SelectionDAG.cpp revision b4459088d62670b0f0333eab1b260622955ec3e5
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/ManagedStatic.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/System/Mutex.h"
38#include "llvm/ADT/SetVector.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/SmallSet.h"
41#include "llvm/ADT/SmallVector.h"
42#include "llvm/ADT/StringExtras.h"
43#include <algorithm>
44#include <cmath>
45using namespace llvm;
46
47/// makeVTList - Return an instance of the SDVTList struct initialized with the
48/// specified members.
49static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
50  SDVTList Res = {VTs, NumVTs};
51  return Res;
52}
53
54static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
55  switch (VT.getSimpleVT()) {
56  default: assert(0 && "Unknown FP format");
57  case MVT::f32:     return &APFloat::IEEEsingle;
58  case MVT::f64:     return &APFloat::IEEEdouble;
59  case MVT::f80:     return &APFloat::x87DoubleExtended;
60  case MVT::f128:    return &APFloat::IEEEquad;
61  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
62  }
63}
64
65SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
66
67//===----------------------------------------------------------------------===//
68//                              ConstantFPSDNode Class
69//===----------------------------------------------------------------------===//
70
71/// isExactlyValue - We don't rely on operator== working on double values, as
72/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
73/// As such, this method can be used to do an exact bit-for-bit comparison of
74/// two floating point values.
75bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
76  return getValueAPF().bitwiseIsEqual(V);
77}
78
79bool ConstantFPSDNode::isValueValidForType(MVT VT,
80                                           const APFloat& Val) {
81  assert(VT.isFloatingPoint() && "Can only convert between FP types");
82
83  // PPC long double cannot be converted to any other type.
84  if (VT == MVT::ppcf128 ||
85      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
86    return false;
87
88  // convert modifies in place, so make a copy.
89  APFloat Val2 = APFloat(Val);
90  bool losesInfo;
91  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
92                      &losesInfo);
93  return !losesInfo;
94}
95
96//===----------------------------------------------------------------------===//
97//                              ISD Namespace
98//===----------------------------------------------------------------------===//
99
100/// isBuildVectorAllOnes - Return true if the specified node is a
101/// BUILD_VECTOR where all of the elements are ~0 or undef.
102bool ISD::isBuildVectorAllOnes(const SDNode *N) {
103  // Look through a bit convert.
104  if (N->getOpcode() == ISD::BIT_CONVERT)
105    N = N->getOperand(0).getNode();
106
107  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
108
109  unsigned i = 0, e = N->getNumOperands();
110
111  // Skip over all of the undef values.
112  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
113    ++i;
114
115  // Do not accept an all-undef vector.
116  if (i == e) return false;
117
118  // Do not accept build_vectors that aren't all constants or which have non-~0
119  // elements.
120  SDValue NotZero = N->getOperand(i);
121  if (isa<ConstantSDNode>(NotZero)) {
122    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
123      return false;
124  } else if (isa<ConstantFPSDNode>(NotZero)) {
125    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
126                bitcastToAPInt().isAllOnesValue())
127      return false;
128  } else
129    return false;
130
131  // Okay, we have at least one ~0 value, check to see if the rest match or are
132  // undefs.
133  for (++i; i != e; ++i)
134    if (N->getOperand(i) != NotZero &&
135        N->getOperand(i).getOpcode() != ISD::UNDEF)
136      return false;
137  return true;
138}
139
140
141/// isBuildVectorAllZeros - Return true if the specified node is a
142/// BUILD_VECTOR where all of the elements are 0 or undef.
143bool ISD::isBuildVectorAllZeros(const SDNode *N) {
144  // Look through a bit convert.
145  if (N->getOpcode() == ISD::BIT_CONVERT)
146    N = N->getOperand(0).getNode();
147
148  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
149
150  unsigned i = 0, e = N->getNumOperands();
151
152  // Skip over all of the undef values.
153  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
154    ++i;
155
156  // Do not accept an all-undef vector.
157  if (i == e) return false;
158
159  // Do not accept build_vectors that aren't all constants or which have non-0
160  // elements.
161  SDValue Zero = N->getOperand(i);
162  if (isa<ConstantSDNode>(Zero)) {
163    if (!cast<ConstantSDNode>(Zero)->isNullValue())
164      return false;
165  } else if (isa<ConstantFPSDNode>(Zero)) {
166    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
167      return false;
168  } else
169    return false;
170
171  // Okay, we have at least one 0 value, check to see if the rest match or are
172  // undefs.
173  for (++i; i != e; ++i)
174    if (N->getOperand(i) != Zero &&
175        N->getOperand(i).getOpcode() != ISD::UNDEF)
176      return false;
177  return true;
178}
179
180/// isScalarToVector - Return true if the specified node is a
181/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
182/// element is not an undef.
183bool ISD::isScalarToVector(const SDNode *N) {
184  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
185    return true;
186
187  if (N->getOpcode() != ISD::BUILD_VECTOR)
188    return false;
189  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
190    return false;
191  unsigned NumElems = N->getNumOperands();
192  for (unsigned i = 1; i < NumElems; ++i) {
193    SDValue V = N->getOperand(i);
194    if (V.getOpcode() != ISD::UNDEF)
195      return false;
196  }
197  return true;
198}
199
200
201/// isDebugLabel - Return true if the specified node represents a debug
202/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
203bool ISD::isDebugLabel(const SDNode *N) {
204  SDValue Zero;
205  if (N->getOpcode() == ISD::DBG_LABEL)
206    return true;
207  if (N->isMachineOpcode() &&
208      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
209    return true;
210  return false;
211}
212
213/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
214/// when given the operation for (X op Y).
215ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
216  // To perform this operation, we just need to swap the L and G bits of the
217  // operation.
218  unsigned OldL = (Operation >> 2) & 1;
219  unsigned OldG = (Operation >> 1) & 1;
220  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
221                       (OldL << 1) |       // New G bit
222                       (OldG << 2));       // New L bit.
223}
224
225/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
226/// 'op' is a valid SetCC operation.
227ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
228  unsigned Operation = Op;
229  if (isInteger)
230    Operation ^= 7;   // Flip L, G, E bits, but not U.
231  else
232    Operation ^= 15;  // Flip all of the condition bits.
233
234  if (Operation > ISD::SETTRUE2)
235    Operation &= ~8;  // Don't let N and U bits get set.
236
237  return ISD::CondCode(Operation);
238}
239
240
241/// isSignedOp - For an integer comparison, return 1 if the comparison is a
242/// signed operation and 2 if the result is an unsigned comparison.  Return zero
243/// if the operation does not depend on the sign of the input (setne and seteq).
244static int isSignedOp(ISD::CondCode Opcode) {
245  switch (Opcode) {
246  default: assert(0 && "Illegal integer setcc operation!");
247  case ISD::SETEQ:
248  case ISD::SETNE: return 0;
249  case ISD::SETLT:
250  case ISD::SETLE:
251  case ISD::SETGT:
252  case ISD::SETGE: return 1;
253  case ISD::SETULT:
254  case ISD::SETULE:
255  case ISD::SETUGT:
256  case ISD::SETUGE: return 2;
257  }
258}
259
260/// getSetCCOrOperation - Return the result of a logical OR between different
261/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
262/// returns SETCC_INVALID if it is not possible to represent the resultant
263/// comparison.
264ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
265                                       bool isInteger) {
266  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
267    // Cannot fold a signed integer setcc with an unsigned integer setcc.
268    return ISD::SETCC_INVALID;
269
270  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
271
272  // If the N and U bits get set then the resultant comparison DOES suddenly
273  // care about orderedness, and is true when ordered.
274  if (Op > ISD::SETTRUE2)
275    Op &= ~16;     // Clear the U bit if the N bit is set.
276
277  // Canonicalize illegal integer setcc's.
278  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
279    Op = ISD::SETNE;
280
281  return ISD::CondCode(Op);
282}
283
284/// getSetCCAndOperation - Return the result of a logical AND between different
285/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
286/// function returns zero if it is not possible to represent the resultant
287/// comparison.
288ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
289                                        bool isInteger) {
290  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
291    // Cannot fold a signed setcc with an unsigned setcc.
292    return ISD::SETCC_INVALID;
293
294  // Combine all of the condition bits.
295  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
296
297  // Canonicalize illegal integer setcc's.
298  if (isInteger) {
299    switch (Result) {
300    default: break;
301    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
302    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
303    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
304    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
305    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
306    }
307  }
308
309  return Result;
310}
311
312const TargetMachine &SelectionDAG::getTarget() const {
313  return MF->getTarget();
314}
315
316//===----------------------------------------------------------------------===//
317//                           SDNode Profile Support
318//===----------------------------------------------------------------------===//
319
320/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
321///
322static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
323  ID.AddInteger(OpC);
324}
325
326/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
327/// solely with their pointer.
328static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
329  ID.AddPointer(VTList.VTs);
330}
331
332/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
333///
334static void AddNodeIDOperands(FoldingSetNodeID &ID,
335                              const SDValue *Ops, unsigned NumOps) {
336  for (; NumOps; --NumOps, ++Ops) {
337    ID.AddPointer(Ops->getNode());
338    ID.AddInteger(Ops->getResNo());
339  }
340}
341
342/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
343///
344static void AddNodeIDOperands(FoldingSetNodeID &ID,
345                              const SDUse *Ops, unsigned NumOps) {
346  for (; NumOps; --NumOps, ++Ops) {
347    ID.AddPointer(Ops->getNode());
348    ID.AddInteger(Ops->getResNo());
349  }
350}
351
352static void AddNodeIDNode(FoldingSetNodeID &ID,
353                          unsigned short OpC, SDVTList VTList,
354                          const SDValue *OpList, unsigned N) {
355  AddNodeIDOpcode(ID, OpC);
356  AddNodeIDValueTypes(ID, VTList);
357  AddNodeIDOperands(ID, OpList, N);
358}
359
360/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
361/// the NodeID data.
362static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
363  switch (N->getOpcode()) {
364  default: break;  // Normal nodes don't need extra info.
365  case ISD::ARG_FLAGS:
366    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
367    break;
368  case ISD::TargetConstant:
369  case ISD::Constant:
370    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
371    break;
372  case ISD::TargetConstantFP:
373  case ISD::ConstantFP: {
374    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
375    break;
376  }
377  case ISD::TargetGlobalAddress:
378  case ISD::GlobalAddress:
379  case ISD::TargetGlobalTLSAddress:
380  case ISD::GlobalTLSAddress: {
381    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
382    ID.AddPointer(GA->getGlobal());
383    ID.AddInteger(GA->getOffset());
384    break;
385  }
386  case ISD::BasicBlock:
387    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
388    break;
389  case ISD::Register:
390    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
391    break;
392  case ISD::DBG_STOPPOINT: {
393    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
394    ID.AddInteger(DSP->getLine());
395    ID.AddInteger(DSP->getColumn());
396    ID.AddPointer(DSP->getCompileUnit());
397    break;
398  }
399  case ISD::SRCVALUE:
400    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
401    break;
402  case ISD::MEMOPERAND: {
403    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
404    MO.Profile(ID);
405    break;
406  }
407  case ISD::FrameIndex:
408  case ISD::TargetFrameIndex:
409    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
410    break;
411  case ISD::JumpTable:
412  case ISD::TargetJumpTable:
413    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
414    break;
415  case ISD::ConstantPool:
416  case ISD::TargetConstantPool: {
417    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
418    ID.AddInteger(CP->getAlignment());
419    ID.AddInteger(CP->getOffset());
420    if (CP->isMachineConstantPoolEntry())
421      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
422    else
423      ID.AddPointer(CP->getConstVal());
424    break;
425  }
426  case ISD::CALL: {
427    const CallSDNode *Call = cast<CallSDNode>(N);
428    ID.AddInteger(Call->getCallingConv());
429    ID.AddInteger(Call->isVarArg());
430    break;
431  }
432  case ISD::LOAD: {
433    const LoadSDNode *LD = cast<LoadSDNode>(N);
434    ID.AddInteger(LD->getMemoryVT().getRawBits());
435    ID.AddInteger(LD->getRawSubclassData());
436    break;
437  }
438  case ISD::STORE: {
439    const StoreSDNode *ST = cast<StoreSDNode>(N);
440    ID.AddInteger(ST->getMemoryVT().getRawBits());
441    ID.AddInteger(ST->getRawSubclassData());
442    break;
443  }
444  case ISD::ATOMIC_CMP_SWAP:
445  case ISD::ATOMIC_SWAP:
446  case ISD::ATOMIC_LOAD_ADD:
447  case ISD::ATOMIC_LOAD_SUB:
448  case ISD::ATOMIC_LOAD_AND:
449  case ISD::ATOMIC_LOAD_OR:
450  case ISD::ATOMIC_LOAD_XOR:
451  case ISD::ATOMIC_LOAD_NAND:
452  case ISD::ATOMIC_LOAD_MIN:
453  case ISD::ATOMIC_LOAD_MAX:
454  case ISD::ATOMIC_LOAD_UMIN:
455  case ISD::ATOMIC_LOAD_UMAX: {
456    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
457    ID.AddInteger(AT->getMemoryVT().getRawBits());
458    ID.AddInteger(AT->getRawSubclassData());
459    break;
460  }
461  case ISD::VECTOR_SHUFFLE: {
462    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
463    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
464         i != e; ++i)
465      ID.AddInteger(SVN->getMaskElt(i));
466    break;
467  }
468  } // end switch (N->getOpcode())
469}
470
471/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
472/// data.
473static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
474  AddNodeIDOpcode(ID, N->getOpcode());
475  // Add the return value info.
476  AddNodeIDValueTypes(ID, N->getVTList());
477  // Add the operand info.
478  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
479
480  // Handle SDNode leafs with special info.
481  AddNodeIDCustom(ID, N);
482}
483
484/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
485/// the CSE map that carries alignment, volatility, indexing mode, and
486/// extension/truncation information.
487///
488static inline unsigned
489encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM,
490                     bool isVolatile, unsigned Alignment) {
491  assert((ConvType & 3) == ConvType &&
492         "ConvType may not require more than 2 bits!");
493  assert((AM & 7) == AM &&
494         "AM may not require more than 3 bits!");
495  return ConvType |
496         (AM << 2) |
497         (isVolatile << 5) |
498         ((Log2_32(Alignment) + 1) << 6);
499}
500
501//===----------------------------------------------------------------------===//
502//                              SelectionDAG Class
503//===----------------------------------------------------------------------===//
504
505/// doNotCSE - Return true if CSE should not be performed for this node.
506static bool doNotCSE(SDNode *N) {
507  if (N->getValueType(0) == MVT::Flag)
508    return true; // Never CSE anything that produces a flag.
509
510  switch (N->getOpcode()) {
511  default: break;
512  case ISD::HANDLENODE:
513  case ISD::DBG_LABEL:
514  case ISD::DBG_STOPPOINT:
515  case ISD::EH_LABEL:
516  case ISD::DECLARE:
517    return true;   // Never CSE these nodes.
518  }
519
520  // Check that remaining values produced are not flags.
521  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
522    if (N->getValueType(i) == MVT::Flag)
523      return true; // Never CSE anything that produces a flag.
524
525  return false;
526}
527
528/// RemoveDeadNodes - This method deletes all unreachable nodes in the
529/// SelectionDAG.
530void SelectionDAG::RemoveDeadNodes() {
531  // Create a dummy node (which is not added to allnodes), that adds a reference
532  // to the root node, preventing it from being deleted.
533  HandleSDNode Dummy(getRoot());
534
535  SmallVector<SDNode*, 128> DeadNodes;
536
537  // Add all obviously-dead nodes to the DeadNodes worklist.
538  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
539    if (I->use_empty())
540      DeadNodes.push_back(I);
541
542  RemoveDeadNodes(DeadNodes);
543
544  // If the root changed (e.g. it was a dead load, update the root).
545  setRoot(Dummy.getValue());
546}
547
548/// RemoveDeadNodes - This method deletes the unreachable nodes in the
549/// given list, and any nodes that become unreachable as a result.
550void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
551                                   DAGUpdateListener *UpdateListener) {
552
553  // Process the worklist, deleting the nodes and adding their uses to the
554  // worklist.
555  while (!DeadNodes.empty()) {
556    SDNode *N = DeadNodes.pop_back_val();
557
558    if (UpdateListener)
559      UpdateListener->NodeDeleted(N, 0);
560
561    // Take the node out of the appropriate CSE map.
562    RemoveNodeFromCSEMaps(N);
563
564    // Next, brutally remove the operand list.  This is safe to do, as there are
565    // no cycles in the graph.
566    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
567      SDUse &Use = *I++;
568      SDNode *Operand = Use.getNode();
569      Use.set(SDValue());
570
571      // Now that we removed this operand, see if there are no uses of it left.
572      if (Operand->use_empty())
573        DeadNodes.push_back(Operand);
574    }
575
576    DeallocateNode(N);
577  }
578}
579
580void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
581  SmallVector<SDNode*, 16> DeadNodes(1, N);
582  RemoveDeadNodes(DeadNodes, UpdateListener);
583}
584
585void SelectionDAG::DeleteNode(SDNode *N) {
586  // First take this out of the appropriate CSE map.
587  RemoveNodeFromCSEMaps(N);
588
589  // Finally, remove uses due to operands of this node, remove from the
590  // AllNodes list, and delete the node.
591  DeleteNodeNotInCSEMaps(N);
592}
593
594void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
595  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
596  assert(N->use_empty() && "Cannot delete a node that is not dead!");
597
598  // Drop all of the operands and decrement used node's use counts.
599  N->DropOperands();
600
601  DeallocateNode(N);
602}
603
604void SelectionDAG::DeallocateNode(SDNode *N) {
605  if (N->OperandsNeedDelete)
606    delete[] N->OperandList;
607
608  // Set the opcode to DELETED_NODE to help catch bugs when node
609  // memory is reallocated.
610  N->NodeType = ISD::DELETED_NODE;
611
612  NodeAllocator.Deallocate(AllNodes.remove(N));
613}
614
615/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
616/// correspond to it.  This is useful when we're about to delete or repurpose
617/// the node.  We don't want future request for structurally identical nodes
618/// to return N anymore.
619bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
620  bool Erased = false;
621  switch (N->getOpcode()) {
622  case ISD::EntryToken:
623    assert(0 && "EntryToken should not be in CSEMaps!");
624    return false;
625  case ISD::HANDLENODE: return false;  // noop.
626  case ISD::CONDCODE:
627    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
628           "Cond code doesn't exist!");
629    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
630    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
631    break;
632  case ISD::ExternalSymbol:
633    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
634    break;
635  case ISD::TargetExternalSymbol:
636    Erased =
637      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
638    break;
639  case ISD::VALUETYPE: {
640    MVT VT = cast<VTSDNode>(N)->getVT();
641    if (VT.isExtended()) {
642      Erased = ExtendedValueTypeNodes.erase(VT);
643    } else {
644      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
645      ValueTypeNodes[VT.getSimpleVT()] = 0;
646    }
647    break;
648  }
649  default:
650    // Remove it from the CSE Map.
651    Erased = CSEMap.RemoveNode(N);
652    break;
653  }
654#ifndef NDEBUG
655  // Verify that the node was actually in one of the CSE maps, unless it has a
656  // flag result (which cannot be CSE'd) or is one of the special cases that are
657  // not subject to CSE.
658  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
659      !N->isMachineOpcode() && !doNotCSE(N)) {
660    N->dump(this);
661    cerr << "\n";
662    assert(0 && "Node is not in map!");
663  }
664#endif
665  return Erased;
666}
667
668/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
669/// maps and modified in place. Add it back to the CSE maps, unless an identical
670/// node already exists, in which case transfer all its users to the existing
671/// node. This transfer can potentially trigger recursive merging.
672///
673void
674SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
675                                       DAGUpdateListener *UpdateListener) {
676  // For node types that aren't CSE'd, just act as if no identical node
677  // already exists.
678  if (!doNotCSE(N)) {
679    SDNode *Existing = CSEMap.GetOrInsertNode(N);
680    if (Existing != N) {
681      // If there was already an existing matching node, use ReplaceAllUsesWith
682      // to replace the dead one with the existing one.  This can cause
683      // recursive merging of other unrelated nodes down the line.
684      ReplaceAllUsesWith(N, Existing, UpdateListener);
685
686      // N is now dead.  Inform the listener if it exists and delete it.
687      if (UpdateListener)
688        UpdateListener->NodeDeleted(N, Existing);
689      DeleteNodeNotInCSEMaps(N);
690      return;
691    }
692  }
693
694  // If the node doesn't already exist, we updated it.  Inform a listener if
695  // it exists.
696  if (UpdateListener)
697    UpdateListener->NodeUpdated(N);
698}
699
700/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
701/// were replaced with those specified.  If this node is never memoized,
702/// return null, otherwise return a pointer to the slot it would take.  If a
703/// node already exists with these operands, the slot will be non-null.
704SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
705                                           void *&InsertPos) {
706  if (doNotCSE(N))
707    return 0;
708
709  SDValue Ops[] = { Op };
710  FoldingSetNodeID ID;
711  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
712  AddNodeIDCustom(ID, N);
713  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
714}
715
716/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
717/// were replaced with those specified.  If this node is never memoized,
718/// return null, otherwise return a pointer to the slot it would take.  If a
719/// node already exists with these operands, the slot will be non-null.
720SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
721                                           SDValue Op1, SDValue Op2,
722                                           void *&InsertPos) {
723  if (doNotCSE(N))
724    return 0;
725
726  SDValue Ops[] = { Op1, Op2 };
727  FoldingSetNodeID ID;
728  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
729  AddNodeIDCustom(ID, N);
730  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
731}
732
733
734/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
735/// were replaced with those specified.  If this node is never memoized,
736/// return null, otherwise return a pointer to the slot it would take.  If a
737/// node already exists with these operands, the slot will be non-null.
738SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
739                                           const SDValue *Ops,unsigned NumOps,
740                                           void *&InsertPos) {
741  if (doNotCSE(N))
742    return 0;
743
744  FoldingSetNodeID ID;
745  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
746  AddNodeIDCustom(ID, N);
747  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
748}
749
750/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
751void SelectionDAG::VerifyNode(SDNode *N) {
752  switch (N->getOpcode()) {
753  default:
754    break;
755  case ISD::BUILD_PAIR: {
756    MVT VT = N->getValueType(0);
757    assert(N->getNumValues() == 1 && "Too many results!");
758    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
759           "Wrong return type!");
760    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
761    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
762           "Mismatched operand types!");
763    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
764           "Wrong operand type!");
765    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
766           "Wrong return type size");
767    break;
768  }
769  case ISD::BUILD_VECTOR: {
770    assert(N->getNumValues() == 1 && "Too many results!");
771    assert(N->getValueType(0).isVector() && "Wrong return type!");
772    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
773           "Wrong number of operands!");
774    MVT EltVT = N->getValueType(0).getVectorElementType();
775    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
776      assert((I->getValueType() == EltVT ||
777             (EltVT.isInteger() && I->getValueType().isInteger() &&
778              EltVT.bitsLE(I->getValueType()))) &&
779            "Wrong operand type!");
780    break;
781  }
782  }
783}
784
785/// getMVTAlignment - Compute the default alignment value for the
786/// given type.
787///
788unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
789  const Type *Ty = VT == MVT::iPTR ?
790                   PointerType::get(Type::Int8Ty, 0) :
791                   VT.getTypeForMVT();
792
793  return TLI.getTargetData()->getABITypeAlignment(Ty);
794}
795
796// EntryNode could meaningfully have debug info if we can find it...
797SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
798  : TLI(tli), FLI(fli), DW(0),
799    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
800    getVTList(MVT::Other)), Root(getEntryNode()) {
801  AllNodes.push_back(&EntryNode);
802}
803
804void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
805                        DwarfWriter *dw) {
806  MF = &mf;
807  MMI = mmi;
808  DW = dw;
809}
810
811SelectionDAG::~SelectionDAG() {
812  allnodes_clear();
813}
814
815void SelectionDAG::allnodes_clear() {
816  assert(&*AllNodes.begin() == &EntryNode);
817  AllNodes.remove(AllNodes.begin());
818  while (!AllNodes.empty())
819    DeallocateNode(AllNodes.begin());
820}
821
822void SelectionDAG::clear() {
823  allnodes_clear();
824  OperandAllocator.Reset();
825  CSEMap.clear();
826
827  ExtendedValueTypeNodes.clear();
828  ExternalSymbols.clear();
829  TargetExternalSymbols.clear();
830  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
831            static_cast<CondCodeSDNode*>(0));
832  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
833            static_cast<SDNode*>(0));
834
835  EntryNode.UseList = 0;
836  AllNodes.push_back(&EntryNode);
837  Root = getEntryNode();
838}
839
840SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, MVT VT) {
841  if (Op.getValueType() == VT) return Op;
842  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
843                                   VT.getSizeInBits());
844  return getNode(ISD::AND, DL, Op.getValueType(), Op,
845                 getConstant(Imm, Op.getValueType()));
846}
847
848/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
849///
850SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, MVT VT) {
851  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
852  SDValue NegOne =
853    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
854  return getNode(ISD::XOR, DL, VT, Val, NegOne);
855}
856
857SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
858  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
859  assert((EltVT.getSizeInBits() >= 64 ||
860         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
861         "getConstant with a uint64_t value that doesn't fit in the type!");
862  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
863}
864
865SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
866  return getConstant(*ConstantInt::get(Val), VT, isT);
867}
868
869SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
870  assert(VT.isInteger() && "Cannot create FP integer constant!");
871
872  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
873  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
874         "APInt size does not match type size!");
875
876  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
877  FoldingSetNodeID ID;
878  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
879  ID.AddPointer(&Val);
880  void *IP = 0;
881  SDNode *N = NULL;
882  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
883    if (!VT.isVector())
884      return SDValue(N, 0);
885  if (!N) {
886    N = NodeAllocator.Allocate<ConstantSDNode>();
887    new (N) ConstantSDNode(isT, &Val, EltVT);
888    CSEMap.InsertNode(N, IP);
889    AllNodes.push_back(N);
890  }
891
892  SDValue Result(N, 0);
893  if (VT.isVector()) {
894    SmallVector<SDValue, 8> Ops;
895    Ops.assign(VT.getVectorNumElements(), Result);
896    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
897                     VT, &Ops[0], Ops.size());
898  }
899  return Result;
900}
901
902SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
903  return getConstant(Val, TLI.getPointerTy(), isTarget);
904}
905
906
907SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
908  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
909}
910
911SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
912  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
913
914  MVT EltVT =
915    VT.isVector() ? VT.getVectorElementType() : VT;
916
917  // Do the map lookup using the actual bit pattern for the floating point
918  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
919  // we don't have issues with SNANs.
920  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
921  FoldingSetNodeID ID;
922  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
923  ID.AddPointer(&V);
924  void *IP = 0;
925  SDNode *N = NULL;
926  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
927    if (!VT.isVector())
928      return SDValue(N, 0);
929  if (!N) {
930    N = NodeAllocator.Allocate<ConstantFPSDNode>();
931    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
932    CSEMap.InsertNode(N, IP);
933    AllNodes.push_back(N);
934  }
935
936  SDValue Result(N, 0);
937  if (VT.isVector()) {
938    SmallVector<SDValue, 8> Ops;
939    Ops.assign(VT.getVectorNumElements(), Result);
940    // FIXME DebugLoc info might be appropriate here
941    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
942                     VT, &Ops[0], Ops.size());
943  }
944  return Result;
945}
946
947SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
948  MVT EltVT =
949    VT.isVector() ? VT.getVectorElementType() : VT;
950  if (EltVT==MVT::f32)
951    return getConstantFP(APFloat((float)Val), VT, isTarget);
952  else
953    return getConstantFP(APFloat(Val), VT, isTarget);
954}
955
956SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
957                                       MVT VT, int64_t Offset,
958                                       bool isTargetGA) {
959  unsigned Opc;
960
961  // Truncate (with sign-extension) the offset value to the pointer size.
962  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
963  if (BitWidth < 64)
964    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
965
966  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
967  if (!GVar) {
968    // If GV is an alias then use the aliasee for determining thread-localness.
969    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
970      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
971  }
972
973  if (GVar && GVar->isThreadLocal())
974    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
975  else
976    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
977
978  FoldingSetNodeID ID;
979  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
980  ID.AddPointer(GV);
981  ID.AddInteger(Offset);
982  void *IP = 0;
983  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
984    return SDValue(E, 0);
985  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
986  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
987  CSEMap.InsertNode(N, IP);
988  AllNodes.push_back(N);
989  return SDValue(N, 0);
990}
991
992SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
993  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
994  FoldingSetNodeID ID;
995  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
996  ID.AddInteger(FI);
997  void *IP = 0;
998  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
999    return SDValue(E, 0);
1000  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1001  new (N) FrameIndexSDNode(FI, VT, isTarget);
1002  CSEMap.InsertNode(N, IP);
1003  AllNodes.push_back(N);
1004  return SDValue(N, 0);
1005}
1006
1007SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1008  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1009  FoldingSetNodeID ID;
1010  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1011  ID.AddInteger(JTI);
1012  void *IP = 0;
1013  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1014    return SDValue(E, 0);
1015  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1016  new (N) JumpTableSDNode(JTI, VT, isTarget);
1017  CSEMap.InsertNode(N, IP);
1018  AllNodes.push_back(N);
1019  return SDValue(N, 0);
1020}
1021
1022SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1023                                      unsigned Alignment, int Offset,
1024                                      bool isTarget) {
1025  if (Alignment == 0)
1026    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1027  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1028  FoldingSetNodeID ID;
1029  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1030  ID.AddInteger(Alignment);
1031  ID.AddInteger(Offset);
1032  ID.AddPointer(C);
1033  void *IP = 0;
1034  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1035    return SDValue(E, 0);
1036  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1037  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1038  CSEMap.InsertNode(N, IP);
1039  AllNodes.push_back(N);
1040  return SDValue(N, 0);
1041}
1042
1043
1044SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1045                                      unsigned Alignment, int Offset,
1046                                      bool isTarget) {
1047  if (Alignment == 0)
1048    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1049  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1050  FoldingSetNodeID ID;
1051  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1052  ID.AddInteger(Alignment);
1053  ID.AddInteger(Offset);
1054  C->AddSelectionDAGCSEId(ID);
1055  void *IP = 0;
1056  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1057    return SDValue(E, 0);
1058  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1059  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1060  CSEMap.InsertNode(N, IP);
1061  AllNodes.push_back(N);
1062  return SDValue(N, 0);
1063}
1064
1065SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1066  FoldingSetNodeID ID;
1067  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1068  ID.AddPointer(MBB);
1069  void *IP = 0;
1070  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1071    return SDValue(E, 0);
1072  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1073  new (N) BasicBlockSDNode(MBB);
1074  CSEMap.InsertNode(N, IP);
1075  AllNodes.push_back(N);
1076  return SDValue(N, 0);
1077}
1078
1079SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1080  FoldingSetNodeID ID;
1081  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1082  ID.AddInteger(Flags.getRawBits());
1083  void *IP = 0;
1084  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1085    return SDValue(E, 0);
1086  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1087  new (N) ARG_FLAGSSDNode(Flags);
1088  CSEMap.InsertNode(N, IP);
1089  AllNodes.push_back(N);
1090  return SDValue(N, 0);
1091}
1092
1093SDValue SelectionDAG::getValueType(MVT VT) {
1094  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1095    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1096
1097  SDNode *&N = VT.isExtended() ?
1098    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1099
1100  if (N) return SDValue(N, 0);
1101  N = NodeAllocator.Allocate<VTSDNode>();
1102  new (N) VTSDNode(VT);
1103  AllNodes.push_back(N);
1104  return SDValue(N, 0);
1105}
1106
1107SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1108  SDNode *&N = ExternalSymbols[Sym];
1109  if (N) return SDValue(N, 0);
1110  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1111  new (N) ExternalSymbolSDNode(false, Sym, VT);
1112  AllNodes.push_back(N);
1113  return SDValue(N, 0);
1114}
1115
1116SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1117  SDNode *&N = TargetExternalSymbols[Sym];
1118  if (N) return SDValue(N, 0);
1119  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1120  new (N) ExternalSymbolSDNode(true, Sym, VT);
1121  AllNodes.push_back(N);
1122  return SDValue(N, 0);
1123}
1124
1125SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1126  if ((unsigned)Cond >= CondCodeNodes.size())
1127    CondCodeNodes.resize(Cond+1);
1128
1129  if (CondCodeNodes[Cond] == 0) {
1130    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1131    new (N) CondCodeSDNode(Cond);
1132    CondCodeNodes[Cond] = N;
1133    AllNodes.push_back(N);
1134  }
1135  return SDValue(CondCodeNodes[Cond], 0);
1136}
1137
1138// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1139// the shuffle mask M that point at N1 to point at N2, and indices that point
1140// N2 to point at N1.
1141static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1142  std::swap(N1, N2);
1143  int NElts = M.size();
1144  for (int i = 0; i != NElts; ++i) {
1145    if (M[i] >= NElts)
1146      M[i] -= NElts;
1147    else if (M[i] >= 0)
1148      M[i] += NElts;
1149  }
1150}
1151
1152SDValue SelectionDAG::getVectorShuffle(MVT VT, DebugLoc dl, SDValue N1,
1153                                       SDValue N2, const int *Mask) {
1154  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1155  assert(VT.isVector() && N1.getValueType().isVector() &&
1156         "Vector Shuffle VTs must be a vectors");
1157  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1158         && "Vector Shuffle VTs must have same element type");
1159
1160  // Canonicalize shuffle undef, undef -> undef
1161  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1162    return N1;
1163
1164  // Validate that all indices in Mask are within the range of the elements
1165  // input to the shuffle.
1166  unsigned NElts = VT.getVectorNumElements();
1167  SmallVector<int, 8> MaskVec;
1168  for (unsigned i = 0; i != NElts; ++i) {
1169    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1170    MaskVec.push_back(Mask[i]);
1171  }
1172
1173  // Canonicalize shuffle v, v -> v, undef
1174  if (N1 == N2) {
1175    N2 = getUNDEF(VT);
1176    for (unsigned i = 0; i != NElts; ++i)
1177      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1178  }
1179
1180  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1181  if (N1.getOpcode() == ISD::UNDEF)
1182    commuteShuffle(N1, N2, MaskVec);
1183
1184  // Canonicalize all index into lhs, -> shuffle lhs, undef
1185  // Canonicalize all index into rhs, -> shuffle rhs, undef
1186  bool AllLHS = true, AllRHS = true;
1187  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1188  for (unsigned i = 0; i != NElts; ++i) {
1189    if (MaskVec[i] >= (int)NElts) {
1190      if (N2Undef)
1191        MaskVec[i] = -1;
1192      else
1193        AllLHS = false;
1194    } else if (MaskVec[i] >= 0) {
1195      AllRHS = false;
1196    }
1197  }
1198  if (AllLHS && AllRHS)
1199    return getUNDEF(VT);
1200  if (AllLHS && !N2Undef)
1201    N2 = getUNDEF(VT);
1202  if (AllRHS) {
1203    N1 = getUNDEF(VT);
1204    commuteShuffle(N1, N2, MaskVec);
1205  }
1206
1207  // If Identity shuffle, or all shuffle in to undef, return that node.
1208  bool AllUndef = true;
1209  bool Identity = true;
1210  for (unsigned i = 0; i != NElts; ++i) {
1211    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1212    if (MaskVec[i] >= 0) AllUndef = false;
1213  }
1214  if (Identity)
1215    return N1;
1216  if (AllUndef)
1217    return getUNDEF(VT);
1218
1219  FoldingSetNodeID ID;
1220  SDValue Ops[2] = { N1, N2 };
1221  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1222  for (unsigned i = 0; i != NElts; ++i)
1223    ID.AddInteger(MaskVec[i]);
1224
1225  void* IP = 0;
1226  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1227    return SDValue(E, 0);
1228
1229  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1230  // SDNode doesn't have access to it.  This memory will be "leaked" when
1231  // the node is deallocated, but recovered when the NodeAllocator is released.
1232  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1233  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1234
1235  ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1236  new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1237  CSEMap.InsertNode(N, IP);
1238  AllNodes.push_back(N);
1239  return SDValue(N, 0);
1240}
1241
1242SDValue SelectionDAG::getConvertRndSat(MVT VT, DebugLoc dl,
1243                                       SDValue Val, SDValue DTy,
1244                                       SDValue STy, SDValue Rnd, SDValue Sat,
1245                                       ISD::CvtCode Code) {
1246  // If the src and dest types are the same and the conversion is between
1247  // integer types of the same sign or two floats, no conversion is necessary.
1248  if (DTy == STy &&
1249      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1250    return Val;
1251
1252  FoldingSetNodeID ID;
1253  void* IP = 0;
1254  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1255    return SDValue(E, 0);
1256  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1257  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1258  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1259  CSEMap.InsertNode(N, IP);
1260  AllNodes.push_back(N);
1261  return SDValue(N, 0);
1262}
1263
1264SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1265  FoldingSetNodeID ID;
1266  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1267  ID.AddInteger(RegNo);
1268  void *IP = 0;
1269  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1270    return SDValue(E, 0);
1271  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1272  new (N) RegisterSDNode(RegNo, VT);
1273  CSEMap.InsertNode(N, IP);
1274  AllNodes.push_back(N);
1275  return SDValue(N, 0);
1276}
1277
1278SDValue SelectionDAG::getDbgStopPoint(DebugLoc DL, SDValue Root,
1279                                      unsigned Line, unsigned Col,
1280                                      Value *CU) {
1281  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1282  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1283  N->setDebugLoc(DL);
1284  AllNodes.push_back(N);
1285  return SDValue(N, 0);
1286}
1287
1288SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1289                               SDValue Root,
1290                               unsigned LabelID) {
1291  FoldingSetNodeID ID;
1292  SDValue Ops[] = { Root };
1293  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1294  ID.AddInteger(LabelID);
1295  void *IP = 0;
1296  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1297    return SDValue(E, 0);
1298  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1299  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1300  CSEMap.InsertNode(N, IP);
1301  AllNodes.push_back(N);
1302  return SDValue(N, 0);
1303}
1304
1305SDValue SelectionDAG::getSrcValue(const Value *V) {
1306  assert((!V || isa<PointerType>(V->getType())) &&
1307         "SrcValue is not a pointer?");
1308
1309  FoldingSetNodeID ID;
1310  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1311  ID.AddPointer(V);
1312
1313  void *IP = 0;
1314  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1315    return SDValue(E, 0);
1316
1317  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1318  new (N) SrcValueSDNode(V);
1319  CSEMap.InsertNode(N, IP);
1320  AllNodes.push_back(N);
1321  return SDValue(N, 0);
1322}
1323
1324SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1325#ifndef NDEBUG
1326  const Value *v = MO.getValue();
1327  assert((!v || isa<PointerType>(v->getType())) &&
1328         "SrcValue is not a pointer?");
1329#endif
1330
1331  FoldingSetNodeID ID;
1332  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1333  MO.Profile(ID);
1334
1335  void *IP = 0;
1336  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1337    return SDValue(E, 0);
1338
1339  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1340  new (N) MemOperandSDNode(MO);
1341  CSEMap.InsertNode(N, IP);
1342  AllNodes.push_back(N);
1343  return SDValue(N, 0);
1344}
1345
1346/// getShiftAmountOperand - Return the specified value casted to
1347/// the target's desired shift amount type.
1348SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1349  MVT OpTy = Op.getValueType();
1350  MVT ShTy = TLI.getShiftAmountTy();
1351  if (OpTy == ShTy || OpTy.isVector()) return Op;
1352
1353  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1354  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1355}
1356
1357/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1358/// specified value type.
1359SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1360  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1361  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1362  const Type *Ty = VT.getTypeForMVT();
1363  unsigned StackAlign =
1364  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1365
1366  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1367  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1368}
1369
1370/// CreateStackTemporary - Create a stack temporary suitable for holding
1371/// either of the specified value types.
1372SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1373  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1374                            VT2.getStoreSizeInBits())/8;
1375  const Type *Ty1 = VT1.getTypeForMVT();
1376  const Type *Ty2 = VT2.getTypeForMVT();
1377  const TargetData *TD = TLI.getTargetData();
1378  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1379                            TD->getPrefTypeAlignment(Ty2));
1380
1381  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1382  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1383  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1384}
1385
1386SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1387                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1388  // These setcc operations always fold.
1389  switch (Cond) {
1390  default: break;
1391  case ISD::SETFALSE:
1392  case ISD::SETFALSE2: return getConstant(0, VT);
1393  case ISD::SETTRUE:
1394  case ISD::SETTRUE2:  return getConstant(1, VT);
1395
1396  case ISD::SETOEQ:
1397  case ISD::SETOGT:
1398  case ISD::SETOGE:
1399  case ISD::SETOLT:
1400  case ISD::SETOLE:
1401  case ISD::SETONE:
1402  case ISD::SETO:
1403  case ISD::SETUO:
1404  case ISD::SETUEQ:
1405  case ISD::SETUNE:
1406    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1407    break;
1408  }
1409
1410  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1411    const APInt &C2 = N2C->getAPIntValue();
1412    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1413      const APInt &C1 = N1C->getAPIntValue();
1414
1415      switch (Cond) {
1416      default: assert(0 && "Unknown integer setcc!");
1417      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1418      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1419      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1420      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1421      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1422      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1423      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1424      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1425      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1426      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1427      }
1428    }
1429  }
1430  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1431    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1432      // No compile time operations on this type yet.
1433      if (N1C->getValueType(0) == MVT::ppcf128)
1434        return SDValue();
1435
1436      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1437      switch (Cond) {
1438      default: break;
1439      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1440                          return getUNDEF(VT);
1441                        // fall through
1442      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1443      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1444                          return getUNDEF(VT);
1445                        // fall through
1446      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1447                                           R==APFloat::cmpLessThan, VT);
1448      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1449                          return getUNDEF(VT);
1450                        // fall through
1451      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1452      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1453                          return getUNDEF(VT);
1454                        // fall through
1455      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1456      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1457                          return getUNDEF(VT);
1458                        // fall through
1459      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1460                                           R==APFloat::cmpEqual, VT);
1461      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1462                          return getUNDEF(VT);
1463                        // fall through
1464      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1465                                           R==APFloat::cmpEqual, VT);
1466      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1467      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1468      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1469                                           R==APFloat::cmpEqual, VT);
1470      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1471      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1472                                           R==APFloat::cmpLessThan, VT);
1473      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1474                                           R==APFloat::cmpUnordered, VT);
1475      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1476      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1477      }
1478    } else {
1479      // Ensure that the constant occurs on the RHS.
1480      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1481    }
1482  }
1483
1484  // Could not fold it.
1485  return SDValue();
1486}
1487
1488/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1489/// use this predicate to simplify operations downstream.
1490bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1491  unsigned BitWidth = Op.getValueSizeInBits();
1492  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1493}
1494
1495/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1496/// this predicate to simplify operations downstream.  Mask is known to be zero
1497/// for bits that V cannot have.
1498bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1499                                     unsigned Depth) const {
1500  APInt KnownZero, KnownOne;
1501  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1502  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1503  return (KnownZero & Mask) == Mask;
1504}
1505
1506/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1507/// known to be either zero or one and return them in the KnownZero/KnownOne
1508/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1509/// processing.
1510void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1511                                     APInt &KnownZero, APInt &KnownOne,
1512                                     unsigned Depth) const {
1513  unsigned BitWidth = Mask.getBitWidth();
1514  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1515         "Mask size mismatches value type size!");
1516
1517  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1518  if (Depth == 6 || Mask == 0)
1519    return;  // Limit search depth.
1520
1521  APInt KnownZero2, KnownOne2;
1522
1523  switch (Op.getOpcode()) {
1524  case ISD::Constant:
1525    // We know all of the bits for a constant!
1526    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1527    KnownZero = ~KnownOne & Mask;
1528    return;
1529  case ISD::AND:
1530    // If either the LHS or the RHS are Zero, the result is zero.
1531    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1532    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1533                      KnownZero2, KnownOne2, Depth+1);
1534    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1535    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1536
1537    // Output known-1 bits are only known if set in both the LHS & RHS.
1538    KnownOne &= KnownOne2;
1539    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1540    KnownZero |= KnownZero2;
1541    return;
1542  case ISD::OR:
1543    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1544    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1545                      KnownZero2, KnownOne2, Depth+1);
1546    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1547    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1548
1549    // Output known-0 bits are only known if clear in both the LHS & RHS.
1550    KnownZero &= KnownZero2;
1551    // Output known-1 are known to be set if set in either the LHS | RHS.
1552    KnownOne |= KnownOne2;
1553    return;
1554  case ISD::XOR: {
1555    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1556    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1557    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1558    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1559
1560    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1561    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1562    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1563    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1564    KnownZero = KnownZeroOut;
1565    return;
1566  }
1567  case ISD::MUL: {
1568    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1569    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1570    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1571    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1572    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1573
1574    // If low bits are zero in either operand, output low known-0 bits.
1575    // Also compute a conserative estimate for high known-0 bits.
1576    // More trickiness is possible, but this is sufficient for the
1577    // interesting case of alignment computation.
1578    KnownOne.clear();
1579    unsigned TrailZ = KnownZero.countTrailingOnes() +
1580                      KnownZero2.countTrailingOnes();
1581    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1582                               KnownZero2.countLeadingOnes(),
1583                               BitWidth) - BitWidth;
1584
1585    TrailZ = std::min(TrailZ, BitWidth);
1586    LeadZ = std::min(LeadZ, BitWidth);
1587    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1588                APInt::getHighBitsSet(BitWidth, LeadZ);
1589    KnownZero &= Mask;
1590    return;
1591  }
1592  case ISD::UDIV: {
1593    // For the purposes of computing leading zeros we can conservatively
1594    // treat a udiv as a logical right shift by the power of 2 known to
1595    // be less than the denominator.
1596    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1597    ComputeMaskedBits(Op.getOperand(0),
1598                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1599    unsigned LeadZ = KnownZero2.countLeadingOnes();
1600
1601    KnownOne2.clear();
1602    KnownZero2.clear();
1603    ComputeMaskedBits(Op.getOperand(1),
1604                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1605    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1606    if (RHSUnknownLeadingOnes != BitWidth)
1607      LeadZ = std::min(BitWidth,
1608                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1609
1610    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1611    return;
1612  }
1613  case ISD::SELECT:
1614    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1615    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1616    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1617    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1618
1619    // Only known if known in both the LHS and RHS.
1620    KnownOne &= KnownOne2;
1621    KnownZero &= KnownZero2;
1622    return;
1623  case ISD::SELECT_CC:
1624    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1625    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1626    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1627    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1628
1629    // Only known if known in both the LHS and RHS.
1630    KnownOne &= KnownOne2;
1631    KnownZero &= KnownZero2;
1632    return;
1633  case ISD::SADDO:
1634  case ISD::UADDO:
1635  case ISD::SSUBO:
1636  case ISD::USUBO:
1637  case ISD::SMULO:
1638  case ISD::UMULO:
1639    if (Op.getResNo() != 1)
1640      return;
1641    // The boolean result conforms to getBooleanContents.  Fall through.
1642  case ISD::SETCC:
1643    // If we know the result of a setcc has the top bits zero, use this info.
1644    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1645        BitWidth > 1)
1646      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1647    return;
1648  case ISD::SHL:
1649    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1650    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1651      unsigned ShAmt = SA->getZExtValue();
1652
1653      // If the shift count is an invalid immediate, don't do anything.
1654      if (ShAmt >= BitWidth)
1655        return;
1656
1657      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1658                        KnownZero, KnownOne, Depth+1);
1659      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1660      KnownZero <<= ShAmt;
1661      KnownOne  <<= ShAmt;
1662      // low bits known zero.
1663      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1664    }
1665    return;
1666  case ISD::SRL:
1667    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1668    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1669      unsigned ShAmt = SA->getZExtValue();
1670
1671      // If the shift count is an invalid immediate, don't do anything.
1672      if (ShAmt >= BitWidth)
1673        return;
1674
1675      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1676                        KnownZero, KnownOne, Depth+1);
1677      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1678      KnownZero = KnownZero.lshr(ShAmt);
1679      KnownOne  = KnownOne.lshr(ShAmt);
1680
1681      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1682      KnownZero |= HighBits;  // High bits known zero.
1683    }
1684    return;
1685  case ISD::SRA:
1686    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1687      unsigned ShAmt = SA->getZExtValue();
1688
1689      // If the shift count is an invalid immediate, don't do anything.
1690      if (ShAmt >= BitWidth)
1691        return;
1692
1693      APInt InDemandedMask = (Mask << ShAmt);
1694      // If any of the demanded bits are produced by the sign extension, we also
1695      // demand the input sign bit.
1696      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1697      if (HighBits.getBoolValue())
1698        InDemandedMask |= APInt::getSignBit(BitWidth);
1699
1700      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1701                        Depth+1);
1702      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1703      KnownZero = KnownZero.lshr(ShAmt);
1704      KnownOne  = KnownOne.lshr(ShAmt);
1705
1706      // Handle the sign bits.
1707      APInt SignBit = APInt::getSignBit(BitWidth);
1708      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1709
1710      if (KnownZero.intersects(SignBit)) {
1711        KnownZero |= HighBits;  // New bits are known zero.
1712      } else if (KnownOne.intersects(SignBit)) {
1713        KnownOne  |= HighBits;  // New bits are known one.
1714      }
1715    }
1716    return;
1717  case ISD::SIGN_EXTEND_INREG: {
1718    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1719    unsigned EBits = EVT.getSizeInBits();
1720
1721    // Sign extension.  Compute the demanded bits in the result that are not
1722    // present in the input.
1723    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1724
1725    APInt InSignBit = APInt::getSignBit(EBits);
1726    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1727
1728    // If the sign extended bits are demanded, we know that the sign
1729    // bit is demanded.
1730    InSignBit.zext(BitWidth);
1731    if (NewBits.getBoolValue())
1732      InputDemandedBits |= InSignBit;
1733
1734    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1735                      KnownZero, KnownOne, Depth+1);
1736    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1737
1738    // If the sign bit of the input is known set or clear, then we know the
1739    // top bits of the result.
1740    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1741      KnownZero |= NewBits;
1742      KnownOne  &= ~NewBits;
1743    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1744      KnownOne  |= NewBits;
1745      KnownZero &= ~NewBits;
1746    } else {                              // Input sign bit unknown
1747      KnownZero &= ~NewBits;
1748      KnownOne  &= ~NewBits;
1749    }
1750    return;
1751  }
1752  case ISD::CTTZ:
1753  case ISD::CTLZ:
1754  case ISD::CTPOP: {
1755    unsigned LowBits = Log2_32(BitWidth)+1;
1756    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1757    KnownOne.clear();
1758    return;
1759  }
1760  case ISD::LOAD: {
1761    if (ISD::isZEXTLoad(Op.getNode())) {
1762      LoadSDNode *LD = cast<LoadSDNode>(Op);
1763      MVT VT = LD->getMemoryVT();
1764      unsigned MemBits = VT.getSizeInBits();
1765      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1766    }
1767    return;
1768  }
1769  case ISD::ZERO_EXTEND: {
1770    MVT InVT = Op.getOperand(0).getValueType();
1771    unsigned InBits = InVT.getSizeInBits();
1772    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1773    APInt InMask    = Mask;
1774    InMask.trunc(InBits);
1775    KnownZero.trunc(InBits);
1776    KnownOne.trunc(InBits);
1777    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1778    KnownZero.zext(BitWidth);
1779    KnownOne.zext(BitWidth);
1780    KnownZero |= NewBits;
1781    return;
1782  }
1783  case ISD::SIGN_EXTEND: {
1784    MVT InVT = Op.getOperand(0).getValueType();
1785    unsigned InBits = InVT.getSizeInBits();
1786    APInt InSignBit = APInt::getSignBit(InBits);
1787    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1788    APInt InMask = Mask;
1789    InMask.trunc(InBits);
1790
1791    // If any of the sign extended bits are demanded, we know that the sign
1792    // bit is demanded. Temporarily set this bit in the mask for our callee.
1793    if (NewBits.getBoolValue())
1794      InMask |= InSignBit;
1795
1796    KnownZero.trunc(InBits);
1797    KnownOne.trunc(InBits);
1798    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1799
1800    // Note if the sign bit is known to be zero or one.
1801    bool SignBitKnownZero = KnownZero.isNegative();
1802    bool SignBitKnownOne  = KnownOne.isNegative();
1803    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1804           "Sign bit can't be known to be both zero and one!");
1805
1806    // If the sign bit wasn't actually demanded by our caller, we don't
1807    // want it set in the KnownZero and KnownOne result values. Reset the
1808    // mask and reapply it to the result values.
1809    InMask = Mask;
1810    InMask.trunc(InBits);
1811    KnownZero &= InMask;
1812    KnownOne  &= InMask;
1813
1814    KnownZero.zext(BitWidth);
1815    KnownOne.zext(BitWidth);
1816
1817    // If the sign bit is known zero or one, the top bits match.
1818    if (SignBitKnownZero)
1819      KnownZero |= NewBits;
1820    else if (SignBitKnownOne)
1821      KnownOne  |= NewBits;
1822    return;
1823  }
1824  case ISD::ANY_EXTEND: {
1825    MVT InVT = Op.getOperand(0).getValueType();
1826    unsigned InBits = InVT.getSizeInBits();
1827    APInt InMask = Mask;
1828    InMask.trunc(InBits);
1829    KnownZero.trunc(InBits);
1830    KnownOne.trunc(InBits);
1831    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1832    KnownZero.zext(BitWidth);
1833    KnownOne.zext(BitWidth);
1834    return;
1835  }
1836  case ISD::TRUNCATE: {
1837    MVT InVT = Op.getOperand(0).getValueType();
1838    unsigned InBits = InVT.getSizeInBits();
1839    APInt InMask = Mask;
1840    InMask.zext(InBits);
1841    KnownZero.zext(InBits);
1842    KnownOne.zext(InBits);
1843    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1844    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1845    KnownZero.trunc(BitWidth);
1846    KnownOne.trunc(BitWidth);
1847    break;
1848  }
1849  case ISD::AssertZext: {
1850    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1851    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1852    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1853                      KnownOne, Depth+1);
1854    KnownZero |= (~InMask) & Mask;
1855    return;
1856  }
1857  case ISD::FGETSIGN:
1858    // All bits are zero except the low bit.
1859    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1860    return;
1861
1862  case ISD::SUB: {
1863    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1864      // We know that the top bits of C-X are clear if X contains less bits
1865      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1866      // positive if we can prove that X is >= 0 and < 16.
1867      if (CLHS->getAPIntValue().isNonNegative()) {
1868        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1869        // NLZ can't be BitWidth with no sign bit
1870        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1871        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1872                          Depth+1);
1873
1874        // If all of the MaskV bits are known to be zero, then we know the
1875        // output top bits are zero, because we now know that the output is
1876        // from [0-C].
1877        if ((KnownZero2 & MaskV) == MaskV) {
1878          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1879          // Top bits known zero.
1880          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1881        }
1882      }
1883    }
1884  }
1885  // fall through
1886  case ISD::ADD: {
1887    // Output known-0 bits are known if clear or set in both the low clear bits
1888    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1889    // low 3 bits clear.
1890    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1891    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1892    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1893    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1894
1895    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1896    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1897    KnownZeroOut = std::min(KnownZeroOut,
1898                            KnownZero2.countTrailingOnes());
1899
1900    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1901    return;
1902  }
1903  case ISD::SREM:
1904    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1905      const APInt &RA = Rem->getAPIntValue();
1906      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1907        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1908        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1909        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1910
1911        // If the sign bit of the first operand is zero, the sign bit of
1912        // the result is zero. If the first operand has no one bits below
1913        // the second operand's single 1 bit, its sign will be zero.
1914        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1915          KnownZero2 |= ~LowBits;
1916
1917        KnownZero |= KnownZero2 & Mask;
1918
1919        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1920      }
1921    }
1922    return;
1923  case ISD::UREM: {
1924    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1925      const APInt &RA = Rem->getAPIntValue();
1926      if (RA.isPowerOf2()) {
1927        APInt LowBits = (RA - 1);
1928        APInt Mask2 = LowBits & Mask;
1929        KnownZero |= ~LowBits & Mask;
1930        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1931        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1932        break;
1933      }
1934    }
1935
1936    // Since the result is less than or equal to either operand, any leading
1937    // zero bits in either operand must also exist in the result.
1938    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1939    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1940                      Depth+1);
1941    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1942                      Depth+1);
1943
1944    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1945                                KnownZero2.countLeadingOnes());
1946    KnownOne.clear();
1947    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1948    return;
1949  }
1950  default:
1951    // Allow the target to implement this method for its nodes.
1952    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1953  case ISD::INTRINSIC_WO_CHAIN:
1954  case ISD::INTRINSIC_W_CHAIN:
1955  case ISD::INTRINSIC_VOID:
1956      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1957    }
1958    return;
1959  }
1960}
1961
1962/// ComputeNumSignBits - Return the number of times the sign bit of the
1963/// register is replicated into the other bits.  We know that at least 1 bit
1964/// is always equal to the sign bit (itself), but other cases can give us
1965/// information.  For example, immediately after an "SRA X, 2", we know that
1966/// the top 3 bits are all equal to each other, so we return 3.
1967unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1968  MVT VT = Op.getValueType();
1969  assert(VT.isInteger() && "Invalid VT!");
1970  unsigned VTBits = VT.getSizeInBits();
1971  unsigned Tmp, Tmp2;
1972  unsigned FirstAnswer = 1;
1973
1974  if (Depth == 6)
1975    return 1;  // Limit search depth.
1976
1977  switch (Op.getOpcode()) {
1978  default: break;
1979  case ISD::AssertSext:
1980    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1981    return VTBits-Tmp+1;
1982  case ISD::AssertZext:
1983    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1984    return VTBits-Tmp;
1985
1986  case ISD::Constant: {
1987    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1988    // If negative, return # leading ones.
1989    if (Val.isNegative())
1990      return Val.countLeadingOnes();
1991
1992    // Return # leading zeros.
1993    return Val.countLeadingZeros();
1994  }
1995
1996  case ISD::SIGN_EXTEND:
1997    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1998    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1999
2000  case ISD::SIGN_EXTEND_INREG:
2001    // Max of the input and what this extends.
2002    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2003    Tmp = VTBits-Tmp+1;
2004
2005    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2006    return std::max(Tmp, Tmp2);
2007
2008  case ISD::SRA:
2009    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2010    // SRA X, C   -> adds C sign bits.
2011    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2012      Tmp += C->getZExtValue();
2013      if (Tmp > VTBits) Tmp = VTBits;
2014    }
2015    return Tmp;
2016  case ISD::SHL:
2017    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2018      // shl destroys sign bits.
2019      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2020      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2021          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2022      return Tmp - C->getZExtValue();
2023    }
2024    break;
2025  case ISD::AND:
2026  case ISD::OR:
2027  case ISD::XOR:    // NOT is handled here.
2028    // Logical binary ops preserve the number of sign bits at the worst.
2029    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2030    if (Tmp != 1) {
2031      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2032      FirstAnswer = std::min(Tmp, Tmp2);
2033      // We computed what we know about the sign bits as our first
2034      // answer. Now proceed to the generic code that uses
2035      // ComputeMaskedBits, and pick whichever answer is better.
2036    }
2037    break;
2038
2039  case ISD::SELECT:
2040    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2041    if (Tmp == 1) return 1;  // Early out.
2042    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2043    return std::min(Tmp, Tmp2);
2044
2045  case ISD::SADDO:
2046  case ISD::UADDO:
2047  case ISD::SSUBO:
2048  case ISD::USUBO:
2049  case ISD::SMULO:
2050  case ISD::UMULO:
2051    if (Op.getResNo() != 1)
2052      break;
2053    // The boolean result conforms to getBooleanContents.  Fall through.
2054  case ISD::SETCC:
2055    // If setcc returns 0/-1, all bits are sign bits.
2056    if (TLI.getBooleanContents() ==
2057        TargetLowering::ZeroOrNegativeOneBooleanContent)
2058      return VTBits;
2059    break;
2060  case ISD::ROTL:
2061  case ISD::ROTR:
2062    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2063      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2064
2065      // Handle rotate right by N like a rotate left by 32-N.
2066      if (Op.getOpcode() == ISD::ROTR)
2067        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2068
2069      // If we aren't rotating out all of the known-in sign bits, return the
2070      // number that are left.  This handles rotl(sext(x), 1) for example.
2071      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2072      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2073    }
2074    break;
2075  case ISD::ADD:
2076    // Add can have at most one carry bit.  Thus we know that the output
2077    // is, at worst, one more bit than the inputs.
2078    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2079    if (Tmp == 1) return 1;  // Early out.
2080
2081    // Special case decrementing a value (ADD X, -1):
2082    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2083      if (CRHS->isAllOnesValue()) {
2084        APInt KnownZero, KnownOne;
2085        APInt Mask = APInt::getAllOnesValue(VTBits);
2086        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2087
2088        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2089        // sign bits set.
2090        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2091          return VTBits;
2092
2093        // If we are subtracting one from a positive number, there is no carry
2094        // out of the result.
2095        if (KnownZero.isNegative())
2096          return Tmp;
2097      }
2098
2099    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2100    if (Tmp2 == 1) return 1;
2101      return std::min(Tmp, Tmp2)-1;
2102    break;
2103
2104  case ISD::SUB:
2105    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2106    if (Tmp2 == 1) return 1;
2107
2108    // Handle NEG.
2109    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2110      if (CLHS->isNullValue()) {
2111        APInt KnownZero, KnownOne;
2112        APInt Mask = APInt::getAllOnesValue(VTBits);
2113        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2114        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2115        // sign bits set.
2116        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2117          return VTBits;
2118
2119        // If the input is known to be positive (the sign bit is known clear),
2120        // the output of the NEG has the same number of sign bits as the input.
2121        if (KnownZero.isNegative())
2122          return Tmp2;
2123
2124        // Otherwise, we treat this like a SUB.
2125      }
2126
2127    // Sub can have at most one carry bit.  Thus we know that the output
2128    // is, at worst, one more bit than the inputs.
2129    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2130    if (Tmp == 1) return 1;  // Early out.
2131      return std::min(Tmp, Tmp2)-1;
2132    break;
2133  case ISD::TRUNCATE:
2134    // FIXME: it's tricky to do anything useful for this, but it is an important
2135    // case for targets like X86.
2136    break;
2137  }
2138
2139  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2140  if (Op.getOpcode() == ISD::LOAD) {
2141    LoadSDNode *LD = cast<LoadSDNode>(Op);
2142    unsigned ExtType = LD->getExtensionType();
2143    switch (ExtType) {
2144    default: break;
2145    case ISD::SEXTLOAD:    // '17' bits known
2146      Tmp = LD->getMemoryVT().getSizeInBits();
2147      return VTBits-Tmp+1;
2148    case ISD::ZEXTLOAD:    // '16' bits known
2149      Tmp = LD->getMemoryVT().getSizeInBits();
2150      return VTBits-Tmp;
2151    }
2152  }
2153
2154  // Allow the target to implement this method for its nodes.
2155  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2156      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2157      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2158      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2159    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2160    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2161  }
2162
2163  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2164  // use this information.
2165  APInt KnownZero, KnownOne;
2166  APInt Mask = APInt::getAllOnesValue(VTBits);
2167  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2168
2169  if (KnownZero.isNegative()) {        // sign bit is 0
2170    Mask = KnownZero;
2171  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2172    Mask = KnownOne;
2173  } else {
2174    // Nothing known.
2175    return FirstAnswer;
2176  }
2177
2178  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2179  // the number of identical bits in the top of the input value.
2180  Mask = ~Mask;
2181  Mask <<= Mask.getBitWidth()-VTBits;
2182  // Return # leading zeros.  We use 'min' here in case Val was zero before
2183  // shifting.  We don't want to return '64' as for an i32 "0".
2184  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2185}
2186
2187
2188bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2189  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2190  if (!GA) return false;
2191  if (GA->getOffset() != 0) return false;
2192  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2193  if (!GV) return false;
2194  MachineModuleInfo *MMI = getMachineModuleInfo();
2195  return MMI && MMI->hasDebugInfo();
2196}
2197
2198
2199/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2200/// element of the result of the vector shuffle.
2201SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2202                                          unsigned i) {
2203  MVT VT = N->getValueType(0);
2204  DebugLoc dl = N->getDebugLoc();
2205  if (N->getMaskElt(i) < 0)
2206    return getUNDEF(VT.getVectorElementType());
2207  unsigned Index = N->getMaskElt(i);
2208  unsigned NumElems = VT.getVectorNumElements();
2209  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2210  Index %= NumElems;
2211
2212  if (V.getOpcode() == ISD::BIT_CONVERT) {
2213    V = V.getOperand(0);
2214    MVT VVT = V.getValueType();
2215    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2216      return SDValue();
2217  }
2218  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2219    return (Index == 0) ? V.getOperand(0)
2220                      : getUNDEF(VT.getVectorElementType());
2221  if (V.getOpcode() == ISD::BUILD_VECTOR)
2222    return V.getOperand(Index);
2223  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2224    return getShuffleScalarElt(SVN, Index);
2225  return SDValue();
2226}
2227
2228
2229/// getNode - Gets or creates the specified node.
2230///
2231SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT) {
2232  FoldingSetNodeID ID;
2233  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2234  void *IP = 0;
2235  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2236    return SDValue(E, 0);
2237  SDNode *N = NodeAllocator.Allocate<SDNode>();
2238  new (N) SDNode(Opcode, DL, getVTList(VT));
2239  CSEMap.InsertNode(N, IP);
2240
2241  AllNodes.push_back(N);
2242#ifndef NDEBUG
2243  VerifyNode(N);
2244#endif
2245  return SDValue(N, 0);
2246}
2247
2248SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2249                              MVT VT, SDValue Operand) {
2250  // Constant fold unary operations with an integer constant operand.
2251  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2252    const APInt &Val = C->getAPIntValue();
2253    unsigned BitWidth = VT.getSizeInBits();
2254    switch (Opcode) {
2255    default: break;
2256    case ISD::SIGN_EXTEND:
2257      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2258    case ISD::ANY_EXTEND:
2259    case ISD::ZERO_EXTEND:
2260    case ISD::TRUNCATE:
2261      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2262    case ISD::UINT_TO_FP:
2263    case ISD::SINT_TO_FP: {
2264      const uint64_t zero[] = {0, 0};
2265      // No compile time operations on this type.
2266      if (VT==MVT::ppcf128)
2267        break;
2268      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2269      (void)apf.convertFromAPInt(Val,
2270                                 Opcode==ISD::SINT_TO_FP,
2271                                 APFloat::rmNearestTiesToEven);
2272      return getConstantFP(apf, VT);
2273    }
2274    case ISD::BIT_CONVERT:
2275      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2276        return getConstantFP(Val.bitsToFloat(), VT);
2277      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2278        return getConstantFP(Val.bitsToDouble(), VT);
2279      break;
2280    case ISD::BSWAP:
2281      return getConstant(Val.byteSwap(), VT);
2282    case ISD::CTPOP:
2283      return getConstant(Val.countPopulation(), VT);
2284    case ISD::CTLZ:
2285      return getConstant(Val.countLeadingZeros(), VT);
2286    case ISD::CTTZ:
2287      return getConstant(Val.countTrailingZeros(), VT);
2288    }
2289  }
2290
2291  // Constant fold unary operations with a floating point constant operand.
2292  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2293    APFloat V = C->getValueAPF();    // make copy
2294    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2295      switch (Opcode) {
2296      case ISD::FNEG:
2297        V.changeSign();
2298        return getConstantFP(V, VT);
2299      case ISD::FABS:
2300        V.clearSign();
2301        return getConstantFP(V, VT);
2302      case ISD::FP_ROUND:
2303      case ISD::FP_EXTEND: {
2304        bool ignored;
2305        // This can return overflow, underflow, or inexact; we don't care.
2306        // FIXME need to be more flexible about rounding mode.
2307        (void)V.convert(*MVTToAPFloatSemantics(VT),
2308                        APFloat::rmNearestTiesToEven, &ignored);
2309        return getConstantFP(V, VT);
2310      }
2311      case ISD::FP_TO_SINT:
2312      case ISD::FP_TO_UINT: {
2313        integerPart x[2];
2314        bool ignored;
2315        assert(integerPartWidth >= 64);
2316        // FIXME need to be more flexible about rounding mode.
2317        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2318                              Opcode==ISD::FP_TO_SINT,
2319                              APFloat::rmTowardZero, &ignored);
2320        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2321          break;
2322        APInt api(VT.getSizeInBits(), 2, x);
2323        return getConstant(api, VT);
2324      }
2325      case ISD::BIT_CONVERT:
2326        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2327          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2328        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2329          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2330        break;
2331      }
2332    }
2333  }
2334
2335  unsigned OpOpcode = Operand.getNode()->getOpcode();
2336  switch (Opcode) {
2337  case ISD::TokenFactor:
2338  case ISD::MERGE_VALUES:
2339  case ISD::CONCAT_VECTORS:
2340    return Operand;         // Factor, merge or concat of one node?  No need.
2341  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2342  case ISD::FP_EXTEND:
2343    assert(VT.isFloatingPoint() &&
2344           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2345    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2346    if (Operand.getOpcode() == ISD::UNDEF)
2347      return getUNDEF(VT);
2348    break;
2349  case ISD::SIGN_EXTEND:
2350    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2351           "Invalid SIGN_EXTEND!");
2352    if (Operand.getValueType() == VT) return Operand;   // noop extension
2353    assert(Operand.getValueType().bitsLT(VT)
2354           && "Invalid sext node, dst < src!");
2355    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2356      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2357    break;
2358  case ISD::ZERO_EXTEND:
2359    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2360           "Invalid ZERO_EXTEND!");
2361    if (Operand.getValueType() == VT) return Operand;   // noop extension
2362    assert(Operand.getValueType().bitsLT(VT)
2363           && "Invalid zext node, dst < src!");
2364    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2365      return getNode(ISD::ZERO_EXTEND, DL, VT,
2366                     Operand.getNode()->getOperand(0));
2367    break;
2368  case ISD::ANY_EXTEND:
2369    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2370           "Invalid ANY_EXTEND!");
2371    if (Operand.getValueType() == VT) return Operand;   // noop extension
2372    assert(Operand.getValueType().bitsLT(VT)
2373           && "Invalid anyext node, dst < src!");
2374    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2375      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2376      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2377    break;
2378  case ISD::TRUNCATE:
2379    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2380           "Invalid TRUNCATE!");
2381    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2382    assert(Operand.getValueType().bitsGT(VT)
2383           && "Invalid truncate node, src < dst!");
2384    if (OpOpcode == ISD::TRUNCATE)
2385      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2386    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2387             OpOpcode == ISD::ANY_EXTEND) {
2388      // If the source is smaller than the dest, we still need an extend.
2389      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2390        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2391      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2392        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2393      else
2394        return Operand.getNode()->getOperand(0);
2395    }
2396    break;
2397  case ISD::BIT_CONVERT:
2398    // Basic sanity checking.
2399    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2400           && "Cannot BIT_CONVERT between types of different sizes!");
2401    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2402    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2403      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2404    if (OpOpcode == ISD::UNDEF)
2405      return getUNDEF(VT);
2406    break;
2407  case ISD::SCALAR_TO_VECTOR:
2408    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2409           (VT.getVectorElementType() == Operand.getValueType() ||
2410            (VT.getVectorElementType().isInteger() &&
2411             Operand.getValueType().isInteger() &&
2412             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2413           "Illegal SCALAR_TO_VECTOR node!");
2414    if (OpOpcode == ISD::UNDEF)
2415      return getUNDEF(VT);
2416    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2417    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2418        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2419        Operand.getConstantOperandVal(1) == 0 &&
2420        Operand.getOperand(0).getValueType() == VT)
2421      return Operand.getOperand(0);
2422    break;
2423  case ISD::FNEG:
2424    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2425    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2426      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2427                     Operand.getNode()->getOperand(0));
2428    if (OpOpcode == ISD::FNEG)  // --X -> X
2429      return Operand.getNode()->getOperand(0);
2430    break;
2431  case ISD::FABS:
2432    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2433      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2434    break;
2435  }
2436
2437  SDNode *N;
2438  SDVTList VTs = getVTList(VT);
2439  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2440    FoldingSetNodeID ID;
2441    SDValue Ops[1] = { Operand };
2442    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2443    void *IP = 0;
2444    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2445      return SDValue(E, 0);
2446    N = NodeAllocator.Allocate<UnarySDNode>();
2447    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2448    CSEMap.InsertNode(N, IP);
2449  } else {
2450    N = NodeAllocator.Allocate<UnarySDNode>();
2451    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2452  }
2453
2454  AllNodes.push_back(N);
2455#ifndef NDEBUG
2456  VerifyNode(N);
2457#endif
2458  return SDValue(N, 0);
2459}
2460
2461SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2462                                             MVT VT,
2463                                             ConstantSDNode *Cst1,
2464                                             ConstantSDNode *Cst2) {
2465  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2466
2467  switch (Opcode) {
2468  case ISD::ADD:  return getConstant(C1 + C2, VT);
2469  case ISD::SUB:  return getConstant(C1 - C2, VT);
2470  case ISD::MUL:  return getConstant(C1 * C2, VT);
2471  case ISD::UDIV:
2472    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2473    break;
2474  case ISD::UREM:
2475    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2476    break;
2477  case ISD::SDIV:
2478    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2479    break;
2480  case ISD::SREM:
2481    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2482    break;
2483  case ISD::AND:  return getConstant(C1 & C2, VT);
2484  case ISD::OR:   return getConstant(C1 | C2, VT);
2485  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2486  case ISD::SHL:  return getConstant(C1 << C2, VT);
2487  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2488  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2489  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2490  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2491  default: break;
2492  }
2493
2494  return SDValue();
2495}
2496
2497SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2498                              SDValue N1, SDValue N2) {
2499  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2500  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2501  switch (Opcode) {
2502  default: break;
2503  case ISD::TokenFactor:
2504    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2505           N2.getValueType() == MVT::Other && "Invalid token factor!");
2506    // Fold trivial token factors.
2507    if (N1.getOpcode() == ISD::EntryToken) return N2;
2508    if (N2.getOpcode() == ISD::EntryToken) return N1;
2509    if (N1 == N2) return N1;
2510    break;
2511  case ISD::CONCAT_VECTORS:
2512    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2513    // one big BUILD_VECTOR.
2514    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2515        N2.getOpcode() == ISD::BUILD_VECTOR) {
2516      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2517      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2518      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2519    }
2520    break;
2521  case ISD::AND:
2522    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2523           N1.getValueType() == VT && "Binary operator types must match!");
2524    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2525    // worth handling here.
2526    if (N2C && N2C->isNullValue())
2527      return N2;
2528    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2529      return N1;
2530    break;
2531  case ISD::OR:
2532  case ISD::XOR:
2533  case ISD::ADD:
2534  case ISD::SUB:
2535    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2536           N1.getValueType() == VT && "Binary operator types must match!");
2537    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2538    // it's worth handling here.
2539    if (N2C && N2C->isNullValue())
2540      return N1;
2541    break;
2542  case ISD::UDIV:
2543  case ISD::UREM:
2544  case ISD::MULHU:
2545  case ISD::MULHS:
2546  case ISD::MUL:
2547  case ISD::SDIV:
2548  case ISD::SREM:
2549    assert(VT.isInteger() && "This operator does not apply to FP types!");
2550    // fall through
2551  case ISD::FADD:
2552  case ISD::FSUB:
2553  case ISD::FMUL:
2554  case ISD::FDIV:
2555  case ISD::FREM:
2556    if (UnsafeFPMath) {
2557      if (Opcode == ISD::FADD) {
2558        // 0+x --> x
2559        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2560          if (CFP->getValueAPF().isZero())
2561            return N2;
2562        // x+0 --> x
2563        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2564          if (CFP->getValueAPF().isZero())
2565            return N1;
2566      } else if (Opcode == ISD::FSUB) {
2567        // x-0 --> x
2568        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2569          if (CFP->getValueAPF().isZero())
2570            return N1;
2571      }
2572    }
2573    assert(N1.getValueType() == N2.getValueType() &&
2574           N1.getValueType() == VT && "Binary operator types must match!");
2575    break;
2576  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2577    assert(N1.getValueType() == VT &&
2578           N1.getValueType().isFloatingPoint() &&
2579           N2.getValueType().isFloatingPoint() &&
2580           "Invalid FCOPYSIGN!");
2581    break;
2582  case ISD::SHL:
2583  case ISD::SRA:
2584  case ISD::SRL:
2585  case ISD::ROTL:
2586  case ISD::ROTR:
2587    assert(VT == N1.getValueType() &&
2588           "Shift operators return type must be the same as their first arg");
2589    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2590           "Shifts only work on integers");
2591
2592    // Always fold shifts of i1 values so the code generator doesn't need to
2593    // handle them.  Since we know the size of the shift has to be less than the
2594    // size of the value, the shift/rotate count is guaranteed to be zero.
2595    if (VT == MVT::i1)
2596      return N1;
2597    break;
2598  case ISD::FP_ROUND_INREG: {
2599    MVT EVT = cast<VTSDNode>(N2)->getVT();
2600    assert(VT == N1.getValueType() && "Not an inreg round!");
2601    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2602           "Cannot FP_ROUND_INREG integer types");
2603    assert(EVT.bitsLE(VT) && "Not rounding down!");
2604    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2605    break;
2606  }
2607  case ISD::FP_ROUND:
2608    assert(VT.isFloatingPoint() &&
2609           N1.getValueType().isFloatingPoint() &&
2610           VT.bitsLE(N1.getValueType()) &&
2611           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2612    if (N1.getValueType() == VT) return N1;  // noop conversion.
2613    break;
2614  case ISD::AssertSext:
2615  case ISD::AssertZext: {
2616    MVT EVT = cast<VTSDNode>(N2)->getVT();
2617    assert(VT == N1.getValueType() && "Not an inreg extend!");
2618    assert(VT.isInteger() && EVT.isInteger() &&
2619           "Cannot *_EXTEND_INREG FP types");
2620    assert(EVT.bitsLE(VT) && "Not extending!");
2621    if (VT == EVT) return N1; // noop assertion.
2622    break;
2623  }
2624  case ISD::SIGN_EXTEND_INREG: {
2625    MVT EVT = cast<VTSDNode>(N2)->getVT();
2626    assert(VT == N1.getValueType() && "Not an inreg extend!");
2627    assert(VT.isInteger() && EVT.isInteger() &&
2628           "Cannot *_EXTEND_INREG FP types");
2629    assert(EVT.bitsLE(VT) && "Not extending!");
2630    if (EVT == VT) return N1;  // Not actually extending
2631
2632    if (N1C) {
2633      APInt Val = N1C->getAPIntValue();
2634      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2635      Val <<= Val.getBitWidth()-FromBits;
2636      Val = Val.ashr(Val.getBitWidth()-FromBits);
2637      return getConstant(Val, VT);
2638    }
2639    break;
2640  }
2641  case ISD::EXTRACT_VECTOR_ELT:
2642    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2643    if (N1.getOpcode() == ISD::UNDEF)
2644      return getUNDEF(VT);
2645
2646    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2647    // expanding copies of large vectors from registers.
2648    if (N2C &&
2649        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2650        N1.getNumOperands() > 0) {
2651      unsigned Factor =
2652        N1.getOperand(0).getValueType().getVectorNumElements();
2653      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2654                     N1.getOperand(N2C->getZExtValue() / Factor),
2655                     getConstant(N2C->getZExtValue() % Factor,
2656                                 N2.getValueType()));
2657    }
2658
2659    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2660    // expanding large vector constants.
2661    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2662      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2663      if (Elt.getValueType() != VT) {
2664        // If the vector element type is not legal, the BUILD_VECTOR operands
2665        // are promoted and implicitly truncated.  Make that explicit here.
2666        assert(VT.isInteger() && Elt.getValueType().isInteger() &&
2667               VT.bitsLE(Elt.getValueType()) &&
2668               "Bad type for BUILD_VECTOR operand");
2669        Elt = getNode(ISD::TRUNCATE, DL, VT, Elt);
2670      }
2671      return Elt;
2672    }
2673
2674    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2675    // operations are lowered to scalars.
2676    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2677      // If the indices are the same, return the inserted element.
2678      if (N1.getOperand(2) == N2)
2679        return N1.getOperand(1);
2680      // If the indices are known different, extract the element from
2681      // the original vector.
2682      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2683               isa<ConstantSDNode>(N2))
2684        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2685    }
2686    break;
2687  case ISD::EXTRACT_ELEMENT:
2688    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2689    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2690           (N1.getValueType().isInteger() == VT.isInteger()) &&
2691           "Wrong types for EXTRACT_ELEMENT!");
2692
2693    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2694    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2695    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2696    if (N1.getOpcode() == ISD::BUILD_PAIR)
2697      return N1.getOperand(N2C->getZExtValue());
2698
2699    // EXTRACT_ELEMENT of a constant int is also very common.
2700    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2701      unsigned ElementSize = VT.getSizeInBits();
2702      unsigned Shift = ElementSize * N2C->getZExtValue();
2703      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2704      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2705    }
2706    break;
2707  case ISD::EXTRACT_SUBVECTOR:
2708    if (N1.getValueType() == VT) // Trivial extraction.
2709      return N1;
2710    break;
2711  }
2712
2713  if (N1C) {
2714    if (N2C) {
2715      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2716      if (SV.getNode()) return SV;
2717    } else {      // Cannonicalize constant to RHS if commutative
2718      if (isCommutativeBinOp(Opcode)) {
2719        std::swap(N1C, N2C);
2720        std::swap(N1, N2);
2721      }
2722    }
2723  }
2724
2725  // Constant fold FP operations.
2726  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2727  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2728  if (N1CFP) {
2729    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2730      // Cannonicalize constant to RHS if commutative
2731      std::swap(N1CFP, N2CFP);
2732      std::swap(N1, N2);
2733    } else if (N2CFP && VT != MVT::ppcf128) {
2734      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2735      APFloat::opStatus s;
2736      switch (Opcode) {
2737      case ISD::FADD:
2738        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2739        if (s != APFloat::opInvalidOp)
2740          return getConstantFP(V1, VT);
2741        break;
2742      case ISD::FSUB:
2743        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2744        if (s!=APFloat::opInvalidOp)
2745          return getConstantFP(V1, VT);
2746        break;
2747      case ISD::FMUL:
2748        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2749        if (s!=APFloat::opInvalidOp)
2750          return getConstantFP(V1, VT);
2751        break;
2752      case ISD::FDIV:
2753        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2754        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2755          return getConstantFP(V1, VT);
2756        break;
2757      case ISD::FREM :
2758        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2759        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2760          return getConstantFP(V1, VT);
2761        break;
2762      case ISD::FCOPYSIGN:
2763        V1.copySign(V2);
2764        return getConstantFP(V1, VT);
2765      default: break;
2766      }
2767    }
2768  }
2769
2770  // Canonicalize an UNDEF to the RHS, even over a constant.
2771  if (N1.getOpcode() == ISD::UNDEF) {
2772    if (isCommutativeBinOp(Opcode)) {
2773      std::swap(N1, N2);
2774    } else {
2775      switch (Opcode) {
2776      case ISD::FP_ROUND_INREG:
2777      case ISD::SIGN_EXTEND_INREG:
2778      case ISD::SUB:
2779      case ISD::FSUB:
2780      case ISD::FDIV:
2781      case ISD::FREM:
2782      case ISD::SRA:
2783        return N1;     // fold op(undef, arg2) -> undef
2784      case ISD::UDIV:
2785      case ISD::SDIV:
2786      case ISD::UREM:
2787      case ISD::SREM:
2788      case ISD::SRL:
2789      case ISD::SHL:
2790        if (!VT.isVector())
2791          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2792        // For vectors, we can't easily build an all zero vector, just return
2793        // the LHS.
2794        return N2;
2795      }
2796    }
2797  }
2798
2799  // Fold a bunch of operators when the RHS is undef.
2800  if (N2.getOpcode() == ISD::UNDEF) {
2801    switch (Opcode) {
2802    case ISD::XOR:
2803      if (N1.getOpcode() == ISD::UNDEF)
2804        // Handle undef ^ undef -> 0 special case. This is a common
2805        // idiom (misuse).
2806        return getConstant(0, VT);
2807      // fallthrough
2808    case ISD::ADD:
2809    case ISD::ADDC:
2810    case ISD::ADDE:
2811    case ISD::SUB:
2812    case ISD::UDIV:
2813    case ISD::SDIV:
2814    case ISD::UREM:
2815    case ISD::SREM:
2816      return N2;       // fold op(arg1, undef) -> undef
2817    case ISD::FADD:
2818    case ISD::FSUB:
2819    case ISD::FMUL:
2820    case ISD::FDIV:
2821    case ISD::FREM:
2822      if (UnsafeFPMath)
2823        return N2;
2824      break;
2825    case ISD::MUL:
2826    case ISD::AND:
2827    case ISD::SRL:
2828    case ISD::SHL:
2829      if (!VT.isVector())
2830        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2831      // For vectors, we can't easily build an all zero vector, just return
2832      // the LHS.
2833      return N1;
2834    case ISD::OR:
2835      if (!VT.isVector())
2836        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2837      // For vectors, we can't easily build an all one vector, just return
2838      // the LHS.
2839      return N1;
2840    case ISD::SRA:
2841      return N1;
2842    }
2843  }
2844
2845  // Memoize this node if possible.
2846  SDNode *N;
2847  SDVTList VTs = getVTList(VT);
2848  if (VT != MVT::Flag) {
2849    SDValue Ops[] = { N1, N2 };
2850    FoldingSetNodeID ID;
2851    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2852    void *IP = 0;
2853    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2854      return SDValue(E, 0);
2855    N = NodeAllocator.Allocate<BinarySDNode>();
2856    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2857    CSEMap.InsertNode(N, IP);
2858  } else {
2859    N = NodeAllocator.Allocate<BinarySDNode>();
2860    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2861  }
2862
2863  AllNodes.push_back(N);
2864#ifndef NDEBUG
2865  VerifyNode(N);
2866#endif
2867  return SDValue(N, 0);
2868}
2869
2870SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2871                              SDValue N1, SDValue N2, SDValue N3) {
2872  // Perform various simplifications.
2873  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2874  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2875  switch (Opcode) {
2876  case ISD::CONCAT_VECTORS:
2877    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2878    // one big BUILD_VECTOR.
2879    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2880        N2.getOpcode() == ISD::BUILD_VECTOR &&
2881        N3.getOpcode() == ISD::BUILD_VECTOR) {
2882      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2883      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2884      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2885      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2886    }
2887    break;
2888  case ISD::SETCC: {
2889    // Use FoldSetCC to simplify SETCC's.
2890    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2891    if (Simp.getNode()) return Simp;
2892    break;
2893  }
2894  case ISD::SELECT:
2895    if (N1C) {
2896     if (N1C->getZExtValue())
2897        return N2;             // select true, X, Y -> X
2898      else
2899        return N3;             // select false, X, Y -> Y
2900    }
2901
2902    if (N2 == N3) return N2;   // select C, X, X -> X
2903    break;
2904  case ISD::BRCOND:
2905    if (N2C) {
2906      if (N2C->getZExtValue()) // Unconditional branch
2907        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2908      else
2909        return N1;         // Never-taken branch
2910    }
2911    break;
2912  case ISD::VECTOR_SHUFFLE:
2913    assert(0 && "should use getVectorShuffle constructor!");
2914    break;
2915  case ISD::BIT_CONVERT:
2916    // Fold bit_convert nodes from a type to themselves.
2917    if (N1.getValueType() == VT)
2918      return N1;
2919    break;
2920  }
2921
2922  // Memoize node if it doesn't produce a flag.
2923  SDNode *N;
2924  SDVTList VTs = getVTList(VT);
2925  if (VT != MVT::Flag) {
2926    SDValue Ops[] = { N1, N2, N3 };
2927    FoldingSetNodeID ID;
2928    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2929    void *IP = 0;
2930    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2931      return SDValue(E, 0);
2932    N = NodeAllocator.Allocate<TernarySDNode>();
2933    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2934    CSEMap.InsertNode(N, IP);
2935  } else {
2936    N = NodeAllocator.Allocate<TernarySDNode>();
2937    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2938  }
2939  AllNodes.push_back(N);
2940#ifndef NDEBUG
2941  VerifyNode(N);
2942#endif
2943  return SDValue(N, 0);
2944}
2945
2946SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2947                              SDValue N1, SDValue N2, SDValue N3,
2948                              SDValue N4) {
2949  SDValue Ops[] = { N1, N2, N3, N4 };
2950  return getNode(Opcode, DL, VT, Ops, 4);
2951}
2952
2953SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2954                              SDValue N1, SDValue N2, SDValue N3,
2955                              SDValue N4, SDValue N5) {
2956  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2957  return getNode(Opcode, DL, VT, Ops, 5);
2958}
2959
2960/// getMemsetValue - Vectorized representation of the memset value
2961/// operand.
2962static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG,
2963                              DebugLoc dl) {
2964  unsigned NumBits = VT.isVector() ?
2965    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2966  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2967    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2968    unsigned Shift = 8;
2969    for (unsigned i = NumBits; i > 8; i >>= 1) {
2970      Val = (Val << Shift) | Val;
2971      Shift <<= 1;
2972    }
2973    if (VT.isInteger())
2974      return DAG.getConstant(Val, VT);
2975    return DAG.getConstantFP(APFloat(Val), VT);
2976  }
2977
2978  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2979  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
2980  unsigned Shift = 8;
2981  for (unsigned i = NumBits; i > 8; i >>= 1) {
2982    Value = DAG.getNode(ISD::OR, dl, VT,
2983                        DAG.getNode(ISD::SHL, dl, VT, Value,
2984                                    DAG.getConstant(Shift,
2985                                                    TLI.getShiftAmountTy())),
2986                        Value);
2987    Shift <<= 1;
2988  }
2989
2990  return Value;
2991}
2992
2993/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2994/// used when a memcpy is turned into a memset when the source is a constant
2995/// string ptr.
2996static SDValue getMemsetStringVal(MVT VT, DebugLoc dl, SelectionDAG &DAG,
2997                                    const TargetLowering &TLI,
2998                                    std::string &Str, unsigned Offset) {
2999  // Handle vector with all elements zero.
3000  if (Str.empty()) {
3001    if (VT.isInteger())
3002      return DAG.getConstant(0, VT);
3003    unsigned NumElts = VT.getVectorNumElements();
3004    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3005    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3006                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
3007  }
3008
3009  assert(!VT.isVector() && "Can't handle vector type here!");
3010  unsigned NumBits = VT.getSizeInBits();
3011  unsigned MSB = NumBits / 8;
3012  uint64_t Val = 0;
3013  if (TLI.isLittleEndian())
3014    Offset = Offset + MSB - 1;
3015  for (unsigned i = 0; i != MSB; ++i) {
3016    Val = (Val << 8) | (unsigned char)Str[Offset];
3017    Offset += TLI.isLittleEndian() ? -1 : 1;
3018  }
3019  return DAG.getConstant(Val, VT);
3020}
3021
3022/// getMemBasePlusOffset - Returns base and offset node for the
3023///
3024static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3025                                      SelectionDAG &DAG) {
3026  MVT VT = Base.getValueType();
3027  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3028                     VT, Base, DAG.getConstant(Offset, VT));
3029}
3030
3031/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3032///
3033static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3034  unsigned SrcDelta = 0;
3035  GlobalAddressSDNode *G = NULL;
3036  if (Src.getOpcode() == ISD::GlobalAddress)
3037    G = cast<GlobalAddressSDNode>(Src);
3038  else if (Src.getOpcode() == ISD::ADD &&
3039           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3040           Src.getOperand(1).getOpcode() == ISD::Constant) {
3041    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3042    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3043  }
3044  if (!G)
3045    return false;
3046
3047  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3048  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3049    return true;
3050
3051  return false;
3052}
3053
3054/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3055/// to replace the memset / memcpy is below the threshold. It also returns the
3056/// types of the sequence of memory ops to perform memset / memcpy.
3057static
3058bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
3059                              SDValue Dst, SDValue Src,
3060                              unsigned Limit, uint64_t Size, unsigned &Align,
3061                              std::string &Str, bool &isSrcStr,
3062                              SelectionDAG &DAG,
3063                              const TargetLowering &TLI) {
3064  isSrcStr = isMemSrcFromString(Src, Str);
3065  bool isSrcConst = isa<ConstantSDNode>(Src);
3066  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
3067  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
3068  if (VT != MVT::iAny) {
3069    unsigned NewAlign = (unsigned)
3070      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
3071    // If source is a string constant, this will require an unaligned load.
3072    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3073      if (Dst.getOpcode() != ISD::FrameIndex) {
3074        // Can't change destination alignment. It requires a unaligned store.
3075        if (AllowUnalign)
3076          VT = MVT::iAny;
3077      } else {
3078        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3079        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3080        if (MFI->isFixedObjectIndex(FI)) {
3081          // Can't change destination alignment. It requires a unaligned store.
3082          if (AllowUnalign)
3083            VT = MVT::iAny;
3084        } else {
3085          // Give the stack frame object a larger alignment if needed.
3086          if (MFI->getObjectAlignment(FI) < NewAlign)
3087            MFI->setObjectAlignment(FI, NewAlign);
3088          Align = NewAlign;
3089        }
3090      }
3091    }
3092  }
3093
3094  if (VT == MVT::iAny) {
3095    if (AllowUnalign) {
3096      VT = MVT::i64;
3097    } else {
3098      switch (Align & 7) {
3099      case 0:  VT = MVT::i64; break;
3100      case 4:  VT = MVT::i32; break;
3101      case 2:  VT = MVT::i16; break;
3102      default: VT = MVT::i8;  break;
3103      }
3104    }
3105
3106    MVT LVT = MVT::i64;
3107    while (!TLI.isTypeLegal(LVT))
3108      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
3109    assert(LVT.isInteger());
3110
3111    if (VT.bitsGT(LVT))
3112      VT = LVT;
3113  }
3114
3115  unsigned NumMemOps = 0;
3116  while (Size != 0) {
3117    unsigned VTSize = VT.getSizeInBits() / 8;
3118    while (VTSize > Size) {
3119      // For now, only use non-vector load / store's for the left-over pieces.
3120      if (VT.isVector()) {
3121        VT = MVT::i64;
3122        while (!TLI.isTypeLegal(VT))
3123          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3124        VTSize = VT.getSizeInBits() / 8;
3125      } else {
3126        // This can result in a type that is not legal on the target, e.g.
3127        // 1 or 2 bytes on PPC.
3128        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3129        VTSize >>= 1;
3130      }
3131    }
3132
3133    if (++NumMemOps > Limit)
3134      return false;
3135    MemOps.push_back(VT);
3136    Size -= VTSize;
3137  }
3138
3139  return true;
3140}
3141
3142static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3143                                         SDValue Chain, SDValue Dst,
3144                                         SDValue Src, uint64_t Size,
3145                                         unsigned Align, bool AlwaysInline,
3146                                         const Value *DstSV, uint64_t DstSVOff,
3147                                         const Value *SrcSV, uint64_t SrcSVOff){
3148  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3149
3150  // Expand memcpy to a series of load and store ops if the size operand falls
3151  // below a certain threshold.
3152  std::vector<MVT> MemOps;
3153  uint64_t Limit = -1ULL;
3154  if (!AlwaysInline)
3155    Limit = TLI.getMaxStoresPerMemcpy();
3156  unsigned DstAlign = Align;  // Destination alignment can change.
3157  std::string Str;
3158  bool CopyFromStr;
3159  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3160                                Str, CopyFromStr, DAG, TLI))
3161    return SDValue();
3162
3163
3164  bool isZeroStr = CopyFromStr && Str.empty();
3165  SmallVector<SDValue, 8> OutChains;
3166  unsigned NumMemOps = MemOps.size();
3167  uint64_t SrcOff = 0, DstOff = 0;
3168  for (unsigned i = 0; i < NumMemOps; i++) {
3169    MVT VT = MemOps[i];
3170    unsigned VTSize = VT.getSizeInBits() / 8;
3171    SDValue Value, Store;
3172
3173    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3174      // It's unlikely a store of a vector immediate can be done in a single
3175      // instruction. It would require a load from a constantpool first.
3176      // We also handle store a vector with all zero's.
3177      // FIXME: Handle other cases where store of vector immediate is done in
3178      // a single instruction.
3179      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3180      Store = DAG.getStore(Chain, dl, Value,
3181                           getMemBasePlusOffset(Dst, DstOff, DAG),
3182                           DstSV, DstSVOff + DstOff, false, DstAlign);
3183    } else {
3184      // The type might not be legal for the target.  This should only happen
3185      // if the type is smaller than a legal type, as on PPC, so the right
3186      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3187      // to Load/Store if NVT==VT.
3188      // FIXME does the case above also need this?
3189      MVT NVT = TLI.getTypeToTransformTo(VT);
3190      assert(NVT.bitsGE(VT));
3191      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3192                             getMemBasePlusOffset(Src, SrcOff, DAG),
3193                             SrcSV, SrcSVOff + SrcOff, VT, false, Align);
3194      Store = DAG.getTruncStore(Chain, dl, Value,
3195                             getMemBasePlusOffset(Dst, DstOff, DAG),
3196                             DstSV, DstSVOff + DstOff, VT, false, DstAlign);
3197    }
3198    OutChains.push_back(Store);
3199    SrcOff += VTSize;
3200    DstOff += VTSize;
3201  }
3202
3203  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3204                     &OutChains[0], OutChains.size());
3205}
3206
3207static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3208                                          SDValue Chain, SDValue Dst,
3209                                          SDValue Src, uint64_t Size,
3210                                          unsigned Align, bool AlwaysInline,
3211                                          const Value *DstSV, uint64_t DstSVOff,
3212                                          const Value *SrcSV, uint64_t SrcSVOff){
3213  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3214
3215  // Expand memmove to a series of load and store ops if the size operand falls
3216  // below a certain threshold.
3217  std::vector<MVT> MemOps;
3218  uint64_t Limit = -1ULL;
3219  if (!AlwaysInline)
3220    Limit = TLI.getMaxStoresPerMemmove();
3221  unsigned DstAlign = Align;  // Destination alignment can change.
3222  std::string Str;
3223  bool CopyFromStr;
3224  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3225                                Str, CopyFromStr, DAG, TLI))
3226    return SDValue();
3227
3228  uint64_t SrcOff = 0, DstOff = 0;
3229
3230  SmallVector<SDValue, 8> LoadValues;
3231  SmallVector<SDValue, 8> LoadChains;
3232  SmallVector<SDValue, 8> OutChains;
3233  unsigned NumMemOps = MemOps.size();
3234  for (unsigned i = 0; i < NumMemOps; i++) {
3235    MVT VT = MemOps[i];
3236    unsigned VTSize = VT.getSizeInBits() / 8;
3237    SDValue Value, Store;
3238
3239    Value = DAG.getLoad(VT, dl, Chain,
3240                        getMemBasePlusOffset(Src, SrcOff, DAG),
3241                        SrcSV, SrcSVOff + SrcOff, false, Align);
3242    LoadValues.push_back(Value);
3243    LoadChains.push_back(Value.getValue(1));
3244    SrcOff += VTSize;
3245  }
3246  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3247                      &LoadChains[0], LoadChains.size());
3248  OutChains.clear();
3249  for (unsigned i = 0; i < NumMemOps; i++) {
3250    MVT VT = MemOps[i];
3251    unsigned VTSize = VT.getSizeInBits() / 8;
3252    SDValue Value, Store;
3253
3254    Store = DAG.getStore(Chain, dl, LoadValues[i],
3255                         getMemBasePlusOffset(Dst, DstOff, DAG),
3256                         DstSV, DstSVOff + DstOff, false, DstAlign);
3257    OutChains.push_back(Store);
3258    DstOff += VTSize;
3259  }
3260
3261  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3262                     &OutChains[0], OutChains.size());
3263}
3264
3265static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3266                                 SDValue Chain, SDValue Dst,
3267                                 SDValue Src, uint64_t Size,
3268                                 unsigned Align,
3269                                 const Value *DstSV, uint64_t DstSVOff) {
3270  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3271
3272  // Expand memset to a series of load/store ops if the size operand
3273  // falls below a certain threshold.
3274  std::vector<MVT> MemOps;
3275  std::string Str;
3276  bool CopyFromStr;
3277  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3278                                Size, Align, Str, CopyFromStr, DAG, TLI))
3279    return SDValue();
3280
3281  SmallVector<SDValue, 8> OutChains;
3282  uint64_t DstOff = 0;
3283
3284  unsigned NumMemOps = MemOps.size();
3285  for (unsigned i = 0; i < NumMemOps; i++) {
3286    MVT VT = MemOps[i];
3287    unsigned VTSize = VT.getSizeInBits() / 8;
3288    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3289    SDValue Store = DAG.getStore(Chain, dl, Value,
3290                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3291                                 DstSV, DstSVOff + DstOff);
3292    OutChains.push_back(Store);
3293    DstOff += VTSize;
3294  }
3295
3296  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3297                     &OutChains[0], OutChains.size());
3298}
3299
3300SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3301                                SDValue Src, SDValue Size,
3302                                unsigned Align, bool AlwaysInline,
3303                                const Value *DstSV, uint64_t DstSVOff,
3304                                const Value *SrcSV, uint64_t SrcSVOff) {
3305
3306  // Check to see if we should lower the memcpy to loads and stores first.
3307  // For cases within the target-specified limits, this is the best choice.
3308  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3309  if (ConstantSize) {
3310    // Memcpy with size zero? Just return the original chain.
3311    if (ConstantSize->isNullValue())
3312      return Chain;
3313
3314    SDValue Result =
3315      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3316                              ConstantSize->getZExtValue(),
3317                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3318    if (Result.getNode())
3319      return Result;
3320  }
3321
3322  // Then check to see if we should lower the memcpy with target-specific
3323  // code. If the target chooses to do this, this is the next best.
3324  SDValue Result =
3325    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3326                                AlwaysInline,
3327                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3328  if (Result.getNode())
3329    return Result;
3330
3331  // If we really need inline code and the target declined to provide it,
3332  // use a (potentially long) sequence of loads and stores.
3333  if (AlwaysInline) {
3334    assert(ConstantSize && "AlwaysInline requires a constant size!");
3335    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3336                                   ConstantSize->getZExtValue(), Align, true,
3337                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3338  }
3339
3340  // Emit a library call.
3341  TargetLowering::ArgListTy Args;
3342  TargetLowering::ArgListEntry Entry;
3343  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3344  Entry.Node = Dst; Args.push_back(Entry);
3345  Entry.Node = Src; Args.push_back(Entry);
3346  Entry.Node = Size; Args.push_back(Entry);
3347  // FIXME: pass in DebugLoc
3348  std::pair<SDValue,SDValue> CallResult =
3349    TLI.LowerCallTo(Chain, Type::VoidTy,
3350                    false, false, false, false, CallingConv::C, false,
3351                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3352                    Args, *this, dl);
3353  return CallResult.second;
3354}
3355
3356SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3357                                 SDValue Src, SDValue Size,
3358                                 unsigned Align,
3359                                 const Value *DstSV, uint64_t DstSVOff,
3360                                 const Value *SrcSV, uint64_t SrcSVOff) {
3361
3362  // Check to see if we should lower the memmove to loads and stores first.
3363  // For cases within the target-specified limits, this is the best choice.
3364  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3365  if (ConstantSize) {
3366    // Memmove with size zero? Just return the original chain.
3367    if (ConstantSize->isNullValue())
3368      return Chain;
3369
3370    SDValue Result =
3371      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3372                               ConstantSize->getZExtValue(),
3373                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3374    if (Result.getNode())
3375      return Result;
3376  }
3377
3378  // Then check to see if we should lower the memmove with target-specific
3379  // code. If the target chooses to do this, this is the next best.
3380  SDValue Result =
3381    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3382                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3383  if (Result.getNode())
3384    return Result;
3385
3386  // Emit a library call.
3387  TargetLowering::ArgListTy Args;
3388  TargetLowering::ArgListEntry Entry;
3389  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3390  Entry.Node = Dst; Args.push_back(Entry);
3391  Entry.Node = Src; Args.push_back(Entry);
3392  Entry.Node = Size; Args.push_back(Entry);
3393  // FIXME:  pass in DebugLoc
3394  std::pair<SDValue,SDValue> CallResult =
3395    TLI.LowerCallTo(Chain, Type::VoidTy,
3396                    false, false, false, false, CallingConv::C, false,
3397                    getExternalSymbol("memmove", TLI.getPointerTy()),
3398                    Args, *this, dl);
3399  return CallResult.second;
3400}
3401
3402SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3403                                SDValue Src, SDValue Size,
3404                                unsigned Align,
3405                                const Value *DstSV, uint64_t DstSVOff) {
3406
3407  // Check to see if we should lower the memset to stores first.
3408  // For cases within the target-specified limits, this is the best choice.
3409  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3410  if (ConstantSize) {
3411    // Memset with size zero? Just return the original chain.
3412    if (ConstantSize->isNullValue())
3413      return Chain;
3414
3415    SDValue Result =
3416      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3417                      Align, DstSV, DstSVOff);
3418    if (Result.getNode())
3419      return Result;
3420  }
3421
3422  // Then check to see if we should lower the memset with target-specific
3423  // code. If the target chooses to do this, this is the next best.
3424  SDValue Result =
3425    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3426                                DstSV, DstSVOff);
3427  if (Result.getNode())
3428    return Result;
3429
3430  // Emit a library call.
3431  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3432  TargetLowering::ArgListTy Args;
3433  TargetLowering::ArgListEntry Entry;
3434  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3435  Args.push_back(Entry);
3436  // Extend or truncate the argument to be an i32 value for the call.
3437  if (Src.getValueType().bitsGT(MVT::i32))
3438    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3439  else
3440    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3441  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3442  Args.push_back(Entry);
3443  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3444  Args.push_back(Entry);
3445  // FIXME: pass in DebugLoc
3446  std::pair<SDValue,SDValue> CallResult =
3447    TLI.LowerCallTo(Chain, Type::VoidTy,
3448                    false, false, false, false, CallingConv::C, false,
3449                    getExternalSymbol("memset", TLI.getPointerTy()),
3450                    Args, *this, dl);
3451  return CallResult.second;
3452}
3453
3454SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3455                                SDValue Chain,
3456                                SDValue Ptr, SDValue Cmp,
3457                                SDValue Swp, const Value* PtrVal,
3458                                unsigned Alignment) {
3459  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3460  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3461
3462  MVT VT = Cmp.getValueType();
3463
3464  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3465    Alignment = getMVTAlignment(MemVT);
3466
3467  SDVTList VTs = getVTList(VT, MVT::Other);
3468  FoldingSetNodeID ID;
3469  ID.AddInteger(MemVT.getRawBits());
3470  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3471  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3472  void* IP = 0;
3473  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3474    return SDValue(E, 0);
3475  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3476  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3477                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3478  CSEMap.InsertNode(N, IP);
3479  AllNodes.push_back(N);
3480  return SDValue(N, 0);
3481}
3482
3483SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3484                                SDValue Chain,
3485                                SDValue Ptr, SDValue Val,
3486                                const Value* PtrVal,
3487                                unsigned Alignment) {
3488  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3489          Opcode == ISD::ATOMIC_LOAD_SUB ||
3490          Opcode == ISD::ATOMIC_LOAD_AND ||
3491          Opcode == ISD::ATOMIC_LOAD_OR ||
3492          Opcode == ISD::ATOMIC_LOAD_XOR ||
3493          Opcode == ISD::ATOMIC_LOAD_NAND ||
3494          Opcode == ISD::ATOMIC_LOAD_MIN ||
3495          Opcode == ISD::ATOMIC_LOAD_MAX ||
3496          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3497          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3498          Opcode == ISD::ATOMIC_SWAP) &&
3499         "Invalid Atomic Op");
3500
3501  MVT VT = Val.getValueType();
3502
3503  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3504    Alignment = getMVTAlignment(MemVT);
3505
3506  SDVTList VTs = getVTList(VT, MVT::Other);
3507  FoldingSetNodeID ID;
3508  ID.AddInteger(MemVT.getRawBits());
3509  SDValue Ops[] = {Chain, Ptr, Val};
3510  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3511  void* IP = 0;
3512  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3513    return SDValue(E, 0);
3514  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3515  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3516                       Chain, Ptr, Val, PtrVal, Alignment);
3517  CSEMap.InsertNode(N, IP);
3518  AllNodes.push_back(N);
3519  return SDValue(N, 0);
3520}
3521
3522/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3523/// Allowed to return something different (and simpler) if Simplify is true.
3524SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3525                                     DebugLoc dl) {
3526  if (NumOps == 1)
3527    return Ops[0];
3528
3529  SmallVector<MVT, 4> VTs;
3530  VTs.reserve(NumOps);
3531  for (unsigned i = 0; i < NumOps; ++i)
3532    VTs.push_back(Ops[i].getValueType());
3533  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3534                 Ops, NumOps);
3535}
3536
3537SDValue
3538SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3539                                  const MVT *VTs, unsigned NumVTs,
3540                                  const SDValue *Ops, unsigned NumOps,
3541                                  MVT MemVT, const Value *srcValue, int SVOff,
3542                                  unsigned Align, bool Vol,
3543                                  bool ReadMem, bool WriteMem) {
3544  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3545                             MemVT, srcValue, SVOff, Align, Vol,
3546                             ReadMem, WriteMem);
3547}
3548
3549SDValue
3550SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3551                                  const SDValue *Ops, unsigned NumOps,
3552                                  MVT MemVT, const Value *srcValue, int SVOff,
3553                                  unsigned Align, bool Vol,
3554                                  bool ReadMem, bool WriteMem) {
3555  // Memoize the node unless it returns a flag.
3556  MemIntrinsicSDNode *N;
3557  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3558    FoldingSetNodeID ID;
3559    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3560    void *IP = 0;
3561    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3562      return SDValue(E, 0);
3563
3564    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3565    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3566                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3567    CSEMap.InsertNode(N, IP);
3568  } else {
3569    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3570    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3571                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3572  }
3573  AllNodes.push_back(N);
3574  return SDValue(N, 0);
3575}
3576
3577SDValue
3578SelectionDAG::getCall(unsigned CallingConv, DebugLoc dl, bool IsVarArgs,
3579                      bool IsTailCall, bool IsInreg, SDVTList VTs,
3580                      const SDValue *Operands, unsigned NumOperands) {
3581  // Do not include isTailCall in the folding set profile.
3582  FoldingSetNodeID ID;
3583  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3584  ID.AddInteger(CallingConv);
3585  ID.AddInteger(IsVarArgs);
3586  void *IP = 0;
3587  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3588    // Instead of including isTailCall in the folding set, we just
3589    // set the flag of the existing node.
3590    if (!IsTailCall)
3591      cast<CallSDNode>(E)->setNotTailCall();
3592    return SDValue(E, 0);
3593  }
3594  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3595  new (N) CallSDNode(CallingConv, dl, IsVarArgs, IsTailCall, IsInreg,
3596                     VTs, Operands, NumOperands);
3597  CSEMap.InsertNode(N, IP);
3598  AllNodes.push_back(N);
3599  return SDValue(N, 0);
3600}
3601
3602SDValue
3603SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3604                      ISD::LoadExtType ExtType, MVT VT, SDValue Chain,
3605                      SDValue Ptr, SDValue Offset,
3606                      const Value *SV, int SVOffset, MVT EVT,
3607                      bool isVolatile, unsigned Alignment) {
3608  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3609    Alignment = getMVTAlignment(VT);
3610
3611  if (VT == EVT) {
3612    ExtType = ISD::NON_EXTLOAD;
3613  } else if (ExtType == ISD::NON_EXTLOAD) {
3614    assert(VT == EVT && "Non-extending load from different memory type!");
3615  } else {
3616    // Extending load.
3617    if (VT.isVector())
3618      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3619             "Invalid vector extload!");
3620    else
3621      assert(EVT.bitsLT(VT) &&
3622             "Should only be an extending load, not truncating!");
3623    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3624           "Cannot sign/zero extend a FP/Vector load!");
3625    assert(VT.isInteger() == EVT.isInteger() &&
3626           "Cannot convert from FP to Int or Int -> FP!");
3627  }
3628
3629  bool Indexed = AM != ISD::UNINDEXED;
3630  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3631         "Unindexed load with an offset!");
3632
3633  SDVTList VTs = Indexed ?
3634    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3635  SDValue Ops[] = { Chain, Ptr, Offset };
3636  FoldingSetNodeID ID;
3637  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3638  ID.AddInteger(EVT.getRawBits());
3639  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, isVolatile, Alignment));
3640  void *IP = 0;
3641  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3642    return SDValue(E, 0);
3643  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3644  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, EVT, SV, SVOffset,
3645                     Alignment, isVolatile);
3646  CSEMap.InsertNode(N, IP);
3647  AllNodes.push_back(N);
3648  return SDValue(N, 0);
3649}
3650
3651SDValue SelectionDAG::getLoad(MVT VT, DebugLoc dl,
3652                              SDValue Chain, SDValue Ptr,
3653                              const Value *SV, int SVOffset,
3654                              bool isVolatile, unsigned Alignment) {
3655  SDValue Undef = getUNDEF(Ptr.getValueType());
3656  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3657                 SV, SVOffset, VT, isVolatile, Alignment);
3658}
3659
3660SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, MVT VT,
3661                                 SDValue Chain, SDValue Ptr,
3662                                 const Value *SV,
3663                                 int SVOffset, MVT EVT,
3664                                 bool isVolatile, unsigned Alignment) {
3665  SDValue Undef = getUNDEF(Ptr.getValueType());
3666  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3667                 SV, SVOffset, EVT, isVolatile, Alignment);
3668}
3669
3670SDValue
3671SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3672                             SDValue Offset, ISD::MemIndexedMode AM) {
3673  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3674  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3675         "Load is already a indexed load!");
3676  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3677                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3678                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3679                 LD->isVolatile(), LD->getAlignment());
3680}
3681
3682SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3683                               SDValue Ptr, const Value *SV, int SVOffset,
3684                               bool isVolatile, unsigned Alignment) {
3685  MVT VT = Val.getValueType();
3686
3687  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3688    Alignment = getMVTAlignment(VT);
3689
3690  SDVTList VTs = getVTList(MVT::Other);
3691  SDValue Undef = getUNDEF(Ptr.getValueType());
3692  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3693  FoldingSetNodeID ID;
3694  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3695  ID.AddInteger(VT.getRawBits());
3696  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED,
3697                                     isVolatile, Alignment));
3698  void *IP = 0;
3699  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3700    return SDValue(E, 0);
3701  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3702  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false,
3703                      VT, SV, SVOffset, Alignment, isVolatile);
3704  CSEMap.InsertNode(N, IP);
3705  AllNodes.push_back(N);
3706  return SDValue(N, 0);
3707}
3708
3709SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3710                                    SDValue Ptr, const Value *SV,
3711                                    int SVOffset, MVT SVT,
3712                                    bool isVolatile, unsigned Alignment) {
3713  MVT VT = Val.getValueType();
3714
3715  if (VT == SVT)
3716    return getStore(Chain, dl, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3717
3718  assert(VT.bitsGT(SVT) && "Not a truncation?");
3719  assert(VT.isInteger() == SVT.isInteger() &&
3720         "Can't do FP-INT conversion!");
3721
3722  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3723    Alignment = getMVTAlignment(VT);
3724
3725  SDVTList VTs = getVTList(MVT::Other);
3726  SDValue Undef = getUNDEF(Ptr.getValueType());
3727  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3728  FoldingSetNodeID ID;
3729  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3730  ID.AddInteger(SVT.getRawBits());
3731  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED,
3732                                     isVolatile, Alignment));
3733  void *IP = 0;
3734  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3735    return SDValue(E, 0);
3736  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3737  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true,
3738                      SVT, SV, SVOffset, Alignment, isVolatile);
3739  CSEMap.InsertNode(N, IP);
3740  AllNodes.push_back(N);
3741  return SDValue(N, 0);
3742}
3743
3744SDValue
3745SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3746                              SDValue Offset, ISD::MemIndexedMode AM) {
3747  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3748  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3749         "Store is already a indexed store!");
3750  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3751  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3752  FoldingSetNodeID ID;
3753  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3754  ID.AddInteger(ST->getMemoryVT().getRawBits());
3755  ID.AddInteger(ST->getRawSubclassData());
3756  void *IP = 0;
3757  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3758    return SDValue(E, 0);
3759  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3760  new (N) StoreSDNode(Ops, dl, VTs, AM,
3761                      ST->isTruncatingStore(), ST->getMemoryVT(),
3762                      ST->getSrcValue(), ST->getSrcValueOffset(),
3763                      ST->getAlignment(), ST->isVolatile());
3764  CSEMap.InsertNode(N, IP);
3765  AllNodes.push_back(N);
3766  return SDValue(N, 0);
3767}
3768
3769SDValue SelectionDAG::getVAArg(MVT VT, DebugLoc dl,
3770                               SDValue Chain, SDValue Ptr,
3771                               SDValue SV) {
3772  SDValue Ops[] = { Chain, Ptr, SV };
3773  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
3774}
3775
3776SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3777                              const SDUse *Ops, unsigned NumOps) {
3778  switch (NumOps) {
3779  case 0: return getNode(Opcode, DL, VT);
3780  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3781  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3782  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3783  default: break;
3784  }
3785
3786  // Copy from an SDUse array into an SDValue array for use with
3787  // the regular getNode logic.
3788  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3789  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
3790}
3791
3792SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3793                              const SDValue *Ops, unsigned NumOps) {
3794  switch (NumOps) {
3795  case 0: return getNode(Opcode, DL, VT);
3796  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3797  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3798  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3799  default: break;
3800  }
3801
3802  switch (Opcode) {
3803  default: break;
3804  case ISD::SELECT_CC: {
3805    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3806    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3807           "LHS and RHS of condition must have same type!");
3808    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3809           "True and False arms of SelectCC must have same type!");
3810    assert(Ops[2].getValueType() == VT &&
3811           "select_cc node must be of same type as true and false value!");
3812    break;
3813  }
3814  case ISD::BR_CC: {
3815    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3816    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3817           "LHS/RHS of comparison should match types!");
3818    break;
3819  }
3820  }
3821
3822  // Memoize nodes.
3823  SDNode *N;
3824  SDVTList VTs = getVTList(VT);
3825
3826  if (VT != MVT::Flag) {
3827    FoldingSetNodeID ID;
3828    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3829    void *IP = 0;
3830
3831    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3832      return SDValue(E, 0);
3833
3834    N = NodeAllocator.Allocate<SDNode>();
3835    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3836    CSEMap.InsertNode(N, IP);
3837  } else {
3838    N = NodeAllocator.Allocate<SDNode>();
3839    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3840  }
3841
3842  AllNodes.push_back(N);
3843#ifndef NDEBUG
3844  VerifyNode(N);
3845#endif
3846  return SDValue(N, 0);
3847}
3848
3849SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3850                              const std::vector<MVT> &ResultTys,
3851                              const SDValue *Ops, unsigned NumOps) {
3852  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
3853                 Ops, NumOps);
3854}
3855
3856SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3857                              const MVT *VTs, unsigned NumVTs,
3858                              const SDValue *Ops, unsigned NumOps) {
3859  if (NumVTs == 1)
3860    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
3861  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
3862}
3863
3864SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3865                              const SDValue *Ops, unsigned NumOps) {
3866  if (VTList.NumVTs == 1)
3867    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
3868
3869  switch (Opcode) {
3870  // FIXME: figure out how to safely handle things like
3871  // int foo(int x) { return 1 << (x & 255); }
3872  // int bar() { return foo(256); }
3873#if 0
3874  case ISD::SRA_PARTS:
3875  case ISD::SRL_PARTS:
3876  case ISD::SHL_PARTS:
3877    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3878        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3879      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3880    else if (N3.getOpcode() == ISD::AND)
3881      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3882        // If the and is only masking out bits that cannot effect the shift,
3883        // eliminate the and.
3884        unsigned NumBits = VT.getSizeInBits()*2;
3885        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3886          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3887      }
3888    break;
3889#endif
3890  }
3891
3892  // Memoize the node unless it returns a flag.
3893  SDNode *N;
3894  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3895    FoldingSetNodeID ID;
3896    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3897    void *IP = 0;
3898    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3899      return SDValue(E, 0);
3900    if (NumOps == 1) {
3901      N = NodeAllocator.Allocate<UnarySDNode>();
3902      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3903    } else if (NumOps == 2) {
3904      N = NodeAllocator.Allocate<BinarySDNode>();
3905      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3906    } else if (NumOps == 3) {
3907      N = NodeAllocator.Allocate<TernarySDNode>();
3908      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3909    } else {
3910      N = NodeAllocator.Allocate<SDNode>();
3911      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3912    }
3913    CSEMap.InsertNode(N, IP);
3914  } else {
3915    if (NumOps == 1) {
3916      N = NodeAllocator.Allocate<UnarySDNode>();
3917      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3918    } else if (NumOps == 2) {
3919      N = NodeAllocator.Allocate<BinarySDNode>();
3920      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3921    } else if (NumOps == 3) {
3922      N = NodeAllocator.Allocate<TernarySDNode>();
3923      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3924    } else {
3925      N = NodeAllocator.Allocate<SDNode>();
3926      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3927    }
3928  }
3929  AllNodes.push_back(N);
3930#ifndef NDEBUG
3931  VerifyNode(N);
3932#endif
3933  return SDValue(N, 0);
3934}
3935
3936SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
3937  return getNode(Opcode, DL, VTList, 0, 0);
3938}
3939
3940SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3941                              SDValue N1) {
3942  SDValue Ops[] = { N1 };
3943  return getNode(Opcode, DL, VTList, Ops, 1);
3944}
3945
3946SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3947                              SDValue N1, SDValue N2) {
3948  SDValue Ops[] = { N1, N2 };
3949  return getNode(Opcode, DL, VTList, Ops, 2);
3950}
3951
3952SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3953                              SDValue N1, SDValue N2, SDValue N3) {
3954  SDValue Ops[] = { N1, N2, N3 };
3955  return getNode(Opcode, DL, VTList, Ops, 3);
3956}
3957
3958SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3959                              SDValue N1, SDValue N2, SDValue N3,
3960                              SDValue N4) {
3961  SDValue Ops[] = { N1, N2, N3, N4 };
3962  return getNode(Opcode, DL, VTList, Ops, 4);
3963}
3964
3965SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3966                              SDValue N1, SDValue N2, SDValue N3,
3967                              SDValue N4, SDValue N5) {
3968  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3969  return getNode(Opcode, DL, VTList, Ops, 5);
3970}
3971
3972SDVTList SelectionDAG::getVTList(MVT VT) {
3973  return makeVTList(SDNode::getValueTypeList(VT), 1);
3974}
3975
3976SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3977  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3978       E = VTList.rend(); I != E; ++I)
3979    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3980      return *I;
3981
3982  MVT *Array = Allocator.Allocate<MVT>(2);
3983  Array[0] = VT1;
3984  Array[1] = VT2;
3985  SDVTList Result = makeVTList(Array, 2);
3986  VTList.push_back(Result);
3987  return Result;
3988}
3989
3990SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3991  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3992       E = VTList.rend(); I != E; ++I)
3993    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3994                          I->VTs[2] == VT3)
3995      return *I;
3996
3997  MVT *Array = Allocator.Allocate<MVT>(3);
3998  Array[0] = VT1;
3999  Array[1] = VT2;
4000  Array[2] = VT3;
4001  SDVTList Result = makeVTList(Array, 3);
4002  VTList.push_back(Result);
4003  return Result;
4004}
4005
4006SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
4007  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4008       E = VTList.rend(); I != E; ++I)
4009    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4010                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4011      return *I;
4012
4013  MVT *Array = Allocator.Allocate<MVT>(3);
4014  Array[0] = VT1;
4015  Array[1] = VT2;
4016  Array[2] = VT3;
4017  Array[3] = VT4;
4018  SDVTList Result = makeVTList(Array, 4);
4019  VTList.push_back(Result);
4020  return Result;
4021}
4022
4023SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
4024  switch (NumVTs) {
4025    case 0: assert(0 && "Cannot have nodes without results!");
4026    case 1: return getVTList(VTs[0]);
4027    case 2: return getVTList(VTs[0], VTs[1]);
4028    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4029    default: break;
4030  }
4031
4032  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4033       E = VTList.rend(); I != E; ++I) {
4034    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4035      continue;
4036
4037    bool NoMatch = false;
4038    for (unsigned i = 2; i != NumVTs; ++i)
4039      if (VTs[i] != I->VTs[i]) {
4040        NoMatch = true;
4041        break;
4042      }
4043    if (!NoMatch)
4044      return *I;
4045  }
4046
4047  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
4048  std::copy(VTs, VTs+NumVTs, Array);
4049  SDVTList Result = makeVTList(Array, NumVTs);
4050  VTList.push_back(Result);
4051  return Result;
4052}
4053
4054
4055/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4056/// specified operands.  If the resultant node already exists in the DAG,
4057/// this does not modify the specified node, instead it returns the node that
4058/// already exists.  If the resultant node does not exist in the DAG, the
4059/// input node is returned.  As a degenerate case, if you specify the same
4060/// input operands as the node already has, the input node is returned.
4061SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4062  SDNode *N = InN.getNode();
4063  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4064
4065  // Check to see if there is no change.
4066  if (Op == N->getOperand(0)) return InN;
4067
4068  // See if the modified node already exists.
4069  void *InsertPos = 0;
4070  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4071    return SDValue(Existing, InN.getResNo());
4072
4073  // Nope it doesn't.  Remove the node from its current place in the maps.
4074  if (InsertPos)
4075    if (!RemoveNodeFromCSEMaps(N))
4076      InsertPos = 0;
4077
4078  // Now we update the operands.
4079  N->OperandList[0].set(Op);
4080
4081  // If this gets put into a CSE map, add it.
4082  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4083  return InN;
4084}
4085
4086SDValue SelectionDAG::
4087UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4088  SDNode *N = InN.getNode();
4089  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4090
4091  // Check to see if there is no change.
4092  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4093    return InN;   // No operands changed, just return the input node.
4094
4095  // See if the modified node already exists.
4096  void *InsertPos = 0;
4097  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4098    return SDValue(Existing, InN.getResNo());
4099
4100  // Nope it doesn't.  Remove the node from its current place in the maps.
4101  if (InsertPos)
4102    if (!RemoveNodeFromCSEMaps(N))
4103      InsertPos = 0;
4104
4105  // Now we update the operands.
4106  if (N->OperandList[0] != Op1)
4107    N->OperandList[0].set(Op1);
4108  if (N->OperandList[1] != Op2)
4109    N->OperandList[1].set(Op2);
4110
4111  // If this gets put into a CSE map, add it.
4112  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4113  return InN;
4114}
4115
4116SDValue SelectionDAG::
4117UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4118  SDValue Ops[] = { Op1, Op2, Op3 };
4119  return UpdateNodeOperands(N, Ops, 3);
4120}
4121
4122SDValue SelectionDAG::
4123UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4124                   SDValue Op3, SDValue Op4) {
4125  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4126  return UpdateNodeOperands(N, Ops, 4);
4127}
4128
4129SDValue SelectionDAG::
4130UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4131                   SDValue Op3, SDValue Op4, SDValue Op5) {
4132  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4133  return UpdateNodeOperands(N, Ops, 5);
4134}
4135
4136SDValue SelectionDAG::
4137UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4138  SDNode *N = InN.getNode();
4139  assert(N->getNumOperands() == NumOps &&
4140         "Update with wrong number of operands");
4141
4142  // Check to see if there is no change.
4143  bool AnyChange = false;
4144  for (unsigned i = 0; i != NumOps; ++i) {
4145    if (Ops[i] != N->getOperand(i)) {
4146      AnyChange = true;
4147      break;
4148    }
4149  }
4150
4151  // No operands changed, just return the input node.
4152  if (!AnyChange) return InN;
4153
4154  // See if the modified node already exists.
4155  void *InsertPos = 0;
4156  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4157    return SDValue(Existing, InN.getResNo());
4158
4159  // Nope it doesn't.  Remove the node from its current place in the maps.
4160  if (InsertPos)
4161    if (!RemoveNodeFromCSEMaps(N))
4162      InsertPos = 0;
4163
4164  // Now we update the operands.
4165  for (unsigned i = 0; i != NumOps; ++i)
4166    if (N->OperandList[i] != Ops[i])
4167      N->OperandList[i].set(Ops[i]);
4168
4169  // If this gets put into a CSE map, add it.
4170  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4171  return InN;
4172}
4173
4174/// DropOperands - Release the operands and set this node to have
4175/// zero operands.
4176void SDNode::DropOperands() {
4177  // Unlike the code in MorphNodeTo that does this, we don't need to
4178  // watch for dead nodes here.
4179  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4180    SDUse &Use = *I++;
4181    Use.set(SDValue());
4182  }
4183}
4184
4185/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4186/// machine opcode.
4187///
4188SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4189                                   MVT VT) {
4190  SDVTList VTs = getVTList(VT);
4191  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4192}
4193
4194SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4195                                   MVT VT, SDValue Op1) {
4196  SDVTList VTs = getVTList(VT);
4197  SDValue Ops[] = { Op1 };
4198  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4199}
4200
4201SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4202                                   MVT VT, SDValue Op1,
4203                                   SDValue Op2) {
4204  SDVTList VTs = getVTList(VT);
4205  SDValue Ops[] = { Op1, Op2 };
4206  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4207}
4208
4209SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4210                                   MVT VT, SDValue Op1,
4211                                   SDValue Op2, SDValue Op3) {
4212  SDVTList VTs = getVTList(VT);
4213  SDValue Ops[] = { Op1, Op2, Op3 };
4214  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4215}
4216
4217SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4218                                   MVT VT, const SDValue *Ops,
4219                                   unsigned NumOps) {
4220  SDVTList VTs = getVTList(VT);
4221  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4222}
4223
4224SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4225                                   MVT VT1, MVT VT2, const SDValue *Ops,
4226                                   unsigned NumOps) {
4227  SDVTList VTs = getVTList(VT1, VT2);
4228  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4229}
4230
4231SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4232                                   MVT VT1, MVT VT2) {
4233  SDVTList VTs = getVTList(VT1, VT2);
4234  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4235}
4236
4237SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4238                                   MVT VT1, MVT VT2, MVT VT3,
4239                                   const SDValue *Ops, unsigned NumOps) {
4240  SDVTList VTs = getVTList(VT1, VT2, VT3);
4241  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4242}
4243
4244SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4245                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4246                                   const SDValue *Ops, unsigned NumOps) {
4247  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4248  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4249}
4250
4251SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4252                                   MVT VT1, MVT VT2,
4253                                   SDValue Op1) {
4254  SDVTList VTs = getVTList(VT1, VT2);
4255  SDValue Ops[] = { Op1 };
4256  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4257}
4258
4259SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4260                                   MVT VT1, MVT VT2,
4261                                   SDValue Op1, SDValue Op2) {
4262  SDVTList VTs = getVTList(VT1, VT2);
4263  SDValue Ops[] = { Op1, Op2 };
4264  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4265}
4266
4267SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4268                                   MVT VT1, MVT VT2,
4269                                   SDValue Op1, SDValue Op2,
4270                                   SDValue Op3) {
4271  SDVTList VTs = getVTList(VT1, VT2);
4272  SDValue Ops[] = { Op1, Op2, Op3 };
4273  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4274}
4275
4276SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4277                                   MVT VT1, MVT VT2, MVT VT3,
4278                                   SDValue Op1, SDValue Op2,
4279                                   SDValue Op3) {
4280  SDVTList VTs = getVTList(VT1, VT2, VT3);
4281  SDValue Ops[] = { Op1, Op2, Op3 };
4282  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4283}
4284
4285SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4286                                   SDVTList VTs, const SDValue *Ops,
4287                                   unsigned NumOps) {
4288  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4289}
4290
4291SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4292                                  MVT VT) {
4293  SDVTList VTs = getVTList(VT);
4294  return MorphNodeTo(N, Opc, VTs, 0, 0);
4295}
4296
4297SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4298                                  MVT VT, SDValue Op1) {
4299  SDVTList VTs = getVTList(VT);
4300  SDValue Ops[] = { Op1 };
4301  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4302}
4303
4304SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4305                                  MVT VT, SDValue Op1,
4306                                  SDValue Op2) {
4307  SDVTList VTs = getVTList(VT);
4308  SDValue Ops[] = { Op1, Op2 };
4309  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4310}
4311
4312SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4313                                  MVT VT, SDValue Op1,
4314                                  SDValue Op2, SDValue Op3) {
4315  SDVTList VTs = getVTList(VT);
4316  SDValue Ops[] = { Op1, Op2, Op3 };
4317  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4318}
4319
4320SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4321                                  MVT VT, const SDValue *Ops,
4322                                  unsigned NumOps) {
4323  SDVTList VTs = getVTList(VT);
4324  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4325}
4326
4327SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4328                                  MVT VT1, MVT VT2, const SDValue *Ops,
4329                                  unsigned NumOps) {
4330  SDVTList VTs = getVTList(VT1, VT2);
4331  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4332}
4333
4334SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4335                                  MVT VT1, MVT VT2) {
4336  SDVTList VTs = getVTList(VT1, VT2);
4337  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4338}
4339
4340SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4341                                  MVT VT1, MVT VT2, MVT VT3,
4342                                  const SDValue *Ops, unsigned NumOps) {
4343  SDVTList VTs = getVTList(VT1, VT2, VT3);
4344  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4345}
4346
4347SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4348                                  MVT VT1, MVT VT2,
4349                                  SDValue Op1) {
4350  SDVTList VTs = getVTList(VT1, VT2);
4351  SDValue Ops[] = { Op1 };
4352  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4353}
4354
4355SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4356                                  MVT VT1, MVT VT2,
4357                                  SDValue Op1, SDValue Op2) {
4358  SDVTList VTs = getVTList(VT1, VT2);
4359  SDValue Ops[] = { Op1, Op2 };
4360  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4361}
4362
4363SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4364                                  MVT VT1, MVT VT2,
4365                                  SDValue Op1, SDValue Op2,
4366                                  SDValue Op3) {
4367  SDVTList VTs = getVTList(VT1, VT2);
4368  SDValue Ops[] = { Op1, Op2, Op3 };
4369  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4370}
4371
4372/// MorphNodeTo - These *mutate* the specified node to have the specified
4373/// return type, opcode, and operands.
4374///
4375/// Note that MorphNodeTo returns the resultant node.  If there is already a
4376/// node of the specified opcode and operands, it returns that node instead of
4377/// the current one.  Note that the DebugLoc need not be the same.
4378///
4379/// Using MorphNodeTo is faster than creating a new node and swapping it in
4380/// with ReplaceAllUsesWith both because it often avoids allocating a new
4381/// node, and because it doesn't require CSE recalculation for any of
4382/// the node's users.
4383///
4384SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4385                                  SDVTList VTs, const SDValue *Ops,
4386                                  unsigned NumOps) {
4387  // If an identical node already exists, use it.
4388  void *IP = 0;
4389  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4390    FoldingSetNodeID ID;
4391    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4392    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4393      return ON;
4394  }
4395
4396  if (!RemoveNodeFromCSEMaps(N))
4397    IP = 0;
4398
4399  // Start the morphing.
4400  N->NodeType = Opc;
4401  N->ValueList = VTs.VTs;
4402  N->NumValues = VTs.NumVTs;
4403
4404  // Clear the operands list, updating used nodes to remove this from their
4405  // use list.  Keep track of any operands that become dead as a result.
4406  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4407  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4408    SDUse &Use = *I++;
4409    SDNode *Used = Use.getNode();
4410    Use.set(SDValue());
4411    if (Used->use_empty())
4412      DeadNodeSet.insert(Used);
4413  }
4414
4415  // If NumOps is larger than the # of operands we currently have, reallocate
4416  // the operand list.
4417  if (NumOps > N->NumOperands) {
4418    if (N->OperandsNeedDelete)
4419      delete[] N->OperandList;
4420
4421    if (N->isMachineOpcode()) {
4422      // We're creating a final node that will live unmorphed for the
4423      // remainder of the current SelectionDAG iteration, so we can allocate
4424      // the operands directly out of a pool with no recycling metadata.
4425      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4426      N->OperandsNeedDelete = false;
4427    } else {
4428      N->OperandList = new SDUse[NumOps];
4429      N->OperandsNeedDelete = true;
4430    }
4431  }
4432
4433  // Assign the new operands.
4434  N->NumOperands = NumOps;
4435  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4436    N->OperandList[i].setUser(N);
4437    N->OperandList[i].setInitial(Ops[i]);
4438  }
4439
4440  // Delete any nodes that are still dead after adding the uses for the
4441  // new operands.
4442  SmallVector<SDNode *, 16> DeadNodes;
4443  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4444       E = DeadNodeSet.end(); I != E; ++I)
4445    if ((*I)->use_empty())
4446      DeadNodes.push_back(*I);
4447  RemoveDeadNodes(DeadNodes);
4448
4449  if (IP)
4450    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4451  return N;
4452}
4453
4454
4455/// getTargetNode - These are used for target selectors to create a new node
4456/// with specified return type(s), target opcode, and operands.
4457///
4458/// Note that getTargetNode returns the resultant node.  If there is already a
4459/// node of the specified opcode and operands, it returns that node instead of
4460/// the current one.
4461SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT) {
4462  return getNode(~Opcode, dl, VT).getNode();
4463}
4464
4465SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4466                                    SDValue Op1) {
4467  return getNode(~Opcode, dl, VT, Op1).getNode();
4468}
4469
4470SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4471                                    SDValue Op1, SDValue Op2) {
4472  return getNode(~Opcode, dl, VT, Op1, Op2).getNode();
4473}
4474
4475SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4476                                    SDValue Op1, SDValue Op2,
4477                                    SDValue Op3) {
4478  return getNode(~Opcode, dl, VT, Op1, Op2, Op3).getNode();
4479}
4480
4481SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4482                                    const SDValue *Ops, unsigned NumOps) {
4483  return getNode(~Opcode, dl, VT, Ops, NumOps).getNode();
4484}
4485
4486SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4487                                    MVT VT1, MVT VT2) {
4488  SDVTList VTs = getVTList(VT1, VT2);
4489  SDValue Op;
4490  return getNode(~Opcode, dl, VTs, &Op, 0).getNode();
4491}
4492
4493SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4494                                    MVT VT2, SDValue Op1) {
4495  SDVTList VTs = getVTList(VT1, VT2);
4496  return getNode(~Opcode, dl, VTs, &Op1, 1).getNode();
4497}
4498
4499SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4500                                    MVT VT2, SDValue Op1,
4501                                    SDValue Op2) {
4502  SDVTList VTs = getVTList(VT1, VT2);
4503  SDValue Ops[] = { Op1, Op2 };
4504  return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4505}
4506
4507SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4508                                    MVT VT2, SDValue Op1,
4509                                    SDValue Op2, SDValue Op3) {
4510  SDVTList VTs = getVTList(VT1, VT2);
4511  SDValue Ops[] = { Op1, Op2, Op3 };
4512  return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4513}
4514
4515SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4516                                    MVT VT1, MVT VT2,
4517                                    const SDValue *Ops, unsigned NumOps) {
4518  SDVTList VTs = getVTList(VT1, VT2);
4519  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4520}
4521
4522SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4523                                    MVT VT1, MVT VT2, MVT VT3,
4524                                    SDValue Op1, SDValue Op2) {
4525  SDVTList VTs = getVTList(VT1, VT2, VT3);
4526  SDValue Ops[] = { Op1, Op2 };
4527  return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4528}
4529
4530SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4531                                    MVT VT1, MVT VT2, MVT VT3,
4532                                    SDValue Op1, SDValue Op2,
4533                                    SDValue Op3) {
4534  SDVTList VTs = getVTList(VT1, VT2, VT3);
4535  SDValue Ops[] = { Op1, Op2, Op3 };
4536  return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4537}
4538
4539SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4540                                    MVT VT1, MVT VT2, MVT VT3,
4541                                    const SDValue *Ops, unsigned NumOps) {
4542  SDVTList VTs = getVTList(VT1, VT2, VT3);
4543  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4544}
4545
4546SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4547                                    MVT VT2, MVT VT3, MVT VT4,
4548                                    const SDValue *Ops, unsigned NumOps) {
4549  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4550  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4551}
4552
4553SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4554                                    const std::vector<MVT> &ResultTys,
4555                                    const SDValue *Ops, unsigned NumOps) {
4556  return getNode(~Opcode, dl, ResultTys, Ops, NumOps).getNode();
4557}
4558
4559/// getNodeIfExists - Get the specified node if it's already available, or
4560/// else return NULL.
4561SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4562                                      const SDValue *Ops, unsigned NumOps) {
4563  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4564    FoldingSetNodeID ID;
4565    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4566    void *IP = 0;
4567    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4568      return E;
4569  }
4570  return NULL;
4571}
4572
4573/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4574/// This can cause recursive merging of nodes in the DAG.
4575///
4576/// This version assumes From has a single result value.
4577///
4578void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4579                                      DAGUpdateListener *UpdateListener) {
4580  SDNode *From = FromN.getNode();
4581  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4582         "Cannot replace with this method!");
4583  assert(From != To.getNode() && "Cannot replace uses of with self");
4584
4585  // Iterate over all the existing uses of From. New uses will be added
4586  // to the beginning of the use list, which we avoid visiting.
4587  // This specifically avoids visiting uses of From that arise while the
4588  // replacement is happening, because any such uses would be the result
4589  // of CSE: If an existing node looks like From after one of its operands
4590  // is replaced by To, we don't want to replace of all its users with To
4591  // too. See PR3018 for more info.
4592  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4593  while (UI != UE) {
4594    SDNode *User = *UI;
4595
4596    // This node is about to morph, remove its old self from the CSE maps.
4597    RemoveNodeFromCSEMaps(User);
4598
4599    // A user can appear in a use list multiple times, and when this
4600    // happens the uses are usually next to each other in the list.
4601    // To help reduce the number of CSE recomputations, process all
4602    // the uses of this user that we can find this way.
4603    do {
4604      SDUse &Use = UI.getUse();
4605      ++UI;
4606      Use.set(To);
4607    } while (UI != UE && *UI == User);
4608
4609    // Now that we have modified User, add it back to the CSE maps.  If it
4610    // already exists there, recursively merge the results together.
4611    AddModifiedNodeToCSEMaps(User, UpdateListener);
4612  }
4613}
4614
4615/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4616/// This can cause recursive merging of nodes in the DAG.
4617///
4618/// This version assumes that for each value of From, there is a
4619/// corresponding value in To in the same position with the same type.
4620///
4621void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4622                                      DAGUpdateListener *UpdateListener) {
4623#ifndef NDEBUG
4624  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4625    assert((!From->hasAnyUseOfValue(i) ||
4626            From->getValueType(i) == To->getValueType(i)) &&
4627           "Cannot use this version of ReplaceAllUsesWith!");
4628#endif
4629
4630  // Handle the trivial case.
4631  if (From == To)
4632    return;
4633
4634  // Iterate over just the existing users of From. See the comments in
4635  // the ReplaceAllUsesWith above.
4636  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4637  while (UI != UE) {
4638    SDNode *User = *UI;
4639
4640    // This node is about to morph, remove its old self from the CSE maps.
4641    RemoveNodeFromCSEMaps(User);
4642
4643    // A user can appear in a use list multiple times, and when this
4644    // happens the uses are usually next to each other in the list.
4645    // To help reduce the number of CSE recomputations, process all
4646    // the uses of this user that we can find this way.
4647    do {
4648      SDUse &Use = UI.getUse();
4649      ++UI;
4650      Use.setNode(To);
4651    } while (UI != UE && *UI == User);
4652
4653    // Now that we have modified User, add it back to the CSE maps.  If it
4654    // already exists there, recursively merge the results together.
4655    AddModifiedNodeToCSEMaps(User, UpdateListener);
4656  }
4657}
4658
4659/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4660/// This can cause recursive merging of nodes in the DAG.
4661///
4662/// This version can replace From with any result values.  To must match the
4663/// number and types of values returned by From.
4664void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4665                                      const SDValue *To,
4666                                      DAGUpdateListener *UpdateListener) {
4667  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4668    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4669
4670  // Iterate over just the existing users of From. See the comments in
4671  // the ReplaceAllUsesWith above.
4672  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4673  while (UI != UE) {
4674    SDNode *User = *UI;
4675
4676    // This node is about to morph, remove its old self from the CSE maps.
4677    RemoveNodeFromCSEMaps(User);
4678
4679    // A user can appear in a use list multiple times, and when this
4680    // happens the uses are usually next to each other in the list.
4681    // To help reduce the number of CSE recomputations, process all
4682    // the uses of this user that we can find this way.
4683    do {
4684      SDUse &Use = UI.getUse();
4685      const SDValue &ToOp = To[Use.getResNo()];
4686      ++UI;
4687      Use.set(ToOp);
4688    } while (UI != UE && *UI == User);
4689
4690    // Now that we have modified User, add it back to the CSE maps.  If it
4691    // already exists there, recursively merge the results together.
4692    AddModifiedNodeToCSEMaps(User, UpdateListener);
4693  }
4694}
4695
4696/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4697/// uses of other values produced by From.getNode() alone.  The Deleted
4698/// vector is handled the same way as for ReplaceAllUsesWith.
4699void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4700                                             DAGUpdateListener *UpdateListener){
4701  // Handle the really simple, really trivial case efficiently.
4702  if (From == To) return;
4703
4704  // Handle the simple, trivial, case efficiently.
4705  if (From.getNode()->getNumValues() == 1) {
4706    ReplaceAllUsesWith(From, To, UpdateListener);
4707    return;
4708  }
4709
4710  // Iterate over just the existing users of From. See the comments in
4711  // the ReplaceAllUsesWith above.
4712  SDNode::use_iterator UI = From.getNode()->use_begin(),
4713                       UE = From.getNode()->use_end();
4714  while (UI != UE) {
4715    SDNode *User = *UI;
4716    bool UserRemovedFromCSEMaps = false;
4717
4718    // A user can appear in a use list multiple times, and when this
4719    // happens the uses are usually next to each other in the list.
4720    // To help reduce the number of CSE recomputations, process all
4721    // the uses of this user that we can find this way.
4722    do {
4723      SDUse &Use = UI.getUse();
4724
4725      // Skip uses of different values from the same node.
4726      if (Use.getResNo() != From.getResNo()) {
4727        ++UI;
4728        continue;
4729      }
4730
4731      // If this node hasn't been modified yet, it's still in the CSE maps,
4732      // so remove its old self from the CSE maps.
4733      if (!UserRemovedFromCSEMaps) {
4734        RemoveNodeFromCSEMaps(User);
4735        UserRemovedFromCSEMaps = true;
4736      }
4737
4738      ++UI;
4739      Use.set(To);
4740    } while (UI != UE && *UI == User);
4741
4742    // We are iterating over all uses of the From node, so if a use
4743    // doesn't use the specific value, no changes are made.
4744    if (!UserRemovedFromCSEMaps)
4745      continue;
4746
4747    // Now that we have modified User, add it back to the CSE maps.  If it
4748    // already exists there, recursively merge the results together.
4749    AddModifiedNodeToCSEMaps(User, UpdateListener);
4750  }
4751}
4752
4753namespace {
4754  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
4755  /// to record information about a use.
4756  struct UseMemo {
4757    SDNode *User;
4758    unsigned Index;
4759    SDUse *Use;
4760  };
4761
4762  /// operator< - Sort Memos by User.
4763  bool operator<(const UseMemo &L, const UseMemo &R) {
4764    return (intptr_t)L.User < (intptr_t)R.User;
4765  }
4766}
4767
4768/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4769/// uses of other values produced by From.getNode() alone.  The same value
4770/// may appear in both the From and To list.  The Deleted vector is
4771/// handled the same way as for ReplaceAllUsesWith.
4772void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4773                                              const SDValue *To,
4774                                              unsigned Num,
4775                                              DAGUpdateListener *UpdateListener){
4776  // Handle the simple, trivial case efficiently.
4777  if (Num == 1)
4778    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4779
4780  // Read up all the uses and make records of them. This helps
4781  // processing new uses that are introduced during the
4782  // replacement process.
4783  SmallVector<UseMemo, 4> Uses;
4784  for (unsigned i = 0; i != Num; ++i) {
4785    unsigned FromResNo = From[i].getResNo();
4786    SDNode *FromNode = From[i].getNode();
4787    for (SDNode::use_iterator UI = FromNode->use_begin(),
4788         E = FromNode->use_end(); UI != E; ++UI) {
4789      SDUse &Use = UI.getUse();
4790      if (Use.getResNo() == FromResNo) {
4791        UseMemo Memo = { *UI, i, &Use };
4792        Uses.push_back(Memo);
4793      }
4794    }
4795  }
4796
4797  // Sort the uses, so that all the uses from a given User are together.
4798  std::sort(Uses.begin(), Uses.end());
4799
4800  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
4801       UseIndex != UseIndexEnd; ) {
4802    // We know that this user uses some value of From.  If it is the right
4803    // value, update it.
4804    SDNode *User = Uses[UseIndex].User;
4805
4806    // This node is about to morph, remove its old self from the CSE maps.
4807    RemoveNodeFromCSEMaps(User);
4808
4809    // The Uses array is sorted, so all the uses for a given User
4810    // are next to each other in the list.
4811    // To help reduce the number of CSE recomputations, process all
4812    // the uses of this user that we can find this way.
4813    do {
4814      unsigned i = Uses[UseIndex].Index;
4815      SDUse &Use = *Uses[UseIndex].Use;
4816      ++UseIndex;
4817
4818      Use.set(To[i]);
4819    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
4820
4821    // Now that we have modified User, add it back to the CSE maps.  If it
4822    // already exists there, recursively merge the results together.
4823    AddModifiedNodeToCSEMaps(User, UpdateListener);
4824  }
4825}
4826
4827/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4828/// based on their topological order. It returns the maximum id and a vector
4829/// of the SDNodes* in assigned order by reference.
4830unsigned SelectionDAG::AssignTopologicalOrder() {
4831
4832  unsigned DAGSize = 0;
4833
4834  // SortedPos tracks the progress of the algorithm. Nodes before it are
4835  // sorted, nodes after it are unsorted. When the algorithm completes
4836  // it is at the end of the list.
4837  allnodes_iterator SortedPos = allnodes_begin();
4838
4839  // Visit all the nodes. Move nodes with no operands to the front of
4840  // the list immediately. Annotate nodes that do have operands with their
4841  // operand count. Before we do this, the Node Id fields of the nodes
4842  // may contain arbitrary values. After, the Node Id fields for nodes
4843  // before SortedPos will contain the topological sort index, and the
4844  // Node Id fields for nodes At SortedPos and after will contain the
4845  // count of outstanding operands.
4846  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4847    SDNode *N = I++;
4848    unsigned Degree = N->getNumOperands();
4849    if (Degree == 0) {
4850      // A node with no uses, add it to the result array immediately.
4851      N->setNodeId(DAGSize++);
4852      allnodes_iterator Q = N;
4853      if (Q != SortedPos)
4854        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4855      ++SortedPos;
4856    } else {
4857      // Temporarily use the Node Id as scratch space for the degree count.
4858      N->setNodeId(Degree);
4859    }
4860  }
4861
4862  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4863  // such that by the time the end is reached all nodes will be sorted.
4864  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4865    SDNode *N = I;
4866    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4867         UI != UE; ++UI) {
4868      SDNode *P = *UI;
4869      unsigned Degree = P->getNodeId();
4870      --Degree;
4871      if (Degree == 0) {
4872        // All of P's operands are sorted, so P may sorted now.
4873        P->setNodeId(DAGSize++);
4874        if (P != SortedPos)
4875          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4876        ++SortedPos;
4877      } else {
4878        // Update P's outstanding operand count.
4879        P->setNodeId(Degree);
4880      }
4881    }
4882  }
4883
4884  assert(SortedPos == AllNodes.end() &&
4885         "Topological sort incomplete!");
4886  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4887         "First node in topological sort is not the entry token!");
4888  assert(AllNodes.front().getNodeId() == 0 &&
4889         "First node in topological sort has non-zero id!");
4890  assert(AllNodes.front().getNumOperands() == 0 &&
4891         "First node in topological sort has operands!");
4892  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4893         "Last node in topologic sort has unexpected id!");
4894  assert(AllNodes.back().use_empty() &&
4895         "Last node in topologic sort has users!");
4896  assert(DAGSize == allnodes_size() && "Node count mismatch!");
4897  return DAGSize;
4898}
4899
4900
4901
4902//===----------------------------------------------------------------------===//
4903//                              SDNode Class
4904//===----------------------------------------------------------------------===//
4905
4906HandleSDNode::~HandleSDNode() {
4907  DropOperands();
4908}
4909
4910GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4911                                         MVT VT, int64_t o)
4912  : SDNode(isa<GlobalVariable>(GA) &&
4913           cast<GlobalVariable>(GA)->isThreadLocal() ?
4914           // Thread Local
4915           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4916           // Non Thread Local
4917           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4918           DebugLoc::getUnknownLoc(), getSDVTList(VT)), Offset(o) {
4919  TheGlobal = const_cast<GlobalValue*>(GA);
4920}
4921
4922MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT memvt,
4923                     const Value *srcValue, int SVO,
4924                     unsigned alignment, bool vol)
4925 : SDNode(Opc, dl, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4926  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4927  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4928  assert(getAlignment() == alignment && "Alignment representation error!");
4929  assert(isVolatile() == vol && "Volatile representation error!");
4930}
4931
4932MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
4933                     const SDValue *Ops,
4934                     unsigned NumOps, MVT memvt, const Value *srcValue,
4935                     int SVO, unsigned alignment, bool vol)
4936   : SDNode(Opc, dl, VTs, Ops, NumOps),
4937     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4938  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4939  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4940  assert(getAlignment() == alignment && "Alignment representation error!");
4941  assert(isVolatile() == vol && "Volatile representation error!");
4942}
4943
4944/// getMemOperand - Return a MachineMemOperand object describing the memory
4945/// reference performed by this memory reference.
4946MachineMemOperand MemSDNode::getMemOperand() const {
4947  int Flags = 0;
4948  if (isa<LoadSDNode>(this))
4949    Flags = MachineMemOperand::MOLoad;
4950  else if (isa<StoreSDNode>(this))
4951    Flags = MachineMemOperand::MOStore;
4952  else if (isa<AtomicSDNode>(this)) {
4953    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4954  }
4955  else {
4956    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4957    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4958    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4959    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4960  }
4961
4962  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4963  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4964
4965  // Check if the memory reference references a frame index
4966  const FrameIndexSDNode *FI =
4967  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4968  if (!getSrcValue() && FI)
4969    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4970                             Flags, 0, Size, getAlignment());
4971  else
4972    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4973                             Size, getAlignment());
4974}
4975
4976/// Profile - Gather unique data for the node.
4977///
4978void SDNode::Profile(FoldingSetNodeID &ID) const {
4979  AddNodeIDNode(ID, this);
4980}
4981
4982static ManagedStatic<std::set<MVT, MVT::compareRawBits> > EVTs;
4983static MVT VTs[MVT::LAST_VALUETYPE];
4984static ManagedStatic<sys::SmartMutex<true> > VTMutex;
4985
4986/// getValueTypeList - Return a pointer to the specified value type.
4987///
4988const MVT *SDNode::getValueTypeList(MVT VT) {
4989  sys::SmartScopedLock<true> Lock(&*VTMutex);
4990  if (VT.isExtended()) {
4991    return &(*EVTs->insert(VT).first);
4992  } else {
4993    VTs[VT.getSimpleVT()] = VT;
4994    return &VTs[VT.getSimpleVT()];
4995  }
4996}
4997
4998/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4999/// indicated value.  This method ignores uses of other values defined by this
5000/// operation.
5001bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5002  assert(Value < getNumValues() && "Bad value!");
5003
5004  // TODO: Only iterate over uses of a given value of the node
5005  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5006    if (UI.getUse().getResNo() == Value) {
5007      if (NUses == 0)
5008        return false;
5009      --NUses;
5010    }
5011  }
5012
5013  // Found exactly the right number of uses?
5014  return NUses == 0;
5015}
5016
5017
5018/// hasAnyUseOfValue - Return true if there are any use of the indicated
5019/// value. This method ignores uses of other values defined by this operation.
5020bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5021  assert(Value < getNumValues() && "Bad value!");
5022
5023  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5024    if (UI.getUse().getResNo() == Value)
5025      return true;
5026
5027  return false;
5028}
5029
5030
5031/// isOnlyUserOf - Return true if this node is the only use of N.
5032///
5033bool SDNode::isOnlyUserOf(SDNode *N) const {
5034  bool Seen = false;
5035  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5036    SDNode *User = *I;
5037    if (User == this)
5038      Seen = true;
5039    else
5040      return false;
5041  }
5042
5043  return Seen;
5044}
5045
5046/// isOperand - Return true if this node is an operand of N.
5047///
5048bool SDValue::isOperandOf(SDNode *N) const {
5049  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5050    if (*this == N->getOperand(i))
5051      return true;
5052  return false;
5053}
5054
5055bool SDNode::isOperandOf(SDNode *N) const {
5056  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5057    if (this == N->OperandList[i].getNode())
5058      return true;
5059  return false;
5060}
5061
5062/// reachesChainWithoutSideEffects - Return true if this operand (which must
5063/// be a chain) reaches the specified operand without crossing any
5064/// side-effecting instructions.  In practice, this looks through token
5065/// factors and non-volatile loads.  In order to remain efficient, this only
5066/// looks a couple of nodes in, it does not do an exhaustive search.
5067bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5068                                               unsigned Depth) const {
5069  if (*this == Dest) return true;
5070
5071  // Don't search too deeply, we just want to be able to see through
5072  // TokenFactor's etc.
5073  if (Depth == 0) return false;
5074
5075  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5076  // of the operands of the TF reach dest, then we can do the xform.
5077  if (getOpcode() == ISD::TokenFactor) {
5078    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5079      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5080        return true;
5081    return false;
5082  }
5083
5084  // Loads don't have side effects, look through them.
5085  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5086    if (!Ld->isVolatile())
5087      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5088  }
5089  return false;
5090}
5091
5092
5093static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
5094                            SmallPtrSet<SDNode *, 32> &Visited) {
5095  if (found || !Visited.insert(N))
5096    return;
5097
5098  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
5099    SDNode *Op = N->getOperand(i).getNode();
5100    if (Op == P) {
5101      found = true;
5102      return;
5103    }
5104    findPredecessor(Op, P, found, Visited);
5105  }
5106}
5107
5108/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5109/// is either an operand of N or it can be reached by recursively traversing
5110/// up the operands.
5111/// NOTE: this is an expensive method. Use it carefully.
5112bool SDNode::isPredecessorOf(SDNode *N) const {
5113  SmallPtrSet<SDNode *, 32> Visited;
5114  bool found = false;
5115  findPredecessor(N, this, found, Visited);
5116  return found;
5117}
5118
5119uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5120  assert(Num < NumOperands && "Invalid child # of SDNode!");
5121  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5122}
5123
5124std::string SDNode::getOperationName(const SelectionDAG *G) const {
5125  switch (getOpcode()) {
5126  default:
5127    if (getOpcode() < ISD::BUILTIN_OP_END)
5128      return "<<Unknown DAG Node>>";
5129    if (isMachineOpcode()) {
5130      if (G)
5131        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5132          if (getMachineOpcode() < TII->getNumOpcodes())
5133            return TII->get(getMachineOpcode()).getName();
5134      return "<<Unknown Machine Node>>";
5135    }
5136    if (G) {
5137      const TargetLowering &TLI = G->getTargetLoweringInfo();
5138      const char *Name = TLI.getTargetNodeName(getOpcode());
5139      if (Name) return Name;
5140      return "<<Unknown Target Node>>";
5141    }
5142    return "<<Unknown Node>>";
5143
5144#ifndef NDEBUG
5145  case ISD::DELETED_NODE:
5146    return "<<Deleted Node!>>";
5147#endif
5148  case ISD::PREFETCH:      return "Prefetch";
5149  case ISD::MEMBARRIER:    return "MemBarrier";
5150  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5151  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5152  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5153  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5154  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5155  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5156  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5157  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5158  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5159  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5160  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5161  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5162  case ISD::PCMARKER:      return "PCMarker";
5163  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5164  case ISD::SRCVALUE:      return "SrcValue";
5165  case ISD::MEMOPERAND:    return "MemOperand";
5166  case ISD::EntryToken:    return "EntryToken";
5167  case ISD::TokenFactor:   return "TokenFactor";
5168  case ISD::AssertSext:    return "AssertSext";
5169  case ISD::AssertZext:    return "AssertZext";
5170
5171  case ISD::BasicBlock:    return "BasicBlock";
5172  case ISD::ARG_FLAGS:     return "ArgFlags";
5173  case ISD::VALUETYPE:     return "ValueType";
5174  case ISD::Register:      return "Register";
5175
5176  case ISD::Constant:      return "Constant";
5177  case ISD::ConstantFP:    return "ConstantFP";
5178  case ISD::GlobalAddress: return "GlobalAddress";
5179  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5180  case ISD::FrameIndex:    return "FrameIndex";
5181  case ISD::JumpTable:     return "JumpTable";
5182  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5183  case ISD::RETURNADDR: return "RETURNADDR";
5184  case ISD::FRAMEADDR: return "FRAMEADDR";
5185  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5186  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5187  case ISD::EHSELECTION: return "EHSELECTION";
5188  case ISD::EH_RETURN: return "EH_RETURN";
5189  case ISD::ConstantPool:  return "ConstantPool";
5190  case ISD::ExternalSymbol: return "ExternalSymbol";
5191  case ISD::INTRINSIC_WO_CHAIN: {
5192    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5193    return Intrinsic::getName((Intrinsic::ID)IID);
5194  }
5195  case ISD::INTRINSIC_VOID:
5196  case ISD::INTRINSIC_W_CHAIN: {
5197    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5198    return Intrinsic::getName((Intrinsic::ID)IID);
5199  }
5200
5201  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5202  case ISD::TargetConstant: return "TargetConstant";
5203  case ISD::TargetConstantFP:return "TargetConstantFP";
5204  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5205  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5206  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5207  case ISD::TargetJumpTable:  return "TargetJumpTable";
5208  case ISD::TargetConstantPool:  return "TargetConstantPool";
5209  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5210
5211  case ISD::CopyToReg:     return "CopyToReg";
5212  case ISD::CopyFromReg:   return "CopyFromReg";
5213  case ISD::UNDEF:         return "undef";
5214  case ISD::MERGE_VALUES:  return "merge_values";
5215  case ISD::INLINEASM:     return "inlineasm";
5216  case ISD::DBG_LABEL:     return "dbg_label";
5217  case ISD::EH_LABEL:      return "eh_label";
5218  case ISD::DECLARE:       return "declare";
5219  case ISD::HANDLENODE:    return "handlenode";
5220  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5221  case ISD::CALL:          return "call";
5222
5223  // Unary operators
5224  case ISD::FABS:   return "fabs";
5225  case ISD::FNEG:   return "fneg";
5226  case ISD::FSQRT:  return "fsqrt";
5227  case ISD::FSIN:   return "fsin";
5228  case ISD::FCOS:   return "fcos";
5229  case ISD::FPOWI:  return "fpowi";
5230  case ISD::FPOW:   return "fpow";
5231  case ISD::FTRUNC: return "ftrunc";
5232  case ISD::FFLOOR: return "ffloor";
5233  case ISD::FCEIL:  return "fceil";
5234  case ISD::FRINT:  return "frint";
5235  case ISD::FNEARBYINT: return "fnearbyint";
5236
5237  // Binary operators
5238  case ISD::ADD:    return "add";
5239  case ISD::SUB:    return "sub";
5240  case ISD::MUL:    return "mul";
5241  case ISD::MULHU:  return "mulhu";
5242  case ISD::MULHS:  return "mulhs";
5243  case ISD::SDIV:   return "sdiv";
5244  case ISD::UDIV:   return "udiv";
5245  case ISD::SREM:   return "srem";
5246  case ISD::UREM:   return "urem";
5247  case ISD::SMUL_LOHI:  return "smul_lohi";
5248  case ISD::UMUL_LOHI:  return "umul_lohi";
5249  case ISD::SDIVREM:    return "sdivrem";
5250  case ISD::UDIVREM:    return "udivrem";
5251  case ISD::AND:    return "and";
5252  case ISD::OR:     return "or";
5253  case ISD::XOR:    return "xor";
5254  case ISD::SHL:    return "shl";
5255  case ISD::SRA:    return "sra";
5256  case ISD::SRL:    return "srl";
5257  case ISD::ROTL:   return "rotl";
5258  case ISD::ROTR:   return "rotr";
5259  case ISD::FADD:   return "fadd";
5260  case ISD::FSUB:   return "fsub";
5261  case ISD::FMUL:   return "fmul";
5262  case ISD::FDIV:   return "fdiv";
5263  case ISD::FREM:   return "frem";
5264  case ISD::FCOPYSIGN: return "fcopysign";
5265  case ISD::FGETSIGN:  return "fgetsign";
5266
5267  case ISD::SETCC:       return "setcc";
5268  case ISD::VSETCC:      return "vsetcc";
5269  case ISD::SELECT:      return "select";
5270  case ISD::SELECT_CC:   return "select_cc";
5271  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5272  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5273  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5274  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5275  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5276  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5277  case ISD::CARRY_FALSE:         return "carry_false";
5278  case ISD::ADDC:        return "addc";
5279  case ISD::ADDE:        return "adde";
5280  case ISD::SADDO:       return "saddo";
5281  case ISD::UADDO:       return "uaddo";
5282  case ISD::SSUBO:       return "ssubo";
5283  case ISD::USUBO:       return "usubo";
5284  case ISD::SMULO:       return "smulo";
5285  case ISD::UMULO:       return "umulo";
5286  case ISD::SUBC:        return "subc";
5287  case ISD::SUBE:        return "sube";
5288  case ISD::SHL_PARTS:   return "shl_parts";
5289  case ISD::SRA_PARTS:   return "sra_parts";
5290  case ISD::SRL_PARTS:   return "srl_parts";
5291
5292  // Conversion operators.
5293  case ISD::SIGN_EXTEND: return "sign_extend";
5294  case ISD::ZERO_EXTEND: return "zero_extend";
5295  case ISD::ANY_EXTEND:  return "any_extend";
5296  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5297  case ISD::TRUNCATE:    return "truncate";
5298  case ISD::FP_ROUND:    return "fp_round";
5299  case ISD::FLT_ROUNDS_: return "flt_rounds";
5300  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5301  case ISD::FP_EXTEND:   return "fp_extend";
5302
5303  case ISD::SINT_TO_FP:  return "sint_to_fp";
5304  case ISD::UINT_TO_FP:  return "uint_to_fp";
5305  case ISD::FP_TO_SINT:  return "fp_to_sint";
5306  case ISD::FP_TO_UINT:  return "fp_to_uint";
5307  case ISD::BIT_CONVERT: return "bit_convert";
5308
5309  case ISD::CONVERT_RNDSAT: {
5310    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5311    default: assert(0 && "Unknown cvt code!");
5312    case ISD::CVT_FF:  return "cvt_ff";
5313    case ISD::CVT_FS:  return "cvt_fs";
5314    case ISD::CVT_FU:  return "cvt_fu";
5315    case ISD::CVT_SF:  return "cvt_sf";
5316    case ISD::CVT_UF:  return "cvt_uf";
5317    case ISD::CVT_SS:  return "cvt_ss";
5318    case ISD::CVT_SU:  return "cvt_su";
5319    case ISD::CVT_US:  return "cvt_us";
5320    case ISD::CVT_UU:  return "cvt_uu";
5321    }
5322  }
5323
5324    // Control flow instructions
5325  case ISD::BR:      return "br";
5326  case ISD::BRIND:   return "brind";
5327  case ISD::BR_JT:   return "br_jt";
5328  case ISD::BRCOND:  return "brcond";
5329  case ISD::BR_CC:   return "br_cc";
5330  case ISD::RET:     return "ret";
5331  case ISD::CALLSEQ_START:  return "callseq_start";
5332  case ISD::CALLSEQ_END:    return "callseq_end";
5333
5334    // Other operators
5335  case ISD::LOAD:               return "load";
5336  case ISD::STORE:              return "store";
5337  case ISD::VAARG:              return "vaarg";
5338  case ISD::VACOPY:             return "vacopy";
5339  case ISD::VAEND:              return "vaend";
5340  case ISD::VASTART:            return "vastart";
5341  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5342  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5343  case ISD::BUILD_PAIR:         return "build_pair";
5344  case ISD::STACKSAVE:          return "stacksave";
5345  case ISD::STACKRESTORE:       return "stackrestore";
5346  case ISD::TRAP:               return "trap";
5347
5348  // Bit manipulation
5349  case ISD::BSWAP:   return "bswap";
5350  case ISD::CTPOP:   return "ctpop";
5351  case ISD::CTTZ:    return "cttz";
5352  case ISD::CTLZ:    return "ctlz";
5353
5354  // Debug info
5355  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5356  case ISD::DEBUG_LOC: return "debug_loc";
5357
5358  // Trampolines
5359  case ISD::TRAMPOLINE: return "trampoline";
5360
5361  case ISD::CONDCODE:
5362    switch (cast<CondCodeSDNode>(this)->get()) {
5363    default: assert(0 && "Unknown setcc condition!");
5364    case ISD::SETOEQ:  return "setoeq";
5365    case ISD::SETOGT:  return "setogt";
5366    case ISD::SETOGE:  return "setoge";
5367    case ISD::SETOLT:  return "setolt";
5368    case ISD::SETOLE:  return "setole";
5369    case ISD::SETONE:  return "setone";
5370
5371    case ISD::SETO:    return "seto";
5372    case ISD::SETUO:   return "setuo";
5373    case ISD::SETUEQ:  return "setue";
5374    case ISD::SETUGT:  return "setugt";
5375    case ISD::SETUGE:  return "setuge";
5376    case ISD::SETULT:  return "setult";
5377    case ISD::SETULE:  return "setule";
5378    case ISD::SETUNE:  return "setune";
5379
5380    case ISD::SETEQ:   return "seteq";
5381    case ISD::SETGT:   return "setgt";
5382    case ISD::SETGE:   return "setge";
5383    case ISD::SETLT:   return "setlt";
5384    case ISD::SETLE:   return "setle";
5385    case ISD::SETNE:   return "setne";
5386    }
5387  }
5388}
5389
5390const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5391  switch (AM) {
5392  default:
5393    return "";
5394  case ISD::PRE_INC:
5395    return "<pre-inc>";
5396  case ISD::PRE_DEC:
5397    return "<pre-dec>";
5398  case ISD::POST_INC:
5399    return "<post-inc>";
5400  case ISD::POST_DEC:
5401    return "<post-dec>";
5402  }
5403}
5404
5405std::string ISD::ArgFlagsTy::getArgFlagsString() {
5406  std::string S = "< ";
5407
5408  if (isZExt())
5409    S += "zext ";
5410  if (isSExt())
5411    S += "sext ";
5412  if (isInReg())
5413    S += "inreg ";
5414  if (isSRet())
5415    S += "sret ";
5416  if (isByVal())
5417    S += "byval ";
5418  if (isNest())
5419    S += "nest ";
5420  if (getByValAlign())
5421    S += "byval-align:" + utostr(getByValAlign()) + " ";
5422  if (getOrigAlign())
5423    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5424  if (getByValSize())
5425    S += "byval-size:" + utostr(getByValSize()) + " ";
5426  return S + ">";
5427}
5428
5429void SDNode::dump() const { dump(0); }
5430void SDNode::dump(const SelectionDAG *G) const {
5431  print(errs(), G);
5432}
5433
5434void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5435  OS << (void*)this << ": ";
5436
5437  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5438    if (i) OS << ",";
5439    if (getValueType(i) == MVT::Other)
5440      OS << "ch";
5441    else
5442      OS << getValueType(i).getMVTString();
5443  }
5444  OS << " = " << getOperationName(G);
5445}
5446
5447void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5448  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5449    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(this);
5450    OS << "<";
5451    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5452      int Idx = SVN->getMaskElt(i);
5453      if (i) OS << ",";
5454      if (Idx < 0)
5455        OS << "u";
5456      else
5457        OS << Idx;
5458    }
5459    OS << ">";
5460  }
5461
5462  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5463    OS << '<' << CSDN->getAPIntValue() << '>';
5464  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5465    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5466      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5467    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5468      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5469    else {
5470      OS << "<APFloat(";
5471      CSDN->getValueAPF().bitcastToAPInt().dump();
5472      OS << ")>";
5473    }
5474  } else if (const GlobalAddressSDNode *GADN =
5475             dyn_cast<GlobalAddressSDNode>(this)) {
5476    int64_t offset = GADN->getOffset();
5477    OS << '<';
5478    WriteAsOperand(OS, GADN->getGlobal());
5479    OS << '>';
5480    if (offset > 0)
5481      OS << " + " << offset;
5482    else
5483      OS << " " << offset;
5484  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5485    OS << "<" << FIDN->getIndex() << ">";
5486  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5487    OS << "<" << JTDN->getIndex() << ">";
5488  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5489    int offset = CP->getOffset();
5490    if (CP->isMachineConstantPoolEntry())
5491      OS << "<" << *CP->getMachineCPVal() << ">";
5492    else
5493      OS << "<" << *CP->getConstVal() << ">";
5494    if (offset > 0)
5495      OS << " + " << offset;
5496    else
5497      OS << " " << offset;
5498  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5499    OS << "<";
5500    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5501    if (LBB)
5502      OS << LBB->getName() << " ";
5503    OS << (const void*)BBDN->getBasicBlock() << ">";
5504  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5505    if (G && R->getReg() &&
5506        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5507      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5508    } else {
5509      OS << " #" << R->getReg();
5510    }
5511  } else if (const ExternalSymbolSDNode *ES =
5512             dyn_cast<ExternalSymbolSDNode>(this)) {
5513    OS << "'" << ES->getSymbol() << "'";
5514  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5515    if (M->getValue())
5516      OS << "<" << M->getValue() << ">";
5517    else
5518      OS << "<null>";
5519  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5520    if (M->MO.getValue())
5521      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5522    else
5523      OS << "<null:" << M->MO.getOffset() << ">";
5524  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5525    OS << N->getArgFlags().getArgFlagsString();
5526  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5527    OS << ":" << N->getVT().getMVTString();
5528  }
5529  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5530    const Value *SrcValue = LD->getSrcValue();
5531    int SrcOffset = LD->getSrcValueOffset();
5532    OS << " <";
5533    if (SrcValue)
5534      OS << SrcValue;
5535    else
5536      OS << "null";
5537    OS << ":" << SrcOffset << ">";
5538
5539    bool doExt = true;
5540    switch (LD->getExtensionType()) {
5541    default: doExt = false; break;
5542    case ISD::EXTLOAD: OS << " <anyext "; break;
5543    case ISD::SEXTLOAD: OS << " <sext "; break;
5544    case ISD::ZEXTLOAD: OS << " <zext "; break;
5545    }
5546    if (doExt)
5547      OS << LD->getMemoryVT().getMVTString() << ">";
5548
5549    const char *AM = getIndexedModeName(LD->getAddressingMode());
5550    if (*AM)
5551      OS << " " << AM;
5552    if (LD->isVolatile())
5553      OS << " <volatile>";
5554    OS << " alignment=" << LD->getAlignment();
5555  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5556    const Value *SrcValue = ST->getSrcValue();
5557    int SrcOffset = ST->getSrcValueOffset();
5558    OS << " <";
5559    if (SrcValue)
5560      OS << SrcValue;
5561    else
5562      OS << "null";
5563    OS << ":" << SrcOffset << ">";
5564
5565    if (ST->isTruncatingStore())
5566      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5567
5568    const char *AM = getIndexedModeName(ST->getAddressingMode());
5569    if (*AM)
5570      OS << " " << AM;
5571    if (ST->isVolatile())
5572      OS << " <volatile>";
5573    OS << " alignment=" << ST->getAlignment();
5574  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5575    const Value *SrcValue = AT->getSrcValue();
5576    int SrcOffset = AT->getSrcValueOffset();
5577    OS << " <";
5578    if (SrcValue)
5579      OS << SrcValue;
5580    else
5581      OS << "null";
5582    OS << ":" << SrcOffset << ">";
5583    if (AT->isVolatile())
5584      OS << " <volatile>";
5585    OS << " alignment=" << AT->getAlignment();
5586  }
5587}
5588
5589void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5590  print_types(OS, G);
5591  OS << " ";
5592  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5593    if (i) OS << ", ";
5594    OS << (void*)getOperand(i).getNode();
5595    if (unsigned RN = getOperand(i).getResNo())
5596      OS << ":" << RN;
5597  }
5598  print_details(OS, G);
5599}
5600
5601static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5602  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5603    if (N->getOperand(i).getNode()->hasOneUse())
5604      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5605    else
5606      cerr << "\n" << std::string(indent+2, ' ')
5607           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5608
5609
5610  cerr << "\n" << std::string(indent, ' ');
5611  N->dump(G);
5612}
5613
5614void SelectionDAG::dump() const {
5615  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5616
5617  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5618       I != E; ++I) {
5619    const SDNode *N = I;
5620    if (!N->hasOneUse() && N != getRoot().getNode())
5621      DumpNodes(N, 2, this);
5622  }
5623
5624  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5625
5626  cerr << "\n\n";
5627}
5628
5629void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
5630  print_types(OS, G);
5631  print_details(OS, G);
5632}
5633
5634typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
5635static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
5636                       const SelectionDAG *G, VisitedSDNodeSet &once) {
5637  if (!once.insert(N))          // If we've been here before, return now.
5638    return;
5639  // Dump the current SDNode, but don't end the line yet.
5640  OS << std::string(indent, ' ');
5641  N->printr(OS, G);
5642  // Having printed this SDNode, walk the children:
5643  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5644    const SDNode *child = N->getOperand(i).getNode();
5645    if (i) OS << ",";
5646    OS << " ";
5647    if (child->getNumOperands() == 0) {
5648      // This child has no grandchildren; print it inline right here.
5649      child->printr(OS, G);
5650      once.insert(child);
5651    } else {          // Just the address.  FIXME: also print the child's opcode
5652      OS << (void*)child;
5653      if (unsigned RN = N->getOperand(i).getResNo())
5654        OS << ":" << RN;
5655    }
5656  }
5657  OS << "\n";
5658  // Dump children that have grandchildren on their own line(s).
5659  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5660    const SDNode *child = N->getOperand(i).getNode();
5661    DumpNodesr(OS, child, indent+2, G, once);
5662  }
5663}
5664
5665void SDNode::dumpr() const {
5666  VisitedSDNodeSet once;
5667  DumpNodesr(errs(), this, 0, 0, once);
5668}
5669
5670
5671// getAddressSpace - Return the address space this GlobalAddress belongs to.
5672unsigned GlobalAddressSDNode::getAddressSpace() const {
5673  return getGlobal()->getType()->getAddressSpace();
5674}
5675
5676
5677const Type *ConstantPoolSDNode::getType() const {
5678  if (isMachineConstantPoolEntry())
5679    return Val.MachineCPVal->getType();
5680  return Val.ConstVal->getType();
5681}
5682
5683bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
5684                                        APInt &SplatUndef,
5685                                        unsigned &SplatBitSize,
5686                                        bool &HasAnyUndefs,
5687                                        unsigned MinSplatBits) {
5688  MVT VT = getValueType(0);
5689  assert(VT.isVector() && "Expected a vector type");
5690  unsigned sz = VT.getSizeInBits();
5691  if (MinSplatBits > sz)
5692    return false;
5693
5694  SplatValue = APInt(sz, 0);
5695  SplatUndef = APInt(sz, 0);
5696
5697  // Get the bits.  Bits with undefined values (when the corresponding element
5698  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
5699  // in SplatValue.  If any of the values are not constant, give up and return
5700  // false.
5701  unsigned int nOps = getNumOperands();
5702  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
5703  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
5704  for (unsigned i = 0; i < nOps; ++i) {
5705    SDValue OpVal = getOperand(i);
5706    unsigned BitPos = i * EltBitSize;
5707
5708    if (OpVal.getOpcode() == ISD::UNDEF)
5709      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos +EltBitSize);
5710    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
5711      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
5712                     zextOrTrunc(sz) << BitPos);
5713    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
5714      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
5715     else
5716      return false;
5717  }
5718
5719  // The build_vector is all constants or undefs.  Find the smallest element
5720  // size that splats the vector.
5721
5722  HasAnyUndefs = (SplatUndef != 0);
5723  while (sz > 8) {
5724
5725    unsigned HalfSize = sz / 2;
5726    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
5727    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
5728    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
5729    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
5730
5731    // If the two halves do not match (ignoring undef bits), stop here.
5732    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
5733        MinSplatBits > HalfSize)
5734      break;
5735
5736    SplatValue = HighValue | LowValue;
5737    SplatUndef = HighUndef & LowUndef;
5738
5739    sz = HalfSize;
5740  }
5741
5742  SplatBitSize = sz;
5743  return true;
5744}
5745
5746bool ShuffleVectorSDNode::isSplatMask(const int *Mask, MVT VT) {
5747  // Find the first non-undef value in the shuffle mask.
5748  unsigned i, e;
5749  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
5750    /* search */;
5751
5752  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
5753
5754  // Make sure all remaining elements are either undef or the same as the first
5755  // non-undef value.
5756  for (int Idx = Mask[i]; i != e; ++i)
5757    if (Mask[i] >= 0 && Mask[i] != Idx)
5758      return false;
5759  return true;
5760}
5761