SelectionDAG.cpp revision b38eabfc63c1a3741ff0057fe48abe9ee92cd3c7
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/SetVector.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/StringExtras.h"
41#include <algorithm>
42#include <cmath>
43using namespace llvm;
44
45/// makeVTList - Return an instance of the SDVTList struct initialized with the
46/// specified members.
47static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
48  SDVTList Res = {VTs, NumVTs};
49  return Res;
50}
51
52static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
53  switch (VT.getSimpleVT()) {
54  default: assert(0 && "Unknown FP format");
55  case MVT::f32:     return &APFloat::IEEEsingle;
56  case MVT::f64:     return &APFloat::IEEEdouble;
57  case MVT::f80:     return &APFloat::x87DoubleExtended;
58  case MVT::f128:    return &APFloat::IEEEquad;
59  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
60  }
61}
62
63SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
64
65//===----------------------------------------------------------------------===//
66//                              ConstantFPSDNode Class
67//===----------------------------------------------------------------------===//
68
69/// isExactlyValue - We don't rely on operator== working on double values, as
70/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
71/// As such, this method can be used to do an exact bit-for-bit comparison of
72/// two floating point values.
73bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
74  return getValueAPF().bitwiseIsEqual(V);
75}
76
77bool ConstantFPSDNode::isValueValidForType(MVT VT,
78                                           const APFloat& Val) {
79  assert(VT.isFloatingPoint() && "Can only convert between FP types");
80
81  // PPC long double cannot be converted to any other type.
82  if (VT == MVT::ppcf128 ||
83      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
84    return false;
85
86  // convert modifies in place, so make a copy.
87  APFloat Val2 = APFloat(Val);
88  bool losesInfo;
89  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
90                      &losesInfo);
91  return !losesInfo;
92}
93
94//===----------------------------------------------------------------------===//
95//                              ISD Namespace
96//===----------------------------------------------------------------------===//
97
98/// isBuildVectorAllOnes - Return true if the specified node is a
99/// BUILD_VECTOR where all of the elements are ~0 or undef.
100bool ISD::isBuildVectorAllOnes(const SDNode *N) {
101  // Look through a bit convert.
102  if (N->getOpcode() == ISD::BIT_CONVERT)
103    N = N->getOperand(0).getNode();
104
105  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
106
107  unsigned i = 0, e = N->getNumOperands();
108
109  // Skip over all of the undef values.
110  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
111    ++i;
112
113  // Do not accept an all-undef vector.
114  if (i == e) return false;
115
116  // Do not accept build_vectors that aren't all constants or which have non-~0
117  // elements.
118  SDValue NotZero = N->getOperand(i);
119  if (isa<ConstantSDNode>(NotZero)) {
120    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
121      return false;
122  } else if (isa<ConstantFPSDNode>(NotZero)) {
123    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
124                bitcastToAPInt().isAllOnesValue())
125      return false;
126  } else
127    return false;
128
129  // Okay, we have at least one ~0 value, check to see if the rest match or are
130  // undefs.
131  for (++i; i != e; ++i)
132    if (N->getOperand(i) != NotZero &&
133        N->getOperand(i).getOpcode() != ISD::UNDEF)
134      return false;
135  return true;
136}
137
138
139/// isBuildVectorAllZeros - Return true if the specified node is a
140/// BUILD_VECTOR where all of the elements are 0 or undef.
141bool ISD::isBuildVectorAllZeros(const SDNode *N) {
142  // Look through a bit convert.
143  if (N->getOpcode() == ISD::BIT_CONVERT)
144    N = N->getOperand(0).getNode();
145
146  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
147
148  unsigned i = 0, e = N->getNumOperands();
149
150  // Skip over all of the undef values.
151  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
152    ++i;
153
154  // Do not accept an all-undef vector.
155  if (i == e) return false;
156
157  // Do not accept build_vectors that aren't all constants or which have non-~0
158  // elements.
159  SDValue Zero = N->getOperand(i);
160  if (isa<ConstantSDNode>(Zero)) {
161    if (!cast<ConstantSDNode>(Zero)->isNullValue())
162      return false;
163  } else if (isa<ConstantFPSDNode>(Zero)) {
164    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
165      return false;
166  } else
167    return false;
168
169  // Okay, we have at least one ~0 value, check to see if the rest match or are
170  // undefs.
171  for (++i; i != e; ++i)
172    if (N->getOperand(i) != Zero &&
173        N->getOperand(i).getOpcode() != ISD::UNDEF)
174      return false;
175  return true;
176}
177
178/// isScalarToVector - Return true if the specified node is a
179/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
180/// element is not an undef.
181bool ISD::isScalarToVector(const SDNode *N) {
182  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
183    return true;
184
185  if (N->getOpcode() != ISD::BUILD_VECTOR)
186    return false;
187  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
188    return false;
189  unsigned NumElems = N->getNumOperands();
190  for (unsigned i = 1; i < NumElems; ++i) {
191    SDValue V = N->getOperand(i);
192    if (V.getOpcode() != ISD::UNDEF)
193      return false;
194  }
195  return true;
196}
197
198
199/// isDebugLabel - Return true if the specified node represents a debug
200/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
201bool ISD::isDebugLabel(const SDNode *N) {
202  SDValue Zero;
203  if (N->getOpcode() == ISD::DBG_LABEL)
204    return true;
205  if (N->isMachineOpcode() &&
206      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
207    return true;
208  return false;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: assert(0 && "Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310const TargetMachine &SelectionDAG::getTarget() const {
311  return MF->getTarget();
312}
313
314//===----------------------------------------------------------------------===//
315//                           SDNode Profile Support
316//===----------------------------------------------------------------------===//
317
318/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
319///
320static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
321  ID.AddInteger(OpC);
322}
323
324/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
325/// solely with their pointer.
326static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
327  ID.AddPointer(VTList.VTs);
328}
329
330/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
331///
332static void AddNodeIDOperands(FoldingSetNodeID &ID,
333                              const SDValue *Ops, unsigned NumOps) {
334  for (; NumOps; --NumOps, ++Ops) {
335    ID.AddPointer(Ops->getNode());
336    ID.AddInteger(Ops->getResNo());
337  }
338}
339
340/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
341///
342static void AddNodeIDOperands(FoldingSetNodeID &ID,
343                              const SDUse *Ops, unsigned NumOps) {
344  for (; NumOps; --NumOps, ++Ops) {
345    ID.AddPointer(Ops->getNode());
346    ID.AddInteger(Ops->getResNo());
347  }
348}
349
350static void AddNodeIDNode(FoldingSetNodeID &ID,
351                          unsigned short OpC, SDVTList VTList,
352                          const SDValue *OpList, unsigned N) {
353  AddNodeIDOpcode(ID, OpC);
354  AddNodeIDValueTypes(ID, VTList);
355  AddNodeIDOperands(ID, OpList, N);
356}
357
358/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
359/// the NodeID data.
360static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
361  switch (N->getOpcode()) {
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::ARG_FLAGS:
364    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
365    break;
366  case ISD::TargetConstant:
367  case ISD::Constant:
368    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
369    break;
370  case ISD::TargetConstantFP:
371  case ISD::ConstantFP: {
372    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
373    break;
374  }
375  case ISD::TargetGlobalAddress:
376  case ISD::GlobalAddress:
377  case ISD::TargetGlobalTLSAddress:
378  case ISD::GlobalTLSAddress: {
379    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
380    ID.AddPointer(GA->getGlobal());
381    ID.AddInteger(GA->getOffset());
382    break;
383  }
384  case ISD::BasicBlock:
385    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
386    break;
387  case ISD::Register:
388    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
389    break;
390  case ISD::DBG_STOPPOINT: {
391    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
392    ID.AddInteger(DSP->getLine());
393    ID.AddInteger(DSP->getColumn());
394    ID.AddPointer(DSP->getCompileUnit());
395    break;
396  }
397  case ISD::SRCVALUE:
398    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
399    break;
400  case ISD::MEMOPERAND: {
401    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
402    MO.Profile(ID);
403    break;
404  }
405  case ISD::FrameIndex:
406  case ISD::TargetFrameIndex:
407    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
408    break;
409  case ISD::JumpTable:
410  case ISD::TargetJumpTable:
411    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
412    break;
413  case ISD::ConstantPool:
414  case ISD::TargetConstantPool: {
415    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
416    ID.AddInteger(CP->getAlignment());
417    ID.AddInteger(CP->getOffset());
418    if (CP->isMachineConstantPoolEntry())
419      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
420    else
421      ID.AddPointer(CP->getConstVal());
422    break;
423  }
424  case ISD::CALL: {
425    const CallSDNode *Call = cast<CallSDNode>(N);
426    ID.AddInteger(Call->getCallingConv());
427    ID.AddInteger(Call->isVarArg());
428    break;
429  }
430  case ISD::LOAD: {
431    const LoadSDNode *LD = cast<LoadSDNode>(N);
432    ID.AddInteger(LD->getAddressingMode());
433    ID.AddInteger(LD->getExtensionType());
434    ID.AddInteger(LD->getMemoryVT().getRawBits());
435    ID.AddInteger(LD->getRawFlags());
436    break;
437  }
438  case ISD::STORE: {
439    const StoreSDNode *ST = cast<StoreSDNode>(N);
440    ID.AddInteger(ST->getAddressingMode());
441    ID.AddInteger(ST->isTruncatingStore());
442    ID.AddInteger(ST->getMemoryVT().getRawBits());
443    ID.AddInteger(ST->getRawFlags());
444    break;
445  }
446  case ISD::ATOMIC_CMP_SWAP:
447  case ISD::ATOMIC_SWAP:
448  case ISD::ATOMIC_LOAD_ADD:
449  case ISD::ATOMIC_LOAD_SUB:
450  case ISD::ATOMIC_LOAD_AND:
451  case ISD::ATOMIC_LOAD_OR:
452  case ISD::ATOMIC_LOAD_XOR:
453  case ISD::ATOMIC_LOAD_NAND:
454  case ISD::ATOMIC_LOAD_MIN:
455  case ISD::ATOMIC_LOAD_MAX:
456  case ISD::ATOMIC_LOAD_UMIN:
457  case ISD::ATOMIC_LOAD_UMAX: {
458    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
459    ID.AddInteger(AT->getRawFlags());
460    break;
461  }
462  } // end switch (N->getOpcode())
463}
464
465/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
466/// data.
467static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
468  AddNodeIDOpcode(ID, N->getOpcode());
469  // Add the return value info.
470  AddNodeIDValueTypes(ID, N->getVTList());
471  // Add the operand info.
472  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
473
474  // Handle SDNode leafs with special info.
475  AddNodeIDCustom(ID, N);
476}
477
478/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
479/// the CSE map that carries both alignment and volatility information.
480///
481static inline unsigned
482encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) {
483  return isVolatile | ((Log2_32(Alignment) + 1) << 1);
484}
485
486//===----------------------------------------------------------------------===//
487//                              SelectionDAG Class
488//===----------------------------------------------------------------------===//
489
490/// doNotCSE - Return true if CSE should not be performed for this node.
491static bool doNotCSE(SDNode *N) {
492  if (N->getValueType(0) == MVT::Flag)
493    return true; // Never CSE anything that produces a flag.
494
495  switch (N->getOpcode()) {
496  default: break;
497  case ISD::HANDLENODE:
498  case ISD::DBG_LABEL:
499  case ISD::DBG_STOPPOINT:
500  case ISD::EH_LABEL:
501  case ISD::DECLARE:
502    return true;   // Never CSE these nodes.
503  }
504
505  // Check that remaining values produced are not flags.
506  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
507    if (N->getValueType(i) == MVT::Flag)
508      return true; // Never CSE anything that produces a flag.
509
510  return false;
511}
512
513/// RemoveDeadNodes - This method deletes all unreachable nodes in the
514/// SelectionDAG.
515void SelectionDAG::RemoveDeadNodes() {
516  // Create a dummy node (which is not added to allnodes), that adds a reference
517  // to the root node, preventing it from being deleted.
518  HandleSDNode Dummy(getRoot());
519
520  SmallVector<SDNode*, 128> DeadNodes;
521
522  // Add all obviously-dead nodes to the DeadNodes worklist.
523  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
524    if (I->use_empty())
525      DeadNodes.push_back(I);
526
527  RemoveDeadNodes(DeadNodes);
528
529  // If the root changed (e.g. it was a dead load, update the root).
530  setRoot(Dummy.getValue());
531}
532
533/// RemoveDeadNodes - This method deletes the unreachable nodes in the
534/// given list, and any nodes that become unreachable as a result.
535void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
536                                   DAGUpdateListener *UpdateListener) {
537
538  // Process the worklist, deleting the nodes and adding their uses to the
539  // worklist.
540  while (!DeadNodes.empty()) {
541    SDNode *N = DeadNodes.pop_back_val();
542
543    if (UpdateListener)
544      UpdateListener->NodeDeleted(N, 0);
545
546    // Take the node out of the appropriate CSE map.
547    RemoveNodeFromCSEMaps(N);
548
549    // Next, brutally remove the operand list.  This is safe to do, as there are
550    // no cycles in the graph.
551    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
552      SDUse &Use = *I++;
553      SDNode *Operand = Use.getNode();
554      Use.set(SDValue());
555
556      // Now that we removed this operand, see if there are no uses of it left.
557      if (Operand->use_empty())
558        DeadNodes.push_back(Operand);
559    }
560
561    DeallocateNode(N);
562  }
563}
564
565void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
566  SmallVector<SDNode*, 16> DeadNodes(1, N);
567  RemoveDeadNodes(DeadNodes, UpdateListener);
568}
569
570void SelectionDAG::DeleteNode(SDNode *N) {
571  // First take this out of the appropriate CSE map.
572  RemoveNodeFromCSEMaps(N);
573
574  // Finally, remove uses due to operands of this node, remove from the
575  // AllNodes list, and delete the node.
576  DeleteNodeNotInCSEMaps(N);
577}
578
579void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
580  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
581  assert(N->use_empty() && "Cannot delete a node that is not dead!");
582
583  // Drop all of the operands and decrement used node's use counts.
584  N->DropOperands();
585
586  DeallocateNode(N);
587}
588
589void SelectionDAG::DeallocateNode(SDNode *N) {
590  if (N->OperandsNeedDelete)
591    delete[] N->OperandList;
592
593  // Set the opcode to DELETED_NODE to help catch bugs when node
594  // memory is reallocated.
595  N->NodeType = ISD::DELETED_NODE;
596
597  NodeAllocator.Deallocate(AllNodes.remove(N));
598}
599
600/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
601/// correspond to it.  This is useful when we're about to delete or repurpose
602/// the node.  We don't want future request for structurally identical nodes
603/// to return N anymore.
604bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
605  bool Erased = false;
606  switch (N->getOpcode()) {
607  case ISD::EntryToken:
608    assert(0 && "EntryToken should not be in CSEMaps!");
609    return false;
610  case ISD::HANDLENODE: return false;  // noop.
611  case ISD::CONDCODE:
612    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
613           "Cond code doesn't exist!");
614    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
615    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
616    break;
617  case ISD::ExternalSymbol:
618    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
619    break;
620  case ISD::TargetExternalSymbol:
621    Erased =
622      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
623    break;
624  case ISD::VALUETYPE: {
625    MVT VT = cast<VTSDNode>(N)->getVT();
626    if (VT.isExtended()) {
627      Erased = ExtendedValueTypeNodes.erase(VT);
628    } else {
629      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
630      ValueTypeNodes[VT.getSimpleVT()] = 0;
631    }
632    break;
633  }
634  default:
635    // Remove it from the CSE Map.
636    Erased = CSEMap.RemoveNode(N);
637    break;
638  }
639#ifndef NDEBUG
640  // Verify that the node was actually in one of the CSE maps, unless it has a
641  // flag result (which cannot be CSE'd) or is one of the special cases that are
642  // not subject to CSE.
643  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
644      !N->isMachineOpcode() && !doNotCSE(N)) {
645    N->dump(this);
646    cerr << "\n";
647    assert(0 && "Node is not in map!");
648  }
649#endif
650  return Erased;
651}
652
653/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
654/// maps and modified in place. Add it back to the CSE maps, unless an identical
655/// node already exists, in which case transfer all its users to the existing
656/// node. This transfer can potentially trigger recursive merging.
657///
658void
659SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
660                                       DAGUpdateListener *UpdateListener) {
661  // For node types that aren't CSE'd, just act as if no identical node
662  // already exists.
663  if (!doNotCSE(N)) {
664    SDNode *Existing = CSEMap.GetOrInsertNode(N);
665    if (Existing != N) {
666      // If there was already an existing matching node, use ReplaceAllUsesWith
667      // to replace the dead one with the existing one.  This can cause
668      // recursive merging of other unrelated nodes down the line.
669      ReplaceAllUsesWith(N, Existing, UpdateListener);
670
671      // N is now dead.  Inform the listener if it exists and delete it.
672      if (UpdateListener)
673        UpdateListener->NodeDeleted(N, Existing);
674      DeleteNodeNotInCSEMaps(N);
675      return;
676    }
677  }
678
679  // If the node doesn't already exist, we updated it.  Inform a listener if
680  // it exists.
681  if (UpdateListener)
682    UpdateListener->NodeUpdated(N);
683}
684
685/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
686/// were replaced with those specified.  If this node is never memoized,
687/// return null, otherwise return a pointer to the slot it would take.  If a
688/// node already exists with these operands, the slot will be non-null.
689SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
690                                           void *&InsertPos) {
691  if (doNotCSE(N))
692    return 0;
693
694  SDValue Ops[] = { Op };
695  FoldingSetNodeID ID;
696  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
697  AddNodeIDCustom(ID, N);
698  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
699}
700
701/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
702/// were replaced with those specified.  If this node is never memoized,
703/// return null, otherwise return a pointer to the slot it would take.  If a
704/// node already exists with these operands, the slot will be non-null.
705SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
706                                           SDValue Op1, SDValue Op2,
707                                           void *&InsertPos) {
708  if (doNotCSE(N))
709    return 0;
710
711  SDValue Ops[] = { Op1, Op2 };
712  FoldingSetNodeID ID;
713  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
714  AddNodeIDCustom(ID, N);
715  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
716}
717
718
719/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
720/// were replaced with those specified.  If this node is never memoized,
721/// return null, otherwise return a pointer to the slot it would take.  If a
722/// node already exists with these operands, the slot will be non-null.
723SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
724                                           const SDValue *Ops,unsigned NumOps,
725                                           void *&InsertPos) {
726  if (doNotCSE(N))
727    return 0;
728
729  FoldingSetNodeID ID;
730  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
731  AddNodeIDCustom(ID, N);
732  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
733}
734
735/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
736void SelectionDAG::VerifyNode(SDNode *N) {
737  switch (N->getOpcode()) {
738  default:
739    break;
740  case ISD::BUILD_PAIR: {
741    MVT VT = N->getValueType(0);
742    assert(N->getNumValues() == 1 && "Too many results!");
743    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
744           "Wrong return type!");
745    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
746    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
747           "Mismatched operand types!");
748    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
749           "Wrong operand type!");
750    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
751           "Wrong return type size");
752    break;
753  }
754  case ISD::BUILD_VECTOR: {
755    assert(N->getNumValues() == 1 && "Too many results!");
756    assert(N->getValueType(0).isVector() && "Wrong return type!");
757    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
758           "Wrong number of operands!");
759    // FIXME: Change vector_shuffle to a variadic node with mask elements being
760    // operands of the node.  Currently the mask is a BUILD_VECTOR passed as an
761    // operand, and it is not always possible to legalize it.  Turning off the
762    // following checks at least makes it possible to legalize most of the time.
763//    MVT EltVT = N->getValueType(0).getVectorElementType();
764//    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
765//      assert(I->getValueType() == EltVT &&
766//             "Wrong operand type!");
767    break;
768  }
769  }
770}
771
772/// getMVTAlignment - Compute the default alignment value for the
773/// given type.
774///
775unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
776  const Type *Ty = VT == MVT::iPTR ?
777                   PointerType::get(Type::Int8Ty, 0) :
778                   VT.getTypeForMVT();
779
780  return TLI.getTargetData()->getABITypeAlignment(Ty);
781}
782
783SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
784  : TLI(tli), FLI(fli),
785    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
786    Root(getEntryNode()) {
787  AllNodes.push_back(&EntryNode);
788}
789
790void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
791                        DwarfWriter *dw) {
792  MF = &mf;
793  MMI = mmi;
794  DW = dw;
795}
796
797SelectionDAG::~SelectionDAG() {
798  allnodes_clear();
799}
800
801void SelectionDAG::allnodes_clear() {
802  assert(&*AllNodes.begin() == &EntryNode);
803  AllNodes.remove(AllNodes.begin());
804  while (!AllNodes.empty())
805    DeallocateNode(AllNodes.begin());
806}
807
808void SelectionDAG::clear() {
809  allnodes_clear();
810  OperandAllocator.Reset();
811  CSEMap.clear();
812
813  ExtendedValueTypeNodes.clear();
814  ExternalSymbols.clear();
815  TargetExternalSymbols.clear();
816  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
817            static_cast<CondCodeSDNode*>(0));
818  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
819            static_cast<SDNode*>(0));
820
821  EntryNode.UseList = 0;
822  AllNodes.push_back(&EntryNode);
823  Root = getEntryNode();
824}
825
826SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
827  if (Op.getValueType() == VT) return Op;
828  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
829                                   VT.getSizeInBits());
830  return getNode(ISD::AND, Op.getValueType(), Op,
831                 getConstant(Imm, Op.getValueType()));
832}
833
834/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
835///
836SDValue SelectionDAG::getNOT(SDValue Val, MVT VT) {
837  SDValue NegOne;
838  if (VT.isVector()) {
839    MVT EltVT = VT.getVectorElementType();
840    SDValue NegOneElt = getConstant(EltVT.getIntegerVTBitMask(), EltVT);
841    std::vector<SDValue> NegOnes(VT.getVectorNumElements(), NegOneElt);
842    NegOne = getNode(ISD::BUILD_VECTOR, VT, &NegOnes[0], NegOnes.size());
843  } else
844    NegOne = getConstant(VT.getIntegerVTBitMask(), VT);
845
846  return getNode(ISD::XOR, VT, Val, NegOne);
847}
848
849SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
850  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
851  assert((EltVT.getSizeInBits() >= 64 ||
852         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
853         "getConstant with a uint64_t value that doesn't fit in the type!");
854  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
855}
856
857SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
858  return getConstant(*ConstantInt::get(Val), VT, isT);
859}
860
861SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
862  assert(VT.isInteger() && "Cannot create FP integer constant!");
863
864  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
865  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
866         "APInt size does not match type size!");
867
868  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
869  FoldingSetNodeID ID;
870  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
871  ID.AddPointer(&Val);
872  void *IP = 0;
873  SDNode *N = NULL;
874  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
875    if (!VT.isVector())
876      return SDValue(N, 0);
877  if (!N) {
878    N = NodeAllocator.Allocate<ConstantSDNode>();
879    new (N) ConstantSDNode(isT, &Val, EltVT);
880    CSEMap.InsertNode(N, IP);
881    AllNodes.push_back(N);
882  }
883
884  SDValue Result(N, 0);
885  if (VT.isVector()) {
886    SmallVector<SDValue, 8> Ops;
887    Ops.assign(VT.getVectorNumElements(), Result);
888    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
889  }
890  return Result;
891}
892
893SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
894  return getConstant(Val, TLI.getPointerTy(), isTarget);
895}
896
897
898SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
899  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
900}
901
902SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
903  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
904
905  MVT EltVT =
906    VT.isVector() ? VT.getVectorElementType() : VT;
907
908  // Do the map lookup using the actual bit pattern for the floating point
909  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
910  // we don't have issues with SNANs.
911  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
912  FoldingSetNodeID ID;
913  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
914  ID.AddPointer(&V);
915  void *IP = 0;
916  SDNode *N = NULL;
917  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
918    if (!VT.isVector())
919      return SDValue(N, 0);
920  if (!N) {
921    N = NodeAllocator.Allocate<ConstantFPSDNode>();
922    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
923    CSEMap.InsertNode(N, IP);
924    AllNodes.push_back(N);
925  }
926
927  SDValue Result(N, 0);
928  if (VT.isVector()) {
929    SmallVector<SDValue, 8> Ops;
930    Ops.assign(VT.getVectorNumElements(), Result);
931    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
932  }
933  return Result;
934}
935
936SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
937  MVT EltVT =
938    VT.isVector() ? VT.getVectorElementType() : VT;
939  if (EltVT==MVT::f32)
940    return getConstantFP(APFloat((float)Val), VT, isTarget);
941  else
942    return getConstantFP(APFloat(Val), VT, isTarget);
943}
944
945SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
946                                       MVT VT, int64_t Offset,
947                                       bool isTargetGA) {
948  unsigned Opc;
949
950  // Truncate (with sign-extension) the offset value to the pointer size.
951  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
952  if (BitWidth < 64)
953    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
954
955  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
956  if (!GVar) {
957    // If GV is an alias then use the aliasee for determining thread-localness.
958    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
959      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
960  }
961
962  if (GVar && GVar->isThreadLocal())
963    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
964  else
965    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
966
967  FoldingSetNodeID ID;
968  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
969  ID.AddPointer(GV);
970  ID.AddInteger(Offset);
971  void *IP = 0;
972  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
973    return SDValue(E, 0);
974  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
975  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
976  CSEMap.InsertNode(N, IP);
977  AllNodes.push_back(N);
978  return SDValue(N, 0);
979}
980
981SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
982  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
983  FoldingSetNodeID ID;
984  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
985  ID.AddInteger(FI);
986  void *IP = 0;
987  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
988    return SDValue(E, 0);
989  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
990  new (N) FrameIndexSDNode(FI, VT, isTarget);
991  CSEMap.InsertNode(N, IP);
992  AllNodes.push_back(N);
993  return SDValue(N, 0);
994}
995
996SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
997  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
998  FoldingSetNodeID ID;
999  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1000  ID.AddInteger(JTI);
1001  void *IP = 0;
1002  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1003    return SDValue(E, 0);
1004  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1005  new (N) JumpTableSDNode(JTI, VT, isTarget);
1006  CSEMap.InsertNode(N, IP);
1007  AllNodes.push_back(N);
1008  return SDValue(N, 0);
1009}
1010
1011SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1012                                      unsigned Alignment, int Offset,
1013                                      bool isTarget) {
1014  if (Alignment == 0)
1015    Alignment =
1016      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1017  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1018  FoldingSetNodeID ID;
1019  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1020  ID.AddInteger(Alignment);
1021  ID.AddInteger(Offset);
1022  ID.AddPointer(C);
1023  void *IP = 0;
1024  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1025    return SDValue(E, 0);
1026  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1027  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1028  CSEMap.InsertNode(N, IP);
1029  AllNodes.push_back(N);
1030  return SDValue(N, 0);
1031}
1032
1033
1034SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1035                                      unsigned Alignment, int Offset,
1036                                      bool isTarget) {
1037  if (Alignment == 0)
1038    Alignment =
1039      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1040  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1041  FoldingSetNodeID ID;
1042  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1043  ID.AddInteger(Alignment);
1044  ID.AddInteger(Offset);
1045  C->AddSelectionDAGCSEId(ID);
1046  void *IP = 0;
1047  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1048    return SDValue(E, 0);
1049  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1050  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1051  CSEMap.InsertNode(N, IP);
1052  AllNodes.push_back(N);
1053  return SDValue(N, 0);
1054}
1055
1056
1057SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1058  FoldingSetNodeID ID;
1059  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1060  ID.AddPointer(MBB);
1061  void *IP = 0;
1062  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1063    return SDValue(E, 0);
1064  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1065  new (N) BasicBlockSDNode(MBB);
1066  CSEMap.InsertNode(N, IP);
1067  AllNodes.push_back(N);
1068  return SDValue(N, 0);
1069}
1070
1071SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB, DebugLoc dl) {
1072  FoldingSetNodeID ID;
1073  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1074  ID.AddPointer(MBB);
1075  void *IP = 0;
1076  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1077    return SDValue(E, 0);
1078  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1079  new (N) BasicBlockSDNode(MBB, dl);
1080  CSEMap.InsertNode(N, IP);
1081  AllNodes.push_back(N);
1082  return SDValue(N, 0);
1083}
1084
1085SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1086  FoldingSetNodeID ID;
1087  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1088  ID.AddInteger(Flags.getRawBits());
1089  void *IP = 0;
1090  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1091    return SDValue(E, 0);
1092  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1093  new (N) ARG_FLAGSSDNode(Flags);
1094  CSEMap.InsertNode(N, IP);
1095  AllNodes.push_back(N);
1096  return SDValue(N, 0);
1097}
1098
1099SDValue SelectionDAG::getValueType(MVT VT) {
1100  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1101    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1102
1103  SDNode *&N = VT.isExtended() ?
1104    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1105
1106  if (N) return SDValue(N, 0);
1107  N = NodeAllocator.Allocate<VTSDNode>();
1108  new (N) VTSDNode(VT);
1109  AllNodes.push_back(N);
1110  return SDValue(N, 0);
1111}
1112
1113SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1114  SDNode *&N = ExternalSymbols[Sym];
1115  if (N) return SDValue(N, 0);
1116  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1117  new (N) ExternalSymbolSDNode(false, Sym, VT);
1118  AllNodes.push_back(N);
1119  return SDValue(N, 0);
1120}
1121
1122SDValue SelectionDAG::getExternalSymbol(const char *Sym, DebugLoc dl, MVT VT) {
1123  SDNode *&N = ExternalSymbols[Sym];
1124  if (N) return SDValue(N, 0);
1125  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1126  new (N) ExternalSymbolSDNode(false, dl, Sym, VT);
1127  AllNodes.push_back(N);
1128  return SDValue(N, 0);
1129}
1130
1131SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1132  SDNode *&N = TargetExternalSymbols[Sym];
1133  if (N) return SDValue(N, 0);
1134  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1135  new (N) ExternalSymbolSDNode(true, Sym, VT);
1136  AllNodes.push_back(N);
1137  return SDValue(N, 0);
1138}
1139
1140SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, DebugLoc dl,
1141                                              MVT VT) {
1142  SDNode *&N = TargetExternalSymbols[Sym];
1143  if (N) return SDValue(N, 0);
1144  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1145  new (N) ExternalSymbolSDNode(true, dl, Sym, VT);
1146  AllNodes.push_back(N);
1147  return SDValue(N, 0);
1148}
1149
1150SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1151  if ((unsigned)Cond >= CondCodeNodes.size())
1152    CondCodeNodes.resize(Cond+1);
1153
1154  if (CondCodeNodes[Cond] == 0) {
1155    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1156    new (N) CondCodeSDNode(Cond);
1157    CondCodeNodes[Cond] = N;
1158    AllNodes.push_back(N);
1159  }
1160  return SDValue(CondCodeNodes[Cond], 0);
1161}
1162
1163SDValue SelectionDAG::getConvertRndSat(MVT VT, SDValue Val, SDValue DTy,
1164                                       SDValue STy, SDValue Rnd, SDValue Sat,
1165                                       ISD::CvtCode Code) {
1166  // If the src and dest types are the same, no conversion is necessary.
1167  if (DTy == STy)
1168    return Val;
1169
1170  FoldingSetNodeID ID;
1171  void* IP = 0;
1172  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1173    return SDValue(E, 0);
1174  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1175  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1176  new (N) CvtRndSatSDNode(VT, Ops, 5, Code);
1177  CSEMap.InsertNode(N, IP);
1178  AllNodes.push_back(N);
1179  return SDValue(N, 0);
1180}
1181
1182SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1183  FoldingSetNodeID ID;
1184  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1185  ID.AddInteger(RegNo);
1186  void *IP = 0;
1187  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1188    return SDValue(E, 0);
1189  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1190  new (N) RegisterSDNode(RegNo, VT);
1191  CSEMap.InsertNode(N, IP);
1192  AllNodes.push_back(N);
1193  return SDValue(N, 0);
1194}
1195
1196SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1197                                      unsigned Line, unsigned Col,
1198                                      Value *CU) {
1199  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1200  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1201  AllNodes.push_back(N);
1202  return SDValue(N, 0);
1203}
1204
1205SDValue SelectionDAG::getLabel(unsigned Opcode,
1206                               SDValue Root,
1207                               unsigned LabelID) {
1208  FoldingSetNodeID ID;
1209  SDValue Ops[] = { Root };
1210  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1211  ID.AddInteger(LabelID);
1212  void *IP = 0;
1213  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1214    return SDValue(E, 0);
1215  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1216  new (N) LabelSDNode(Opcode, Root, LabelID);
1217  CSEMap.InsertNode(N, IP);
1218  AllNodes.push_back(N);
1219  return SDValue(N, 0);
1220}
1221
1222SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1223                               SDValue Root,
1224                               unsigned LabelID) {
1225  FoldingSetNodeID ID;
1226  SDValue Ops[] = { Root };
1227  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1228  ID.AddInteger(LabelID);
1229  void *IP = 0;
1230  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1231    return SDValue(E, 0);
1232  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1233  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1234  CSEMap.InsertNode(N, IP);
1235  AllNodes.push_back(N);
1236  return SDValue(N, 0);
1237}
1238
1239SDValue SelectionDAG::getSrcValue(const Value *V) {
1240  assert((!V || isa<PointerType>(V->getType())) &&
1241         "SrcValue is not a pointer?");
1242
1243  FoldingSetNodeID ID;
1244  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1245  ID.AddPointer(V);
1246
1247  void *IP = 0;
1248  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1249    return SDValue(E, 0);
1250
1251  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1252  new (N) SrcValueSDNode(V);
1253  CSEMap.InsertNode(N, IP);
1254  AllNodes.push_back(N);
1255  return SDValue(N, 0);
1256}
1257
1258SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1259#ifndef NDEBUG
1260  const Value *v = MO.getValue();
1261  assert((!v || isa<PointerType>(v->getType())) &&
1262         "SrcValue is not a pointer?");
1263#endif
1264
1265  FoldingSetNodeID ID;
1266  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1267  MO.Profile(ID);
1268
1269  void *IP = 0;
1270  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1271    return SDValue(E, 0);
1272
1273  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1274  new (N) MemOperandSDNode(MO);
1275  CSEMap.InsertNode(N, IP);
1276  AllNodes.push_back(N);
1277  return SDValue(N, 0);
1278}
1279
1280/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1281/// specified value type.
1282SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1283  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1284  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1285  const Type *Ty = VT.getTypeForMVT();
1286  unsigned StackAlign =
1287  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1288
1289  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1290  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1291}
1292
1293/// CreateStackTemporary - Create a stack temporary suitable for holding
1294/// either of the specified value types.
1295SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1296  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1297                            VT2.getStoreSizeInBits())/8;
1298  const Type *Ty1 = VT1.getTypeForMVT();
1299  const Type *Ty2 = VT2.getTypeForMVT();
1300  const TargetData *TD = TLI.getTargetData();
1301  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1302                            TD->getPrefTypeAlignment(Ty2));
1303
1304  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1305  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1306  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1307}
1308
1309SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1310                                SDValue N2, ISD::CondCode Cond) {
1311  // These setcc operations always fold.
1312  switch (Cond) {
1313  default: break;
1314  case ISD::SETFALSE:
1315  case ISD::SETFALSE2: return getConstant(0, VT);
1316  case ISD::SETTRUE:
1317  case ISD::SETTRUE2:  return getConstant(1, VT);
1318
1319  case ISD::SETOEQ:
1320  case ISD::SETOGT:
1321  case ISD::SETOGE:
1322  case ISD::SETOLT:
1323  case ISD::SETOLE:
1324  case ISD::SETONE:
1325  case ISD::SETO:
1326  case ISD::SETUO:
1327  case ISD::SETUEQ:
1328  case ISD::SETUNE:
1329    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1330    break;
1331  }
1332
1333  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1334    const APInt &C2 = N2C->getAPIntValue();
1335    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1336      const APInt &C1 = N1C->getAPIntValue();
1337
1338      switch (Cond) {
1339      default: assert(0 && "Unknown integer setcc!");
1340      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1341      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1342      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1343      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1344      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1345      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1346      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1347      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1348      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1349      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1350      }
1351    }
1352  }
1353  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1354    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1355      // No compile time operations on this type yet.
1356      if (N1C->getValueType(0) == MVT::ppcf128)
1357        return SDValue();
1358
1359      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1360      switch (Cond) {
1361      default: break;
1362      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1363                          return getNode(ISD::UNDEF, VT);
1364                        // fall through
1365      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1366      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1367                          return getNode(ISD::UNDEF, VT);
1368                        // fall through
1369      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1370                                           R==APFloat::cmpLessThan, VT);
1371      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1372                          return getNode(ISD::UNDEF, VT);
1373                        // fall through
1374      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1375      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1376                          return getNode(ISD::UNDEF, VT);
1377                        // fall through
1378      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1379      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1380                          return getNode(ISD::UNDEF, VT);
1381                        // fall through
1382      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1383                                           R==APFloat::cmpEqual, VT);
1384      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1385                          return getNode(ISD::UNDEF, VT);
1386                        // fall through
1387      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1388                                           R==APFloat::cmpEqual, VT);
1389      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1390      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1391      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1392                                           R==APFloat::cmpEqual, VT);
1393      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1394      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1395                                           R==APFloat::cmpLessThan, VT);
1396      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1397                                           R==APFloat::cmpUnordered, VT);
1398      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1399      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1400      }
1401    } else {
1402      // Ensure that the constant occurs on the RHS.
1403      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1404    }
1405  }
1406
1407  // Could not fold it.
1408  return SDValue();
1409}
1410
1411/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1412/// use this predicate to simplify operations downstream.
1413bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1414  unsigned BitWidth = Op.getValueSizeInBits();
1415  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1416}
1417
1418/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1419/// this predicate to simplify operations downstream.  Mask is known to be zero
1420/// for bits that V cannot have.
1421bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1422                                     unsigned Depth) const {
1423  APInt KnownZero, KnownOne;
1424  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1425  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1426  return (KnownZero & Mask) == Mask;
1427}
1428
1429/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1430/// known to be either zero or one and return them in the KnownZero/KnownOne
1431/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1432/// processing.
1433void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1434                                     APInt &KnownZero, APInt &KnownOne,
1435                                     unsigned Depth) const {
1436  unsigned BitWidth = Mask.getBitWidth();
1437  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1438         "Mask size mismatches value type size!");
1439
1440  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1441  if (Depth == 6 || Mask == 0)
1442    return;  // Limit search depth.
1443
1444  APInt KnownZero2, KnownOne2;
1445
1446  switch (Op.getOpcode()) {
1447  case ISD::Constant:
1448    // We know all of the bits for a constant!
1449    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1450    KnownZero = ~KnownOne & Mask;
1451    return;
1452  case ISD::AND:
1453    // If either the LHS or the RHS are Zero, the result is zero.
1454    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1455    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1456                      KnownZero2, KnownOne2, Depth+1);
1457    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1458    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1459
1460    // Output known-1 bits are only known if set in both the LHS & RHS.
1461    KnownOne &= KnownOne2;
1462    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1463    KnownZero |= KnownZero2;
1464    return;
1465  case ISD::OR:
1466    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1467    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1468                      KnownZero2, KnownOne2, Depth+1);
1469    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1470    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1471
1472    // Output known-0 bits are only known if clear in both the LHS & RHS.
1473    KnownZero &= KnownZero2;
1474    // Output known-1 are known to be set if set in either the LHS | RHS.
1475    KnownOne |= KnownOne2;
1476    return;
1477  case ISD::XOR: {
1478    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1479    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1480    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1481    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1482
1483    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1484    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1485    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1486    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1487    KnownZero = KnownZeroOut;
1488    return;
1489  }
1490  case ISD::MUL: {
1491    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1492    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1493    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1494    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1495    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1496
1497    // If low bits are zero in either operand, output low known-0 bits.
1498    // Also compute a conserative estimate for high known-0 bits.
1499    // More trickiness is possible, but this is sufficient for the
1500    // interesting case of alignment computation.
1501    KnownOne.clear();
1502    unsigned TrailZ = KnownZero.countTrailingOnes() +
1503                      KnownZero2.countTrailingOnes();
1504    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1505                               KnownZero2.countLeadingOnes(),
1506                               BitWidth) - BitWidth;
1507
1508    TrailZ = std::min(TrailZ, BitWidth);
1509    LeadZ = std::min(LeadZ, BitWidth);
1510    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1511                APInt::getHighBitsSet(BitWidth, LeadZ);
1512    KnownZero &= Mask;
1513    return;
1514  }
1515  case ISD::UDIV: {
1516    // For the purposes of computing leading zeros we can conservatively
1517    // treat a udiv as a logical right shift by the power of 2 known to
1518    // be less than the denominator.
1519    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1520    ComputeMaskedBits(Op.getOperand(0),
1521                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1522    unsigned LeadZ = KnownZero2.countLeadingOnes();
1523
1524    KnownOne2.clear();
1525    KnownZero2.clear();
1526    ComputeMaskedBits(Op.getOperand(1),
1527                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1528    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1529    if (RHSUnknownLeadingOnes != BitWidth)
1530      LeadZ = std::min(BitWidth,
1531                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1532
1533    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1534    return;
1535  }
1536  case ISD::SELECT:
1537    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1538    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1539    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1540    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1541
1542    // Only known if known in both the LHS and RHS.
1543    KnownOne &= KnownOne2;
1544    KnownZero &= KnownZero2;
1545    return;
1546  case ISD::SELECT_CC:
1547    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1548    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1549    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1550    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1551
1552    // Only known if known in both the LHS and RHS.
1553    KnownOne &= KnownOne2;
1554    KnownZero &= KnownZero2;
1555    return;
1556  case ISD::SADDO:
1557  case ISD::UADDO:
1558  case ISD::SSUBO:
1559  case ISD::USUBO:
1560  case ISD::SMULO:
1561  case ISD::UMULO:
1562    if (Op.getResNo() != 1)
1563      return;
1564    // The boolean result conforms to getBooleanContents.  Fall through.
1565  case ISD::SETCC:
1566    // If we know the result of a setcc has the top bits zero, use this info.
1567    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1568        BitWidth > 1)
1569      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1570    return;
1571  case ISD::SHL:
1572    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1573    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1574      unsigned ShAmt = SA->getZExtValue();
1575
1576      // If the shift count is an invalid immediate, don't do anything.
1577      if (ShAmt >= BitWidth)
1578        return;
1579
1580      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1581                        KnownZero, KnownOne, Depth+1);
1582      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1583      KnownZero <<= ShAmt;
1584      KnownOne  <<= ShAmt;
1585      // low bits known zero.
1586      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1587    }
1588    return;
1589  case ISD::SRL:
1590    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1591    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1592      unsigned ShAmt = SA->getZExtValue();
1593
1594      // If the shift count is an invalid immediate, don't do anything.
1595      if (ShAmt >= BitWidth)
1596        return;
1597
1598      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1599                        KnownZero, KnownOne, Depth+1);
1600      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1601      KnownZero = KnownZero.lshr(ShAmt);
1602      KnownOne  = KnownOne.lshr(ShAmt);
1603
1604      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1605      KnownZero |= HighBits;  // High bits known zero.
1606    }
1607    return;
1608  case ISD::SRA:
1609    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1610      unsigned ShAmt = SA->getZExtValue();
1611
1612      // If the shift count is an invalid immediate, don't do anything.
1613      if (ShAmt >= BitWidth)
1614        return;
1615
1616      APInt InDemandedMask = (Mask << ShAmt);
1617      // If any of the demanded bits are produced by the sign extension, we also
1618      // demand the input sign bit.
1619      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1620      if (HighBits.getBoolValue())
1621        InDemandedMask |= APInt::getSignBit(BitWidth);
1622
1623      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1624                        Depth+1);
1625      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1626      KnownZero = KnownZero.lshr(ShAmt);
1627      KnownOne  = KnownOne.lshr(ShAmt);
1628
1629      // Handle the sign bits.
1630      APInt SignBit = APInt::getSignBit(BitWidth);
1631      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1632
1633      if (KnownZero.intersects(SignBit)) {
1634        KnownZero |= HighBits;  // New bits are known zero.
1635      } else if (KnownOne.intersects(SignBit)) {
1636        KnownOne  |= HighBits;  // New bits are known one.
1637      }
1638    }
1639    return;
1640  case ISD::SIGN_EXTEND_INREG: {
1641    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1642    unsigned EBits = EVT.getSizeInBits();
1643
1644    // Sign extension.  Compute the demanded bits in the result that are not
1645    // present in the input.
1646    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1647
1648    APInt InSignBit = APInt::getSignBit(EBits);
1649    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1650
1651    // If the sign extended bits are demanded, we know that the sign
1652    // bit is demanded.
1653    InSignBit.zext(BitWidth);
1654    if (NewBits.getBoolValue())
1655      InputDemandedBits |= InSignBit;
1656
1657    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1658                      KnownZero, KnownOne, Depth+1);
1659    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1660
1661    // If the sign bit of the input is known set or clear, then we know the
1662    // top bits of the result.
1663    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1664      KnownZero |= NewBits;
1665      KnownOne  &= ~NewBits;
1666    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1667      KnownOne  |= NewBits;
1668      KnownZero &= ~NewBits;
1669    } else {                              // Input sign bit unknown
1670      KnownZero &= ~NewBits;
1671      KnownOne  &= ~NewBits;
1672    }
1673    return;
1674  }
1675  case ISD::CTTZ:
1676  case ISD::CTLZ:
1677  case ISD::CTPOP: {
1678    unsigned LowBits = Log2_32(BitWidth)+1;
1679    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1680    KnownOne.clear();
1681    return;
1682  }
1683  case ISD::LOAD: {
1684    if (ISD::isZEXTLoad(Op.getNode())) {
1685      LoadSDNode *LD = cast<LoadSDNode>(Op);
1686      MVT VT = LD->getMemoryVT();
1687      unsigned MemBits = VT.getSizeInBits();
1688      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1689    }
1690    return;
1691  }
1692  case ISD::ZERO_EXTEND: {
1693    MVT InVT = Op.getOperand(0).getValueType();
1694    unsigned InBits = InVT.getSizeInBits();
1695    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1696    APInt InMask    = Mask;
1697    InMask.trunc(InBits);
1698    KnownZero.trunc(InBits);
1699    KnownOne.trunc(InBits);
1700    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1701    KnownZero.zext(BitWidth);
1702    KnownOne.zext(BitWidth);
1703    KnownZero |= NewBits;
1704    return;
1705  }
1706  case ISD::SIGN_EXTEND: {
1707    MVT InVT = Op.getOperand(0).getValueType();
1708    unsigned InBits = InVT.getSizeInBits();
1709    APInt InSignBit = APInt::getSignBit(InBits);
1710    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1711    APInt InMask = Mask;
1712    InMask.trunc(InBits);
1713
1714    // If any of the sign extended bits are demanded, we know that the sign
1715    // bit is demanded. Temporarily set this bit in the mask for our callee.
1716    if (NewBits.getBoolValue())
1717      InMask |= InSignBit;
1718
1719    KnownZero.trunc(InBits);
1720    KnownOne.trunc(InBits);
1721    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1722
1723    // Note if the sign bit is known to be zero or one.
1724    bool SignBitKnownZero = KnownZero.isNegative();
1725    bool SignBitKnownOne  = KnownOne.isNegative();
1726    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1727           "Sign bit can't be known to be both zero and one!");
1728
1729    // If the sign bit wasn't actually demanded by our caller, we don't
1730    // want it set in the KnownZero and KnownOne result values. Reset the
1731    // mask and reapply it to the result values.
1732    InMask = Mask;
1733    InMask.trunc(InBits);
1734    KnownZero &= InMask;
1735    KnownOne  &= InMask;
1736
1737    KnownZero.zext(BitWidth);
1738    KnownOne.zext(BitWidth);
1739
1740    // If the sign bit is known zero or one, the top bits match.
1741    if (SignBitKnownZero)
1742      KnownZero |= NewBits;
1743    else if (SignBitKnownOne)
1744      KnownOne  |= NewBits;
1745    return;
1746  }
1747  case ISD::ANY_EXTEND: {
1748    MVT InVT = Op.getOperand(0).getValueType();
1749    unsigned InBits = InVT.getSizeInBits();
1750    APInt InMask = Mask;
1751    InMask.trunc(InBits);
1752    KnownZero.trunc(InBits);
1753    KnownOne.trunc(InBits);
1754    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1755    KnownZero.zext(BitWidth);
1756    KnownOne.zext(BitWidth);
1757    return;
1758  }
1759  case ISD::TRUNCATE: {
1760    MVT InVT = Op.getOperand(0).getValueType();
1761    unsigned InBits = InVT.getSizeInBits();
1762    APInt InMask = Mask;
1763    InMask.zext(InBits);
1764    KnownZero.zext(InBits);
1765    KnownOne.zext(InBits);
1766    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1767    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1768    KnownZero.trunc(BitWidth);
1769    KnownOne.trunc(BitWidth);
1770    break;
1771  }
1772  case ISD::AssertZext: {
1773    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1774    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1775    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1776                      KnownOne, Depth+1);
1777    KnownZero |= (~InMask) & Mask;
1778    return;
1779  }
1780  case ISD::FGETSIGN:
1781    // All bits are zero except the low bit.
1782    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1783    return;
1784
1785  case ISD::SUB: {
1786    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1787      // We know that the top bits of C-X are clear if X contains less bits
1788      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1789      // positive if we can prove that X is >= 0 and < 16.
1790      if (CLHS->getAPIntValue().isNonNegative()) {
1791        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1792        // NLZ can't be BitWidth with no sign bit
1793        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1794        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1795                          Depth+1);
1796
1797        // If all of the MaskV bits are known to be zero, then we know the
1798        // output top bits are zero, because we now know that the output is
1799        // from [0-C].
1800        if ((KnownZero2 & MaskV) == MaskV) {
1801          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1802          // Top bits known zero.
1803          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1804        }
1805      }
1806    }
1807  }
1808  // fall through
1809  case ISD::ADD: {
1810    // Output known-0 bits are known if clear or set in both the low clear bits
1811    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1812    // low 3 bits clear.
1813    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1814    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1815    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1816    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1817
1818    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1819    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1820    KnownZeroOut = std::min(KnownZeroOut,
1821                            KnownZero2.countTrailingOnes());
1822
1823    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1824    return;
1825  }
1826  case ISD::SREM:
1827    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1828      const APInt &RA = Rem->getAPIntValue();
1829      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1830        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1831        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1832        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1833
1834        // If the sign bit of the first operand is zero, the sign bit of
1835        // the result is zero. If the first operand has no one bits below
1836        // the second operand's single 1 bit, its sign will be zero.
1837        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1838          KnownZero2 |= ~LowBits;
1839
1840        KnownZero |= KnownZero2 & Mask;
1841
1842        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1843      }
1844    }
1845    return;
1846  case ISD::UREM: {
1847    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1848      const APInt &RA = Rem->getAPIntValue();
1849      if (RA.isPowerOf2()) {
1850        APInt LowBits = (RA - 1);
1851        APInt Mask2 = LowBits & Mask;
1852        KnownZero |= ~LowBits & Mask;
1853        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1854        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1855        break;
1856      }
1857    }
1858
1859    // Since the result is less than or equal to either operand, any leading
1860    // zero bits in either operand must also exist in the result.
1861    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1862    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1863                      Depth+1);
1864    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1865                      Depth+1);
1866
1867    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1868                                KnownZero2.countLeadingOnes());
1869    KnownOne.clear();
1870    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1871    return;
1872  }
1873  default:
1874    // Allow the target to implement this method for its nodes.
1875    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1876  case ISD::INTRINSIC_WO_CHAIN:
1877  case ISD::INTRINSIC_W_CHAIN:
1878  case ISD::INTRINSIC_VOID:
1879      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1880    }
1881    return;
1882  }
1883}
1884
1885/// ComputeNumSignBits - Return the number of times the sign bit of the
1886/// register is replicated into the other bits.  We know that at least 1 bit
1887/// is always equal to the sign bit (itself), but other cases can give us
1888/// information.  For example, immediately after an "SRA X, 2", we know that
1889/// the top 3 bits are all equal to each other, so we return 3.
1890unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1891  MVT VT = Op.getValueType();
1892  assert(VT.isInteger() && "Invalid VT!");
1893  unsigned VTBits = VT.getSizeInBits();
1894  unsigned Tmp, Tmp2;
1895  unsigned FirstAnswer = 1;
1896
1897  if (Depth == 6)
1898    return 1;  // Limit search depth.
1899
1900  switch (Op.getOpcode()) {
1901  default: break;
1902  case ISD::AssertSext:
1903    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1904    return VTBits-Tmp+1;
1905  case ISD::AssertZext:
1906    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1907    return VTBits-Tmp;
1908
1909  case ISD::Constant: {
1910    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1911    // If negative, return # leading ones.
1912    if (Val.isNegative())
1913      return Val.countLeadingOnes();
1914
1915    // Return # leading zeros.
1916    return Val.countLeadingZeros();
1917  }
1918
1919  case ISD::SIGN_EXTEND:
1920    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1921    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1922
1923  case ISD::SIGN_EXTEND_INREG:
1924    // Max of the input and what this extends.
1925    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1926    Tmp = VTBits-Tmp+1;
1927
1928    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1929    return std::max(Tmp, Tmp2);
1930
1931  case ISD::SRA:
1932    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1933    // SRA X, C   -> adds C sign bits.
1934    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1935      Tmp += C->getZExtValue();
1936      if (Tmp > VTBits) Tmp = VTBits;
1937    }
1938    return Tmp;
1939  case ISD::SHL:
1940    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1941      // shl destroys sign bits.
1942      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1943      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1944          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1945      return Tmp - C->getZExtValue();
1946    }
1947    break;
1948  case ISD::AND:
1949  case ISD::OR:
1950  case ISD::XOR:    // NOT is handled here.
1951    // Logical binary ops preserve the number of sign bits at the worst.
1952    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1953    if (Tmp != 1) {
1954      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1955      FirstAnswer = std::min(Tmp, Tmp2);
1956      // We computed what we know about the sign bits as our first
1957      // answer. Now proceed to the generic code that uses
1958      // ComputeMaskedBits, and pick whichever answer is better.
1959    }
1960    break;
1961
1962  case ISD::SELECT:
1963    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1964    if (Tmp == 1) return 1;  // Early out.
1965    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1966    return std::min(Tmp, Tmp2);
1967
1968  case ISD::SADDO:
1969  case ISD::UADDO:
1970  case ISD::SSUBO:
1971  case ISD::USUBO:
1972  case ISD::SMULO:
1973  case ISD::UMULO:
1974    if (Op.getResNo() != 1)
1975      break;
1976    // The boolean result conforms to getBooleanContents.  Fall through.
1977  case ISD::SETCC:
1978    // If setcc returns 0/-1, all bits are sign bits.
1979    if (TLI.getBooleanContents() ==
1980        TargetLowering::ZeroOrNegativeOneBooleanContent)
1981      return VTBits;
1982    break;
1983  case ISD::ROTL:
1984  case ISD::ROTR:
1985    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1986      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1987
1988      // Handle rotate right by N like a rotate left by 32-N.
1989      if (Op.getOpcode() == ISD::ROTR)
1990        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1991
1992      // If we aren't rotating out all of the known-in sign bits, return the
1993      // number that are left.  This handles rotl(sext(x), 1) for example.
1994      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1995      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1996    }
1997    break;
1998  case ISD::ADD:
1999    // Add can have at most one carry bit.  Thus we know that the output
2000    // is, at worst, one more bit than the inputs.
2001    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2002    if (Tmp == 1) return 1;  // Early out.
2003
2004    // Special case decrementing a value (ADD X, -1):
2005    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2006      if (CRHS->isAllOnesValue()) {
2007        APInt KnownZero, KnownOne;
2008        APInt Mask = APInt::getAllOnesValue(VTBits);
2009        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2010
2011        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2012        // sign bits set.
2013        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2014          return VTBits;
2015
2016        // If we are subtracting one from a positive number, there is no carry
2017        // out of the result.
2018        if (KnownZero.isNegative())
2019          return Tmp;
2020      }
2021
2022    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2023    if (Tmp2 == 1) return 1;
2024      return std::min(Tmp, Tmp2)-1;
2025    break;
2026
2027  case ISD::SUB:
2028    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2029    if (Tmp2 == 1) return 1;
2030
2031    // Handle NEG.
2032    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2033      if (CLHS->isNullValue()) {
2034        APInt KnownZero, KnownOne;
2035        APInt Mask = APInt::getAllOnesValue(VTBits);
2036        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2037        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2038        // sign bits set.
2039        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2040          return VTBits;
2041
2042        // If the input is known to be positive (the sign bit is known clear),
2043        // the output of the NEG has the same number of sign bits as the input.
2044        if (KnownZero.isNegative())
2045          return Tmp2;
2046
2047        // Otherwise, we treat this like a SUB.
2048      }
2049
2050    // Sub can have at most one carry bit.  Thus we know that the output
2051    // is, at worst, one more bit than the inputs.
2052    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2053    if (Tmp == 1) return 1;  // Early out.
2054      return std::min(Tmp, Tmp2)-1;
2055    break;
2056  case ISD::TRUNCATE:
2057    // FIXME: it's tricky to do anything useful for this, but it is an important
2058    // case for targets like X86.
2059    break;
2060  }
2061
2062  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2063  if (Op.getOpcode() == ISD::LOAD) {
2064    LoadSDNode *LD = cast<LoadSDNode>(Op);
2065    unsigned ExtType = LD->getExtensionType();
2066    switch (ExtType) {
2067    default: break;
2068    case ISD::SEXTLOAD:    // '17' bits known
2069      Tmp = LD->getMemoryVT().getSizeInBits();
2070      return VTBits-Tmp+1;
2071    case ISD::ZEXTLOAD:    // '16' bits known
2072      Tmp = LD->getMemoryVT().getSizeInBits();
2073      return VTBits-Tmp;
2074    }
2075  }
2076
2077  // Allow the target to implement this method for its nodes.
2078  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2079      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2080      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2081      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2082    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2083    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2084  }
2085
2086  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2087  // use this information.
2088  APInt KnownZero, KnownOne;
2089  APInt Mask = APInt::getAllOnesValue(VTBits);
2090  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2091
2092  if (KnownZero.isNegative()) {        // sign bit is 0
2093    Mask = KnownZero;
2094  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2095    Mask = KnownOne;
2096  } else {
2097    // Nothing known.
2098    return FirstAnswer;
2099  }
2100
2101  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2102  // the number of identical bits in the top of the input value.
2103  Mask = ~Mask;
2104  Mask <<= Mask.getBitWidth()-VTBits;
2105  // Return # leading zeros.  We use 'min' here in case Val was zero before
2106  // shifting.  We don't want to return '64' as for an i32 "0".
2107  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2108}
2109
2110
2111bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2112  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2113  if (!GA) return false;
2114  if (GA->getOffset() != 0) return false;
2115  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2116  if (!GV) return false;
2117  MachineModuleInfo *MMI = getMachineModuleInfo();
2118  return MMI && MMI->hasDebugInfo();
2119}
2120
2121
2122/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2123/// element of the result of the vector shuffle.
2124SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2125  MVT VT = N->getValueType(0);
2126  SDValue PermMask = N->getOperand(2);
2127  SDValue Idx = PermMask.getOperand(i);
2128  if (Idx.getOpcode() == ISD::UNDEF)
2129    return getNode(ISD::UNDEF, VT.getVectorElementType());
2130  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2131  unsigned NumElems = PermMask.getNumOperands();
2132  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2133  Index %= NumElems;
2134
2135  if (V.getOpcode() == ISD::BIT_CONVERT) {
2136    V = V.getOperand(0);
2137    MVT VVT = V.getValueType();
2138    if (!VVT.isVector() || VVT.getVectorNumElements() != NumElems)
2139      return SDValue();
2140  }
2141  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2142    return (Index == 0) ? V.getOperand(0)
2143                      : getNode(ISD::UNDEF, VT.getVectorElementType());
2144  if (V.getOpcode() == ISD::BUILD_VECTOR)
2145    return V.getOperand(Index);
2146  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2147    return getShuffleScalarElt(V.getNode(), Index);
2148  return SDValue();
2149}
2150
2151
2152/// getNode - Gets or creates the specified node.
2153///
2154SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
2155  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT);
2156}
2157
2158SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT) {
2159  FoldingSetNodeID ID;
2160  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2161  void *IP = 0;
2162  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2163    return SDValue(E, 0);
2164  SDNode *N = NodeAllocator.Allocate<SDNode>();
2165  new (N) SDNode(Opcode, DL, SDNode::getSDVTList(VT));
2166  CSEMap.InsertNode(N, IP);
2167
2168  AllNodes.push_back(N);
2169#ifndef NDEBUG
2170  VerifyNode(N);
2171#endif
2172  return SDValue(N, 0);
2173}
2174
2175SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
2176  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, Operand);
2177}
2178
2179SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2180                              MVT VT, SDValue Operand) {
2181  // Constant fold unary operations with an integer constant operand.
2182  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2183    const APInt &Val = C->getAPIntValue();
2184    unsigned BitWidth = VT.getSizeInBits();
2185    switch (Opcode) {
2186    default: break;
2187    case ISD::SIGN_EXTEND:
2188      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2189    case ISD::ANY_EXTEND:
2190    case ISD::ZERO_EXTEND:
2191    case ISD::TRUNCATE:
2192      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2193    case ISD::UINT_TO_FP:
2194    case ISD::SINT_TO_FP: {
2195      const uint64_t zero[] = {0, 0};
2196      // No compile time operations on this type.
2197      if (VT==MVT::ppcf128)
2198        break;
2199      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2200      (void)apf.convertFromAPInt(Val,
2201                                 Opcode==ISD::SINT_TO_FP,
2202                                 APFloat::rmNearestTiesToEven);
2203      return getConstantFP(apf, VT);
2204    }
2205    case ISD::BIT_CONVERT:
2206      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2207        return getConstantFP(Val.bitsToFloat(), VT);
2208      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2209        return getConstantFP(Val.bitsToDouble(), VT);
2210      break;
2211    case ISD::BSWAP:
2212      return getConstant(Val.byteSwap(), VT);
2213    case ISD::CTPOP:
2214      return getConstant(Val.countPopulation(), VT);
2215    case ISD::CTLZ:
2216      return getConstant(Val.countLeadingZeros(), VT);
2217    case ISD::CTTZ:
2218      return getConstant(Val.countTrailingZeros(), VT);
2219    }
2220  }
2221
2222  // Constant fold unary operations with a floating point constant operand.
2223  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2224    APFloat V = C->getValueAPF();    // make copy
2225    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2226      switch (Opcode) {
2227      case ISD::FNEG:
2228        V.changeSign();
2229        return getConstantFP(V, VT);
2230      case ISD::FABS:
2231        V.clearSign();
2232        return getConstantFP(V, VT);
2233      case ISD::FP_ROUND:
2234      case ISD::FP_EXTEND: {
2235        bool ignored;
2236        // This can return overflow, underflow, or inexact; we don't care.
2237        // FIXME need to be more flexible about rounding mode.
2238        (void)V.convert(*MVTToAPFloatSemantics(VT),
2239                        APFloat::rmNearestTiesToEven, &ignored);
2240        return getConstantFP(V, VT);
2241      }
2242      case ISD::FP_TO_SINT:
2243      case ISD::FP_TO_UINT: {
2244        integerPart x;
2245        bool ignored;
2246        assert(integerPartWidth >= 64);
2247        // FIXME need to be more flexible about rounding mode.
2248        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2249                              Opcode==ISD::FP_TO_SINT,
2250                              APFloat::rmTowardZero, &ignored);
2251        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2252          break;
2253        return getConstant(x, VT);
2254      }
2255      case ISD::BIT_CONVERT:
2256        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2257          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2258        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2259          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2260        break;
2261      }
2262    }
2263  }
2264
2265  unsigned OpOpcode = Operand.getNode()->getOpcode();
2266  switch (Opcode) {
2267  case ISD::TokenFactor:
2268  case ISD::MERGE_VALUES:
2269  case ISD::CONCAT_VECTORS:
2270    return Operand;         // Factor, merge or concat of one node?  No need.
2271  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2272  case ISD::FP_EXTEND:
2273    assert(VT.isFloatingPoint() &&
2274           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2275    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2276    if (Operand.getOpcode() == ISD::UNDEF)
2277      return getNode(ISD::UNDEF, VT);
2278    break;
2279  case ISD::SIGN_EXTEND:
2280    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2281           "Invalid SIGN_EXTEND!");
2282    if (Operand.getValueType() == VT) return Operand;   // noop extension
2283    assert(Operand.getValueType().bitsLT(VT)
2284           && "Invalid sext node, dst < src!");
2285    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2286      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2287    break;
2288  case ISD::ZERO_EXTEND:
2289    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2290           "Invalid ZERO_EXTEND!");
2291    if (Operand.getValueType() == VT) return Operand;   // noop extension
2292    assert(Operand.getValueType().bitsLT(VT)
2293           && "Invalid zext node, dst < src!");
2294    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2295      return getNode(ISD::ZERO_EXTEND, VT, Operand.getNode()->getOperand(0));
2296    break;
2297  case ISD::ANY_EXTEND:
2298    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2299           "Invalid ANY_EXTEND!");
2300    if (Operand.getValueType() == VT) return Operand;   // noop extension
2301    assert(Operand.getValueType().bitsLT(VT)
2302           && "Invalid anyext node, dst < src!");
2303    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2304      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2305      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2306    break;
2307  case ISD::TRUNCATE:
2308    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2309           "Invalid TRUNCATE!");
2310    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2311    assert(Operand.getValueType().bitsGT(VT)
2312           && "Invalid truncate node, src < dst!");
2313    if (OpOpcode == ISD::TRUNCATE)
2314      return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2315    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2316             OpOpcode == ISD::ANY_EXTEND) {
2317      // If the source is smaller than the dest, we still need an extend.
2318      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2319        return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2320      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2321        return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2322      else
2323        return Operand.getNode()->getOperand(0);
2324    }
2325    break;
2326  case ISD::BIT_CONVERT:
2327    // Basic sanity checking.
2328    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2329           && "Cannot BIT_CONVERT between types of different sizes!");
2330    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2331    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2332      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2333    if (OpOpcode == ISD::UNDEF)
2334      return getNode(ISD::UNDEF, VT);
2335    break;
2336  case ISD::SCALAR_TO_VECTOR:
2337    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2338           VT.getVectorElementType() == Operand.getValueType() &&
2339           "Illegal SCALAR_TO_VECTOR node!");
2340    if (OpOpcode == ISD::UNDEF)
2341      return getNode(ISD::UNDEF, VT);
2342    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2343    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2344        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2345        Operand.getConstantOperandVal(1) == 0 &&
2346        Operand.getOperand(0).getValueType() == VT)
2347      return Operand.getOperand(0);
2348    break;
2349  case ISD::FNEG:
2350    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2351      return getNode(ISD::FSUB, VT, Operand.getNode()->getOperand(1),
2352                     Operand.getNode()->getOperand(0));
2353    if (OpOpcode == ISD::FNEG)  // --X -> X
2354      return Operand.getNode()->getOperand(0);
2355    break;
2356  case ISD::FABS:
2357    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2358      return getNode(ISD::FABS, VT, Operand.getNode()->getOperand(0));
2359    break;
2360  }
2361
2362  SDNode *N;
2363  SDVTList VTs = getVTList(VT);
2364  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2365    FoldingSetNodeID ID;
2366    SDValue Ops[1] = { Operand };
2367    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2368    void *IP = 0;
2369    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2370      return SDValue(E, 0);
2371    N = NodeAllocator.Allocate<UnarySDNode>();
2372    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2373    CSEMap.InsertNode(N, IP);
2374  } else {
2375    N = NodeAllocator.Allocate<UnarySDNode>();
2376    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2377  }
2378
2379  AllNodes.push_back(N);
2380#ifndef NDEBUG
2381  VerifyNode(N);
2382#endif
2383  return SDValue(N, 0);
2384}
2385
2386SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2387                                             MVT VT,
2388                                             ConstantSDNode *Cst1,
2389                                             ConstantSDNode *Cst2) {
2390  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2391
2392  switch (Opcode) {
2393  case ISD::ADD:  return getConstant(C1 + C2, VT);
2394  case ISD::SUB:  return getConstant(C1 - C2, VT);
2395  case ISD::MUL:  return getConstant(C1 * C2, VT);
2396  case ISD::UDIV:
2397    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2398    break;
2399  case ISD::UREM:
2400    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2401    break;
2402  case ISD::SDIV:
2403    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2404    break;
2405  case ISD::SREM:
2406    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2407    break;
2408  case ISD::AND:  return getConstant(C1 & C2, VT);
2409  case ISD::OR:   return getConstant(C1 | C2, VT);
2410  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2411  case ISD::SHL:  return getConstant(C1 << C2, VT);
2412  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2413  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2414  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2415  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2416  default: break;
2417  }
2418
2419  return SDValue();
2420}
2421
2422SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2423                              SDValue N1, SDValue N2) {
2424  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, N1, N2);
2425}
2426
2427SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2428                              SDValue N1, SDValue N2) {
2429  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2430  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2431  switch (Opcode) {
2432  default: break;
2433  case ISD::TokenFactor:
2434    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2435           N2.getValueType() == MVT::Other && "Invalid token factor!");
2436    // Fold trivial token factors.
2437    if (N1.getOpcode() == ISD::EntryToken) return N2;
2438    if (N2.getOpcode() == ISD::EntryToken) return N1;
2439    if (N1 == N2) return N1;
2440    break;
2441  case ISD::CONCAT_VECTORS:
2442    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2443    // one big BUILD_VECTOR.
2444    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2445        N2.getOpcode() == ISD::BUILD_VECTOR) {
2446      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2447      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2448      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2449    }
2450    break;
2451  case ISD::AND:
2452    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2453           N1.getValueType() == VT && "Binary operator types must match!");
2454    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2455    // worth handling here.
2456    if (N2C && N2C->isNullValue())
2457      return N2;
2458    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2459      return N1;
2460    break;
2461  case ISD::OR:
2462  case ISD::XOR:
2463  case ISD::ADD:
2464  case ISD::SUB:
2465    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2466           N1.getValueType() == VT && "Binary operator types must match!");
2467    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2468    // it's worth handling here.
2469    if (N2C && N2C->isNullValue())
2470      return N1;
2471    break;
2472  case ISD::UDIV:
2473  case ISD::UREM:
2474  case ISD::MULHU:
2475  case ISD::MULHS:
2476  case ISD::MUL:
2477  case ISD::SDIV:
2478  case ISD::SREM:
2479    assert(VT.isInteger() && "This operator does not apply to FP types!");
2480    // fall through
2481  case ISD::FADD:
2482  case ISD::FSUB:
2483  case ISD::FMUL:
2484  case ISD::FDIV:
2485  case ISD::FREM:
2486    if (UnsafeFPMath) {
2487      if (Opcode == ISD::FADD) {
2488        // 0+x --> x
2489        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2490          if (CFP->getValueAPF().isZero())
2491            return N2;
2492        // x+0 --> x
2493        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2494          if (CFP->getValueAPF().isZero())
2495            return N1;
2496      } else if (Opcode == ISD::FSUB) {
2497        // x-0 --> x
2498        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2499          if (CFP->getValueAPF().isZero())
2500            return N1;
2501      }
2502    }
2503    assert(N1.getValueType() == N2.getValueType() &&
2504           N1.getValueType() == VT && "Binary operator types must match!");
2505    break;
2506  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2507    assert(N1.getValueType() == VT &&
2508           N1.getValueType().isFloatingPoint() &&
2509           N2.getValueType().isFloatingPoint() &&
2510           "Invalid FCOPYSIGN!");
2511    break;
2512  case ISD::SHL:
2513  case ISD::SRA:
2514  case ISD::SRL:
2515  case ISD::ROTL:
2516  case ISD::ROTR:
2517    assert(VT == N1.getValueType() &&
2518           "Shift operators return type must be the same as their first arg");
2519    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2520           "Shifts only work on integers");
2521    assert((N2.getValueType() == TLI.getShiftAmountTy() ||
2522            (N2.getValueType().isVector() && N2.getValueType().isInteger())) &&
2523           "Wrong type for shift amount");
2524
2525    // Always fold shifts of i1 values so the code generator doesn't need to
2526    // handle them.  Since we know the size of the shift has to be less than the
2527    // size of the value, the shift/rotate count is guaranteed to be zero.
2528    if (VT == MVT::i1)
2529      return N1;
2530    break;
2531  case ISD::FP_ROUND_INREG: {
2532    MVT EVT = cast<VTSDNode>(N2)->getVT();
2533    assert(VT == N1.getValueType() && "Not an inreg round!");
2534    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2535           "Cannot FP_ROUND_INREG integer types");
2536    assert(EVT.bitsLE(VT) && "Not rounding down!");
2537    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2538    break;
2539  }
2540  case ISD::FP_ROUND:
2541    assert(VT.isFloatingPoint() &&
2542           N1.getValueType().isFloatingPoint() &&
2543           VT.bitsLE(N1.getValueType()) &&
2544           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2545    if (N1.getValueType() == VT) return N1;  // noop conversion.
2546    break;
2547  case ISD::AssertSext:
2548  case ISD::AssertZext: {
2549    MVT EVT = cast<VTSDNode>(N2)->getVT();
2550    assert(VT == N1.getValueType() && "Not an inreg extend!");
2551    assert(VT.isInteger() && EVT.isInteger() &&
2552           "Cannot *_EXTEND_INREG FP types");
2553    assert(EVT.bitsLE(VT) && "Not extending!");
2554    if (VT == EVT) return N1; // noop assertion.
2555    break;
2556  }
2557  case ISD::SIGN_EXTEND_INREG: {
2558    MVT EVT = cast<VTSDNode>(N2)->getVT();
2559    assert(VT == N1.getValueType() && "Not an inreg extend!");
2560    assert(VT.isInteger() && EVT.isInteger() &&
2561           "Cannot *_EXTEND_INREG FP types");
2562    assert(EVT.bitsLE(VT) && "Not extending!");
2563    if (EVT == VT) return N1;  // Not actually extending
2564
2565    if (N1C) {
2566      APInt Val = N1C->getAPIntValue();
2567      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2568      Val <<= Val.getBitWidth()-FromBits;
2569      Val = Val.ashr(Val.getBitWidth()-FromBits);
2570      return getConstant(Val, VT);
2571    }
2572    break;
2573  }
2574  case ISD::EXTRACT_VECTOR_ELT:
2575    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2576    if (N1.getOpcode() == ISD::UNDEF)
2577      return getNode(ISD::UNDEF, VT);
2578
2579    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2580    // expanding copies of large vectors from registers.
2581    if (N2C &&
2582        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2583        N1.getNumOperands() > 0) {
2584      unsigned Factor =
2585        N1.getOperand(0).getValueType().getVectorNumElements();
2586      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2587                     N1.getOperand(N2C->getZExtValue() / Factor),
2588                     getConstant(N2C->getZExtValue() % Factor,
2589                                 N2.getValueType()));
2590    }
2591
2592    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2593    // expanding large vector constants.
2594    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2595      return N1.getOperand(N2C->getZExtValue());
2596
2597    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2598    // operations are lowered to scalars.
2599    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2600      // If the indices are the same, return the inserted element.
2601      if (N1.getOperand(2) == N2)
2602        return N1.getOperand(1);
2603      // If the indices are known different, extract the element from
2604      // the original vector.
2605      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2606               isa<ConstantSDNode>(N2))
2607        return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2608    }
2609    break;
2610  case ISD::EXTRACT_ELEMENT:
2611    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2612    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2613           (N1.getValueType().isInteger() == VT.isInteger()) &&
2614           "Wrong types for EXTRACT_ELEMENT!");
2615
2616    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2617    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2618    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2619    if (N1.getOpcode() == ISD::BUILD_PAIR)
2620      return N1.getOperand(N2C->getZExtValue());
2621
2622    // EXTRACT_ELEMENT of a constant int is also very common.
2623    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2624      unsigned ElementSize = VT.getSizeInBits();
2625      unsigned Shift = ElementSize * N2C->getZExtValue();
2626      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2627      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2628    }
2629    break;
2630  case ISD::EXTRACT_SUBVECTOR:
2631    if (N1.getValueType() == VT) // Trivial extraction.
2632      return N1;
2633    break;
2634  }
2635
2636  if (N1C) {
2637    if (N2C) {
2638      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2639      if (SV.getNode()) return SV;
2640    } else {      // Cannonicalize constant to RHS if commutative
2641      if (isCommutativeBinOp(Opcode)) {
2642        std::swap(N1C, N2C);
2643        std::swap(N1, N2);
2644      }
2645    }
2646  }
2647
2648  // Constant fold FP operations.
2649  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2650  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2651  if (N1CFP) {
2652    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2653      // Cannonicalize constant to RHS if commutative
2654      std::swap(N1CFP, N2CFP);
2655      std::swap(N1, N2);
2656    } else if (N2CFP && VT != MVT::ppcf128) {
2657      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2658      APFloat::opStatus s;
2659      switch (Opcode) {
2660      case ISD::FADD:
2661        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2662        if (s != APFloat::opInvalidOp)
2663          return getConstantFP(V1, VT);
2664        break;
2665      case ISD::FSUB:
2666        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2667        if (s!=APFloat::opInvalidOp)
2668          return getConstantFP(V1, VT);
2669        break;
2670      case ISD::FMUL:
2671        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2672        if (s!=APFloat::opInvalidOp)
2673          return getConstantFP(V1, VT);
2674        break;
2675      case ISD::FDIV:
2676        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2677        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2678          return getConstantFP(V1, VT);
2679        break;
2680      case ISD::FREM :
2681        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2682        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2683          return getConstantFP(V1, VT);
2684        break;
2685      case ISD::FCOPYSIGN:
2686        V1.copySign(V2);
2687        return getConstantFP(V1, VT);
2688      default: break;
2689      }
2690    }
2691  }
2692
2693  // Canonicalize an UNDEF to the RHS, even over a constant.
2694  if (N1.getOpcode() == ISD::UNDEF) {
2695    if (isCommutativeBinOp(Opcode)) {
2696      std::swap(N1, N2);
2697    } else {
2698      switch (Opcode) {
2699      case ISD::FP_ROUND_INREG:
2700      case ISD::SIGN_EXTEND_INREG:
2701      case ISD::SUB:
2702      case ISD::FSUB:
2703      case ISD::FDIV:
2704      case ISD::FREM:
2705      case ISD::SRA:
2706        return N1;     // fold op(undef, arg2) -> undef
2707      case ISD::UDIV:
2708      case ISD::SDIV:
2709      case ISD::UREM:
2710      case ISD::SREM:
2711      case ISD::SRL:
2712      case ISD::SHL:
2713        if (!VT.isVector())
2714          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2715        // For vectors, we can't easily build an all zero vector, just return
2716        // the LHS.
2717        return N2;
2718      }
2719    }
2720  }
2721
2722  // Fold a bunch of operators when the RHS is undef.
2723  if (N2.getOpcode() == ISD::UNDEF) {
2724    switch (Opcode) {
2725    case ISD::XOR:
2726      if (N1.getOpcode() == ISD::UNDEF)
2727        // Handle undef ^ undef -> 0 special case. This is a common
2728        // idiom (misuse).
2729        return getConstant(0, VT);
2730      // fallthrough
2731    case ISD::ADD:
2732    case ISD::ADDC:
2733    case ISD::ADDE:
2734    case ISD::SUB:
2735    case ISD::FADD:
2736    case ISD::FSUB:
2737    case ISD::FMUL:
2738    case ISD::FDIV:
2739    case ISD::FREM:
2740    case ISD::UDIV:
2741    case ISD::SDIV:
2742    case ISD::UREM:
2743    case ISD::SREM:
2744      return N2;       // fold op(arg1, undef) -> undef
2745    case ISD::MUL:
2746    case ISD::AND:
2747    case ISD::SRL:
2748    case ISD::SHL:
2749      if (!VT.isVector())
2750        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2751      // For vectors, we can't easily build an all zero vector, just return
2752      // the LHS.
2753      return N1;
2754    case ISD::OR:
2755      if (!VT.isVector())
2756        return getConstant(VT.getIntegerVTBitMask(), VT);
2757      // For vectors, we can't easily build an all one vector, just return
2758      // the LHS.
2759      return N1;
2760    case ISD::SRA:
2761      return N1;
2762    }
2763  }
2764
2765  // Memoize this node if possible.
2766  SDNode *N;
2767  SDVTList VTs = getVTList(VT);
2768  if (VT != MVT::Flag) {
2769    SDValue Ops[] = { N1, N2 };
2770    FoldingSetNodeID ID;
2771    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2772    void *IP = 0;
2773    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2774      return SDValue(E, 0);
2775    N = NodeAllocator.Allocate<BinarySDNode>();
2776    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2777    CSEMap.InsertNode(N, IP);
2778  } else {
2779    N = NodeAllocator.Allocate<BinarySDNode>();
2780    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2781  }
2782
2783  AllNodes.push_back(N);
2784#ifndef NDEBUG
2785  VerifyNode(N);
2786#endif
2787  return SDValue(N, 0);
2788}
2789
2790SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2791                              SDValue N1, SDValue N2, SDValue N3) {
2792  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, N1, N2, N3);
2793}
2794
2795SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2796                              SDValue N1, SDValue N2, SDValue N3) {
2797  // Perform various simplifications.
2798  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2799  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2800  switch (Opcode) {
2801  case ISD::CONCAT_VECTORS:
2802    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2803    // one big BUILD_VECTOR.
2804    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2805        N2.getOpcode() == ISD::BUILD_VECTOR &&
2806        N3.getOpcode() == ISD::BUILD_VECTOR) {
2807      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2808      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2809      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2810      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2811    }
2812    break;
2813  case ISD::SETCC: {
2814    // Use FoldSetCC to simplify SETCC's.
2815    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2816    if (Simp.getNode()) return Simp;
2817    break;
2818  }
2819  case ISD::SELECT:
2820    if (N1C) {
2821     if (N1C->getZExtValue())
2822        return N2;             // select true, X, Y -> X
2823      else
2824        return N3;             // select false, X, Y -> Y
2825    }
2826
2827    if (N2 == N3) return N2;   // select C, X, X -> X
2828    break;
2829  case ISD::BRCOND:
2830    if (N2C) {
2831      if (N2C->getZExtValue()) // Unconditional branch
2832        return getNode(ISD::BR, MVT::Other, N1, N3);
2833      else
2834        return N1;         // Never-taken branch
2835    }
2836    break;
2837  case ISD::VECTOR_SHUFFLE:
2838    assert(N1.getValueType() == N2.getValueType() &&
2839           N1.getValueType().isVector() &&
2840           VT.isVector() && N3.getValueType().isVector() &&
2841           N3.getOpcode() == ISD::BUILD_VECTOR &&
2842           VT.getVectorNumElements() == N3.getNumOperands() &&
2843           "Illegal VECTOR_SHUFFLE node!");
2844    break;
2845  case ISD::BIT_CONVERT:
2846    // Fold bit_convert nodes from a type to themselves.
2847    if (N1.getValueType() == VT)
2848      return N1;
2849    break;
2850  }
2851
2852  // Memoize node if it doesn't produce a flag.
2853  SDNode *N;
2854  SDVTList VTs = getVTList(VT);
2855  if (VT != MVT::Flag) {
2856    SDValue Ops[] = { N1, N2, N3 };
2857    FoldingSetNodeID ID;
2858    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2859    void *IP = 0;
2860    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2861      return SDValue(E, 0);
2862    N = NodeAllocator.Allocate<TernarySDNode>();
2863    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2864    CSEMap.InsertNode(N, IP);
2865  } else {
2866    N = NodeAllocator.Allocate<TernarySDNode>();
2867    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2868  }
2869  AllNodes.push_back(N);
2870#ifndef NDEBUG
2871  VerifyNode(N);
2872#endif
2873  return SDValue(N, 0);
2874}
2875
2876SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2877                              SDValue N1, SDValue N2, SDValue N3,
2878                              SDValue N4) {
2879  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, N1, N2, N3, N4);
2880}
2881
2882SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2883                              SDValue N1, SDValue N2, SDValue N3,
2884                              SDValue N4) {
2885  SDValue Ops[] = { N1, N2, N3, N4 };
2886  return getNode(Opcode, DL, VT, Ops, 4);
2887}
2888
2889SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2890                              SDValue N1, SDValue N2, SDValue N3,
2891                              SDValue N4, SDValue N5) {
2892  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, N1, N2, N3, N4, N5);
2893}
2894
2895SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2896                              SDValue N1, SDValue N2, SDValue N3,
2897                              SDValue N4, SDValue N5) {
2898  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2899  return getNode(Opcode, DL, VT, Ops, 5);
2900}
2901
2902/// getMemsetValue - Vectorized representation of the memset value
2903/// operand.
2904static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) {
2905  unsigned NumBits = VT.isVector() ?
2906    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2907  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2908    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2909    unsigned Shift = 8;
2910    for (unsigned i = NumBits; i > 8; i >>= 1) {
2911      Val = (Val << Shift) | Val;
2912      Shift <<= 1;
2913    }
2914    if (VT.isInteger())
2915      return DAG.getConstant(Val, VT);
2916    return DAG.getConstantFP(APFloat(Val), VT);
2917  }
2918
2919  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2920  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2921  unsigned Shift = 8;
2922  for (unsigned i = NumBits; i > 8; i >>= 1) {
2923    Value = DAG.getNode(ISD::OR, VT,
2924                        DAG.getNode(ISD::SHL, VT, Value,
2925                                    DAG.getConstant(Shift,
2926                                                    TLI.getShiftAmountTy())),
2927                        Value);
2928    Shift <<= 1;
2929  }
2930
2931  return Value;
2932}
2933
2934/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2935/// used when a memcpy is turned into a memset when the source is a constant
2936/// string ptr.
2937static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2938                                    const TargetLowering &TLI,
2939                                    std::string &Str, unsigned Offset) {
2940  // Handle vector with all elements zero.
2941  if (Str.empty()) {
2942    if (VT.isInteger())
2943      return DAG.getConstant(0, VT);
2944    unsigned NumElts = VT.getVectorNumElements();
2945    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2946    return DAG.getNode(ISD::BIT_CONVERT, VT,
2947                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2948  }
2949
2950  assert(!VT.isVector() && "Can't handle vector type here!");
2951  unsigned NumBits = VT.getSizeInBits();
2952  unsigned MSB = NumBits / 8;
2953  uint64_t Val = 0;
2954  if (TLI.isLittleEndian())
2955    Offset = Offset + MSB - 1;
2956  for (unsigned i = 0; i != MSB; ++i) {
2957    Val = (Val << 8) | (unsigned char)Str[Offset];
2958    Offset += TLI.isLittleEndian() ? -1 : 1;
2959  }
2960  return DAG.getConstant(Val, VT);
2961}
2962
2963/// getMemBasePlusOffset - Returns base and offset node for the
2964///
2965static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2966                                      SelectionDAG &DAG) {
2967  MVT VT = Base.getValueType();
2968  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2969}
2970
2971/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2972///
2973static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2974  unsigned SrcDelta = 0;
2975  GlobalAddressSDNode *G = NULL;
2976  if (Src.getOpcode() == ISD::GlobalAddress)
2977    G = cast<GlobalAddressSDNode>(Src);
2978  else if (Src.getOpcode() == ISD::ADD &&
2979           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2980           Src.getOperand(1).getOpcode() == ISD::Constant) {
2981    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2982    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2983  }
2984  if (!G)
2985    return false;
2986
2987  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2988  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2989    return true;
2990
2991  return false;
2992}
2993
2994/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2995/// to replace the memset / memcpy is below the threshold. It also returns the
2996/// types of the sequence of memory ops to perform memset / memcpy.
2997static
2998bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2999                              SDValue Dst, SDValue Src,
3000                              unsigned Limit, uint64_t Size, unsigned &Align,
3001                              std::string &Str, bool &isSrcStr,
3002                              SelectionDAG &DAG,
3003                              const TargetLowering &TLI) {
3004  isSrcStr = isMemSrcFromString(Src, Str);
3005  bool isSrcConst = isa<ConstantSDNode>(Src);
3006  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
3007  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
3008  if (VT != MVT::iAny) {
3009    unsigned NewAlign = (unsigned)
3010      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
3011    // If source is a string constant, this will require an unaligned load.
3012    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3013      if (Dst.getOpcode() != ISD::FrameIndex) {
3014        // Can't change destination alignment. It requires a unaligned store.
3015        if (AllowUnalign)
3016          VT = MVT::iAny;
3017      } else {
3018        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3019        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3020        if (MFI->isFixedObjectIndex(FI)) {
3021          // Can't change destination alignment. It requires a unaligned store.
3022          if (AllowUnalign)
3023            VT = MVT::iAny;
3024        } else {
3025          // Give the stack frame object a larger alignment if needed.
3026          if (MFI->getObjectAlignment(FI) < NewAlign)
3027            MFI->setObjectAlignment(FI, NewAlign);
3028          Align = NewAlign;
3029        }
3030      }
3031    }
3032  }
3033
3034  if (VT == MVT::iAny) {
3035    if (AllowUnalign) {
3036      VT = MVT::i64;
3037    } else {
3038      switch (Align & 7) {
3039      case 0:  VT = MVT::i64; break;
3040      case 4:  VT = MVT::i32; break;
3041      case 2:  VT = MVT::i16; break;
3042      default: VT = MVT::i8;  break;
3043      }
3044    }
3045
3046    MVT LVT = MVT::i64;
3047    while (!TLI.isTypeLegal(LVT))
3048      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
3049    assert(LVT.isInteger());
3050
3051    if (VT.bitsGT(LVT))
3052      VT = LVT;
3053  }
3054
3055  unsigned NumMemOps = 0;
3056  while (Size != 0) {
3057    unsigned VTSize = VT.getSizeInBits() / 8;
3058    while (VTSize > Size) {
3059      // For now, only use non-vector load / store's for the left-over pieces.
3060      if (VT.isVector()) {
3061        VT = MVT::i64;
3062        while (!TLI.isTypeLegal(VT))
3063          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3064        VTSize = VT.getSizeInBits() / 8;
3065      } else {
3066        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3067        VTSize >>= 1;
3068      }
3069    }
3070
3071    if (++NumMemOps > Limit)
3072      return false;
3073    MemOps.push_back(VT);
3074    Size -= VTSize;
3075  }
3076
3077  return true;
3078}
3079
3080static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG,
3081                                         SDValue Chain, SDValue Dst,
3082                                         SDValue Src, uint64_t Size,
3083                                         unsigned Align, bool AlwaysInline,
3084                                         const Value *DstSV, uint64_t DstSVOff,
3085                                         const Value *SrcSV, uint64_t SrcSVOff){
3086  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3087
3088  // Expand memcpy to a series of load and store ops if the size operand falls
3089  // below a certain threshold.
3090  std::vector<MVT> MemOps;
3091  uint64_t Limit = -1ULL;
3092  if (!AlwaysInline)
3093    Limit = TLI.getMaxStoresPerMemcpy();
3094  unsigned DstAlign = Align;  // Destination alignment can change.
3095  std::string Str;
3096  bool CopyFromStr;
3097  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3098                                Str, CopyFromStr, DAG, TLI))
3099    return SDValue();
3100
3101
3102  bool isZeroStr = CopyFromStr && Str.empty();
3103  SmallVector<SDValue, 8> OutChains;
3104  unsigned NumMemOps = MemOps.size();
3105  uint64_t SrcOff = 0, DstOff = 0;
3106  for (unsigned i = 0; i < NumMemOps; i++) {
3107    MVT VT = MemOps[i];
3108    unsigned VTSize = VT.getSizeInBits() / 8;
3109    SDValue Value, Store;
3110
3111    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3112      // It's unlikely a store of a vector immediate can be done in a single
3113      // instruction. It would require a load from a constantpool first.
3114      // We also handle store a vector with all zero's.
3115      // FIXME: Handle other cases where store of vector immediate is done in
3116      // a single instruction.
3117      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
3118      Store = DAG.getStore(Chain, Value,
3119                           getMemBasePlusOffset(Dst, DstOff, DAG),
3120                           DstSV, DstSVOff + DstOff, false, DstAlign);
3121    } else {
3122      Value = DAG.getLoad(VT, Chain,
3123                          getMemBasePlusOffset(Src, SrcOff, DAG),
3124                          SrcSV, SrcSVOff + SrcOff, false, Align);
3125      Store = DAG.getStore(Chain, Value,
3126                           getMemBasePlusOffset(Dst, DstOff, DAG),
3127                           DstSV, DstSVOff + DstOff, false, DstAlign);
3128    }
3129    OutChains.push_back(Store);
3130    SrcOff += VTSize;
3131    DstOff += VTSize;
3132  }
3133
3134  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3135                     &OutChains[0], OutChains.size());
3136}
3137
3138static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG,
3139                                          SDValue Chain, SDValue Dst,
3140                                          SDValue Src, uint64_t Size,
3141                                          unsigned Align, bool AlwaysInline,
3142                                          const Value *DstSV, uint64_t DstSVOff,
3143                                          const Value *SrcSV, uint64_t SrcSVOff){
3144  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3145
3146  // Expand memmove to a series of load and store ops if the size operand falls
3147  // below a certain threshold.
3148  std::vector<MVT> MemOps;
3149  uint64_t Limit = -1ULL;
3150  if (!AlwaysInline)
3151    Limit = TLI.getMaxStoresPerMemmove();
3152  unsigned DstAlign = Align;  // Destination alignment can change.
3153  std::string Str;
3154  bool CopyFromStr;
3155  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3156                                Str, CopyFromStr, DAG, TLI))
3157    return SDValue();
3158
3159  uint64_t SrcOff = 0, DstOff = 0;
3160
3161  SmallVector<SDValue, 8> LoadValues;
3162  SmallVector<SDValue, 8> LoadChains;
3163  SmallVector<SDValue, 8> OutChains;
3164  unsigned NumMemOps = MemOps.size();
3165  for (unsigned i = 0; i < NumMemOps; i++) {
3166    MVT VT = MemOps[i];
3167    unsigned VTSize = VT.getSizeInBits() / 8;
3168    SDValue Value, Store;
3169
3170    Value = DAG.getLoad(VT, Chain,
3171                        getMemBasePlusOffset(Src, SrcOff, DAG),
3172                        SrcSV, SrcSVOff + SrcOff, false, Align);
3173    LoadValues.push_back(Value);
3174    LoadChains.push_back(Value.getValue(1));
3175    SrcOff += VTSize;
3176  }
3177  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3178                      &LoadChains[0], LoadChains.size());
3179  OutChains.clear();
3180  for (unsigned i = 0; i < NumMemOps; i++) {
3181    MVT VT = MemOps[i];
3182    unsigned VTSize = VT.getSizeInBits() / 8;
3183    SDValue Value, Store;
3184
3185    Store = DAG.getStore(Chain, LoadValues[i],
3186                         getMemBasePlusOffset(Dst, DstOff, DAG),
3187                         DstSV, DstSVOff + DstOff, false, DstAlign);
3188    OutChains.push_back(Store);
3189    DstOff += VTSize;
3190  }
3191
3192  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3193                     &OutChains[0], OutChains.size());
3194}
3195
3196static SDValue getMemsetStores(SelectionDAG &DAG,
3197                                 SDValue Chain, SDValue Dst,
3198                                 SDValue Src, uint64_t Size,
3199                                 unsigned Align,
3200                                 const Value *DstSV, uint64_t DstSVOff) {
3201  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3202
3203  // Expand memset to a series of load/store ops if the size operand
3204  // falls below a certain threshold.
3205  std::vector<MVT> MemOps;
3206  std::string Str;
3207  bool CopyFromStr;
3208  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3209                                Size, Align, Str, CopyFromStr, DAG, TLI))
3210    return SDValue();
3211
3212  SmallVector<SDValue, 8> OutChains;
3213  uint64_t DstOff = 0;
3214
3215  unsigned NumMemOps = MemOps.size();
3216  for (unsigned i = 0; i < NumMemOps; i++) {
3217    MVT VT = MemOps[i];
3218    unsigned VTSize = VT.getSizeInBits() / 8;
3219    SDValue Value = getMemsetValue(Src, VT, DAG);
3220    SDValue Store = DAG.getStore(Chain, Value,
3221                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3222                                 DstSV, DstSVOff + DstOff);
3223    OutChains.push_back(Store);
3224    DstOff += VTSize;
3225  }
3226
3227  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3228                     &OutChains[0], OutChains.size());
3229}
3230
3231SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst,
3232                                SDValue Src, SDValue Size,
3233                                unsigned Align, bool AlwaysInline,
3234                                const Value *DstSV, uint64_t DstSVOff,
3235                                const Value *SrcSV, uint64_t SrcSVOff) {
3236
3237  // Check to see if we should lower the memcpy to loads and stores first.
3238  // For cases within the target-specified limits, this is the best choice.
3239  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3240  if (ConstantSize) {
3241    // Memcpy with size zero? Just return the original chain.
3242    if (ConstantSize->isNullValue())
3243      return Chain;
3244
3245    SDValue Result =
3246      getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3247                              ConstantSize->getZExtValue(),
3248                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3249    if (Result.getNode())
3250      return Result;
3251  }
3252
3253  // Then check to see if we should lower the memcpy with target-specific
3254  // code. If the target chooses to do this, this is the next best.
3255  SDValue Result =
3256    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
3257                                AlwaysInline,
3258                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3259  if (Result.getNode())
3260    return Result;
3261
3262  // If we really need inline code and the target declined to provide it,
3263  // use a (potentially long) sequence of loads and stores.
3264  if (AlwaysInline) {
3265    assert(ConstantSize && "AlwaysInline requires a constant size!");
3266    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3267                                   ConstantSize->getZExtValue(), Align, true,
3268                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3269  }
3270
3271  // Emit a library call.
3272  TargetLowering::ArgListTy Args;
3273  TargetLowering::ArgListEntry Entry;
3274  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3275  Entry.Node = Dst; Args.push_back(Entry);
3276  Entry.Node = Src; Args.push_back(Entry);
3277  Entry.Node = Size; Args.push_back(Entry);
3278  std::pair<SDValue,SDValue> CallResult =
3279    TLI.LowerCallTo(Chain, Type::VoidTy,
3280                    false, false, false, false, CallingConv::C, false,
3281                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3282                    Args, *this);
3283  return CallResult.second;
3284}
3285
3286SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst,
3287                                 SDValue Src, SDValue Size,
3288                                 unsigned Align,
3289                                 const Value *DstSV, uint64_t DstSVOff,
3290                                 const Value *SrcSV, uint64_t SrcSVOff) {
3291
3292  // Check to see if we should lower the memmove to loads and stores first.
3293  // For cases within the target-specified limits, this is the best choice.
3294  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3295  if (ConstantSize) {
3296    // Memmove with size zero? Just return the original chain.
3297    if (ConstantSize->isNullValue())
3298      return Chain;
3299
3300    SDValue Result =
3301      getMemmoveLoadsAndStores(*this, Chain, Dst, Src,
3302                               ConstantSize->getZExtValue(),
3303                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3304    if (Result.getNode())
3305      return Result;
3306  }
3307
3308  // Then check to see if we should lower the memmove with target-specific
3309  // code. If the target chooses to do this, this is the next best.
3310  SDValue Result =
3311    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
3312                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3313  if (Result.getNode())
3314    return Result;
3315
3316  // Emit a library call.
3317  TargetLowering::ArgListTy Args;
3318  TargetLowering::ArgListEntry Entry;
3319  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3320  Entry.Node = Dst; Args.push_back(Entry);
3321  Entry.Node = Src; Args.push_back(Entry);
3322  Entry.Node = Size; Args.push_back(Entry);
3323  std::pair<SDValue,SDValue> CallResult =
3324    TLI.LowerCallTo(Chain, Type::VoidTy,
3325                    false, false, false, false, CallingConv::C, false,
3326                    getExternalSymbol("memmove", TLI.getPointerTy()),
3327                    Args, *this);
3328  return CallResult.second;
3329}
3330
3331SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst,
3332                                SDValue Src, SDValue Size,
3333                                unsigned Align,
3334                                const Value *DstSV, uint64_t DstSVOff) {
3335
3336  // Check to see if we should lower the memset to stores first.
3337  // For cases within the target-specified limits, this is the best choice.
3338  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3339  if (ConstantSize) {
3340    // Memset with size zero? Just return the original chain.
3341    if (ConstantSize->isNullValue())
3342      return Chain;
3343
3344    SDValue Result =
3345      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(),
3346                      Align, DstSV, DstSVOff);
3347    if (Result.getNode())
3348      return Result;
3349  }
3350
3351  // Then check to see if we should lower the memset with target-specific
3352  // code. If the target chooses to do this, this is the next best.
3353  SDValue Result =
3354    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3355                                DstSV, DstSVOff);
3356  if (Result.getNode())
3357    return Result;
3358
3359  // Emit a library call.
3360  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3361  TargetLowering::ArgListTy Args;
3362  TargetLowering::ArgListEntry Entry;
3363  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3364  Args.push_back(Entry);
3365  // Extend or truncate the argument to be an i32 value for the call.
3366  if (Src.getValueType().bitsGT(MVT::i32))
3367    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3368  else
3369    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3370  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3371  Args.push_back(Entry);
3372  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3373  Args.push_back(Entry);
3374  std::pair<SDValue,SDValue> CallResult =
3375    TLI.LowerCallTo(Chain, Type::VoidTy,
3376                    false, false, false, false, CallingConv::C, false,
3377                    getExternalSymbol("memset", TLI.getPointerTy()),
3378                    Args, *this);
3379  return CallResult.second;
3380}
3381
3382SDValue SelectionDAG::getAtomic(unsigned Opcode, MVT MemVT,
3383                                SDValue Chain,
3384                                SDValue Ptr, SDValue Cmp,
3385                                SDValue Swp, const Value* PtrVal,
3386                                unsigned Alignment) {
3387  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3388  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3389
3390  MVT VT = Cmp.getValueType();
3391
3392  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3393    Alignment = getMVTAlignment(MemVT);
3394
3395  SDVTList VTs = getVTList(VT, MVT::Other);
3396  FoldingSetNodeID ID;
3397  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3398  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3399  void* IP = 0;
3400  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3401    return SDValue(E, 0);
3402  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3403  new (N) AtomicSDNode(Opcode, VTs, MemVT,
3404                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3405  CSEMap.InsertNode(N, IP);
3406  AllNodes.push_back(N);
3407  return SDValue(N, 0);
3408}
3409
3410SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3411                                SDValue Chain,
3412                                SDValue Ptr, SDValue Cmp,
3413                                SDValue Swp, const Value* PtrVal,
3414                                unsigned Alignment) {
3415  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3416  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3417
3418  MVT VT = Cmp.getValueType();
3419
3420  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3421    Alignment = getMVTAlignment(MemVT);
3422
3423  SDVTList VTs = getVTList(VT, MVT::Other);
3424  FoldingSetNodeID ID;
3425  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3426  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3427  void* IP = 0;
3428  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3429    return SDValue(E, 0);
3430  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3431  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3432                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3433  CSEMap.InsertNode(N, IP);
3434  AllNodes.push_back(N);
3435  return SDValue(N, 0);
3436}
3437
3438SDValue SelectionDAG::getAtomic(unsigned Opcode, MVT MemVT,
3439                                SDValue Chain,
3440                                SDValue Ptr, SDValue Val,
3441                                const Value* PtrVal,
3442                                unsigned Alignment) {
3443  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3444          Opcode == ISD::ATOMIC_LOAD_SUB ||
3445          Opcode == ISD::ATOMIC_LOAD_AND ||
3446          Opcode == ISD::ATOMIC_LOAD_OR ||
3447          Opcode == ISD::ATOMIC_LOAD_XOR ||
3448          Opcode == ISD::ATOMIC_LOAD_NAND ||
3449          Opcode == ISD::ATOMIC_LOAD_MIN ||
3450          Opcode == ISD::ATOMIC_LOAD_MAX ||
3451          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3452          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3453          Opcode == ISD::ATOMIC_SWAP) &&
3454         "Invalid Atomic Op");
3455
3456  MVT VT = Val.getValueType();
3457
3458  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3459    Alignment = getMVTAlignment(MemVT);
3460
3461  SDVTList VTs = getVTList(VT, MVT::Other);
3462  FoldingSetNodeID ID;
3463  SDValue Ops[] = {Chain, Ptr, Val};
3464  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3465  void* IP = 0;
3466  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3467    return SDValue(E, 0);
3468  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3469  new (N) AtomicSDNode(Opcode, VTs, MemVT,
3470                       Chain, Ptr, Val, PtrVal, Alignment);
3471  CSEMap.InsertNode(N, IP);
3472  AllNodes.push_back(N);
3473  return SDValue(N, 0);
3474}
3475
3476SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3477                                SDValue Chain,
3478                                SDValue Ptr, SDValue Val,
3479                                const Value* PtrVal,
3480                                unsigned Alignment) {
3481  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3482          Opcode == ISD::ATOMIC_LOAD_SUB ||
3483          Opcode == ISD::ATOMIC_LOAD_AND ||
3484          Opcode == ISD::ATOMIC_LOAD_OR ||
3485          Opcode == ISD::ATOMIC_LOAD_XOR ||
3486          Opcode == ISD::ATOMIC_LOAD_NAND ||
3487          Opcode == ISD::ATOMIC_LOAD_MIN ||
3488          Opcode == ISD::ATOMIC_LOAD_MAX ||
3489          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3490          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3491          Opcode == ISD::ATOMIC_SWAP) &&
3492         "Invalid Atomic Op");
3493
3494  MVT VT = Val.getValueType();
3495
3496  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3497    Alignment = getMVTAlignment(MemVT);
3498
3499  SDVTList VTs = getVTList(VT, MVT::Other);
3500  FoldingSetNodeID ID;
3501  SDValue Ops[] = {Chain, Ptr, Val};
3502  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3503  void* IP = 0;
3504  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3505    return SDValue(E, 0);
3506  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3507  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3508                       Chain, Ptr, Val, PtrVal, Alignment);
3509  CSEMap.InsertNode(N, IP);
3510  AllNodes.push_back(N);
3511  return SDValue(N, 0);
3512}
3513
3514/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3515/// Allowed to return something different (and simpler) if Simplify is true.
3516SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps) {
3517  if (NumOps == 1)
3518    return Ops[0];
3519
3520  SmallVector<MVT, 4> VTs;
3521  VTs.reserve(NumOps);
3522  for (unsigned i = 0; i < NumOps; ++i)
3523    VTs.push_back(Ops[i].getValueType());
3524  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3525}
3526
3527SDValue
3528SelectionDAG::getMemIntrinsicNode(unsigned Opcode,
3529                                  const MVT *VTs, unsigned NumVTs,
3530                                  const SDValue *Ops, unsigned NumOps,
3531                                  MVT MemVT, const Value *srcValue, int SVOff,
3532                                  unsigned Align, bool Vol,
3533                                  bool ReadMem, bool WriteMem) {
3534  return getMemIntrinsicNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps,
3535                             MemVT, srcValue, SVOff, Align, Vol,
3536                             ReadMem, WriteMem);
3537}
3538
3539SDValue
3540SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3541                                  const MVT *VTs, unsigned NumVTs,
3542                                  const SDValue *Ops, unsigned NumOps,
3543                                  MVT MemVT, const Value *srcValue, int SVOff,
3544                                  unsigned Align, bool Vol,
3545                                  bool ReadMem, bool WriteMem) {
3546  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3547                             MemVT, srcValue, SVOff, Align, Vol,
3548                             ReadMem, WriteMem);
3549}
3550
3551SDValue
3552SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDVTList VTList,
3553                                  const SDValue *Ops, unsigned NumOps,
3554                                  MVT MemVT, const Value *srcValue, int SVOff,
3555                                  unsigned Align, bool Vol,
3556                                  bool ReadMem, bool WriteMem) {
3557  // Memoize the node unless it returns a flag.
3558  MemIntrinsicSDNode *N;
3559  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3560    FoldingSetNodeID ID;
3561    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3562    void *IP = 0;
3563    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3564      return SDValue(E, 0);
3565
3566    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3567    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3568                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3569    CSEMap.InsertNode(N, IP);
3570  } else {
3571    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3572    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3573                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3574  }
3575  AllNodes.push_back(N);
3576  return SDValue(N, 0);
3577}
3578
3579SDValue
3580SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3581                                  const SDValue *Ops, unsigned NumOps,
3582                                  MVT MemVT, const Value *srcValue, int SVOff,
3583                                  unsigned Align, bool Vol,
3584                                  bool ReadMem, bool WriteMem) {
3585  // Memoize the node unless it returns a flag.
3586  MemIntrinsicSDNode *N;
3587  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3588    FoldingSetNodeID ID;
3589    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3590    void *IP = 0;
3591    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3592      return SDValue(E, 0);
3593
3594    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3595    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3596                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3597    CSEMap.InsertNode(N, IP);
3598  } else {
3599    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3600    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3601                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3602  }
3603  AllNodes.push_back(N);
3604  return SDValue(N, 0);
3605}
3606
3607SDValue
3608SelectionDAG::getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall,
3609                      bool IsInreg, SDVTList VTs,
3610                      const SDValue *Operands, unsigned NumOperands) {
3611  // Do not include isTailCall in the folding set profile.
3612  FoldingSetNodeID ID;
3613  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3614  ID.AddInteger(CallingConv);
3615  ID.AddInteger(IsVarArgs);
3616  void *IP = 0;
3617  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3618    // Instead of including isTailCall in the folding set, we just
3619    // set the flag of the existing node.
3620    if (!IsTailCall)
3621      cast<CallSDNode>(E)->setNotTailCall();
3622    return SDValue(E, 0);
3623  }
3624  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3625  new (N) CallSDNode(CallingConv, IsVarArgs, IsTailCall, IsInreg,
3626                     VTs, Operands, NumOperands);
3627  CSEMap.InsertNode(N, IP);
3628  AllNodes.push_back(N);
3629  return SDValue(N, 0);
3630}
3631
3632SDValue
3633SelectionDAG::getCall(unsigned CallingConv, DebugLoc dl, bool IsVarArgs,
3634                      bool IsTailCall, bool IsInreg, SDVTList VTs,
3635                      const SDValue *Operands, unsigned NumOperands) {
3636  // Do not include isTailCall in the folding set profile.
3637  FoldingSetNodeID ID;
3638  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3639  ID.AddInteger(CallingConv);
3640  ID.AddInteger(IsVarArgs);
3641  void *IP = 0;
3642  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3643    // Instead of including isTailCall in the folding set, we just
3644    // set the flag of the existing node.
3645    if (!IsTailCall)
3646      cast<CallSDNode>(E)->setNotTailCall();
3647    return SDValue(E, 0);
3648  }
3649  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3650  new (N) CallSDNode(CallingConv, dl, IsVarArgs, IsTailCall, IsInreg,
3651                     VTs, Operands, NumOperands);
3652  CSEMap.InsertNode(N, IP);
3653  AllNodes.push_back(N);
3654  return SDValue(N, 0);
3655}
3656
3657SDValue
3658SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3659                      MVT VT, SDValue Chain,
3660                      SDValue Ptr, SDValue Offset,
3661                      const Value *SV, int SVOffset, MVT EVT,
3662                      bool isVolatile, unsigned Alignment) {
3663  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3664    Alignment = getMVTAlignment(VT);
3665
3666  if (VT == EVT) {
3667    ExtType = ISD::NON_EXTLOAD;
3668  } else if (ExtType == ISD::NON_EXTLOAD) {
3669    assert(VT == EVT && "Non-extending load from different memory type!");
3670  } else {
3671    // Extending load.
3672    if (VT.isVector())
3673      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3674             "Invalid vector extload!");
3675    else
3676      assert(EVT.bitsLT(VT) &&
3677             "Should only be an extending load, not truncating!");
3678    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3679           "Cannot sign/zero extend a FP/Vector load!");
3680    assert(VT.isInteger() == EVT.isInteger() &&
3681           "Cannot convert from FP to Int or Int -> FP!");
3682  }
3683
3684  bool Indexed = AM != ISD::UNINDEXED;
3685  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3686         "Unindexed load with an offset!");
3687
3688  SDVTList VTs = Indexed ?
3689    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3690  SDValue Ops[] = { Chain, Ptr, Offset };
3691  FoldingSetNodeID ID;
3692  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3693  ID.AddInteger(AM);
3694  ID.AddInteger(ExtType);
3695  ID.AddInteger(EVT.getRawBits());
3696  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3697  void *IP = 0;
3698  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3699    return SDValue(E, 0);
3700  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3701  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3702                     Alignment, isVolatile);
3703  CSEMap.InsertNode(N, IP);
3704  AllNodes.push_back(N);
3705  return SDValue(N, 0);
3706}
3707
3708SDValue
3709SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3710                      ISD::LoadExtType ExtType, MVT VT, SDValue Chain,
3711                      SDValue Ptr, SDValue Offset,
3712                      const Value *SV, int SVOffset, MVT EVT,
3713                      bool isVolatile, unsigned Alignment) {
3714  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3715    Alignment = getMVTAlignment(VT);
3716
3717  if (VT == EVT) {
3718    ExtType = ISD::NON_EXTLOAD;
3719  } else if (ExtType == ISD::NON_EXTLOAD) {
3720    assert(VT == EVT && "Non-extending load from different memory type!");
3721  } else {
3722    // Extending load.
3723    if (VT.isVector())
3724      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3725             "Invalid vector extload!");
3726    else
3727      assert(EVT.bitsLT(VT) &&
3728             "Should only be an extending load, not truncating!");
3729    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3730           "Cannot sign/zero extend a FP/Vector load!");
3731    assert(VT.isInteger() == EVT.isInteger() &&
3732           "Cannot convert from FP to Int or Int -> FP!");
3733  }
3734
3735  bool Indexed = AM != ISD::UNINDEXED;
3736  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3737         "Unindexed load with an offset!");
3738
3739  SDVTList VTs = Indexed ?
3740    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3741  SDValue Ops[] = { Chain, Ptr, Offset };
3742  FoldingSetNodeID ID;
3743  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3744  ID.AddInteger(AM);
3745  ID.AddInteger(ExtType);
3746  ID.AddInteger(EVT.getRawBits());
3747  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3748  void *IP = 0;
3749  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3750    return SDValue(E, 0);
3751  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3752  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, EVT, SV, SVOffset,
3753                     Alignment, isVolatile);
3754  CSEMap.InsertNode(N, IP);
3755  AllNodes.push_back(N);
3756  return SDValue(N, 0);
3757}
3758
3759SDValue SelectionDAG::getLoad(MVT VT,
3760                              SDValue Chain, SDValue Ptr,
3761                              const Value *SV, int SVOffset,
3762                              bool isVolatile, unsigned Alignment) {
3763  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3764  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3765                 SV, SVOffset, VT, isVolatile, Alignment);
3766}
3767
3768SDValue SelectionDAG::getLoad(MVT VT, DebugLoc dl,
3769                              SDValue Chain, SDValue Ptr,
3770                              const Value *SV, int SVOffset,
3771                              bool isVolatile, unsigned Alignment) {
3772  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3773  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3774                 SV, SVOffset, VT, isVolatile, Alignment);
3775}
3776
3777SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3778                                 SDValue Chain, SDValue Ptr,
3779                                 const Value *SV,
3780                                 int SVOffset, MVT EVT,
3781                                 bool isVolatile, unsigned Alignment) {
3782  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3783  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3784                 SV, SVOffset, EVT, isVolatile, Alignment);
3785}
3786
3787SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, MVT VT,
3788                                 SDValue Chain, SDValue Ptr,
3789                                 const Value *SV,
3790                                 int SVOffset, MVT EVT,
3791                                 bool isVolatile, unsigned Alignment) {
3792  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3793  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3794                 SV, SVOffset, EVT, isVolatile, Alignment);
3795}
3796
3797SDValue
3798SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
3799                             SDValue Offset, ISD::MemIndexedMode AM) {
3800  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3801  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3802         "Load is already a indexed load!");
3803  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3804                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3805                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3806                 LD->isVolatile(), LD->getAlignment());
3807}
3808
3809SDValue
3810SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3811                             SDValue Offset, ISD::MemIndexedMode AM) {
3812  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3813  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3814         "Load is already a indexed load!");
3815  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3816                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3817                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3818                 LD->isVolatile(), LD->getAlignment());
3819}
3820
3821SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
3822                               SDValue Ptr, const Value *SV, int SVOffset,
3823                               bool isVolatile, unsigned Alignment) {
3824  MVT VT = Val.getValueType();
3825
3826  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3827    Alignment = getMVTAlignment(VT);
3828
3829  SDVTList VTs = getVTList(MVT::Other);
3830  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3831  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3832  FoldingSetNodeID ID;
3833  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3834  ID.AddInteger(ISD::UNINDEXED);
3835  ID.AddInteger(false);
3836  ID.AddInteger(VT.getRawBits());
3837  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3838  void *IP = 0;
3839  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3840    return SDValue(E, 0);
3841  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3842  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3843                      VT, SV, SVOffset, Alignment, isVolatile);
3844  CSEMap.InsertNode(N, IP);
3845  AllNodes.push_back(N);
3846  return SDValue(N, 0);
3847}
3848
3849SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3850                               SDValue Ptr, const Value *SV, int SVOffset,
3851                               bool isVolatile, unsigned Alignment) {
3852  MVT VT = Val.getValueType();
3853
3854  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3855    Alignment = getMVTAlignment(VT);
3856
3857  SDVTList VTs = getVTList(MVT::Other);
3858  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3859  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3860  FoldingSetNodeID ID;
3861  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3862  ID.AddInteger(ISD::UNINDEXED);
3863  ID.AddInteger(false);
3864  ID.AddInteger(VT.getRawBits());
3865  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3866  void *IP = 0;
3867  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3868    return SDValue(E, 0);
3869  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3870  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false,
3871                      VT, SV, SVOffset, Alignment, isVolatile);
3872  CSEMap.InsertNode(N, IP);
3873  AllNodes.push_back(N);
3874  return SDValue(N, 0);
3875}
3876
3877SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
3878                                    SDValue Ptr, const Value *SV,
3879                                    int SVOffset, MVT SVT,
3880                                    bool isVolatile, unsigned Alignment) {
3881  MVT VT = Val.getValueType();
3882
3883  if (VT == SVT)
3884    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3885
3886  assert(VT.bitsGT(SVT) && "Not a truncation?");
3887  assert(VT.isInteger() == SVT.isInteger() &&
3888         "Can't do FP-INT conversion!");
3889
3890  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3891    Alignment = getMVTAlignment(VT);
3892
3893  SDVTList VTs = getVTList(MVT::Other);
3894  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3895  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3896  FoldingSetNodeID ID;
3897  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3898  ID.AddInteger(ISD::UNINDEXED);
3899  ID.AddInteger(1);
3900  ID.AddInteger(SVT.getRawBits());
3901  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3902  void *IP = 0;
3903  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3904    return SDValue(E, 0);
3905  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3906  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3907                      SVT, SV, SVOffset, Alignment, isVolatile);
3908  CSEMap.InsertNode(N, IP);
3909  AllNodes.push_back(N);
3910  return SDValue(N, 0);
3911}
3912
3913SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3914                                    SDValue Ptr, const Value *SV,
3915                                    int SVOffset, MVT SVT,
3916                                    bool isVolatile, unsigned Alignment) {
3917  MVT VT = Val.getValueType();
3918
3919  if (VT == SVT)
3920    return getStore(Chain, dl, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3921
3922  assert(VT.bitsGT(SVT) && "Not a truncation?");
3923  assert(VT.isInteger() == SVT.isInteger() &&
3924         "Can't do FP-INT conversion!");
3925
3926  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3927    Alignment = getMVTAlignment(VT);
3928
3929  SDVTList VTs = getVTList(MVT::Other);
3930  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3931  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3932  FoldingSetNodeID ID;
3933  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3934  ID.AddInteger(ISD::UNINDEXED);
3935  ID.AddInteger(1);
3936  ID.AddInteger(SVT.getRawBits());
3937  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3938  void *IP = 0;
3939  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3940    return SDValue(E, 0);
3941  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3942  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true,
3943                      SVT, SV, SVOffset, Alignment, isVolatile);
3944  CSEMap.InsertNode(N, IP);
3945  AllNodes.push_back(N);
3946  return SDValue(N, 0);
3947}
3948
3949SDValue
3950SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
3951                              SDValue Offset, ISD::MemIndexedMode AM) {
3952  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3953  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3954         "Store is already a indexed store!");
3955  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3956  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3957  FoldingSetNodeID ID;
3958  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3959  ID.AddInteger(AM);
3960  ID.AddInteger(ST->isTruncatingStore());
3961  ID.AddInteger(ST->getMemoryVT().getRawBits());
3962  ID.AddInteger(ST->getRawFlags());
3963  void *IP = 0;
3964  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3965    return SDValue(E, 0);
3966  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3967  new (N) StoreSDNode(Ops, VTs, AM,
3968                      ST->isTruncatingStore(), ST->getMemoryVT(),
3969                      ST->getSrcValue(), ST->getSrcValueOffset(),
3970                      ST->getAlignment(), ST->isVolatile());
3971  CSEMap.InsertNode(N, IP);
3972  AllNodes.push_back(N);
3973  return SDValue(N, 0);
3974}
3975
3976SDValue
3977SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3978                              SDValue Offset, ISD::MemIndexedMode AM) {
3979  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3980  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3981         "Store is already a indexed store!");
3982  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3983  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3984  FoldingSetNodeID ID;
3985  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3986  ID.AddInteger(AM);
3987  ID.AddInteger(ST->isTruncatingStore());
3988  ID.AddInteger(ST->getMemoryVT().getRawBits());
3989  ID.AddInteger(ST->getRawFlags());
3990  void *IP = 0;
3991  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3992    return SDValue(E, 0);
3993  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3994  new (N) StoreSDNode(Ops, dl, VTs, AM,
3995                      ST->isTruncatingStore(), ST->getMemoryVT(),
3996                      ST->getSrcValue(), ST->getSrcValueOffset(),
3997                      ST->getAlignment(), ST->isVolatile());
3998  CSEMap.InsertNode(N, IP);
3999  AllNodes.push_back(N);
4000  return SDValue(N, 0);
4001}
4002
4003SDValue SelectionDAG::getVAArg(MVT VT,
4004                               SDValue Chain, SDValue Ptr,
4005                               SDValue SV) {
4006  SDValue Ops[] = { Chain, Ptr, SV };
4007  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
4008}
4009
4010SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
4011                              const SDUse *Ops, unsigned NumOps) {
4012  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, Ops, NumOps);
4013}
4014
4015SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
4016                              const SDUse *Ops, unsigned NumOps) {
4017  switch (NumOps) {
4018  case 0: return getNode(Opcode, DL, VT);
4019  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4020  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4021  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4022  default: break;
4023  }
4024
4025  // Copy from an SDUse array into an SDValue array for use with
4026  // the regular getNode logic.
4027  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4028  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4029}
4030
4031SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
4032                              const SDValue *Ops, unsigned NumOps) {
4033  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, Ops, NumOps);
4034}
4035
4036SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
4037                              const SDValue *Ops, unsigned NumOps) {
4038  switch (NumOps) {
4039  case 0: return getNode(Opcode, DL, VT);
4040  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4041  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4042  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4043  default: break;
4044  }
4045
4046  switch (Opcode) {
4047  default: break;
4048  case ISD::SELECT_CC: {
4049    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4050    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4051           "LHS and RHS of condition must have same type!");
4052    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4053           "True and False arms of SelectCC must have same type!");
4054    assert(Ops[2].getValueType() == VT &&
4055           "select_cc node must be of same type as true and false value!");
4056    break;
4057  }
4058  case ISD::BR_CC: {
4059    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4060    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4061           "LHS/RHS of comparison should match types!");
4062    break;
4063  }
4064  }
4065
4066  // Memoize nodes.
4067  SDNode *N;
4068  SDVTList VTs = getVTList(VT);
4069
4070  if (VT != MVT::Flag) {
4071    FoldingSetNodeID ID;
4072    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4073    void *IP = 0;
4074
4075    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4076      return SDValue(E, 0);
4077
4078    N = NodeAllocator.Allocate<SDNode>();
4079    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4080    CSEMap.InsertNode(N, IP);
4081  } else {
4082    N = NodeAllocator.Allocate<SDNode>();
4083    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4084  }
4085
4086  AllNodes.push_back(N);
4087#ifndef NDEBUG
4088  VerifyNode(N);
4089#endif
4090  return SDValue(N, 0);
4091}
4092
4093SDValue SelectionDAG::getNode(unsigned Opcode,
4094                              const std::vector<MVT> &ResultTys,
4095                              const SDValue *Ops, unsigned NumOps) {
4096  return getNode(Opcode, DebugLoc::getUnknownLoc(), ResultTys, Ops, NumOps);
4097}
4098
4099SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4100                              const std::vector<MVT> &ResultTys,
4101                              const SDValue *Ops, unsigned NumOps) {
4102  return getNode(Opcode, DL, getNodeValueTypes(ResultTys), ResultTys.size(),
4103                 Ops, NumOps);
4104}
4105
4106SDValue SelectionDAG::getNode(unsigned Opcode,
4107                              const MVT *VTs, unsigned NumVTs,
4108                              const SDValue *Ops, unsigned NumOps) {
4109  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTs, NumVTs, Ops, NumOps);
4110}
4111
4112SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4113                              const MVT *VTs, unsigned NumVTs,
4114                              const SDValue *Ops, unsigned NumOps) {
4115  if (NumVTs == 1)
4116    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4117  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4118}
4119
4120SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4121                              const SDValue *Ops, unsigned NumOps) {
4122  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, Ops, NumOps);
4123}
4124
4125SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4126                              const SDValue *Ops, unsigned NumOps) {
4127  if (VTList.NumVTs == 1)
4128    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4129
4130  switch (Opcode) {
4131  // FIXME: figure out how to safely handle things like
4132  // int foo(int x) { return 1 << (x & 255); }
4133  // int bar() { return foo(256); }
4134#if 0
4135  case ISD::SRA_PARTS:
4136  case ISD::SRL_PARTS:
4137  case ISD::SHL_PARTS:
4138    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4139        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4140      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4141    else if (N3.getOpcode() == ISD::AND)
4142      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4143        // If the and is only masking out bits that cannot effect the shift,
4144        // eliminate the and.
4145        unsigned NumBits = VT.getSizeInBits()*2;
4146        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4147          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4148      }
4149    break;
4150#endif
4151  }
4152
4153  // Memoize the node unless it returns a flag.
4154  SDNode *N;
4155  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4156    FoldingSetNodeID ID;
4157    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4158    void *IP = 0;
4159    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4160      return SDValue(E, 0);
4161    if (NumOps == 1) {
4162      N = NodeAllocator.Allocate<UnarySDNode>();
4163      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4164    } else if (NumOps == 2) {
4165      N = NodeAllocator.Allocate<BinarySDNode>();
4166      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4167    } else if (NumOps == 3) {
4168      N = NodeAllocator.Allocate<TernarySDNode>();
4169      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4170    } else {
4171      N = NodeAllocator.Allocate<SDNode>();
4172      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4173    }
4174    CSEMap.InsertNode(N, IP);
4175  } else {
4176    if (NumOps == 1) {
4177      N = NodeAllocator.Allocate<UnarySDNode>();
4178      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4179    } else if (NumOps == 2) {
4180      N = NodeAllocator.Allocate<BinarySDNode>();
4181      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4182    } else if (NumOps == 3) {
4183      N = NodeAllocator.Allocate<TernarySDNode>();
4184      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4185    } else {
4186      N = NodeAllocator.Allocate<SDNode>();
4187      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4188    }
4189  }
4190  AllNodes.push_back(N);
4191#ifndef NDEBUG
4192  VerifyNode(N);
4193#endif
4194  return SDValue(N, 0);
4195}
4196
4197SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
4198  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList);
4199}
4200
4201SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4202  return getNode(Opcode, DL, VTList, 0, 0);
4203}
4204
4205SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4206                              SDValue N1) {
4207  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, N1);
4208}
4209
4210SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4211                              SDValue N1) {
4212  SDValue Ops[] = { N1 };
4213  return getNode(Opcode, DL, VTList, Ops, 1);
4214}
4215
4216SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4217                              SDValue N1, SDValue N2) {
4218  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, N1, N2);
4219}
4220
4221SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4222                              SDValue N1, SDValue N2) {
4223  SDValue Ops[] = { N1, N2 };
4224  return getNode(Opcode, DL, VTList, Ops, 2);
4225}
4226
4227SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4228                              SDValue N1, SDValue N2, SDValue N3) {
4229  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, N1, N2, N3);
4230}
4231
4232SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4233                              SDValue N1, SDValue N2, SDValue N3) {
4234  SDValue Ops[] = { N1, N2, N3 };
4235  return getNode(Opcode, DL, VTList, Ops, 3);
4236}
4237
4238SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4239                              SDValue N1, SDValue N2, SDValue N3,
4240                              SDValue N4) {
4241  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, N1, N2, N3, N4);
4242}
4243
4244SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4245                              SDValue N1, SDValue N2, SDValue N3,
4246                              SDValue N4) {
4247  SDValue Ops[] = { N1, N2, N3, N4 };
4248  return getNode(Opcode, DL, VTList, Ops, 4);
4249}
4250
4251SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4252                              SDValue N1, SDValue N2, SDValue N3,
4253                              SDValue N4, SDValue N5) {
4254  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, N1, N2, N3, N4, N5);
4255}
4256
4257SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4258                              SDValue N1, SDValue N2, SDValue N3,
4259                              SDValue N4, SDValue N5) {
4260  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4261  return getNode(Opcode, DL, VTList, Ops, 5);
4262}
4263
4264SDVTList SelectionDAG::getVTList(MVT VT) {
4265  return makeVTList(SDNode::getValueTypeList(VT), 1);
4266}
4267
4268SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
4269  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4270       E = VTList.rend(); I != E; ++I)
4271    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4272      return *I;
4273
4274  MVT *Array = Allocator.Allocate<MVT>(2);
4275  Array[0] = VT1;
4276  Array[1] = VT2;
4277  SDVTList Result = makeVTList(Array, 2);
4278  VTList.push_back(Result);
4279  return Result;
4280}
4281
4282SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
4283  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4284       E = VTList.rend(); I != E; ++I)
4285    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4286                          I->VTs[2] == VT3)
4287      return *I;
4288
4289  MVT *Array = Allocator.Allocate<MVT>(3);
4290  Array[0] = VT1;
4291  Array[1] = VT2;
4292  Array[2] = VT3;
4293  SDVTList Result = makeVTList(Array, 3);
4294  VTList.push_back(Result);
4295  return Result;
4296}
4297
4298SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
4299  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4300       E = VTList.rend(); I != E; ++I)
4301    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4302                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4303      return *I;
4304
4305  MVT *Array = Allocator.Allocate<MVT>(3);
4306  Array[0] = VT1;
4307  Array[1] = VT2;
4308  Array[2] = VT3;
4309  Array[3] = VT4;
4310  SDVTList Result = makeVTList(Array, 4);
4311  VTList.push_back(Result);
4312  return Result;
4313}
4314
4315SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
4316  switch (NumVTs) {
4317    case 0: assert(0 && "Cannot have nodes without results!");
4318    case 1: return getVTList(VTs[0]);
4319    case 2: return getVTList(VTs[0], VTs[1]);
4320    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4321    default: break;
4322  }
4323
4324  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4325       E = VTList.rend(); I != E; ++I) {
4326    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4327      continue;
4328
4329    bool NoMatch = false;
4330    for (unsigned i = 2; i != NumVTs; ++i)
4331      if (VTs[i] != I->VTs[i]) {
4332        NoMatch = true;
4333        break;
4334      }
4335    if (!NoMatch)
4336      return *I;
4337  }
4338
4339  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
4340  std::copy(VTs, VTs+NumVTs, Array);
4341  SDVTList Result = makeVTList(Array, NumVTs);
4342  VTList.push_back(Result);
4343  return Result;
4344}
4345
4346
4347/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4348/// specified operands.  If the resultant node already exists in the DAG,
4349/// this does not modify the specified node, instead it returns the node that
4350/// already exists.  If the resultant node does not exist in the DAG, the
4351/// input node is returned.  As a degenerate case, if you specify the same
4352/// input operands as the node already has, the input node is returned.
4353SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4354  SDNode *N = InN.getNode();
4355  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4356
4357  // Check to see if there is no change.
4358  if (Op == N->getOperand(0)) return InN;
4359
4360  // See if the modified node already exists.
4361  void *InsertPos = 0;
4362  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4363    return SDValue(Existing, InN.getResNo());
4364
4365  // Nope it doesn't.  Remove the node from its current place in the maps.
4366  if (InsertPos)
4367    if (!RemoveNodeFromCSEMaps(N))
4368      InsertPos = 0;
4369
4370  // Now we update the operands.
4371  N->OperandList[0].set(Op);
4372
4373  // If this gets put into a CSE map, add it.
4374  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4375  return InN;
4376}
4377
4378SDValue SelectionDAG::
4379UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4380  SDNode *N = InN.getNode();
4381  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4382
4383  // Check to see if there is no change.
4384  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4385    return InN;   // No operands changed, just return the input node.
4386
4387  // See if the modified node already exists.
4388  void *InsertPos = 0;
4389  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4390    return SDValue(Existing, InN.getResNo());
4391
4392  // Nope it doesn't.  Remove the node from its current place in the maps.
4393  if (InsertPos)
4394    if (!RemoveNodeFromCSEMaps(N))
4395      InsertPos = 0;
4396
4397  // Now we update the operands.
4398  if (N->OperandList[0] != Op1)
4399    N->OperandList[0].set(Op1);
4400  if (N->OperandList[1] != Op2)
4401    N->OperandList[1].set(Op2);
4402
4403  // If this gets put into a CSE map, add it.
4404  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4405  return InN;
4406}
4407
4408SDValue SelectionDAG::
4409UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4410  SDValue Ops[] = { Op1, Op2, Op3 };
4411  return UpdateNodeOperands(N, Ops, 3);
4412}
4413
4414SDValue SelectionDAG::
4415UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4416                   SDValue Op3, SDValue Op4) {
4417  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4418  return UpdateNodeOperands(N, Ops, 4);
4419}
4420
4421SDValue SelectionDAG::
4422UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4423                   SDValue Op3, SDValue Op4, SDValue Op5) {
4424  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4425  return UpdateNodeOperands(N, Ops, 5);
4426}
4427
4428SDValue SelectionDAG::
4429UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4430  SDNode *N = InN.getNode();
4431  assert(N->getNumOperands() == NumOps &&
4432         "Update with wrong number of operands");
4433
4434  // Check to see if there is no change.
4435  bool AnyChange = false;
4436  for (unsigned i = 0; i != NumOps; ++i) {
4437    if (Ops[i] != N->getOperand(i)) {
4438      AnyChange = true;
4439      break;
4440    }
4441  }
4442
4443  // No operands changed, just return the input node.
4444  if (!AnyChange) return InN;
4445
4446  // See if the modified node already exists.
4447  void *InsertPos = 0;
4448  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4449    return SDValue(Existing, InN.getResNo());
4450
4451  // Nope it doesn't.  Remove the node from its current place in the maps.
4452  if (InsertPos)
4453    if (!RemoveNodeFromCSEMaps(N))
4454      InsertPos = 0;
4455
4456  // Now we update the operands.
4457  for (unsigned i = 0; i != NumOps; ++i)
4458    if (N->OperandList[i] != Ops[i])
4459      N->OperandList[i].set(Ops[i]);
4460
4461  // If this gets put into a CSE map, add it.
4462  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4463  return InN;
4464}
4465
4466/// DropOperands - Release the operands and set this node to have
4467/// zero operands.
4468void SDNode::DropOperands() {
4469  // Unlike the code in MorphNodeTo that does this, we don't need to
4470  // watch for dead nodes here.
4471  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4472    SDUse &Use = *I++;
4473    Use.set(SDValue());
4474  }
4475}
4476
4477/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4478/// machine opcode.
4479///
4480SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4481                                   MVT VT) {
4482  SDVTList VTs = getVTList(VT);
4483  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4484}
4485
4486SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4487                                   MVT VT, SDValue Op1) {
4488  SDVTList VTs = getVTList(VT);
4489  SDValue Ops[] = { Op1 };
4490  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4491}
4492
4493SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4494                                   MVT VT, SDValue Op1,
4495                                   SDValue Op2) {
4496  SDVTList VTs = getVTList(VT);
4497  SDValue Ops[] = { Op1, Op2 };
4498  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4499}
4500
4501SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4502                                   MVT VT, SDValue Op1,
4503                                   SDValue Op2, SDValue Op3) {
4504  SDVTList VTs = getVTList(VT);
4505  SDValue Ops[] = { Op1, Op2, Op3 };
4506  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4507}
4508
4509SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4510                                   MVT VT, const SDValue *Ops,
4511                                   unsigned NumOps) {
4512  SDVTList VTs = getVTList(VT);
4513  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4514}
4515
4516SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4517                                   MVT VT1, MVT VT2, const SDValue *Ops,
4518                                   unsigned NumOps) {
4519  SDVTList VTs = getVTList(VT1, VT2);
4520  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4521}
4522
4523SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4524                                   MVT VT1, MVT VT2) {
4525  SDVTList VTs = getVTList(VT1, VT2);
4526  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4527}
4528
4529SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4530                                   MVT VT1, MVT VT2, MVT VT3,
4531                                   const SDValue *Ops, unsigned NumOps) {
4532  SDVTList VTs = getVTList(VT1, VT2, VT3);
4533  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4534}
4535
4536SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4537                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4538                                   const SDValue *Ops, unsigned NumOps) {
4539  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4540  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4541}
4542
4543SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4544                                   MVT VT1, MVT VT2,
4545                                   SDValue Op1) {
4546  SDVTList VTs = getVTList(VT1, VT2);
4547  SDValue Ops[] = { Op1 };
4548  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4549}
4550
4551SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4552                                   MVT VT1, MVT VT2,
4553                                   SDValue Op1, SDValue Op2) {
4554  SDVTList VTs = getVTList(VT1, VT2);
4555  SDValue Ops[] = { Op1, Op2 };
4556  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4557}
4558
4559SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4560                                   MVT VT1, MVT VT2,
4561                                   SDValue Op1, SDValue Op2,
4562                                   SDValue Op3) {
4563  SDVTList VTs = getVTList(VT1, VT2);
4564  SDValue Ops[] = { Op1, Op2, Op3 };
4565  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4566}
4567
4568SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4569                                   MVT VT1, MVT VT2, MVT VT3,
4570                                   SDValue Op1, SDValue Op2,
4571                                   SDValue Op3) {
4572  SDVTList VTs = getVTList(VT1, VT2, VT3);
4573  SDValue Ops[] = { Op1, Op2, Op3 };
4574  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4575}
4576
4577SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4578                                   SDVTList VTs, const SDValue *Ops,
4579                                   unsigned NumOps) {
4580  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4581}
4582
4583SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4584                                  MVT VT) {
4585  SDVTList VTs = getVTList(VT);
4586  return MorphNodeTo(N, Opc, VTs, 0, 0);
4587}
4588
4589SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4590                                  MVT VT, SDValue Op1) {
4591  SDVTList VTs = getVTList(VT);
4592  SDValue Ops[] = { Op1 };
4593  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4594}
4595
4596SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4597                                  MVT VT, SDValue Op1,
4598                                  SDValue Op2) {
4599  SDVTList VTs = getVTList(VT);
4600  SDValue Ops[] = { Op1, Op2 };
4601  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4602}
4603
4604SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4605                                  MVT VT, SDValue Op1,
4606                                  SDValue Op2, SDValue Op3) {
4607  SDVTList VTs = getVTList(VT);
4608  SDValue Ops[] = { Op1, Op2, Op3 };
4609  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4610}
4611
4612SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4613                                  MVT VT, const SDValue *Ops,
4614                                  unsigned NumOps) {
4615  SDVTList VTs = getVTList(VT);
4616  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4617}
4618
4619SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4620                                  MVT VT1, MVT VT2, const SDValue *Ops,
4621                                  unsigned NumOps) {
4622  SDVTList VTs = getVTList(VT1, VT2);
4623  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4624}
4625
4626SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4627                                  MVT VT1, MVT VT2) {
4628  SDVTList VTs = getVTList(VT1, VT2);
4629  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4630}
4631
4632SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4633                                  MVT VT1, MVT VT2, MVT VT3,
4634                                  const SDValue *Ops, unsigned NumOps) {
4635  SDVTList VTs = getVTList(VT1, VT2, VT3);
4636  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4637}
4638
4639SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4640                                  MVT VT1, MVT VT2,
4641                                  SDValue Op1) {
4642  SDVTList VTs = getVTList(VT1, VT2);
4643  SDValue Ops[] = { Op1 };
4644  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4645}
4646
4647SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4648                                  MVT VT1, MVT VT2,
4649                                  SDValue Op1, SDValue Op2) {
4650  SDVTList VTs = getVTList(VT1, VT2);
4651  SDValue Ops[] = { Op1, Op2 };
4652  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4653}
4654
4655SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4656                                  MVT VT1, MVT VT2,
4657                                  SDValue Op1, SDValue Op2,
4658                                  SDValue Op3) {
4659  SDVTList VTs = getVTList(VT1, VT2);
4660  SDValue Ops[] = { Op1, Op2, Op3 };
4661  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4662}
4663
4664/// MorphNodeTo - These *mutate* the specified node to have the specified
4665/// return type, opcode, and operands.
4666///
4667/// Note that MorphNodeTo returns the resultant node.  If there is already a
4668/// node of the specified opcode and operands, it returns that node instead of
4669/// the current one.
4670///
4671/// Using MorphNodeTo is faster than creating a new node and swapping it in
4672/// with ReplaceAllUsesWith both because it often avoids allocating a new
4673/// node, and because it doesn't require CSE recalculation for any of
4674/// the node's users.
4675///
4676SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4677                                  SDVTList VTs, const SDValue *Ops,
4678                                  unsigned NumOps) {
4679  // If an identical node already exists, use it.
4680  void *IP = 0;
4681  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4682    FoldingSetNodeID ID;
4683    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4684    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4685      return ON;
4686  }
4687
4688  if (!RemoveNodeFromCSEMaps(N))
4689    IP = 0;
4690
4691  // Start the morphing.
4692  N->NodeType = Opc;
4693  N->ValueList = VTs.VTs;
4694  N->NumValues = VTs.NumVTs;
4695
4696  // Clear the operands list, updating used nodes to remove this from their
4697  // use list.  Keep track of any operands that become dead as a result.
4698  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4699  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4700    SDUse &Use = *I++;
4701    SDNode *Used = Use.getNode();
4702    Use.set(SDValue());
4703    if (Used->use_empty())
4704      DeadNodeSet.insert(Used);
4705  }
4706
4707  // If NumOps is larger than the # of operands we currently have, reallocate
4708  // the operand list.
4709  if (NumOps > N->NumOperands) {
4710    if (N->OperandsNeedDelete)
4711      delete[] N->OperandList;
4712
4713    if (N->isMachineOpcode()) {
4714      // We're creating a final node that will live unmorphed for the
4715      // remainder of the current SelectionDAG iteration, so we can allocate
4716      // the operands directly out of a pool with no recycling metadata.
4717      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4718      N->OperandsNeedDelete = false;
4719    } else {
4720      N->OperandList = new SDUse[NumOps];
4721      N->OperandsNeedDelete = true;
4722    }
4723  }
4724
4725  // Assign the new operands.
4726  N->NumOperands = NumOps;
4727  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4728    N->OperandList[i].setUser(N);
4729    N->OperandList[i].setInitial(Ops[i]);
4730  }
4731
4732  // Delete any nodes that are still dead after adding the uses for the
4733  // new operands.
4734  SmallVector<SDNode *, 16> DeadNodes;
4735  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4736       E = DeadNodeSet.end(); I != E; ++I)
4737    if ((*I)->use_empty())
4738      DeadNodes.push_back(*I);
4739  RemoveDeadNodes(DeadNodes);
4740
4741  if (IP)
4742    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4743  return N;
4744}
4745
4746
4747/// getTargetNode - These are used for target selectors to create a new node
4748/// with specified return type(s), target opcode, and operands.
4749///
4750/// Note that getTargetNode returns the resultant node.  If there is already a
4751/// node of the specified opcode and operands, it returns that node instead of
4752/// the current one.
4753SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4754  return getNode(~Opcode, VT).getNode();
4755}
4756SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT) {
4757  return getNode(~Opcode, dl, VT).getNode();
4758}
4759
4760SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4761  return getNode(~Opcode, VT, Op1).getNode();
4762}
4763SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4764                                    SDValue Op1) {
4765  return getNode(~Opcode, dl, VT, Op1).getNode();
4766}
4767
4768SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4769                                    SDValue Op1, SDValue Op2) {
4770  return getNode(~Opcode, VT, Op1, Op2).getNode();
4771}
4772SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4773                                    SDValue Op1, SDValue Op2) {
4774  return getNode(~Opcode, dl, VT, Op1, Op2).getNode();
4775}
4776
4777SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4778                                    SDValue Op1, SDValue Op2,
4779                                    SDValue Op3) {
4780  return getNode(~Opcode, VT, Op1, Op2, Op3).getNode();
4781}
4782SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4783                                    SDValue Op1, SDValue Op2,
4784                                    SDValue Op3) {
4785  return getNode(~Opcode, dl, VT, Op1, Op2, Op3).getNode();
4786}
4787
4788SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4789                                    const SDValue *Ops, unsigned NumOps) {
4790  return getNode(~Opcode, VT, Ops, NumOps).getNode();
4791}
4792SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4793                                    const SDValue *Ops, unsigned NumOps) {
4794  return getNode(~Opcode, dl, VT, Ops, NumOps).getNode();
4795}
4796
4797SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4798  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4799  SDValue Op;
4800  return getNode(~Opcode, VTs, 2, &Op, 0).getNode();
4801}
4802SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4803                                    MVT VT1, MVT VT2) {
4804  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4805  SDValue Op;
4806  return getNode(~Opcode, dl, VTs, 2, &Op, 0).getNode();
4807}
4808
4809SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4810                                    MVT VT2, SDValue Op1) {
4811  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4812  return getNode(~Opcode, VTs, 2, &Op1, 1).getNode();
4813}
4814SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4815                                    MVT VT2, SDValue Op1) {
4816  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4817  return getNode(~Opcode, dl, VTs, 2, &Op1, 1).getNode();
4818}
4819
4820SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4821                                    MVT VT2, SDValue Op1,
4822                                    SDValue Op2) {
4823  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4824  SDValue Ops[] = { Op1, Op2 };
4825  return getNode(~Opcode, VTs, 2, Ops, 2).getNode();
4826}
4827SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4828                                    MVT VT2, SDValue Op1,
4829                                    SDValue Op2) {
4830  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4831  SDValue Ops[] = { Op1, Op2 };
4832  return getNode(~Opcode, dl, VTs, 2, Ops, 2).getNode();
4833}
4834
4835SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4836                                    MVT VT2, SDValue Op1,
4837                                    SDValue Op2, SDValue Op3) {
4838  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4839  SDValue Ops[] = { Op1, Op2, Op3 };
4840  return getNode(~Opcode, VTs, 2, Ops, 3).getNode();
4841}
4842SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4843                                    MVT VT2, SDValue Op1,
4844                                    SDValue Op2, SDValue Op3) {
4845  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4846  SDValue Ops[] = { Op1, Op2, Op3 };
4847  return getNode(~Opcode, dl, VTs, 2, Ops, 3).getNode();
4848}
4849
4850SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4851                                    const SDValue *Ops, unsigned NumOps) {
4852  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4853  return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode();
4854}
4855SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4856                                    MVT VT1, MVT VT2,
4857                                    const SDValue *Ops, unsigned NumOps) {
4858  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4859  return getNode(~Opcode, dl, VTs, 2, Ops, NumOps).getNode();
4860}
4861
4862SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4863                                    SDValue Op1, SDValue Op2) {
4864  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4865  SDValue Ops[] = { Op1, Op2 };
4866  return getNode(~Opcode, VTs, 3, Ops, 2).getNode();
4867}
4868SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4869                                    MVT VT1, MVT VT2, MVT VT3,
4870                                    SDValue Op1, SDValue Op2) {
4871  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4872  SDValue Ops[] = { Op1, Op2 };
4873  return getNode(~Opcode, dl, VTs, 3, Ops, 2).getNode();
4874}
4875
4876SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4877                                    SDValue Op1, SDValue Op2,
4878                                    SDValue Op3) {
4879  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4880  SDValue Ops[] = { Op1, Op2, Op3 };
4881  return getNode(~Opcode, VTs, 3, Ops, 3).getNode();
4882}
4883SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4884                                    MVT VT1, MVT VT2, MVT VT3,
4885                                    SDValue Op1, SDValue Op2,
4886                                    SDValue Op3) {
4887  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4888  SDValue Ops[] = { Op1, Op2, Op3 };
4889  return getNode(~Opcode, dl, VTs, 3, Ops, 3).getNode();
4890}
4891
4892SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4893                                    const SDValue *Ops, unsigned NumOps) {
4894  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4895  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4896}
4897SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4898                                    MVT VT1, MVT VT2, MVT VT3,
4899                                    const SDValue *Ops, unsigned NumOps) {
4900  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4901  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4902}
4903
4904SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4905                                    MVT VT2, MVT VT3, MVT VT4,
4906                                    const SDValue *Ops, unsigned NumOps) {
4907  std::vector<MVT> VTList;
4908  VTList.push_back(VT1);
4909  VTList.push_back(VT2);
4910  VTList.push_back(VT3);
4911  VTList.push_back(VT4);
4912  const MVT *VTs = getNodeValueTypes(VTList);
4913  return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode();
4914}
4915SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4916                                    MVT VT2, MVT VT3, MVT VT4,
4917                                    const SDValue *Ops, unsigned NumOps) {
4918  std::vector<MVT> VTList;
4919  VTList.push_back(VT1);
4920  VTList.push_back(VT2);
4921  VTList.push_back(VT3);
4922  VTList.push_back(VT4);
4923  const MVT *VTs = getNodeValueTypes(VTList);
4924  return getNode(~Opcode, dl, VTs, 4, Ops, NumOps).getNode();
4925}
4926
4927SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4928                                    const std::vector<MVT> &ResultTys,
4929                                    const SDValue *Ops, unsigned NumOps) {
4930  const MVT *VTs = getNodeValueTypes(ResultTys);
4931  return getNode(~Opcode, VTs, ResultTys.size(),
4932                 Ops, NumOps).getNode();
4933}
4934SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4935                                    const std::vector<MVT> &ResultTys,
4936                                    const SDValue *Ops, unsigned NumOps) {
4937  const MVT *VTs = getNodeValueTypes(ResultTys);
4938  return getNode(~Opcode, dl, VTs, ResultTys.size(),
4939                 Ops, NumOps).getNode();
4940}
4941
4942/// getNodeIfExists - Get the specified node if it's already available, or
4943/// else return NULL.
4944SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4945                                      const SDValue *Ops, unsigned NumOps) {
4946  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4947    FoldingSetNodeID ID;
4948    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4949    void *IP = 0;
4950    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4951      return E;
4952  }
4953  return NULL;
4954}
4955
4956/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4957/// This can cause recursive merging of nodes in the DAG.
4958///
4959/// This version assumes From has a single result value.
4960///
4961void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4962                                      DAGUpdateListener *UpdateListener) {
4963  SDNode *From = FromN.getNode();
4964  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4965         "Cannot replace with this method!");
4966  assert(From != To.getNode() && "Cannot replace uses of with self");
4967
4968  // Iterate over all the existing uses of From. New uses will be added
4969  // to the beginning of the use list, which we avoid visiting.
4970  // This specifically avoids visiting uses of From that arise while the
4971  // replacement is happening, because any such uses would be the result
4972  // of CSE: If an existing node looks like From after one of its operands
4973  // is replaced by To, we don't want to replace of all its users with To
4974  // too. See PR3018 for more info.
4975  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4976  while (UI != UE) {
4977    SDNode *User = *UI;
4978
4979    // This node is about to morph, remove its old self from the CSE maps.
4980    RemoveNodeFromCSEMaps(User);
4981
4982    // A user can appear in a use list multiple times, and when this
4983    // happens the uses are usually next to each other in the list.
4984    // To help reduce the number of CSE recomputations, process all
4985    // the uses of this user that we can find this way.
4986    do {
4987      SDUse &Use = UI.getUse();
4988      ++UI;
4989      Use.set(To);
4990    } while (UI != UE && *UI == User);
4991
4992    // Now that we have modified User, add it back to the CSE maps.  If it
4993    // already exists there, recursively merge the results together.
4994    AddModifiedNodeToCSEMaps(User, UpdateListener);
4995  }
4996}
4997
4998/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4999/// This can cause recursive merging of nodes in the DAG.
5000///
5001/// This version assumes From/To have matching types and numbers of result
5002/// values.
5003///
5004void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5005                                      DAGUpdateListener *UpdateListener) {
5006  assert(From->getVTList().VTs == To->getVTList().VTs &&
5007         From->getNumValues() == To->getNumValues() &&
5008         "Cannot use this version of ReplaceAllUsesWith!");
5009
5010  // Handle the trivial case.
5011  if (From == To)
5012    return;
5013
5014  // Iterate over just the existing users of From. See the comments in
5015  // the ReplaceAllUsesWith above.
5016  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5017  while (UI != UE) {
5018    SDNode *User = *UI;
5019
5020    // This node is about to morph, remove its old self from the CSE maps.
5021    RemoveNodeFromCSEMaps(User);
5022
5023    // A user can appear in a use list multiple times, and when this
5024    // happens the uses are usually next to each other in the list.
5025    // To help reduce the number of CSE recomputations, process all
5026    // the uses of this user that we can find this way.
5027    do {
5028      SDUse &Use = UI.getUse();
5029      ++UI;
5030      Use.setNode(To);
5031    } while (UI != UE && *UI == User);
5032
5033    // Now that we have modified User, add it back to the CSE maps.  If it
5034    // already exists there, recursively merge the results together.
5035    AddModifiedNodeToCSEMaps(User, UpdateListener);
5036  }
5037}
5038
5039/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5040/// This can cause recursive merging of nodes in the DAG.
5041///
5042/// This version can replace From with any result values.  To must match the
5043/// number and types of values returned by From.
5044void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5045                                      const SDValue *To,
5046                                      DAGUpdateListener *UpdateListener) {
5047  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5048    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5049
5050  // Iterate over just the existing users of From. See the comments in
5051  // the ReplaceAllUsesWith above.
5052  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5053  while (UI != UE) {
5054    SDNode *User = *UI;
5055
5056    // This node is about to morph, remove its old self from the CSE maps.
5057    RemoveNodeFromCSEMaps(User);
5058
5059    // A user can appear in a use list multiple times, and when this
5060    // happens the uses are usually next to each other in the list.
5061    // To help reduce the number of CSE recomputations, process all
5062    // the uses of this user that we can find this way.
5063    do {
5064      SDUse &Use = UI.getUse();
5065      const SDValue &ToOp = To[Use.getResNo()];
5066      ++UI;
5067      Use.set(ToOp);
5068    } while (UI != UE && *UI == User);
5069
5070    // Now that we have modified User, add it back to the CSE maps.  If it
5071    // already exists there, recursively merge the results together.
5072    AddModifiedNodeToCSEMaps(User, UpdateListener);
5073  }
5074}
5075
5076/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5077/// uses of other values produced by From.getNode() alone.  The Deleted
5078/// vector is handled the same way as for ReplaceAllUsesWith.
5079void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5080                                             DAGUpdateListener *UpdateListener){
5081  // Handle the really simple, really trivial case efficiently.
5082  if (From == To) return;
5083
5084  // Handle the simple, trivial, case efficiently.
5085  if (From.getNode()->getNumValues() == 1) {
5086    ReplaceAllUsesWith(From, To, UpdateListener);
5087    return;
5088  }
5089
5090  // Iterate over just the existing users of From. See the comments in
5091  // the ReplaceAllUsesWith above.
5092  SDNode::use_iterator UI = From.getNode()->use_begin(),
5093                       UE = From.getNode()->use_end();
5094  while (UI != UE) {
5095    SDNode *User = *UI;
5096    bool UserRemovedFromCSEMaps = false;
5097
5098    // A user can appear in a use list multiple times, and when this
5099    // happens the uses are usually next to each other in the list.
5100    // To help reduce the number of CSE recomputations, process all
5101    // the uses of this user that we can find this way.
5102    do {
5103      SDUse &Use = UI.getUse();
5104
5105      // Skip uses of different values from the same node.
5106      if (Use.getResNo() != From.getResNo()) {
5107        ++UI;
5108        continue;
5109      }
5110
5111      // If this node hasn't been modified yet, it's still in the CSE maps,
5112      // so remove its old self from the CSE maps.
5113      if (!UserRemovedFromCSEMaps) {
5114        RemoveNodeFromCSEMaps(User);
5115        UserRemovedFromCSEMaps = true;
5116      }
5117
5118      ++UI;
5119      Use.set(To);
5120    } while (UI != UE && *UI == User);
5121
5122    // We are iterating over all uses of the From node, so if a use
5123    // doesn't use the specific value, no changes are made.
5124    if (!UserRemovedFromCSEMaps)
5125      continue;
5126
5127    // Now that we have modified User, add it back to the CSE maps.  If it
5128    // already exists there, recursively merge the results together.
5129    AddModifiedNodeToCSEMaps(User, UpdateListener);
5130  }
5131}
5132
5133namespace {
5134  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5135  /// to record information about a use.
5136  struct UseMemo {
5137    SDNode *User;
5138    unsigned Index;
5139    SDUse *Use;
5140  };
5141
5142  /// operator< - Sort Memos by User.
5143  bool operator<(const UseMemo &L, const UseMemo &R) {
5144    return (intptr_t)L.User < (intptr_t)R.User;
5145  }
5146}
5147
5148/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5149/// uses of other values produced by From.getNode() alone.  The same value
5150/// may appear in both the From and To list.  The Deleted vector is
5151/// handled the same way as for ReplaceAllUsesWith.
5152void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5153                                              const SDValue *To,
5154                                              unsigned Num,
5155                                              DAGUpdateListener *UpdateListener){
5156  // Handle the simple, trivial case efficiently.
5157  if (Num == 1)
5158    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5159
5160  // Read up all the uses and make records of them. This helps
5161  // processing new uses that are introduced during the
5162  // replacement process.
5163  SmallVector<UseMemo, 4> Uses;
5164  for (unsigned i = 0; i != Num; ++i) {
5165    unsigned FromResNo = From[i].getResNo();
5166    SDNode *FromNode = From[i].getNode();
5167    for (SDNode::use_iterator UI = FromNode->use_begin(),
5168         E = FromNode->use_end(); UI != E; ++UI) {
5169      SDUse &Use = UI.getUse();
5170      if (Use.getResNo() == FromResNo) {
5171        UseMemo Memo = { *UI, i, &Use };
5172        Uses.push_back(Memo);
5173      }
5174    }
5175  }
5176
5177  // Sort the uses, so that all the uses from a given User are together.
5178  std::sort(Uses.begin(), Uses.end());
5179
5180  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5181       UseIndex != UseIndexEnd; ) {
5182    // We know that this user uses some value of From.  If it is the right
5183    // value, update it.
5184    SDNode *User = Uses[UseIndex].User;
5185
5186    // This node is about to morph, remove its old self from the CSE maps.
5187    RemoveNodeFromCSEMaps(User);
5188
5189    // The Uses array is sorted, so all the uses for a given User
5190    // are next to each other in the list.
5191    // To help reduce the number of CSE recomputations, process all
5192    // the uses of this user that we can find this way.
5193    do {
5194      unsigned i = Uses[UseIndex].Index;
5195      SDUse &Use = *Uses[UseIndex].Use;
5196      ++UseIndex;
5197
5198      Use.set(To[i]);
5199    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5200
5201    // Now that we have modified User, add it back to the CSE maps.  If it
5202    // already exists there, recursively merge the results together.
5203    AddModifiedNodeToCSEMaps(User, UpdateListener);
5204  }
5205}
5206
5207/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5208/// based on their topological order. It returns the maximum id and a vector
5209/// of the SDNodes* in assigned order by reference.
5210unsigned SelectionDAG::AssignTopologicalOrder() {
5211
5212  unsigned DAGSize = 0;
5213
5214  // SortedPos tracks the progress of the algorithm. Nodes before it are
5215  // sorted, nodes after it are unsorted. When the algorithm completes
5216  // it is at the end of the list.
5217  allnodes_iterator SortedPos = allnodes_begin();
5218
5219  // Visit all the nodes. Move nodes with no operands to the front of
5220  // the list immediately. Annotate nodes that do have operands with their
5221  // operand count. Before we do this, the Node Id fields of the nodes
5222  // may contain arbitrary values. After, the Node Id fields for nodes
5223  // before SortedPos will contain the topological sort index, and the
5224  // Node Id fields for nodes At SortedPos and after will contain the
5225  // count of outstanding operands.
5226  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5227    SDNode *N = I++;
5228    unsigned Degree = N->getNumOperands();
5229    if (Degree == 0) {
5230      // A node with no uses, add it to the result array immediately.
5231      N->setNodeId(DAGSize++);
5232      allnodes_iterator Q = N;
5233      if (Q != SortedPos)
5234        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5235      ++SortedPos;
5236    } else {
5237      // Temporarily use the Node Id as scratch space for the degree count.
5238      N->setNodeId(Degree);
5239    }
5240  }
5241
5242  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5243  // such that by the time the end is reached all nodes will be sorted.
5244  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5245    SDNode *N = I;
5246    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5247         UI != UE; ++UI) {
5248      SDNode *P = *UI;
5249      unsigned Degree = P->getNodeId();
5250      --Degree;
5251      if (Degree == 0) {
5252        // All of P's operands are sorted, so P may sorted now.
5253        P->setNodeId(DAGSize++);
5254        if (P != SortedPos)
5255          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5256        ++SortedPos;
5257      } else {
5258        // Update P's outstanding operand count.
5259        P->setNodeId(Degree);
5260      }
5261    }
5262  }
5263
5264  assert(SortedPos == AllNodes.end() &&
5265         "Topological sort incomplete!");
5266  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5267         "First node in topological sort is not the entry token!");
5268  assert(AllNodes.front().getNodeId() == 0 &&
5269         "First node in topological sort has non-zero id!");
5270  assert(AllNodes.front().getNumOperands() == 0 &&
5271         "First node in topological sort has operands!");
5272  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5273         "Last node in topologic sort has unexpected id!");
5274  assert(AllNodes.back().use_empty() &&
5275         "Last node in topologic sort has users!");
5276  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5277  return DAGSize;
5278}
5279
5280
5281
5282//===----------------------------------------------------------------------===//
5283//                              SDNode Class
5284//===----------------------------------------------------------------------===//
5285
5286HandleSDNode::~HandleSDNode() {
5287  DropOperands();
5288}
5289
5290GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
5291                                         MVT VT, int64_t o)
5292  : SDNode(isa<GlobalVariable>(GA) &&
5293           cast<GlobalVariable>(GA)->isThreadLocal() ?
5294           // Thread Local
5295           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
5296           // Non Thread Local
5297           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
5298           getSDVTList(VT)), Offset(o) {
5299  TheGlobal = const_cast<GlobalValue*>(GA);
5300}
5301
5302MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
5303                     const Value *srcValue, int SVO,
5304                     unsigned alignment, bool vol)
5305 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
5306   Flags(encodeMemSDNodeFlags(vol, alignment)) {
5307
5308  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
5309  assert(getAlignment() == alignment && "Alignment representation error!");
5310  assert(isVolatile() == vol && "Volatile representation error!");
5311}
5312
5313MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops,
5314                     unsigned NumOps, MVT memvt, const Value *srcValue,
5315                     int SVO, unsigned alignment, bool vol)
5316   : SDNode(Opc, VTs, Ops, NumOps),
5317     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
5318     Flags(vol | ((Log2_32(alignment) + 1) << 1)) {
5319  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
5320  assert(getAlignment() == alignment && "Alignment representation error!");
5321  assert(isVolatile() == vol && "Volatile representation error!");
5322}
5323
5324MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT memvt,
5325                     const Value *srcValue, int SVO,
5326                     unsigned alignment, bool vol)
5327 : SDNode(Opc, dl, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
5328   Flags(encodeMemSDNodeFlags(vol, alignment)) {
5329
5330  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
5331  assert(getAlignment() == alignment && "Alignment representation error!");
5332  assert(isVolatile() == vol && "Volatile representation error!");
5333}
5334
5335MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5336                     const SDValue *Ops,
5337                     unsigned NumOps, MVT memvt, const Value *srcValue,
5338                     int SVO, unsigned alignment, bool vol)
5339   : SDNode(Opc, dl, VTs, Ops, NumOps),
5340     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
5341     Flags(vol | ((Log2_32(alignment) + 1) << 1)) {
5342  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
5343  assert(getAlignment() == alignment && "Alignment representation error!");
5344  assert(isVolatile() == vol && "Volatile representation error!");
5345}
5346
5347/// getMemOperand - Return a MachineMemOperand object describing the memory
5348/// reference performed by this memory reference.
5349MachineMemOperand MemSDNode::getMemOperand() const {
5350  int Flags = 0;
5351  if (isa<LoadSDNode>(this))
5352    Flags = MachineMemOperand::MOLoad;
5353  else if (isa<StoreSDNode>(this))
5354    Flags = MachineMemOperand::MOStore;
5355  else if (isa<AtomicSDNode>(this)) {
5356    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
5357  }
5358  else {
5359    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
5360    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
5361    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
5362    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
5363  }
5364
5365  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
5366  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
5367
5368  // Check if the memory reference references a frame index
5369  const FrameIndexSDNode *FI =
5370  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
5371  if (!getSrcValue() && FI)
5372    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
5373                             Flags, 0, Size, getAlignment());
5374  else
5375    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
5376                             Size, getAlignment());
5377}
5378
5379/// Profile - Gather unique data for the node.
5380///
5381void SDNode::Profile(FoldingSetNodeID &ID) const {
5382  AddNodeIDNode(ID, this);
5383}
5384
5385/// getValueTypeList - Return a pointer to the specified value type.
5386///
5387const MVT *SDNode::getValueTypeList(MVT VT) {
5388  if (VT.isExtended()) {
5389    static std::set<MVT, MVT::compareRawBits> EVTs;
5390    return &(*EVTs.insert(VT).first);
5391  } else {
5392    static MVT VTs[MVT::LAST_VALUETYPE];
5393    VTs[VT.getSimpleVT()] = VT;
5394    return &VTs[VT.getSimpleVT()];
5395  }
5396}
5397
5398/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5399/// indicated value.  This method ignores uses of other values defined by this
5400/// operation.
5401bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5402  assert(Value < getNumValues() && "Bad value!");
5403
5404  // TODO: Only iterate over uses of a given value of the node
5405  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5406    if (UI.getUse().getResNo() == Value) {
5407      if (NUses == 0)
5408        return false;
5409      --NUses;
5410    }
5411  }
5412
5413  // Found exactly the right number of uses?
5414  return NUses == 0;
5415}
5416
5417
5418/// hasAnyUseOfValue - Return true if there are any use of the indicated
5419/// value. This method ignores uses of other values defined by this operation.
5420bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5421  assert(Value < getNumValues() && "Bad value!");
5422
5423  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5424    if (UI.getUse().getResNo() == Value)
5425      return true;
5426
5427  return false;
5428}
5429
5430
5431/// isOnlyUserOf - Return true if this node is the only use of N.
5432///
5433bool SDNode::isOnlyUserOf(SDNode *N) const {
5434  bool Seen = false;
5435  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5436    SDNode *User = *I;
5437    if (User == this)
5438      Seen = true;
5439    else
5440      return false;
5441  }
5442
5443  return Seen;
5444}
5445
5446/// isOperand - Return true if this node is an operand of N.
5447///
5448bool SDValue::isOperandOf(SDNode *N) const {
5449  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5450    if (*this == N->getOperand(i))
5451      return true;
5452  return false;
5453}
5454
5455bool SDNode::isOperandOf(SDNode *N) const {
5456  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5457    if (this == N->OperandList[i].getNode())
5458      return true;
5459  return false;
5460}
5461
5462/// reachesChainWithoutSideEffects - Return true if this operand (which must
5463/// be a chain) reaches the specified operand without crossing any
5464/// side-effecting instructions.  In practice, this looks through token
5465/// factors and non-volatile loads.  In order to remain efficient, this only
5466/// looks a couple of nodes in, it does not do an exhaustive search.
5467bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5468                                               unsigned Depth) const {
5469  if (*this == Dest) return true;
5470
5471  // Don't search too deeply, we just want to be able to see through
5472  // TokenFactor's etc.
5473  if (Depth == 0) return false;
5474
5475  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5476  // of the operands of the TF reach dest, then we can do the xform.
5477  if (getOpcode() == ISD::TokenFactor) {
5478    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5479      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5480        return true;
5481    return false;
5482  }
5483
5484  // Loads don't have side effects, look through them.
5485  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5486    if (!Ld->isVolatile())
5487      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5488  }
5489  return false;
5490}
5491
5492
5493static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
5494                            SmallPtrSet<SDNode *, 32> &Visited) {
5495  if (found || !Visited.insert(N))
5496    return;
5497
5498  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
5499    SDNode *Op = N->getOperand(i).getNode();
5500    if (Op == P) {
5501      found = true;
5502      return;
5503    }
5504    findPredecessor(Op, P, found, Visited);
5505  }
5506}
5507
5508/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5509/// is either an operand of N or it can be reached by recursively traversing
5510/// up the operands.
5511/// NOTE: this is an expensive method. Use it carefully.
5512bool SDNode::isPredecessorOf(SDNode *N) const {
5513  SmallPtrSet<SDNode *, 32> Visited;
5514  bool found = false;
5515  findPredecessor(N, this, found, Visited);
5516  return found;
5517}
5518
5519uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5520  assert(Num < NumOperands && "Invalid child # of SDNode!");
5521  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5522}
5523
5524std::string SDNode::getOperationName(const SelectionDAG *G) const {
5525  switch (getOpcode()) {
5526  default:
5527    if (getOpcode() < ISD::BUILTIN_OP_END)
5528      return "<<Unknown DAG Node>>";
5529    if (isMachineOpcode()) {
5530      if (G)
5531        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5532          if (getMachineOpcode() < TII->getNumOpcodes())
5533            return TII->get(getMachineOpcode()).getName();
5534      return "<<Unknown Machine Node>>";
5535    }
5536    if (G) {
5537      const TargetLowering &TLI = G->getTargetLoweringInfo();
5538      const char *Name = TLI.getTargetNodeName(getOpcode());
5539      if (Name) return Name;
5540      return "<<Unknown Target Node>>";
5541    }
5542    return "<<Unknown Node>>";
5543
5544#ifndef NDEBUG
5545  case ISD::DELETED_NODE:
5546    return "<<Deleted Node!>>";
5547#endif
5548  case ISD::PREFETCH:      return "Prefetch";
5549  case ISD::MEMBARRIER:    return "MemBarrier";
5550  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5551  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5552  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5553  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5554  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5555  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5556  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5557  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5558  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5559  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5560  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5561  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5562  case ISD::PCMARKER:      return "PCMarker";
5563  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5564  case ISD::SRCVALUE:      return "SrcValue";
5565  case ISD::MEMOPERAND:    return "MemOperand";
5566  case ISD::EntryToken:    return "EntryToken";
5567  case ISD::TokenFactor:   return "TokenFactor";
5568  case ISD::AssertSext:    return "AssertSext";
5569  case ISD::AssertZext:    return "AssertZext";
5570
5571  case ISD::BasicBlock:    return "BasicBlock";
5572  case ISD::ARG_FLAGS:     return "ArgFlags";
5573  case ISD::VALUETYPE:     return "ValueType";
5574  case ISD::Register:      return "Register";
5575
5576  case ISD::Constant:      return "Constant";
5577  case ISD::ConstantFP:    return "ConstantFP";
5578  case ISD::GlobalAddress: return "GlobalAddress";
5579  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5580  case ISD::FrameIndex:    return "FrameIndex";
5581  case ISD::JumpTable:     return "JumpTable";
5582  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5583  case ISD::RETURNADDR: return "RETURNADDR";
5584  case ISD::FRAMEADDR: return "FRAMEADDR";
5585  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5586  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5587  case ISD::EHSELECTION: return "EHSELECTION";
5588  case ISD::EH_RETURN: return "EH_RETURN";
5589  case ISD::ConstantPool:  return "ConstantPool";
5590  case ISD::ExternalSymbol: return "ExternalSymbol";
5591  case ISD::INTRINSIC_WO_CHAIN: {
5592    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5593    return Intrinsic::getName((Intrinsic::ID)IID);
5594  }
5595  case ISD::INTRINSIC_VOID:
5596  case ISD::INTRINSIC_W_CHAIN: {
5597    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5598    return Intrinsic::getName((Intrinsic::ID)IID);
5599  }
5600
5601  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5602  case ISD::TargetConstant: return "TargetConstant";
5603  case ISD::TargetConstantFP:return "TargetConstantFP";
5604  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5605  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5606  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5607  case ISD::TargetJumpTable:  return "TargetJumpTable";
5608  case ISD::TargetConstantPool:  return "TargetConstantPool";
5609  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5610
5611  case ISD::CopyToReg:     return "CopyToReg";
5612  case ISD::CopyFromReg:   return "CopyFromReg";
5613  case ISD::UNDEF:         return "undef";
5614  case ISD::MERGE_VALUES:  return "merge_values";
5615  case ISD::INLINEASM:     return "inlineasm";
5616  case ISD::DBG_LABEL:     return "dbg_label";
5617  case ISD::EH_LABEL:      return "eh_label";
5618  case ISD::DECLARE:       return "declare";
5619  case ISD::HANDLENODE:    return "handlenode";
5620  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5621  case ISD::CALL:          return "call";
5622
5623  // Unary operators
5624  case ISD::FABS:   return "fabs";
5625  case ISD::FNEG:   return "fneg";
5626  case ISD::FSQRT:  return "fsqrt";
5627  case ISD::FSIN:   return "fsin";
5628  case ISD::FCOS:   return "fcos";
5629  case ISD::FPOWI:  return "fpowi";
5630  case ISD::FPOW:   return "fpow";
5631  case ISD::FTRUNC: return "ftrunc";
5632  case ISD::FFLOOR: return "ffloor";
5633  case ISD::FCEIL:  return "fceil";
5634  case ISD::FRINT:  return "frint";
5635  case ISD::FNEARBYINT: return "fnearbyint";
5636
5637  // Binary operators
5638  case ISD::ADD:    return "add";
5639  case ISD::SUB:    return "sub";
5640  case ISD::MUL:    return "mul";
5641  case ISD::MULHU:  return "mulhu";
5642  case ISD::MULHS:  return "mulhs";
5643  case ISD::SDIV:   return "sdiv";
5644  case ISD::UDIV:   return "udiv";
5645  case ISD::SREM:   return "srem";
5646  case ISD::UREM:   return "urem";
5647  case ISD::SMUL_LOHI:  return "smul_lohi";
5648  case ISD::UMUL_LOHI:  return "umul_lohi";
5649  case ISD::SDIVREM:    return "sdivrem";
5650  case ISD::UDIVREM:    return "udivrem";
5651  case ISD::AND:    return "and";
5652  case ISD::OR:     return "or";
5653  case ISD::XOR:    return "xor";
5654  case ISD::SHL:    return "shl";
5655  case ISD::SRA:    return "sra";
5656  case ISD::SRL:    return "srl";
5657  case ISD::ROTL:   return "rotl";
5658  case ISD::ROTR:   return "rotr";
5659  case ISD::FADD:   return "fadd";
5660  case ISD::FSUB:   return "fsub";
5661  case ISD::FMUL:   return "fmul";
5662  case ISD::FDIV:   return "fdiv";
5663  case ISD::FREM:   return "frem";
5664  case ISD::FCOPYSIGN: return "fcopysign";
5665  case ISD::FGETSIGN:  return "fgetsign";
5666
5667  case ISD::SETCC:       return "setcc";
5668  case ISD::VSETCC:      return "vsetcc";
5669  case ISD::SELECT:      return "select";
5670  case ISD::SELECT_CC:   return "select_cc";
5671  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5672  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5673  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5674  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5675  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5676  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5677  case ISD::CARRY_FALSE:         return "carry_false";
5678  case ISD::ADDC:        return "addc";
5679  case ISD::ADDE:        return "adde";
5680  case ISD::SADDO:       return "saddo";
5681  case ISD::UADDO:       return "uaddo";
5682  case ISD::SSUBO:       return "ssubo";
5683  case ISD::USUBO:       return "usubo";
5684  case ISD::SMULO:       return "smulo";
5685  case ISD::UMULO:       return "umulo";
5686  case ISD::SUBC:        return "subc";
5687  case ISD::SUBE:        return "sube";
5688  case ISD::SHL_PARTS:   return "shl_parts";
5689  case ISD::SRA_PARTS:   return "sra_parts";
5690  case ISD::SRL_PARTS:   return "srl_parts";
5691
5692  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5693  case ISD::INSERT_SUBREG:      return "insert_subreg";
5694
5695  // Conversion operators.
5696  case ISD::SIGN_EXTEND: return "sign_extend";
5697  case ISD::ZERO_EXTEND: return "zero_extend";
5698  case ISD::ANY_EXTEND:  return "any_extend";
5699  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5700  case ISD::TRUNCATE:    return "truncate";
5701  case ISD::FP_ROUND:    return "fp_round";
5702  case ISD::FLT_ROUNDS_: return "flt_rounds";
5703  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5704  case ISD::FP_EXTEND:   return "fp_extend";
5705
5706  case ISD::SINT_TO_FP:  return "sint_to_fp";
5707  case ISD::UINT_TO_FP:  return "uint_to_fp";
5708  case ISD::FP_TO_SINT:  return "fp_to_sint";
5709  case ISD::FP_TO_UINT:  return "fp_to_uint";
5710  case ISD::BIT_CONVERT: return "bit_convert";
5711
5712  case ISD::CONVERT_RNDSAT: {
5713    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5714    default: assert(0 && "Unknown cvt code!");
5715    case ISD::CVT_FF:  return "cvt_ff";
5716    case ISD::CVT_FS:  return "cvt_fs";
5717    case ISD::CVT_FU:  return "cvt_fu";
5718    case ISD::CVT_SF:  return "cvt_sf";
5719    case ISD::CVT_UF:  return "cvt_uf";
5720    case ISD::CVT_SS:  return "cvt_ss";
5721    case ISD::CVT_SU:  return "cvt_su";
5722    case ISD::CVT_US:  return "cvt_us";
5723    case ISD::CVT_UU:  return "cvt_uu";
5724    }
5725  }
5726
5727    // Control flow instructions
5728  case ISD::BR:      return "br";
5729  case ISD::BRIND:   return "brind";
5730  case ISD::BR_JT:   return "br_jt";
5731  case ISD::BRCOND:  return "brcond";
5732  case ISD::BR_CC:   return "br_cc";
5733  case ISD::RET:     return "ret";
5734  case ISD::CALLSEQ_START:  return "callseq_start";
5735  case ISD::CALLSEQ_END:    return "callseq_end";
5736
5737    // Other operators
5738  case ISD::LOAD:               return "load";
5739  case ISD::STORE:              return "store";
5740  case ISD::VAARG:              return "vaarg";
5741  case ISD::VACOPY:             return "vacopy";
5742  case ISD::VAEND:              return "vaend";
5743  case ISD::VASTART:            return "vastart";
5744  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5745  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5746  case ISD::BUILD_PAIR:         return "build_pair";
5747  case ISD::STACKSAVE:          return "stacksave";
5748  case ISD::STACKRESTORE:       return "stackrestore";
5749  case ISD::TRAP:               return "trap";
5750
5751  // Bit manipulation
5752  case ISD::BSWAP:   return "bswap";
5753  case ISD::CTPOP:   return "ctpop";
5754  case ISD::CTTZ:    return "cttz";
5755  case ISD::CTLZ:    return "ctlz";
5756
5757  // Debug info
5758  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5759  case ISD::DEBUG_LOC: return "debug_loc";
5760
5761  // Trampolines
5762  case ISD::TRAMPOLINE: return "trampoline";
5763
5764  case ISD::CONDCODE:
5765    switch (cast<CondCodeSDNode>(this)->get()) {
5766    default: assert(0 && "Unknown setcc condition!");
5767    case ISD::SETOEQ:  return "setoeq";
5768    case ISD::SETOGT:  return "setogt";
5769    case ISD::SETOGE:  return "setoge";
5770    case ISD::SETOLT:  return "setolt";
5771    case ISD::SETOLE:  return "setole";
5772    case ISD::SETONE:  return "setone";
5773
5774    case ISD::SETO:    return "seto";
5775    case ISD::SETUO:   return "setuo";
5776    case ISD::SETUEQ:  return "setue";
5777    case ISD::SETUGT:  return "setugt";
5778    case ISD::SETUGE:  return "setuge";
5779    case ISD::SETULT:  return "setult";
5780    case ISD::SETULE:  return "setule";
5781    case ISD::SETUNE:  return "setune";
5782
5783    case ISD::SETEQ:   return "seteq";
5784    case ISD::SETGT:   return "setgt";
5785    case ISD::SETGE:   return "setge";
5786    case ISD::SETLT:   return "setlt";
5787    case ISD::SETLE:   return "setle";
5788    case ISD::SETNE:   return "setne";
5789    }
5790  }
5791}
5792
5793const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5794  switch (AM) {
5795  default:
5796    return "";
5797  case ISD::PRE_INC:
5798    return "<pre-inc>";
5799  case ISD::PRE_DEC:
5800    return "<pre-dec>";
5801  case ISD::POST_INC:
5802    return "<post-inc>";
5803  case ISD::POST_DEC:
5804    return "<post-dec>";
5805  }
5806}
5807
5808std::string ISD::ArgFlagsTy::getArgFlagsString() {
5809  std::string S = "< ";
5810
5811  if (isZExt())
5812    S += "zext ";
5813  if (isSExt())
5814    S += "sext ";
5815  if (isInReg())
5816    S += "inreg ";
5817  if (isSRet())
5818    S += "sret ";
5819  if (isByVal())
5820    S += "byval ";
5821  if (isNest())
5822    S += "nest ";
5823  if (getByValAlign())
5824    S += "byval-align:" + utostr(getByValAlign()) + " ";
5825  if (getOrigAlign())
5826    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5827  if (getByValSize())
5828    S += "byval-size:" + utostr(getByValSize()) + " ";
5829  return S + ">";
5830}
5831
5832void SDNode::dump() const { dump(0); }
5833void SDNode::dump(const SelectionDAG *G) const {
5834  print(errs(), G);
5835  errs().flush();
5836}
5837
5838void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5839  OS << (void*)this << ": ";
5840
5841  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5842    if (i) OS << ",";
5843    if (getValueType(i) == MVT::Other)
5844      OS << "ch";
5845    else
5846      OS << getValueType(i).getMVTString();
5847  }
5848  OS << " = " << getOperationName(G);
5849
5850  OS << " ";
5851  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5852    if (i) OS << ", ";
5853    OS << (void*)getOperand(i).getNode();
5854    if (unsigned RN = getOperand(i).getResNo())
5855      OS << ":" << RN;
5856  }
5857
5858  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5859    SDNode *Mask = getOperand(2).getNode();
5860    OS << "<";
5861    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5862      if (i) OS << ",";
5863      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5864        OS << "u";
5865      else
5866        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5867    }
5868    OS << ">";
5869  }
5870
5871  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5872    OS << '<' << CSDN->getAPIntValue() << '>';
5873  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5874    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5875      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5876    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5877      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5878    else {
5879      OS << "<APFloat(";
5880      CSDN->getValueAPF().bitcastToAPInt().dump();
5881      OS << ")>";
5882    }
5883  } else if (const GlobalAddressSDNode *GADN =
5884             dyn_cast<GlobalAddressSDNode>(this)) {
5885    int64_t offset = GADN->getOffset();
5886    OS << '<';
5887    WriteAsOperand(OS, GADN->getGlobal());
5888    OS << '>';
5889    if (offset > 0)
5890      OS << " + " << offset;
5891    else
5892      OS << " " << offset;
5893  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5894    OS << "<" << FIDN->getIndex() << ">";
5895  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5896    OS << "<" << JTDN->getIndex() << ">";
5897  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5898    int offset = CP->getOffset();
5899    if (CP->isMachineConstantPoolEntry())
5900      OS << "<" << *CP->getMachineCPVal() << ">";
5901    else
5902      OS << "<" << *CP->getConstVal() << ">";
5903    if (offset > 0)
5904      OS << " + " << offset;
5905    else
5906      OS << " " << offset;
5907  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5908    OS << "<";
5909    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5910    if (LBB)
5911      OS << LBB->getName() << " ";
5912    OS << (const void*)BBDN->getBasicBlock() << ">";
5913  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5914    if (G && R->getReg() &&
5915        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5916      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5917    } else {
5918      OS << " #" << R->getReg();
5919    }
5920  } else if (const ExternalSymbolSDNode *ES =
5921             dyn_cast<ExternalSymbolSDNode>(this)) {
5922    OS << "'" << ES->getSymbol() << "'";
5923  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5924    if (M->getValue())
5925      OS << "<" << M->getValue() << ">";
5926    else
5927      OS << "<null>";
5928  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5929    if (M->MO.getValue())
5930      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5931    else
5932      OS << "<null:" << M->MO.getOffset() << ">";
5933  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5934    OS << N->getArgFlags().getArgFlagsString();
5935  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5936    OS << ":" << N->getVT().getMVTString();
5937  }
5938  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5939    const Value *SrcValue = LD->getSrcValue();
5940    int SrcOffset = LD->getSrcValueOffset();
5941    OS << " <";
5942    if (SrcValue)
5943      OS << SrcValue;
5944    else
5945      OS << "null";
5946    OS << ":" << SrcOffset << ">";
5947
5948    bool doExt = true;
5949    switch (LD->getExtensionType()) {
5950    default: doExt = false; break;
5951    case ISD::EXTLOAD: OS << " <anyext "; break;
5952    case ISD::SEXTLOAD: OS << " <sext "; break;
5953    case ISD::ZEXTLOAD: OS << " <zext "; break;
5954    }
5955    if (doExt)
5956      OS << LD->getMemoryVT().getMVTString() << ">";
5957
5958    const char *AM = getIndexedModeName(LD->getAddressingMode());
5959    if (*AM)
5960      OS << " " << AM;
5961    if (LD->isVolatile())
5962      OS << " <volatile>";
5963    OS << " alignment=" << LD->getAlignment();
5964  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5965    const Value *SrcValue = ST->getSrcValue();
5966    int SrcOffset = ST->getSrcValueOffset();
5967    OS << " <";
5968    if (SrcValue)
5969      OS << SrcValue;
5970    else
5971      OS << "null";
5972    OS << ":" << SrcOffset << ">";
5973
5974    if (ST->isTruncatingStore())
5975      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5976
5977    const char *AM = getIndexedModeName(ST->getAddressingMode());
5978    if (*AM)
5979      OS << " " << AM;
5980    if (ST->isVolatile())
5981      OS << " <volatile>";
5982    OS << " alignment=" << ST->getAlignment();
5983  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5984    const Value *SrcValue = AT->getSrcValue();
5985    int SrcOffset = AT->getSrcValueOffset();
5986    OS << " <";
5987    if (SrcValue)
5988      OS << SrcValue;
5989    else
5990      OS << "null";
5991    OS << ":" << SrcOffset << ">";
5992    if (AT->isVolatile())
5993      OS << " <volatile>";
5994    OS << " alignment=" << AT->getAlignment();
5995  }
5996}
5997
5998static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5999  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6000    if (N->getOperand(i).getNode()->hasOneUse())
6001      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6002    else
6003      cerr << "\n" << std::string(indent+2, ' ')
6004           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6005
6006
6007  cerr << "\n" << std::string(indent, ' ');
6008  N->dump(G);
6009}
6010
6011void SelectionDAG::dump() const {
6012  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
6013
6014  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6015       I != E; ++I) {
6016    const SDNode *N = I;
6017    if (!N->hasOneUse() && N != getRoot().getNode())
6018      DumpNodes(N, 2, this);
6019  }
6020
6021  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6022
6023  cerr << "\n\n";
6024}
6025
6026const Type *ConstantPoolSDNode::getType() const {
6027  if (isMachineConstantPoolEntry())
6028    return Val.MachineCPVal->getType();
6029  return Val.ConstVal->getType();
6030}
6031