!");
620    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
621    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
622    break;
623  case ISD::ExternalSymbol:
624    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
625    break;
626  case ISD::TargetExternalSymbol:
627    Erased =
628      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
629    break;
630  case ISD::VALUETYPE: {
631    MVT VT = cast<VTSDNode>(N)->getVT();
632    if (VT.isExtended()) {
633      Erased = ExtendedValueTypeNodes.erase(VT);
634    } else {
635      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
636      ValueTypeNodes[VT.getSimpleVT()] = 0;
637    }
638    break;
639  }
640  default:
641    // Remove it from the CSE Map.
642    Erased = CSEMap.RemoveNode(N);
643    break;
644  }
645#ifndef NDEBUG
646  // Verify that the node was actually in one of the CSE maps, unless it has a
647  // flag result (which cannot be CSE'd) or is one of the special cases that are
648  // not subject to CSE.
649  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
650      !N->isMachineOpcode() && !doNotCSE(N)) {
651    N->dump(this);
652    cerr << "\n";
653    assert(0 && "Node is not in map!");
654  }
655#endif
656  return Erased;
657}
658
659/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
660/// maps and modified in place. Add it back to the CSE maps, unless an identical
661/// node already exists, in which case transfer all its users to the existing
662/// node. This transfer can potentially trigger recursive merging.
663///
664void
665SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
666                                       DAGUpdateListener *UpdateListener) {
667  // For node types that aren't CSE'd, just act as if no identical node
668  // already exists.
669  if (!doNotCSE(N)) {
670    SDNode *Existing = CSEMap.GetOrInsertNode(N);
671    if (Existing != N) {
672      // If there was already an existing matching node, use ReplaceAllUsesWith
673      // to replace the dead one with the existing one.  This can cause
674      // recursive merging of other unrelated nodes down the line.
675      ReplaceAllUsesWith(N, Existing, UpdateListener);
676
677      // N is now dead.  Inform the listener if it exists and delete it.
678      if (UpdateListener)
679        UpdateListener->NodeDeleted(N, Existing);
680      DeleteNodeNotInCSEMaps(N);
681      return;
682    }
683  }
684
685  // If the node doesn't already exist, we updated it.  Inform a listener if
686  // it exists.
687  if (UpdateListener)
688    UpdateListener->NodeUpdated(N);
689}
690
691/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
692/// were replaced with those specified.  If this node is never memoized,
693/// return null, otherwise return a pointer to the slot it would take.  If a
694/// node already exists with these operands, the slot will be non-null.
695SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
696                                           void *&InsertPos) {
697  if (doNotCSE(N))
698    return 0;
699
700  SDValue Ops[] = { Op };
701  FoldingSetNodeID ID;
702  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
703  AddNodeIDCustom(ID, N);
704  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
705}
706
707/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
708/// were replaced with those specified.  If this node is never memoized,
709/// return null, otherwise return a pointer to the slot it would take.  If a
710/// node already exists with these operands, the slot will be non-null.
711SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
712                                           SDValue Op1, SDValue Op2,
713                                           void *&InsertPos) {
714  if (doNotCSE(N))
715    return 0;
716
717  SDValue Ops[] = { Op1, Op2 };
718  FoldingSetNodeID ID;
719  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
720  AddNodeIDCustom(ID, N);
721  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
722}
723
724
725/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
726/// were replaced with those specified.  If this node is never memoized,
727/// return null, otherwise return a pointer to the slot it would take.  If a
728/// node already exists with these operands, the slot will be non-null.
729SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
730                                           const SDValue *Ops,unsigned NumOps,
731                                           void *&InsertPos) {
732  if (doNotCSE(N))
733    return 0;
734
735  FoldingSetNodeID ID;
736  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
737  AddNodeIDCustom(ID, N);
738  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
739}
740
741/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
742void SelectionDAG::VerifyNode(SDNode *N) {
743  switch (N->getOpcode()) {
744  default:
745    break;
746  case ISD::BUILD_PAIR: {
747    MVT VT = N->getValueType(0);
748    assert(N->getNumValues() == 1 && "Too many results!");
749    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
750           "Wrong return type!");
751    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
752    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
753           "Mismatched operand types!");
754    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
755           "Wrong operand type!");
756    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
757           "Wrong return type size");
758    break;
759  }
760  case ISD::BUILD_VECTOR: {
761    assert(N->getNumValues() == 1 && "Too many results!");
762    assert(N->getValueType(0).isVector() && "Wrong return type!");
763    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
764           "Wrong number of operands!");
765    // FIXME: Change vector_shuffle to a variadic node with mask elements being
766    // operands of the node.  Currently the mask is a BUILD_VECTOR passed as an
767    // operand, and it is not always possible to legalize it.  Turning off the
768    // following checks at least makes it possible to legalize most of the time.
769//    MVT EltVT = N->getValueType(0).getVectorElementType();
770//    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
771//      assert(I->getValueType() == EltVT &&
772//             "Wrong operand type!");
773    break;
774  }
775  }
776}
777
778/// getMVTAlignment - Compute the default alignment value for the
779/// given type.
780///
781unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
782  const Type *Ty = VT == MVT::iPTR ?
783                   PointerType::get(Type::Int8Ty, 0) :
784                   VT.getTypeForMVT();
785
786  return TLI.getTargetData()->getABITypeAlignment(Ty);
787}
788
789SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
790  : TLI(tli), FLI(fli), DW(0),
791    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
792    Root(getEntryNode()) {
793  AllNodes.push_back(&EntryNode);
794}
795
796void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
797                        DwarfWriter *dw) {
798  MF = &mf;
799  MMI = mmi;
800  DW = dw;
801}
802
803SelectionDAG::~SelectionDAG() {
804  allnodes_clear();
805}
806
807void SelectionDAG::allnodes_clear() {
808  assert(&*AllNodes.begin() == &EntryNode);
809  AllNodes.remove(AllNodes.begin());
810  while (!AllNodes.empty())
811    DeallocateNode(AllNodes.begin());
812}
813
814void SelectionDAG::clear() {
815  allnodes_clear();
816  OperandAllocator.Reset();
817  CSEMap.clear();
818
819  ExtendedValueTypeNodes.clear();
820  ExternalSymbols.clear();
821  TargetExternalSymbols.clear();
822  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
823            static_cast<CondCodeSDNode*>(0));
824  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
825            static_cast<SDNode*>(0));
826
827  EntryNode.UseList = 0;
828  AllNodes.push_back(&EntryNode);
829  Root = getEntryNode();
830}
831
832SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, MVT VT) {
833  if (Op.getValueType() == VT) return Op;
834  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
835                                   VT.getSizeInBits());
836  return getNode(ISD::AND, DL, Op.getValueType(), Op,
837                 getConstant(Imm, Op.getValueType()));
838}
839
840/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
841///
842SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, MVT VT) {
843  SDValue NegOne;
844  if (VT.isVector()) {
845    MVT EltVT = VT.getVectorElementType();
846    SDValue NegOneElt =
847      getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), EltVT);
848    std::vector<SDValue> NegOnes(VT.getVectorNumElements(), NegOneElt);
849    NegOne = getNode(ISD::BUILD_VECTOR, DL, VT, &NegOnes[0], NegOnes.size());
850  } else {
851    NegOne = getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
852  }
853  return getNode(ISD::XOR, DL, VT, Val, NegOne);
854}
855
856SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
857  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
858  assert((EltVT.getSizeInBits() >= 64 ||
859         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
860         "getConstant with a uint64_t value that doesn't fit in the type!");
861  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
862}
863
864SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
865  return getConstant(*ConstantInt::get(Val), VT, isT);
866}
867
868SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
869  assert(VT.isInteger() && "Cannot create FP integer constant!");
870
871  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
872  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
873         "APInt size does not match type size!");
874
875  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
876  FoldingSetNodeID ID;
877  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
878  ID.AddPointer(&Val);
879  void *IP = 0;
880  SDNode *N = NULL;
881  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
882    if (!VT.isVector())
883      return SDValue(N, 0);
884  if (!N) {
885    N = NodeAllocator.Allocate<ConstantSDNode>();
886    new (N) ConstantSDNode(isT, &Val, EltVT);
887    CSEMap.InsertNode(N, IP);
888    AllNodes.push_back(N);
889  }
890
891  SDValue Result(N, 0);
892  if (VT.isVector()) {
893    SmallVector<SDValue, 8> Ops;
894    Ops.assign(VT.getVectorNumElements(), Result);
895    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
896                     VT, &Ops[0], Ops.size());
897  }
898  return Result;
899}
900
901SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
902  return getConstant(Val, TLI.getPointerTy(), isTarget);
903}
904
905
906SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
907  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
908}
909
910SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
911  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
912
913  MVT EltVT =
914    VT.isVector() ? VT.getVectorElementType() : VT;
915
916  // Do the map lookup using the actual bit pattern for the floating point
917  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
918  // we don't have issues with SNANs.
919  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
920  FoldingSetNodeID ID;
921  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
922  ID.AddPointer(&V);
923  void *IP = 0;
924  SDNode *N = NULL;
925  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
926    if (!VT.isVector())
927      return SDValue(N, 0);
928  if (!N) {
929    N = NodeAllocator.Allocate<ConstantFPSDNode>();
930    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
931    CSEMap.InsertNode(N, IP);
932    AllNodes.push_back(N);
933  }
934
935  SDValue Result(N, 0);
936  if (VT.isVector()) {
937    SmallVector<SDValue, 8> Ops;
938    Ops.assign(VT.getVectorNumElements(), Result);
939    // FIXME DebugLoc info might be appropriate here
940    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
941                     VT, &Ops[0], Ops.size());
942  }
943  return Result;
944}
945
946SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
947  MVT EltVT =
948    VT.isVector() ? VT.getVectorElementType() : VT;
949  if (EltVT==MVT::f32)
950    return getConstantFP(APFloat((float)Val), VT, isTarget);
951  else
952    return getConstantFP(APFloat(Val), VT, isTarget);
953}
954
955SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
956                                       MVT VT, int64_t Offset,
957                                       bool isTargetGA) {
958  unsigned Opc;
959
960  // Truncate (with sign-extension) the offset value to the pointer size.
961  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
962  if (BitWidth < 64)
963    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
964
965  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
966  if (!GVar) {
967    // If GV is an alias then use the aliasee for determining thread-localness.
968    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
969      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
970  }
971
972  if (GVar && GVar->isThreadLocal())
973    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
974  else
975    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
976
977  FoldingSetNodeID ID;
978  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
979  ID.AddPointer(GV);
980  ID.AddInteger(Offset);
981  void *IP = 0;
982  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
983    return SDValue(E, 0);
984  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
985  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
986  CSEMap.InsertNode(N, IP);
987  AllNodes.push_back(N);
988  return SDValue(N, 0);
989}
990
991SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
992  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
993  FoldingSetNodeID ID;
994  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
995  ID.AddInteger(FI);
996  void *IP = 0;
997  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
998    return SDValue(E, 0);
999  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1000  new (N) FrameIndexSDNode(FI, VT, isTarget);
1001  CSEMap.InsertNode(N, IP);
1002  AllNodes.push_back(N);
1003  return SDValue(N, 0);
1004}
1005
1006SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1007  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1008  FoldingSetNodeID ID;
1009  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1010  ID.AddInteger(JTI);
1011  void *IP = 0;
1012  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1013    return SDValue(E, 0);
1014  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1015  new (N) JumpTableSDNode(JTI, VT, isTarget);
1016  CSEMap.InsertNode(N, IP);
1017  AllNodes.push_back(N);
1018  return SDValue(N, 0);
1019}
1020
1021SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1022                                      unsigned Alignment, int Offset,
1023                                      bool isTarget) {
1024  if (Alignment == 0)
1025    Alignment =
1026      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1027  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1028  FoldingSetNodeID ID;
1029  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1030  ID.AddInteger(Alignment);
1031  ID.AddInteger(Offset);
1032  ID.AddPointer(C);
1033  void *IP = 0;
1034  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1035    return SDValue(E, 0);
1036  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1037  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1038  CSEMap.InsertNode(N, IP);
1039  AllNodes.push_back(N);
1040  return SDValue(N, 0);
1041}
1042
1043
1044SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1045                                      unsigned Alignment, int Offset,
1046                                      bool isTarget) {
1047  if (Alignment == 0)
1048    Alignment =
1049      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1050  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1051  FoldingSetNodeID ID;
1052  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1053  ID.AddInteger(Alignment);
1054  ID.AddInteger(Offset);
1055  C->AddSelectionDAGCSEId(ID);
1056  void *IP = 0;
1057  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1058    return SDValue(E, 0);
1059  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1060  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1061  CSEMap.InsertNode(N, IP);
1062  AllNodes.push_back(N);
1063  return SDValue(N, 0);
1064}
1065
1066SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1067  FoldingSetNodeID ID;
1068  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1069  ID.AddPointer(MBB);
1070  void *IP = 0;
1071  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1072    return SDValue(E, 0);
1073  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1074  new (N) BasicBlockSDNode(MBB);
1075  CSEMap.InsertNode(N, IP);
1076  AllNodes.push_back(N);
1077  return SDValue(N, 0);
1078}
1079
1080SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB, DebugLoc dl) {
1081  FoldingSetNodeID ID;
1082  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1083  ID.AddPointer(MBB);
1084  void *IP = 0;
1085  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1086    return SDValue(E, 0);
1087  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1088  new (N) BasicBlockSDNode(MBB, dl);
1089  CSEMap.InsertNode(N, IP);
1090  AllNodes.push_back(N);
1091  return SDValue(N, 0);
1092}
1093
1094SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1095  FoldingSetNodeID ID;
1096  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1097  ID.AddInteger(Flags.getRawBits());
1098  void *IP = 0;
1099  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1100    return SDValue(E, 0);
1101  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1102  new (N) ARG_FLAGSSDNode(Flags);
1103  CSEMap.InsertNode(N, IP);
1104  AllNodes.push_back(N);
1105  return SDValue(N, 0);
1106}
1107
1108SDValue SelectionDAG::getValueType(MVT VT) {
1109  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1110    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1111
1112  SDNode *&N = VT.isExtended() ?
1113    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1114
1115  if (N) return SDValue(N, 0);
1116  N = NodeAllocator.Allocate<VTSDNode>();
1117  new (N) VTSDNode(VT);
1118  AllNodes.push_back(N);
1119  return SDValue(N, 0);
1120}
1121
1122SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1123  SDNode *&N = ExternalSymbols[Sym];
1124  if (N) return SDValue(N, 0);
1125  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1126  new (N) ExternalSymbolSDNode(false, Sym, VT);
1127  AllNodes.push_back(N);
1128  return SDValue(N, 0);
1129}
1130
1131SDValue SelectionDAG::getExternalSymbol(const char *Sym, DebugLoc dl, MVT VT) {
1132  SDNode *&N = ExternalSymbols[Sym];
1133  if (N) return SDValue(N, 0);
1134  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1135  new (N) ExternalSymbolSDNode(false, dl, Sym, VT);
1136  AllNodes.push_back(N);
1137  return SDValue(N, 0);
1138}
1139
1140SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1141  SDNode *&N = TargetExternalSymbols[Sym];
1142  if (N) return SDValue(N, 0);
1143  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1144  new (N) ExternalSymbolSDNode(true, Sym, VT);
1145  AllNodes.push_back(N);
1146  return SDValue(N, 0);
1147}
1148
1149SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, DebugLoc dl,
1150                                              MVT VT) {
1151  SDNode *&N = TargetExternalSymbols[Sym];
1152  if (N) return SDValue(N, 0);
1153  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1154  new (N) ExternalSymbolSDNode(true, dl, Sym, VT);
1155  AllNodes.push_back(N);
1156  return SDValue(N, 0);
1157}
1158
1159SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1160  if ((unsigned)Cond >= CondCodeNodes.size())
1161    CondCodeNodes.resize(Cond+1);
1162
1163  if (CondCodeNodes[Cond] == 0) {
1164    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1165    new (N) CondCodeSDNode(Cond);
1166    CondCodeNodes[Cond] = N;
1167    AllNodes.push_back(N);
1168  }
1169  return SDValue(CondCodeNodes[Cond], 0);
1170}
1171
1172SDValue SelectionDAG::getConvertRndSat(MVT VT, DebugLoc dl,
1173                                       SDValue Val, SDValue DTy,
1174                                       SDValue STy, SDValue Rnd, SDValue Sat,
1175                                       ISD::CvtCode Code) {
1176  // If the src and dest types are the same and the conversion is between
1177  // integer types of the same sign or two floats, no conversion is necessary.
1178  if (DTy == STy &&
1179      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1180    return Val;
1181
1182  FoldingSetNodeID ID;
1183  void* IP = 0;
1184  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1185    return SDValue(E, 0);
1186  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1187  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1188  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1189  CSEMap.InsertNode(N, IP);
1190  AllNodes.push_back(N);
1191  return SDValue(N, 0);
1192}
1193
1194SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1195  FoldingSetNodeID ID;
1196  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1197  ID.AddInteger(RegNo);
1198  void *IP = 0;
1199  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1200    return SDValue(E, 0);
1201  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1202  new (N) RegisterSDNode(RegNo, VT);
1203  CSEMap.InsertNode(N, IP);
1204  AllNodes.push_back(N);
1205  return SDValue(N, 0);
1206}
1207
1208SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1209                                      unsigned Line, unsigned Col,
1210                                      Value *CU) {
1211  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1212  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1213  AllNodes.push_back(N);
1214  return SDValue(N, 0);
1215}
1216
1217SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1218                               SDValue Root,
1219                               unsigned LabelID) {
1220  FoldingSetNodeID ID;
1221  SDValue Ops[] = { Root };
1222  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1223  ID.AddInteger(LabelID);
1224  void *IP = 0;
1225  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1226    return SDValue(E, 0);
1227  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1228  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1229  CSEMap.InsertNode(N, IP);
1230  AllNodes.push_back(N);
1231  return SDValue(N, 0);
1232}
1233
1234SDValue SelectionDAG::getSrcValue(const Value *V) {
1235  assert((!V || isa<PointerType>(V->getType())) &&
1236         "SrcValue is not a pointer?");
1237
1238  FoldingSetNodeID ID;
1239  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1240  ID.AddPointer(V);
1241
1242  void *IP = 0;
1243  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1244    return SDValue(E, 0);
1245
1246  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1247  new (N) SrcValueSDNode(V);
1248  CSEMap.InsertNode(N, IP);
1249  AllNodes.push_back(N);
1250  return SDValue(N, 0);
1251}
1252
1253SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1254#ifndef NDEBUG
1255  const Value *v = MO.getValue();
1256  assert((!v || isa<PointerType>(v->getType())) &&
1257         "SrcValue is not a pointer?");
1258#endif
1259
1260  FoldingSetNodeID ID;
1261  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1262  MO.Profile(ID);
1263
1264  void *IP = 0;
1265  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1266    return SDValue(E, 0);
1267
1268  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1269  new (N) MemOperandSDNode(MO);
1270  CSEMap.InsertNode(N, IP);
1271  AllNodes.push_back(N);
1272  return SDValue(N, 0);
1273}
1274
1275/// getShiftAmountOperand - Return the specified value casted to
1276/// the target's desired shift amount type.
1277SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1278  MVT OpTy = Op.getValueType();
1279  MVT ShTy = TLI.getShiftAmountTy();
1280  if (OpTy == ShTy || OpTy.isVector()) return Op;
1281
1282  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1283  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1284}
1285
1286/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1287/// specified value type.
1288SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1289  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1290  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1291  const Type *Ty = VT.getTypeForMVT();
1292  unsigned StackAlign =
1293  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1294
1295  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1296  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1297}
1298
1299/// CreateStackTemporary - Create a stack temporary suitable for holding
1300/// either of the specified value types.
1301SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1302  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1303                            VT2.getStoreSizeInBits())/8;
1304  const Type *Ty1 = VT1.getTypeForMVT();
1305  const Type *Ty2 = VT2.getTypeForMVT();
1306  const TargetData *TD = TLI.getTargetData();
1307  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1308                            TD->getPrefTypeAlignment(Ty2));
1309
1310  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1311  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1312  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1313}
1314
1315SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1316                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1317  // These setcc operations always fold.
1318  switch (Cond) {
1319  default: break;
1320  case ISD::SETFALSE:
1321  case ISD::SETFALSE2: return getConstant(0, VT);
1322  case ISD::SETTRUE:
1323  case ISD::SETTRUE2:  return getConstant(1, VT);
1324
1325  case ISD::SETOEQ:
1326  case ISD::SETOGT:
1327  case ISD::SETOGE:
1328  case ISD::SETOLT:
1329  case ISD::SETOLE:
1330  case ISD::SETONE:
1331  case ISD::SETO:
1332  case ISD::SETUO:
1333  case ISD::SETUEQ:
1334  case ISD::SETUNE:
1335    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1336    break;
1337  }
1338
1339  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1340    const APInt &C2 = N2C->getAPIntValue();
1341    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1342      const APInt &C1 = N1C->getAPIntValue();
1343
1344      switch (Cond) {
1345      default: assert(0 && "Unknown integer setcc!");
1346      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1347      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1348      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1349      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1350      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1351      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1352      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1353      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1354      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1355      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1356      }
1357    }
1358  }
1359  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1360    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1361      // No compile time operations on this type yet.
1362      if (N1C->getValueType(0) == MVT::ppcf128)
1363        return SDValue();
1364
1365      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1366      switch (Cond) {
1367      default: break;
1368      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1369                          return getUNDEF(VT);
1370                        // fall through
1371      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1372      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1373                          return getUNDEF(VT);
1374                        // fall through
1375      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1376                                           R==APFloat::cmpLessThan, VT);
1377      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1378                          return getUNDEF(VT);
1379                        // fall through
1380      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1381      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1382                          return getUNDEF(VT);
1383                        // fall through
1384      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1385      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1386                          return getUNDEF(VT);
1387                        // fall through
1388      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1389                                           R==APFloat::cmpEqual, VT);
1390      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1391                          return getUNDEF(VT);
1392                        // fall through
1393      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1394                                           R==APFloat::cmpEqual, VT);
1395      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1396      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1397      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1398                                           R==APFloat::cmpEqual, VT);
1399      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1400      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1401                                           R==APFloat::cmpLessThan, VT);
1402      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1403                                           R==APFloat::cmpUnordered, VT);
1404      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1405      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1406      }
1407    } else {
1408      // Ensure that the constant occurs on the RHS.
1409      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1410    }
1411  }
1412
1413  // Could not fold it.
1414  return SDValue();
1415}
1416
1417/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1418/// use this predicate to simplify operations downstream.
1419bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1420  unsigned BitWidth = Op.getValueSizeInBits();
1421  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1422}
1423
1424/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1425/// this predicate to simplify operations downstream.  Mask is known to be zero
1426/// for bits that V cannot have.
1427bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1428                                     unsigned Depth) const {
1429  APInt KnownZero, KnownOne;
1430  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1431  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1432  return (KnownZero & Mask) == Mask;
1433}
1434
1435/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1436/// known to be either zero or one and return them in the KnownZero/KnownOne
1437/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1438/// processing.
1439void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1440                                     APInt &KnownZero, APInt &KnownOne,
1441                                     unsigned Depth) const {
1442  unsigned BitWidth = Mask.getBitWidth();
1443  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1444         "Mask size mismatches value type size!");
1445
1446  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1447  if (Depth == 6 || Mask == 0)
1448    return;  // Limit search depth.
1449
1450  APInt KnownZero2, KnownOne2;
1451
1452  switch (Op.getOpcode()) {
1453  case ISD::Constant:
1454    // We know all of the bits for a constant!
1455    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1456    KnownZero = ~KnownOne & Mask;
1457    return;
1458  case ISD::AND:
1459    // If either the LHS or the RHS are Zero, the result is zero.
1460    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1461    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1462                      KnownZero2, KnownOne2, Depth+1);
1463    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1464    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1465
1466    // Output known-1 bits are only known if set in both the LHS & RHS.
1467    KnownOne &= KnownOne2;
1468    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1469    KnownZero |= KnownZero2;
1470    return;
1471  case ISD::OR:
1472    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1473    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1474                      KnownZero2, KnownOne2, Depth+1);
1475    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1476    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1477
1478    // Output known-0 bits are only known if clear in both the LHS & RHS.
1479    KnownZero &= KnownZero2;
1480    // Output known-1 are known to be set if set in either the LHS | RHS.
1481    KnownOne |= KnownOne2;
1482    return;
1483  case ISD::XOR: {
1484    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1485    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1486    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1487    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1488
1489    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1490    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1491    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1492    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1493    KnownZero = KnownZeroOut;
1494    return;
1495  }
1496  case ISD::MUL: {
1497    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1498    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1499    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1500    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1501    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1502
1503    // If low bits are zero in either operand, output low known-0 bits.
1504    // Also compute a conserative estimate for high known-0 bits.
1505    // More trickiness is possible, but this is sufficient for the
1506    // interesting case of alignment computation.
1507    KnownOne.clear();
1508    unsigned TrailZ = KnownZero.countTrailingOnes() +
1509                      KnownZero2.countTrailingOnes();
1510    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1511                               KnownZero2.countLeadingOnes(),
1512                               BitWidth) - BitWidth;
1513
1514    TrailZ = std::min(TrailZ, BitWidth);
1515    LeadZ = std::min(LeadZ, BitWidth);
1516    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1517                APInt::getHighBitsSet(BitWidth, LeadZ);
1518    KnownZero &= Mask;
1519    return;
1520  }
1521  case ISD::UDIV: {
1522    // For the purposes of computing leading zeros we can conservatively
1523    // treat a udiv as a logical right shift by the power of 2 known to
1524    // be less than the denominator.
1525    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1526    ComputeMaskedBits(Op.getOperand(0),
1527                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1528    unsigned LeadZ = KnownZero2.countLeadingOnes();
1529
1530    KnownOne2.clear();
1531    KnownZero2.clear();
1532    ComputeMaskedBits(Op.getOperand(1),
1533                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1534    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1535    if (RHSUnknownLeadingOnes != BitWidth)
1536      LeadZ = std::min(BitWidth,
1537                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1538
1539    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1540    return;
1541  }
1542  case ISD::SELECT:
1543    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1544    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1545    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1546    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1547
1548    // Only known if known in both the LHS and RHS.
1549    KnownOne &= KnownOne2;
1550    KnownZero &= KnownZero2;
1551    return;
1552  case ISD::SELECT_CC:
1553    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1554    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1555    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1556    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1557
1558    // Only known if known in both the LHS and RHS.
1559    KnownOne &= KnownOne2;
1560    KnownZero &= KnownZero2;
1561    return;
1562  case ISD::SADDO:
1563  case ISD::UADDO:
1564  case ISD::SSUBO:
1565  case ISD::USUBO:
1566  case ISD::SMULO:
1567  case ISD::UMULO:
1568    if (Op.getResNo() != 1)
1569      return;
1570    // The boolean result conforms to getBooleanContents.  Fall through.
1571  case ISD::SETCC:
1572    // If we know the result of a setcc has the top bits zero, use this info.
1573    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1574        BitWidth > 1)
1575      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1576    return;
1577  case ISD::SHL:
1578    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1579    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1580      unsigned ShAmt = SA->getZExtValue();
1581
1582      // If the shift count is an invalid immediate, don't do anything.
1583      if (ShAmt >= BitWidth)
1584        return;
1585
1586      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1587                        KnownZero, KnownOne, Depth+1);
1588      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1589      KnownZero <<= ShAmt;
1590      KnownOne  <<= ShAmt;
1591      // low bits known zero.
1592      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1593    }
1594    return;
1595  case ISD::SRL:
1596    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1597    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1598      unsigned ShAmt = SA->getZExtValue();
1599
1600      // If the shift count is an invalid immediate, don't do anything.
1601      if (ShAmt >= BitWidth)
1602        return;
1603
1604      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1605                        KnownZero, KnownOne, Depth+1);
1606      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1607      KnownZero = KnownZero.lshr(ShAmt);
1608      KnownOne  = KnownOne.lshr(ShAmt);
1609
1610      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1611      KnownZero |= HighBits;  // High bits known zero.
1612    }
1613    return;
1614  case ISD::SRA:
1615    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1616      unsigned ShAmt = SA->getZExtValue();
1617
1618      // If the shift count is an invalid immediate, don't do anything.
1619      if (ShAmt >= BitWidth)
1620        return;
1621
1622      APInt InDemandedMask = (Mask << ShAmt);
1623      // If any of the demanded bits are produced by the sign extension, we also
1624      // demand the input sign bit.
1625      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1626      if (HighBits.getBoolValue())
1627        InDemandedMask |= APInt::getSignBit(BitWidth);
1628
1629      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1630                        Depth+1);
1631      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1632      KnownZero = KnownZero.lshr(ShAmt);
1633      KnownOne  = KnownOne.lshr(ShAmt);
1634
1635      // Handle the sign bits.
1636      APInt SignBit = APInt::getSignBit(BitWidth);
1637      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1638
1639      if (KnownZero.intersects(SignBit)) {
1640        KnownZero |= HighBits;  // New bits are known zero.
1641      } else if (KnownOne.intersects(SignBit)) {
1642        KnownOne  |= HighBits;  // New bits are known one.
1643      }
1644    }
1645    return;
1646  case ISD::SIGN_EXTEND_INREG: {
1647    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1648    unsigned EBits = EVT.getSizeInBits();
1649
1650    // Sign extension.  Compute the demanded bits in the result that are not
1651    // present in the input.
1652    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1653
1654    APInt InSignBit = APInt::getSignBit(EBits);
1655    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1656
1657    // If the sign extended bits are demanded, we know that the sign
1658    // bit is demanded.
1659    InSignBit.zext(BitWidth);
1660    if (NewBits.getBoolValue())
1661      InputDemandedBits |= InSignBit;
1662
1663    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1664                      KnownZero, KnownOne, Depth+1);
1665    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1666
1667    // If the sign bit of the input is known set or clear, then we know the
1668    // top bits of the result.
1669    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1670      KnownZero |= NewBits;
1671      KnownOne  &= ~NewBits;
1672    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1673      KnownOne  |= NewBits;
1674      KnownZero &= ~NewBits;
1675    } else {                              // Input sign bit unknown
1676      KnownZero &= ~NewBits;
1677      KnownOne  &= ~NewBits;
1678    }
1679    return;
1680  }
1681  case ISD::CTTZ:
1682  case ISD::CTLZ:
1683  case ISD::CTPOP: {
1684    unsigned LowBits = Log2_32(BitWidth)+1;
1685    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1686    KnownOne.clear();
1687    return;
1688  }
1689  case ISD::LOAD: {
1690    if (ISD::isZEXTLoad(Op.getNode())) {
1691      LoadSDNode *LD = cast<LoadSDNode>(Op);
1692      MVT VT = LD->getMemoryVT();
1693      unsigned MemBits = VT.getSizeInBits();
1694      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1695    }
1696    return;
1697  }
1698  case ISD::ZERO_EXTEND: {
1699    MVT InVT = Op.getOperand(0).getValueType();
1700    unsigned InBits = InVT.getSizeInBits();
1701    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1702    APInt InMask    = Mask;
1703    InMask.trunc(InBits);
1704    KnownZero.trunc(InBits);
1705    KnownOne.trunc(InBits);
1706    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1707    KnownZero.zext(BitWidth);
1708    KnownOne.zext(BitWidth);
1709    KnownZero |= NewBits;
1710    return;
1711  }
1712  case ISD::SIGN_EXTEND: {
1713    MVT InVT = Op.getOperand(0).getValueType();
1714    unsigned InBits = InVT.getSizeInBits();
1715    APInt InSignBit = APInt::getSignBit(InBits);
1716    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1717    APInt InMask = Mask;
1718    InMask.trunc(InBits);
1719
1720    // If any of the sign extended bits are demanded, we know that the sign
1721    // bit is demanded. Temporarily set this bit in the mask for our callee.
1722    if (NewBits.getBoolValue())
1723      InMask |= InSignBit;
1724
1725    KnownZero.trunc(InBits);
1726    KnownOne.trunc(InBits);
1727    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1728
1729    // Note if the sign bit is known to be zero or one.
1730    bool SignBitKnownZero = KnownZero.isNegative();
1731    bool SignBitKnownOne  = KnownOne.isNegative();
1732    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1733           "Sign bit can't be known to be both zero and one!");
1734
1735    // If the sign bit wasn't actually demanded by our caller, we don't
1736    // want it set in the KnownZero and KnownOne result values. Reset the
1737    // mask and reapply it to the result values.
1738    InMask = Mask;
1739    InMask.trunc(InBits);
1740    KnownZero &= InMask;
1741    KnownOne  &= InMask;
1742
1743    KnownZero.zext(BitWidth);
1744    KnownOne.zext(BitWidth);
1745
1746    // If the sign bit is known zero or one, the top bits match.
1747    if (SignBitKnownZero)
1748      KnownZero |= NewBits;
1749    else if (SignBitKnownOne)
1750      KnownOne  |= NewBits;
1751    return;
1752  }
1753  case ISD::ANY_EXTEND: {
1754    MVT InVT = Op.getOperand(0).getValueType();
1755    unsigned InBits = InVT.getSizeInBits();
1756    APInt InMask = Mask;
1757    InMask.trunc(InBits);
1758    KnownZero.trunc(InBits);
1759    KnownOne.trunc(InBits);
1760    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1761    KnownZero.zext(BitWidth);
1762    KnownOne.zext(BitWidth);
1763    return;
1764  }
1765  case ISD::TRUNCATE: {
1766    MVT InVT = Op.getOperand(0).getValueType();
1767    unsigned InBits = InVT.getSizeInBits();
1768    APInt InMask = Mask;
1769    InMask.zext(InBits);
1770    KnownZero.zext(InBits);
1771    KnownOne.zext(InBits);
1772    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1773    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1774    KnownZero.trunc(BitWidth);
1775    KnownOne.trunc(BitWidth);
1776    break;
1777  }
1778  case ISD::AssertZext: {
1779    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1780    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1781    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1782                      KnownOne, Depth+1);
1783    KnownZero |= (~InMask) & Mask;
1784    return;
1785  }
1786  case ISD::FGETSIGN:
1787    // All bits are zero except the low bit.
1788    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1789    return;
1790
1791  case ISD::SUB: {
1792    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1793      // We know that the top bits of C-X are clear if X contains less bits
1794      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1795      // positive if we can prove that X is >= 0 and < 16.
1796      if (CLHS->getAPIntValue().isNonNegative()) {
1797        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1798        // NLZ can't be BitWidth with no sign bit
1799        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1800        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1801                          Depth+1);
1802
1803        // If all of the MaskV bits are known to be zero, then we know the
1804        // output top bits are zero, because we now know that the output is
1805        // from [0-C].
1806        if ((KnownZero2 & MaskV) == MaskV) {
1807          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1808          // Top bits known zero.
1809          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1810        }
1811      }
1812    }
1813  }
1814  // fall through
1815  case ISD::ADD: {
1816    // Output known-0 bits are known if clear or set in both the low clear bits
1817    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1818    // low 3 bits clear.
1819    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1820    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1821    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1822    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1823
1824    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1825    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1826    KnownZeroOut = std::min(KnownZeroOut,
1827                            KnownZero2.countTrailingOnes());
1828
1829    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1830    return;
1831  }
1832  case ISD::SREM:
1833    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1834      const APInt &RA = Rem->getAPIntValue();
1835      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1836        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1837        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1838        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1839
1840        // If the sign bit of the first operand is zero, the sign bit of
1841        // the result is zero. If the first operand has no one bits below
1842        // the second operand's single 1 bit, its sign will be zero.
1843        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1844          KnownZero2 |= ~LowBits;
1845
1846        KnownZero |= KnownZero2 & Mask;
1847
1848        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1849      }
1850    }
1851    return;
1852  case ISD::UREM: {
1853    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1854      const APInt &RA = Rem->getAPIntValue();
1855      if (RA.isPowerOf2()) {
1856        APInt LowBits = (RA - 1);
1857        APInt Mask2 = LowBits & Mask;
1858        KnownZero |= ~LowBits & Mask;
1859        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1860        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1861        break;
1862      }
1863    }
1864
1865    // Since the result is less than or equal to either operand, any leading
1866    // zero bits in either operand must also exist in the result.
1867    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1868    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1869                      Depth+1);
1870    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1871                      Depth+1);
1872
1873    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1874                                KnownZero2.countLeadingOnes());
1875    KnownOne.clear();
1876    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1877    return;
1878  }
1879  default:
1880    // Allow the target to implement this method for its nodes.
1881    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1882  case ISD::INTRINSIC_WO_CHAIN:
1883  case ISD::INTRINSIC_W_CHAIN:
1884  case ISD::INTRINSIC_VOID:
1885      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1886    }
1887    return;
1888  }
1889}
1890
1891/// ComputeNumSignBits - Return the number of times the sign bit of the
1892/// register is replicated into the other bits.  We know that at least 1 bit
1893/// is always equal to the sign bit (itself), but other cases can give us
1894/// information.  For example, immediately after an "SRA X, 2", we know that
1895/// the top 3 bits are all equal to each other, so we return 3.
1896unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1897  MVT VT = Op.getValueType();
1898  assert(VT.isInteger() && "Invalid VT!");
1899  unsigned VTBits = VT.getSizeInBits();
1900  unsigned Tmp, Tmp2;
1901  unsigned FirstAnswer = 1;
1902
1903  if (Depth == 6)
1904    return 1;  // Limit search depth.
1905
1906  switch (Op.getOpcode()) {
1907  default: break;
1908  case ISD::AssertSext:
1909    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1910    return VTBits-Tmp+1;
1911  case ISD::AssertZext:
1912    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1913    return VTBits-Tmp;
1914
1915  case ISD::Constant: {
1916    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1917    // If negative, return # leading ones.
1918    if (Val.isNegative())
1919      return Val.countLeadingOnes();
1920
1921    // Return # leading zeros.
1922    return Val.countLeadingZeros();
1923  }
1924
1925  case ISD::SIGN_EXTEND:
1926    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1927    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1928
1929  case ISD::SIGN_EXTEND_INREG:
1930    // Max of the input and what this extends.
1931    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1932    Tmp = VTBits-Tmp+1;
1933
1934    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1935    return std::max(Tmp, Tmp2);
1936
1937  case ISD::SRA:
1938    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1939    // SRA X, C   -> adds C sign bits.
1940    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1941      Tmp += C->getZExtValue();
1942      if (Tmp > VTBits) Tmp = VTBits;
1943    }
1944    return Tmp;
1945  case ISD::SHL:
1946    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1947      // shl destroys sign bits.
1948      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1949      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1950          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1951      return Tmp - C->getZExtValue();
1952    }
1953    break;
1954  case ISD::AND:
1955  case ISD::OR:
1956  case ISD::XOR:    // NOT is handled here.
1957    // Logical binary ops preserve the number of sign bits at the worst.
1958    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1959    if (Tmp != 1) {
1960      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1961      FirstAnswer = std::min(Tmp, Tmp2);
1962      // We computed what we know about the sign bits as our first
1963      // answer. Now proceed to the generic code that uses
1964      // ComputeMaskedBits, and pick whichever answer is better.
1965    }
1966    break;
1967
1968  case ISD::SELECT:
1969    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1970    if (Tmp == 1) return 1;  // Early out.
1971    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1972    return std::min(Tmp, Tmp2);
1973
1974  case ISD::SADDO:
1975  case ISD::UADDO:
1976  case ISD::SSUBO:
1977  case ISD::USUBO:
1978  case ISD::SMULO:
1979  case ISD::UMULO:
1980    if (Op.getResNo() != 1)
1981      break;
1982    // The boolean result conforms to getBooleanContents.  Fall through.
1983  case ISD::SETCC:
1984    // If setcc returns 0/-1, all bits are sign bits.
1985    if (TLI.getBooleanContents() ==
1986        TargetLowering::ZeroOrNegativeOneBooleanContent)
1987      return VTBits;
1988    break;
1989  case ISD::ROTL:
1990  case ISD::ROTR:
1991    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1992      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1993
1994      // Handle rotate right by N like a rotate left by 32-N.
1995      if (Op.getOpcode() == ISD::ROTR)
1996        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1997
1998      // If we aren't rotating out all of the known-in sign bits, return the
1999      // number that are left.  This handles rotl(sext(x), 1) for example.
2000      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2001      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2002    }
2003    break;
2004  case ISD::ADD:
2005    // Add can have at most one carry bit.  Thus we know that the output
2006    // is, at worst, one more bit than the inputs.
2007    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2008    if (Tmp == 1) return 1;  // Early out.
2009
2010    // Special case decrementing a value (ADD X, -1):
2011    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2012      if (CRHS->isAllOnesValue()) {
2013        APInt KnownZero, KnownOne;
2014        APInt Mask = APInt::getAllOnesValue(VTBits);
2015        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2016
2017        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2018        // sign bits set.
2019        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2020          return VTBits;
2021
2022        // If we are subtracting one from a positive number, there is no carry
2023        // out of the result.
2024        if (KnownZero.isNegative())
2025          return Tmp;
2026      }
2027
2028    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2029    if (Tmp2 == 1) return 1;
2030      return std::min(Tmp, Tmp2)-1;
2031    break;
2032
2033  case ISD::SUB:
2034    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2035    if (Tmp2 == 1) return 1;
2036
2037    // Handle NEG.
2038    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2039      if (CLHS->isNullValue()) {
2040        APInt KnownZero, KnownOne;
2041        APInt Mask = APInt::getAllOnesValue(VTBits);
2042        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2043        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2044        // sign bits set.
2045        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2046          return VTBits;
2047
2048        // If the input is known to be positive (the sign bit is known clear),
2049        // the output of the NEG has the same number of sign bits as the input.
2050        if (KnownZero.isNegative())
2051          return Tmp2;
2052
2053        // Otherwise, we treat this like a SUB.
2054      }
2055
2056    // Sub can have at most one carry bit.  Thus we know that the output
2057    // is, at worst, one more bit than the inputs.
2058    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2059    if (Tmp == 1) return 1;  // Early out.
2060      return std::min(Tmp, Tmp2)-1;
2061    break;
2062  case ISD::TRUNCATE:
2063    // FIXME: it's tricky to do anything useful for this, but it is an important
2064    // case for targets like X86.
2065    break;
2066  }
2067
2068  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2069  if (Op.getOpcode() == ISD::LOAD) {
2070    LoadSDNode *LD = cast<LoadSDNode>(Op);
2071    unsigned ExtType = LD->getExtensionType();
2072    switch (ExtType) {
2073    default: break;
2074    case ISD::SEXTLOAD:    // '17' bits known
2075      Tmp = LD->getMemoryVT().getSizeInBits();
2076      return VTBits-Tmp+1;
2077    case ISD::ZEXTLOAD:    // '16' bits known
2078      Tmp = LD->getMemoryVT().getSizeInBits();
2079      return VTBits-Tmp;
2080    }
2081  }
2082
2083  // Allow the target to implement this method for its nodes.
2084  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2085      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2086      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2087      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2088    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2089    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2090  }
2091
2092  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2093  // use this information.
2094  APInt KnownZero, KnownOne;
2095  APInt Mask = APInt::getAllOnesValue(VTBits);
2096  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2097
2098  if (KnownZero.isNegative()) {        // sign bit is 0
2099    Mask = KnownZero;
2100  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2101    Mask = KnownOne;
2102  } else {
2103    // Nothing known.
2104    return FirstAnswer;
2105  }
2106
2107  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2108  // the number of identical bits in the top of the input value.
2109  Mask = ~Mask;
2110  Mask <<= Mask.getBitWidth()-VTBits;
2111  // Return # leading zeros.  We use 'min' here in case Val was zero before
2112  // shifting.  We don't want to return '64' as for an i32 "0".
2113  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2114}
2115
2116
2117bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2118  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2119  if (!GA) return false;
2120  if (GA->getOffset() != 0) return false;
2121  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2122  if (!GV) return false;
2123  MachineModuleInfo *MMI = getMachineModuleInfo();
2124  return MMI && MMI->hasDebugInfo();
2125}
2126
2127
2128/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2129/// element of the result of the vector shuffle.
2130SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2131  MVT VT = N->getValueType(0);
2132  DebugLoc dl = N->getDebugLoc();
2133  SDValue PermMask = N->getOperand(2);
2134  SDValue Idx = PermMask.getOperand(i);
2135  if (Idx.getOpcode() == ISD::UNDEF)
2136    return getUNDEF(VT.getVectorElementType());
2137  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2138  unsigned NumElems = PermMask.getNumOperands();
2139  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2140  Index %= NumElems;
2141
2142  if (V.getOpcode() == ISD::BIT_CONVERT) {
2143    V = V.getOperand(0);
2144    MVT VVT = V.getValueType();
2145    if (!VVT.isVector() || VVT.getVectorNumElements() != NumElems)
2146      return SDValue();
2147  }
2148  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2149    return (Index == 0) ? V.getOperand(0)
2150                      : getUNDEF(VT.getVectorElementType());
2151  if (V.getOpcode() == ISD::BUILD_VECTOR)
2152    return V.getOperand(Index);
2153  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2154    return getShuffleScalarElt(V.getNode(), Index);
2155  return SDValue();
2156}
2157
2158
2159/// getNode - Gets or creates the specified node.
2160///
2161SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT) {
2162  FoldingSetNodeID ID;
2163  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2164  void *IP = 0;
2165  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2166    return SDValue(E, 0);
2167  SDNode *N = NodeAllocator.Allocate<SDNode>();
2168  new (N) SDNode(Opcode, DL, SDNode::getSDVTList(VT));
2169  CSEMap.InsertNode(N, IP);
2170
2171  AllNodes.push_back(N);
2172#ifndef NDEBUG
2173  VerifyNode(N);
2174#endif
2175  return SDValue(N, 0);
2176}
2177
2178SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2179                              MVT VT, SDValue Operand) {
2180  // Constant fold unary operations with an integer constant operand.
2181  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2182    const APInt &Val = C->getAPIntValue();
2183    unsigned BitWidth = VT.getSizeInBits();
2184    switch (Opcode) {
2185    default: break;
2186    case ISD::SIGN_EXTEND:
2187      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2188    case ISD::ANY_EXTEND:
2189    case ISD::ZERO_EXTEND:
2190    case ISD::TRUNCATE:
2191      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2192    case ISD::UINT_TO_FP:
2193    case ISD::SINT_TO_FP: {
2194      const uint64_t zero[] = {0, 0};
2195      // No compile time operations on this type.
2196      if (VT==MVT::ppcf128)
2197        break;
2198      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2199      (void)apf.convertFromAPInt(Val,
2200                                 Opcode==ISD::SINT_TO_FP,
2201                                 APFloat::rmNearestTiesToEven);
2202      return getConstantFP(apf, VT);
2203    }
2204    case ISD::BIT_CONVERT:
2205      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2206        return getConstantFP(Val.bitsToFloat(), VT);
2207      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2208        return getConstantFP(Val.bitsToDouble(), VT);
2209      break;
2210    case ISD::BSWAP:
2211      return getConstant(Val.byteSwap(), VT);
2212    case ISD::CTPOP:
2213      return getConstant(Val.countPopulation(), VT);
2214    case ISD::CTLZ:
2215      return getConstant(Val.countLeadingZeros(), VT);
2216    case ISD::CTTZ:
2217      return getConstant(Val.countTrailingZeros(), VT);
2218    }
2219  }
2220
2221  // Constant fold unary operations with a floating point constant operand.
2222  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2223    APFloat V = C->getValueAPF();    // make copy
2224    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2225      switch (Opcode) {
2226      case ISD::FNEG:
2227        V.changeSign();
2228        return getConstantFP(V, VT);
2229      case ISD::FABS:
2230        V.clearSign();
2231        return getConstantFP(V, VT);
2232      case ISD::FP_ROUND:
2233      case ISD::FP_EXTEND: {
2234        bool ignored;
2235        // This can return overflow, underflow, or inexact; we don't care.
2236        // FIXME need to be more flexible about rounding mode.
2237        (void)V.convert(*MVTToAPFloatSemantics(VT),
2238                        APFloat::rmNearestTiesToEven, &ignored);
2239        return getConstantFP(V, VT);
2240      }
2241      case ISD::FP_TO_SINT:
2242      case ISD::FP_TO_UINT: {
2243        integerPart x;
2244        bool ignored;
2245        assert(integerPartWidth >= 64);
2246        // FIXME need to be more flexible about rounding mode.
2247        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2248                              Opcode==ISD::FP_TO_SINT,
2249                              APFloat::rmTowardZero, &ignored);
2250        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2251          break;
2252        return getConstant(x, VT);
2253      }
2254      case ISD::BIT_CONVERT:
2255        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2256          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2257        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2258          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2259        break;
2260      }
2261    }
2262  }
2263
2264  unsigned OpOpcode = Operand.getNode()->getOpcode();
2265  switch (Opcode) {
2266  case ISD::TokenFactor:
2267  case ISD::MERGE_VALUES:
2268  case ISD::CONCAT_VECTORS:
2269    return Operand;         // Factor, merge or concat of one node?  No need.
2270  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2271  case ISD::FP_EXTEND:
2272    assert(VT.isFloatingPoint() &&
2273           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2274    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2275    if (Operand.getOpcode() == ISD::UNDEF)
2276      return getUNDEF(VT);
2277    break;
2278  case ISD::SIGN_EXTEND:
2279    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2280           "Invalid SIGN_EXTEND!");
2281    if (Operand.getValueType() == VT) return Operand;   // noop extension
2282    assert(Operand.getValueType().bitsLT(VT)
2283           && "Invalid sext node, dst < src!");
2284    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2285      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2286    break;
2287  case ISD::ZERO_EXTEND:
2288    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2289           "Invalid ZERO_EXTEND!");
2290    if (Operand.getValueType() == VT) return Operand;   // noop extension
2291    assert(Operand.getValueType().bitsLT(VT)
2292           && "Invalid zext node, dst < src!");
2293    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2294      return getNode(ISD::ZERO_EXTEND, DL, VT,
2295                     Operand.getNode()->getOperand(0));
2296    break;
2297  case ISD::ANY_EXTEND:
2298    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2299           "Invalid ANY_EXTEND!");
2300    if (Operand.getValueType() == VT) return Operand;   // noop extension
2301    assert(Operand.getValueType().bitsLT(VT)
2302           && "Invalid anyext node, dst < src!");
2303    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2304      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2305      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2306    break;
2307  case ISD::TRUNCATE:
2308    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2309           "Invalid TRUNCATE!");
2310    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2311    assert(Operand.getValueType().bitsGT(VT)
2312           && "Invalid truncate node, src < dst!");
2313    if (OpOpcode == ISD::TRUNCATE)
2314      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2315    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2316             OpOpcode == ISD::ANY_EXTEND) {
2317      // If the source is smaller than the dest, we still need an extend.
2318      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2319        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2320      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2321        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2322      else
2323        return Operand.getNode()->getOperand(0);
2324    }
2325    break;
2326  case ISD::BIT_CONVERT:
2327    // Basic sanity checking.
2328    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2329           && "Cannot BIT_CONVERT between types of different sizes!");
2330    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2331    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2332      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2333    if (OpOpcode == ISD::UNDEF)
2334      return getUNDEF(VT);
2335    break;
2336  case ISD::SCALAR_TO_VECTOR:
2337    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2338           VT.getVectorElementType() == Operand.getValueType() &&
2339           "Illegal SCALAR_TO_VECTOR node!");
2340    if (OpOpcode == ISD::UNDEF)
2341      return getUNDEF(VT);
2342    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2343    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2344        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2345        Operand.getConstantOperandVal(1) == 0 &&
2346        Operand.getOperand(0).getValueType() == VT)
2347      return Operand.getOperand(0);
2348    break;
2349  case ISD::FNEG:
2350    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2351    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2352      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2353                     Operand.getNode()->getOperand(0));
2354    if (OpOpcode == ISD::FNEG)  // --X -> X
2355      return Operand.getNode()->getOperand(0);
2356    break;
2357  case ISD::FABS:
2358    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2359      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2360    break;
2361  }
2362
2363  SDNode *N;
2364  SDVTList VTs = getVTList(VT);
2365  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2366    FoldingSetNodeID ID;
2367    SDValue Ops[1] = { Operand };
2368    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2369    void *IP = 0;
2370    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2371      return SDValue(E, 0);
2372    N = NodeAllocator.Allocate<UnarySDNode>();
2373    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2374    CSEMap.InsertNode(N, IP);
2375  } else {
2376    N = NodeAllocator.Allocate<UnarySDNode>();
2377    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2378  }
2379
2380  AllNodes.push_back(N);
2381#ifndef NDEBUG
2382  VerifyNode(N);
2383#endif
2384  return SDValue(N, 0);
2385}
2386
2387SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2388                                             MVT VT,
2389                                             ConstantSDNode *Cst1,
2390                                             ConstantSDNode *Cst2) {
2391  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2392
2393  switch (Opcode) {
2394  case ISD::ADD:  return getConstant(C1 + C2, VT);
2395  case ISD::SUB:  return getConstant(C1 - C2, VT);
2396  case ISD::MUL:  return getConstant(C1 * C2, VT);
2397  case ISD::UDIV:
2398    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2399    break;
2400  case ISD::UREM:
2401    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2402    break;
2403  case ISD::SDIV:
2404    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2405    break;
2406  case ISD::SREM:
2407    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2408    break;
2409  case ISD::AND:  return getConstant(C1 & C2, VT);
2410  case ISD::OR:   return getConstant(C1 | C2, VT);
2411  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2412  case ISD::SHL:  return getConstant(C1 << C2, VT);
2413  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2414  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2415  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2416  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2417  default: break;
2418  }
2419
2420  return SDValue();
2421}
2422
2423SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2424                              SDValue N1, SDValue N2) {
2425  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2426  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2427  switch (Opcode) {
2428  default: break;
2429  case ISD::TokenFactor:
2430    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2431           N2.getValueType() == MVT::Other && "Invalid token factor!");
2432    // Fold trivial token factors.
2433    if (N1.getOpcode() == ISD::EntryToken) return N2;
2434    if (N2.getOpcode() == ISD::EntryToken) return N1;
2435    if (N1 == N2) return N1;
2436    break;
2437  case ISD::CONCAT_VECTORS:
2438    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2439    // one big BUILD_VECTOR.
2440    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2441        N2.getOpcode() == ISD::BUILD_VECTOR) {
2442      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2443      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2444      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2445    }
2446    break;
2447  case ISD::AND:
2448    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2449           N1.getValueType() == VT && "Binary operator types must match!");
2450    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2451    // worth handling here.
2452    if (N2C && N2C->isNullValue())
2453      return N2;
2454    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2455      return N1;
2456    break;
2457  case ISD::OR:
2458  case ISD::XOR:
2459  case ISD::ADD:
2460  case ISD::SUB:
2461    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2462           N1.getValueType() == VT && "Binary operator types must match!");
2463    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2464    // it's worth handling here.
2465    if (N2C && N2C->isNullValue())
2466      return N1;
2467    break;
2468  case ISD::UDIV:
2469  case ISD::UREM:
2470  case ISD::MULHU:
2471  case ISD::MULHS:
2472  case ISD::MUL:
2473  case ISD::SDIV:
2474  case ISD::SREM:
2475    assert(VT.isInteger() && "This operator does not apply to FP types!");
2476    // fall through
2477  case ISD::FADD:
2478  case ISD::FSUB:
2479  case ISD::FMUL:
2480  case ISD::FDIV:
2481  case ISD::FREM:
2482    if (UnsafeFPMath) {
2483      if (Opcode == ISD::FADD) {
2484        // 0+x --> x
2485        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2486          if (CFP->getValueAPF().isZero())
2487            return N2;
2488        // x+0 --> x
2489        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2490          if (CFP->getValueAPF().isZero())
2491            return N1;
2492      } else if (Opcode == ISD::FSUB) {
2493        // x-0 --> x
2494        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2495          if (CFP->getValueAPF().isZero())
2496            return N1;
2497      }
2498    }
2499    assert(N1.getValueType() == N2.getValueType() &&
2500           N1.getValueType() == VT && "Binary operator types must match!");
2501    break;
2502  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2503    assert(N1.getValueType() == VT &&
2504           N1.getValueType().isFloatingPoint() &&
2505           N2.getValueType().isFloatingPoint() &&
2506           "Invalid FCOPYSIGN!");
2507    break;
2508  case ISD::SHL:
2509  case ISD::SRA:
2510  case ISD::SRL:
2511  case ISD::ROTL:
2512  case ISD::ROTR:
2513    assert(VT == N1.getValueType() &&
2514           "Shift operators return type must be the same as their first arg");
2515    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2516           "Shifts only work on integers");
2517
2518    // Always fold shifts of i1 values so the code generator doesn't need to
2519    // handle them.  Since we know the size of the shift has to be less than the
2520    // size of the value, the shift/rotate count is guaranteed to be zero.
2521    if (VT == MVT::i1)
2522      return N1;
2523    break;
2524  case ISD::FP_ROUND_INREG: {
2525    MVT EVT = cast<VTSDNode>(N2)->getVT();
2526    assert(VT == N1.getValueType() && "Not an inreg round!");
2527    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2528           "Cannot FP_ROUND_INREG integer types");
2529    assert(EVT.bitsLE(VT) && "Not rounding down!");
2530    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2531    break;
2532  }
2533  case ISD::FP_ROUND:
2534    assert(VT.isFloatingPoint() &&
2535           N1.getValueType().isFloatingPoint() &&
2536           VT.bitsLE(N1.getValueType()) &&
2537           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2538    if (N1.getValueType() == VT) return N1;  // noop conversion.
2539    break;
2540  case ISD::AssertSext:
2541  case ISD::AssertZext: {
2542    MVT EVT = cast<VTSDNode>(N2)->getVT();
2543    assert(VT == N1.getValueType() && "Not an inreg extend!");
2544    assert(VT.isInteger() && EVT.isInteger() &&
2545           "Cannot *_EXTEND_INREG FP types");
2546    assert(EVT.bitsLE(VT) && "Not extending!");
2547    if (VT == EVT) return N1; // noop assertion.
2548    break;
2549  }
2550  case ISD::SIGN_EXTEND_INREG: {
2551    MVT EVT = cast<VTSDNode>(N2)->getVT();
2552    assert(VT == N1.getValueType() && "Not an inreg extend!");
2553    assert(VT.isInteger() && EVT.isInteger() &&
2554           "Cannot *_EXTEND_INREG FP types");
2555    assert(EVT.bitsLE(VT) && "Not extending!");
2556    if (EVT == VT) return N1;  // Not actually extending
2557
2558    if (N1C) {
2559      APInt Val = N1C->getAPIntValue();
2560      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2561      Val <<= Val.getBitWidth()-FromBits;
2562      Val = Val.ashr(Val.getBitWidth()-FromBits);
2563      return getConstant(Val, VT);
2564    }
2565    break;
2566  }
2567  case ISD::EXTRACT_VECTOR_ELT:
2568    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2569    if (N1.getOpcode() == ISD::UNDEF)
2570      return getUNDEF(VT);
2571
2572    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2573    // expanding copies of large vectors from registers.
2574    if (N2C &&
2575        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2576        N1.getNumOperands() > 0) {
2577      unsigned Factor =
2578        N1.getOperand(0).getValueType().getVectorNumElements();
2579      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2580                     N1.getOperand(N2C->getZExtValue() / Factor),
2581                     getConstant(N2C->getZExtValue() % Factor,
2582                                 N2.getValueType()));
2583    }
2584
2585    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2586    // expanding large vector constants.
2587    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2588      return N1.getOperand(N2C->getZExtValue());
2589
2590    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2591    // operations are lowered to scalars.
2592    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2593      // If the indices are the same, return the inserted element.
2594      if (N1.getOperand(2) == N2)
2595        return N1.getOperand(1);
2596      // If the indices are known different, extract the element from
2597      // the original vector.
2598      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2599               isa<ConstantSDNode>(N2))
2600        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2601    }
2602    break;
2603  case ISD::EXTRACT_ELEMENT:
2604    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2605    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2606           (N1.getValueType().isInteger() == VT.isInteger()) &&
2607           "Wrong types for EXTRACT_ELEMENT!");
2608
2609    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2610    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2611    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2612    if (N1.getOpcode() == ISD::BUILD_PAIR)
2613      return N1.getOperand(N2C->getZExtValue());
2614
2615    // EXTRACT_ELEMENT of a constant int is also very common.
2616    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2617      unsigned ElementSize = VT.getSizeInBits();
2618      unsigned Shift = ElementSize * N2C->getZExtValue();
2619      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2620      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2621    }
2622    break;
2623  case ISD::EXTRACT_SUBVECTOR:
2624    if (N1.getValueType() == VT) // Trivial extraction.
2625      return N1;
2626    break;
2627  }
2628
2629  if (N1C) {
2630    if (N2C) {
2631      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2632      if (SV.getNode()) return SV;
2633    } else {      // Cannonicalize constant to RHS if commutative
2634      if (isCommutativeBinOp(Opcode)) {
2635        std::swap(N1C, N2C);
2636        std::swap(N1, N2);
2637      }
2638    }
2639  }
2640
2641  // Constant fold FP operations.
2642  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2643  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2644  if (N1CFP) {
2645    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2646      // Cannonicalize constant to RHS if commutative
2647      std::swap(N1CFP, N2CFP);
2648      std::swap(N1, N2);
2649    } else if (N2CFP && VT != MVT::ppcf128) {
2650      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2651      APFloat::opStatus s;
2652      switch (Opcode) {
2653      case ISD::FADD:
2654        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2655        if (s != APFloat::opInvalidOp)
2656          return getConstantFP(V1, VT);
2657        break;
2658      case ISD::FSUB:
2659        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2660        if (s!=APFloat::opInvalidOp)
2661          return getConstantFP(V1, VT);
2662        break;
2663      case ISD::FMUL:
2664        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2665        if (s!=APFloat::opInvalidOp)
2666          return getConstantFP(V1, VT);
2667        break;
2668      case ISD::FDIV:
2669        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2670        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2671          return getConstantFP(V1, VT);
2672        break;
2673      case ISD::FREM :
2674        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2675        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2676          return getConstantFP(V1, VT);
2677        break;
2678      case ISD::FCOPYSIGN:
2679        V1.copySign(V2);
2680        return getConstantFP(V1, VT);
2681      default: break;
2682      }
2683    }
2684  }
2685
2686  // Canonicalize an UNDEF to the RHS, even over a constant.
2687  if (N1.getOpcode() == ISD::UNDEF) {
2688    if (isCommutativeBinOp(Opcode)) {
2689      std::swap(N1, N2);
2690    } else {
2691      switch (Opcode) {
2692      case ISD::FP_ROUND_INREG:
2693      case ISD::SIGN_EXTEND_INREG:
2694      case ISD::SUB:
2695      case ISD::FSUB:
2696      case ISD::FDIV:
2697      case ISD::FREM:
2698      case ISD::SRA:
2699        return N1;     // fold op(undef, arg2) -> undef
2700      case ISD::UDIV:
2701      case ISD::SDIV:
2702      case ISD::UREM:
2703      case ISD::SREM:
2704      case ISD::SRL:
2705      case ISD::SHL:
2706        if (!VT.isVector())
2707          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2708        // For vectors, we can't easily build an all zero vector, just return
2709        // the LHS.
2710        return N2;
2711      }
2712    }
2713  }
2714
2715  // Fold a bunch of operators when the RHS is undef.
2716  if (N2.getOpcode() == ISD::UNDEF) {
2717    switch (Opcode) {
2718    case ISD::XOR:
2719      if (N1.getOpcode() == ISD::UNDEF)
2720        // Handle undef ^ undef -> 0 special case. This is a common
2721        // idiom (misuse).
2722        return getConstant(0, VT);
2723      // fallthrough
2724    case ISD::ADD:
2725    case ISD::ADDC:
2726    case ISD::ADDE:
2727    case ISD::SUB:
2728    case ISD::FADD:
2729    case ISD::FSUB:
2730    case ISD::FMUL:
2731    case ISD::FDIV:
2732    case ISD::FREM:
2733    case ISD::UDIV:
2734    case ISD::SDIV:
2735    case ISD::UREM:
2736    case ISD::SREM:
2737      return N2;       // fold op(arg1, undef) -> undef
2738    case ISD::MUL:
2739    case ISD::AND:
2740    case ISD::SRL:
2741    case ISD::SHL:
2742      if (!VT.isVector())
2743        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2744      // For vectors, we can't easily build an all zero vector, just return
2745      // the LHS.
2746      return N1;
2747    case ISD::OR:
2748      if (!VT.isVector())
2749        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2750      // For vectors, we can't easily build an all one vector, just return
2751      // the LHS.
2752      return N1;
2753    case ISD::SRA:
2754      return N1;
2755    }
2756  }
2757
2758  // Memoize this node if possible.
2759  SDNode *N;
2760  SDVTList VTs = getVTList(VT);
2761  if (VT != MVT::Flag) {
2762    SDValue Ops[] = { N1, N2 };
2763    FoldingSetNodeID ID;
2764    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2765    void *IP = 0;
2766    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2767      return SDValue(E, 0);
2768    N = NodeAllocator.Allocate<BinarySDNode>();
2769    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2770    CSEMap.InsertNode(N, IP);
2771  } else {
2772    N = NodeAllocator.Allocate<BinarySDNode>();
2773    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2774  }
2775
2776  AllNodes.push_back(N);
2777#ifndef NDEBUG
2778  VerifyNode(N);
2779#endif
2780  return SDValue(N, 0);
2781}
2782
2783SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2784                              SDValue N1, SDValue N2, SDValue N3) {
2785  // Perform various simplifications.
2786  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2787  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2788  switch (Opcode) {
2789  case ISD::CONCAT_VECTORS:
2790    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2791    // one big BUILD_VECTOR.
2792    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2793        N2.getOpcode() == ISD::BUILD_VECTOR &&
2794        N3.getOpcode() == ISD::BUILD_VECTOR) {
2795      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2796      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2797      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2798      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2799    }
2800    break;
2801  case ISD::SETCC: {
2802    // Use FoldSetCC to simplify SETCC's.
2803    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2804    if (Simp.getNode()) return Simp;
2805    break;
2806  }
2807  case ISD::SELECT:
2808    if (N1C) {
2809     if (N1C->getZExtValue())
2810        return N2;             // select true, X, Y -> X
2811      else
2812        return N3;             // select false, X, Y -> Y
2813    }
2814
2815    if (N2 == N3) return N2;   // select C, X, X -> X
2816    break;
2817  case ISD::BRCOND:
2818    if (N2C) {
2819      if (N2C->getZExtValue()) // Unconditional branch
2820        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2821      else
2822        return N1;         // Never-taken branch
2823    }
2824    break;
2825  case ISD::VECTOR_SHUFFLE:
2826    assert(N1.getValueType() == N2.getValueType() &&
2827           N1.getValueType().isVector() &&
2828           VT.isVector() && N3.getValueType().isVector() &&
2829           N3.getOpcode() == ISD::BUILD_VECTOR &&
2830           VT.getVectorNumElements() == N3.getNumOperands() &&
2831           "Illegal VECTOR_SHUFFLE node!");
2832    break;
2833  case ISD::BIT_CONVERT:
2834    // Fold bit_convert nodes from a type to themselves.
2835    if (N1.getValueType() == VT)
2836      return N1;
2837    break;
2838  }
2839
2840  // Memoize node if it doesn't produce a flag.
2841  SDNode *N;
2842  SDVTList VTs = getVTList(VT);
2843  if (VT != MVT::Flag) {
2844    SDValue Ops[] = { N1, N2, N3 };
2845    FoldingSetNodeID ID;
2846    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2847    void *IP = 0;
2848    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2849      return SDValue(E, 0);
2850    N = NodeAllocator.Allocate<TernarySDNode>();
2851    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2852    CSEMap.InsertNode(N, IP);
2853  } else {
2854    N = NodeAllocator.Allocate<TernarySDNode>();
2855    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2856  }
2857  AllNodes.push_back(N);
2858#ifndef NDEBUG
2859  VerifyNode(N);
2860#endif
2861  return SDValue(N, 0);
2862}
2863
2864SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2865                              SDValue N1, SDValue N2, SDValue N3,
2866                              SDValue N4) {
2867  SDValue Ops[] = { N1, N2, N3, N4 };
2868  return getNode(Opcode, DL, VT, Ops, 4);
2869}
2870
2871SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2872                              SDValue N1, SDValue N2, SDValue N3,
2873                              SDValue N4, SDValue N5) {
2874  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2875  return getNode(Opcode, DL, VT, Ops, 5);
2876}
2877
2878/// getMemsetValue - Vectorized representation of the memset value
2879/// operand.
2880static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG,
2881                              DebugLoc dl) {
2882  unsigned NumBits = VT.isVector() ?
2883    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2884  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2885    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2886    unsigned Shift = 8;
2887    for (unsigned i = NumBits; i > 8; i >>= 1) {
2888      Val = (Val << Shift) | Val;
2889      Shift <<= 1;
2890    }
2891    if (VT.isInteger())
2892      return DAG.getConstant(Val, VT);
2893    return DAG.getConstantFP(APFloat(Val), VT);
2894  }
2895
2896  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2897  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
2898  unsigned Shift = 8;
2899  for (unsigned i = NumBits; i > 8; i >>= 1) {
2900    Value = DAG.getNode(ISD::OR, dl, VT,
2901                        DAG.getNode(ISD::SHL, dl, VT, Value,
2902                                    DAG.getConstant(Shift,
2903                                                    TLI.getShiftAmountTy())),
2904                        Value);
2905    Shift <<= 1;
2906  }
2907
2908  return Value;
2909}
2910
2911/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2912/// used when a memcpy is turned into a memset when the source is a constant
2913/// string ptr.
2914static SDValue getMemsetStringVal(MVT VT, DebugLoc dl, SelectionDAG &DAG,
2915                                    const TargetLowering &TLI,
2916                                    std::string &Str, unsigned Offset) {
2917  // Handle vector with all elements zero.
2918  if (Str.empty()) {
2919    if (VT.isInteger())
2920      return DAG.getConstant(0, VT);
2921    unsigned NumElts = VT.getVectorNumElements();
2922    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2923    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
2924                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2925  }
2926
2927  assert(!VT.isVector() && "Can't handle vector type here!");
2928  unsigned NumBits = VT.getSizeInBits();
2929  unsigned MSB = NumBits / 8;
2930  uint64_t Val = 0;
2931  if (TLI.isLittleEndian())
2932    Offset = Offset + MSB - 1;
2933  for (unsigned i = 0; i != MSB; ++i) {
2934    Val = (Val << 8) | (unsigned char)Str[Offset];
2935    Offset += TLI.isLittleEndian() ? -1 : 1;
2936  }
2937  return DAG.getConstant(Val, VT);
2938}
2939
2940/// getMemBasePlusOffset - Returns base and offset node for the
2941///
2942static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2943                                      SelectionDAG &DAG) {
2944  MVT VT = Base.getValueType();
2945  return DAG.getNode(ISD::ADD, Base.getNode()->getDebugLoc(),
2946                     VT, Base, DAG.getConstant(Offset, VT));
2947}
2948
2949/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2950///
2951static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2952  unsigned SrcDelta = 0;
2953  GlobalAddressSDNode *G = NULL;
2954  if (Src.getOpcode() == ISD::GlobalAddress)
2955    G = cast<GlobalAddressSDNode>(Src);
2956  else if (Src.getOpcode() == ISD::ADD &&
2957           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2958           Src.getOperand(1).getOpcode() == ISD::Constant) {
2959    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2960    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2961  }
2962  if (!G)
2963    return false;
2964
2965  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2966  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2967    return true;
2968
2969  return false;
2970}
2971
2972/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2973/// to replace the memset / memcpy is below the threshold. It also returns the
2974/// types of the sequence of memory ops to perform memset / memcpy.
2975static
2976bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2977                              SDValue Dst, SDValue Src,
2978                              unsigned Limit, uint64_t Size, unsigned &Align,
2979                              std::string &Str, bool &isSrcStr,
2980                              SelectionDAG &DAG,
2981                              const TargetLowering &TLI) {
2982  isSrcStr = isMemSrcFromString(Src, Str);
2983  bool isSrcConst = isa<ConstantSDNode>(Src);
2984  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2985  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2986  if (VT != MVT::iAny) {
2987    unsigned NewAlign = (unsigned)
2988      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2989    // If source is a string constant, this will require an unaligned load.
2990    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2991      if (Dst.getOpcode() != ISD::FrameIndex) {
2992        // Can't change destination alignment. It requires a unaligned store.
2993        if (AllowUnalign)
2994          VT = MVT::iAny;
2995      } else {
2996        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2997        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2998        if (MFI->isFixedObjectIndex(FI)) {
2999          // Can't change destination alignment. It requires a unaligned store.
3000          if (AllowUnalign)
3001            VT = MVT::iAny;
3002        } else {
3003          // Give the stack frame object a larger alignment if needed.
3004          if (MFI->getObjectAlignment(FI) < NewAlign)
3005            MFI->setObjectAlignment(FI, NewAlign);
3006          Align = NewAlign;
3007        }
3008      }
3009    }
3010  }
3011
3012  if (VT == MVT::iAny) {
3013    if (AllowUnalign) {
3014      VT = MVT::i64;
3015    } else {
3016      switch (Align & 7) {
3017      case 0:  VT = MVT::i64; break;
3018      case 4:  VT = MVT::i32; break;
3019      case 2:  VT = MVT::i16; break;
3020      default: VT = MVT::i8;  break;
3021      }
3022    }
3023
3024    MVT LVT = MVT::i64;
3025    while (!TLI.isTypeLegal(LVT))
3026      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
3027    assert(LVT.isInteger());
3028
3029    if (VT.bitsGT(LVT))
3030      VT = LVT;
3031  }
3032
3033  unsigned NumMemOps = 0;
3034  while (Size != 0) {
3035    unsigned VTSize = VT.getSizeInBits() / 8;
3036    while (VTSize > Size) {
3037      // For now, only use non-vector load / store's for the left-over pieces.
3038      if (VT.isVector()) {
3039        VT = MVT::i64;
3040        while (!TLI.isTypeLegal(VT))
3041          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3042        VTSize = VT.getSizeInBits() / 8;
3043      } else {
3044        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3045        VTSize >>= 1;
3046      }
3047    }
3048
3049    if (++NumMemOps > Limit)
3050      return false;
3051    MemOps.push_back(VT);
3052    Size -= VTSize;
3053  }
3054
3055  return true;
3056}
3057
3058static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3059                                         SDValue Chain, SDValue Dst,
3060                                         SDValue Src, uint64_t Size,
3061                                         unsigned Align, bool AlwaysInline,
3062                                         const Value *DstSV, uint64_t DstSVOff,
3063                                         const Value *SrcSV, uint64_t SrcSVOff){
3064  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3065
3066  // Expand memcpy to a series of load and store ops if the size operand falls
3067  // below a certain threshold.
3068  std::vector<MVT> MemOps;
3069  uint64_t Limit = -1ULL;
3070  if (!AlwaysInline)
3071    Limit = TLI.getMaxStoresPerMemcpy();
3072  unsigned DstAlign = Align;  // Destination alignment can change.
3073  std::string Str;
3074  bool CopyFromStr;
3075  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3076                                Str, CopyFromStr, DAG, TLI))
3077    return SDValue();
3078
3079
3080  bool isZeroStr = CopyFromStr && Str.empty();
3081  SmallVector<SDValue, 8> OutChains;
3082  unsigned NumMemOps = MemOps.size();
3083  uint64_t SrcOff = 0, DstOff = 0;
3084  for (unsigned i = 0; i < NumMemOps; i++) {
3085    MVT VT = MemOps[i];
3086    unsigned VTSize = VT.getSizeInBits() / 8;
3087    SDValue Value, Store;
3088
3089    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3090      // It's unlikely a store of a vector immediate can be done in a single
3091      // instruction. It would require a load from a constantpool first.
3092      // We also handle store a vector with all zero's.
3093      // FIXME: Handle other cases where store of vector immediate is done in
3094      // a single instruction.
3095      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3096      Store = DAG.getStore(Chain, dl, Value,
3097                           getMemBasePlusOffset(Dst, DstOff, DAG),
3098                           DstSV, DstSVOff + DstOff, false, DstAlign);
3099    } else {
3100      Value = DAG.getLoad(VT, dl, Chain,
3101                          getMemBasePlusOffset(Src, SrcOff, DAG),
3102                          SrcSV, SrcSVOff + SrcOff, false, Align);
3103      Store = DAG.getStore(Chain, dl, Value,
3104                           getMemBasePlusOffset(Dst, DstOff, DAG),
3105                           DstSV, DstSVOff + DstOff, false, DstAlign);
3106    }
3107    OutChains.push_back(Store);
3108    SrcOff += VTSize;
3109    DstOff += VTSize;
3110  }
3111
3112  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3113                     &OutChains[0], OutChains.size());
3114}
3115
3116static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3117                                          SDValue Chain, SDValue Dst,
3118                                          SDValue Src, uint64_t Size,
3119                                          unsigned Align, bool AlwaysInline,
3120                                          const Value *DstSV, uint64_t DstSVOff,
3121                                          const Value *SrcSV, uint64_t SrcSVOff){
3122  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3123
3124  // Expand memmove to a series of load and store ops if the size operand falls
3125  // below a certain threshold.
3126  std::vector<MVT> MemOps;
3127  uint64_t Limit = -1ULL;
3128  if (!AlwaysInline)
3129    Limit = TLI.getMaxStoresPerMemmove();
3130  unsigned DstAlign = Align;  // Destination alignment can change.
3131  std::string Str;
3132  bool CopyFromStr;
3133  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3134                                Str, CopyFromStr, DAG, TLI))
3135    return SDValue();
3136
3137  uint64_t SrcOff = 0, DstOff = 0;
3138
3139  SmallVector<SDValue, 8> LoadValues;
3140  SmallVector<SDValue, 8> LoadChains;
3141  SmallVector<SDValue, 8> OutChains;
3142  unsigned NumMemOps = MemOps.size();
3143  for (unsigned i = 0; i < NumMemOps; i++) {
3144    MVT VT = MemOps[i];
3145    unsigned VTSize = VT.getSizeInBits() / 8;
3146    SDValue Value, Store;
3147
3148    Value = DAG.getLoad(VT, dl, Chain,
3149                        getMemBasePlusOffset(Src, SrcOff, DAG),
3150                        SrcSV, SrcSVOff + SrcOff, false, Align);
3151    LoadValues.push_back(Value);
3152    LoadChains.push_back(Value.getValue(1));
3153    SrcOff += VTSize;
3154  }
3155  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3156                      &LoadChains[0], LoadChains.size());
3157  OutChains.clear();
3158  for (unsigned i = 0; i < NumMemOps; i++) {
3159    MVT VT = MemOps[i];
3160    unsigned VTSize = VT.getSizeInBits() / 8;
3161    SDValue Value, Store;
3162
3163    Store = DAG.getStore(Chain, dl, LoadValues[i],
3164                         getMemBasePlusOffset(Dst, DstOff, DAG),
3165                         DstSV, DstSVOff + DstOff, false, DstAlign);
3166    OutChains.push_back(Store);
3167    DstOff += VTSize;
3168  }
3169
3170  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3171                     &OutChains[0], OutChains.size());
3172}
3173
3174static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3175                                 SDValue Chain, SDValue Dst,
3176                                 SDValue Src, uint64_t Size,
3177                                 unsigned Align,
3178                                 const Value *DstSV, uint64_t DstSVOff) {
3179  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3180
3181  // Expand memset to a series of load/store ops if the size operand
3182  // falls below a certain threshold.
3183  std::vector<MVT> MemOps;
3184  std::string Str;
3185  bool CopyFromStr;
3186  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3187                                Size, Align, Str, CopyFromStr, DAG, TLI))
3188    return SDValue();
3189
3190  SmallVector<SDValue, 8> OutChains;
3191  uint64_t DstOff = 0;
3192
3193  unsigned NumMemOps = MemOps.size();
3194  for (unsigned i = 0; i < NumMemOps; i++) {
3195    MVT VT = MemOps[i];
3196    unsigned VTSize = VT.getSizeInBits() / 8;
3197    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3198    SDValue Store = DAG.getStore(Chain, dl, Value,
3199                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3200                                 DstSV, DstSVOff + DstOff);
3201    OutChains.push_back(Store);
3202    DstOff += VTSize;
3203  }
3204
3205  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3206                     &OutChains[0], OutChains.size());
3207}
3208
3209SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3210                                SDValue Src, SDValue Size,
3211                                unsigned Align, bool AlwaysInline,
3212                                const Value *DstSV, uint64_t DstSVOff,
3213                                const Value *SrcSV, uint64_t SrcSVOff) {
3214
3215  // Check to see if we should lower the memcpy to loads and stores first.
3216  // For cases within the target-specified limits, this is the best choice.
3217  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3218  if (ConstantSize) {
3219    // Memcpy with size zero? Just return the original chain.
3220    if (ConstantSize->isNullValue())
3221      return Chain;
3222
3223    SDValue Result =
3224      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3225                              ConstantSize->getZExtValue(),
3226                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3227    if (Result.getNode())
3228      return Result;
3229  }
3230
3231  // Then check to see if we should lower the memcpy with target-specific
3232  // code. If the target chooses to do this, this is the next best.
3233  SDValue Result =
3234    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3235                                AlwaysInline,
3236                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3237  if (Result.getNode())
3238    return Result;
3239
3240  // If we really need inline code and the target declined to provide it,
3241  // use a (potentially long) sequence of loads and stores.
3242  if (AlwaysInline) {
3243    assert(ConstantSize && "AlwaysInline requires a constant size!");
3244    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3245                                   ConstantSize->getZExtValue(), Align, true,
3246                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3247  }
3248
3249  // Emit a library call.
3250  TargetLowering::ArgListTy Args;
3251  TargetLowering::ArgListEntry Entry;
3252  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3253  Entry.Node = Dst; Args.push_back(Entry);
3254  Entry.Node = Src; Args.push_back(Entry);
3255  Entry.Node = Size; Args.push_back(Entry);
3256  // FIXME: pass in DebugLoc
3257  std::pair<SDValue,SDValue> CallResult =
3258    TLI.LowerCallTo(Chain, Type::VoidTy,
3259                    false, false, false, false, CallingConv::C, false,
3260                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3261                    Args, *this, dl);
3262  return CallResult.second;
3263}
3264
3265SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3266                                 SDValue Src, SDValue Size,
3267                                 unsigned Align,
3268                                 const Value *DstSV, uint64_t DstSVOff,
3269                                 const Value *SrcSV, uint64_t SrcSVOff) {
3270
3271  // Check to see if we should lower the memmove to loads and stores first.
3272  // For cases within the target-specified limits, this is the best choice.
3273  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3274  if (ConstantSize) {
3275    // Memmove with size zero? Just return the original chain.
3276    if (ConstantSize->isNullValue())
3277      return Chain;
3278
3279    SDValue Result =
3280      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3281                               ConstantSize->getZExtValue(),
3282                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3283    if (Result.getNode())
3284      return Result;
3285  }
3286
3287  // Then check to see if we should lower the memmove with target-specific
3288  // code. If the target chooses to do this, this is the next best.
3289  SDValue Result =
3290    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3291                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3292  if (Result.getNode())
3293    return Result;
3294
3295  // Emit a library call.
3296  TargetLowering::ArgListTy Args;
3297  TargetLowering::ArgListEntry Entry;
3298  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3299  Entry.Node = Dst; Args.push_back(Entry);
3300  Entry.Node = Src; Args.push_back(Entry);
3301  Entry.Node = Size; Args.push_back(Entry);
3302  // FIXME:  pass in DebugLoc
3303  std::pair<SDValue,SDValue> CallResult =
3304    TLI.LowerCallTo(Chain, Type::VoidTy,
3305                    false, false, false, false, CallingConv::C, false,
3306                    getExternalSymbol("memmove", TLI.getPointerTy()),
3307                    Args, *this, dl);
3308  return CallResult.second;
3309}
3310
3311SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3312                                SDValue Src, SDValue Size,
3313                                unsigned Align,
3314                                const Value *DstSV, uint64_t DstSVOff) {
3315
3316  // Check to see if we should lower the memset to stores first.
3317  // For cases within the target-specified limits, this is the best choice.
3318  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3319  if (ConstantSize) {
3320    // Memset with size zero? Just return the original chain.
3321    if (ConstantSize->isNullValue())
3322      return Chain;
3323
3324    SDValue Result =
3325      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3326                      Align, DstSV, DstSVOff);
3327    if (Result.getNode())
3328      return Result;
3329  }
3330
3331  // Then check to see if we should lower the memset with target-specific
3332  // code. If the target chooses to do this, this is the next best.
3333  SDValue Result =
3334    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3335                                DstSV, DstSVOff);
3336  if (Result.getNode())
3337    return Result;
3338
3339  // Emit a library call.
3340  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3341  TargetLowering::ArgListTy Args;
3342  TargetLowering::ArgListEntry Entry;
3343  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3344  Args.push_back(Entry);
3345  // Extend or truncate the argument to be an i32 value for the call.
3346  if (Src.getValueType().bitsGT(MVT::i32))
3347    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3348  else
3349    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3350  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3351  Args.push_back(Entry);
3352  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3353  Args.push_back(Entry);
3354  // FIXME: pass in DebugLoc
3355  std::pair<SDValue,SDValue> CallResult =
3356    TLI.LowerCallTo(Chain, Type::VoidTy,
3357                    false, false, false, false, CallingConv::C, false,
3358                    getExternalSymbol("memset", TLI.getPointerTy()),
3359                    Args, *this, dl);
3360  return CallResult.second;
3361}
3362
3363SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3364                                SDValue Chain,
3365                                SDValue Ptr, SDValue Cmp,
3366                                SDValue Swp, const Value* PtrVal,
3367                                unsigned Alignment) {
3368  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3369  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3370
3371  MVT VT = Cmp.getValueType();
3372
3373  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3374    Alignment = getMVTAlignment(MemVT);
3375
3376  SDVTList VTs = getVTList(VT, MVT::Other);
3377  FoldingSetNodeID ID;
3378  ID.AddInteger(MemVT.getRawBits());
3379  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3380  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3381  void* IP = 0;
3382  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3383    return SDValue(E, 0);
3384  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3385  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3386                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3387  CSEMap.InsertNode(N, IP);
3388  AllNodes.push_back(N);
3389  return SDValue(N, 0);
3390}
3391
3392SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3393                                SDValue Chain,
3394                                SDValue Ptr, SDValue Val,
3395                                const Value* PtrVal,
3396                                unsigned Alignment) {
3397  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3398          Opcode == ISD::ATOMIC_LOAD_SUB ||
3399          Opcode == ISD::ATOMIC_LOAD_AND ||
3400          Opcode == ISD::ATOMIC_LOAD_OR ||
3401          Opcode == ISD::ATOMIC_LOAD_XOR ||
3402          Opcode == ISD::ATOMIC_LOAD_NAND ||
3403          Opcode == ISD::ATOMIC_LOAD_MIN ||
3404          Opcode == ISD::ATOMIC_LOAD_MAX ||
3405          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3406          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3407          Opcode == ISD::ATOMIC_SWAP) &&
3408         "Invalid Atomic Op");
3409
3410  MVT VT = Val.getValueType();
3411
3412  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3413    Alignment = getMVTAlignment(MemVT);
3414
3415  SDVTList VTs = getVTList(VT, MVT::Other);
3416  FoldingSetNodeID ID;
3417  ID.AddInteger(MemVT.getRawBits());
3418  SDValue Ops[] = {Chain, Ptr, Val};
3419  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3420  void* IP = 0;
3421  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3422    return SDValue(E, 0);
3423  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3424  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3425                       Chain, Ptr, Val, PtrVal, Alignment);
3426  CSEMap.InsertNode(N, IP);
3427  AllNodes.push_back(N);
3428  return SDValue(N, 0);
3429}
3430
3431/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3432/// Allowed to return something different (and simpler) if Simplify is true.
3433SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3434                                     DebugLoc dl) {
3435  if (NumOps == 1)
3436    return Ops[0];
3437
3438  SmallVector<MVT, 4> VTs;
3439  VTs.reserve(NumOps);
3440  for (unsigned i = 0; i < NumOps; ++i)
3441    VTs.push_back(Ops[i].getValueType());
3442  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3443                 Ops, NumOps);
3444}
3445
3446SDValue
3447SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3448                                  const MVT *VTs, unsigned NumVTs,
3449                                  const SDValue *Ops, unsigned NumOps,
3450                                  MVT MemVT, const Value *srcValue, int SVOff,
3451                                  unsigned Align, bool Vol,
3452                                  bool ReadMem, bool WriteMem) {
3453  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3454                             MemVT, srcValue, SVOff, Align, Vol,
3455                             ReadMem, WriteMem);
3456}
3457
3458SDValue
3459SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3460                                  const SDValue *Ops, unsigned NumOps,
3461                                  MVT MemVT, const Value *srcValue, int SVOff,
3462                                  unsigned Align, bool Vol,
3463                                  bool ReadMem, bool WriteMem) {
3464  // Memoize the node unless it returns a flag.
3465  MemIntrinsicSDNode *N;
3466  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3467    FoldingSetNodeID ID;
3468    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3469    void *IP = 0;
3470    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3471      return SDValue(E, 0);
3472
3473    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3474    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3475                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3476    CSEMap.InsertNode(N, IP);
3477  } else {
3478    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3479    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3480                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3481  }
3482  AllNodes.push_back(N);
3483  return SDValue(N, 0);
3484}
3485
3486SDValue
3487SelectionDAG::getCall(unsigned CallingConv, DebugLoc dl, bool IsVarArgs,
3488                      bool IsTailCall, bool IsInreg, SDVTList VTs,
3489                      const SDValue *Operands, unsigned NumOperands) {
3490  // Do not include isTailCall in the folding set profile.
3491  FoldingSetNodeID ID;
3492  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3493  ID.AddInteger(CallingConv);
3494  ID.AddInteger(IsVarArgs);
3495  void *IP = 0;
3496  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3497    // Instead of including isTailCall in the folding set, we just
3498    // set the flag of the existing node.
3499    if (!IsTailCall)
3500      cast<CallSDNode>(E)->setNotTailCall();
3501    return SDValue(E, 0);
3502  }
3503  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3504  new (N) CallSDNode(CallingConv, dl, IsVarArgs, IsTailCall, IsInreg,
3505                     VTs, Operands, NumOperands);
3506  CSEMap.InsertNode(N, IP);
3507  AllNodes.push_back(N);
3508  return SDValue(N, 0);
3509}
3510
3511SDValue
3512SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3513                      ISD::LoadExtType ExtType, MVT VT, SDValue Chain,
3514                      SDValue Ptr, SDValue Offset,
3515                      const Value *SV, int SVOffset, MVT EVT,
3516                      bool isVolatile, unsigned Alignment) {
3517  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3518    Alignment = getMVTAlignment(VT);
3519
3520  if (VT == EVT) {
3521    ExtType = ISD::NON_EXTLOAD;
3522  } else if (ExtType == ISD::NON_EXTLOAD) {
3523    assert(VT == EVT && "Non-extending load from different memory type!");
3524  } else {
3525    // Extending load.
3526    if (VT.isVector())
3527      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3528             "Invalid vector extload!");
3529    else
3530      assert(EVT.bitsLT(VT) &&
3531             "Should only be an extending load, not truncating!");
3532    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3533           "Cannot sign/zero extend a FP/Vector load!");
3534    assert(VT.isInteger() == EVT.isInteger() &&
3535           "Cannot convert from FP to Int or Int -> FP!");
3536  }
3537
3538  bool Indexed = AM != ISD::UNINDEXED;
3539  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3540         "Unindexed load with an offset!");
3541
3542  SDVTList VTs = Indexed ?
3543    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3544  SDValue Ops[] = { Chain, Ptr, Offset };
3545  FoldingSetNodeID ID;
3546  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3547  ID.AddInteger(EVT.getRawBits());
3548  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, isVolatile, Alignment));
3549  void *IP = 0;
3550  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3551    return SDValue(E, 0);
3552  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3553  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, EVT, SV, SVOffset,
3554                     Alignment, isVolatile);
3555  CSEMap.InsertNode(N, IP);
3556  AllNodes.push_back(N);
3557  return SDValue(N, 0);
3558}
3559
3560SDValue SelectionDAG::getLoad(MVT VT, DebugLoc dl,
3561                              SDValue Chain, SDValue Ptr,
3562                              const Value *SV, int SVOffset,
3563                              bool isVolatile, unsigned Alignment) {
3564  SDValue Undef = getUNDEF(Ptr.getValueType());
3565  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3566                 SV, SVOffset, VT, isVolatile, Alignment);
3567}
3568
3569SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, MVT VT,
3570                                 SDValue Chain, SDValue Ptr,
3571                                 const Value *SV,
3572                                 int SVOffset, MVT EVT,
3573                                 bool isVolatile, unsigned Alignment) {
3574  SDValue Undef = getUNDEF(Ptr.getValueType());
3575  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3576                 SV, SVOffset, EVT, isVolatile, Alignment);
3577}
3578
3579SDValue
3580SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3581                             SDValue Offset, ISD::MemIndexedMode AM) {
3582  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3583  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3584         "Load is already a indexed load!");
3585  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3586                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3587                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3588                 LD->isVolatile(), LD->getAlignment());
3589}
3590
3591SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3592                               SDValue Ptr, const Value *SV, int SVOffset,
3593                               bool isVolatile, unsigned Alignment) {
3594  MVT VT = Val.getValueType();
3595
3596  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3597    Alignment = getMVTAlignment(VT);
3598
3599  SDVTList VTs = getVTList(MVT::Other);
3600  SDValue Undef = getUNDEF(Ptr.getValueType());
3601  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3602  FoldingSetNodeID ID;
3603  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3604  ID.AddInteger(VT.getRawBits());
3605  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED,
3606                                     isVolatile, Alignment));
3607  void *IP = 0;
3608  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3609    return SDValue(E, 0);
3610  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3611  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false,
3612                      VT, SV, SVOffset, Alignment, isVolatile);
3613  CSEMap.InsertNode(N, IP);
3614  AllNodes.push_back(N);
3615  return SDValue(N, 0);
3616}
3617
3618SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3619                                    SDValue Ptr, const Value *SV,
3620                                    int SVOffset, MVT SVT,
3621                                    bool isVolatile, unsigned Alignment) {
3622  MVT VT = Val.getValueType();
3623
3624  if (VT == SVT)
3625    return getStore(Chain, dl, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3626
3627  assert(VT.bitsGT(SVT) && "Not a truncation?");
3628  assert(VT.isInteger() == SVT.isInteger() &&
3629         "Can't do FP-INT conversion!");
3630
3631  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3632    Alignment = getMVTAlignment(VT);
3633
3634  SDVTList VTs = getVTList(MVT::Other);
3635  SDValue Undef = getUNDEF(Ptr.getValueType());
3636  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3637  FoldingSetNodeID ID;
3638  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3639  ID.AddInteger(SVT.getRawBits());
3640  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED,
3641                                     isVolatile, Alignment));
3642  void *IP = 0;
3643  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3644    return SDValue(E, 0);
3645  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3646  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true,
3647                      SVT, SV, SVOffset, Alignment, isVolatile);
3648  CSEMap.InsertNode(N, IP);
3649  AllNodes.push_back(N);
3650  return SDValue(N, 0);
3651}
3652
3653SDValue
3654SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3655                              SDValue Offset, ISD::MemIndexedMode AM) {
3656  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3657  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3658         "Store is already a indexed store!");
3659  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3660  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3661  FoldingSetNodeID ID;
3662  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3663  ID.AddInteger(ST->getMemoryVT().getRawBits());
3664  ID.AddInteger(ST->getRawSubclassData());
3665  void *IP = 0;
3666  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3667    return SDValue(E, 0);
3668  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3669  new (N) StoreSDNode(Ops, dl, VTs, AM,
3670                      ST->isTruncatingStore(), ST->getMemoryVT(),
3671                      ST->getSrcValue(), ST->getSrcValueOffset(),
3672                      ST->getAlignment(), ST->isVolatile());
3673  CSEMap.InsertNode(N, IP);
3674  AllNodes.push_back(N);
3675  return SDValue(N, 0);
3676}
3677
3678SDValue SelectionDAG::getVAArg(MVT VT, DebugLoc dl,
3679                               SDValue Chain, SDValue Ptr,
3680                               SDValue SV) {
3681  SDValue Ops[] = { Chain, Ptr, SV };
3682  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
3683}
3684
3685SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3686                              const SDUse *Ops, unsigned NumOps) {
3687  switch (NumOps) {
3688  case 0: return getNode(Opcode, DL, VT);
3689  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3690  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3691  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3692  default: break;
3693  }
3694
3695  // Copy from an SDUse array into an SDValue array for use with
3696  // the regular getNode logic.
3697  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3698  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
3699}
3700
3701SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3702                              const SDValue *Ops, unsigned NumOps) {
3703  switch (NumOps) {
3704  case 0: return getNode(Opcode, DL, VT);
3705  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3706  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3707  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3708  default: break;
3709  }
3710
3711  switch (Opcode) {
3712  default: break;
3713  case ISD::SELECT_CC: {
3714    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3715    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3716           "LHS and RHS of condition must have same type!");
3717    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3718           "True and False arms of SelectCC must have same type!");
3719    assert(Ops[2].getValueType() == VT &&
3720           "select_cc node must be of same type as true and false value!");
3721    break;
3722  }
3723  case ISD::BR_CC: {
3724    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3725    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3726           "LHS/RHS of comparison should match types!");
3727    break;
3728  }
3729  }
3730
3731  // Memoize nodes.
3732  SDNode *N;
3733  SDVTList VTs = getVTList(VT);
3734
3735  if (VT != MVT::Flag) {
3736    FoldingSetNodeID ID;
3737    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3738    void *IP = 0;
3739
3740    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3741      return SDValue(E, 0);
3742
3743    N = NodeAllocator.Allocate<SDNode>();
3744    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3745    CSEMap.InsertNode(N, IP);
3746  } else {
3747    N = NodeAllocator.Allocate<SDNode>();
3748    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3749  }
3750
3751  AllNodes.push_back(N);
3752#ifndef NDEBUG
3753  VerifyNode(N);
3754#endif
3755  return SDValue(N, 0);
3756}
3757
3758SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3759                              const std::vector<MVT> &ResultTys,
3760                              const SDValue *Ops, unsigned NumOps) {
3761  return getNode(Opcode, DL, getNodeValueTypes(ResultTys), ResultTys.size(),
3762                 Ops, NumOps);
3763}
3764
3765SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3766                              const MVT *VTs, unsigned NumVTs,
3767                              const SDValue *Ops, unsigned NumOps) {
3768  if (NumVTs == 1)
3769    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
3770  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
3771}
3772
3773SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3774                              const SDValue *Ops, unsigned NumOps) {
3775  if (VTList.NumVTs == 1)
3776    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
3777
3778  switch (Opcode) {
3779  // FIXME: figure out how to safely handle things like
3780  // int foo(int x) { return 1 << (x & 255); }
3781  // int bar() { return foo(256); }
3782#if 0
3783  case ISD::SRA_PARTS:
3784  case ISD::SRL_PARTS:
3785  case ISD::SHL_PARTS:
3786    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3787        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3788      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3789    else if (N3.getOpcode() == ISD::AND)
3790      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3791        // If the and is only masking out bits that cannot effect the shift,
3792        // eliminate the and.
3793        unsigned NumBits = VT.getSizeInBits()*2;
3794        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3795          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3796      }
3797    break;
3798#endif
3799  }
3800
3801  // Memoize the node unless it returns a flag.
3802  SDNode *N;
3803  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3804    FoldingSetNodeID ID;
3805    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3806    void *IP = 0;
3807    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3808      return SDValue(E, 0);
3809    if (NumOps == 1) {
3810      N = NodeAllocator.Allocate<UnarySDNode>();
3811      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3812    } else if (NumOps == 2) {
3813      N = NodeAllocator.Allocate<BinarySDNode>();
3814      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3815    } else if (NumOps == 3) {
3816      N = NodeAllocator.Allocate<TernarySDNode>();
3817      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3818    } else {
3819      N = NodeAllocator.Allocate<SDNode>();
3820      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3821    }
3822    CSEMap.InsertNode(N, IP);
3823  } else {
3824    if (NumOps == 1) {
3825      N = NodeAllocator.Allocate<UnarySDNode>();
3826      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3827    } else if (NumOps == 2) {
3828      N = NodeAllocator.Allocate<BinarySDNode>();
3829      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3830    } else if (NumOps == 3) {
3831      N = NodeAllocator.Allocate<TernarySDNode>();
3832      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3833    } else {
3834      N = NodeAllocator.Allocate<SDNode>();
3835      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3836    }
3837  }
3838  AllNodes.push_back(N);
3839#ifndef NDEBUG
3840  VerifyNode(N);
3841#endif
3842  return SDValue(N, 0);
3843}
3844
3845SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
3846  return getNode(Opcode, DL, VTList, 0, 0);
3847}
3848
3849SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3850                              SDValue N1) {
3851  SDValue Ops[] = { N1 };
3852  return getNode(Opcode, DL, VTList, Ops, 1);
3853}
3854
3855SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3856                              SDValue N1, SDValue N2) {
3857  SDValue Ops[] = { N1, N2 };
3858  return getNode(Opcode, DL, VTList, Ops, 2);
3859}
3860
3861SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3862                              SDValue N1, SDValue N2, SDValue N3) {
3863  SDValue Ops[] = { N1, N2, N3 };
3864  return getNode(Opcode, DL, VTList, Ops, 3);
3865}
3866
3867SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3868                              SDValue N1, SDValue N2, SDValue N3,
3869                              SDValue N4) {
3870  SDValue Ops[] = { N1, N2, N3, N4 };
3871  return getNode(Opcode, DL, VTList, Ops, 4);
3872}
3873
3874SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3875                              SDValue N1, SDValue N2, SDValue N3,
3876                              SDValue N4, SDValue N5) {
3877  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3878  return getNode(Opcode, DL, VTList, Ops, 5);
3879}
3880
3881SDVTList SelectionDAG::getVTList(MVT VT) {
3882  return makeVTList(SDNode::getValueTypeList(VT), 1);
3883}
3884
3885SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3886  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3887       E = VTList.rend(); I != E; ++I)
3888    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3889      return *I;
3890
3891  MVT *Array = Allocator.Allocate<MVT>(2);
3892  Array[0] = VT1;
3893  Array[1] = VT2;
3894  SDVTList Result = makeVTList(Array, 2);
3895  VTList.push_back(Result);
3896  return Result;
3897}
3898
3899SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3900  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3901       E = VTList.rend(); I != E; ++I)
3902    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3903                          I->VTs[2] == VT3)
3904      return *I;
3905
3906  MVT *Array = Allocator.Allocate<MVT>(3);
3907  Array[0] = VT1;
3908  Array[1] = VT2;
3909  Array[2] = VT3;
3910  SDVTList Result = makeVTList(Array, 3);
3911  VTList.push_back(Result);
3912  return Result;
3913}
3914
3915SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
3916  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3917       E = VTList.rend(); I != E; ++I)
3918    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3919                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
3920      return *I;
3921
3922  MVT *Array = Allocator.Allocate<MVT>(3);
3923  Array[0] = VT1;
3924  Array[1] = VT2;
3925  Array[2] = VT3;
3926  Array[3] = VT4;
3927  SDVTList Result = makeVTList(Array, 4);
3928  VTList.push_back(Result);
3929  return Result;
3930}
3931
3932SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3933  switch (NumVTs) {
3934    case 0: assert(0 && "Cannot have nodes without results!");
3935    case 1: return getVTList(VTs[0]);
3936    case 2: return getVTList(VTs[0], VTs[1]);
3937    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3938    default: break;
3939  }
3940
3941  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3942       E = VTList.rend(); I != E; ++I) {
3943    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3944      continue;
3945
3946    bool NoMatch = false;
3947    for (unsigned i = 2; i != NumVTs; ++i)
3948      if (VTs[i] != I->VTs[i]) {
3949        NoMatch = true;
3950        break;
3951      }
3952    if (!NoMatch)
3953      return *I;
3954  }
3955
3956  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3957  std::copy(VTs, VTs+NumVTs, Array);
3958  SDVTList Result = makeVTList(Array, NumVTs);
3959  VTList.push_back(Result);
3960  return Result;
3961}
3962
3963
3964/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3965/// specified operands.  If the resultant node already exists in the DAG,
3966/// this does not modify the specified node, instead it returns the node that
3967/// already exists.  If the resultant node does not exist in the DAG, the
3968/// input node is returned.  As a degenerate case, if you specify the same
3969/// input operands as the node already has, the input node is returned.
3970SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3971  SDNode *N = InN.getNode();
3972  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3973
3974  // Check to see if there is no change.
3975  if (Op == N->getOperand(0)) return InN;
3976
3977  // See if the modified node already exists.
3978  void *InsertPos = 0;
3979  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3980    return SDValue(Existing, InN.getResNo());
3981
3982  // Nope it doesn't.  Remove the node from its current place in the maps.
3983  if (InsertPos)
3984    if (!RemoveNodeFromCSEMaps(N))
3985      InsertPos = 0;
3986
3987  // Now we update the operands.
3988  N->OperandList[0].set(Op);
3989
3990  // If this gets put into a CSE map, add it.
3991  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3992  return InN;
3993}
3994
3995SDValue SelectionDAG::
3996UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3997  SDNode *N = InN.getNode();
3998  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3999
4000  // Check to see if there is no change.
4001  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4002    return InN;   // No operands changed, just return the input node.
4003
4004  // See if the modified node already exists.
4005  void *InsertPos = 0;
4006  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4007    return SDValue(Existing, InN.getResNo());
4008
4009  // Nope it doesn't.  Remove the node from its current place in the maps.
4010  if (InsertPos)
4011    if (!RemoveNodeFromCSEMaps(N))
4012      InsertPos = 0;
4013
4014  // Now we update the operands.
4015  if (N->OperandList[0] != Op1)
4016    N->OperandList[0].set(Op1);
4017  if (N->OperandList[1] != Op2)
4018    N->OperandList[1].set(Op2);
4019
4020  // If this gets put into a CSE map, add it.
4021  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4022  return InN;
4023}
4024
4025SDValue SelectionDAG::
4026UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4027  SDValue Ops[] = { Op1, Op2, Op3 };
4028  return UpdateNodeOperands(N, Ops, 3);
4029}
4030
4031SDValue SelectionDAG::
4032UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4033                   SDValue Op3, SDValue Op4) {
4034  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4035  return UpdateNodeOperands(N, Ops, 4);
4036}
4037
4038SDValue SelectionDAG::
4039UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4040                   SDValue Op3, SDValue Op4, SDValue Op5) {
4041  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4042  return UpdateNodeOperands(N, Ops, 5);
4043}
4044
4045SDValue SelectionDAG::
4046UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4047  SDNode *N = InN.getNode();
4048  assert(N->getNumOperands() == NumOps &&
4049         "Update with wrong number of operands");
4050
4051  // Check to see if there is no change.
4052  bool AnyChange = false;
4053  for (unsigned i = 0; i != NumOps; ++i) {
4054    if (Ops[i] != N->getOperand(i)) {
4055      AnyChange = true;
4056      break;
4057    }
4058  }
4059
4060  // No operands changed, just return the input node.
4061  if (!AnyChange) return InN;
4062
4063  // See if the modified node already exists.
4064  void *InsertPos = 0;
4065  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4066    return SDValue(Existing, InN.getResNo());
4067
4068  // Nope it doesn't.  Remove the node from its current place in the maps.
4069  if (InsertPos)
4070    if (!RemoveNodeFromCSEMaps(N))
4071      InsertPos = 0;
4072
4073  // Now we update the operands.
4074  for (unsigned i = 0; i != NumOps; ++i)
4075    if (N->OperandList[i] != Ops[i])
4076      N->OperandList[i].set(Ops[i]);
4077
4078  // If this gets put into a CSE map, add it.
4079  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4080  return InN;
4081}
4082
4083/// DropOperands - Release the operands and set this node to have
4084/// zero operands.
4085void SDNode::DropOperands() {
4086  // Unlike the code in MorphNodeTo that does this, we don't need to
4087  // watch for dead nodes here.
4088  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4089    SDUse &Use = *I++;
4090    Use.set(SDValue());
4091  }
4092}
4093
4094/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4095/// machine opcode.
4096///
4097SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4098                                   MVT VT) {
4099  SDVTList VTs = getVTList(VT);
4100  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4101}
4102
4103SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4104                                   MVT VT, SDValue Op1) {
4105  SDVTList VTs = getVTList(VT);
4106  SDValue Ops[] = { Op1 };
4107  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4108}
4109
4110SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4111                                   MVT VT, SDValue Op1,
4112                                   SDValue Op2) {
4113  SDVTList VTs = getVTList(VT);
4114  SDValue Ops[] = { Op1, Op2 };
4115  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4116}
4117
4118SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4119                                   MVT VT, SDValue Op1,
4120                                   SDValue Op2, SDValue Op3) {
4121  SDVTList VTs = getVTList(VT);
4122  SDValue Ops[] = { Op1, Op2, Op3 };
4123  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4124}
4125
4126SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4127                                   MVT VT, const SDValue *Ops,
4128                                   unsigned NumOps) {
4129  SDVTList VTs = getVTList(VT);
4130  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4131}
4132
4133SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4134                                   MVT VT1, MVT VT2, const SDValue *Ops,
4135                                   unsigned NumOps) {
4136  SDVTList VTs = getVTList(VT1, VT2);
4137  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4138}
4139
4140SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4141                                   MVT VT1, MVT VT2) {
4142  SDVTList VTs = getVTList(VT1, VT2);
4143  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4144}
4145
4146SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4147                                   MVT VT1, MVT VT2, MVT VT3,
4148                                   const SDValue *Ops, unsigned NumOps) {
4149  SDVTList VTs = getVTList(VT1, VT2, VT3);
4150  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4151}
4152
4153SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4154                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4155                                   const SDValue *Ops, unsigned NumOps) {
4156  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4157  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4158}
4159
4160SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4161                                   MVT VT1, MVT VT2,
4162                                   SDValue Op1) {
4163  SDVTList VTs = getVTList(VT1, VT2);
4164  SDValue Ops[] = { Op1 };
4165  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4166}
4167
4168SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4169                                   MVT VT1, MVT VT2,
4170                                   SDValue Op1, SDValue Op2) {
4171  SDVTList VTs = getVTList(VT1, VT2);
4172  SDValue Ops[] = { Op1, Op2 };
4173  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4174}
4175
4176SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4177                                   MVT VT1, MVT VT2,
4178                                   SDValue Op1, SDValue Op2,
4179                                   SDValue Op3) {
4180  SDVTList VTs = getVTList(VT1, VT2);
4181  SDValue Ops[] = { Op1, Op2, Op3 };
4182  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4183}
4184
4185SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4186                                   MVT VT1, MVT VT2, MVT VT3,
4187                                   SDValue Op1, SDValue Op2,
4188                                   SDValue Op3) {
4189  SDVTList VTs = getVTList(VT1, VT2, VT3);
4190  SDValue Ops[] = { Op1, Op2, Op3 };
4191  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4192}
4193
4194SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4195                                   SDVTList VTs, const SDValue *Ops,
4196                                   unsigned NumOps) {
4197  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4198}
4199
4200SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4201                                  MVT VT) {
4202  SDVTList VTs = getVTList(VT);
4203  return MorphNodeTo(N, Opc, VTs, 0, 0);
4204}
4205
4206SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4207                                  MVT VT, SDValue Op1) {
4208  SDVTList VTs = getVTList(VT);
4209  SDValue Ops[] = { Op1 };
4210  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4211}
4212
4213SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4214                                  MVT VT, SDValue Op1,
4215                                  SDValue Op2) {
4216  SDVTList VTs = getVTList(VT);
4217  SDValue Ops[] = { Op1, Op2 };
4218  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4219}
4220
4221SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4222                                  MVT VT, SDValue Op1,
4223                                  SDValue Op2, SDValue Op3) {
4224  SDVTList VTs = getVTList(VT);
4225  SDValue Ops[] = { Op1, Op2, Op3 };
4226  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4227}
4228
4229SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4230                                  MVT VT, const SDValue *Ops,
4231                                  unsigned NumOps) {
4232  SDVTList VTs = getVTList(VT);
4233  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4234}
4235
4236SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4237                                  MVT VT1, MVT VT2, const SDValue *Ops,
4238                                  unsigned NumOps) {
4239  SDVTList VTs = getVTList(VT1, VT2);
4240  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4241}
4242
4243SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4244                                  MVT VT1, MVT VT2) {
4245  SDVTList VTs = getVTList(VT1, VT2);
4246  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4247}
4248
4249SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4250                                  MVT VT1, MVT VT2, MVT VT3,
4251                                  const SDValue *Ops, unsigned NumOps) {
4252  SDVTList VTs = getVTList(VT1, VT2, VT3);
4253  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4254}
4255
4256SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4257                                  MVT VT1, MVT VT2,
4258                                  SDValue Op1) {
4259  SDVTList VTs = getVTList(VT1, VT2);
4260  SDValue Ops[] = { Op1 };
4261  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4262}
4263
4264SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4265                                  MVT VT1, MVT VT2,
4266                                  SDValue Op1, SDValue Op2) {
4267  SDVTList VTs = getVTList(VT1, VT2);
4268  SDValue Ops[] = { Op1, Op2 };
4269  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4270}
4271
4272SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4273                                  MVT VT1, MVT VT2,
4274                                  SDValue Op1, SDValue Op2,
4275                                  SDValue Op3) {
4276  SDVTList VTs = getVTList(VT1, VT2);
4277  SDValue Ops[] = { Op1, Op2, Op3 };
4278  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4279}
4280
4281/// MorphNodeTo - These *mutate* the specified node to have the specified
4282/// return type, opcode, and operands.
4283///
4284/// Note that MorphNodeTo returns the resultant node.  If there is already a
4285/// node of the specified opcode and operands, it returns that node instead of
4286/// the current one.  Note that the DebugLoc need not be the same.
4287///
4288/// Using MorphNodeTo is faster than creating a new node and swapping it in
4289/// with ReplaceAllUsesWith both because it often avoids allocating a new
4290/// node, and because it doesn't require CSE recalculation for any of
4291/// the node's users.
4292///
4293SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4294                                  SDVTList VTs, const SDValue *Ops,
4295                                  unsigned NumOps) {
4296  // If an identical node already exists, use it.
4297  void *IP = 0;
4298  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4299    FoldingSetNodeID ID;
4300    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4301    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4302      return ON;
4303  }
4304
4305  if (!RemoveNodeFromCSEMaps(N))
4306    IP = 0;
4307
4308  // Start the morphing.
4309  N->NodeType = Opc;
4310  N->ValueList = VTs.VTs;
4311  N->NumValues = VTs.NumVTs;
4312
4313  // Clear the operands list, updating used nodes to remove this from their
4314  // use list.  Keep track of any operands that become dead as a result.
4315  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4316  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4317    SDUse &Use = *I++;
4318    SDNode *Used = Use.getNode();
4319    Use.set(SDValue());
4320    if (Used->use_empty())
4321      DeadNodeSet.insert(Used);
4322  }
4323
4324  // If NumOps is larger than the # of operands we currently have, reallocate
4325  // the operand list.
4326  if (NumOps > N->NumOperands) {
4327    if (N->OperandsNeedDelete)
4328      delete[] N->OperandList;
4329
4330    if (N->isMachineOpcode()) {
4331      // We're creating a final node that will live unmorphed for the
4332      // remainder of the current SelectionDAG iteration, so we can allocate
4333      // the operands directly out of a pool with no recycling metadata.
4334      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4335      N->OperandsNeedDelete = false;
4336    } else {
4337      N->OperandList = new SDUse[NumOps];
4338      N->OperandsNeedDelete = true;
4339    }
4340  }
4341
4342  // Assign the new operands.
4343  N->NumOperands = NumOps;
4344  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4345    N->OperandList[i].setUser(N);
4346    N->OperandList[i].setInitial(Ops[i]);
4347  }
4348
4349  // Delete any nodes that are still dead after adding the uses for the
4350  // new operands.
4351  SmallVector<SDNode *, 16> DeadNodes;
4352  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4353       E = DeadNodeSet.end(); I != E; ++I)
4354    if ((*I)->use_empty())
4355      DeadNodes.push_back(*I);
4356  RemoveDeadNodes(DeadNodes);
4357
4358  if (IP)
4359    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4360  return N;
4361}
4362
4363
4364/// getTargetNode - These are used for target selectors to create a new node
4365/// with specified return type(s), target opcode, and operands.
4366///
4367/// Note that getTargetNode returns the resultant node.  If there is already a
4368/// node of the specified opcode and operands, it returns that node instead of
4369/// the current one.
4370SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT) {
4371  return getNode(~Opcode, dl, VT).getNode();
4372}
4373
4374SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4375                                    SDValue Op1) {
4376  return getNode(~Opcode, dl, VT, Op1).getNode();
4377}
4378
4379SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4380                                    SDValue Op1, SDValue Op2) {
4381  return getNode(~Opcode, dl, VT, Op1, Op2).getNode();
4382}
4383
4384SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4385                                    SDValue Op1, SDValue Op2,
4386                                    SDValue Op3) {
4387  return getNode(~Opcode, dl, VT, Op1, Op2, Op3).getNode();
4388}
4389
4390SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4391                                    const SDValue *Ops, unsigned NumOps) {
4392  return getNode(~Opcode, dl, VT, Ops, NumOps).getNode();
4393}
4394
4395SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4396                                    MVT VT1, MVT VT2) {
4397  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4398  SDValue Op;
4399  return getNode(~Opcode, dl, VTs, 2, &Op, 0).getNode();
4400}
4401
4402SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4403                                    MVT VT2, SDValue Op1) {
4404  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4405  return getNode(~Opcode, dl, VTs, 2, &Op1, 1).getNode();
4406}
4407
4408SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4409                                    MVT VT2, SDValue Op1,
4410                                    SDValue Op2) {
4411  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4412  SDValue Ops[] = { Op1, Op2 };
4413  return getNode(~Opcode, dl, VTs, 2, Ops, 2).getNode();
4414}
4415
4416SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4417                                    MVT VT2, SDValue Op1,
4418                                    SDValue Op2, SDValue Op3) {
4419  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4420  SDValue Ops[] = { Op1, Op2, Op3 };
4421  return getNode(~Opcode, dl, VTs, 2, Ops, 3).getNode();
4422}
4423
4424SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4425                                    MVT VT1, MVT VT2,
4426                                    const SDValue *Ops, unsigned NumOps) {
4427  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4428  return getNode(~Opcode, dl, VTs, 2, Ops, NumOps).getNode();
4429}
4430
4431SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4432                                    MVT VT1, MVT VT2, MVT VT3,
4433                                    SDValue Op1, SDValue Op2) {
4434  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4435  SDValue Ops[] = { Op1, Op2 };
4436  return getNode(~Opcode, dl, VTs, 3, Ops, 2).getNode();
4437}
4438
4439SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4440                                    MVT VT1, MVT VT2, MVT VT3,
4441                                    SDValue Op1, SDValue Op2,
4442                                    SDValue Op3) {
4443  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4444  SDValue Ops[] = { Op1, Op2, Op3 };
4445  return getNode(~Opcode, dl, VTs, 3, Ops, 3).getNode();
4446}
4447
4448SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4449                                    MVT VT1, MVT VT2, MVT VT3,
4450                                    const SDValue *Ops, unsigned NumOps) {
4451  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4452  return getNode(~Opcode, dl, VTs, 3, Ops, NumOps).getNode();
4453}
4454
4455SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4456                                    MVT VT2, MVT VT3, MVT VT4,
4457                                    const SDValue *Ops, unsigned NumOps) {
4458  std::vector<MVT> VTList;
4459  VTList.push_back(VT1);
4460  VTList.push_back(VT2);
4461  VTList.push_back(VT3);
4462  VTList.push_back(VT4);
4463  const MVT *VTs = getNodeValueTypes(VTList);
4464  return getNode(~Opcode, dl, VTs, 4, Ops, NumOps).getNode();
4465}
4466
4467SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4468                                    const std::vector<MVT> &ResultTys,
4469                                    const SDValue *Ops, unsigned NumOps) {
4470  const MVT *VTs = getNodeValueTypes(ResultTys);
4471  return getNode(~Opcode, dl, VTs, ResultTys.size(),
4472                 Ops, NumOps).getNode();
4473}
4474
4475/// getNodeIfExists - Get the specified node if it's already available, or
4476/// else return NULL.
4477SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4478                                      const SDValue *Ops, unsigned NumOps) {
4479  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4480    FoldingSetNodeID ID;
4481    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4482    void *IP = 0;
4483    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4484      return E;
4485  }
4486  return NULL;
4487}
4488
4489/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4490/// This can cause recursive merging of nodes in the DAG.
4491///
4492/// This version assumes From has a single result value.
4493///
4494void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4495                                      DAGUpdateListener *UpdateListener) {
4496  SDNode *From = FromN.getNode();
4497  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4498         "Cannot replace with this method!");
4499  assert(From != To.getNode() && "Cannot replace uses of with self");
4500
4501  // Iterate over all the existing uses of From. New uses will be added
4502  // to the beginning of the use list, which we avoid visiting.
4503  // This specifically avoids visiting uses of From that arise while the
4504  // replacement is happening, because any such uses would be the result
4505  // of CSE: If an existing node looks like From after one of its operands
4506  // is replaced by To, we don't want to replace of all its users with To
4507  // too. See PR3018 for more info.
4508  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4509  while (UI != UE) {
4510    SDNode *User = *UI;
4511
4512    // This node is about to morph, remove its old self from the CSE maps.
4513    RemoveNodeFromCSEMaps(User);
4514
4515    // A user can appear in a use list multiple times, and when this
4516    // happens the uses are usually next to each other in the list.
4517    // To help reduce the number of CSE recomputations, process all
4518    // the uses of this user that we can find this way.
4519    do {
4520      SDUse &Use = UI.getUse();
4521      ++UI;
4522      Use.set(To);
4523    } while (UI != UE && *UI == User);
4524
4525    // Now that we have modified User, add it back to the CSE maps.  If it
4526    // already exists there, recursively merge the results together.
4527    AddModifiedNodeToCSEMaps(User, UpdateListener);
4528  }
4529}
4530
4531/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4532/// This can cause recursive merging of nodes in the DAG.
4533///
4534/// This version assumes From/To have matching types and numbers of result
4535/// values.
4536///
4537void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4538                                      DAGUpdateListener *UpdateListener) {
4539  assert(From->getVTList().VTs == To->getVTList().VTs &&
4540         From->getNumValues() == To->getNumValues() &&
4541         "Cannot use this version of ReplaceAllUsesWith!");
4542
4543  // Handle the trivial case.
4544  if (From == To)
4545    return;
4546
4547  // Iterate over just the existing users of From. See the comments in
4548  // the ReplaceAllUsesWith above.
4549  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4550  while (UI != UE) {
4551    SDNode *User = *UI;
4552
4553    // This node is about to morph, remove its old self from the CSE maps.
4554    RemoveNodeFromCSEMaps(User);
4555
4556    // A user can appear in a use list multiple times, and when this
4557    // happens the uses are usually next to each other in the list.
4558    // To help reduce the number of CSE recomputations, process all
4559    // the uses of this user that we can find this way.
4560    do {
4561      SDUse &Use = UI.getUse();
4562      ++UI;
4563      Use.setNode(To);
4564    } while (UI != UE && *UI == User);
4565
4566    // Now that we have modified User, add it back to the CSE maps.  If it
4567    // already exists there, recursively merge the results together.
4568    AddModifiedNodeToCSEMaps(User, UpdateListener);
4569  }
4570}
4571
4572/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4573/// This can cause recursive merging of nodes in the DAG.
4574///
4575/// This version can replace From with any result values.  To must match the
4576/// number and types of values returned by From.
4577void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4578                                      const SDValue *To,
4579                                      DAGUpdateListener *UpdateListener) {
4580  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4581    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4582
4583  // Iterate over just the existing users of From. See the comments in
4584  // the ReplaceAllUsesWith above.
4585  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4586  while (UI != UE) {
4587    SDNode *User = *UI;
4588
4589    // This node is about to morph, remove its old self from the CSE maps.
4590    RemoveNodeFromCSEMaps(User);
4591
4592    // A user can appear in a use list multiple times, and when this
4593    // happens the uses are usually next to each other in the list.
4594    // To help reduce the number of CSE recomputations, process all
4595    // the uses of this user that we can find this way.
4596    do {
4597      SDUse &Use = UI.getUse();
4598      const SDValue &ToOp = To[Use.getResNo()];
4599      ++UI;
4600      Use.set(ToOp);
4601    } while (UI != UE && *UI == User);
4602
4603    // Now that we have modified User, add it back to the CSE maps.  If it
4604    // already exists there, recursively merge the results together.
4605    AddModifiedNodeToCSEMaps(User, UpdateListener);
4606  }
4607}
4608
4609/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4610/// uses of other values produced by From.getNode() alone.  The Deleted
4611/// vector is handled the same way as for ReplaceAllUsesWith.
4612void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4613                                             DAGUpdateListener *UpdateListener){
4614  // Handle the really simple, really trivial case efficiently.
4615  if (From == To) return;
4616
4617  // Handle the simple, trivial, case efficiently.
4618  if (From.getNode()->getNumValues() == 1) {
4619    ReplaceAllUsesWith(From, To, UpdateListener);
4620    return;
4621  }
4622
4623  // Iterate over just the existing users of From. See the comments in
4624  // the ReplaceAllUsesWith above.
4625  SDNode::use_iterator UI = From.getNode()->use_begin(),
4626                       UE = From.getNode()->use_end();
4627  while (UI != UE) {
4628    SDNode *User = *UI;
4629    bool UserRemovedFromCSEMaps = false;
4630
4631    // A user can appear in a use list multiple times, and when this
4632    // happens the uses are usually next to each other in the list.
4633    // To help reduce the number of CSE recomputations, process all
4634    // the uses of this user that we can find this way.
4635    do {
4636      SDUse &Use = UI.getUse();
4637
4638      // Skip uses of different values from the same node.
4639      if (Use.getResNo() != From.getResNo()) {
4640        ++UI;
4641        continue;
4642      }
4643
4644      // If this node hasn't been modified yet, it's still in the CSE maps,
4645      // so remove its old self from the CSE maps.
4646      if (!UserRemovedFromCSEMaps) {
4647        RemoveNodeFromCSEMaps(User);
4648        UserRemovedFromCSEMaps = true;
4649      }
4650
4651      ++UI;
4652      Use.set(To);
4653    } while (UI != UE && *UI == User);
4654
4655    // We are iterating over all uses of the From node, so if a use
4656    // doesn't use the specific value, no changes are made.
4657    if (!UserRemovedFromCSEMaps)
4658      continue;
4659
4660    // Now that we have modified User, add it back to the CSE maps.  If it
4661    // already exists there, recursively merge the results together.
4662    AddModifiedNodeToCSEMaps(User, UpdateListener);
4663  }
4664}
4665
4666namespace {
4667  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
4668  /// to record information about a use.
4669  struct UseMemo {
4670    SDNode *User;
4671    unsigned Index;
4672    SDUse *Use;
4673  };
4674
4675  /// operator< - Sort Memos by User.
4676  bool operator<(const UseMemo &L, const UseMemo &R) {
4677    return (intptr_t)L.User < (intptr_t)R.User;
4678  }
4679}
4680
4681/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4682/// uses of other values produced by From.getNode() alone.  The same value
4683/// may appear in both the From and To list.  The Deleted vector is
4684/// handled the same way as for ReplaceAllUsesWith.
4685void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4686                                              const SDValue *To,
4687                                              unsigned Num,
4688                                              DAGUpdateListener *UpdateListener){
4689  // Handle the simple, trivial case efficiently.
4690  if (Num == 1)
4691    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4692
4693  // Read up all the uses and make records of them. This helps
4694  // processing new uses that are introduced during the
4695  // replacement process.
4696  SmallVector<UseMemo, 4> Uses;
4697  for (unsigned i = 0; i != Num; ++i) {
4698    unsigned FromResNo = From[i].getResNo();
4699    SDNode *FromNode = From[i].getNode();
4700    for (SDNode::use_iterator UI = FromNode->use_begin(),
4701         E = FromNode->use_end(); UI != E; ++UI) {
4702      SDUse &Use = UI.getUse();
4703      if (Use.getResNo() == FromResNo) {
4704        UseMemo Memo = { *UI, i, &Use };
4705        Uses.push_back(Memo);
4706      }
4707    }
4708  }
4709
4710  // Sort the uses, so that all the uses from a given User are together.
4711  std::sort(Uses.begin(), Uses.end());
4712
4713  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
4714       UseIndex != UseIndexEnd; ) {
4715    // We know that this user uses some value of From.  If it is the right
4716    // value, update it.
4717    SDNode *User = Uses[UseIndex].User;
4718
4719    // This node is about to morph, remove its old self from the CSE maps.
4720    RemoveNodeFromCSEMaps(User);
4721
4722    // The Uses array is sorted, so all the uses for a given User
4723    // are next to each other in the list.
4724    // To help reduce the number of CSE recomputations, process all
4725    // the uses of this user that we can find this way.
4726    do {
4727      unsigned i = Uses[UseIndex].Index;
4728      SDUse &Use = *Uses[UseIndex].Use;
4729      ++UseIndex;
4730
4731      Use.set(To[i]);
4732    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
4733
4734    // Now that we have modified User, add it back to the CSE maps.  If it
4735    // already exists there, recursively merge the results together.
4736    AddModifiedNodeToCSEMaps(User, UpdateListener);
4737  }
4738}
4739
4740/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4741/// based on their topological order. It returns the maximum id and a vector
4742/// of the SDNodes* in assigned order by reference.
4743unsigned SelectionDAG::AssignTopologicalOrder() {
4744
4745  unsigned DAGSize = 0;
4746
4747  // SortedPos tracks the progress of the algorithm. Nodes before it are
4748  // sorted, nodes after it are unsorted. When the algorithm completes
4749  // it is at the end of the list.
4750  allnodes_iterator SortedPos = allnodes_begin();
4751
4752  // Visit all the nodes. Move nodes with no operands to the front of
4753  // the list immediately. Annotate nodes that do have operands with their
4754  // operand count. Before we do this, the Node Id fields of the nodes
4755  // may contain arbitrary values. After, the Node Id fields for nodes
4756  // before SortedPos will contain the topological sort index, and the
4757  // Node Id fields for nodes At SortedPos and after will contain the
4758  // count of outstanding operands.
4759  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4760    SDNode *N = I++;
4761    unsigned Degree = N->getNumOperands();
4762    if (Degree == 0) {
4763      // A node with no uses, add it to the result array immediately.
4764      N->setNodeId(DAGSize++);
4765      allnodes_iterator Q = N;
4766      if (Q != SortedPos)
4767        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4768      ++SortedPos;
4769    } else {
4770      // Temporarily use the Node Id as scratch space for the degree count.
4771      N->setNodeId(Degree);
4772    }
4773  }
4774
4775  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4776  // such that by the time the end is reached all nodes will be sorted.
4777  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4778    SDNode *N = I;
4779    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4780         UI != UE; ++UI) {
4781      SDNode *P = *UI;
4782      unsigned Degree = P->getNodeId();
4783      --Degree;
4784      if (Degree == 0) {
4785        // All of P's operands are sorted, so P may sorted now.
4786        P->setNodeId(DAGSize++);
4787        if (P != SortedPos)
4788          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4789        ++SortedPos;
4790      } else {
4791        // Update P's outstanding operand count.
4792        P->setNodeId(Degree);
4793      }
4794    }
4795  }
4796
4797  assert(SortedPos == AllNodes.end() &&
4798         "Topological sort incomplete!");
4799  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4800         "First node in topological sort is not the entry token!");
4801  assert(AllNodes.front().getNodeId() == 0 &&
4802         "First node in topological sort has non-zero id!");
4803  assert(AllNodes.front().getNumOperands() == 0 &&
4804         "First node in topological sort has operands!");
4805  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4806         "Last node in topologic sort has unexpected id!");
4807  assert(AllNodes.back().use_empty() &&
4808         "Last node in topologic sort has users!");
4809  assert(DAGSize == allnodes_size() && "Node count mismatch!");
4810  return DAGSize;
4811}
4812
4813
4814
4815//===----------------------------------------------------------------------===//
4816//                              SDNode Class
4817//===----------------------------------------------------------------------===//
4818
4819HandleSDNode::~HandleSDNode() {
4820  DropOperands();
4821}
4822
4823GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4824                                         MVT VT, int64_t o)
4825  : SDNode(isa<GlobalVariable>(GA) &&
4826           cast<GlobalVariable>(GA)->isThreadLocal() ?
4827           // Thread Local
4828           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4829           // Non Thread Local
4830           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4831           getSDVTList(VT)), Offset(o) {
4832  TheGlobal = const_cast<GlobalValue*>(GA);
4833}
4834
4835MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
4836                     const Value *srcValue, int SVO,
4837                     unsigned alignment, bool vol)
4838 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4839  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4840  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4841  assert(getAlignment() == alignment && "Alignment representation error!");
4842  assert(isVolatile() == vol && "Volatile representation error!");
4843}
4844
4845MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops,
4846                     unsigned NumOps, MVT memvt, const Value *srcValue,
4847                     int SVO, unsigned alignment, bool vol)
4848   : SDNode(Opc, VTs, Ops, NumOps),
4849     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4850  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4851  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4852  assert(getAlignment() == alignment && "Alignment representation error!");
4853  assert(isVolatile() == vol && "Volatile representation error!");
4854}
4855
4856MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT memvt,
4857                     const Value *srcValue, int SVO,
4858                     unsigned alignment, bool vol)
4859 : SDNode(Opc, dl, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4860  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4861  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4862  assert(getAlignment() == alignment && "Alignment representation error!");
4863  assert(isVolatile() == vol && "Volatile representation error!");
4864}
4865
4866MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
4867                     const SDValue *Ops,
4868                     unsigned NumOps, MVT memvt, const Value *srcValue,
4869                     int SVO, unsigned alignment, bool vol)
4870   : SDNode(Opc, dl, VTs, Ops, NumOps),
4871     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4872  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4873  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4874  assert(getAlignment() == alignment && "Alignment representation error!");
4875  assert(isVolatile() == vol && "Volatile representation error!");
4876}
4877
4878/// getMemOperand - Return a MachineMemOperand object describing the memory
4879/// reference performed by this memory reference.
4880MachineMemOperand MemSDNode::getMemOperand() const {
4881  int Flags = 0;
4882  if (isa<LoadSDNode>(this))
4883    Flags = MachineMemOperand::MOLoad;
4884  else if (isa<StoreSDNode>(this))
4885    Flags = MachineMemOperand::MOStore;
4886  else if (isa<AtomicSDNode>(this)) {
4887    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4888  }
4889  else {
4890    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4891    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4892    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4893    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4894  }
4895
4896  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4897  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4898
4899  // Check if the memory reference references a frame index
4900  const FrameIndexSDNode *FI =
4901  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4902  if (!getSrcValue() && FI)
4903    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4904                             Flags, 0, Size, getAlignment());
4905  else
4906    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4907                             Size, getAlignment());
4908}
4909
4910/// Profile - Gather unique data for the node.
4911///
4912void SDNode::Profile(FoldingSetNodeID &ID) const {
4913  AddNodeIDNode(ID, this);
4914}
4915
4916/// getValueTypeList - Return a pointer to the specified value type.
4917///
4918const MVT *SDNode::getValueTypeList(MVT VT) {
4919  if (VT.isExtended()) {
4920    static std::set<MVT, MVT::compareRawBits> EVTs;
4921    return &(*EVTs.insert(VT).first);
4922  } else {
4923    static MVT VTs[MVT::LAST_VALUETYPE];
4924    VTs[VT.getSimpleVT()] = VT;
4925    return &VTs[VT.getSimpleVT()];
4926  }
4927}
4928
4929/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4930/// indicated value.  This method ignores uses of other values defined by this
4931/// operation.
4932bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4933  assert(Value < getNumValues() && "Bad value!");
4934
4935  // TODO: Only iterate over uses of a given value of the node
4936  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4937    if (UI.getUse().getResNo() == Value) {
4938      if (NUses == 0)
4939        return false;
4940      --NUses;
4941    }
4942  }
4943
4944  // Found exactly the right number of uses?
4945  return NUses == 0;
4946}
4947
4948
4949/// hasAnyUseOfValue - Return true if there are any use of the indicated
4950/// value. This method ignores uses of other values defined by this operation.
4951bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4952  assert(Value < getNumValues() && "Bad value!");
4953
4954  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4955    if (UI.getUse().getResNo() == Value)
4956      return true;
4957
4958  return false;
4959}
4960
4961
4962/// isOnlyUserOf - Return true if this node is the only use of N.
4963///
4964bool SDNode::isOnlyUserOf(SDNode *N) const {
4965  bool Seen = false;
4966  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4967    SDNode *User = *I;
4968    if (User == this)
4969      Seen = true;
4970    else
4971      return false;
4972  }
4973
4974  return Seen;
4975}
4976
4977/// isOperand - Return true if this node is an operand of N.
4978///
4979bool SDValue::isOperandOf(SDNode *N) const {
4980  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4981    if (*this == N->getOperand(i))
4982      return true;
4983  return false;
4984}
4985
4986bool SDNode::isOperandOf(SDNode *N) const {
4987  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4988    if (this == N->OperandList[i].getNode())
4989      return true;
4990  return false;
4991}
4992
4993/// reachesChainWithoutSideEffects - Return true if this operand (which must
4994/// be a chain) reaches the specified operand without crossing any
4995/// side-effecting instructions.  In practice, this looks through token
4996/// factors and non-volatile loads.  In order to remain efficient, this only
4997/// looks a couple of nodes in, it does not do an exhaustive search.
4998bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4999                                               unsigned Depth) const {
5000  if (*this == Dest) return true;
5001
5002  // Don't search too deeply, we just want to be able to see through
5003  // TokenFactor's etc.
5004  if (Depth == 0) return false;
5005
5006  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5007  // of the operands of the TF reach dest, then we can do the xform.
5008  if (getOpcode() == ISD::TokenFactor) {
5009    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5010      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5011        return true;
5012    return false;
5013  }
5014
5015  // Loads don't have side effects, look through them.
5016  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5017    if (!Ld->isVolatile())
5018      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5019  }
5020  return false;
5021}
5022
5023
5024static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
5025                            SmallPtrSet<SDNode *, 32> &Visited) {
5026  if (found || !Visited.insert(N))
5027    return;
5028
5029  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
5030    SDNode *Op = N->getOperand(i).getNode();
5031    if (Op == P) {
5032      found = true;
5033      return;
5034    }
5035    findPredecessor(Op, P, found, Visited);
5036  }
5037}
5038
5039/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5040/// is either an operand of N or it can be reached by recursively traversing
5041/// up the operands.
5042/// NOTE: this is an expensive method. Use it carefully.
5043bool SDNode::isPredecessorOf(SDNode *N) const {
5044  SmallPtrSet<SDNode *, 32> Visited;
5045  bool found = false;
5046  findPredecessor(N, this, found, Visited);
5047  return found;
5048}
5049
5050uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5051  assert(Num < NumOperands && "Invalid child # of SDNode!");
5052  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5053}
5054
5055std::string SDNode::getOperationName(const SelectionDAG *G) const {
5056  switch (getOpcode()) {
5057  default:
5058    if (getOpcode() < ISD::BUILTIN_OP_END)
5059      return "<<Unknown DAG Node>>";
5060    if (isMachineOpcode()) {
5061      if (G)
5062        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5063          if (getMachineOpcode() < TII->getNumOpcodes())
5064            return TII->get(getMachineOpcode()).getName();
5065      return "<<Unknown Machine Node>>";
5066    }
5067    if (G) {
5068      const TargetLowering &TLI = G->getTargetLoweringInfo();
5069      const char *Name = TLI.getTargetNodeName(getOpcode());
5070      if (Name) return Name;
5071      return "<<Unknown Target Node>>";
5072    }
5073    return "<<Unknown Node>>";
5074
5075#ifndef NDEBUG
5076  case ISD::DELETED_NODE:
5077    return "<<Deleted Node!>>";
5078#endif
5079  case ISD::PREFETCH:      return "Prefetch";
5080  case ISD::MEMBARRIER:    return "MemBarrier";
5081  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5082  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5083  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5084  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5085  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5086  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5087  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5088  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5089  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5090  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5091  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5092  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5093  case ISD::PCMARKER:      return "PCMarker";
5094  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5095  case ISD::SRCVALUE:      return "SrcValue";
5096  case ISD::MEMOPERAND:    return "MemOperand";
5097  case ISD::EntryToken:    return "EntryToken";
5098  case ISD::TokenFactor:   return "TokenFactor";
5099  case ISD::AssertSext:    return "AssertSext";
5100  case ISD::AssertZext:    return "AssertZext";
5101
5102  case ISD::BasicBlock:    return "BasicBlock";
5103  case ISD::ARG_FLAGS:     return "ArgFlags";
5104  case ISD::VALUETYPE:     return "ValueType";
5105  case ISD::Register:      return "Register";
5106
5107  case ISD::Constant:      return "Constant";
5108  case ISD::ConstantFP:    return "ConstantFP";
5109  case ISD::GlobalAddress: return "GlobalAddress";
5110  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5111  case ISD::FrameIndex:    return "FrameIndex";
5112  case ISD::JumpTable:     return "JumpTable";
5113  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5114  case ISD::RETURNADDR: return "RETURNADDR";
5115  case ISD::FRAMEADDR: return "FRAMEADDR";
5116  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5117  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5118  case ISD::EHSELECTION: return "EHSELECTION";
5119  case ISD::EH_RETURN: return "EH_RETURN";
5120  case ISD::ConstantPool:  return "ConstantPool";
5121  case ISD::ExternalSymbol: return "ExternalSymbol";
5122  case ISD::INTRINSIC_WO_CHAIN: {
5123    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5124    return Intrinsic::getName((Intrinsic::ID)IID);
5125  }
5126  case ISD::INTRINSIC_VOID:
5127  case ISD::INTRINSIC_W_CHAIN: {
5128    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5129    return Intrinsic::getName((Intrinsic::ID)IID);
5130  }
5131
5132  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5133  case ISD::TargetConstant: return "TargetConstant";
5134  case ISD::TargetConstantFP:return "TargetConstantFP";
5135  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5136  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5137  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5138  case ISD::TargetJumpTable:  return "TargetJumpTable";
5139  case ISD::TargetConstantPool:  return "TargetConstantPool";
5140  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5141
5142  case ISD::CopyToReg:     return "CopyToReg";
5143  case ISD::CopyFromReg:   return "CopyFromReg";
5144  case ISD::UNDEF:         return "undef";
5145  case ISD::MERGE_VALUES:  return "merge_values";
5146  case ISD::INLINEASM:     return "inlineasm";
5147  case ISD::DBG_LABEL:     return "dbg_label";
5148  case ISD::EH_LABEL:      return "eh_label";
5149  case ISD::DECLARE:       return "declare";
5150  case ISD::HANDLENODE:    return "handlenode";
5151  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5152  case ISD::CALL:          return "call";
5153
5154  // Unary operators
5155  case ISD::FABS:   return "fabs";
5156  case ISD::FNEG:   return "fneg";
5157  case ISD::FSQRT:  return "fsqrt";
5158  case ISD::FSIN:   return "fsin";
5159  case ISD::FCOS:   return "fcos";
5160  case ISD::FPOWI:  return "fpowi";
5161  case ISD::FPOW:   return "fpow";
5162  case ISD::FTRUNC: return "ftrunc";
5163  case ISD::FFLOOR: return "ffloor";
5164  case ISD::FCEIL:  return "fceil";
5165  case ISD::FRINT:  return "frint";
5166  case ISD::FNEARBYINT: return "fnearbyint";
5167
5168  // Binary operators
5169  case ISD::ADD:    return "add";
5170  case ISD::SUB:    return "sub";
5171  case ISD::MUL:    return "mul";
5172  case ISD::MULHU:  return "mulhu";
5173  case ISD::MULHS:  return "mulhs";
5174  case ISD::SDIV:   return "sdiv";
5175  case ISD::UDIV:   return "udiv";
5176  case ISD::SREM:   return "srem";
5177  case ISD::UREM:   return "urem";
5178  case ISD::SMUL_LOHI:  return "smul_lohi";
5179  case ISD::UMUL_LOHI:  return "umul_lohi";
5180  case ISD::SDIVREM:    return "sdivrem";
5181  case ISD::UDIVREM:    return "udivrem";
5182  case ISD::AND:    return "and";
5183  case ISD::OR:     return "or";
5184  case ISD::XOR:    return "xor";
5185  case ISD::SHL:    return "shl";
5186  case ISD::SRA:    return "sra";
5187  case ISD::SRL:    return "srl";
5188  case ISD::ROTL:   return "rotl";
5189  case ISD::ROTR:   return "rotr";
5190  case ISD::FADD:   return "fadd";
5191  case ISD::FSUB:   return "fsub";
5192  case ISD::FMUL:   return "fmul";
5193  case ISD::FDIV:   return "fdiv";
5194  case ISD::FREM:   return "frem";
5195  case ISD::FCOPYSIGN: return "fcopysign";
5196  case ISD::FGETSIGN:  return "fgetsign";
5197
5198  case ISD::SETCC:       return "setcc";
5199  case ISD::VSETCC:      return "vsetcc";
5200  case ISD::SELECT:      return "select";
5201  case ISD::SELECT_CC:   return "select_cc";
5202  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5203  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5204  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5205  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5206  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5207  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5208  case ISD::CARRY_FALSE:         return "carry_false";
5209  case ISD::ADDC:        return "addc";
5210  case ISD::ADDE:        return "adde";
5211  case ISD::SADDO:       return "saddo";
5212  case ISD::UADDO:       return "uaddo";
5213  case ISD::SSUBO:       return "ssubo";
5214  case ISD::USUBO:       return "usubo";
5215  case ISD::SMULO:       return "smulo";
5216  case ISD::UMULO:       return "umulo";
5217  case ISD::SUBC:        return "subc";
5218  case ISD::SUBE:        return "sube";
5219  case ISD::SHL_PARTS:   return "shl_parts";
5220  case ISD::SRA_PARTS:   return "sra_parts";
5221  case ISD::SRL_PARTS:   return "srl_parts";
5222
5223  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5224  case ISD::INSERT_SUBREG:      return "insert_subreg";
5225
5226  // Conversion operators.
5227  case ISD::SIGN_EXTEND: return "sign_extend";
5228  case ISD::ZERO_EXTEND: return "zero_extend";
5229  case ISD::ANY_EXTEND:  return "any_extend";
5230  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5231  case ISD::TRUNCATE:    return "truncate";
5232  case ISD::FP_ROUND:    return "fp_round";
5233  case ISD::FLT_ROUNDS_: return "flt_rounds";
5234  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5235  case ISD::FP_EXTEND:   return "fp_extend";
5236
5237  case ISD::SINT_TO_FP:  return "sint_to_fp";
5238  case ISD::UINT_TO_FP:  return "uint_to_fp";
5239  case ISD::FP_TO_SINT:  return "fp_to_sint";
5240  case ISD::FP_TO_UINT:  return "fp_to_uint";
5241  case ISD::BIT_CONVERT: return "bit_convert";
5242
5243  case ISD::CONVERT_RNDSAT: {
5244    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5245    default: assert(0 && "Unknown cvt code!");
5246    case ISD::CVT_FF:  return "cvt_ff";
5247    case ISD::CVT_FS:  return "cvt_fs";
5248    case ISD::CVT_FU:  return "cvt_fu";
5249    case ISD::CVT_SF:  return "cvt_sf";
5250    case ISD::CVT_UF:  return "cvt_uf";
5251    case ISD::CVT_SS:  return "cvt_ss";
5252    case ISD::CVT_SU:  return "cvt_su";
5253    case ISD::CVT_US:  return "cvt_us";
5254    case ISD::CVT_UU:  return "cvt_uu";
5255    }
5256  }
5257
5258    // Control flow instructions
5259  case ISD::BR:      return "br";
5260  case ISD::BRIND:   return "brind";
5261  case ISD::BR_JT:   return "br_jt";
5262  case ISD::BRCOND:  return "brcond";
5263  case ISD::BR_CC:   return "br_cc";
5264  case ISD::RET:     return "ret";
5265  case ISD::CALLSEQ_START:  return "callseq_start";
5266  case ISD::CALLSEQ_END:    return "callseq_end";
5267
5268    // Other operators
5269  case ISD::LOAD:               return "load";
5270  case ISD::STORE:              return "store";
5271  case ISD::VAARG:              return "vaarg";
5272  case ISD::VACOPY:             return "vacopy";
5273  case ISD::VAEND:              return "vaend";
5274  case ISD::VASTART:            return "vastart";
5275  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5276  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5277  case ISD::BUILD_PAIR:         return "build_pair";
5278  case ISD::STACKSAVE:          return "stacksave";
5279  case ISD::STACKRESTORE:       return "stackrestore";
5280  case ISD::TRAP:               return "trap";
5281
5282  // Bit manipulation
5283  case ISD::BSWAP:   return "bswap";
5284  case ISD::CTPOP:   return "ctpop";
5285  case ISD::CTTZ:    return "cttz";
5286  case ISD::CTLZ:    return "ctlz";
5287
5288  // Debug info
5289  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5290  case ISD::DEBUG_LOC: return "debug_loc";
5291
5292  // Trampolines
5293  case ISD::TRAMPOLINE: return "trampoline";
5294
5295  case ISD::CONDCODE:
5296    switch (cast<CondCodeSDNode>(this)->get()) {
5297    default: assert(0 && "Unknown setcc condition!");
5298    case ISD::SETOEQ:  return "setoeq";
5299    case ISD::SETOGT:  return "setogt";
5300    case ISD::SETOGE:  return "setoge";
5301    case ISD::SETOLT:  return "setolt";
5302    case ISD::SETOLE:  return "setole";
5303    case ISD::SETONE:  return "setone";
5304
5305    case ISD::SETO:    return "seto";
5306    case ISD::SETUO:   return "setuo";
5307    case ISD::SETUEQ:  return "setue";
5308    case ISD::SETUGT:  return "setugt";
5309    case ISD::SETUGE:  return "setuge";
5310    case ISD::SETULT:  return "setult";
5311    case ISD::SETULE:  return "setule";
5312    case ISD::SETUNE:  return "setune";
5313
5314    case ISD::SETEQ:   return "seteq";
5315    case ISD::SETGT:   return "setgt";
5316    case ISD::SETGE:   return "setge";
5317    case ISD::SETLT:   return "setlt";
5318    case ISD::SETLE:   return "setle";
5319    case ISD::SETNE:   return "setne";
5320    }
5321  }
5322}
5323
5324const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5325  switch (AM) {
5326  default:
5327    return "";
5328  case ISD::PRE_INC:
5329    return "<pre-inc>";
5330  case ISD::PRE_DEC:
5331    return "<pre-dec>";
5332  case ISD::POST_INC:
5333    return "<post-inc>";
5334  case ISD::POST_DEC:
5335    return "<post-dec>";
5336  }
5337}
5338
5339std::string ISD::ArgFlagsTy::getArgFlagsString() {
5340  std::string S = "< ";
5341
5342  if (isZExt())
5343    S += "zext ";
5344  if (isSExt())
5345    S += "sext ";
5346  if (isInReg())
5347    S += "inreg ";
5348  if (isSRet())
5349    S += "sret ";
5350  if (isByVal())
5351    S += "byval ";
5352  if (isNest())
5353    S += "nest ";
5354  if (getByValAlign())
5355    S += "byval-align:" + utostr(getByValAlign()) + " ";
5356  if (getOrigAlign())
5357    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5358  if (getByValSize())
5359    S += "byval-size:" + utostr(getByValSize()) + " ";
5360  return S + ">";
5361}
5362
5363void SDNode::dump() const { dump(0); }
5364void SDNode::dump(const SelectionDAG *G) const {
5365  print(errs(), G);
5366  errs().flush();
5367}
5368
5369void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5370  OS << (void*)this << ": ";
5371
5372  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5373    if (i) OS << ",";
5374    if (getValueType(i) == MVT::Other)
5375      OS << "ch";
5376    else
5377      OS << getValueType(i).getMVTString();
5378  }
5379  OS << " = " << getOperationName(G);
5380}
5381
5382void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5383  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5384    SDNode *Mask = getOperand(2).getNode();
5385    OS << "<";
5386    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5387      if (i) OS << ",";
5388      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5389        OS << "u";
5390      else
5391        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5392    }
5393    OS << ">";
5394  }
5395
5396  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5397    OS << '<' << CSDN->getAPIntValue() << '>';
5398  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5399    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5400      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5401    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5402      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5403    else {
5404      OS << "<APFloat(";
5405      CSDN->getValueAPF().bitcastToAPInt().dump();
5406      OS << ")>";
5407    }
5408  } else if (const GlobalAddressSDNode *GADN =
5409             dyn_cast<GlobalAddressSDNode>(this)) {
5410    int64_t offset = GADN->getOffset();
5411    OS << '<';
5412    WriteAsOperand(OS, GADN->getGlobal());
5413    OS << '>';
5414    if (offset > 0)
5415      OS << " + " << offset;
5416    else
5417      OS << " " << offset;
5418  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5419    OS << "<" << FIDN->getIndex() << ">";
5420  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5421    OS << "<" << JTDN->getIndex() << ">";
5422  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5423    int offset = CP->getOffset();
5424    if (CP->isMachineConstantPoolEntry())
5425      OS << "<" << *CP->getMachineCPVal() << ">";
5426    else
5427      OS << "<" << *CP->getConstVal() << ">";
5428    if (offset > 0)
5429      OS << " + " << offset;
5430    else
5431      OS << " " << offset;
5432  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5433    OS << "<";
5434    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5435    if (LBB)
5436      OS << LBB->getName() << " ";
5437    OS << (const void*)BBDN->getBasicBlock() << ">";
5438  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5439    if (G && R->getReg() &&
5440        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5441      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5442    } else {
5443      OS << " #" << R->getReg();
5444    }
5445  } else if (const ExternalSymbolSDNode *ES =
5446             dyn_cast<ExternalSymbolSDNode>(this)) {
5447    OS << "'" << ES->getSymbol() << "'";
5448  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5449    if (M->getValue())
5450      OS << "<" << M->getValue() << ">";
5451    else
5452      OS << "<null>";
5453  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5454    if (M->MO.getValue())
5455      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5456    else
5457      OS << "<null:" << M->MO.getOffset() << ">";
5458  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5459    OS << N->getArgFlags().getArgFlagsString();
5460  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5461    OS << ":" << N->getVT().getMVTString();
5462  }
5463  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5464    const Value *SrcValue = LD->getSrcValue();
5465    int SrcOffset = LD->getSrcValueOffset();
5466    OS << " <";
5467    if (SrcValue)
5468      OS << SrcValue;
5469    else
5470      OS << "null";
5471    OS << ":" << SrcOffset << ">";
5472
5473    bool doExt = true;
5474    switch (LD->getExtensionType()) {
5475    default: doExt = false; break;
5476    case ISD::EXTLOAD: OS << " <anyext "; break;
5477    case ISD::SEXTLOAD: OS << " <sext "; break;
5478    case ISD::ZEXTLOAD: OS << " <zext "; break;
5479    }
5480    if (doExt)
5481      OS << LD->getMemoryVT().getMVTString() << ">";
5482
5483    const char *AM = getIndexedModeName(LD->getAddressingMode());
5484    if (*AM)
5485      OS << " " << AM;
5486    if (LD->isVolatile())
5487      OS << " <volatile>";
5488    OS << " alignment=" << LD->getAlignment();
5489  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5490    const Value *SrcValue = ST->getSrcValue();
5491    int SrcOffset = ST->getSrcValueOffset();
5492    OS << " <";
5493    if (SrcValue)
5494      OS << SrcValue;
5495    else
5496      OS << "null";
5497    OS << ":" << SrcOffset << ">";
5498
5499    if (ST->isTruncatingStore())
5500      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5501
5502    const char *AM = getIndexedModeName(ST->getAddressingMode());
5503    if (*AM)
5504      OS << " " << AM;
5505    if (ST->isVolatile())
5506      OS << " <volatile>";
5507    OS << " alignment=" << ST->getAlignment();
5508  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5509    const Value *SrcValue = AT->getSrcValue();
5510    int SrcOffset = AT->getSrcValueOffset();
5511    OS << " <";
5512    if (SrcValue)
5513      OS << SrcValue;
5514    else
5515      OS << "null";
5516    OS << ":" << SrcOffset << ">";
5517    if (AT->isVolatile())
5518      OS << " <volatile>";
5519    OS << " alignment=" << AT->getAlignment();
5520  }
5521}
5522
5523void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5524  print_types(OS, G);
5525  OS << " ";
5526  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5527    if (i) OS << ", ";
5528    OS << (void*)getOperand(i).getNode();
5529    if (unsigned RN = getOperand(i).getResNo())
5530      OS << ":" << RN;
5531  }
5532  print_details(OS, G);
5533}
5534
5535static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5536  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5537    if (N->getOperand(i).getNode()->hasOneUse())
5538      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5539    else
5540      cerr << "\n" << std::string(indent+2, ' ')
5541           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5542
5543
5544  cerr << "\n" << std::string(indent, ' ');
5545  N->dump(G);
5546}
5547
5548void SelectionDAG::dump() const {
5549  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5550
5551  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5552       I != E; ++I) {
5553    const SDNode *N = I;
5554    if (!N->hasOneUse() && N != getRoot().getNode())
5555      DumpNodes(N, 2, this);
5556  }
5557
5558  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5559
5560  cerr << "\n\n";
5561}
5562
5563void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
5564  print_types(OS, G);
5565  print_details(OS, G);
5566}
5567
5568typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
5569static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
5570		       const SelectionDAG *G, VisitedSDNodeSet &once) {
5571  if (!once.insert(N))	// If we've been here before, return now.
5572    return;
5573  // Dump the current SDNode, but don't end the line yet.
5574  OS << std::string(indent, ' ');
5575  N->printr(OS, G);
5576  // Having printed this SDNode, walk the children:
5577  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5578    const SDNode *child = N->getOperand(i).getNode();
5579    if (i) OS << ",";
5580    OS << " ";
5581    if (child->getNumOperands() == 0) {
5582      // This child has no grandchildren; print it inline right here.
5583      child->printr(OS, G);
5584      once.insert(child);
5585    } else {	// Just the address.  FIXME: also print the child's opcode
5586      OS << (void*)child;
5587      if (unsigned RN = N->getOperand(i).getResNo())
5588	OS << ":" << RN;
5589    }
5590  }
5591  OS << "\n";
5592  // Dump children that have grandchildren on their own line(s).
5593  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5594    const SDNode *child = N->getOperand(i).getNode();
5595    DumpNodesr(OS, child, indent+2, G, once);
5596  }
5597}
5598
5599void SDNode::dumpr() const {
5600  VisitedSDNodeSet once;
5601  DumpNodesr(errs(), this, 0, 0, once);
5602  errs().flush();
5603}
5604
5605const Type *ConstantPoolSDNode::getType() const {
5606  if (isMachineConstantPoolEntry())
5607    return Val.MachineCPVal->getType();
5608  return Val.ConstVal->getType();
5609}
5610