SelectionDAG.cpp revision b5b32a356894c7a60a508d836149caa19c6f5b16
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "llvm/Constants.h"
17#include "llvm/Analysis/ValueTracking.h"
18#include "llvm/Function.h"
19#include "llvm/GlobalAlias.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Assembly/Writer.h"
24#include "llvm/CallingConv.h"
25#include "llvm/CodeGen/MachineBasicBlock.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/CodeGen/PseudoSourceValue.h"
30#include "llvm/Target/TargetRegisterInfo.h"
31#include "llvm/Target/TargetData.h"
32#include "llvm/Target/TargetFrameInfo.h"
33#include "llvm/Target/TargetLowering.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetIntrinsicInfo.h"
37#include "llvm/Target/TargetMachine.h"
38#include "llvm/Support/CommandLine.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/ManagedStatic.h"
42#include "llvm/Support/MathExtras.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/System/Mutex.h"
45#include "llvm/ADT/SetVector.h"
46#include "llvm/ADT/SmallPtrSet.h"
47#include "llvm/ADT/SmallSet.h"
48#include "llvm/ADT/SmallVector.h"
49#include "llvm/ADT/StringExtras.h"
50#include <algorithm>
51#include <cmath>
52using namespace llvm;
53
54/// makeVTList - Return an instance of the SDVTList struct initialized with the
55/// specified members.
56static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
57  SDVTList Res = {VTs, NumVTs};
58  return Res;
59}
60
61static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
62  switch (VT.getSimpleVT().SimpleTy) {
63  default: llvm_unreachable("Unknown FP format");
64  case MVT::f32:     return &APFloat::IEEEsingle;
65  case MVT::f64:     return &APFloat::IEEEdouble;
66  case MVT::f80:     return &APFloat::x87DoubleExtended;
67  case MVT::f128:    return &APFloat::IEEEquad;
68  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
69  }
70}
71
72SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
73
74//===----------------------------------------------------------------------===//
75//                              ConstantFPSDNode Class
76//===----------------------------------------------------------------------===//
77
78/// isExactlyValue - We don't rely on operator== working on double values, as
79/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
80/// As such, this method can be used to do an exact bit-for-bit comparison of
81/// two floating point values.
82bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
83  return getValueAPF().bitwiseIsEqual(V);
84}
85
86bool ConstantFPSDNode::isValueValidForType(EVT VT,
87                                           const APFloat& Val) {
88  assert(VT.isFloatingPoint() && "Can only convert between FP types");
89
90  // PPC long double cannot be converted to any other type.
91  if (VT == MVT::ppcf128 ||
92      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
93    return false;
94
95  // convert modifies in place, so make a copy.
96  APFloat Val2 = APFloat(Val);
97  bool losesInfo;
98  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
99                      &losesInfo);
100  return !losesInfo;
101}
102
103//===----------------------------------------------------------------------===//
104//                              ISD Namespace
105//===----------------------------------------------------------------------===//
106
107/// isBuildVectorAllOnes - Return true if the specified node is a
108/// BUILD_VECTOR where all of the elements are ~0 or undef.
109bool ISD::isBuildVectorAllOnes(const SDNode *N) {
110  // Look through a bit convert.
111  if (N->getOpcode() == ISD::BIT_CONVERT)
112    N = N->getOperand(0).getNode();
113
114  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
115
116  unsigned i = 0, e = N->getNumOperands();
117
118  // Skip over all of the undef values.
119  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
120    ++i;
121
122  // Do not accept an all-undef vector.
123  if (i == e) return false;
124
125  // Do not accept build_vectors that aren't all constants or which have non-~0
126  // elements.
127  SDValue NotZero = N->getOperand(i);
128  if (isa<ConstantSDNode>(NotZero)) {
129    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
130      return false;
131  } else if (isa<ConstantFPSDNode>(NotZero)) {
132    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
133                bitcastToAPInt().isAllOnesValue())
134      return false;
135  } else
136    return false;
137
138  // Okay, we have at least one ~0 value, check to see if the rest match or are
139  // undefs.
140  for (++i; i != e; ++i)
141    if (N->getOperand(i) != NotZero &&
142        N->getOperand(i).getOpcode() != ISD::UNDEF)
143      return false;
144  return true;
145}
146
147
148/// isBuildVectorAllZeros - Return true if the specified node is a
149/// BUILD_VECTOR where all of the elements are 0 or undef.
150bool ISD::isBuildVectorAllZeros(const SDNode *N) {
151  // Look through a bit convert.
152  if (N->getOpcode() == ISD::BIT_CONVERT)
153    N = N->getOperand(0).getNode();
154
155  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
156
157  unsigned i = 0, e = N->getNumOperands();
158
159  // Skip over all of the undef values.
160  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
161    ++i;
162
163  // Do not accept an all-undef vector.
164  if (i == e) return false;
165
166  // Do not accept build_vectors that aren't all constants or which have non-0
167  // elements.
168  SDValue Zero = N->getOperand(i);
169  if (isa<ConstantSDNode>(Zero)) {
170    if (!cast<ConstantSDNode>(Zero)->isNullValue())
171      return false;
172  } else if (isa<ConstantFPSDNode>(Zero)) {
173    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
174      return false;
175  } else
176    return false;
177
178  // Okay, we have at least one 0 value, check to see if the rest match or are
179  // undefs.
180  for (++i; i != e; ++i)
181    if (N->getOperand(i) != Zero &&
182        N->getOperand(i).getOpcode() != ISD::UNDEF)
183      return false;
184  return true;
185}
186
187/// isScalarToVector - Return true if the specified node is a
188/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
189/// element is not an undef.
190bool ISD::isScalarToVector(const SDNode *N) {
191  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
192    return true;
193
194  if (N->getOpcode() != ISD::BUILD_VECTOR)
195    return false;
196  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
197    return false;
198  unsigned NumElems = N->getNumOperands();
199  for (unsigned i = 1; i < NumElems; ++i) {
200    SDValue V = N->getOperand(i);
201    if (V.getOpcode() != ISD::UNDEF)
202      return false;
203  }
204  return true;
205}
206
207/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
208/// when given the operation for (X op Y).
209ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
210  // To perform this operation, we just need to swap the L and G bits of the
211  // operation.
212  unsigned OldL = (Operation >> 2) & 1;
213  unsigned OldG = (Operation >> 1) & 1;
214  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
215                       (OldL << 1) |       // New G bit
216                       (OldG << 2));       // New L bit.
217}
218
219/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
220/// 'op' is a valid SetCC operation.
221ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
222  unsigned Operation = Op;
223  if (isInteger)
224    Operation ^= 7;   // Flip L, G, E bits, but not U.
225  else
226    Operation ^= 15;  // Flip all of the condition bits.
227
228  if (Operation > ISD::SETTRUE2)
229    Operation &= ~8;  // Don't let N and U bits get set.
230
231  return ISD::CondCode(Operation);
232}
233
234
235/// isSignedOp - For an integer comparison, return 1 if the comparison is a
236/// signed operation and 2 if the result is an unsigned comparison.  Return zero
237/// if the operation does not depend on the sign of the input (setne and seteq).
238static int isSignedOp(ISD::CondCode Opcode) {
239  switch (Opcode) {
240  default: llvm_unreachable("Illegal integer setcc operation!");
241  case ISD::SETEQ:
242  case ISD::SETNE: return 0;
243  case ISD::SETLT:
244  case ISD::SETLE:
245  case ISD::SETGT:
246  case ISD::SETGE: return 1;
247  case ISD::SETULT:
248  case ISD::SETULE:
249  case ISD::SETUGT:
250  case ISD::SETUGE: return 2;
251  }
252}
253
254/// getSetCCOrOperation - Return the result of a logical OR between different
255/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
256/// returns SETCC_INVALID if it is not possible to represent the resultant
257/// comparison.
258ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
259                                       bool isInteger) {
260  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
261    // Cannot fold a signed integer setcc with an unsigned integer setcc.
262    return ISD::SETCC_INVALID;
263
264  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
265
266  // If the N and U bits get set then the resultant comparison DOES suddenly
267  // care about orderedness, and is true when ordered.
268  if (Op > ISD::SETTRUE2)
269    Op &= ~16;     // Clear the U bit if the N bit is set.
270
271  // Canonicalize illegal integer setcc's.
272  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
273    Op = ISD::SETNE;
274
275  return ISD::CondCode(Op);
276}
277
278/// getSetCCAndOperation - Return the result of a logical AND between different
279/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
280/// function returns zero if it is not possible to represent the resultant
281/// comparison.
282ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
283                                        bool isInteger) {
284  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
285    // Cannot fold a signed setcc with an unsigned setcc.
286    return ISD::SETCC_INVALID;
287
288  // Combine all of the condition bits.
289  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
290
291  // Canonicalize illegal integer setcc's.
292  if (isInteger) {
293    switch (Result) {
294    default: break;
295    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
296    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
297    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
298    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
299    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
300    }
301  }
302
303  return Result;
304}
305
306const TargetMachine &SelectionDAG::getTarget() const {
307  return MF->getTarget();
308}
309
310//===----------------------------------------------------------------------===//
311//                           SDNode Profile Support
312//===----------------------------------------------------------------------===//
313
314/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
315///
316static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
317  ID.AddInteger(OpC);
318}
319
320/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
321/// solely with their pointer.
322static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
323  ID.AddPointer(VTList.VTs);
324}
325
326/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
327///
328static void AddNodeIDOperands(FoldingSetNodeID &ID,
329                              const SDValue *Ops, unsigned NumOps) {
330  for (; NumOps; --NumOps, ++Ops) {
331    ID.AddPointer(Ops->getNode());
332    ID.AddInteger(Ops->getResNo());
333  }
334}
335
336/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
337///
338static void AddNodeIDOperands(FoldingSetNodeID &ID,
339                              const SDUse *Ops, unsigned NumOps) {
340  for (; NumOps; --NumOps, ++Ops) {
341    ID.AddPointer(Ops->getNode());
342    ID.AddInteger(Ops->getResNo());
343  }
344}
345
346static void AddNodeIDNode(FoldingSetNodeID &ID,
347                          unsigned short OpC, SDVTList VTList,
348                          const SDValue *OpList, unsigned N) {
349  AddNodeIDOpcode(ID, OpC);
350  AddNodeIDValueTypes(ID, VTList);
351  AddNodeIDOperands(ID, OpList, N);
352}
353
354/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
355/// the NodeID data.
356static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
357  switch (N->getOpcode()) {
358  case ISD::TargetExternalSymbol:
359  case ISD::ExternalSymbol:
360    llvm_unreachable("Should only be used on nodes with operands");
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::TargetConstant:
363  case ISD::Constant:
364    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
365    break;
366  case ISD::TargetConstantFP:
367  case ISD::ConstantFP: {
368    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
369    break;
370  }
371  case ISD::TargetGlobalAddress:
372  case ISD::GlobalAddress:
373  case ISD::TargetGlobalTLSAddress:
374  case ISD::GlobalTLSAddress: {
375    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
376    ID.AddPointer(GA->getGlobal());
377    ID.AddInteger(GA->getOffset());
378    ID.AddInteger(GA->getTargetFlags());
379    break;
380  }
381  case ISD::BasicBlock:
382    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
383    break;
384  case ISD::Register:
385    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
386    break;
387
388  case ISD::SRCVALUE:
389    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
390    break;
391  case ISD::FrameIndex:
392  case ISD::TargetFrameIndex:
393    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
394    break;
395  case ISD::JumpTable:
396  case ISD::TargetJumpTable:
397    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
399    break;
400  case ISD::ConstantPool:
401  case ISD::TargetConstantPool: {
402    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
403    ID.AddInteger(CP->getAlignment());
404    ID.AddInteger(CP->getOffset());
405    if (CP->isMachineConstantPoolEntry())
406      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
407    else
408      ID.AddPointer(CP->getConstVal());
409    ID.AddInteger(CP->getTargetFlags());
410    break;
411  }
412  case ISD::LOAD: {
413    const LoadSDNode *LD = cast<LoadSDNode>(N);
414    ID.AddInteger(LD->getMemoryVT().getRawBits());
415    ID.AddInteger(LD->getRawSubclassData());
416    break;
417  }
418  case ISD::STORE: {
419    const StoreSDNode *ST = cast<StoreSDNode>(N);
420    ID.AddInteger(ST->getMemoryVT().getRawBits());
421    ID.AddInteger(ST->getRawSubclassData());
422    break;
423  }
424  case ISD::ATOMIC_CMP_SWAP:
425  case ISD::ATOMIC_SWAP:
426  case ISD::ATOMIC_LOAD_ADD:
427  case ISD::ATOMIC_LOAD_SUB:
428  case ISD::ATOMIC_LOAD_AND:
429  case ISD::ATOMIC_LOAD_OR:
430  case ISD::ATOMIC_LOAD_XOR:
431  case ISD::ATOMIC_LOAD_NAND:
432  case ISD::ATOMIC_LOAD_MIN:
433  case ISD::ATOMIC_LOAD_MAX:
434  case ISD::ATOMIC_LOAD_UMIN:
435  case ISD::ATOMIC_LOAD_UMAX: {
436    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
437    ID.AddInteger(AT->getMemoryVT().getRawBits());
438    ID.AddInteger(AT->getRawSubclassData());
439    break;
440  }
441  case ISD::VECTOR_SHUFFLE: {
442    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
443    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
444         i != e; ++i)
445      ID.AddInteger(SVN->getMaskElt(i));
446    break;
447  }
448  case ISD::TargetBlockAddress:
449  case ISD::BlockAddress: {
450    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
451    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
452    break;
453  }
454  } // end switch (N->getOpcode())
455}
456
457/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
458/// data.
459static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
460  AddNodeIDOpcode(ID, N->getOpcode());
461  // Add the return value info.
462  AddNodeIDValueTypes(ID, N->getVTList());
463  // Add the operand info.
464  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
465
466  // Handle SDNode leafs with special info.
467  AddNodeIDCustom(ID, N);
468}
469
470/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
471/// the CSE map that carries volatility, temporalness, indexing mode, and
472/// extension/truncation information.
473///
474static inline unsigned
475encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
476                     bool isNonTemporal) {
477  assert((ConvType & 3) == ConvType &&
478         "ConvType may not require more than 2 bits!");
479  assert((AM & 7) == AM &&
480         "AM may not require more than 3 bits!");
481  return ConvType |
482         (AM << 2) |
483         (isVolatile << 5) |
484         (isNonTemporal << 6);
485}
486
487//===----------------------------------------------------------------------===//
488//                              SelectionDAG Class
489//===----------------------------------------------------------------------===//
490
491/// doNotCSE - Return true if CSE should not be performed for this node.
492static bool doNotCSE(SDNode *N) {
493  if (N->getValueType(0) == MVT::Flag)
494    return true; // Never CSE anything that produces a flag.
495
496  switch (N->getOpcode()) {
497  default: break;
498  case ISD::HANDLENODE:
499  case ISD::EH_LABEL:
500    return true;   // Never CSE these nodes.
501  }
502
503  // Check that remaining values produced are not flags.
504  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
505    if (N->getValueType(i) == MVT::Flag)
506      return true; // Never CSE anything that produces a flag.
507
508  return false;
509}
510
511/// RemoveDeadNodes - This method deletes all unreachable nodes in the
512/// SelectionDAG.
513void SelectionDAG::RemoveDeadNodes() {
514  // Create a dummy node (which is not added to allnodes), that adds a reference
515  // to the root node, preventing it from being deleted.
516  HandleSDNode Dummy(getRoot());
517
518  SmallVector<SDNode*, 128> DeadNodes;
519
520  // Add all obviously-dead nodes to the DeadNodes worklist.
521  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
522    if (I->use_empty())
523      DeadNodes.push_back(I);
524
525  RemoveDeadNodes(DeadNodes);
526
527  // If the root changed (e.g. it was a dead load, update the root).
528  setRoot(Dummy.getValue());
529}
530
531/// RemoveDeadNodes - This method deletes the unreachable nodes in the
532/// given list, and any nodes that become unreachable as a result.
533void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
534                                   DAGUpdateListener *UpdateListener) {
535
536  // Process the worklist, deleting the nodes and adding their uses to the
537  // worklist.
538  while (!DeadNodes.empty()) {
539    SDNode *N = DeadNodes.pop_back_val();
540
541    if (UpdateListener)
542      UpdateListener->NodeDeleted(N, 0);
543
544    // Take the node out of the appropriate CSE map.
545    RemoveNodeFromCSEMaps(N);
546
547    // Next, brutally remove the operand list.  This is safe to do, as there are
548    // no cycles in the graph.
549    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
550      SDUse &Use = *I++;
551      SDNode *Operand = Use.getNode();
552      Use.set(SDValue());
553
554      // Now that we removed this operand, see if there are no uses of it left.
555      if (Operand->use_empty())
556        DeadNodes.push_back(Operand);
557    }
558
559    DeallocateNode(N);
560  }
561}
562
563void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
564  SmallVector<SDNode*, 16> DeadNodes(1, N);
565  RemoveDeadNodes(DeadNodes, UpdateListener);
566}
567
568void SelectionDAG::DeleteNode(SDNode *N) {
569  // First take this out of the appropriate CSE map.
570  RemoveNodeFromCSEMaps(N);
571
572  // Finally, remove uses due to operands of this node, remove from the
573  // AllNodes list, and delete the node.
574  DeleteNodeNotInCSEMaps(N);
575}
576
577void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
578  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
579  assert(N->use_empty() && "Cannot delete a node that is not dead!");
580
581  // Drop all of the operands and decrement used node's use counts.
582  N->DropOperands();
583
584  DeallocateNode(N);
585}
586
587void SelectionDAG::DeallocateNode(SDNode *N) {
588  if (N->OperandsNeedDelete)
589    delete[] N->OperandList;
590
591  // Set the opcode to DELETED_NODE to help catch bugs when node
592  // memory is reallocated.
593  N->NodeType = ISD::DELETED_NODE;
594
595  NodeAllocator.Deallocate(AllNodes.remove(N));
596
597  // Remove the ordering of this node.
598  Ordering->remove(N);
599}
600
601/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
602/// correspond to it.  This is useful when we're about to delete or repurpose
603/// the node.  We don't want future request for structurally identical nodes
604/// to return N anymore.
605bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
606  bool Erased = false;
607  switch (N->getOpcode()) {
608  case ISD::EntryToken:
609    llvm_unreachable("EntryToken should not be in CSEMaps!");
610    return false;
611  case ISD::HANDLENODE: return false;  // noop.
612  case ISD::CONDCODE:
613    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
614           "Cond code doesn't exist!");
615    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
616    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
617    break;
618  case ISD::ExternalSymbol:
619    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
620    break;
621  case ISD::TargetExternalSymbol: {
622    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
623    Erased = TargetExternalSymbols.erase(
624               std::pair<std::string,unsigned char>(ESN->getSymbol(),
625                                                    ESN->getTargetFlags()));
626    break;
627  }
628  case ISD::VALUETYPE: {
629    EVT VT = cast<VTSDNode>(N)->getVT();
630    if (VT.isExtended()) {
631      Erased = ExtendedValueTypeNodes.erase(VT);
632    } else {
633      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
634      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
635    }
636    break;
637  }
638  default:
639    // Remove it from the CSE Map.
640    Erased = CSEMap.RemoveNode(N);
641    break;
642  }
643#ifndef NDEBUG
644  // Verify that the node was actually in one of the CSE maps, unless it has a
645  // flag result (which cannot be CSE'd) or is one of the special cases that are
646  // not subject to CSE.
647  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
648      !N->isMachineOpcode() && !doNotCSE(N)) {
649    N->dump(this);
650    dbgs() << "\n";
651    llvm_unreachable("Node is not in map!");
652  }
653#endif
654  return Erased;
655}
656
657/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
658/// maps and modified in place. Add it back to the CSE maps, unless an identical
659/// node already exists, in which case transfer all its users to the existing
660/// node. This transfer can potentially trigger recursive merging.
661///
662void
663SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
664                                       DAGUpdateListener *UpdateListener) {
665  // For node types that aren't CSE'd, just act as if no identical node
666  // already exists.
667  if (!doNotCSE(N)) {
668    SDNode *Existing = CSEMap.GetOrInsertNode(N);
669    if (Existing != N) {
670      // If there was already an existing matching node, use ReplaceAllUsesWith
671      // to replace the dead one with the existing one.  This can cause
672      // recursive merging of other unrelated nodes down the line.
673      ReplaceAllUsesWith(N, Existing, UpdateListener);
674
675      // N is now dead.  Inform the listener if it exists and delete it.
676      if (UpdateListener)
677        UpdateListener->NodeDeleted(N, Existing);
678      DeleteNodeNotInCSEMaps(N);
679      return;
680    }
681  }
682
683  // If the node doesn't already exist, we updated it.  Inform a listener if
684  // it exists.
685  if (UpdateListener)
686    UpdateListener->NodeUpdated(N);
687}
688
689/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
690/// were replaced with those specified.  If this node is never memoized,
691/// return null, otherwise return a pointer to the slot it would take.  If a
692/// node already exists with these operands, the slot will be non-null.
693SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
694                                           void *&InsertPos) {
695  if (doNotCSE(N))
696    return 0;
697
698  SDValue Ops[] = { Op };
699  FoldingSetNodeID ID;
700  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
701  AddNodeIDCustom(ID, N);
702  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
703  return Node;
704}
705
706/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
707/// were replaced with those specified.  If this node is never memoized,
708/// return null, otherwise return a pointer to the slot it would take.  If a
709/// node already exists with these operands, the slot will be non-null.
710SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
711                                           SDValue Op1, SDValue Op2,
712                                           void *&InsertPos) {
713  if (doNotCSE(N))
714    return 0;
715
716  SDValue Ops[] = { Op1, Op2 };
717  FoldingSetNodeID ID;
718  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
719  AddNodeIDCustom(ID, N);
720  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
721  return Node;
722}
723
724
725/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
726/// were replaced with those specified.  If this node is never memoized,
727/// return null, otherwise return a pointer to the slot it would take.  If a
728/// node already exists with these operands, the slot will be non-null.
729SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
730                                           const SDValue *Ops,unsigned NumOps,
731                                           void *&InsertPos) {
732  if (doNotCSE(N))
733    return 0;
734
735  FoldingSetNodeID ID;
736  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
737  AddNodeIDCustom(ID, N);
738  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
739  return Node;
740}
741
742/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
743void SelectionDAG::VerifyNode(SDNode *N) {
744  switch (N->getOpcode()) {
745  default:
746    break;
747  case ISD::BUILD_PAIR: {
748    EVT VT = N->getValueType(0);
749    assert(N->getNumValues() == 1 && "Too many results!");
750    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
751           "Wrong return type!");
752    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
753    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
754           "Mismatched operand types!");
755    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
756           "Wrong operand type!");
757    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
758           "Wrong return type size");
759    break;
760  }
761  case ISD::BUILD_VECTOR: {
762    assert(N->getNumValues() == 1 && "Too many results!");
763    assert(N->getValueType(0).isVector() && "Wrong return type!");
764    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
765           "Wrong number of operands!");
766    EVT EltVT = N->getValueType(0).getVectorElementType();
767    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
768      assert((I->getValueType() == EltVT ||
769             (EltVT.isInteger() && I->getValueType().isInteger() &&
770              EltVT.bitsLE(I->getValueType()))) &&
771            "Wrong operand type!");
772    break;
773  }
774  }
775}
776
777/// getEVTAlignment - Compute the default alignment value for the
778/// given type.
779///
780unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
781  const Type *Ty = VT == MVT::iPTR ?
782                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
783                   VT.getTypeForEVT(*getContext());
784
785  return TLI.getTargetData()->getABITypeAlignment(Ty);
786}
787
788// EntryNode could meaningfully have debug info if we can find it...
789SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
790  : TLI(tli), FLI(fli), DW(0),
791    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
792              getVTList(MVT::Other)),
793    Root(getEntryNode()), Ordering(0) {
794  AllNodes.push_back(&EntryNode);
795  Ordering = new SDNodeOrdering();
796}
797
798void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
799                        DwarfWriter *dw) {
800  MF = &mf;
801  MMI = mmi;
802  DW = dw;
803  Context = &mf.getFunction()->getContext();
804}
805
806SelectionDAG::~SelectionDAG() {
807  allnodes_clear();
808  delete Ordering;
809}
810
811void SelectionDAG::allnodes_clear() {
812  assert(&*AllNodes.begin() == &EntryNode);
813  AllNodes.remove(AllNodes.begin());
814  while (!AllNodes.empty())
815    DeallocateNode(AllNodes.begin());
816}
817
818void SelectionDAG::clear() {
819  allnodes_clear();
820  OperandAllocator.Reset();
821  CSEMap.clear();
822
823  ExtendedValueTypeNodes.clear();
824  ExternalSymbols.clear();
825  TargetExternalSymbols.clear();
826  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
827            static_cast<CondCodeSDNode*>(0));
828  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
829            static_cast<SDNode*>(0));
830
831  EntryNode.UseList = 0;
832  AllNodes.push_back(&EntryNode);
833  Root = getEntryNode();
834  delete Ordering;
835  Ordering = new SDNodeOrdering();
836}
837
838SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
839  return VT.bitsGT(Op.getValueType()) ?
840    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
841    getNode(ISD::TRUNCATE, DL, VT, Op);
842}
843
844SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
845  return VT.bitsGT(Op.getValueType()) ?
846    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
847    getNode(ISD::TRUNCATE, DL, VT, Op);
848}
849
850SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
851  assert(!VT.isVector() &&
852         "getZeroExtendInReg should use the vector element type instead of "
853         "the vector type!");
854  if (Op.getValueType() == VT) return Op;
855  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
856  APInt Imm = APInt::getLowBitsSet(BitWidth,
857                                   VT.getSizeInBits());
858  return getNode(ISD::AND, DL, Op.getValueType(), Op,
859                 getConstant(Imm, Op.getValueType()));
860}
861
862/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
863///
864SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
865  EVT EltVT = VT.getScalarType();
866  SDValue NegOne =
867    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
868  return getNode(ISD::XOR, DL, VT, Val, NegOne);
869}
870
871SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
872  EVT EltVT = VT.getScalarType();
873  assert((EltVT.getSizeInBits() >= 64 ||
874         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
875         "getConstant with a uint64_t value that doesn't fit in the type!");
876  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
877}
878
879SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
880  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
881}
882
883SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
884  assert(VT.isInteger() && "Cannot create FP integer constant!");
885
886  EVT EltVT = VT.getScalarType();
887  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
888         "APInt size does not match type size!");
889
890  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
891  FoldingSetNodeID ID;
892  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
893  ID.AddPointer(&Val);
894  void *IP = 0;
895  SDNode *N = NULL;
896  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
897    if (!VT.isVector())
898      return SDValue(N, 0);
899
900  if (!N) {
901    N = NodeAllocator.Allocate<ConstantSDNode>();
902    new (N) ConstantSDNode(isT, &Val, EltVT);
903    CSEMap.InsertNode(N, IP);
904    AllNodes.push_back(N);
905  }
906
907  SDValue Result(N, 0);
908  if (VT.isVector()) {
909    SmallVector<SDValue, 8> Ops;
910    Ops.assign(VT.getVectorNumElements(), Result);
911    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
912                     VT, &Ops[0], Ops.size());
913  }
914  return Result;
915}
916
917SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
918  return getConstant(Val, TLI.getPointerTy(), isTarget);
919}
920
921
922SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
923  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
924}
925
926SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
927  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
928
929  EVT EltVT = VT.getScalarType();
930
931  // Do the map lookup using the actual bit pattern for the floating point
932  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
933  // we don't have issues with SNANs.
934  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
935  FoldingSetNodeID ID;
936  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
937  ID.AddPointer(&V);
938  void *IP = 0;
939  SDNode *N = NULL;
940  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
941    if (!VT.isVector())
942      return SDValue(N, 0);
943
944  if (!N) {
945    N = NodeAllocator.Allocate<ConstantFPSDNode>();
946    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
947    CSEMap.InsertNode(N, IP);
948    AllNodes.push_back(N);
949  }
950
951  SDValue Result(N, 0);
952  if (VT.isVector()) {
953    SmallVector<SDValue, 8> Ops;
954    Ops.assign(VT.getVectorNumElements(), Result);
955    // FIXME DebugLoc info might be appropriate here
956    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
957                     VT, &Ops[0], Ops.size());
958  }
959  return Result;
960}
961
962SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
963  EVT EltVT = VT.getScalarType();
964  if (EltVT==MVT::f32)
965    return getConstantFP(APFloat((float)Val), VT, isTarget);
966  else
967    return getConstantFP(APFloat(Val), VT, isTarget);
968}
969
970SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
971                                       EVT VT, int64_t Offset,
972                                       bool isTargetGA,
973                                       unsigned char TargetFlags) {
974  assert((TargetFlags == 0 || isTargetGA) &&
975         "Cannot set target flags on target-independent globals");
976
977  // Truncate (with sign-extension) the offset value to the pointer size.
978  EVT PTy = TLI.getPointerTy();
979  unsigned BitWidth = PTy.getSizeInBits();
980  if (BitWidth < 64)
981    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
982
983  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
984  if (!GVar) {
985    // If GV is an alias then use the aliasee for determining thread-localness.
986    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
987      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
988  }
989
990  unsigned Opc;
991  if (GVar && GVar->isThreadLocal())
992    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
993  else
994    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
995
996  FoldingSetNodeID ID;
997  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
998  ID.AddPointer(GV);
999  ID.AddInteger(Offset);
1000  ID.AddInteger(TargetFlags);
1001  void *IP = 0;
1002  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1003    return SDValue(E, 0);
1004
1005  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
1006  new (N) GlobalAddressSDNode(Opc, GV, VT, Offset, TargetFlags);
1007  CSEMap.InsertNode(N, IP);
1008  AllNodes.push_back(N);
1009  return SDValue(N, 0);
1010}
1011
1012SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1013  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1014  FoldingSetNodeID ID;
1015  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1016  ID.AddInteger(FI);
1017  void *IP = 0;
1018  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1019    return SDValue(E, 0);
1020
1021  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1022  new (N) FrameIndexSDNode(FI, VT, isTarget);
1023  CSEMap.InsertNode(N, IP);
1024  AllNodes.push_back(N);
1025  return SDValue(N, 0);
1026}
1027
1028SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1029                                   unsigned char TargetFlags) {
1030  assert((TargetFlags == 0 || isTarget) &&
1031         "Cannot set target flags on target-independent jump tables");
1032  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1033  FoldingSetNodeID ID;
1034  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1035  ID.AddInteger(JTI);
1036  ID.AddInteger(TargetFlags);
1037  void *IP = 0;
1038  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1039    return SDValue(E, 0);
1040
1041  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1042  new (N) JumpTableSDNode(JTI, VT, isTarget, TargetFlags);
1043  CSEMap.InsertNode(N, IP);
1044  AllNodes.push_back(N);
1045  return SDValue(N, 0);
1046}
1047
1048SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1049                                      unsigned Alignment, int Offset,
1050                                      bool isTarget,
1051                                      unsigned char TargetFlags) {
1052  assert((TargetFlags == 0 || isTarget) &&
1053         "Cannot set target flags on target-independent globals");
1054  if (Alignment == 0)
1055    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1056  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1057  FoldingSetNodeID ID;
1058  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1059  ID.AddInteger(Alignment);
1060  ID.AddInteger(Offset);
1061  ID.AddPointer(C);
1062  ID.AddInteger(TargetFlags);
1063  void *IP = 0;
1064  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1065    return SDValue(E, 0);
1066
1067  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1068  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1069  CSEMap.InsertNode(N, IP);
1070  AllNodes.push_back(N);
1071  return SDValue(N, 0);
1072}
1073
1074
1075SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1076                                      unsigned Alignment, int Offset,
1077                                      bool isTarget,
1078                                      unsigned char TargetFlags) {
1079  assert((TargetFlags == 0 || isTarget) &&
1080         "Cannot set target flags on target-independent globals");
1081  if (Alignment == 0)
1082    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1083  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1084  FoldingSetNodeID ID;
1085  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1086  ID.AddInteger(Alignment);
1087  ID.AddInteger(Offset);
1088  C->AddSelectionDAGCSEId(ID);
1089  ID.AddInteger(TargetFlags);
1090  void *IP = 0;
1091  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1092    return SDValue(E, 0);
1093
1094  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1095  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1096  CSEMap.InsertNode(N, IP);
1097  AllNodes.push_back(N);
1098  return SDValue(N, 0);
1099}
1100
1101SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1102  FoldingSetNodeID ID;
1103  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1104  ID.AddPointer(MBB);
1105  void *IP = 0;
1106  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1107    return SDValue(E, 0);
1108
1109  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1110  new (N) BasicBlockSDNode(MBB);
1111  CSEMap.InsertNode(N, IP);
1112  AllNodes.push_back(N);
1113  return SDValue(N, 0);
1114}
1115
1116SDValue SelectionDAG::getValueType(EVT VT) {
1117  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1118      ValueTypeNodes.size())
1119    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1120
1121  SDNode *&N = VT.isExtended() ?
1122    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1123
1124  if (N) return SDValue(N, 0);
1125  N = NodeAllocator.Allocate<VTSDNode>();
1126  new (N) VTSDNode(VT);
1127  AllNodes.push_back(N);
1128  return SDValue(N, 0);
1129}
1130
1131SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1132  SDNode *&N = ExternalSymbols[Sym];
1133  if (N) return SDValue(N, 0);
1134  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1135  new (N) ExternalSymbolSDNode(false, Sym, 0, VT);
1136  AllNodes.push_back(N);
1137  return SDValue(N, 0);
1138}
1139
1140SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1141                                              unsigned char TargetFlags) {
1142  SDNode *&N =
1143    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1144                                                               TargetFlags)];
1145  if (N) return SDValue(N, 0);
1146  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1147  new (N) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1148  AllNodes.push_back(N);
1149  return SDValue(N, 0);
1150}
1151
1152SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1153  if ((unsigned)Cond >= CondCodeNodes.size())
1154    CondCodeNodes.resize(Cond+1);
1155
1156  if (CondCodeNodes[Cond] == 0) {
1157    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1158    new (N) CondCodeSDNode(Cond);
1159    CondCodeNodes[Cond] = N;
1160    AllNodes.push_back(N);
1161  }
1162
1163  return SDValue(CondCodeNodes[Cond], 0);
1164}
1165
1166// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1167// the shuffle mask M that point at N1 to point at N2, and indices that point
1168// N2 to point at N1.
1169static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1170  std::swap(N1, N2);
1171  int NElts = M.size();
1172  for (int i = 0; i != NElts; ++i) {
1173    if (M[i] >= NElts)
1174      M[i] -= NElts;
1175    else if (M[i] >= 0)
1176      M[i] += NElts;
1177  }
1178}
1179
1180SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1181                                       SDValue N2, const int *Mask) {
1182  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1183  assert(VT.isVector() && N1.getValueType().isVector() &&
1184         "Vector Shuffle VTs must be a vectors");
1185  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1186         && "Vector Shuffle VTs must have same element type");
1187
1188  // Canonicalize shuffle undef, undef -> undef
1189  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1190    return getUNDEF(VT);
1191
1192  // Validate that all indices in Mask are within the range of the elements
1193  // input to the shuffle.
1194  unsigned NElts = VT.getVectorNumElements();
1195  SmallVector<int, 8> MaskVec;
1196  for (unsigned i = 0; i != NElts; ++i) {
1197    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1198    MaskVec.push_back(Mask[i]);
1199  }
1200
1201  // Canonicalize shuffle v, v -> v, undef
1202  if (N1 == N2) {
1203    N2 = getUNDEF(VT);
1204    for (unsigned i = 0; i != NElts; ++i)
1205      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1206  }
1207
1208  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1209  if (N1.getOpcode() == ISD::UNDEF)
1210    commuteShuffle(N1, N2, MaskVec);
1211
1212  // Canonicalize all index into lhs, -> shuffle lhs, undef
1213  // Canonicalize all index into rhs, -> shuffle rhs, undef
1214  bool AllLHS = true, AllRHS = true;
1215  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1216  for (unsigned i = 0; i != NElts; ++i) {
1217    if (MaskVec[i] >= (int)NElts) {
1218      if (N2Undef)
1219        MaskVec[i] = -1;
1220      else
1221        AllLHS = false;
1222    } else if (MaskVec[i] >= 0) {
1223      AllRHS = false;
1224    }
1225  }
1226  if (AllLHS && AllRHS)
1227    return getUNDEF(VT);
1228  if (AllLHS && !N2Undef)
1229    N2 = getUNDEF(VT);
1230  if (AllRHS) {
1231    N1 = getUNDEF(VT);
1232    commuteShuffle(N1, N2, MaskVec);
1233  }
1234
1235  // If Identity shuffle, or all shuffle in to undef, return that node.
1236  bool AllUndef = true;
1237  bool Identity = true;
1238  for (unsigned i = 0; i != NElts; ++i) {
1239    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1240    if (MaskVec[i] >= 0) AllUndef = false;
1241  }
1242  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1243    return N1;
1244  if (AllUndef)
1245    return getUNDEF(VT);
1246
1247  FoldingSetNodeID ID;
1248  SDValue Ops[2] = { N1, N2 };
1249  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1250  for (unsigned i = 0; i != NElts; ++i)
1251    ID.AddInteger(MaskVec[i]);
1252
1253  void* IP = 0;
1254  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1255    return SDValue(E, 0);
1256
1257  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1258  // SDNode doesn't have access to it.  This memory will be "leaked" when
1259  // the node is deallocated, but recovered when the NodeAllocator is released.
1260  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1261  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1262
1263  ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1264  new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1265  CSEMap.InsertNode(N, IP);
1266  AllNodes.push_back(N);
1267  return SDValue(N, 0);
1268}
1269
1270SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1271                                       SDValue Val, SDValue DTy,
1272                                       SDValue STy, SDValue Rnd, SDValue Sat,
1273                                       ISD::CvtCode Code) {
1274  // If the src and dest types are the same and the conversion is between
1275  // integer types of the same sign or two floats, no conversion is necessary.
1276  if (DTy == STy &&
1277      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1278    return Val;
1279
1280  FoldingSetNodeID ID;
1281  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1282  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1283  void* IP = 0;
1284  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1285    return SDValue(E, 0);
1286
1287  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1288  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1289  CSEMap.InsertNode(N, IP);
1290  AllNodes.push_back(N);
1291  return SDValue(N, 0);
1292}
1293
1294SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1295  FoldingSetNodeID ID;
1296  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1297  ID.AddInteger(RegNo);
1298  void *IP = 0;
1299  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1300    return SDValue(E, 0);
1301
1302  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1303  new (N) RegisterSDNode(RegNo, VT);
1304  CSEMap.InsertNode(N, IP);
1305  AllNodes.push_back(N);
1306  return SDValue(N, 0);
1307}
1308
1309SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1310                               SDValue Root,
1311                               unsigned LabelID) {
1312  FoldingSetNodeID ID;
1313  SDValue Ops[] = { Root };
1314  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1315  ID.AddInteger(LabelID);
1316  void *IP = 0;
1317  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1318    return SDValue(E, 0);
1319
1320  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1321  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1322  CSEMap.InsertNode(N, IP);
1323  AllNodes.push_back(N);
1324  return SDValue(N, 0);
1325}
1326
1327SDValue SelectionDAG::getBlockAddress(BlockAddress *BA, EVT VT,
1328                                      bool isTarget,
1329                                      unsigned char TargetFlags) {
1330  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1331
1332  FoldingSetNodeID ID;
1333  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1334  ID.AddPointer(BA);
1335  ID.AddInteger(TargetFlags);
1336  void *IP = 0;
1337  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1338    return SDValue(E, 0);
1339
1340  SDNode *N = NodeAllocator.Allocate<BlockAddressSDNode>();
1341  new (N) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1342  CSEMap.InsertNode(N, IP);
1343  AllNodes.push_back(N);
1344  return SDValue(N, 0);
1345}
1346
1347SDValue SelectionDAG::getSrcValue(const Value *V) {
1348  assert((!V || V->getType()->isPointerTy()) &&
1349         "SrcValue is not a pointer?");
1350
1351  FoldingSetNodeID ID;
1352  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1353  ID.AddPointer(V);
1354
1355  void *IP = 0;
1356  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1357    return SDValue(E, 0);
1358
1359  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1360  new (N) SrcValueSDNode(V);
1361  CSEMap.InsertNode(N, IP);
1362  AllNodes.push_back(N);
1363  return SDValue(N, 0);
1364}
1365
1366/// getShiftAmountOperand - Return the specified value casted to
1367/// the target's desired shift amount type.
1368SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1369  EVT OpTy = Op.getValueType();
1370  MVT ShTy = TLI.getShiftAmountTy();
1371  if (OpTy == ShTy || OpTy.isVector()) return Op;
1372
1373  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1374  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1375}
1376
1377/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1378/// specified value type.
1379SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1380  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1381  unsigned ByteSize = VT.getStoreSize();
1382  const Type *Ty = VT.getTypeForEVT(*getContext());
1383  unsigned StackAlign =
1384  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1385
1386  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1387  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1388}
1389
1390/// CreateStackTemporary - Create a stack temporary suitable for holding
1391/// either of the specified value types.
1392SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1393  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1394                            VT2.getStoreSizeInBits())/8;
1395  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1396  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1397  const TargetData *TD = TLI.getTargetData();
1398  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1399                            TD->getPrefTypeAlignment(Ty2));
1400
1401  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1402  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1403  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1404}
1405
1406SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1407                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1408  // These setcc operations always fold.
1409  switch (Cond) {
1410  default: break;
1411  case ISD::SETFALSE:
1412  case ISD::SETFALSE2: return getConstant(0, VT);
1413  case ISD::SETTRUE:
1414  case ISD::SETTRUE2:  return getConstant(1, VT);
1415
1416  case ISD::SETOEQ:
1417  case ISD::SETOGT:
1418  case ISD::SETOGE:
1419  case ISD::SETOLT:
1420  case ISD::SETOLE:
1421  case ISD::SETONE:
1422  case ISD::SETO:
1423  case ISD::SETUO:
1424  case ISD::SETUEQ:
1425  case ISD::SETUNE:
1426    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1427    break;
1428  }
1429
1430  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1431    const APInt &C2 = N2C->getAPIntValue();
1432    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1433      const APInt &C1 = N1C->getAPIntValue();
1434
1435      switch (Cond) {
1436      default: llvm_unreachable("Unknown integer setcc!");
1437      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1438      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1439      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1440      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1441      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1442      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1443      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1444      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1445      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1446      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1447      }
1448    }
1449  }
1450  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1451    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1452      // No compile time operations on this type yet.
1453      if (N1C->getValueType(0) == MVT::ppcf128)
1454        return SDValue();
1455
1456      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1457      switch (Cond) {
1458      default: break;
1459      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1460                          return getUNDEF(VT);
1461                        // fall through
1462      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1463      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1464                          return getUNDEF(VT);
1465                        // fall through
1466      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1467                                           R==APFloat::cmpLessThan, VT);
1468      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1469                          return getUNDEF(VT);
1470                        // fall through
1471      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1472      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1473                          return getUNDEF(VT);
1474                        // fall through
1475      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1476      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1477                          return getUNDEF(VT);
1478                        // fall through
1479      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1480                                           R==APFloat::cmpEqual, VT);
1481      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1482                          return getUNDEF(VT);
1483                        // fall through
1484      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1485                                           R==APFloat::cmpEqual, VT);
1486      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1487      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1488      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1489                                           R==APFloat::cmpEqual, VT);
1490      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1491      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1492                                           R==APFloat::cmpLessThan, VT);
1493      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1494                                           R==APFloat::cmpUnordered, VT);
1495      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1496      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1497      }
1498    } else {
1499      // Ensure that the constant occurs on the RHS.
1500      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1501    }
1502  }
1503
1504  // Could not fold it.
1505  return SDValue();
1506}
1507
1508/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1509/// use this predicate to simplify operations downstream.
1510bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1511  // This predicate is not safe for vector operations.
1512  if (Op.getValueType().isVector())
1513    return false;
1514
1515  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1516  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1517}
1518
1519/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1520/// this predicate to simplify operations downstream.  Mask is known to be zero
1521/// for bits that V cannot have.
1522bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1523                                     unsigned Depth) const {
1524  APInt KnownZero, KnownOne;
1525  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1526  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1527  return (KnownZero & Mask) == Mask;
1528}
1529
1530/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1531/// known to be either zero or one and return them in the KnownZero/KnownOne
1532/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1533/// processing.
1534void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1535                                     APInt &KnownZero, APInt &KnownOne,
1536                                     unsigned Depth) const {
1537  unsigned BitWidth = Mask.getBitWidth();
1538  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1539         "Mask size mismatches value type size!");
1540
1541  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1542  if (Depth == 6 || Mask == 0)
1543    return;  // Limit search depth.
1544
1545  APInt KnownZero2, KnownOne2;
1546
1547  switch (Op.getOpcode()) {
1548  case ISD::Constant:
1549    // We know all of the bits for a constant!
1550    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1551    KnownZero = ~KnownOne & Mask;
1552    return;
1553  case ISD::AND:
1554    // If either the LHS or the RHS are Zero, the result is zero.
1555    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1556    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1557                      KnownZero2, KnownOne2, Depth+1);
1558    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1559    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1560
1561    // Output known-1 bits are only known if set in both the LHS & RHS.
1562    KnownOne &= KnownOne2;
1563    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1564    KnownZero |= KnownZero2;
1565    return;
1566  case ISD::OR:
1567    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1568    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1569                      KnownZero2, KnownOne2, Depth+1);
1570    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1571    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1572
1573    // Output known-0 bits are only known if clear in both the LHS & RHS.
1574    KnownZero &= KnownZero2;
1575    // Output known-1 are known to be set if set in either the LHS | RHS.
1576    KnownOne |= KnownOne2;
1577    return;
1578  case ISD::XOR: {
1579    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1580    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1581    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1582    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1583
1584    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1585    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1586    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1587    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1588    KnownZero = KnownZeroOut;
1589    return;
1590  }
1591  case ISD::MUL: {
1592    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1593    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1594    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1595    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1596    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1597
1598    // If low bits are zero in either operand, output low known-0 bits.
1599    // Also compute a conserative estimate for high known-0 bits.
1600    // More trickiness is possible, but this is sufficient for the
1601    // interesting case of alignment computation.
1602    KnownOne.clear();
1603    unsigned TrailZ = KnownZero.countTrailingOnes() +
1604                      KnownZero2.countTrailingOnes();
1605    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1606                               KnownZero2.countLeadingOnes(),
1607                               BitWidth) - BitWidth;
1608
1609    TrailZ = std::min(TrailZ, BitWidth);
1610    LeadZ = std::min(LeadZ, BitWidth);
1611    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1612                APInt::getHighBitsSet(BitWidth, LeadZ);
1613    KnownZero &= Mask;
1614    return;
1615  }
1616  case ISD::UDIV: {
1617    // For the purposes of computing leading zeros we can conservatively
1618    // treat a udiv as a logical right shift by the power of 2 known to
1619    // be less than the denominator.
1620    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1621    ComputeMaskedBits(Op.getOperand(0),
1622                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1623    unsigned LeadZ = KnownZero2.countLeadingOnes();
1624
1625    KnownOne2.clear();
1626    KnownZero2.clear();
1627    ComputeMaskedBits(Op.getOperand(1),
1628                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1629    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1630    if (RHSUnknownLeadingOnes != BitWidth)
1631      LeadZ = std::min(BitWidth,
1632                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1633
1634    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1635    return;
1636  }
1637  case ISD::SELECT:
1638    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1639    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1640    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1641    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1642
1643    // Only known if known in both the LHS and RHS.
1644    KnownOne &= KnownOne2;
1645    KnownZero &= KnownZero2;
1646    return;
1647  case ISD::SELECT_CC:
1648    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1649    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1650    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1651    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1652
1653    // Only known if known in both the LHS and RHS.
1654    KnownOne &= KnownOne2;
1655    KnownZero &= KnownZero2;
1656    return;
1657  case ISD::SADDO:
1658  case ISD::UADDO:
1659  case ISD::SSUBO:
1660  case ISD::USUBO:
1661  case ISD::SMULO:
1662  case ISD::UMULO:
1663    if (Op.getResNo() != 1)
1664      return;
1665    // The boolean result conforms to getBooleanContents.  Fall through.
1666  case ISD::SETCC:
1667    // If we know the result of a setcc has the top bits zero, use this info.
1668    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1669        BitWidth > 1)
1670      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1671    return;
1672  case ISD::SHL:
1673    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1674    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1675      unsigned ShAmt = SA->getZExtValue();
1676
1677      // If the shift count is an invalid immediate, don't do anything.
1678      if (ShAmt >= BitWidth)
1679        return;
1680
1681      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1682                        KnownZero, KnownOne, Depth+1);
1683      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1684      KnownZero <<= ShAmt;
1685      KnownOne  <<= ShAmt;
1686      // low bits known zero.
1687      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1688    }
1689    return;
1690  case ISD::SRL:
1691    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1692    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1693      unsigned ShAmt = SA->getZExtValue();
1694
1695      // If the shift count is an invalid immediate, don't do anything.
1696      if (ShAmt >= BitWidth)
1697        return;
1698
1699      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1700                        KnownZero, KnownOne, Depth+1);
1701      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1702      KnownZero = KnownZero.lshr(ShAmt);
1703      KnownOne  = KnownOne.lshr(ShAmt);
1704
1705      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1706      KnownZero |= HighBits;  // High bits known zero.
1707    }
1708    return;
1709  case ISD::SRA:
1710    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1711      unsigned ShAmt = SA->getZExtValue();
1712
1713      // If the shift count is an invalid immediate, don't do anything.
1714      if (ShAmt >= BitWidth)
1715        return;
1716
1717      APInt InDemandedMask = (Mask << ShAmt);
1718      // If any of the demanded bits are produced by the sign extension, we also
1719      // demand the input sign bit.
1720      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1721      if (HighBits.getBoolValue())
1722        InDemandedMask |= APInt::getSignBit(BitWidth);
1723
1724      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1725                        Depth+1);
1726      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1727      KnownZero = KnownZero.lshr(ShAmt);
1728      KnownOne  = KnownOne.lshr(ShAmt);
1729
1730      // Handle the sign bits.
1731      APInt SignBit = APInt::getSignBit(BitWidth);
1732      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1733
1734      if (KnownZero.intersects(SignBit)) {
1735        KnownZero |= HighBits;  // New bits are known zero.
1736      } else if (KnownOne.intersects(SignBit)) {
1737        KnownOne  |= HighBits;  // New bits are known one.
1738      }
1739    }
1740    return;
1741  case ISD::SIGN_EXTEND_INREG: {
1742    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1743    unsigned EBits = EVT.getScalarType().getSizeInBits();
1744
1745    // Sign extension.  Compute the demanded bits in the result that are not
1746    // present in the input.
1747    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1748
1749    APInt InSignBit = APInt::getSignBit(EBits);
1750    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1751
1752    // If the sign extended bits are demanded, we know that the sign
1753    // bit is demanded.
1754    InSignBit.zext(BitWidth);
1755    if (NewBits.getBoolValue())
1756      InputDemandedBits |= InSignBit;
1757
1758    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1759                      KnownZero, KnownOne, Depth+1);
1760    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1761
1762    // If the sign bit of the input is known set or clear, then we know the
1763    // top bits of the result.
1764    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1765      KnownZero |= NewBits;
1766      KnownOne  &= ~NewBits;
1767    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1768      KnownOne  |= NewBits;
1769      KnownZero &= ~NewBits;
1770    } else {                              // Input sign bit unknown
1771      KnownZero &= ~NewBits;
1772      KnownOne  &= ~NewBits;
1773    }
1774    return;
1775  }
1776  case ISD::CTTZ:
1777  case ISD::CTLZ:
1778  case ISD::CTPOP: {
1779    unsigned LowBits = Log2_32(BitWidth)+1;
1780    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1781    KnownOne.clear();
1782    return;
1783  }
1784  case ISD::LOAD: {
1785    if (ISD::isZEXTLoad(Op.getNode())) {
1786      LoadSDNode *LD = cast<LoadSDNode>(Op);
1787      EVT VT = LD->getMemoryVT();
1788      unsigned MemBits = VT.getScalarType().getSizeInBits();
1789      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1790    }
1791    return;
1792  }
1793  case ISD::ZERO_EXTEND: {
1794    EVT InVT = Op.getOperand(0).getValueType();
1795    unsigned InBits = InVT.getScalarType().getSizeInBits();
1796    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1797    APInt InMask    = Mask;
1798    InMask.trunc(InBits);
1799    KnownZero.trunc(InBits);
1800    KnownOne.trunc(InBits);
1801    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1802    KnownZero.zext(BitWidth);
1803    KnownOne.zext(BitWidth);
1804    KnownZero |= NewBits;
1805    return;
1806  }
1807  case ISD::SIGN_EXTEND: {
1808    EVT InVT = Op.getOperand(0).getValueType();
1809    unsigned InBits = InVT.getScalarType().getSizeInBits();
1810    APInt InSignBit = APInt::getSignBit(InBits);
1811    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1812    APInt InMask = Mask;
1813    InMask.trunc(InBits);
1814
1815    // If any of the sign extended bits are demanded, we know that the sign
1816    // bit is demanded. Temporarily set this bit in the mask for our callee.
1817    if (NewBits.getBoolValue())
1818      InMask |= InSignBit;
1819
1820    KnownZero.trunc(InBits);
1821    KnownOne.trunc(InBits);
1822    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1823
1824    // Note if the sign bit is known to be zero or one.
1825    bool SignBitKnownZero = KnownZero.isNegative();
1826    bool SignBitKnownOne  = KnownOne.isNegative();
1827    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1828           "Sign bit can't be known to be both zero and one!");
1829
1830    // If the sign bit wasn't actually demanded by our caller, we don't
1831    // want it set in the KnownZero and KnownOne result values. Reset the
1832    // mask and reapply it to the result values.
1833    InMask = Mask;
1834    InMask.trunc(InBits);
1835    KnownZero &= InMask;
1836    KnownOne  &= InMask;
1837
1838    KnownZero.zext(BitWidth);
1839    KnownOne.zext(BitWidth);
1840
1841    // If the sign bit is known zero or one, the top bits match.
1842    if (SignBitKnownZero)
1843      KnownZero |= NewBits;
1844    else if (SignBitKnownOne)
1845      KnownOne  |= NewBits;
1846    return;
1847  }
1848  case ISD::ANY_EXTEND: {
1849    EVT InVT = Op.getOperand(0).getValueType();
1850    unsigned InBits = InVT.getScalarType().getSizeInBits();
1851    APInt InMask = Mask;
1852    InMask.trunc(InBits);
1853    KnownZero.trunc(InBits);
1854    KnownOne.trunc(InBits);
1855    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1856    KnownZero.zext(BitWidth);
1857    KnownOne.zext(BitWidth);
1858    return;
1859  }
1860  case ISD::TRUNCATE: {
1861    EVT InVT = Op.getOperand(0).getValueType();
1862    unsigned InBits = InVT.getScalarType().getSizeInBits();
1863    APInt InMask = Mask;
1864    InMask.zext(InBits);
1865    KnownZero.zext(InBits);
1866    KnownOne.zext(InBits);
1867    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1868    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1869    KnownZero.trunc(BitWidth);
1870    KnownOne.trunc(BitWidth);
1871    break;
1872  }
1873  case ISD::AssertZext: {
1874    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1875    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1876    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1877                      KnownOne, Depth+1);
1878    KnownZero |= (~InMask) & Mask;
1879    return;
1880  }
1881  case ISD::FGETSIGN:
1882    // All bits are zero except the low bit.
1883    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1884    return;
1885
1886  case ISD::SUB: {
1887    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1888      // We know that the top bits of C-X are clear if X contains less bits
1889      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1890      // positive if we can prove that X is >= 0 and < 16.
1891      if (CLHS->getAPIntValue().isNonNegative()) {
1892        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1893        // NLZ can't be BitWidth with no sign bit
1894        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1895        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1896                          Depth+1);
1897
1898        // If all of the MaskV bits are known to be zero, then we know the
1899        // output top bits are zero, because we now know that the output is
1900        // from [0-C].
1901        if ((KnownZero2 & MaskV) == MaskV) {
1902          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1903          // Top bits known zero.
1904          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1905        }
1906      }
1907    }
1908  }
1909  // fall through
1910  case ISD::ADD: {
1911    // Output known-0 bits are known if clear or set in both the low clear bits
1912    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1913    // low 3 bits clear.
1914    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1915    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1916    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1917    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1918
1919    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1920    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1921    KnownZeroOut = std::min(KnownZeroOut,
1922                            KnownZero2.countTrailingOnes());
1923
1924    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1925    return;
1926  }
1927  case ISD::SREM:
1928    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1929      const APInt &RA = Rem->getAPIntValue().abs();
1930      if (RA.isPowerOf2()) {
1931        APInt LowBits = RA - 1;
1932        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1933        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1934
1935        // The low bits of the first operand are unchanged by the srem.
1936        KnownZero = KnownZero2 & LowBits;
1937        KnownOne = KnownOne2 & LowBits;
1938
1939        // If the first operand is non-negative or has all low bits zero, then
1940        // the upper bits are all zero.
1941        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1942          KnownZero |= ~LowBits;
1943
1944        // If the first operand is negative and not all low bits are zero, then
1945        // the upper bits are all one.
1946        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1947          KnownOne |= ~LowBits;
1948
1949        KnownZero &= Mask;
1950        KnownOne &= Mask;
1951
1952        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1953      }
1954    }
1955    return;
1956  case ISD::UREM: {
1957    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1958      const APInt &RA = Rem->getAPIntValue();
1959      if (RA.isPowerOf2()) {
1960        APInt LowBits = (RA - 1);
1961        APInt Mask2 = LowBits & Mask;
1962        KnownZero |= ~LowBits & Mask;
1963        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1964        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1965        break;
1966      }
1967    }
1968
1969    // Since the result is less than or equal to either operand, any leading
1970    // zero bits in either operand must also exist in the result.
1971    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1972    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1973                      Depth+1);
1974    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1975                      Depth+1);
1976
1977    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1978                                KnownZero2.countLeadingOnes());
1979    KnownOne.clear();
1980    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1981    return;
1982  }
1983  default:
1984    // Allow the target to implement this method for its nodes.
1985    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1986  case ISD::INTRINSIC_WO_CHAIN:
1987  case ISD::INTRINSIC_W_CHAIN:
1988  case ISD::INTRINSIC_VOID:
1989      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1990                                         Depth);
1991    }
1992    return;
1993  }
1994}
1995
1996/// ComputeNumSignBits - Return the number of times the sign bit of the
1997/// register is replicated into the other bits.  We know that at least 1 bit
1998/// is always equal to the sign bit (itself), but other cases can give us
1999/// information.  For example, immediately after an "SRA X, 2", we know that
2000/// the top 3 bits are all equal to each other, so we return 3.
2001unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2002  EVT VT = Op.getValueType();
2003  assert(VT.isInteger() && "Invalid VT!");
2004  unsigned VTBits = VT.getScalarType().getSizeInBits();
2005  unsigned Tmp, Tmp2;
2006  unsigned FirstAnswer = 1;
2007
2008  if (Depth == 6)
2009    return 1;  // Limit search depth.
2010
2011  switch (Op.getOpcode()) {
2012  default: break;
2013  case ISD::AssertSext:
2014    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2015    return VTBits-Tmp+1;
2016  case ISD::AssertZext:
2017    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2018    return VTBits-Tmp;
2019
2020  case ISD::Constant: {
2021    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2022    // If negative, return # leading ones.
2023    if (Val.isNegative())
2024      return Val.countLeadingOnes();
2025
2026    // Return # leading zeros.
2027    return Val.countLeadingZeros();
2028  }
2029
2030  case ISD::SIGN_EXTEND:
2031    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2032    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2033
2034  case ISD::SIGN_EXTEND_INREG:
2035    // Max of the input and what this extends.
2036    Tmp =
2037      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2038    Tmp = VTBits-Tmp+1;
2039
2040    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2041    return std::max(Tmp, Tmp2);
2042
2043  case ISD::SRA:
2044    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2045    // SRA X, C   -> adds C sign bits.
2046    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2047      Tmp += C->getZExtValue();
2048      if (Tmp > VTBits) Tmp = VTBits;
2049    }
2050    return Tmp;
2051  case ISD::SHL:
2052    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2053      // shl destroys sign bits.
2054      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2055      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2056          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2057      return Tmp - C->getZExtValue();
2058    }
2059    break;
2060  case ISD::AND:
2061  case ISD::OR:
2062  case ISD::XOR:    // NOT is handled here.
2063    // Logical binary ops preserve the number of sign bits at the worst.
2064    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2065    if (Tmp != 1) {
2066      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2067      FirstAnswer = std::min(Tmp, Tmp2);
2068      // We computed what we know about the sign bits as our first
2069      // answer. Now proceed to the generic code that uses
2070      // ComputeMaskedBits, and pick whichever answer is better.
2071    }
2072    break;
2073
2074  case ISD::SELECT:
2075    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2076    if (Tmp == 1) return 1;  // Early out.
2077    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2078    return std::min(Tmp, Tmp2);
2079
2080  case ISD::SADDO:
2081  case ISD::UADDO:
2082  case ISD::SSUBO:
2083  case ISD::USUBO:
2084  case ISD::SMULO:
2085  case ISD::UMULO:
2086    if (Op.getResNo() != 1)
2087      break;
2088    // The boolean result conforms to getBooleanContents.  Fall through.
2089  case ISD::SETCC:
2090    // If setcc returns 0/-1, all bits are sign bits.
2091    if (TLI.getBooleanContents() ==
2092        TargetLowering::ZeroOrNegativeOneBooleanContent)
2093      return VTBits;
2094    break;
2095  case ISD::ROTL:
2096  case ISD::ROTR:
2097    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2098      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2099
2100      // Handle rotate right by N like a rotate left by 32-N.
2101      if (Op.getOpcode() == ISD::ROTR)
2102        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2103
2104      // If we aren't rotating out all of the known-in sign bits, return the
2105      // number that are left.  This handles rotl(sext(x), 1) for example.
2106      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2107      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2108    }
2109    break;
2110  case ISD::ADD:
2111    // Add can have at most one carry bit.  Thus we know that the output
2112    // is, at worst, one more bit than the inputs.
2113    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2114    if (Tmp == 1) return 1;  // Early out.
2115
2116    // Special case decrementing a value (ADD X, -1):
2117    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2118      if (CRHS->isAllOnesValue()) {
2119        APInt KnownZero, KnownOne;
2120        APInt Mask = APInt::getAllOnesValue(VTBits);
2121        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2122
2123        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2124        // sign bits set.
2125        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2126          return VTBits;
2127
2128        // If we are subtracting one from a positive number, there is no carry
2129        // out of the result.
2130        if (KnownZero.isNegative())
2131          return Tmp;
2132      }
2133
2134    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2135    if (Tmp2 == 1) return 1;
2136      return std::min(Tmp, Tmp2)-1;
2137    break;
2138
2139  case ISD::SUB:
2140    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2141    if (Tmp2 == 1) return 1;
2142
2143    // Handle NEG.
2144    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2145      if (CLHS->isNullValue()) {
2146        APInt KnownZero, KnownOne;
2147        APInt Mask = APInt::getAllOnesValue(VTBits);
2148        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2149        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2150        // sign bits set.
2151        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2152          return VTBits;
2153
2154        // If the input is known to be positive (the sign bit is known clear),
2155        // the output of the NEG has the same number of sign bits as the input.
2156        if (KnownZero.isNegative())
2157          return Tmp2;
2158
2159        // Otherwise, we treat this like a SUB.
2160      }
2161
2162    // Sub can have at most one carry bit.  Thus we know that the output
2163    // is, at worst, one more bit than the inputs.
2164    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2165    if (Tmp == 1) return 1;  // Early out.
2166      return std::min(Tmp, Tmp2)-1;
2167    break;
2168  case ISD::TRUNCATE:
2169    // FIXME: it's tricky to do anything useful for this, but it is an important
2170    // case for targets like X86.
2171    break;
2172  }
2173
2174  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2175  if (Op.getOpcode() == ISD::LOAD) {
2176    LoadSDNode *LD = cast<LoadSDNode>(Op);
2177    unsigned ExtType = LD->getExtensionType();
2178    switch (ExtType) {
2179    default: break;
2180    case ISD::SEXTLOAD:    // '17' bits known
2181      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2182      return VTBits-Tmp+1;
2183    case ISD::ZEXTLOAD:    // '16' bits known
2184      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2185      return VTBits-Tmp;
2186    }
2187  }
2188
2189  // Allow the target to implement this method for its nodes.
2190  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2191      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2192      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2193      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2194    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2195    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2196  }
2197
2198  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2199  // use this information.
2200  APInt KnownZero, KnownOne;
2201  APInt Mask = APInt::getAllOnesValue(VTBits);
2202  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2203
2204  if (KnownZero.isNegative()) {        // sign bit is 0
2205    Mask = KnownZero;
2206  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2207    Mask = KnownOne;
2208  } else {
2209    // Nothing known.
2210    return FirstAnswer;
2211  }
2212
2213  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2214  // the number of identical bits in the top of the input value.
2215  Mask = ~Mask;
2216  Mask <<= Mask.getBitWidth()-VTBits;
2217  // Return # leading zeros.  We use 'min' here in case Val was zero before
2218  // shifting.  We don't want to return '64' as for an i32 "0".
2219  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2220}
2221
2222bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2223  // If we're told that NaNs won't happen, assume they won't.
2224  if (FiniteOnlyFPMath())
2225    return true;
2226
2227  // If the value is a constant, we can obviously see if it is a NaN or not.
2228  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2229    return !C->getValueAPF().isNaN();
2230
2231  // TODO: Recognize more cases here.
2232
2233  return false;
2234}
2235
2236bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2237  // If the value is a constant, we can obviously see if it is a zero or not.
2238  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2239    return !C->isZero();
2240
2241  // TODO: Recognize more cases here.
2242
2243  return false;
2244}
2245
2246bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2247  // Check the obvious case.
2248  if (A == B) return true;
2249
2250  // For for negative and positive zero.
2251  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2252    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2253      if (CA->isZero() && CB->isZero()) return true;
2254
2255  // Otherwise they may not be equal.
2256  return false;
2257}
2258
2259bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2260  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2261  if (!GA) return false;
2262  if (GA->getOffset() != 0) return false;
2263  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2264  if (!GV) return false;
2265  MachineModuleInfo *MMI = getMachineModuleInfo();
2266  return MMI && MMI->hasDebugInfo();
2267}
2268
2269
2270/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2271/// element of the result of the vector shuffle.
2272SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2273                                          unsigned i) {
2274  EVT VT = N->getValueType(0);
2275  DebugLoc dl = N->getDebugLoc();
2276  if (N->getMaskElt(i) < 0)
2277    return getUNDEF(VT.getVectorElementType());
2278  unsigned Index = N->getMaskElt(i);
2279  unsigned NumElems = VT.getVectorNumElements();
2280  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2281  Index %= NumElems;
2282
2283  if (V.getOpcode() == ISD::BIT_CONVERT) {
2284    V = V.getOperand(0);
2285    EVT VVT = V.getValueType();
2286    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2287      return SDValue();
2288  }
2289  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2290    return (Index == 0) ? V.getOperand(0)
2291                      : getUNDEF(VT.getVectorElementType());
2292  if (V.getOpcode() == ISD::BUILD_VECTOR)
2293    return V.getOperand(Index);
2294  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2295    return getShuffleScalarElt(SVN, Index);
2296  return SDValue();
2297}
2298
2299
2300/// getNode - Gets or creates the specified node.
2301///
2302SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2303  FoldingSetNodeID ID;
2304  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2305  void *IP = 0;
2306  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2307    return SDValue(E, 0);
2308
2309  SDNode *N = NodeAllocator.Allocate<SDNode>();
2310  new (N) SDNode(Opcode, DL, getVTList(VT));
2311  CSEMap.InsertNode(N, IP);
2312
2313  AllNodes.push_back(N);
2314#ifndef NDEBUG
2315  VerifyNode(N);
2316#endif
2317  return SDValue(N, 0);
2318}
2319
2320SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2321                              EVT VT, SDValue Operand) {
2322  // Constant fold unary operations with an integer constant operand.
2323  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2324    const APInt &Val = C->getAPIntValue();
2325    unsigned BitWidth = VT.getSizeInBits();
2326    switch (Opcode) {
2327    default: break;
2328    case ISD::SIGN_EXTEND:
2329      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2330    case ISD::ANY_EXTEND:
2331    case ISD::ZERO_EXTEND:
2332    case ISD::TRUNCATE:
2333      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2334    case ISD::UINT_TO_FP:
2335    case ISD::SINT_TO_FP: {
2336      const uint64_t zero[] = {0, 0};
2337      // No compile time operations on this type.
2338      if (VT==MVT::ppcf128)
2339        break;
2340      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2341      (void)apf.convertFromAPInt(Val,
2342                                 Opcode==ISD::SINT_TO_FP,
2343                                 APFloat::rmNearestTiesToEven);
2344      return getConstantFP(apf, VT);
2345    }
2346    case ISD::BIT_CONVERT:
2347      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2348        return getConstantFP(Val.bitsToFloat(), VT);
2349      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2350        return getConstantFP(Val.bitsToDouble(), VT);
2351      break;
2352    case ISD::BSWAP:
2353      return getConstant(Val.byteSwap(), VT);
2354    case ISD::CTPOP:
2355      return getConstant(Val.countPopulation(), VT);
2356    case ISD::CTLZ:
2357      return getConstant(Val.countLeadingZeros(), VT);
2358    case ISD::CTTZ:
2359      return getConstant(Val.countTrailingZeros(), VT);
2360    }
2361  }
2362
2363  // Constant fold unary operations with a floating point constant operand.
2364  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2365    APFloat V = C->getValueAPF();    // make copy
2366    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2367      switch (Opcode) {
2368      case ISD::FNEG:
2369        V.changeSign();
2370        return getConstantFP(V, VT);
2371      case ISD::FABS:
2372        V.clearSign();
2373        return getConstantFP(V, VT);
2374      case ISD::FP_ROUND:
2375      case ISD::FP_EXTEND: {
2376        bool ignored;
2377        // This can return overflow, underflow, or inexact; we don't care.
2378        // FIXME need to be more flexible about rounding mode.
2379        (void)V.convert(*EVTToAPFloatSemantics(VT),
2380                        APFloat::rmNearestTiesToEven, &ignored);
2381        return getConstantFP(V, VT);
2382      }
2383      case ISD::FP_TO_SINT:
2384      case ISD::FP_TO_UINT: {
2385        integerPart x[2];
2386        bool ignored;
2387        assert(integerPartWidth >= 64);
2388        // FIXME need to be more flexible about rounding mode.
2389        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2390                              Opcode==ISD::FP_TO_SINT,
2391                              APFloat::rmTowardZero, &ignored);
2392        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2393          break;
2394        APInt api(VT.getSizeInBits(), 2, x);
2395        return getConstant(api, VT);
2396      }
2397      case ISD::BIT_CONVERT:
2398        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2399          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2400        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2401          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2402        break;
2403      }
2404    }
2405  }
2406
2407  unsigned OpOpcode = Operand.getNode()->getOpcode();
2408  switch (Opcode) {
2409  case ISD::TokenFactor:
2410  case ISD::MERGE_VALUES:
2411  case ISD::CONCAT_VECTORS:
2412    return Operand;         // Factor, merge or concat of one node?  No need.
2413  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2414  case ISD::FP_EXTEND:
2415    assert(VT.isFloatingPoint() &&
2416           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2417    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2418    assert((!VT.isVector() ||
2419            VT.getVectorNumElements() ==
2420            Operand.getValueType().getVectorNumElements()) &&
2421           "Vector element count mismatch!");
2422    if (Operand.getOpcode() == ISD::UNDEF)
2423      return getUNDEF(VT);
2424    break;
2425  case ISD::SIGN_EXTEND:
2426    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2427           "Invalid SIGN_EXTEND!");
2428    if (Operand.getValueType() == VT) return Operand;   // noop extension
2429    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2430           "Invalid sext node, dst < src!");
2431    assert((!VT.isVector() ||
2432            VT.getVectorNumElements() ==
2433            Operand.getValueType().getVectorNumElements()) &&
2434           "Vector element count mismatch!");
2435    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2436      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2437    break;
2438  case ISD::ZERO_EXTEND:
2439    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2440           "Invalid ZERO_EXTEND!");
2441    if (Operand.getValueType() == VT) return Operand;   // noop extension
2442    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2443           "Invalid zext node, dst < src!");
2444    assert((!VT.isVector() ||
2445            VT.getVectorNumElements() ==
2446            Operand.getValueType().getVectorNumElements()) &&
2447           "Vector element count mismatch!");
2448    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2449      return getNode(ISD::ZERO_EXTEND, DL, VT,
2450                     Operand.getNode()->getOperand(0));
2451    break;
2452  case ISD::ANY_EXTEND:
2453    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2454           "Invalid ANY_EXTEND!");
2455    if (Operand.getValueType() == VT) return Operand;   // noop extension
2456    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2457           "Invalid anyext node, dst < src!");
2458    assert((!VT.isVector() ||
2459            VT.getVectorNumElements() ==
2460            Operand.getValueType().getVectorNumElements()) &&
2461           "Vector element count mismatch!");
2462    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2463      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2464      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2465    break;
2466  case ISD::TRUNCATE:
2467    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2468           "Invalid TRUNCATE!");
2469    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2470    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2471           "Invalid truncate node, src < dst!");
2472    assert((!VT.isVector() ||
2473            VT.getVectorNumElements() ==
2474            Operand.getValueType().getVectorNumElements()) &&
2475           "Vector element count mismatch!");
2476    if (OpOpcode == ISD::TRUNCATE)
2477      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2478    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2479             OpOpcode == ISD::ANY_EXTEND) {
2480      // If the source is smaller than the dest, we still need an extend.
2481      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2482            .bitsLT(VT.getScalarType()))
2483        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2484      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2485        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2486      else
2487        return Operand.getNode()->getOperand(0);
2488    }
2489    break;
2490  case ISD::BIT_CONVERT:
2491    // Basic sanity checking.
2492    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2493           && "Cannot BIT_CONVERT between types of different sizes!");
2494    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2495    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2496      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2497    if (OpOpcode == ISD::UNDEF)
2498      return getUNDEF(VT);
2499    break;
2500  case ISD::SCALAR_TO_VECTOR:
2501    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2502           (VT.getVectorElementType() == Operand.getValueType() ||
2503            (VT.getVectorElementType().isInteger() &&
2504             Operand.getValueType().isInteger() &&
2505             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2506           "Illegal SCALAR_TO_VECTOR node!");
2507    if (OpOpcode == ISD::UNDEF)
2508      return getUNDEF(VT);
2509    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2510    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2511        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2512        Operand.getConstantOperandVal(1) == 0 &&
2513        Operand.getOperand(0).getValueType() == VT)
2514      return Operand.getOperand(0);
2515    break;
2516  case ISD::FNEG:
2517    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2518    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2519      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2520                     Operand.getNode()->getOperand(0));
2521    if (OpOpcode == ISD::FNEG)  // --X -> X
2522      return Operand.getNode()->getOperand(0);
2523    break;
2524  case ISD::FABS:
2525    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2526      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2527    break;
2528  }
2529
2530  SDNode *N;
2531  SDVTList VTs = getVTList(VT);
2532  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2533    FoldingSetNodeID ID;
2534    SDValue Ops[1] = { Operand };
2535    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2536    void *IP = 0;
2537    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2538      return SDValue(E, 0);
2539
2540    N = NodeAllocator.Allocate<UnarySDNode>();
2541    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2542    CSEMap.InsertNode(N, IP);
2543  } else {
2544    N = NodeAllocator.Allocate<UnarySDNode>();
2545    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2546  }
2547
2548  AllNodes.push_back(N);
2549#ifndef NDEBUG
2550  VerifyNode(N);
2551#endif
2552  return SDValue(N, 0);
2553}
2554
2555SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2556                                             EVT VT,
2557                                             ConstantSDNode *Cst1,
2558                                             ConstantSDNode *Cst2) {
2559  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2560
2561  switch (Opcode) {
2562  case ISD::ADD:  return getConstant(C1 + C2, VT);
2563  case ISD::SUB:  return getConstant(C1 - C2, VT);
2564  case ISD::MUL:  return getConstant(C1 * C2, VT);
2565  case ISD::UDIV:
2566    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2567    break;
2568  case ISD::UREM:
2569    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2570    break;
2571  case ISD::SDIV:
2572    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2573    break;
2574  case ISD::SREM:
2575    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2576    break;
2577  case ISD::AND:  return getConstant(C1 & C2, VT);
2578  case ISD::OR:   return getConstant(C1 | C2, VT);
2579  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2580  case ISD::SHL:  return getConstant(C1 << C2, VT);
2581  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2582  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2583  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2584  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2585  default: break;
2586  }
2587
2588  return SDValue();
2589}
2590
2591SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2592                              SDValue N1, SDValue N2) {
2593  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2594  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2595  switch (Opcode) {
2596  default: break;
2597  case ISD::TokenFactor:
2598    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2599           N2.getValueType() == MVT::Other && "Invalid token factor!");
2600    // Fold trivial token factors.
2601    if (N1.getOpcode() == ISD::EntryToken) return N2;
2602    if (N2.getOpcode() == ISD::EntryToken) return N1;
2603    if (N1 == N2) return N1;
2604    break;
2605  case ISD::CONCAT_VECTORS:
2606    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2607    // one big BUILD_VECTOR.
2608    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2609        N2.getOpcode() == ISD::BUILD_VECTOR) {
2610      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2611      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2612      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2613    }
2614    break;
2615  case ISD::AND:
2616    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2617           N1.getValueType() == VT && "Binary operator types must match!");
2618    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2619    // worth handling here.
2620    if (N2C && N2C->isNullValue())
2621      return N2;
2622    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2623      return N1;
2624    break;
2625  case ISD::OR:
2626  case ISD::XOR:
2627  case ISD::ADD:
2628  case ISD::SUB:
2629    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2630           N1.getValueType() == VT && "Binary operator types must match!");
2631    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2632    // it's worth handling here.
2633    if (N2C && N2C->isNullValue())
2634      return N1;
2635    break;
2636  case ISD::UDIV:
2637  case ISD::UREM:
2638  case ISD::MULHU:
2639  case ISD::MULHS:
2640  case ISD::MUL:
2641  case ISD::SDIV:
2642  case ISD::SREM:
2643    assert(VT.isInteger() && "This operator does not apply to FP types!");
2644    // fall through
2645  case ISD::FADD:
2646  case ISD::FSUB:
2647  case ISD::FMUL:
2648  case ISD::FDIV:
2649  case ISD::FREM:
2650    if (UnsafeFPMath) {
2651      if (Opcode == ISD::FADD) {
2652        // 0+x --> x
2653        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2654          if (CFP->getValueAPF().isZero())
2655            return N2;
2656        // x+0 --> x
2657        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2658          if (CFP->getValueAPF().isZero())
2659            return N1;
2660      } else if (Opcode == ISD::FSUB) {
2661        // x-0 --> x
2662        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2663          if (CFP->getValueAPF().isZero())
2664            return N1;
2665      }
2666    }
2667    assert(N1.getValueType() == N2.getValueType() &&
2668           N1.getValueType() == VT && "Binary operator types must match!");
2669    break;
2670  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2671    assert(N1.getValueType() == VT &&
2672           N1.getValueType().isFloatingPoint() &&
2673           N2.getValueType().isFloatingPoint() &&
2674           "Invalid FCOPYSIGN!");
2675    break;
2676  case ISD::SHL:
2677  case ISD::SRA:
2678  case ISD::SRL:
2679  case ISD::ROTL:
2680  case ISD::ROTR:
2681    assert(VT == N1.getValueType() &&
2682           "Shift operators return type must be the same as their first arg");
2683    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2684           "Shifts only work on integers");
2685
2686    // Always fold shifts of i1 values so the code generator doesn't need to
2687    // handle them.  Since we know the size of the shift has to be less than the
2688    // size of the value, the shift/rotate count is guaranteed to be zero.
2689    if (VT == MVT::i1)
2690      return N1;
2691    if (N2C && N2C->isNullValue())
2692      return N1;
2693    break;
2694  case ISD::FP_ROUND_INREG: {
2695    EVT EVT = cast<VTSDNode>(N2)->getVT();
2696    assert(VT == N1.getValueType() && "Not an inreg round!");
2697    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2698           "Cannot FP_ROUND_INREG integer types");
2699    assert(EVT.isVector() == VT.isVector() &&
2700           "FP_ROUND_INREG type should be vector iff the operand "
2701           "type is vector!");
2702    assert((!EVT.isVector() ||
2703            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2704           "Vector element counts must match in FP_ROUND_INREG");
2705    assert(EVT.bitsLE(VT) && "Not rounding down!");
2706    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2707    break;
2708  }
2709  case ISD::FP_ROUND:
2710    assert(VT.isFloatingPoint() &&
2711           N1.getValueType().isFloatingPoint() &&
2712           VT.bitsLE(N1.getValueType()) &&
2713           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2714    if (N1.getValueType() == VT) return N1;  // noop conversion.
2715    break;
2716  case ISD::AssertSext:
2717  case ISD::AssertZext: {
2718    EVT EVT = cast<VTSDNode>(N2)->getVT();
2719    assert(VT == N1.getValueType() && "Not an inreg extend!");
2720    assert(VT.isInteger() && EVT.isInteger() &&
2721           "Cannot *_EXTEND_INREG FP types");
2722    assert(!EVT.isVector() &&
2723           "AssertSExt/AssertZExt type should be the vector element type "
2724           "rather than the vector type!");
2725    assert(EVT.bitsLE(VT) && "Not extending!");
2726    if (VT == EVT) return N1; // noop assertion.
2727    break;
2728  }
2729  case ISD::SIGN_EXTEND_INREG: {
2730    EVT EVT = cast<VTSDNode>(N2)->getVT();
2731    assert(VT == N1.getValueType() && "Not an inreg extend!");
2732    assert(VT.isInteger() && EVT.isInteger() &&
2733           "Cannot *_EXTEND_INREG FP types");
2734    assert(EVT.isVector() == VT.isVector() &&
2735           "SIGN_EXTEND_INREG type should be vector iff the operand "
2736           "type is vector!");
2737    assert((!EVT.isVector() ||
2738            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2739           "Vector element counts must match in SIGN_EXTEND_INREG");
2740    assert(EVT.bitsLE(VT) && "Not extending!");
2741    if (EVT == VT) return N1;  // Not actually extending
2742
2743    if (N1C) {
2744      APInt Val = N1C->getAPIntValue();
2745      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2746      Val <<= Val.getBitWidth()-FromBits;
2747      Val = Val.ashr(Val.getBitWidth()-FromBits);
2748      return getConstant(Val, VT);
2749    }
2750    break;
2751  }
2752  case ISD::EXTRACT_VECTOR_ELT:
2753    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2754    if (N1.getOpcode() == ISD::UNDEF)
2755      return getUNDEF(VT);
2756
2757    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2758    // expanding copies of large vectors from registers.
2759    if (N2C &&
2760        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2761        N1.getNumOperands() > 0) {
2762      unsigned Factor =
2763        N1.getOperand(0).getValueType().getVectorNumElements();
2764      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2765                     N1.getOperand(N2C->getZExtValue() / Factor),
2766                     getConstant(N2C->getZExtValue() % Factor,
2767                                 N2.getValueType()));
2768    }
2769
2770    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2771    // expanding large vector constants.
2772    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2773      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2774      EVT VEltTy = N1.getValueType().getVectorElementType();
2775      if (Elt.getValueType() != VEltTy) {
2776        // If the vector element type is not legal, the BUILD_VECTOR operands
2777        // are promoted and implicitly truncated.  Make that explicit here.
2778        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2779      }
2780      if (VT != VEltTy) {
2781        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2782        // result is implicitly extended.
2783        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2784      }
2785      return Elt;
2786    }
2787
2788    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2789    // operations are lowered to scalars.
2790    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2791      // If the indices are the same, return the inserted element else
2792      // if the indices are known different, extract the element from
2793      // the original vector.
2794      if (N1.getOperand(2) == N2) {
2795        if (VT == N1.getOperand(1).getValueType())
2796          return N1.getOperand(1);
2797        else
2798          return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2799      } else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2800                 isa<ConstantSDNode>(N2))
2801        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2802    }
2803    break;
2804  case ISD::EXTRACT_ELEMENT:
2805    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2806    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2807           (N1.getValueType().isInteger() == VT.isInteger()) &&
2808           "Wrong types for EXTRACT_ELEMENT!");
2809
2810    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2811    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2812    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2813    if (N1.getOpcode() == ISD::BUILD_PAIR)
2814      return N1.getOperand(N2C->getZExtValue());
2815
2816    // EXTRACT_ELEMENT of a constant int is also very common.
2817    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2818      unsigned ElementSize = VT.getSizeInBits();
2819      unsigned Shift = ElementSize * N2C->getZExtValue();
2820      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2821      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2822    }
2823    break;
2824  case ISD::EXTRACT_SUBVECTOR:
2825    if (N1.getValueType() == VT) // Trivial extraction.
2826      return N1;
2827    break;
2828  }
2829
2830  if (N1C) {
2831    if (N2C) {
2832      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2833      if (SV.getNode()) return SV;
2834    } else {      // Cannonicalize constant to RHS if commutative
2835      if (isCommutativeBinOp(Opcode)) {
2836        std::swap(N1C, N2C);
2837        std::swap(N1, N2);
2838      }
2839    }
2840  }
2841
2842  // Constant fold FP operations.
2843  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2844  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2845  if (N1CFP) {
2846    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2847      // Cannonicalize constant to RHS if commutative
2848      std::swap(N1CFP, N2CFP);
2849      std::swap(N1, N2);
2850    } else if (N2CFP && VT != MVT::ppcf128) {
2851      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2852      APFloat::opStatus s;
2853      switch (Opcode) {
2854      case ISD::FADD:
2855        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2856        if (s != APFloat::opInvalidOp)
2857          return getConstantFP(V1, VT);
2858        break;
2859      case ISD::FSUB:
2860        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2861        if (s!=APFloat::opInvalidOp)
2862          return getConstantFP(V1, VT);
2863        break;
2864      case ISD::FMUL:
2865        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2866        if (s!=APFloat::opInvalidOp)
2867          return getConstantFP(V1, VT);
2868        break;
2869      case ISD::FDIV:
2870        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2871        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2872          return getConstantFP(V1, VT);
2873        break;
2874      case ISD::FREM :
2875        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2876        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2877          return getConstantFP(V1, VT);
2878        break;
2879      case ISD::FCOPYSIGN:
2880        V1.copySign(V2);
2881        return getConstantFP(V1, VT);
2882      default: break;
2883      }
2884    }
2885  }
2886
2887  // Canonicalize an UNDEF to the RHS, even over a constant.
2888  if (N1.getOpcode() == ISD::UNDEF) {
2889    if (isCommutativeBinOp(Opcode)) {
2890      std::swap(N1, N2);
2891    } else {
2892      switch (Opcode) {
2893      case ISD::FP_ROUND_INREG:
2894      case ISD::SIGN_EXTEND_INREG:
2895      case ISD::SUB:
2896      case ISD::FSUB:
2897      case ISD::FDIV:
2898      case ISD::FREM:
2899      case ISD::SRA:
2900        return N1;     // fold op(undef, arg2) -> undef
2901      case ISD::UDIV:
2902      case ISD::SDIV:
2903      case ISD::UREM:
2904      case ISD::SREM:
2905      case ISD::SRL:
2906      case ISD::SHL:
2907        if (!VT.isVector())
2908          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2909        // For vectors, we can't easily build an all zero vector, just return
2910        // the LHS.
2911        return N2;
2912      }
2913    }
2914  }
2915
2916  // Fold a bunch of operators when the RHS is undef.
2917  if (N2.getOpcode() == ISD::UNDEF) {
2918    switch (Opcode) {
2919    case ISD::XOR:
2920      if (N1.getOpcode() == ISD::UNDEF)
2921        // Handle undef ^ undef -> 0 special case. This is a common
2922        // idiom (misuse).
2923        return getConstant(0, VT);
2924      // fallthrough
2925    case ISD::ADD:
2926    case ISD::ADDC:
2927    case ISD::ADDE:
2928    case ISD::SUB:
2929    case ISD::UDIV:
2930    case ISD::SDIV:
2931    case ISD::UREM:
2932    case ISD::SREM:
2933      return N2;       // fold op(arg1, undef) -> undef
2934    case ISD::FADD:
2935    case ISD::FSUB:
2936    case ISD::FMUL:
2937    case ISD::FDIV:
2938    case ISD::FREM:
2939      if (UnsafeFPMath)
2940        return N2;
2941      break;
2942    case ISD::MUL:
2943    case ISD::AND:
2944    case ISD::SRL:
2945    case ISD::SHL:
2946      if (!VT.isVector())
2947        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2948      // For vectors, we can't easily build an all zero vector, just return
2949      // the LHS.
2950      return N1;
2951    case ISD::OR:
2952      if (!VT.isVector())
2953        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2954      // For vectors, we can't easily build an all one vector, just return
2955      // the LHS.
2956      return N1;
2957    case ISD::SRA:
2958      return N1;
2959    }
2960  }
2961
2962  // Memoize this node if possible.
2963  SDNode *N;
2964  SDVTList VTs = getVTList(VT);
2965  if (VT != MVT::Flag) {
2966    SDValue Ops[] = { N1, N2 };
2967    FoldingSetNodeID ID;
2968    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2969    void *IP = 0;
2970    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2971      return SDValue(E, 0);
2972
2973    N = NodeAllocator.Allocate<BinarySDNode>();
2974    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2975    CSEMap.InsertNode(N, IP);
2976  } else {
2977    N = NodeAllocator.Allocate<BinarySDNode>();
2978    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2979  }
2980
2981  AllNodes.push_back(N);
2982#ifndef NDEBUG
2983  VerifyNode(N);
2984#endif
2985  return SDValue(N, 0);
2986}
2987
2988SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2989                              SDValue N1, SDValue N2, SDValue N3) {
2990  // Perform various simplifications.
2991  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2992  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2993  switch (Opcode) {
2994  case ISD::CONCAT_VECTORS:
2995    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2996    // one big BUILD_VECTOR.
2997    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2998        N2.getOpcode() == ISD::BUILD_VECTOR &&
2999        N3.getOpcode() == ISD::BUILD_VECTOR) {
3000      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
3001      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
3002      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
3003      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3004    }
3005    break;
3006  case ISD::SETCC: {
3007    // Use FoldSetCC to simplify SETCC's.
3008    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3009    if (Simp.getNode()) return Simp;
3010    break;
3011  }
3012  case ISD::SELECT:
3013    if (N1C) {
3014     if (N1C->getZExtValue())
3015        return N2;             // select true, X, Y -> X
3016      else
3017        return N3;             // select false, X, Y -> Y
3018    }
3019
3020    if (N2 == N3) return N2;   // select C, X, X -> X
3021    break;
3022  case ISD::BRCOND:
3023    if (N2C) {
3024      if (N2C->getZExtValue()) // Unconditional branch
3025        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
3026      else
3027        return N1;         // Never-taken branch
3028    }
3029    break;
3030  case ISD::VECTOR_SHUFFLE:
3031    llvm_unreachable("should use getVectorShuffle constructor!");
3032    break;
3033  case ISD::BIT_CONVERT:
3034    // Fold bit_convert nodes from a type to themselves.
3035    if (N1.getValueType() == VT)
3036      return N1;
3037    break;
3038  }
3039
3040  // Memoize node if it doesn't produce a flag.
3041  SDNode *N;
3042  SDVTList VTs = getVTList(VT);
3043  if (VT != MVT::Flag) {
3044    SDValue Ops[] = { N1, N2, N3 };
3045    FoldingSetNodeID ID;
3046    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3047    void *IP = 0;
3048    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3049      return SDValue(E, 0);
3050
3051    N = NodeAllocator.Allocate<TernarySDNode>();
3052    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3053    CSEMap.InsertNode(N, IP);
3054  } else {
3055    N = NodeAllocator.Allocate<TernarySDNode>();
3056    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3057  }
3058
3059  AllNodes.push_back(N);
3060#ifndef NDEBUG
3061  VerifyNode(N);
3062#endif
3063  return SDValue(N, 0);
3064}
3065
3066SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3067                              SDValue N1, SDValue N2, SDValue N3,
3068                              SDValue N4) {
3069  SDValue Ops[] = { N1, N2, N3, N4 };
3070  return getNode(Opcode, DL, VT, Ops, 4);
3071}
3072
3073SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3074                              SDValue N1, SDValue N2, SDValue N3,
3075                              SDValue N4, SDValue N5) {
3076  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3077  return getNode(Opcode, DL, VT, Ops, 5);
3078}
3079
3080/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3081/// the incoming stack arguments to be loaded from the stack.
3082SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3083  SmallVector<SDValue, 8> ArgChains;
3084
3085  // Include the original chain at the beginning of the list. When this is
3086  // used by target LowerCall hooks, this helps legalize find the
3087  // CALLSEQ_BEGIN node.
3088  ArgChains.push_back(Chain);
3089
3090  // Add a chain value for each stack argument.
3091  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3092       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3093    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3094      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3095        if (FI->getIndex() < 0)
3096          ArgChains.push_back(SDValue(L, 1));
3097
3098  // Build a tokenfactor for all the chains.
3099  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3100                 &ArgChains[0], ArgChains.size());
3101}
3102
3103/// getMemsetValue - Vectorized representation of the memset value
3104/// operand.
3105static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3106                              DebugLoc dl) {
3107  unsigned NumBits = VT.getScalarType().getSizeInBits();
3108  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3109    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3110    unsigned Shift = 8;
3111    for (unsigned i = NumBits; i > 8; i >>= 1) {
3112      Val = (Val << Shift) | Val;
3113      Shift <<= 1;
3114    }
3115    if (VT.isInteger())
3116      return DAG.getConstant(Val, VT);
3117    return DAG.getConstantFP(APFloat(Val), VT);
3118  }
3119
3120  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3121  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3122  unsigned Shift = 8;
3123  for (unsigned i = NumBits; i > 8; i >>= 1) {
3124    Value = DAG.getNode(ISD::OR, dl, VT,
3125                        DAG.getNode(ISD::SHL, dl, VT, Value,
3126                                    DAG.getConstant(Shift,
3127                                                    TLI.getShiftAmountTy())),
3128                        Value);
3129    Shift <<= 1;
3130  }
3131
3132  return Value;
3133}
3134
3135/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3136/// used when a memcpy is turned into a memset when the source is a constant
3137/// string ptr.
3138static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3139                                  const TargetLowering &TLI,
3140                                  std::string &Str, unsigned Offset) {
3141  // Handle vector with all elements zero.
3142  if (Str.empty()) {
3143    if (VT.isInteger())
3144      return DAG.getConstant(0, VT);
3145    unsigned NumElts = VT.getVectorNumElements();
3146    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3147    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3148                       DAG.getConstant(0,
3149                       EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts)));
3150  }
3151
3152  assert(!VT.isVector() && "Can't handle vector type here!");
3153  unsigned NumBits = VT.getSizeInBits();
3154  unsigned MSB = NumBits / 8;
3155  uint64_t Val = 0;
3156  if (TLI.isLittleEndian())
3157    Offset = Offset + MSB - 1;
3158  for (unsigned i = 0; i != MSB; ++i) {
3159    Val = (Val << 8) | (unsigned char)Str[Offset];
3160    Offset += TLI.isLittleEndian() ? -1 : 1;
3161  }
3162  return DAG.getConstant(Val, VT);
3163}
3164
3165/// getMemBasePlusOffset - Returns base and offset node for the
3166///
3167static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3168                                      SelectionDAG &DAG) {
3169  EVT VT = Base.getValueType();
3170  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3171                     VT, Base, DAG.getConstant(Offset, VT));
3172}
3173
3174/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3175///
3176static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3177  unsigned SrcDelta = 0;
3178  GlobalAddressSDNode *G = NULL;
3179  if (Src.getOpcode() == ISD::GlobalAddress)
3180    G = cast<GlobalAddressSDNode>(Src);
3181  else if (Src.getOpcode() == ISD::ADD &&
3182           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3183           Src.getOperand(1).getOpcode() == ISD::Constant) {
3184    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3185    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3186  }
3187  if (!G)
3188    return false;
3189
3190  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3191  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3192    return true;
3193
3194  return false;
3195}
3196
3197/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3198/// to replace the memset / memcpy is below the threshold. It also returns the
3199/// types of the sequence of memory ops to perform memset / memcpy.
3200static
3201bool MeetsMaxMemopRequirement(std::vector<EVT> &MemOps,
3202                              SDValue Dst, SDValue Src,
3203                              unsigned Limit, uint64_t Size, unsigned &Align,
3204                              std::string &Str, bool &isSrcStr,
3205                              SelectionDAG &DAG,
3206                              const TargetLowering &TLI) {
3207  isSrcStr = isMemSrcFromString(Src, Str);
3208  bool isSrcConst = isa<ConstantSDNode>(Src);
3209  EVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
3210  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses(VT);
3211  if (VT != MVT::iAny) {
3212    const Type *Ty = VT.getTypeForEVT(*DAG.getContext());
3213    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3214    // If source is a string constant, this will require an unaligned load.
3215    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3216      if (Dst.getOpcode() != ISD::FrameIndex) {
3217        // Can't change destination alignment. It requires a unaligned store.
3218        if (AllowUnalign)
3219          VT = MVT::iAny;
3220      } else {
3221        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3222        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3223        if (MFI->isFixedObjectIndex(FI)) {
3224          // Can't change destination alignment. It requires a unaligned store.
3225          if (AllowUnalign)
3226            VT = MVT::iAny;
3227        } else {
3228          // Give the stack frame object a larger alignment if needed.
3229          if (MFI->getObjectAlignment(FI) < NewAlign)
3230            MFI->setObjectAlignment(FI, NewAlign);
3231          Align = NewAlign;
3232        }
3233      }
3234    }
3235  }
3236
3237  if (VT == MVT::iAny) {
3238    if (TLI.allowsUnalignedMemoryAccesses(MVT::i64)) {
3239      VT = MVT::i64;
3240    } else {
3241      switch (Align & 7) {
3242      case 0:  VT = MVT::i64; break;
3243      case 4:  VT = MVT::i32; break;
3244      case 2:  VT = MVT::i16; break;
3245      default: VT = MVT::i8;  break;
3246      }
3247    }
3248
3249    MVT LVT = MVT::i64;
3250    while (!TLI.isTypeLegal(LVT))
3251      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3252    assert(LVT.isInteger());
3253
3254    if (VT.bitsGT(LVT))
3255      VT = LVT;
3256  }
3257
3258  unsigned NumMemOps = 0;
3259  while (Size != 0) {
3260    unsigned VTSize = VT.getSizeInBits() / 8;
3261    while (VTSize > Size) {
3262      // For now, only use non-vector load / store's for the left-over pieces.
3263      if (VT.isVector()) {
3264        VT = MVT::i64;
3265        while (!TLI.isTypeLegal(VT))
3266          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3267        VTSize = VT.getSizeInBits() / 8;
3268      } else {
3269        // This can result in a type that is not legal on the target, e.g.
3270        // 1 or 2 bytes on PPC.
3271        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3272        VTSize >>= 1;
3273      }
3274    }
3275
3276    if (++NumMemOps > Limit)
3277      return false;
3278    MemOps.push_back(VT);
3279    Size -= VTSize;
3280  }
3281
3282  return true;
3283}
3284
3285static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3286                                         SDValue Chain, SDValue Dst,
3287                                         SDValue Src, uint64_t Size,
3288                                         unsigned Align, bool AlwaysInline,
3289                                         const Value *DstSV, uint64_t DstSVOff,
3290                                         const Value *SrcSV, uint64_t SrcSVOff){
3291  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3292
3293  // Expand memcpy to a series of load and store ops if the size operand falls
3294  // below a certain threshold.
3295  std::vector<EVT> MemOps;
3296  uint64_t Limit = -1ULL;
3297  if (!AlwaysInline)
3298    Limit = TLI.getMaxStoresPerMemcpy();
3299  unsigned DstAlign = Align;  // Destination alignment can change.
3300  std::string Str;
3301  bool CopyFromStr;
3302  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3303                                Str, CopyFromStr, DAG, TLI))
3304    return SDValue();
3305
3306
3307  bool isZeroStr = CopyFromStr && Str.empty();
3308  SmallVector<SDValue, 8> OutChains;
3309  unsigned NumMemOps = MemOps.size();
3310  uint64_t SrcOff = 0, DstOff = 0;
3311  for (unsigned i = 0; i != NumMemOps; ++i) {
3312    EVT VT = MemOps[i];
3313    unsigned VTSize = VT.getSizeInBits() / 8;
3314    SDValue Value, Store;
3315
3316    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3317      // It's unlikely a store of a vector immediate can be done in a single
3318      // instruction. It would require a load from a constantpool first.
3319      // We also handle store a vector with all zero's.
3320      // FIXME: Handle other cases where store of vector immediate is done in
3321      // a single instruction.
3322      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3323      Store = DAG.getStore(Chain, dl, Value,
3324                           getMemBasePlusOffset(Dst, DstOff, DAG),
3325                           DstSV, DstSVOff + DstOff, false, false, DstAlign);
3326    } else {
3327      // The type might not be legal for the target.  This should only happen
3328      // if the type is smaller than a legal type, as on PPC, so the right
3329      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3330      // to Load/Store if NVT==VT.
3331      // FIXME does the case above also need this?
3332      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3333      assert(NVT.bitsGE(VT));
3334      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3335                             getMemBasePlusOffset(Src, SrcOff, DAG),
3336                             SrcSV, SrcSVOff + SrcOff, VT, false, false, Align);
3337      Store = DAG.getTruncStore(Chain, dl, Value,
3338                                getMemBasePlusOffset(Dst, DstOff, DAG),
3339                                DstSV, DstSVOff + DstOff, VT, false, false,
3340                                DstAlign);
3341    }
3342    OutChains.push_back(Store);
3343    SrcOff += VTSize;
3344    DstOff += VTSize;
3345  }
3346
3347  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3348                     &OutChains[0], OutChains.size());
3349}
3350
3351static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3352                                          SDValue Chain, SDValue Dst,
3353                                          SDValue Src, uint64_t Size,
3354                                          unsigned Align, bool AlwaysInline,
3355                                          const Value *DstSV, uint64_t DstSVOff,
3356                                          const Value *SrcSV, uint64_t SrcSVOff){
3357  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3358
3359  // Expand memmove to a series of load and store ops if the size operand falls
3360  // below a certain threshold.
3361  std::vector<EVT> MemOps;
3362  uint64_t Limit = -1ULL;
3363  if (!AlwaysInline)
3364    Limit = TLI.getMaxStoresPerMemmove();
3365  unsigned DstAlign = Align;  // Destination alignment can change.
3366  std::string Str;
3367  bool CopyFromStr;
3368  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3369                                Str, CopyFromStr, DAG, TLI))
3370    return SDValue();
3371
3372  uint64_t SrcOff = 0, DstOff = 0;
3373
3374  SmallVector<SDValue, 8> LoadValues;
3375  SmallVector<SDValue, 8> LoadChains;
3376  SmallVector<SDValue, 8> OutChains;
3377  unsigned NumMemOps = MemOps.size();
3378  for (unsigned i = 0; i < NumMemOps; i++) {
3379    EVT VT = MemOps[i];
3380    unsigned VTSize = VT.getSizeInBits() / 8;
3381    SDValue Value, Store;
3382
3383    Value = DAG.getLoad(VT, dl, Chain,
3384                        getMemBasePlusOffset(Src, SrcOff, DAG),
3385                        SrcSV, SrcSVOff + SrcOff, false, false, Align);
3386    LoadValues.push_back(Value);
3387    LoadChains.push_back(Value.getValue(1));
3388    SrcOff += VTSize;
3389  }
3390  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3391                      &LoadChains[0], LoadChains.size());
3392  OutChains.clear();
3393  for (unsigned i = 0; i < NumMemOps; i++) {
3394    EVT VT = MemOps[i];
3395    unsigned VTSize = VT.getSizeInBits() / 8;
3396    SDValue Value, Store;
3397
3398    Store = DAG.getStore(Chain, dl, LoadValues[i],
3399                         getMemBasePlusOffset(Dst, DstOff, DAG),
3400                         DstSV, DstSVOff + DstOff, false, false, DstAlign);
3401    OutChains.push_back(Store);
3402    DstOff += VTSize;
3403  }
3404
3405  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3406                     &OutChains[0], OutChains.size());
3407}
3408
3409static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3410                                 SDValue Chain, SDValue Dst,
3411                                 SDValue Src, uint64_t Size,
3412                                 unsigned Align,
3413                                 const Value *DstSV, uint64_t DstSVOff) {
3414  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3415
3416  // Expand memset to a series of load/store ops if the size operand
3417  // falls below a certain threshold.
3418  std::vector<EVT> MemOps;
3419  std::string Str;
3420  bool CopyFromStr;
3421  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3422                                Size, Align, Str, CopyFromStr, DAG, TLI))
3423    return SDValue();
3424
3425  SmallVector<SDValue, 8> OutChains;
3426  uint64_t DstOff = 0;
3427
3428  unsigned NumMemOps = MemOps.size();
3429  for (unsigned i = 0; i < NumMemOps; i++) {
3430    EVT VT = MemOps[i];
3431    unsigned VTSize = VT.getSizeInBits() / 8;
3432    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3433    SDValue Store = DAG.getStore(Chain, dl, Value,
3434                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3435                                 DstSV, DstSVOff + DstOff, false, false, 0);
3436    OutChains.push_back(Store);
3437    DstOff += VTSize;
3438  }
3439
3440  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3441                     &OutChains[0], OutChains.size());
3442}
3443
3444SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3445                                SDValue Src, SDValue Size,
3446                                unsigned Align, bool AlwaysInline,
3447                                const Value *DstSV, uint64_t DstSVOff,
3448                                const Value *SrcSV, uint64_t SrcSVOff) {
3449
3450  // Check to see if we should lower the memcpy to loads and stores first.
3451  // For cases within the target-specified limits, this is the best choice.
3452  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3453  if (ConstantSize) {
3454    // Memcpy with size zero? Just return the original chain.
3455    if (ConstantSize->isNullValue())
3456      return Chain;
3457
3458    SDValue Result =
3459      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3460                              ConstantSize->getZExtValue(),
3461                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3462    if (Result.getNode())
3463      return Result;
3464  }
3465
3466  // Then check to see if we should lower the memcpy with target-specific
3467  // code. If the target chooses to do this, this is the next best.
3468  SDValue Result =
3469    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3470                                AlwaysInline,
3471                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3472  if (Result.getNode())
3473    return Result;
3474
3475  // If we really need inline code and the target declined to provide it,
3476  // use a (potentially long) sequence of loads and stores.
3477  if (AlwaysInline) {
3478    assert(ConstantSize && "AlwaysInline requires a constant size!");
3479    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3480                                   ConstantSize->getZExtValue(), Align, true,
3481                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3482  }
3483
3484  // Emit a library call.
3485  TargetLowering::ArgListTy Args;
3486  TargetLowering::ArgListEntry Entry;
3487  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3488  Entry.Node = Dst; Args.push_back(Entry);
3489  Entry.Node = Src; Args.push_back(Entry);
3490  Entry.Node = Size; Args.push_back(Entry);
3491  // FIXME: pass in DebugLoc
3492  std::pair<SDValue,SDValue> CallResult =
3493    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3494                    false, false, false, false, 0,
3495                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3496                    /*isReturnValueUsed=*/false,
3497                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3498                                      TLI.getPointerTy()),
3499                    Args, *this, dl, GetOrdering(Chain.getNode()));
3500  return CallResult.second;
3501}
3502
3503SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3504                                 SDValue Src, SDValue Size,
3505                                 unsigned Align,
3506                                 const Value *DstSV, uint64_t DstSVOff,
3507                                 const Value *SrcSV, uint64_t SrcSVOff) {
3508
3509  // Check to see if we should lower the memmove to loads and stores first.
3510  // For cases within the target-specified limits, this is the best choice.
3511  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3512  if (ConstantSize) {
3513    // Memmove with size zero? Just return the original chain.
3514    if (ConstantSize->isNullValue())
3515      return Chain;
3516
3517    SDValue Result =
3518      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3519                               ConstantSize->getZExtValue(),
3520                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3521    if (Result.getNode())
3522      return Result;
3523  }
3524
3525  // Then check to see if we should lower the memmove with target-specific
3526  // code. If the target chooses to do this, this is the next best.
3527  SDValue Result =
3528    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3529                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3530  if (Result.getNode())
3531    return Result;
3532
3533  // Emit a library call.
3534  TargetLowering::ArgListTy Args;
3535  TargetLowering::ArgListEntry Entry;
3536  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3537  Entry.Node = Dst; Args.push_back(Entry);
3538  Entry.Node = Src; Args.push_back(Entry);
3539  Entry.Node = Size; Args.push_back(Entry);
3540  // FIXME:  pass in DebugLoc
3541  std::pair<SDValue,SDValue> CallResult =
3542    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3543                    false, false, false, false, 0,
3544                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3545                    /*isReturnValueUsed=*/false,
3546                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3547                                      TLI.getPointerTy()),
3548                    Args, *this, dl, GetOrdering(Chain.getNode()));
3549  return CallResult.second;
3550}
3551
3552SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3553                                SDValue Src, SDValue Size,
3554                                unsigned Align,
3555                                const Value *DstSV, uint64_t DstSVOff) {
3556
3557  // Check to see if we should lower the memset to stores first.
3558  // For cases within the target-specified limits, this is the best choice.
3559  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3560  if (ConstantSize) {
3561    // Memset with size zero? Just return the original chain.
3562    if (ConstantSize->isNullValue())
3563      return Chain;
3564
3565    SDValue Result =
3566      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3567                      Align, DstSV, DstSVOff);
3568    if (Result.getNode())
3569      return Result;
3570  }
3571
3572  // Then check to see if we should lower the memset with target-specific
3573  // code. If the target chooses to do this, this is the next best.
3574  SDValue Result =
3575    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3576                                DstSV, DstSVOff);
3577  if (Result.getNode())
3578    return Result;
3579
3580  // Emit a library call.
3581  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3582  TargetLowering::ArgListTy Args;
3583  TargetLowering::ArgListEntry Entry;
3584  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3585  Args.push_back(Entry);
3586  // Extend or truncate the argument to be an i32 value for the call.
3587  if (Src.getValueType().bitsGT(MVT::i32))
3588    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3589  else
3590    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3591  Entry.Node = Src;
3592  Entry.Ty = Type::getInt32Ty(*getContext());
3593  Entry.isSExt = true;
3594  Args.push_back(Entry);
3595  Entry.Node = Size;
3596  Entry.Ty = IntPtrTy;
3597  Entry.isSExt = false;
3598  Args.push_back(Entry);
3599  // FIXME: pass in DebugLoc
3600  std::pair<SDValue,SDValue> CallResult =
3601    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3602                    false, false, false, false, 0,
3603                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3604                    /*isReturnValueUsed=*/false,
3605                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3606                                      TLI.getPointerTy()),
3607                    Args, *this, dl, GetOrdering(Chain.getNode()));
3608  return CallResult.second;
3609}
3610
3611SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3612                                SDValue Chain,
3613                                SDValue Ptr, SDValue Cmp,
3614                                SDValue Swp, const Value* PtrVal,
3615                                unsigned Alignment) {
3616  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3617    Alignment = getEVTAlignment(MemVT);
3618
3619  // Check if the memory reference references a frame index
3620  if (!PtrVal)
3621    if (const FrameIndexSDNode *FI =
3622          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3623      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3624
3625  MachineFunction &MF = getMachineFunction();
3626  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3627
3628  // For now, atomics are considered to be volatile always.
3629  Flags |= MachineMemOperand::MOVolatile;
3630
3631  MachineMemOperand *MMO =
3632    MF.getMachineMemOperand(PtrVal, Flags, 0,
3633                            MemVT.getStoreSize(), Alignment);
3634
3635  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3636}
3637
3638SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3639                                SDValue Chain,
3640                                SDValue Ptr, SDValue Cmp,
3641                                SDValue Swp, MachineMemOperand *MMO) {
3642  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3643  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3644
3645  EVT VT = Cmp.getValueType();
3646
3647  SDVTList VTs = getVTList(VT, MVT::Other);
3648  FoldingSetNodeID ID;
3649  ID.AddInteger(MemVT.getRawBits());
3650  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3651  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3652  void* IP = 0;
3653  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3654    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3655    return SDValue(E, 0);
3656  }
3657  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3658  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3659  CSEMap.InsertNode(N, IP);
3660  AllNodes.push_back(N);
3661  return SDValue(N, 0);
3662}
3663
3664SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3665                                SDValue Chain,
3666                                SDValue Ptr, SDValue Val,
3667                                const Value* PtrVal,
3668                                unsigned Alignment) {
3669  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3670    Alignment = getEVTAlignment(MemVT);
3671
3672  // Check if the memory reference references a frame index
3673  if (!PtrVal)
3674    if (const FrameIndexSDNode *FI =
3675          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3676      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3677
3678  MachineFunction &MF = getMachineFunction();
3679  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3680
3681  // For now, atomics are considered to be volatile always.
3682  Flags |= MachineMemOperand::MOVolatile;
3683
3684  MachineMemOperand *MMO =
3685    MF.getMachineMemOperand(PtrVal, Flags, 0,
3686                            MemVT.getStoreSize(), Alignment);
3687
3688  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3689}
3690
3691SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3692                                SDValue Chain,
3693                                SDValue Ptr, SDValue Val,
3694                                MachineMemOperand *MMO) {
3695  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3696          Opcode == ISD::ATOMIC_LOAD_SUB ||
3697          Opcode == ISD::ATOMIC_LOAD_AND ||
3698          Opcode == ISD::ATOMIC_LOAD_OR ||
3699          Opcode == ISD::ATOMIC_LOAD_XOR ||
3700          Opcode == ISD::ATOMIC_LOAD_NAND ||
3701          Opcode == ISD::ATOMIC_LOAD_MIN ||
3702          Opcode == ISD::ATOMIC_LOAD_MAX ||
3703          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3704          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3705          Opcode == ISD::ATOMIC_SWAP) &&
3706         "Invalid Atomic Op");
3707
3708  EVT VT = Val.getValueType();
3709
3710  SDVTList VTs = getVTList(VT, MVT::Other);
3711  FoldingSetNodeID ID;
3712  ID.AddInteger(MemVT.getRawBits());
3713  SDValue Ops[] = {Chain, Ptr, Val};
3714  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3715  void* IP = 0;
3716  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3717    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3718    return SDValue(E, 0);
3719  }
3720  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3721  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Val, MMO);
3722  CSEMap.InsertNode(N, IP);
3723  AllNodes.push_back(N);
3724  return SDValue(N, 0);
3725}
3726
3727/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3728/// Allowed to return something different (and simpler) if Simplify is true.
3729SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3730                                     DebugLoc dl) {
3731  if (NumOps == 1)
3732    return Ops[0];
3733
3734  SmallVector<EVT, 4> VTs;
3735  VTs.reserve(NumOps);
3736  for (unsigned i = 0; i < NumOps; ++i)
3737    VTs.push_back(Ops[i].getValueType());
3738  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3739                 Ops, NumOps);
3740}
3741
3742SDValue
3743SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3744                                  const EVT *VTs, unsigned NumVTs,
3745                                  const SDValue *Ops, unsigned NumOps,
3746                                  EVT MemVT, const Value *srcValue, int SVOff,
3747                                  unsigned Align, bool Vol,
3748                                  bool ReadMem, bool WriteMem) {
3749  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3750                             MemVT, srcValue, SVOff, Align, Vol,
3751                             ReadMem, WriteMem);
3752}
3753
3754SDValue
3755SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3756                                  const SDValue *Ops, unsigned NumOps,
3757                                  EVT MemVT, const Value *srcValue, int SVOff,
3758                                  unsigned Align, bool Vol,
3759                                  bool ReadMem, bool WriteMem) {
3760  if (Align == 0)  // Ensure that codegen never sees alignment 0
3761    Align = getEVTAlignment(MemVT);
3762
3763  MachineFunction &MF = getMachineFunction();
3764  unsigned Flags = 0;
3765  if (WriteMem)
3766    Flags |= MachineMemOperand::MOStore;
3767  if (ReadMem)
3768    Flags |= MachineMemOperand::MOLoad;
3769  if (Vol)
3770    Flags |= MachineMemOperand::MOVolatile;
3771  MachineMemOperand *MMO =
3772    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3773                            MemVT.getStoreSize(), Align);
3774
3775  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3776}
3777
3778SDValue
3779SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3780                                  const SDValue *Ops, unsigned NumOps,
3781                                  EVT MemVT, MachineMemOperand *MMO) {
3782  assert((Opcode == ISD::INTRINSIC_VOID ||
3783          Opcode == ISD::INTRINSIC_W_CHAIN ||
3784          (Opcode <= INT_MAX &&
3785           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3786         "Opcode is not a memory-accessing opcode!");
3787
3788  // Memoize the node unless it returns a flag.
3789  MemIntrinsicSDNode *N;
3790  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3791    FoldingSetNodeID ID;
3792    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3793    void *IP = 0;
3794    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3795      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3796      return SDValue(E, 0);
3797    }
3798
3799    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3800    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3801    CSEMap.InsertNode(N, IP);
3802  } else {
3803    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3804    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3805  }
3806  AllNodes.push_back(N);
3807  return SDValue(N, 0);
3808}
3809
3810SDValue
3811SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3812                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3813                      SDValue Ptr, SDValue Offset,
3814                      const Value *SV, int SVOffset, EVT MemVT,
3815                      bool isVolatile, bool isNonTemporal,
3816                      unsigned Alignment) {
3817  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3818    Alignment = getEVTAlignment(VT);
3819
3820  // Check if the memory reference references a frame index
3821  if (!SV)
3822    if (const FrameIndexSDNode *FI =
3823          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3824      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3825
3826  MachineFunction &MF = getMachineFunction();
3827  unsigned Flags = MachineMemOperand::MOLoad;
3828  if (isVolatile)
3829    Flags |= MachineMemOperand::MOVolatile;
3830  if (isNonTemporal)
3831    Flags |= MachineMemOperand::MONonTemporal;
3832  MachineMemOperand *MMO =
3833    MF.getMachineMemOperand(SV, Flags, SVOffset,
3834                            MemVT.getStoreSize(), Alignment);
3835  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3836}
3837
3838SDValue
3839SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3840                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3841                      SDValue Ptr, SDValue Offset, EVT MemVT,
3842                      MachineMemOperand *MMO) {
3843  if (VT == MemVT) {
3844    ExtType = ISD::NON_EXTLOAD;
3845  } else if (ExtType == ISD::NON_EXTLOAD) {
3846    assert(VT == MemVT && "Non-extending load from different memory type!");
3847  } else {
3848    // Extending load.
3849    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3850           "Should only be an extending load, not truncating!");
3851    assert(VT.isInteger() == MemVT.isInteger() &&
3852           "Cannot convert from FP to Int or Int -> FP!");
3853    assert(VT.isVector() == MemVT.isVector() &&
3854           "Cannot use trunc store to convert to or from a vector!");
3855    assert((!VT.isVector() ||
3856            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3857           "Cannot use trunc store to change the number of vector elements!");
3858  }
3859
3860  bool Indexed = AM != ISD::UNINDEXED;
3861  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3862         "Unindexed load with an offset!");
3863
3864  SDVTList VTs = Indexed ?
3865    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3866  SDValue Ops[] = { Chain, Ptr, Offset };
3867  FoldingSetNodeID ID;
3868  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3869  ID.AddInteger(MemVT.getRawBits());
3870  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3871                                     MMO->isNonTemporal()));
3872  void *IP = 0;
3873  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3874    cast<LoadSDNode>(E)->refineAlignment(MMO);
3875    return SDValue(E, 0);
3876  }
3877  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3878  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, MemVT, MMO);
3879  CSEMap.InsertNode(N, IP);
3880  AllNodes.push_back(N);
3881  return SDValue(N, 0);
3882}
3883
3884SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3885                              SDValue Chain, SDValue Ptr,
3886                              const Value *SV, int SVOffset,
3887                              bool isVolatile, bool isNonTemporal,
3888                              unsigned Alignment) {
3889  SDValue Undef = getUNDEF(Ptr.getValueType());
3890  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3891                 SV, SVOffset, VT, isVolatile, isNonTemporal, Alignment);
3892}
3893
3894SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3895                                 SDValue Chain, SDValue Ptr,
3896                                 const Value *SV,
3897                                 int SVOffset, EVT MemVT,
3898                                 bool isVolatile, bool isNonTemporal,
3899                                 unsigned Alignment) {
3900  SDValue Undef = getUNDEF(Ptr.getValueType());
3901  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3902                 SV, SVOffset, MemVT, isVolatile, isNonTemporal, Alignment);
3903}
3904
3905SDValue
3906SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3907                             SDValue Offset, ISD::MemIndexedMode AM) {
3908  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3909  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3910         "Load is already a indexed load!");
3911  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3912                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3913                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3914                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
3915}
3916
3917SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3918                               SDValue Ptr, const Value *SV, int SVOffset,
3919                               bool isVolatile, bool isNonTemporal,
3920                               unsigned Alignment) {
3921  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3922    Alignment = getEVTAlignment(Val.getValueType());
3923
3924  // Check if the memory reference references a frame index
3925  if (!SV)
3926    if (const FrameIndexSDNode *FI =
3927          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3928      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3929
3930  MachineFunction &MF = getMachineFunction();
3931  unsigned Flags = MachineMemOperand::MOStore;
3932  if (isVolatile)
3933    Flags |= MachineMemOperand::MOVolatile;
3934  if (isNonTemporal)
3935    Flags |= MachineMemOperand::MONonTemporal;
3936  MachineMemOperand *MMO =
3937    MF.getMachineMemOperand(SV, Flags, SVOffset,
3938                            Val.getValueType().getStoreSize(), Alignment);
3939
3940  return getStore(Chain, dl, Val, Ptr, MMO);
3941}
3942
3943SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3944                               SDValue Ptr, MachineMemOperand *MMO) {
3945  EVT VT = Val.getValueType();
3946  SDVTList VTs = getVTList(MVT::Other);
3947  SDValue Undef = getUNDEF(Ptr.getValueType());
3948  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3949  FoldingSetNodeID ID;
3950  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3951  ID.AddInteger(VT.getRawBits());
3952  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
3953                                     MMO->isNonTemporal()));
3954  void *IP = 0;
3955  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3956    cast<StoreSDNode>(E)->refineAlignment(MMO);
3957    return SDValue(E, 0);
3958  }
3959  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3960  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false, VT, MMO);
3961  CSEMap.InsertNode(N, IP);
3962  AllNodes.push_back(N);
3963  return SDValue(N, 0);
3964}
3965
3966SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3967                                    SDValue Ptr, const Value *SV,
3968                                    int SVOffset, EVT SVT,
3969                                    bool isVolatile, bool isNonTemporal,
3970                                    unsigned Alignment) {
3971  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3972    Alignment = getEVTAlignment(SVT);
3973
3974  // Check if the memory reference references a frame index
3975  if (!SV)
3976    if (const FrameIndexSDNode *FI =
3977          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3978      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3979
3980  MachineFunction &MF = getMachineFunction();
3981  unsigned Flags = MachineMemOperand::MOStore;
3982  if (isVolatile)
3983    Flags |= MachineMemOperand::MOVolatile;
3984  if (isNonTemporal)
3985    Flags |= MachineMemOperand::MONonTemporal;
3986  MachineMemOperand *MMO =
3987    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
3988
3989  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
3990}
3991
3992SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3993                                    SDValue Ptr, EVT SVT,
3994                                    MachineMemOperand *MMO) {
3995  EVT VT = Val.getValueType();
3996
3997  if (VT == SVT)
3998    return getStore(Chain, dl, Val, Ptr, MMO);
3999
4000  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4001         "Should only be a truncating store, not extending!");
4002  assert(VT.isInteger() == SVT.isInteger() &&
4003         "Can't do FP-INT conversion!");
4004  assert(VT.isVector() == SVT.isVector() &&
4005         "Cannot use trunc store to convert to or from a vector!");
4006  assert((!VT.isVector() ||
4007          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4008         "Cannot use trunc store to change the number of vector elements!");
4009
4010  SDVTList VTs = getVTList(MVT::Other);
4011  SDValue Undef = getUNDEF(Ptr.getValueType());
4012  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4013  FoldingSetNodeID ID;
4014  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4015  ID.AddInteger(SVT.getRawBits());
4016  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4017                                     MMO->isNonTemporal()));
4018  void *IP = 0;
4019  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4020    cast<StoreSDNode>(E)->refineAlignment(MMO);
4021    return SDValue(E, 0);
4022  }
4023  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
4024  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true, SVT, MMO);
4025  CSEMap.InsertNode(N, IP);
4026  AllNodes.push_back(N);
4027  return SDValue(N, 0);
4028}
4029
4030SDValue
4031SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4032                              SDValue Offset, ISD::MemIndexedMode AM) {
4033  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4034  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4035         "Store is already a indexed store!");
4036  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4037  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4038  FoldingSetNodeID ID;
4039  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4040  ID.AddInteger(ST->getMemoryVT().getRawBits());
4041  ID.AddInteger(ST->getRawSubclassData());
4042  void *IP = 0;
4043  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4044    return SDValue(E, 0);
4045
4046  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
4047  new (N) StoreSDNode(Ops, dl, VTs, AM,
4048                      ST->isTruncatingStore(), ST->getMemoryVT(),
4049                      ST->getMemOperand());
4050  CSEMap.InsertNode(N, IP);
4051  AllNodes.push_back(N);
4052  return SDValue(N, 0);
4053}
4054
4055SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4056                               SDValue Chain, SDValue Ptr,
4057                               SDValue SV) {
4058  SDValue Ops[] = { Chain, Ptr, SV };
4059  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4060}
4061
4062SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4063                              const SDUse *Ops, unsigned NumOps) {
4064  switch (NumOps) {
4065  case 0: return getNode(Opcode, DL, VT);
4066  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4067  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4068  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4069  default: break;
4070  }
4071
4072  // Copy from an SDUse array into an SDValue array for use with
4073  // the regular getNode logic.
4074  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4075  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4076}
4077
4078SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4079                              const SDValue *Ops, unsigned NumOps) {
4080  switch (NumOps) {
4081  case 0: return getNode(Opcode, DL, VT);
4082  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4083  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4084  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4085  default: break;
4086  }
4087
4088  switch (Opcode) {
4089  default: break;
4090  case ISD::SELECT_CC: {
4091    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4092    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4093           "LHS and RHS of condition must have same type!");
4094    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4095           "True and False arms of SelectCC must have same type!");
4096    assert(Ops[2].getValueType() == VT &&
4097           "select_cc node must be of same type as true and false value!");
4098    break;
4099  }
4100  case ISD::BR_CC: {
4101    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4102    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4103           "LHS/RHS of comparison should match types!");
4104    break;
4105  }
4106  }
4107
4108  // Memoize nodes.
4109  SDNode *N;
4110  SDVTList VTs = getVTList(VT);
4111
4112  if (VT != MVT::Flag) {
4113    FoldingSetNodeID ID;
4114    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4115    void *IP = 0;
4116
4117    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4118      return SDValue(E, 0);
4119
4120    N = NodeAllocator.Allocate<SDNode>();
4121    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4122    CSEMap.InsertNode(N, IP);
4123  } else {
4124    N = NodeAllocator.Allocate<SDNode>();
4125    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4126  }
4127
4128  AllNodes.push_back(N);
4129#ifndef NDEBUG
4130  VerifyNode(N);
4131#endif
4132  return SDValue(N, 0);
4133}
4134
4135SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4136                              const std::vector<EVT> &ResultTys,
4137                              const SDValue *Ops, unsigned NumOps) {
4138  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4139                 Ops, NumOps);
4140}
4141
4142SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4143                              const EVT *VTs, unsigned NumVTs,
4144                              const SDValue *Ops, unsigned NumOps) {
4145  if (NumVTs == 1)
4146    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4147  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4148}
4149
4150SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4151                              const SDValue *Ops, unsigned NumOps) {
4152  if (VTList.NumVTs == 1)
4153    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4154
4155#if 0
4156  switch (Opcode) {
4157  // FIXME: figure out how to safely handle things like
4158  // int foo(int x) { return 1 << (x & 255); }
4159  // int bar() { return foo(256); }
4160  case ISD::SRA_PARTS:
4161  case ISD::SRL_PARTS:
4162  case ISD::SHL_PARTS:
4163    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4164        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4165      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4166    else if (N3.getOpcode() == ISD::AND)
4167      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4168        // If the and is only masking out bits that cannot effect the shift,
4169        // eliminate the and.
4170        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4171        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4172          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4173      }
4174    break;
4175  }
4176#endif
4177
4178  // Memoize the node unless it returns a flag.
4179  SDNode *N;
4180  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4181    FoldingSetNodeID ID;
4182    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4183    void *IP = 0;
4184    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4185      return SDValue(E, 0);
4186
4187    if (NumOps == 1) {
4188      N = NodeAllocator.Allocate<UnarySDNode>();
4189      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4190    } else if (NumOps == 2) {
4191      N = NodeAllocator.Allocate<BinarySDNode>();
4192      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4193    } else if (NumOps == 3) {
4194      N = NodeAllocator.Allocate<TernarySDNode>();
4195      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4196    } else {
4197      N = NodeAllocator.Allocate<SDNode>();
4198      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4199    }
4200    CSEMap.InsertNode(N, IP);
4201  } else {
4202    if (NumOps == 1) {
4203      N = NodeAllocator.Allocate<UnarySDNode>();
4204      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4205    } else if (NumOps == 2) {
4206      N = NodeAllocator.Allocate<BinarySDNode>();
4207      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4208    } else if (NumOps == 3) {
4209      N = NodeAllocator.Allocate<TernarySDNode>();
4210      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4211    } else {
4212      N = NodeAllocator.Allocate<SDNode>();
4213      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4214    }
4215  }
4216  AllNodes.push_back(N);
4217#ifndef NDEBUG
4218  VerifyNode(N);
4219#endif
4220  return SDValue(N, 0);
4221}
4222
4223SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4224  return getNode(Opcode, DL, VTList, 0, 0);
4225}
4226
4227SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4228                              SDValue N1) {
4229  SDValue Ops[] = { N1 };
4230  return getNode(Opcode, DL, VTList, Ops, 1);
4231}
4232
4233SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4234                              SDValue N1, SDValue N2) {
4235  SDValue Ops[] = { N1, N2 };
4236  return getNode(Opcode, DL, VTList, Ops, 2);
4237}
4238
4239SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4240                              SDValue N1, SDValue N2, SDValue N3) {
4241  SDValue Ops[] = { N1, N2, N3 };
4242  return getNode(Opcode, DL, VTList, Ops, 3);
4243}
4244
4245SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4246                              SDValue N1, SDValue N2, SDValue N3,
4247                              SDValue N4) {
4248  SDValue Ops[] = { N1, N2, N3, N4 };
4249  return getNode(Opcode, DL, VTList, Ops, 4);
4250}
4251
4252SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4253                              SDValue N1, SDValue N2, SDValue N3,
4254                              SDValue N4, SDValue N5) {
4255  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4256  return getNode(Opcode, DL, VTList, Ops, 5);
4257}
4258
4259SDVTList SelectionDAG::getVTList(EVT VT) {
4260  return makeVTList(SDNode::getValueTypeList(VT), 1);
4261}
4262
4263SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4264  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4265       E = VTList.rend(); I != E; ++I)
4266    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4267      return *I;
4268
4269  EVT *Array = Allocator.Allocate<EVT>(2);
4270  Array[0] = VT1;
4271  Array[1] = VT2;
4272  SDVTList Result = makeVTList(Array, 2);
4273  VTList.push_back(Result);
4274  return Result;
4275}
4276
4277SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4278  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4279       E = VTList.rend(); I != E; ++I)
4280    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4281                          I->VTs[2] == VT3)
4282      return *I;
4283
4284  EVT *Array = Allocator.Allocate<EVT>(3);
4285  Array[0] = VT1;
4286  Array[1] = VT2;
4287  Array[2] = VT3;
4288  SDVTList Result = makeVTList(Array, 3);
4289  VTList.push_back(Result);
4290  return Result;
4291}
4292
4293SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4294  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4295       E = VTList.rend(); I != E; ++I)
4296    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4297                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4298      return *I;
4299
4300  EVT *Array = Allocator.Allocate<EVT>(4);
4301  Array[0] = VT1;
4302  Array[1] = VT2;
4303  Array[2] = VT3;
4304  Array[3] = VT4;
4305  SDVTList Result = makeVTList(Array, 4);
4306  VTList.push_back(Result);
4307  return Result;
4308}
4309
4310SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4311  switch (NumVTs) {
4312    case 0: llvm_unreachable("Cannot have nodes without results!");
4313    case 1: return getVTList(VTs[0]);
4314    case 2: return getVTList(VTs[0], VTs[1]);
4315    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4316    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4317    default: break;
4318  }
4319
4320  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4321       E = VTList.rend(); I != E; ++I) {
4322    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4323      continue;
4324
4325    bool NoMatch = false;
4326    for (unsigned i = 2; i != NumVTs; ++i)
4327      if (VTs[i] != I->VTs[i]) {
4328        NoMatch = true;
4329        break;
4330      }
4331    if (!NoMatch)
4332      return *I;
4333  }
4334
4335  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4336  std::copy(VTs, VTs+NumVTs, Array);
4337  SDVTList Result = makeVTList(Array, NumVTs);
4338  VTList.push_back(Result);
4339  return Result;
4340}
4341
4342
4343/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4344/// specified operands.  If the resultant node already exists in the DAG,
4345/// this does not modify the specified node, instead it returns the node that
4346/// already exists.  If the resultant node does not exist in the DAG, the
4347/// input node is returned.  As a degenerate case, if you specify the same
4348/// input operands as the node already has, the input node is returned.
4349SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4350  SDNode *N = InN.getNode();
4351  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4352
4353  // Check to see if there is no change.
4354  if (Op == N->getOperand(0)) return InN;
4355
4356  // See if the modified node already exists.
4357  void *InsertPos = 0;
4358  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4359    return SDValue(Existing, InN.getResNo());
4360
4361  // Nope it doesn't.  Remove the node from its current place in the maps.
4362  if (InsertPos)
4363    if (!RemoveNodeFromCSEMaps(N))
4364      InsertPos = 0;
4365
4366  // Now we update the operands.
4367  N->OperandList[0].set(Op);
4368
4369  // If this gets put into a CSE map, add it.
4370  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4371  return InN;
4372}
4373
4374SDValue SelectionDAG::
4375UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4376  SDNode *N = InN.getNode();
4377  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4378
4379  // Check to see if there is no change.
4380  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4381    return InN;   // No operands changed, just return the input node.
4382
4383  // See if the modified node already exists.
4384  void *InsertPos = 0;
4385  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4386    return SDValue(Existing, InN.getResNo());
4387
4388  // Nope it doesn't.  Remove the node from its current place in the maps.
4389  if (InsertPos)
4390    if (!RemoveNodeFromCSEMaps(N))
4391      InsertPos = 0;
4392
4393  // Now we update the operands.
4394  if (N->OperandList[0] != Op1)
4395    N->OperandList[0].set(Op1);
4396  if (N->OperandList[1] != Op2)
4397    N->OperandList[1].set(Op2);
4398
4399  // If this gets put into a CSE map, add it.
4400  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4401  return InN;
4402}
4403
4404SDValue SelectionDAG::
4405UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4406  SDValue Ops[] = { Op1, Op2, Op3 };
4407  return UpdateNodeOperands(N, Ops, 3);
4408}
4409
4410SDValue SelectionDAG::
4411UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4412                   SDValue Op3, SDValue Op4) {
4413  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4414  return UpdateNodeOperands(N, Ops, 4);
4415}
4416
4417SDValue SelectionDAG::
4418UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4419                   SDValue Op3, SDValue Op4, SDValue Op5) {
4420  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4421  return UpdateNodeOperands(N, Ops, 5);
4422}
4423
4424SDValue SelectionDAG::
4425UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4426  SDNode *N = InN.getNode();
4427  assert(N->getNumOperands() == NumOps &&
4428         "Update with wrong number of operands");
4429
4430  // Check to see if there is no change.
4431  bool AnyChange = false;
4432  for (unsigned i = 0; i != NumOps; ++i) {
4433    if (Ops[i] != N->getOperand(i)) {
4434      AnyChange = true;
4435      break;
4436    }
4437  }
4438
4439  // No operands changed, just return the input node.
4440  if (!AnyChange) return InN;
4441
4442  // See if the modified node already exists.
4443  void *InsertPos = 0;
4444  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4445    return SDValue(Existing, InN.getResNo());
4446
4447  // Nope it doesn't.  Remove the node from its current place in the maps.
4448  if (InsertPos)
4449    if (!RemoveNodeFromCSEMaps(N))
4450      InsertPos = 0;
4451
4452  // Now we update the operands.
4453  for (unsigned i = 0; i != NumOps; ++i)
4454    if (N->OperandList[i] != Ops[i])
4455      N->OperandList[i].set(Ops[i]);
4456
4457  // If this gets put into a CSE map, add it.
4458  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4459  return InN;
4460}
4461
4462/// DropOperands - Release the operands and set this node to have
4463/// zero operands.
4464void SDNode::DropOperands() {
4465  // Unlike the code in MorphNodeTo that does this, we don't need to
4466  // watch for dead nodes here.
4467  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4468    SDUse &Use = *I++;
4469    Use.set(SDValue());
4470  }
4471}
4472
4473/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4474/// machine opcode.
4475///
4476SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4477                                   EVT VT) {
4478  SDVTList VTs = getVTList(VT);
4479  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4480}
4481
4482SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4483                                   EVT VT, SDValue Op1) {
4484  SDVTList VTs = getVTList(VT);
4485  SDValue Ops[] = { Op1 };
4486  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4487}
4488
4489SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4490                                   EVT VT, SDValue Op1,
4491                                   SDValue Op2) {
4492  SDVTList VTs = getVTList(VT);
4493  SDValue Ops[] = { Op1, Op2 };
4494  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4495}
4496
4497SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4498                                   EVT VT, SDValue Op1,
4499                                   SDValue Op2, SDValue Op3) {
4500  SDVTList VTs = getVTList(VT);
4501  SDValue Ops[] = { Op1, Op2, Op3 };
4502  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4503}
4504
4505SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4506                                   EVT VT, const SDValue *Ops,
4507                                   unsigned NumOps) {
4508  SDVTList VTs = getVTList(VT);
4509  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4510}
4511
4512SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4513                                   EVT VT1, EVT VT2, const SDValue *Ops,
4514                                   unsigned NumOps) {
4515  SDVTList VTs = getVTList(VT1, VT2);
4516  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4517}
4518
4519SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4520                                   EVT VT1, EVT VT2) {
4521  SDVTList VTs = getVTList(VT1, VT2);
4522  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4523}
4524
4525SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4526                                   EVT VT1, EVT VT2, EVT VT3,
4527                                   const SDValue *Ops, unsigned NumOps) {
4528  SDVTList VTs = getVTList(VT1, VT2, VT3);
4529  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4530}
4531
4532SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4533                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4534                                   const SDValue *Ops, unsigned NumOps) {
4535  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4536  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4537}
4538
4539SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4540                                   EVT VT1, EVT VT2,
4541                                   SDValue Op1) {
4542  SDVTList VTs = getVTList(VT1, VT2);
4543  SDValue Ops[] = { Op1 };
4544  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4545}
4546
4547SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4548                                   EVT VT1, EVT VT2,
4549                                   SDValue Op1, SDValue Op2) {
4550  SDVTList VTs = getVTList(VT1, VT2);
4551  SDValue Ops[] = { Op1, Op2 };
4552  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4553}
4554
4555SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4556                                   EVT VT1, EVT VT2,
4557                                   SDValue Op1, SDValue Op2,
4558                                   SDValue Op3) {
4559  SDVTList VTs = getVTList(VT1, VT2);
4560  SDValue Ops[] = { Op1, Op2, Op3 };
4561  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4562}
4563
4564SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4565                                   EVT VT1, EVT VT2, EVT VT3,
4566                                   SDValue Op1, SDValue Op2,
4567                                   SDValue Op3) {
4568  SDVTList VTs = getVTList(VT1, VT2, VT3);
4569  SDValue Ops[] = { Op1, Op2, Op3 };
4570  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4571}
4572
4573SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4574                                   SDVTList VTs, const SDValue *Ops,
4575                                   unsigned NumOps) {
4576  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4577  // Reset the NodeID to -1.
4578  N->setNodeId(-1);
4579  return N;
4580}
4581
4582/// MorphNodeTo - This *mutates* the specified node to have the specified
4583/// return type, opcode, and operands.
4584///
4585/// Note that MorphNodeTo returns the resultant node.  If there is already a
4586/// node of the specified opcode and operands, it returns that node instead of
4587/// the current one.  Note that the DebugLoc need not be the same.
4588///
4589/// Using MorphNodeTo is faster than creating a new node and swapping it in
4590/// with ReplaceAllUsesWith both because it often avoids allocating a new
4591/// node, and because it doesn't require CSE recalculation for any of
4592/// the node's users.
4593///
4594SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4595                                  SDVTList VTs, const SDValue *Ops,
4596                                  unsigned NumOps) {
4597  // If an identical node already exists, use it.
4598  void *IP = 0;
4599  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4600    FoldingSetNodeID ID;
4601    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4602    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4603      return ON;
4604  }
4605
4606  if (!RemoveNodeFromCSEMaps(N))
4607    IP = 0;
4608
4609  // Start the morphing.
4610  N->NodeType = Opc;
4611  N->ValueList = VTs.VTs;
4612  N->NumValues = VTs.NumVTs;
4613
4614  // Clear the operands list, updating used nodes to remove this from their
4615  // use list.  Keep track of any operands that become dead as a result.
4616  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4617  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4618    SDUse &Use = *I++;
4619    SDNode *Used = Use.getNode();
4620    Use.set(SDValue());
4621    if (Used->use_empty())
4622      DeadNodeSet.insert(Used);
4623  }
4624
4625  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4626    // Initialize the memory references information.
4627    MN->setMemRefs(0, 0);
4628    // If NumOps is larger than the # of operands we can have in a
4629    // MachineSDNode, reallocate the operand list.
4630    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4631      if (MN->OperandsNeedDelete)
4632        delete[] MN->OperandList;
4633      if (NumOps > array_lengthof(MN->LocalOperands))
4634        // We're creating a final node that will live unmorphed for the
4635        // remainder of the current SelectionDAG iteration, so we can allocate
4636        // the operands directly out of a pool with no recycling metadata.
4637        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4638                        Ops, NumOps);
4639      else
4640        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4641      MN->OperandsNeedDelete = false;
4642    } else
4643      MN->InitOperands(MN->OperandList, Ops, NumOps);
4644  } else {
4645    // If NumOps is larger than the # of operands we currently have, reallocate
4646    // the operand list.
4647    if (NumOps > N->NumOperands) {
4648      if (N->OperandsNeedDelete)
4649        delete[] N->OperandList;
4650      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4651      N->OperandsNeedDelete = true;
4652    } else
4653      N->InitOperands(N->OperandList, Ops, NumOps);
4654  }
4655
4656  // Delete any nodes that are still dead after adding the uses for the
4657  // new operands.
4658  if (!DeadNodeSet.empty()) {
4659    SmallVector<SDNode *, 16> DeadNodes;
4660    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4661         E = DeadNodeSet.end(); I != E; ++I)
4662      if ((*I)->use_empty())
4663        DeadNodes.push_back(*I);
4664    RemoveDeadNodes(DeadNodes);
4665  }
4666
4667  if (IP)
4668    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4669  return N;
4670}
4671
4672
4673/// getMachineNode - These are used for target selectors to create a new node
4674/// with specified return type(s), MachineInstr opcode, and operands.
4675///
4676/// Note that getMachineNode returns the resultant node.  If there is already a
4677/// node of the specified opcode and operands, it returns that node instead of
4678/// the current one.
4679MachineSDNode *
4680SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4681  SDVTList VTs = getVTList(VT);
4682  return getMachineNode(Opcode, dl, VTs, 0, 0);
4683}
4684
4685MachineSDNode *
4686SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4687  SDVTList VTs = getVTList(VT);
4688  SDValue Ops[] = { Op1 };
4689  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4690}
4691
4692MachineSDNode *
4693SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4694                             SDValue Op1, SDValue Op2) {
4695  SDVTList VTs = getVTList(VT);
4696  SDValue Ops[] = { Op1, Op2 };
4697  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4698}
4699
4700MachineSDNode *
4701SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4702                             SDValue Op1, SDValue Op2, SDValue Op3) {
4703  SDVTList VTs = getVTList(VT);
4704  SDValue Ops[] = { Op1, Op2, Op3 };
4705  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4706}
4707
4708MachineSDNode *
4709SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4710                             const SDValue *Ops, unsigned NumOps) {
4711  SDVTList VTs = getVTList(VT);
4712  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4713}
4714
4715MachineSDNode *
4716SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4717  SDVTList VTs = getVTList(VT1, VT2);
4718  return getMachineNode(Opcode, dl, VTs, 0, 0);
4719}
4720
4721MachineSDNode *
4722SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4723                             EVT VT1, EVT VT2, SDValue Op1) {
4724  SDVTList VTs = getVTList(VT1, VT2);
4725  SDValue Ops[] = { Op1 };
4726  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4727}
4728
4729MachineSDNode *
4730SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4731                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4732  SDVTList VTs = getVTList(VT1, VT2);
4733  SDValue Ops[] = { Op1, Op2 };
4734  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4735}
4736
4737MachineSDNode *
4738SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4739                             EVT VT1, EVT VT2, SDValue Op1,
4740                             SDValue Op2, SDValue Op3) {
4741  SDVTList VTs = getVTList(VT1, VT2);
4742  SDValue Ops[] = { Op1, Op2, Op3 };
4743  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4744}
4745
4746MachineSDNode *
4747SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4748                             EVT VT1, EVT VT2,
4749                             const SDValue *Ops, unsigned NumOps) {
4750  SDVTList VTs = getVTList(VT1, VT2);
4751  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4752}
4753
4754MachineSDNode *
4755SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4756                             EVT VT1, EVT VT2, EVT VT3,
4757                             SDValue Op1, SDValue Op2) {
4758  SDVTList VTs = getVTList(VT1, VT2, VT3);
4759  SDValue Ops[] = { Op1, Op2 };
4760  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4761}
4762
4763MachineSDNode *
4764SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4765                             EVT VT1, EVT VT2, EVT VT3,
4766                             SDValue Op1, SDValue Op2, SDValue Op3) {
4767  SDVTList VTs = getVTList(VT1, VT2, VT3);
4768  SDValue Ops[] = { Op1, Op2, Op3 };
4769  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4770}
4771
4772MachineSDNode *
4773SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4774                             EVT VT1, EVT VT2, EVT VT3,
4775                             const SDValue *Ops, unsigned NumOps) {
4776  SDVTList VTs = getVTList(VT1, VT2, VT3);
4777  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4778}
4779
4780MachineSDNode *
4781SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4782                             EVT VT2, EVT VT3, EVT VT4,
4783                             const SDValue *Ops, unsigned NumOps) {
4784  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4785  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4786}
4787
4788MachineSDNode *
4789SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4790                             const std::vector<EVT> &ResultTys,
4791                             const SDValue *Ops, unsigned NumOps) {
4792  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4793  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4794}
4795
4796MachineSDNode *
4797SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4798                             const SDValue *Ops, unsigned NumOps) {
4799  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4800  MachineSDNode *N;
4801  void *IP;
4802
4803  if (DoCSE) {
4804    FoldingSetNodeID ID;
4805    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4806    IP = 0;
4807    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4808      return cast<MachineSDNode>(E);
4809  }
4810
4811  // Allocate a new MachineSDNode.
4812  N = NodeAllocator.Allocate<MachineSDNode>();
4813  new (N) MachineSDNode(~Opcode, DL, VTs);
4814
4815  // Initialize the operands list.
4816  if (NumOps > array_lengthof(N->LocalOperands))
4817    // We're creating a final node that will live unmorphed for the
4818    // remainder of the current SelectionDAG iteration, so we can allocate
4819    // the operands directly out of a pool with no recycling metadata.
4820    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4821                    Ops, NumOps);
4822  else
4823    N->InitOperands(N->LocalOperands, Ops, NumOps);
4824  N->OperandsNeedDelete = false;
4825
4826  if (DoCSE)
4827    CSEMap.InsertNode(N, IP);
4828
4829  AllNodes.push_back(N);
4830#ifndef NDEBUG
4831  VerifyNode(N);
4832#endif
4833  return N;
4834}
4835
4836/// getTargetExtractSubreg - A convenience function for creating
4837/// TargetOpcode::EXTRACT_SUBREG nodes.
4838SDValue
4839SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4840                                     SDValue Operand) {
4841  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4842  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4843                                  VT, Operand, SRIdxVal);
4844  return SDValue(Subreg, 0);
4845}
4846
4847/// getTargetInsertSubreg - A convenience function for creating
4848/// TargetOpcode::INSERT_SUBREG nodes.
4849SDValue
4850SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4851                                    SDValue Operand, SDValue Subreg) {
4852  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4853  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4854                                  VT, Operand, Subreg, SRIdxVal);
4855  return SDValue(Result, 0);
4856}
4857
4858/// getNodeIfExists - Get the specified node if it's already available, or
4859/// else return NULL.
4860SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4861                                      const SDValue *Ops, unsigned NumOps) {
4862  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4863    FoldingSetNodeID ID;
4864    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4865    void *IP = 0;
4866    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4867      return E;
4868  }
4869  return NULL;
4870}
4871
4872/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4873/// This can cause recursive merging of nodes in the DAG.
4874///
4875/// This version assumes From has a single result value.
4876///
4877void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4878                                      DAGUpdateListener *UpdateListener) {
4879  SDNode *From = FromN.getNode();
4880  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4881         "Cannot replace with this method!");
4882  assert(From != To.getNode() && "Cannot replace uses of with self");
4883
4884  // Iterate over all the existing uses of From. New uses will be added
4885  // to the beginning of the use list, which we avoid visiting.
4886  // This specifically avoids visiting uses of From that arise while the
4887  // replacement is happening, because any such uses would be the result
4888  // of CSE: If an existing node looks like From after one of its operands
4889  // is replaced by To, we don't want to replace of all its users with To
4890  // too. See PR3018 for more info.
4891  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4892  while (UI != UE) {
4893    SDNode *User = *UI;
4894
4895    // This node is about to morph, remove its old self from the CSE maps.
4896    RemoveNodeFromCSEMaps(User);
4897
4898    // A user can appear in a use list multiple times, and when this
4899    // happens the uses are usually next to each other in the list.
4900    // To help reduce the number of CSE recomputations, process all
4901    // the uses of this user that we can find this way.
4902    do {
4903      SDUse &Use = UI.getUse();
4904      ++UI;
4905      Use.set(To);
4906    } while (UI != UE && *UI == User);
4907
4908    // Now that we have modified User, add it back to the CSE maps.  If it
4909    // already exists there, recursively merge the results together.
4910    AddModifiedNodeToCSEMaps(User, UpdateListener);
4911  }
4912}
4913
4914/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4915/// This can cause recursive merging of nodes in the DAG.
4916///
4917/// This version assumes that for each value of From, there is a
4918/// corresponding value in To in the same position with the same type.
4919///
4920void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4921                                      DAGUpdateListener *UpdateListener) {
4922#ifndef NDEBUG
4923  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4924    assert((!From->hasAnyUseOfValue(i) ||
4925            From->getValueType(i) == To->getValueType(i)) &&
4926           "Cannot use this version of ReplaceAllUsesWith!");
4927#endif
4928
4929  // Handle the trivial case.
4930  if (From == To)
4931    return;
4932
4933  // Iterate over just the existing users of From. See the comments in
4934  // the ReplaceAllUsesWith above.
4935  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4936  while (UI != UE) {
4937    SDNode *User = *UI;
4938
4939    // This node is about to morph, remove its old self from the CSE maps.
4940    RemoveNodeFromCSEMaps(User);
4941
4942    // A user can appear in a use list multiple times, and when this
4943    // happens the uses are usually next to each other in the list.
4944    // To help reduce the number of CSE recomputations, process all
4945    // the uses of this user that we can find this way.
4946    do {
4947      SDUse &Use = UI.getUse();
4948      ++UI;
4949      Use.setNode(To);
4950    } while (UI != UE && *UI == User);
4951
4952    // Now that we have modified User, add it back to the CSE maps.  If it
4953    // already exists there, recursively merge the results together.
4954    AddModifiedNodeToCSEMaps(User, UpdateListener);
4955  }
4956}
4957
4958/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4959/// This can cause recursive merging of nodes in the DAG.
4960///
4961/// This version can replace From with any result values.  To must match the
4962/// number and types of values returned by From.
4963void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4964                                      const SDValue *To,
4965                                      DAGUpdateListener *UpdateListener) {
4966  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4967    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4968
4969  // Iterate over just the existing users of From. See the comments in
4970  // the ReplaceAllUsesWith above.
4971  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4972  while (UI != UE) {
4973    SDNode *User = *UI;
4974
4975    // This node is about to morph, remove its old self from the CSE maps.
4976    RemoveNodeFromCSEMaps(User);
4977
4978    // A user can appear in a use list multiple times, and when this
4979    // happens the uses are usually next to each other in the list.
4980    // To help reduce the number of CSE recomputations, process all
4981    // the uses of this user that we can find this way.
4982    do {
4983      SDUse &Use = UI.getUse();
4984      const SDValue &ToOp = To[Use.getResNo()];
4985      ++UI;
4986      Use.set(ToOp);
4987    } while (UI != UE && *UI == User);
4988
4989    // Now that we have modified User, add it back to the CSE maps.  If it
4990    // already exists there, recursively merge the results together.
4991    AddModifiedNodeToCSEMaps(User, UpdateListener);
4992  }
4993}
4994
4995/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4996/// uses of other values produced by From.getNode() alone.  The Deleted
4997/// vector is handled the same way as for ReplaceAllUsesWith.
4998void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4999                                             DAGUpdateListener *UpdateListener){
5000  // Handle the really simple, really trivial case efficiently.
5001  if (From == To) return;
5002
5003  // Handle the simple, trivial, case efficiently.
5004  if (From.getNode()->getNumValues() == 1) {
5005    ReplaceAllUsesWith(From, To, UpdateListener);
5006    return;
5007  }
5008
5009  // Iterate over just the existing users of From. See the comments in
5010  // the ReplaceAllUsesWith above.
5011  SDNode::use_iterator UI = From.getNode()->use_begin(),
5012                       UE = From.getNode()->use_end();
5013  while (UI != UE) {
5014    SDNode *User = *UI;
5015    bool UserRemovedFromCSEMaps = false;
5016
5017    // A user can appear in a use list multiple times, and when this
5018    // happens the uses are usually next to each other in the list.
5019    // To help reduce the number of CSE recomputations, process all
5020    // the uses of this user that we can find this way.
5021    do {
5022      SDUse &Use = UI.getUse();
5023
5024      // Skip uses of different values from the same node.
5025      if (Use.getResNo() != From.getResNo()) {
5026        ++UI;
5027        continue;
5028      }
5029
5030      // If this node hasn't been modified yet, it's still in the CSE maps,
5031      // so remove its old self from the CSE maps.
5032      if (!UserRemovedFromCSEMaps) {
5033        RemoveNodeFromCSEMaps(User);
5034        UserRemovedFromCSEMaps = true;
5035      }
5036
5037      ++UI;
5038      Use.set(To);
5039    } while (UI != UE && *UI == User);
5040
5041    // We are iterating over all uses of the From node, so if a use
5042    // doesn't use the specific value, no changes are made.
5043    if (!UserRemovedFromCSEMaps)
5044      continue;
5045
5046    // Now that we have modified User, add it back to the CSE maps.  If it
5047    // already exists there, recursively merge the results together.
5048    AddModifiedNodeToCSEMaps(User, UpdateListener);
5049  }
5050}
5051
5052namespace {
5053  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5054  /// to record information about a use.
5055  struct UseMemo {
5056    SDNode *User;
5057    unsigned Index;
5058    SDUse *Use;
5059  };
5060
5061  /// operator< - Sort Memos by User.
5062  bool operator<(const UseMemo &L, const UseMemo &R) {
5063    return (intptr_t)L.User < (intptr_t)R.User;
5064  }
5065}
5066
5067/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5068/// uses of other values produced by From.getNode() alone.  The same value
5069/// may appear in both the From and To list.  The Deleted vector is
5070/// handled the same way as for ReplaceAllUsesWith.
5071void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5072                                              const SDValue *To,
5073                                              unsigned Num,
5074                                              DAGUpdateListener *UpdateListener){
5075  // Handle the simple, trivial case efficiently.
5076  if (Num == 1)
5077    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5078
5079  // Read up all the uses and make records of them. This helps
5080  // processing new uses that are introduced during the
5081  // replacement process.
5082  SmallVector<UseMemo, 4> Uses;
5083  for (unsigned i = 0; i != Num; ++i) {
5084    unsigned FromResNo = From[i].getResNo();
5085    SDNode *FromNode = From[i].getNode();
5086    for (SDNode::use_iterator UI = FromNode->use_begin(),
5087         E = FromNode->use_end(); UI != E; ++UI) {
5088      SDUse &Use = UI.getUse();
5089      if (Use.getResNo() == FromResNo) {
5090        UseMemo Memo = { *UI, i, &Use };
5091        Uses.push_back(Memo);
5092      }
5093    }
5094  }
5095
5096  // Sort the uses, so that all the uses from a given User are together.
5097  std::sort(Uses.begin(), Uses.end());
5098
5099  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5100       UseIndex != UseIndexEnd; ) {
5101    // We know that this user uses some value of From.  If it is the right
5102    // value, update it.
5103    SDNode *User = Uses[UseIndex].User;
5104
5105    // This node is about to morph, remove its old self from the CSE maps.
5106    RemoveNodeFromCSEMaps(User);
5107
5108    // The Uses array is sorted, so all the uses for a given User
5109    // are next to each other in the list.
5110    // To help reduce the number of CSE recomputations, process all
5111    // the uses of this user that we can find this way.
5112    do {
5113      unsigned i = Uses[UseIndex].Index;
5114      SDUse &Use = *Uses[UseIndex].Use;
5115      ++UseIndex;
5116
5117      Use.set(To[i]);
5118    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5119
5120    // Now that we have modified User, add it back to the CSE maps.  If it
5121    // already exists there, recursively merge the results together.
5122    AddModifiedNodeToCSEMaps(User, UpdateListener);
5123  }
5124}
5125
5126/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5127/// based on their topological order. It returns the maximum id and a vector
5128/// of the SDNodes* in assigned order by reference.
5129unsigned SelectionDAG::AssignTopologicalOrder() {
5130
5131  unsigned DAGSize = 0;
5132
5133  // SortedPos tracks the progress of the algorithm. Nodes before it are
5134  // sorted, nodes after it are unsorted. When the algorithm completes
5135  // it is at the end of the list.
5136  allnodes_iterator SortedPos = allnodes_begin();
5137
5138  // Visit all the nodes. Move nodes with no operands to the front of
5139  // the list immediately. Annotate nodes that do have operands with their
5140  // operand count. Before we do this, the Node Id fields of the nodes
5141  // may contain arbitrary values. After, the Node Id fields for nodes
5142  // before SortedPos will contain the topological sort index, and the
5143  // Node Id fields for nodes At SortedPos and after will contain the
5144  // count of outstanding operands.
5145  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5146    SDNode *N = I++;
5147    checkForCycles(N);
5148    unsigned Degree = N->getNumOperands();
5149    if (Degree == 0) {
5150      // A node with no uses, add it to the result array immediately.
5151      N->setNodeId(DAGSize++);
5152      allnodes_iterator Q = N;
5153      if (Q != SortedPos)
5154        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5155      assert(SortedPos != AllNodes.end() && "Overran node list");
5156      ++SortedPos;
5157    } else {
5158      // Temporarily use the Node Id as scratch space for the degree count.
5159      N->setNodeId(Degree);
5160    }
5161  }
5162
5163  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5164  // such that by the time the end is reached all nodes will be sorted.
5165  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5166    SDNode *N = I;
5167    checkForCycles(N);
5168    // N is in sorted position, so all its uses have one less operand
5169    // that needs to be sorted.
5170    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5171         UI != UE; ++UI) {
5172      SDNode *P = *UI;
5173      unsigned Degree = P->getNodeId();
5174      assert(Degree != 0 && "Invalid node degree");
5175      --Degree;
5176      if (Degree == 0) {
5177        // All of P's operands are sorted, so P may sorted now.
5178        P->setNodeId(DAGSize++);
5179        if (P != SortedPos)
5180          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5181        assert(SortedPos != AllNodes.end() && "Overran node list");
5182        ++SortedPos;
5183      } else {
5184        // Update P's outstanding operand count.
5185        P->setNodeId(Degree);
5186      }
5187    }
5188    if (I == SortedPos) {
5189#ifndef NDEBUG
5190      SDNode *S = ++I;
5191      dbgs() << "Overran sorted position:\n";
5192      S->dumprFull();
5193#endif
5194      llvm_unreachable(0);
5195    }
5196  }
5197
5198  assert(SortedPos == AllNodes.end() &&
5199         "Topological sort incomplete!");
5200  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5201         "First node in topological sort is not the entry token!");
5202  assert(AllNodes.front().getNodeId() == 0 &&
5203         "First node in topological sort has non-zero id!");
5204  assert(AllNodes.front().getNumOperands() == 0 &&
5205         "First node in topological sort has operands!");
5206  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5207         "Last node in topologic sort has unexpected id!");
5208  assert(AllNodes.back().use_empty() &&
5209         "Last node in topologic sort has users!");
5210  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5211  return DAGSize;
5212}
5213
5214/// AssignOrdering - Assign an order to the SDNode.
5215void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5216  assert(SD && "Trying to assign an order to a null node!");
5217  Ordering->add(SD, Order);
5218}
5219
5220/// GetOrdering - Get the order for the SDNode.
5221unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5222  assert(SD && "Trying to get the order of a null node!");
5223  return Ordering->getOrder(SD);
5224}
5225
5226
5227//===----------------------------------------------------------------------===//
5228//                              SDNode Class
5229//===----------------------------------------------------------------------===//
5230
5231HandleSDNode::~HandleSDNode() {
5232  DropOperands();
5233}
5234
5235GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5236                                         EVT VT, int64_t o, unsigned char TF)
5237  : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
5238    Offset(o), TargetFlags(TF) {
5239  TheGlobal = const_cast<GlobalValue*>(GA);
5240}
5241
5242MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5243                     MachineMemOperand *mmo)
5244 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5245  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5246                                      MMO->isNonTemporal());
5247  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5248  assert(isNonTemporal() == MMO->isNonTemporal() &&
5249         "Non-temporal encoding error!");
5250  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5251}
5252
5253MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5254                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5255                     MachineMemOperand *mmo)
5256   : SDNode(Opc, dl, VTs, Ops, NumOps),
5257     MemoryVT(memvt), MMO(mmo) {
5258  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5259                                      MMO->isNonTemporal());
5260  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5261  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5262}
5263
5264/// Profile - Gather unique data for the node.
5265///
5266void SDNode::Profile(FoldingSetNodeID &ID) const {
5267  AddNodeIDNode(ID, this);
5268}
5269
5270namespace {
5271  struct EVTArray {
5272    std::vector<EVT> VTs;
5273
5274    EVTArray() {
5275      VTs.reserve(MVT::LAST_VALUETYPE);
5276      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5277        VTs.push_back(MVT((MVT::SimpleValueType)i));
5278    }
5279  };
5280}
5281
5282static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5283static ManagedStatic<EVTArray> SimpleVTArray;
5284static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5285
5286/// getValueTypeList - Return a pointer to the specified value type.
5287///
5288const EVT *SDNode::getValueTypeList(EVT VT) {
5289  if (VT.isExtended()) {
5290    sys::SmartScopedLock<true> Lock(*VTMutex);
5291    return &(*EVTs->insert(VT).first);
5292  } else {
5293    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5294  }
5295}
5296
5297/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5298/// indicated value.  This method ignores uses of other values defined by this
5299/// operation.
5300bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5301  assert(Value < getNumValues() && "Bad value!");
5302
5303  // TODO: Only iterate over uses of a given value of the node
5304  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5305    if (UI.getUse().getResNo() == Value) {
5306      if (NUses == 0)
5307        return false;
5308      --NUses;
5309    }
5310  }
5311
5312  // Found exactly the right number of uses?
5313  return NUses == 0;
5314}
5315
5316
5317/// hasAnyUseOfValue - Return true if there are any use of the indicated
5318/// value. This method ignores uses of other values defined by this operation.
5319bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5320  assert(Value < getNumValues() && "Bad value!");
5321
5322  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5323    if (UI.getUse().getResNo() == Value)
5324      return true;
5325
5326  return false;
5327}
5328
5329
5330/// isOnlyUserOf - Return true if this node is the only use of N.
5331///
5332bool SDNode::isOnlyUserOf(SDNode *N) const {
5333  bool Seen = false;
5334  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5335    SDNode *User = *I;
5336    if (User == this)
5337      Seen = true;
5338    else
5339      return false;
5340  }
5341
5342  return Seen;
5343}
5344
5345/// isOperand - Return true if this node is an operand of N.
5346///
5347bool SDValue::isOperandOf(SDNode *N) const {
5348  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5349    if (*this == N->getOperand(i))
5350      return true;
5351  return false;
5352}
5353
5354bool SDNode::isOperandOf(SDNode *N) const {
5355  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5356    if (this == N->OperandList[i].getNode())
5357      return true;
5358  return false;
5359}
5360
5361/// reachesChainWithoutSideEffects - Return true if this operand (which must
5362/// be a chain) reaches the specified operand without crossing any
5363/// side-effecting instructions.  In practice, this looks through token
5364/// factors and non-volatile loads.  In order to remain efficient, this only
5365/// looks a couple of nodes in, it does not do an exhaustive search.
5366bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5367                                               unsigned Depth) const {
5368  if (*this == Dest) return true;
5369
5370  // Don't search too deeply, we just want to be able to see through
5371  // TokenFactor's etc.
5372  if (Depth == 0) return false;
5373
5374  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5375  // of the operands of the TF reach dest, then we can do the xform.
5376  if (getOpcode() == ISD::TokenFactor) {
5377    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5378      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5379        return true;
5380    return false;
5381  }
5382
5383  // Loads don't have side effects, look through them.
5384  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5385    if (!Ld->isVolatile())
5386      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5387  }
5388  return false;
5389}
5390
5391/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5392/// is either an operand of N or it can be reached by traversing up the operands.
5393/// NOTE: this is an expensive method. Use it carefully.
5394bool SDNode::isPredecessorOf(SDNode *N) const {
5395  SmallPtrSet<SDNode *, 32> Visited;
5396  SmallVector<SDNode *, 16> Worklist;
5397  Worklist.push_back(N);
5398
5399  do {
5400    N = Worklist.pop_back_val();
5401    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5402      SDNode *Op = N->getOperand(i).getNode();
5403      if (Op == this)
5404        return true;
5405      if (Visited.insert(Op))
5406        Worklist.push_back(Op);
5407    }
5408  } while (!Worklist.empty());
5409
5410  return false;
5411}
5412
5413uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5414  assert(Num < NumOperands && "Invalid child # of SDNode!");
5415  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5416}
5417
5418std::string SDNode::getOperationName(const SelectionDAG *G) const {
5419  switch (getOpcode()) {
5420  default:
5421    if (getOpcode() < ISD::BUILTIN_OP_END)
5422      return "<<Unknown DAG Node>>";
5423    if (isMachineOpcode()) {
5424      if (G)
5425        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5426          if (getMachineOpcode() < TII->getNumOpcodes())
5427            return TII->get(getMachineOpcode()).getName();
5428      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5429    }
5430    if (G) {
5431      const TargetLowering &TLI = G->getTargetLoweringInfo();
5432      const char *Name = TLI.getTargetNodeName(getOpcode());
5433      if (Name) return Name;
5434      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5435    }
5436    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5437
5438#ifndef NDEBUG
5439  case ISD::DELETED_NODE:
5440    return "<<Deleted Node!>>";
5441#endif
5442  case ISD::PREFETCH:      return "Prefetch";
5443  case ISD::MEMBARRIER:    return "MemBarrier";
5444  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5445  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5446  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5447  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5448  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5449  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5450  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5451  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5452  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5453  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5454  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5455  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5456  case ISD::PCMARKER:      return "PCMarker";
5457  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5458  case ISD::SRCVALUE:      return "SrcValue";
5459  case ISD::EntryToken:    return "EntryToken";
5460  case ISD::TokenFactor:   return "TokenFactor";
5461  case ISD::AssertSext:    return "AssertSext";
5462  case ISD::AssertZext:    return "AssertZext";
5463
5464  case ISD::BasicBlock:    return "BasicBlock";
5465  case ISD::VALUETYPE:     return "ValueType";
5466  case ISD::Register:      return "Register";
5467
5468  case ISD::Constant:      return "Constant";
5469  case ISD::ConstantFP:    return "ConstantFP";
5470  case ISD::GlobalAddress: return "GlobalAddress";
5471  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5472  case ISD::FrameIndex:    return "FrameIndex";
5473  case ISD::JumpTable:     return "JumpTable";
5474  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5475  case ISD::RETURNADDR: return "RETURNADDR";
5476  case ISD::FRAMEADDR: return "FRAMEADDR";
5477  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5478  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5479  case ISD::LSDAADDR: return "LSDAADDR";
5480  case ISD::EHSELECTION: return "EHSELECTION";
5481  case ISD::EH_RETURN: return "EH_RETURN";
5482  case ISD::ConstantPool:  return "ConstantPool";
5483  case ISD::ExternalSymbol: return "ExternalSymbol";
5484  case ISD::BlockAddress:  return "BlockAddress";
5485  case ISD::INTRINSIC_WO_CHAIN:
5486  case ISD::INTRINSIC_VOID:
5487  case ISD::INTRINSIC_W_CHAIN: {
5488    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5489    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5490    if (IID < Intrinsic::num_intrinsics)
5491      return Intrinsic::getName((Intrinsic::ID)IID);
5492    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5493      return TII->getName(IID);
5494    llvm_unreachable("Invalid intrinsic ID");
5495  }
5496
5497  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5498  case ISD::TargetConstant: return "TargetConstant";
5499  case ISD::TargetConstantFP:return "TargetConstantFP";
5500  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5501  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5502  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5503  case ISD::TargetJumpTable:  return "TargetJumpTable";
5504  case ISD::TargetConstantPool:  return "TargetConstantPool";
5505  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5506  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5507
5508  case ISD::CopyToReg:     return "CopyToReg";
5509  case ISD::CopyFromReg:   return "CopyFromReg";
5510  case ISD::UNDEF:         return "undef";
5511  case ISD::MERGE_VALUES:  return "merge_values";
5512  case ISD::INLINEASM:     return "inlineasm";
5513  case ISD::EH_LABEL:      return "eh_label";
5514  case ISD::HANDLENODE:    return "handlenode";
5515
5516  // Unary operators
5517  case ISD::FABS:   return "fabs";
5518  case ISD::FNEG:   return "fneg";
5519  case ISD::FSQRT:  return "fsqrt";
5520  case ISD::FSIN:   return "fsin";
5521  case ISD::FCOS:   return "fcos";
5522  case ISD::FPOWI:  return "fpowi";
5523  case ISD::FPOW:   return "fpow";
5524  case ISD::FTRUNC: return "ftrunc";
5525  case ISD::FFLOOR: return "ffloor";
5526  case ISD::FCEIL:  return "fceil";
5527  case ISD::FRINT:  return "frint";
5528  case ISD::FNEARBYINT: return "fnearbyint";
5529
5530  // Binary operators
5531  case ISD::ADD:    return "add";
5532  case ISD::SUB:    return "sub";
5533  case ISD::MUL:    return "mul";
5534  case ISD::MULHU:  return "mulhu";
5535  case ISD::MULHS:  return "mulhs";
5536  case ISD::SDIV:   return "sdiv";
5537  case ISD::UDIV:   return "udiv";
5538  case ISD::SREM:   return "srem";
5539  case ISD::UREM:   return "urem";
5540  case ISD::SMUL_LOHI:  return "smul_lohi";
5541  case ISD::UMUL_LOHI:  return "umul_lohi";
5542  case ISD::SDIVREM:    return "sdivrem";
5543  case ISD::UDIVREM:    return "udivrem";
5544  case ISD::AND:    return "and";
5545  case ISD::OR:     return "or";
5546  case ISD::XOR:    return "xor";
5547  case ISD::SHL:    return "shl";
5548  case ISD::SRA:    return "sra";
5549  case ISD::SRL:    return "srl";
5550  case ISD::ROTL:   return "rotl";
5551  case ISD::ROTR:   return "rotr";
5552  case ISD::FADD:   return "fadd";
5553  case ISD::FSUB:   return "fsub";
5554  case ISD::FMUL:   return "fmul";
5555  case ISD::FDIV:   return "fdiv";
5556  case ISD::FREM:   return "frem";
5557  case ISD::FCOPYSIGN: return "fcopysign";
5558  case ISD::FGETSIGN:  return "fgetsign";
5559
5560  case ISD::SETCC:       return "setcc";
5561  case ISD::VSETCC:      return "vsetcc";
5562  case ISD::SELECT:      return "select";
5563  case ISD::SELECT_CC:   return "select_cc";
5564  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5565  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5566  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5567  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5568  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5569  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5570  case ISD::CARRY_FALSE:         return "carry_false";
5571  case ISD::ADDC:        return "addc";
5572  case ISD::ADDE:        return "adde";
5573  case ISD::SADDO:       return "saddo";
5574  case ISD::UADDO:       return "uaddo";
5575  case ISD::SSUBO:       return "ssubo";
5576  case ISD::USUBO:       return "usubo";
5577  case ISD::SMULO:       return "smulo";
5578  case ISD::UMULO:       return "umulo";
5579  case ISD::SUBC:        return "subc";
5580  case ISD::SUBE:        return "sube";
5581  case ISD::SHL_PARTS:   return "shl_parts";
5582  case ISD::SRA_PARTS:   return "sra_parts";
5583  case ISD::SRL_PARTS:   return "srl_parts";
5584
5585  // Conversion operators.
5586  case ISD::SIGN_EXTEND: return "sign_extend";
5587  case ISD::ZERO_EXTEND: return "zero_extend";
5588  case ISD::ANY_EXTEND:  return "any_extend";
5589  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5590  case ISD::TRUNCATE:    return "truncate";
5591  case ISD::FP_ROUND:    return "fp_round";
5592  case ISD::FLT_ROUNDS_: return "flt_rounds";
5593  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5594  case ISD::FP_EXTEND:   return "fp_extend";
5595
5596  case ISD::SINT_TO_FP:  return "sint_to_fp";
5597  case ISD::UINT_TO_FP:  return "uint_to_fp";
5598  case ISD::FP_TO_SINT:  return "fp_to_sint";
5599  case ISD::FP_TO_UINT:  return "fp_to_uint";
5600  case ISD::BIT_CONVERT: return "bit_convert";
5601
5602  case ISD::CONVERT_RNDSAT: {
5603    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5604    default: llvm_unreachable("Unknown cvt code!");
5605    case ISD::CVT_FF:  return "cvt_ff";
5606    case ISD::CVT_FS:  return "cvt_fs";
5607    case ISD::CVT_FU:  return "cvt_fu";
5608    case ISD::CVT_SF:  return "cvt_sf";
5609    case ISD::CVT_UF:  return "cvt_uf";
5610    case ISD::CVT_SS:  return "cvt_ss";
5611    case ISD::CVT_SU:  return "cvt_su";
5612    case ISD::CVT_US:  return "cvt_us";
5613    case ISD::CVT_UU:  return "cvt_uu";
5614    }
5615  }
5616
5617    // Control flow instructions
5618  case ISD::BR:      return "br";
5619  case ISD::BRIND:   return "brind";
5620  case ISD::BR_JT:   return "br_jt";
5621  case ISD::BRCOND:  return "brcond";
5622  case ISD::BR_CC:   return "br_cc";
5623  case ISD::CALLSEQ_START:  return "callseq_start";
5624  case ISD::CALLSEQ_END:    return "callseq_end";
5625
5626    // Other operators
5627  case ISD::LOAD:               return "load";
5628  case ISD::STORE:              return "store";
5629  case ISD::VAARG:              return "vaarg";
5630  case ISD::VACOPY:             return "vacopy";
5631  case ISD::VAEND:              return "vaend";
5632  case ISD::VASTART:            return "vastart";
5633  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5634  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5635  case ISD::BUILD_PAIR:         return "build_pair";
5636  case ISD::STACKSAVE:          return "stacksave";
5637  case ISD::STACKRESTORE:       return "stackrestore";
5638  case ISD::TRAP:               return "trap";
5639
5640  // Bit manipulation
5641  case ISD::BSWAP:   return "bswap";
5642  case ISD::CTPOP:   return "ctpop";
5643  case ISD::CTTZ:    return "cttz";
5644  case ISD::CTLZ:    return "ctlz";
5645
5646  // Trampolines
5647  case ISD::TRAMPOLINE: return "trampoline";
5648
5649  case ISD::CONDCODE:
5650    switch (cast<CondCodeSDNode>(this)->get()) {
5651    default: llvm_unreachable("Unknown setcc condition!");
5652    case ISD::SETOEQ:  return "setoeq";
5653    case ISD::SETOGT:  return "setogt";
5654    case ISD::SETOGE:  return "setoge";
5655    case ISD::SETOLT:  return "setolt";
5656    case ISD::SETOLE:  return "setole";
5657    case ISD::SETONE:  return "setone";
5658
5659    case ISD::SETO:    return "seto";
5660    case ISD::SETUO:   return "setuo";
5661    case ISD::SETUEQ:  return "setue";
5662    case ISD::SETUGT:  return "setugt";
5663    case ISD::SETUGE:  return "setuge";
5664    case ISD::SETULT:  return "setult";
5665    case ISD::SETULE:  return "setule";
5666    case ISD::SETUNE:  return "setune";
5667
5668    case ISD::SETEQ:   return "seteq";
5669    case ISD::SETGT:   return "setgt";
5670    case ISD::SETGE:   return "setge";
5671    case ISD::SETLT:   return "setlt";
5672    case ISD::SETLE:   return "setle";
5673    case ISD::SETNE:   return "setne";
5674    }
5675  }
5676}
5677
5678const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5679  switch (AM) {
5680  default:
5681    return "";
5682  case ISD::PRE_INC:
5683    return "<pre-inc>";
5684  case ISD::PRE_DEC:
5685    return "<pre-dec>";
5686  case ISD::POST_INC:
5687    return "<post-inc>";
5688  case ISD::POST_DEC:
5689    return "<post-dec>";
5690  }
5691}
5692
5693std::string ISD::ArgFlagsTy::getArgFlagsString() {
5694  std::string S = "< ";
5695
5696  if (isZExt())
5697    S += "zext ";
5698  if (isSExt())
5699    S += "sext ";
5700  if (isInReg())
5701    S += "inreg ";
5702  if (isSRet())
5703    S += "sret ";
5704  if (isByVal())
5705    S += "byval ";
5706  if (isNest())
5707    S += "nest ";
5708  if (getByValAlign())
5709    S += "byval-align:" + utostr(getByValAlign()) + " ";
5710  if (getOrigAlign())
5711    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5712  if (getByValSize())
5713    S += "byval-size:" + utostr(getByValSize()) + " ";
5714  return S + ">";
5715}
5716
5717void SDNode::dump() const { dump(0); }
5718void SDNode::dump(const SelectionDAG *G) const {
5719  print(dbgs(), G);
5720}
5721
5722void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5723  OS << (void*)this << ": ";
5724
5725  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5726    if (i) OS << ",";
5727    if (getValueType(i) == MVT::Other)
5728      OS << "ch";
5729    else
5730      OS << getValueType(i).getEVTString();
5731  }
5732  OS << " = " << getOperationName(G);
5733}
5734
5735void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5736  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5737    if (!MN->memoperands_empty()) {
5738      OS << "<";
5739      OS << "Mem:";
5740      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5741           e = MN->memoperands_end(); i != e; ++i) {
5742        OS << **i;
5743        if (next(i) != e)
5744          OS << " ";
5745      }
5746      OS << ">";
5747    }
5748  } else if (const ShuffleVectorSDNode *SVN =
5749               dyn_cast<ShuffleVectorSDNode>(this)) {
5750    OS << "<";
5751    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5752      int Idx = SVN->getMaskElt(i);
5753      if (i) OS << ",";
5754      if (Idx < 0)
5755        OS << "u";
5756      else
5757        OS << Idx;
5758    }
5759    OS << ">";
5760  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5761    OS << '<' << CSDN->getAPIntValue() << '>';
5762  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5763    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5764      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5765    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5766      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5767    else {
5768      OS << "<APFloat(";
5769      CSDN->getValueAPF().bitcastToAPInt().dump();
5770      OS << ")>";
5771    }
5772  } else if (const GlobalAddressSDNode *GADN =
5773             dyn_cast<GlobalAddressSDNode>(this)) {
5774    int64_t offset = GADN->getOffset();
5775    OS << '<';
5776    WriteAsOperand(OS, GADN->getGlobal());
5777    OS << '>';
5778    if (offset > 0)
5779      OS << " + " << offset;
5780    else
5781      OS << " " << offset;
5782    if (unsigned int TF = GADN->getTargetFlags())
5783      OS << " [TF=" << TF << ']';
5784  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5785    OS << "<" << FIDN->getIndex() << ">";
5786  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5787    OS << "<" << JTDN->getIndex() << ">";
5788    if (unsigned int TF = JTDN->getTargetFlags())
5789      OS << " [TF=" << TF << ']';
5790  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5791    int offset = CP->getOffset();
5792    if (CP->isMachineConstantPoolEntry())
5793      OS << "<" << *CP->getMachineCPVal() << ">";
5794    else
5795      OS << "<" << *CP->getConstVal() << ">";
5796    if (offset > 0)
5797      OS << " + " << offset;
5798    else
5799      OS << " " << offset;
5800    if (unsigned int TF = CP->getTargetFlags())
5801      OS << " [TF=" << TF << ']';
5802  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5803    OS << "<";
5804    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5805    if (LBB)
5806      OS << LBB->getName() << " ";
5807    OS << (const void*)BBDN->getBasicBlock() << ">";
5808  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5809    if (G && R->getReg() &&
5810        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5811      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5812    } else {
5813      OS << " %reg" << R->getReg();
5814    }
5815  } else if (const ExternalSymbolSDNode *ES =
5816             dyn_cast<ExternalSymbolSDNode>(this)) {
5817    OS << "'" << ES->getSymbol() << "'";
5818    if (unsigned int TF = ES->getTargetFlags())
5819      OS << " [TF=" << TF << ']';
5820  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5821    if (M->getValue())
5822      OS << "<" << M->getValue() << ">";
5823    else
5824      OS << "<null>";
5825  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5826    OS << ":" << N->getVT().getEVTString();
5827  }
5828  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5829    OS << "<" << *LD->getMemOperand();
5830
5831    bool doExt = true;
5832    switch (LD->getExtensionType()) {
5833    default: doExt = false; break;
5834    case ISD::EXTLOAD: OS << ", anyext"; break;
5835    case ISD::SEXTLOAD: OS << ", sext"; break;
5836    case ISD::ZEXTLOAD: OS << ", zext"; break;
5837    }
5838    if (doExt)
5839      OS << " from " << LD->getMemoryVT().getEVTString();
5840
5841    const char *AM = getIndexedModeName(LD->getAddressingMode());
5842    if (*AM)
5843      OS << ", " << AM;
5844
5845    OS << ">";
5846  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5847    OS << "<" << *ST->getMemOperand();
5848
5849    if (ST->isTruncatingStore())
5850      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5851
5852    const char *AM = getIndexedModeName(ST->getAddressingMode());
5853    if (*AM)
5854      OS << ", " << AM;
5855
5856    OS << ">";
5857  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5858    OS << "<" << *M->getMemOperand() << ">";
5859  } else if (const BlockAddressSDNode *BA =
5860               dyn_cast<BlockAddressSDNode>(this)) {
5861    OS << "<";
5862    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5863    OS << ", ";
5864    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
5865    OS << ">";
5866    if (unsigned int TF = BA->getTargetFlags())
5867      OS << " [TF=" << TF << ']';
5868  }
5869
5870  if (G)
5871    if (unsigned Order = G->GetOrdering(this))
5872      OS << " [ORD=" << Order << ']';
5873
5874  if (getNodeId() != -1)
5875    OS << " [ID=" << getNodeId() << ']';
5876}
5877
5878void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5879  print_types(OS, G);
5880  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5881    if (i) OS << ", "; else OS << " ";
5882    OS << (void*)getOperand(i).getNode();
5883    if (unsigned RN = getOperand(i).getResNo())
5884      OS << ":" << RN;
5885  }
5886  print_details(OS, G);
5887}
5888
5889static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
5890                                  const SelectionDAG *G, unsigned depth,
5891                                  unsigned indent)
5892{
5893  if (depth == 0)
5894    return;
5895
5896  OS.indent(indent);
5897
5898  N->print(OS, G);
5899
5900  if (depth < 1)
5901    return;
5902
5903  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5904    OS << '\n';
5905    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
5906  }
5907}
5908
5909void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
5910                            unsigned depth) const {
5911  printrWithDepthHelper(OS, this, G, depth, 0);
5912}
5913
5914void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
5915  // Don't print impossibly deep things.
5916  printrWithDepth(OS, G, 100);
5917}
5918
5919void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
5920  printrWithDepth(dbgs(), G, depth);
5921}
5922
5923void SDNode::dumprFull(const SelectionDAG *G) const {
5924  // Don't print impossibly deep things.
5925  dumprWithDepth(G, 100);
5926}
5927
5928static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5929  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5930    if (N->getOperand(i).getNode()->hasOneUse())
5931      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5932    else
5933      dbgs() << "\n" << std::string(indent+2, ' ')
5934           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5935
5936
5937  dbgs() << "\n";
5938  dbgs().indent(indent);
5939  N->dump(G);
5940}
5941
5942SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
5943  assert(N->getNumValues() == 1 &&
5944         "Can't unroll a vector with multiple results!");
5945
5946  EVT VT = N->getValueType(0);
5947  unsigned NE = VT.getVectorNumElements();
5948  EVT EltVT = VT.getVectorElementType();
5949  DebugLoc dl = N->getDebugLoc();
5950
5951  SmallVector<SDValue, 8> Scalars;
5952  SmallVector<SDValue, 4> Operands(N->getNumOperands());
5953
5954  // If ResNE is 0, fully unroll the vector op.
5955  if (ResNE == 0)
5956    ResNE = NE;
5957  else if (NE > ResNE)
5958    NE = ResNE;
5959
5960  unsigned i;
5961  for (i= 0; i != NE; ++i) {
5962    for (unsigned j = 0; j != N->getNumOperands(); ++j) {
5963      SDValue Operand = N->getOperand(j);
5964      EVT OperandVT = Operand.getValueType();
5965      if (OperandVT.isVector()) {
5966        // A vector operand; extract a single element.
5967        EVT OperandEltVT = OperandVT.getVectorElementType();
5968        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
5969                              OperandEltVT,
5970                              Operand,
5971                              getConstant(i, MVT::i32));
5972      } else {
5973        // A scalar operand; just use it as is.
5974        Operands[j] = Operand;
5975      }
5976    }
5977
5978    switch (N->getOpcode()) {
5979    default:
5980      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
5981                                &Operands[0], Operands.size()));
5982      break;
5983    case ISD::SHL:
5984    case ISD::SRA:
5985    case ISD::SRL:
5986    case ISD::ROTL:
5987    case ISD::ROTR:
5988      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
5989                                getShiftAmountOperand(Operands[1])));
5990      break;
5991    case ISD::SIGN_EXTEND_INREG:
5992    case ISD::FP_ROUND_INREG: {
5993      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
5994      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
5995                                Operands[0],
5996                                getValueType(ExtVT)));
5997    }
5998    }
5999  }
6000
6001  for (; i < ResNE; ++i)
6002    Scalars.push_back(getUNDEF(EltVT));
6003
6004  return getNode(ISD::BUILD_VECTOR, dl,
6005                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6006                 &Scalars[0], Scalars.size());
6007}
6008
6009
6010/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6011/// location that is 'Dist' units away from the location that the 'Base' load
6012/// is loading from.
6013bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6014                                     unsigned Bytes, int Dist) const {
6015  if (LD->getChain() != Base->getChain())
6016    return false;
6017  EVT VT = LD->getValueType(0);
6018  if (VT.getSizeInBits() / 8 != Bytes)
6019    return false;
6020
6021  SDValue Loc = LD->getOperand(1);
6022  SDValue BaseLoc = Base->getOperand(1);
6023  if (Loc.getOpcode() == ISD::FrameIndex) {
6024    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6025      return false;
6026    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6027    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6028    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6029    int FS  = MFI->getObjectSize(FI);
6030    int BFS = MFI->getObjectSize(BFI);
6031    if (FS != BFS || FS != (int)Bytes) return false;
6032    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6033  }
6034  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6035    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6036    if (V && (V->getSExtValue() == Dist*Bytes))
6037      return true;
6038  }
6039
6040  GlobalValue *GV1 = NULL;
6041  GlobalValue *GV2 = NULL;
6042  int64_t Offset1 = 0;
6043  int64_t Offset2 = 0;
6044  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6045  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6046  if (isGA1 && isGA2 && GV1 == GV2)
6047    return Offset1 == (Offset2 + Dist*Bytes);
6048  return false;
6049}
6050
6051
6052/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6053/// it cannot be inferred.
6054unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6055  // If this is a GlobalAddress + cst, return the alignment.
6056  GlobalValue *GV;
6057  int64_t GVOffset = 0;
6058  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset))
6059    return MinAlign(GV->getAlignment(), GVOffset);
6060
6061  // If this is a direct reference to a stack slot, use information about the
6062  // stack slot's alignment.
6063  int FrameIdx = 1 << 31;
6064  int64_t FrameOffset = 0;
6065  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6066    FrameIdx = FI->getIndex();
6067  } else if (Ptr.getOpcode() == ISD::ADD &&
6068             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6069             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6070    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6071    FrameOffset = Ptr.getConstantOperandVal(1);
6072  }
6073
6074  if (FrameIdx != (1 << 31)) {
6075    // FIXME: Handle FI+CST.
6076    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6077    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6078                                    FrameOffset);
6079    if (MFI.isFixedObjectIndex(FrameIdx)) {
6080      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6081
6082      // The alignment of the frame index can be determined from its offset from
6083      // the incoming frame position.  If the frame object is at offset 32 and
6084      // the stack is guaranteed to be 16-byte aligned, then we know that the
6085      // object is 16-byte aligned.
6086      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6087      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6088
6089      // Finally, the frame object itself may have a known alignment.  Factor
6090      // the alignment + offset into a new alignment.  For example, if we know
6091      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6092      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6093      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6094      return std::max(Align, FIInfoAlign);
6095    }
6096    return FIInfoAlign;
6097  }
6098
6099  return 0;
6100}
6101
6102void SelectionDAG::dump() const {
6103  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6104
6105  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6106       I != E; ++I) {
6107    const SDNode *N = I;
6108    if (!N->hasOneUse() && N != getRoot().getNode())
6109      DumpNodes(N, 2, this);
6110  }
6111
6112  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6113
6114  dbgs() << "\n\n";
6115}
6116
6117void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6118  print_types(OS, G);
6119  print_details(OS, G);
6120}
6121
6122typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6123static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6124                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6125  if (!once.insert(N))          // If we've been here before, return now.
6126    return;
6127
6128  // Dump the current SDNode, but don't end the line yet.
6129  OS << std::string(indent, ' ');
6130  N->printr(OS, G);
6131
6132  // Having printed this SDNode, walk the children:
6133  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6134    const SDNode *child = N->getOperand(i).getNode();
6135
6136    if (i) OS << ",";
6137    OS << " ";
6138
6139    if (child->getNumOperands() == 0) {
6140      // This child has no grandchildren; print it inline right here.
6141      child->printr(OS, G);
6142      once.insert(child);
6143    } else {         // Just the address. FIXME: also print the child's opcode.
6144      OS << (void*)child;
6145      if (unsigned RN = N->getOperand(i).getResNo())
6146        OS << ":" << RN;
6147    }
6148  }
6149
6150  OS << "\n";
6151
6152  // Dump children that have grandchildren on their own line(s).
6153  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6154    const SDNode *child = N->getOperand(i).getNode();
6155    DumpNodesr(OS, child, indent+2, G, once);
6156  }
6157}
6158
6159void SDNode::dumpr() const {
6160  VisitedSDNodeSet once;
6161  DumpNodesr(dbgs(), this, 0, 0, once);
6162}
6163
6164void SDNode::dumpr(const SelectionDAG *G) const {
6165  VisitedSDNodeSet once;
6166  DumpNodesr(dbgs(), this, 0, G, once);
6167}
6168
6169
6170// getAddressSpace - Return the address space this GlobalAddress belongs to.
6171unsigned GlobalAddressSDNode::getAddressSpace() const {
6172  return getGlobal()->getType()->getAddressSpace();
6173}
6174
6175
6176const Type *ConstantPoolSDNode::getType() const {
6177  if (isMachineConstantPoolEntry())
6178    return Val.MachineCPVal->getType();
6179  return Val.ConstVal->getType();
6180}
6181
6182bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6183                                        APInt &SplatUndef,
6184                                        unsigned &SplatBitSize,
6185                                        bool &HasAnyUndefs,
6186                                        unsigned MinSplatBits,
6187                                        bool isBigEndian) {
6188  EVT VT = getValueType(0);
6189  assert(VT.isVector() && "Expected a vector type");
6190  unsigned sz = VT.getSizeInBits();
6191  if (MinSplatBits > sz)
6192    return false;
6193
6194  SplatValue = APInt(sz, 0);
6195  SplatUndef = APInt(sz, 0);
6196
6197  // Get the bits.  Bits with undefined values (when the corresponding element
6198  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6199  // in SplatValue.  If any of the values are not constant, give up and return
6200  // false.
6201  unsigned int nOps = getNumOperands();
6202  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6203  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6204
6205  for (unsigned j = 0; j < nOps; ++j) {
6206    unsigned i = isBigEndian ? nOps-1-j : j;
6207    SDValue OpVal = getOperand(i);
6208    unsigned BitPos = j * EltBitSize;
6209
6210    if (OpVal.getOpcode() == ISD::UNDEF)
6211      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6212    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6213      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6214                     zextOrTrunc(sz) << BitPos);
6215    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6216      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6217     else
6218      return false;
6219  }
6220
6221  // The build_vector is all constants or undefs.  Find the smallest element
6222  // size that splats the vector.
6223
6224  HasAnyUndefs = (SplatUndef != 0);
6225  while (sz > 8) {
6226
6227    unsigned HalfSize = sz / 2;
6228    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6229    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6230    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6231    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6232
6233    // If the two halves do not match (ignoring undef bits), stop here.
6234    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6235        MinSplatBits > HalfSize)
6236      break;
6237
6238    SplatValue = HighValue | LowValue;
6239    SplatUndef = HighUndef & LowUndef;
6240
6241    sz = HalfSize;
6242  }
6243
6244  SplatBitSize = sz;
6245  return true;
6246}
6247
6248bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6249  // Find the first non-undef value in the shuffle mask.
6250  unsigned i, e;
6251  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6252    /* search */;
6253
6254  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6255
6256  // Make sure all remaining elements are either undef or the same as the first
6257  // non-undef value.
6258  for (int Idx = Mask[i]; i != e; ++i)
6259    if (Mask[i] >= 0 && Mask[i] != Idx)
6260      return false;
6261  return true;
6262}
6263
6264#ifdef XDEBUG
6265static void checkForCyclesHelper(const SDNode *N,
6266                                 SmallPtrSet<const SDNode*, 32> &Visited,
6267                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6268  // If this node has already been checked, don't check it again.
6269  if (Checked.count(N))
6270    return;
6271
6272  // If a node has already been visited on this depth-first walk, reject it as
6273  // a cycle.
6274  if (!Visited.insert(N)) {
6275    dbgs() << "Offending node:\n";
6276    N->dumprFull();
6277    errs() << "Detected cycle in SelectionDAG\n";
6278    abort();
6279  }
6280
6281  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6282    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6283
6284  Checked.insert(N);
6285  Visited.erase(N);
6286}
6287#endif
6288
6289void llvm::checkForCycles(const llvm::SDNode *N) {
6290#ifdef XDEBUG
6291  assert(N && "Checking nonexistant SDNode");
6292  SmallPtrSet<const SDNode*, 32> visited;
6293  SmallPtrSet<const SDNode*, 32> checked;
6294  checkForCyclesHelper(N, visited, checked);
6295#endif
6296}
6297
6298void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6299  checkForCycles(DAG->getRoot().getNode());
6300}
6301