SelectionDAG.cpp revision b7ba5e6f47d281d3cab5bf448ca347bbea2247c1
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/ValueTracking.h"
19#include "llvm/Function.h"
20#include "llvm/GlobalAlias.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Intrinsics.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Assembly/Writer.h"
25#include "llvm/CallingConv.h"
26#include "llvm/CodeGen/MachineBasicBlock.h"
27#include "llvm/CodeGen/MachineConstantPool.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/PseudoSourceValue.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Target/TargetFrameInfo.h"
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetIntrinsicInfo.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/ManagedStatic.h"
43#include "llvm/Support/MathExtras.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/System/Mutex.h"
46#include "llvm/ADT/SetVector.h"
47#include "llvm/ADT/SmallPtrSet.h"
48#include "llvm/ADT/SmallSet.h"
49#include "llvm/ADT/SmallVector.h"
50#include "llvm/ADT/StringExtras.h"
51#include <algorithm>
52#include <cmath>
53using namespace llvm;
54
55/// makeVTList - Return an instance of the SDVTList struct initialized with the
56/// specified members.
57static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
58  SDVTList Res = {VTs, NumVTs};
59  return Res;
60}
61
62static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
63  switch (VT.getSimpleVT().SimpleTy) {
64  default: llvm_unreachable("Unknown FP format");
65  case MVT::f32:     return &APFloat::IEEEsingle;
66  case MVT::f64:     return &APFloat::IEEEdouble;
67  case MVT::f80:     return &APFloat::x87DoubleExtended;
68  case MVT::f128:    return &APFloat::IEEEquad;
69  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
70  }
71}
72
73SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
74
75//===----------------------------------------------------------------------===//
76//                              ConstantFPSDNode Class
77//===----------------------------------------------------------------------===//
78
79/// isExactlyValue - We don't rely on operator== working on double values, as
80/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
81/// As such, this method can be used to do an exact bit-for-bit comparison of
82/// two floating point values.
83bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
84  return getValueAPF().bitwiseIsEqual(V);
85}
86
87bool ConstantFPSDNode::isValueValidForType(EVT VT,
88                                           const APFloat& Val) {
89  assert(VT.isFloatingPoint() && "Can only convert between FP types");
90
91  // PPC long double cannot be converted to any other type.
92  if (VT == MVT::ppcf128 ||
93      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
94    return false;
95
96  // convert modifies in place, so make a copy.
97  APFloat Val2 = APFloat(Val);
98  bool losesInfo;
99  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
100                      &losesInfo);
101  return !losesInfo;
102}
103
104//===----------------------------------------------------------------------===//
105//                              ISD Namespace
106//===----------------------------------------------------------------------===//
107
108/// isBuildVectorAllOnes - Return true if the specified node is a
109/// BUILD_VECTOR where all of the elements are ~0 or undef.
110bool ISD::isBuildVectorAllOnes(const SDNode *N) {
111  // Look through a bit convert.
112  if (N->getOpcode() == ISD::BIT_CONVERT)
113    N = N->getOperand(0).getNode();
114
115  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
116
117  unsigned i = 0, e = N->getNumOperands();
118
119  // Skip over all of the undef values.
120  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
121    ++i;
122
123  // Do not accept an all-undef vector.
124  if (i == e) return false;
125
126  // Do not accept build_vectors that aren't all constants or which have non-~0
127  // elements.
128  SDValue NotZero = N->getOperand(i);
129  if (isa<ConstantSDNode>(NotZero)) {
130    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
131      return false;
132  } else if (isa<ConstantFPSDNode>(NotZero)) {
133    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
134                bitcastToAPInt().isAllOnesValue())
135      return false;
136  } else
137    return false;
138
139  // Okay, we have at least one ~0 value, check to see if the rest match or are
140  // undefs.
141  for (++i; i != e; ++i)
142    if (N->getOperand(i) != NotZero &&
143        N->getOperand(i).getOpcode() != ISD::UNDEF)
144      return false;
145  return true;
146}
147
148
149/// isBuildVectorAllZeros - Return true if the specified node is a
150/// BUILD_VECTOR where all of the elements are 0 or undef.
151bool ISD::isBuildVectorAllZeros(const SDNode *N) {
152  // Look through a bit convert.
153  if (N->getOpcode() == ISD::BIT_CONVERT)
154    N = N->getOperand(0).getNode();
155
156  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
157
158  unsigned i = 0, e = N->getNumOperands();
159
160  // Skip over all of the undef values.
161  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
162    ++i;
163
164  // Do not accept an all-undef vector.
165  if (i == e) return false;
166
167  // Do not accept build_vectors that aren't all constants or which have non-0
168  // elements.
169  SDValue Zero = N->getOperand(i);
170  if (isa<ConstantSDNode>(Zero)) {
171    if (!cast<ConstantSDNode>(Zero)->isNullValue())
172      return false;
173  } else if (isa<ConstantFPSDNode>(Zero)) {
174    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
175      return false;
176  } else
177    return false;
178
179  // Okay, we have at least one 0 value, check to see if the rest match or are
180  // undefs.
181  for (++i; i != e; ++i)
182    if (N->getOperand(i) != Zero &&
183        N->getOperand(i).getOpcode() != ISD::UNDEF)
184      return false;
185  return true;
186}
187
188/// isScalarToVector - Return true if the specified node is a
189/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
190/// element is not an undef.
191bool ISD::isScalarToVector(const SDNode *N) {
192  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
193    return true;
194
195  if (N->getOpcode() != ISD::BUILD_VECTOR)
196    return false;
197  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
198    return false;
199  unsigned NumElems = N->getNumOperands();
200  for (unsigned i = 1; i < NumElems; ++i) {
201    SDValue V = N->getOperand(i);
202    if (V.getOpcode() != ISD::UNDEF)
203      return false;
204  }
205  return true;
206}
207
208/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
209/// when given the operation for (X op Y).
210ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
211  // To perform this operation, we just need to swap the L and G bits of the
212  // operation.
213  unsigned OldL = (Operation >> 2) & 1;
214  unsigned OldG = (Operation >> 1) & 1;
215  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
216                       (OldL << 1) |       // New G bit
217                       (OldG << 2));       // New L bit.
218}
219
220/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
221/// 'op' is a valid SetCC operation.
222ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
223  unsigned Operation = Op;
224  if (isInteger)
225    Operation ^= 7;   // Flip L, G, E bits, but not U.
226  else
227    Operation ^= 15;  // Flip all of the condition bits.
228
229  if (Operation > ISD::SETTRUE2)
230    Operation &= ~8;  // Don't let N and U bits get set.
231
232  return ISD::CondCode(Operation);
233}
234
235
236/// isSignedOp - For an integer comparison, return 1 if the comparison is a
237/// signed operation and 2 if the result is an unsigned comparison.  Return zero
238/// if the operation does not depend on the sign of the input (setne and seteq).
239static int isSignedOp(ISD::CondCode Opcode) {
240  switch (Opcode) {
241  default: llvm_unreachable("Illegal integer setcc operation!");
242  case ISD::SETEQ:
243  case ISD::SETNE: return 0;
244  case ISD::SETLT:
245  case ISD::SETLE:
246  case ISD::SETGT:
247  case ISD::SETGE: return 1;
248  case ISD::SETULT:
249  case ISD::SETULE:
250  case ISD::SETUGT:
251  case ISD::SETUGE: return 2;
252  }
253}
254
255/// getSetCCOrOperation - Return the result of a logical OR between different
256/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
257/// returns SETCC_INVALID if it is not possible to represent the resultant
258/// comparison.
259ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
260                                       bool isInteger) {
261  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
262    // Cannot fold a signed integer setcc with an unsigned integer setcc.
263    return ISD::SETCC_INVALID;
264
265  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
266
267  // If the N and U bits get set then the resultant comparison DOES suddenly
268  // care about orderedness, and is true when ordered.
269  if (Op > ISD::SETTRUE2)
270    Op &= ~16;     // Clear the U bit if the N bit is set.
271
272  // Canonicalize illegal integer setcc's.
273  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
274    Op = ISD::SETNE;
275
276  return ISD::CondCode(Op);
277}
278
279/// getSetCCAndOperation - Return the result of a logical AND between different
280/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
281/// function returns zero if it is not possible to represent the resultant
282/// comparison.
283ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
284                                        bool isInteger) {
285  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
286    // Cannot fold a signed setcc with an unsigned setcc.
287    return ISD::SETCC_INVALID;
288
289  // Combine all of the condition bits.
290  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
291
292  // Canonicalize illegal integer setcc's.
293  if (isInteger) {
294    switch (Result) {
295    default: break;
296    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
297    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
298    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
299    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
300    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
301    }
302  }
303
304  return Result;
305}
306
307const TargetMachine &SelectionDAG::getTarget() const {
308  return MF->getTarget();
309}
310
311//===----------------------------------------------------------------------===//
312//                           SDNode Profile Support
313//===----------------------------------------------------------------------===//
314
315/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
316///
317static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
318  ID.AddInteger(OpC);
319}
320
321/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
322/// solely with their pointer.
323static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
324  ID.AddPointer(VTList.VTs);
325}
326
327/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
328///
329static void AddNodeIDOperands(FoldingSetNodeID &ID,
330                              const SDValue *Ops, unsigned NumOps) {
331  for (; NumOps; --NumOps, ++Ops) {
332    ID.AddPointer(Ops->getNode());
333    ID.AddInteger(Ops->getResNo());
334  }
335}
336
337/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
338///
339static void AddNodeIDOperands(FoldingSetNodeID &ID,
340                              const SDUse *Ops, unsigned NumOps) {
341  for (; NumOps; --NumOps, ++Ops) {
342    ID.AddPointer(Ops->getNode());
343    ID.AddInteger(Ops->getResNo());
344  }
345}
346
347static void AddNodeIDNode(FoldingSetNodeID &ID,
348                          unsigned short OpC, SDVTList VTList,
349                          const SDValue *OpList, unsigned N) {
350  AddNodeIDOpcode(ID, OpC);
351  AddNodeIDValueTypes(ID, VTList);
352  AddNodeIDOperands(ID, OpList, N);
353}
354
355/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
356/// the NodeID data.
357static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
358  switch (N->getOpcode()) {
359  case ISD::TargetExternalSymbol:
360  case ISD::ExternalSymbol:
361    llvm_unreachable("Should only be used on nodes with operands");
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::TargetConstant:
364  case ISD::Constant:
365    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
366    break;
367  case ISD::TargetConstantFP:
368  case ISD::ConstantFP: {
369    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
370    break;
371  }
372  case ISD::TargetGlobalAddress:
373  case ISD::GlobalAddress:
374  case ISD::TargetGlobalTLSAddress:
375  case ISD::GlobalTLSAddress: {
376    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
377    ID.AddPointer(GA->getGlobal());
378    ID.AddInteger(GA->getOffset());
379    ID.AddInteger(GA->getTargetFlags());
380    break;
381  }
382  case ISD::BasicBlock:
383    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
384    break;
385  case ISD::Register:
386    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
387    break;
388
389  case ISD::SRCVALUE:
390    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
391    break;
392  case ISD::FrameIndex:
393  case ISD::TargetFrameIndex:
394    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
395    break;
396  case ISD::JumpTable:
397  case ISD::TargetJumpTable:
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
399    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
400    break;
401  case ISD::ConstantPool:
402  case ISD::TargetConstantPool: {
403    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
404    ID.AddInteger(CP->getAlignment());
405    ID.AddInteger(CP->getOffset());
406    if (CP->isMachineConstantPoolEntry())
407      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
408    else
409      ID.AddPointer(CP->getConstVal());
410    ID.AddInteger(CP->getTargetFlags());
411    break;
412  }
413  case ISD::LOAD: {
414    const LoadSDNode *LD = cast<LoadSDNode>(N);
415    ID.AddInteger(LD->getMemoryVT().getRawBits());
416    ID.AddInteger(LD->getRawSubclassData());
417    break;
418  }
419  case ISD::STORE: {
420    const StoreSDNode *ST = cast<StoreSDNode>(N);
421    ID.AddInteger(ST->getMemoryVT().getRawBits());
422    ID.AddInteger(ST->getRawSubclassData());
423    break;
424  }
425  case ISD::ATOMIC_CMP_SWAP:
426  case ISD::ATOMIC_SWAP:
427  case ISD::ATOMIC_LOAD_ADD:
428  case ISD::ATOMIC_LOAD_SUB:
429  case ISD::ATOMIC_LOAD_AND:
430  case ISD::ATOMIC_LOAD_OR:
431  case ISD::ATOMIC_LOAD_XOR:
432  case ISD::ATOMIC_LOAD_NAND:
433  case ISD::ATOMIC_LOAD_MIN:
434  case ISD::ATOMIC_LOAD_MAX:
435  case ISD::ATOMIC_LOAD_UMIN:
436  case ISD::ATOMIC_LOAD_UMAX: {
437    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
438    ID.AddInteger(AT->getMemoryVT().getRawBits());
439    ID.AddInteger(AT->getRawSubclassData());
440    break;
441  }
442  case ISD::VECTOR_SHUFFLE: {
443    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
444    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
445         i != e; ++i)
446      ID.AddInteger(SVN->getMaskElt(i));
447    break;
448  }
449  case ISD::TargetBlockAddress:
450  case ISD::BlockAddress: {
451    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
452    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
453    break;
454  }
455  } // end switch (N->getOpcode())
456}
457
458/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
459/// data.
460static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
461  AddNodeIDOpcode(ID, N->getOpcode());
462  // Add the return value info.
463  AddNodeIDValueTypes(ID, N->getVTList());
464  // Add the operand info.
465  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
466
467  // Handle SDNode leafs with special info.
468  AddNodeIDCustom(ID, N);
469}
470
471/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
472/// the CSE map that carries volatility, temporalness, indexing mode, and
473/// extension/truncation information.
474///
475static inline unsigned
476encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
477                     bool isNonTemporal) {
478  assert((ConvType & 3) == ConvType &&
479         "ConvType may not require more than 2 bits!");
480  assert((AM & 7) == AM &&
481         "AM may not require more than 3 bits!");
482  return ConvType |
483         (AM << 2) |
484         (isVolatile << 5) |
485         (isNonTemporal << 6);
486}
487
488//===----------------------------------------------------------------------===//
489//                              SelectionDAG Class
490//===----------------------------------------------------------------------===//
491
492/// doNotCSE - Return true if CSE should not be performed for this node.
493static bool doNotCSE(SDNode *N) {
494  if (N->getValueType(0) == MVT::Flag)
495    return true; // Never CSE anything that produces a flag.
496
497  switch (N->getOpcode()) {
498  default: break;
499  case ISD::HANDLENODE:
500  case ISD::EH_LABEL:
501    return true;   // Never CSE these nodes.
502  }
503
504  // Check that remaining values produced are not flags.
505  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
506    if (N->getValueType(i) == MVT::Flag)
507      return true; // Never CSE anything that produces a flag.
508
509  return false;
510}
511
512/// RemoveDeadNodes - This method deletes all unreachable nodes in the
513/// SelectionDAG.
514void SelectionDAG::RemoveDeadNodes() {
515  // Create a dummy node (which is not added to allnodes), that adds a reference
516  // to the root node, preventing it from being deleted.
517  HandleSDNode Dummy(getRoot());
518
519  SmallVector<SDNode*, 128> DeadNodes;
520
521  // Add all obviously-dead nodes to the DeadNodes worklist.
522  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
523    if (I->use_empty())
524      DeadNodes.push_back(I);
525
526  RemoveDeadNodes(DeadNodes);
527
528  // If the root changed (e.g. it was a dead load, update the root).
529  setRoot(Dummy.getValue());
530}
531
532/// RemoveDeadNodes - This method deletes the unreachable nodes in the
533/// given list, and any nodes that become unreachable as a result.
534void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
535                                   DAGUpdateListener *UpdateListener) {
536
537  // Process the worklist, deleting the nodes and adding their uses to the
538  // worklist.
539  while (!DeadNodes.empty()) {
540    SDNode *N = DeadNodes.pop_back_val();
541
542    if (UpdateListener)
543      UpdateListener->NodeDeleted(N, 0);
544
545    // Take the node out of the appropriate CSE map.
546    RemoveNodeFromCSEMaps(N);
547
548    // Next, brutally remove the operand list.  This is safe to do, as there are
549    // no cycles in the graph.
550    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
551      SDUse &Use = *I++;
552      SDNode *Operand = Use.getNode();
553      Use.set(SDValue());
554
555      // Now that we removed this operand, see if there are no uses of it left.
556      if (Operand->use_empty())
557        DeadNodes.push_back(Operand);
558    }
559
560    DeallocateNode(N);
561  }
562}
563
564void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
565  SmallVector<SDNode*, 16> DeadNodes(1, N);
566  RemoveDeadNodes(DeadNodes, UpdateListener);
567}
568
569void SelectionDAG::DeleteNode(SDNode *N) {
570  // First take this out of the appropriate CSE map.
571  RemoveNodeFromCSEMaps(N);
572
573  // Finally, remove uses due to operands of this node, remove from the
574  // AllNodes list, and delete the node.
575  DeleteNodeNotInCSEMaps(N);
576}
577
578void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
579  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
580  assert(N->use_empty() && "Cannot delete a node that is not dead!");
581
582  // Drop all of the operands and decrement used node's use counts.
583  N->DropOperands();
584
585  DeallocateNode(N);
586}
587
588void SelectionDAG::DeallocateNode(SDNode *N) {
589  if (N->OperandsNeedDelete)
590    delete[] N->OperandList;
591
592  // Set the opcode to DELETED_NODE to help catch bugs when node
593  // memory is reallocated.
594  N->NodeType = ISD::DELETED_NODE;
595
596  NodeAllocator.Deallocate(AllNodes.remove(N));
597
598  // Remove the ordering of this node.
599  Ordering->remove(N);
600
601  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
602  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
603  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
604    DbgVals[i]->setIsInvalidated();
605}
606
607/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
608/// correspond to it.  This is useful when we're about to delete or repurpose
609/// the node.  We don't want future request for structurally identical nodes
610/// to return N anymore.
611bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
612  bool Erased = false;
613  switch (N->getOpcode()) {
614  case ISD::EntryToken:
615    llvm_unreachable("EntryToken should not be in CSEMaps!");
616    return false;
617  case ISD::HANDLENODE: return false;  // noop.
618  case ISD::CONDCODE:
619    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
620           "Cond code doesn't exist!");
621    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
622    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
623    break;
624  case ISD::ExternalSymbol:
625    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
626    break;
627  case ISD::TargetExternalSymbol: {
628    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
629    Erased = TargetExternalSymbols.erase(
630               std::pair<std::string,unsigned char>(ESN->getSymbol(),
631                                                    ESN->getTargetFlags()));
632    break;
633  }
634  case ISD::VALUETYPE: {
635    EVT VT = cast<VTSDNode>(N)->getVT();
636    if (VT.isExtended()) {
637      Erased = ExtendedValueTypeNodes.erase(VT);
638    } else {
639      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
640      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
641    }
642    break;
643  }
644  default:
645    // Remove it from the CSE Map.
646    Erased = CSEMap.RemoveNode(N);
647    break;
648  }
649#ifndef NDEBUG
650  // Verify that the node was actually in one of the CSE maps, unless it has a
651  // flag result (which cannot be CSE'd) or is one of the special cases that are
652  // not subject to CSE.
653  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
654      !N->isMachineOpcode() && !doNotCSE(N)) {
655    N->dump(this);
656    dbgs() << "\n";
657    llvm_unreachable("Node is not in map!");
658  }
659#endif
660  return Erased;
661}
662
663/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
664/// maps and modified in place. Add it back to the CSE maps, unless an identical
665/// node already exists, in which case transfer all its users to the existing
666/// node. This transfer can potentially trigger recursive merging.
667///
668void
669SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
670                                       DAGUpdateListener *UpdateListener) {
671  // For node types that aren't CSE'd, just act as if no identical node
672  // already exists.
673  if (!doNotCSE(N)) {
674    SDNode *Existing = CSEMap.GetOrInsertNode(N);
675    if (Existing != N) {
676      // If there was already an existing matching node, use ReplaceAllUsesWith
677      // to replace the dead one with the existing one.  This can cause
678      // recursive merging of other unrelated nodes down the line.
679      ReplaceAllUsesWith(N, Existing, UpdateListener);
680
681      // N is now dead.  Inform the listener if it exists and delete it.
682      if (UpdateListener)
683        UpdateListener->NodeDeleted(N, Existing);
684      DeleteNodeNotInCSEMaps(N);
685      return;
686    }
687  }
688
689  // If the node doesn't already exist, we updated it.  Inform a listener if
690  // it exists.
691  if (UpdateListener)
692    UpdateListener->NodeUpdated(N);
693}
694
695/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
696/// were replaced with those specified.  If this node is never memoized,
697/// return null, otherwise return a pointer to the slot it would take.  If a
698/// node already exists with these operands, the slot will be non-null.
699SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
700                                           void *&InsertPos) {
701  if (doNotCSE(N))
702    return 0;
703
704  SDValue Ops[] = { Op };
705  FoldingSetNodeID ID;
706  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
707  AddNodeIDCustom(ID, N);
708  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
709  return Node;
710}
711
712/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
713/// were replaced with those specified.  If this node is never memoized,
714/// return null, otherwise return a pointer to the slot it would take.  If a
715/// node already exists with these operands, the slot will be non-null.
716SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
717                                           SDValue Op1, SDValue Op2,
718                                           void *&InsertPos) {
719  if (doNotCSE(N))
720    return 0;
721
722  SDValue Ops[] = { Op1, Op2 };
723  FoldingSetNodeID ID;
724  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
725  AddNodeIDCustom(ID, N);
726  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
727  return Node;
728}
729
730
731/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
732/// were replaced with those specified.  If this node is never memoized,
733/// return null, otherwise return a pointer to the slot it would take.  If a
734/// node already exists with these operands, the slot will be non-null.
735SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
736                                           const SDValue *Ops,unsigned NumOps,
737                                           void *&InsertPos) {
738  if (doNotCSE(N))
739    return 0;
740
741  FoldingSetNodeID ID;
742  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
743  AddNodeIDCustom(ID, N);
744  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
745  return Node;
746}
747
748/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
749void SelectionDAG::VerifyNode(SDNode *N) {
750  switch (N->getOpcode()) {
751  default:
752    break;
753  case ISD::BUILD_PAIR: {
754    EVT VT = N->getValueType(0);
755    assert(N->getNumValues() == 1 && "Too many results!");
756    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
757           "Wrong return type!");
758    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
759    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
760           "Mismatched operand types!");
761    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
762           "Wrong operand type!");
763    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
764           "Wrong return type size");
765    break;
766  }
767  case ISD::BUILD_VECTOR: {
768    assert(N->getNumValues() == 1 && "Too many results!");
769    assert(N->getValueType(0).isVector() && "Wrong return type!");
770    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
771           "Wrong number of operands!");
772    EVT EltVT = N->getValueType(0).getVectorElementType();
773    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
774      assert((I->getValueType() == EltVT ||
775             (EltVT.isInteger() && I->getValueType().isInteger() &&
776              EltVT.bitsLE(I->getValueType()))) &&
777            "Wrong operand type!");
778    break;
779  }
780  }
781}
782
783/// getEVTAlignment - Compute the default alignment value for the
784/// given type.
785///
786unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
787  const Type *Ty = VT == MVT::iPTR ?
788                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
789                   VT.getTypeForEVT(*getContext());
790
791  return TLI.getTargetData()->getABITypeAlignment(Ty);
792}
793
794// EntryNode could meaningfully have debug info if we can find it...
795SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
796  : TLI(tli), FLI(fli),
797    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
798    Root(getEntryNode()), Ordering(0) {
799  AllNodes.push_back(&EntryNode);
800  Ordering = new SDNodeOrdering();
801  DbgInfo = new SDDbgInfo();
802}
803
804void SelectionDAG::init(MachineFunction &mf) {
805  MF = &mf;
806  Context = &mf.getFunction()->getContext();
807}
808
809SelectionDAG::~SelectionDAG() {
810  allnodes_clear();
811  delete Ordering;
812  DbgInfo->clear();
813  delete DbgInfo;
814}
815
816void SelectionDAG::allnodes_clear() {
817  assert(&*AllNodes.begin() == &EntryNode);
818  AllNodes.remove(AllNodes.begin());
819  while (!AllNodes.empty())
820    DeallocateNode(AllNodes.begin());
821}
822
823void SelectionDAG::clear() {
824  allnodes_clear();
825  OperandAllocator.Reset();
826  CSEMap.clear();
827
828  ExtendedValueTypeNodes.clear();
829  ExternalSymbols.clear();
830  TargetExternalSymbols.clear();
831  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
832            static_cast<CondCodeSDNode*>(0));
833  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
834            static_cast<SDNode*>(0));
835
836  EntryNode.UseList = 0;
837  AllNodes.push_back(&EntryNode);
838  Root = getEntryNode();
839  delete Ordering;
840  Ordering = new SDNodeOrdering();
841  DbgInfo->clear();
842  delete DbgInfo;
843  DbgInfo = new SDDbgInfo();
844}
845
846SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
847  return VT.bitsGT(Op.getValueType()) ?
848    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
849    getNode(ISD::TRUNCATE, DL, VT, Op);
850}
851
852SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
853  return VT.bitsGT(Op.getValueType()) ?
854    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
855    getNode(ISD::TRUNCATE, DL, VT, Op);
856}
857
858SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
859  assert(!VT.isVector() &&
860         "getZeroExtendInReg should use the vector element type instead of "
861         "the vector type!");
862  if (Op.getValueType() == VT) return Op;
863  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
864  APInt Imm = APInt::getLowBitsSet(BitWidth,
865                                   VT.getSizeInBits());
866  return getNode(ISD::AND, DL, Op.getValueType(), Op,
867                 getConstant(Imm, Op.getValueType()));
868}
869
870/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
871///
872SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
873  EVT EltVT = VT.getScalarType();
874  SDValue NegOne =
875    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
876  return getNode(ISD::XOR, DL, VT, Val, NegOne);
877}
878
879SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
880  EVT EltVT = VT.getScalarType();
881  assert((EltVT.getSizeInBits() >= 64 ||
882         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
883         "getConstant with a uint64_t value that doesn't fit in the type!");
884  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
885}
886
887SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
888  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
889}
890
891SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
892  assert(VT.isInteger() && "Cannot create FP integer constant!");
893
894  EVT EltVT = VT.getScalarType();
895  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
896         "APInt size does not match type size!");
897
898  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
899  FoldingSetNodeID ID;
900  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
901  ID.AddPointer(&Val);
902  void *IP = 0;
903  SDNode *N = NULL;
904  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
905    if (!VT.isVector())
906      return SDValue(N, 0);
907
908  if (!N) {
909    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
910    CSEMap.InsertNode(N, IP);
911    AllNodes.push_back(N);
912  }
913
914  SDValue Result(N, 0);
915  if (VT.isVector()) {
916    SmallVector<SDValue, 8> Ops;
917    Ops.assign(VT.getVectorNumElements(), Result);
918    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
919  }
920  return Result;
921}
922
923SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
924  return getConstant(Val, TLI.getPointerTy(), isTarget);
925}
926
927
928SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
929  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
930}
931
932SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
933  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
934
935  EVT EltVT = VT.getScalarType();
936
937  // Do the map lookup using the actual bit pattern for the floating point
938  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
939  // we don't have issues with SNANs.
940  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
941  FoldingSetNodeID ID;
942  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
943  ID.AddPointer(&V);
944  void *IP = 0;
945  SDNode *N = NULL;
946  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
947    if (!VT.isVector())
948      return SDValue(N, 0);
949
950  if (!N) {
951    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
952    CSEMap.InsertNode(N, IP);
953    AllNodes.push_back(N);
954  }
955
956  SDValue Result(N, 0);
957  if (VT.isVector()) {
958    SmallVector<SDValue, 8> Ops;
959    Ops.assign(VT.getVectorNumElements(), Result);
960    // FIXME DebugLoc info might be appropriate here
961    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
962  }
963  return Result;
964}
965
966SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
967  EVT EltVT = VT.getScalarType();
968  if (EltVT==MVT::f32)
969    return getConstantFP(APFloat((float)Val), VT, isTarget);
970  else
971    return getConstantFP(APFloat(Val), VT, isTarget);
972}
973
974SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
975                                       EVT VT, int64_t Offset,
976                                       bool isTargetGA,
977                                       unsigned char TargetFlags) {
978  assert((TargetFlags == 0 || isTargetGA) &&
979         "Cannot set target flags on target-independent globals");
980
981  // Truncate (with sign-extension) the offset value to the pointer size.
982  EVT PTy = TLI.getPointerTy();
983  unsigned BitWidth = PTy.getSizeInBits();
984  if (BitWidth < 64)
985    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
986
987  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
988  if (!GVar) {
989    // If GV is an alias then use the aliasee for determining thread-localness.
990    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
991      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
992  }
993
994  unsigned Opc;
995  if (GVar && GVar->isThreadLocal())
996    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
997  else
998    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
999
1000  FoldingSetNodeID ID;
1001  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1002  ID.AddPointer(GV);
1003  ID.AddInteger(Offset);
1004  ID.AddInteger(TargetFlags);
1005  void *IP = 0;
1006  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1007    return SDValue(E, 0);
1008
1009  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, GV, VT,
1010                                                      Offset, TargetFlags);
1011  CSEMap.InsertNode(N, IP);
1012  AllNodes.push_back(N);
1013  return SDValue(N, 0);
1014}
1015
1016SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1017  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1018  FoldingSetNodeID ID;
1019  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1020  ID.AddInteger(FI);
1021  void *IP = 0;
1022  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1023    return SDValue(E, 0);
1024
1025  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1026  CSEMap.InsertNode(N, IP);
1027  AllNodes.push_back(N);
1028  return SDValue(N, 0);
1029}
1030
1031SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1032                                   unsigned char TargetFlags) {
1033  assert((TargetFlags == 0 || isTarget) &&
1034         "Cannot set target flags on target-independent jump tables");
1035  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1036  FoldingSetNodeID ID;
1037  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1038  ID.AddInteger(JTI);
1039  ID.AddInteger(TargetFlags);
1040  void *IP = 0;
1041  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1042    return SDValue(E, 0);
1043
1044  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1045                                                  TargetFlags);
1046  CSEMap.InsertNode(N, IP);
1047  AllNodes.push_back(N);
1048  return SDValue(N, 0);
1049}
1050
1051SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1052                                      unsigned Alignment, int Offset,
1053                                      bool isTarget,
1054                                      unsigned char TargetFlags) {
1055  assert((TargetFlags == 0 || isTarget) &&
1056         "Cannot set target flags on target-independent globals");
1057  if (Alignment == 0)
1058    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1059  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1060  FoldingSetNodeID ID;
1061  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1062  ID.AddInteger(Alignment);
1063  ID.AddInteger(Offset);
1064  ID.AddPointer(C);
1065  ID.AddInteger(TargetFlags);
1066  void *IP = 0;
1067  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1068    return SDValue(E, 0);
1069
1070  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1071                                                     Alignment, TargetFlags);
1072  CSEMap.InsertNode(N, IP);
1073  AllNodes.push_back(N);
1074  return SDValue(N, 0);
1075}
1076
1077
1078SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1079                                      unsigned Alignment, int Offset,
1080                                      bool isTarget,
1081                                      unsigned char TargetFlags) {
1082  assert((TargetFlags == 0 || isTarget) &&
1083         "Cannot set target flags on target-independent globals");
1084  if (Alignment == 0)
1085    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1086  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1087  FoldingSetNodeID ID;
1088  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1089  ID.AddInteger(Alignment);
1090  ID.AddInteger(Offset);
1091  C->AddSelectionDAGCSEId(ID);
1092  ID.AddInteger(TargetFlags);
1093  void *IP = 0;
1094  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1095    return SDValue(E, 0);
1096
1097  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1098                                                     Alignment, TargetFlags);
1099  CSEMap.InsertNode(N, IP);
1100  AllNodes.push_back(N);
1101  return SDValue(N, 0);
1102}
1103
1104SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1105  FoldingSetNodeID ID;
1106  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1107  ID.AddPointer(MBB);
1108  void *IP = 0;
1109  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1110    return SDValue(E, 0);
1111
1112  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1113  CSEMap.InsertNode(N, IP);
1114  AllNodes.push_back(N);
1115  return SDValue(N, 0);
1116}
1117
1118SDValue SelectionDAG::getValueType(EVT VT) {
1119  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1120      ValueTypeNodes.size())
1121    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1122
1123  SDNode *&N = VT.isExtended() ?
1124    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1125
1126  if (N) return SDValue(N, 0);
1127  N = new (NodeAllocator) VTSDNode(VT);
1128  AllNodes.push_back(N);
1129  return SDValue(N, 0);
1130}
1131
1132SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1133  SDNode *&N = ExternalSymbols[Sym];
1134  if (N) return SDValue(N, 0);
1135  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1136  AllNodes.push_back(N);
1137  return SDValue(N, 0);
1138}
1139
1140SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1141                                              unsigned char TargetFlags) {
1142  SDNode *&N =
1143    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1144                                                               TargetFlags)];
1145  if (N) return SDValue(N, 0);
1146  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1147  AllNodes.push_back(N);
1148  return SDValue(N, 0);
1149}
1150
1151SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1152  if ((unsigned)Cond >= CondCodeNodes.size())
1153    CondCodeNodes.resize(Cond+1);
1154
1155  if (CondCodeNodes[Cond] == 0) {
1156    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1157    CondCodeNodes[Cond] = N;
1158    AllNodes.push_back(N);
1159  }
1160
1161  return SDValue(CondCodeNodes[Cond], 0);
1162}
1163
1164// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1165// the shuffle mask M that point at N1 to point at N2, and indices that point
1166// N2 to point at N1.
1167static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1168  std::swap(N1, N2);
1169  int NElts = M.size();
1170  for (int i = 0; i != NElts; ++i) {
1171    if (M[i] >= NElts)
1172      M[i] -= NElts;
1173    else if (M[i] >= 0)
1174      M[i] += NElts;
1175  }
1176}
1177
1178SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1179                                       SDValue N2, const int *Mask) {
1180  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1181  assert(VT.isVector() && N1.getValueType().isVector() &&
1182         "Vector Shuffle VTs must be a vectors");
1183  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1184         && "Vector Shuffle VTs must have same element type");
1185
1186  // Canonicalize shuffle undef, undef -> undef
1187  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1188    return getUNDEF(VT);
1189
1190  // Validate that all indices in Mask are within the range of the elements
1191  // input to the shuffle.
1192  unsigned NElts = VT.getVectorNumElements();
1193  SmallVector<int, 8> MaskVec;
1194  for (unsigned i = 0; i != NElts; ++i) {
1195    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1196    MaskVec.push_back(Mask[i]);
1197  }
1198
1199  // Canonicalize shuffle v, v -> v, undef
1200  if (N1 == N2) {
1201    N2 = getUNDEF(VT);
1202    for (unsigned i = 0; i != NElts; ++i)
1203      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1204  }
1205
1206  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1207  if (N1.getOpcode() == ISD::UNDEF)
1208    commuteShuffle(N1, N2, MaskVec);
1209
1210  // Canonicalize all index into lhs, -> shuffle lhs, undef
1211  // Canonicalize all index into rhs, -> shuffle rhs, undef
1212  bool AllLHS = true, AllRHS = true;
1213  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1214  for (unsigned i = 0; i != NElts; ++i) {
1215    if (MaskVec[i] >= (int)NElts) {
1216      if (N2Undef)
1217        MaskVec[i] = -1;
1218      else
1219        AllLHS = false;
1220    } else if (MaskVec[i] >= 0) {
1221      AllRHS = false;
1222    }
1223  }
1224  if (AllLHS && AllRHS)
1225    return getUNDEF(VT);
1226  if (AllLHS && !N2Undef)
1227    N2 = getUNDEF(VT);
1228  if (AllRHS) {
1229    N1 = getUNDEF(VT);
1230    commuteShuffle(N1, N2, MaskVec);
1231  }
1232
1233  // If Identity shuffle, or all shuffle in to undef, return that node.
1234  bool AllUndef = true;
1235  bool Identity = true;
1236  for (unsigned i = 0; i != NElts; ++i) {
1237    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1238    if (MaskVec[i] >= 0) AllUndef = false;
1239  }
1240  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1241    return N1;
1242  if (AllUndef)
1243    return getUNDEF(VT);
1244
1245  FoldingSetNodeID ID;
1246  SDValue Ops[2] = { N1, N2 };
1247  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1248  for (unsigned i = 0; i != NElts; ++i)
1249    ID.AddInteger(MaskVec[i]);
1250
1251  void* IP = 0;
1252  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1253    return SDValue(E, 0);
1254
1255  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1256  // SDNode doesn't have access to it.  This memory will be "leaked" when
1257  // the node is deallocated, but recovered when the NodeAllocator is released.
1258  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1259  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1260
1261  ShuffleVectorSDNode *N =
1262    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1263  CSEMap.InsertNode(N, IP);
1264  AllNodes.push_back(N);
1265  return SDValue(N, 0);
1266}
1267
1268SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1269                                       SDValue Val, SDValue DTy,
1270                                       SDValue STy, SDValue Rnd, SDValue Sat,
1271                                       ISD::CvtCode Code) {
1272  // If the src and dest types are the same and the conversion is between
1273  // integer types of the same sign or two floats, no conversion is necessary.
1274  if (DTy == STy &&
1275      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1276    return Val;
1277
1278  FoldingSetNodeID ID;
1279  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1280  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1281  void* IP = 0;
1282  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1283    return SDValue(E, 0);
1284
1285  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1286                                                           Code);
1287  CSEMap.InsertNode(N, IP);
1288  AllNodes.push_back(N);
1289  return SDValue(N, 0);
1290}
1291
1292SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1293  FoldingSetNodeID ID;
1294  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1295  ID.AddInteger(RegNo);
1296  void *IP = 0;
1297  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1298    return SDValue(E, 0);
1299
1300  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1301  CSEMap.InsertNode(N, IP);
1302  AllNodes.push_back(N);
1303  return SDValue(N, 0);
1304}
1305
1306SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1307  FoldingSetNodeID ID;
1308  SDValue Ops[] = { Root };
1309  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1310  ID.AddPointer(Label);
1311  void *IP = 0;
1312  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1313    return SDValue(E, 0);
1314
1315  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1316  CSEMap.InsertNode(N, IP);
1317  AllNodes.push_back(N);
1318  return SDValue(N, 0);
1319}
1320
1321
1322SDValue SelectionDAG::getBlockAddress(BlockAddress *BA, EVT VT,
1323                                      bool isTarget,
1324                                      unsigned char TargetFlags) {
1325  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1326
1327  FoldingSetNodeID ID;
1328  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1329  ID.AddPointer(BA);
1330  ID.AddInteger(TargetFlags);
1331  void *IP = 0;
1332  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1333    return SDValue(E, 0);
1334
1335  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1336  CSEMap.InsertNode(N, IP);
1337  AllNodes.push_back(N);
1338  return SDValue(N, 0);
1339}
1340
1341SDValue SelectionDAG::getSrcValue(const Value *V) {
1342  assert((!V || V->getType()->isPointerTy()) &&
1343         "SrcValue is not a pointer?");
1344
1345  FoldingSetNodeID ID;
1346  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1347  ID.AddPointer(V);
1348
1349  void *IP = 0;
1350  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1351    return SDValue(E, 0);
1352
1353  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1354  CSEMap.InsertNode(N, IP);
1355  AllNodes.push_back(N);
1356  return SDValue(N, 0);
1357}
1358
1359/// getShiftAmountOperand - Return the specified value casted to
1360/// the target's desired shift amount type.
1361SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1362  EVT OpTy = Op.getValueType();
1363  MVT ShTy = TLI.getShiftAmountTy();
1364  if (OpTy == ShTy || OpTy.isVector()) return Op;
1365
1366  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1367  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1368}
1369
1370/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1371/// specified value type.
1372SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1373  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1374  unsigned ByteSize = VT.getStoreSize();
1375  const Type *Ty = VT.getTypeForEVT(*getContext());
1376  unsigned StackAlign =
1377  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1378
1379  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1380  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1381}
1382
1383/// CreateStackTemporary - Create a stack temporary suitable for holding
1384/// either of the specified value types.
1385SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1386  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1387                            VT2.getStoreSizeInBits())/8;
1388  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1389  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1390  const TargetData *TD = TLI.getTargetData();
1391  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1392                            TD->getPrefTypeAlignment(Ty2));
1393
1394  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1395  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1396  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1397}
1398
1399SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1400                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1401  // These setcc operations always fold.
1402  switch (Cond) {
1403  default: break;
1404  case ISD::SETFALSE:
1405  case ISD::SETFALSE2: return getConstant(0, VT);
1406  case ISD::SETTRUE:
1407  case ISD::SETTRUE2:  return getConstant(1, VT);
1408
1409  case ISD::SETOEQ:
1410  case ISD::SETOGT:
1411  case ISD::SETOGE:
1412  case ISD::SETOLT:
1413  case ISD::SETOLE:
1414  case ISD::SETONE:
1415  case ISD::SETO:
1416  case ISD::SETUO:
1417  case ISD::SETUEQ:
1418  case ISD::SETUNE:
1419    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1420    break;
1421  }
1422
1423  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1424    const APInt &C2 = N2C->getAPIntValue();
1425    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1426      const APInt &C1 = N1C->getAPIntValue();
1427
1428      switch (Cond) {
1429      default: llvm_unreachable("Unknown integer setcc!");
1430      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1431      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1432      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1433      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1434      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1435      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1436      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1437      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1438      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1439      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1440      }
1441    }
1442  }
1443  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1444    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1445      // No compile time operations on this type yet.
1446      if (N1C->getValueType(0) == MVT::ppcf128)
1447        return SDValue();
1448
1449      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1450      switch (Cond) {
1451      default: break;
1452      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1453                          return getUNDEF(VT);
1454                        // fall through
1455      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1456      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1457                          return getUNDEF(VT);
1458                        // fall through
1459      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1460                                           R==APFloat::cmpLessThan, VT);
1461      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1462                          return getUNDEF(VT);
1463                        // fall through
1464      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1465      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1466                          return getUNDEF(VT);
1467                        // fall through
1468      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1469      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1470                          return getUNDEF(VT);
1471                        // fall through
1472      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1473                                           R==APFloat::cmpEqual, VT);
1474      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1475                          return getUNDEF(VT);
1476                        // fall through
1477      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1478                                           R==APFloat::cmpEqual, VT);
1479      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1480      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1481      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1482                                           R==APFloat::cmpEqual, VT);
1483      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1484      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1485                                           R==APFloat::cmpLessThan, VT);
1486      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1487                                           R==APFloat::cmpUnordered, VT);
1488      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1489      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1490      }
1491    } else {
1492      // Ensure that the constant occurs on the RHS.
1493      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1494    }
1495  }
1496
1497  // Could not fold it.
1498  return SDValue();
1499}
1500
1501/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1502/// use this predicate to simplify operations downstream.
1503bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1504  // This predicate is not safe for vector operations.
1505  if (Op.getValueType().isVector())
1506    return false;
1507
1508  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1509  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1510}
1511
1512/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1513/// this predicate to simplify operations downstream.  Mask is known to be zero
1514/// for bits that V cannot have.
1515bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1516                                     unsigned Depth) const {
1517  APInt KnownZero, KnownOne;
1518  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1519  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1520  return (KnownZero & Mask) == Mask;
1521}
1522
1523/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1524/// known to be either zero or one and return them in the KnownZero/KnownOne
1525/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1526/// processing.
1527void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1528                                     APInt &KnownZero, APInt &KnownOne,
1529                                     unsigned Depth) const {
1530  unsigned BitWidth = Mask.getBitWidth();
1531  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1532         "Mask size mismatches value type size!");
1533
1534  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1535  if (Depth == 6 || Mask == 0)
1536    return;  // Limit search depth.
1537
1538  APInt KnownZero2, KnownOne2;
1539
1540  switch (Op.getOpcode()) {
1541  case ISD::Constant:
1542    // We know all of the bits for a constant!
1543    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1544    KnownZero = ~KnownOne & Mask;
1545    return;
1546  case ISD::AND:
1547    // If either the LHS or the RHS are Zero, the result is zero.
1548    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1549    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1550                      KnownZero2, KnownOne2, Depth+1);
1551    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1552    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1553
1554    // Output known-1 bits are only known if set in both the LHS & RHS.
1555    KnownOne &= KnownOne2;
1556    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1557    KnownZero |= KnownZero2;
1558    return;
1559  case ISD::OR:
1560    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1561    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1562                      KnownZero2, KnownOne2, Depth+1);
1563    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1564    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1565
1566    // Output known-0 bits are only known if clear in both the LHS & RHS.
1567    KnownZero &= KnownZero2;
1568    // Output known-1 are known to be set if set in either the LHS | RHS.
1569    KnownOne |= KnownOne2;
1570    return;
1571  case ISD::XOR: {
1572    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1573    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1574    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1575    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1576
1577    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1578    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1579    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1580    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1581    KnownZero = KnownZeroOut;
1582    return;
1583  }
1584  case ISD::MUL: {
1585    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1586    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1587    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1588    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1589    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1590
1591    // If low bits are zero in either operand, output low known-0 bits.
1592    // Also compute a conserative estimate for high known-0 bits.
1593    // More trickiness is possible, but this is sufficient for the
1594    // interesting case of alignment computation.
1595    KnownOne.clear();
1596    unsigned TrailZ = KnownZero.countTrailingOnes() +
1597                      KnownZero2.countTrailingOnes();
1598    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1599                               KnownZero2.countLeadingOnes(),
1600                               BitWidth) - BitWidth;
1601
1602    TrailZ = std::min(TrailZ, BitWidth);
1603    LeadZ = std::min(LeadZ, BitWidth);
1604    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1605                APInt::getHighBitsSet(BitWidth, LeadZ);
1606    KnownZero &= Mask;
1607    return;
1608  }
1609  case ISD::UDIV: {
1610    // For the purposes of computing leading zeros we can conservatively
1611    // treat a udiv as a logical right shift by the power of 2 known to
1612    // be less than the denominator.
1613    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1614    ComputeMaskedBits(Op.getOperand(0),
1615                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1616    unsigned LeadZ = KnownZero2.countLeadingOnes();
1617
1618    KnownOne2.clear();
1619    KnownZero2.clear();
1620    ComputeMaskedBits(Op.getOperand(1),
1621                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1622    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1623    if (RHSUnknownLeadingOnes != BitWidth)
1624      LeadZ = std::min(BitWidth,
1625                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1626
1627    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1628    return;
1629  }
1630  case ISD::SELECT:
1631    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1632    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1633    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1634    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1635
1636    // Only known if known in both the LHS and RHS.
1637    KnownOne &= KnownOne2;
1638    KnownZero &= KnownZero2;
1639    return;
1640  case ISD::SELECT_CC:
1641    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1642    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1643    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1644    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1645
1646    // Only known if known in both the LHS and RHS.
1647    KnownOne &= KnownOne2;
1648    KnownZero &= KnownZero2;
1649    return;
1650  case ISD::SADDO:
1651  case ISD::UADDO:
1652  case ISD::SSUBO:
1653  case ISD::USUBO:
1654  case ISD::SMULO:
1655  case ISD::UMULO:
1656    if (Op.getResNo() != 1)
1657      return;
1658    // The boolean result conforms to getBooleanContents.  Fall through.
1659  case ISD::SETCC:
1660    // If we know the result of a setcc has the top bits zero, use this info.
1661    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1662        BitWidth > 1)
1663      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1664    return;
1665  case ISD::SHL:
1666    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1667    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1668      unsigned ShAmt = SA->getZExtValue();
1669
1670      // If the shift count is an invalid immediate, don't do anything.
1671      if (ShAmt >= BitWidth)
1672        return;
1673
1674      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1675                        KnownZero, KnownOne, Depth+1);
1676      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1677      KnownZero <<= ShAmt;
1678      KnownOne  <<= ShAmt;
1679      // low bits known zero.
1680      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1681    }
1682    return;
1683  case ISD::SRL:
1684    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1685    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1686      unsigned ShAmt = SA->getZExtValue();
1687
1688      // If the shift count is an invalid immediate, don't do anything.
1689      if (ShAmt >= BitWidth)
1690        return;
1691
1692      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1693                        KnownZero, KnownOne, Depth+1);
1694      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1695      KnownZero = KnownZero.lshr(ShAmt);
1696      KnownOne  = KnownOne.lshr(ShAmt);
1697
1698      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1699      KnownZero |= HighBits;  // High bits known zero.
1700    }
1701    return;
1702  case ISD::SRA:
1703    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1704      unsigned ShAmt = SA->getZExtValue();
1705
1706      // If the shift count is an invalid immediate, don't do anything.
1707      if (ShAmt >= BitWidth)
1708        return;
1709
1710      APInt InDemandedMask = (Mask << ShAmt);
1711      // If any of the demanded bits are produced by the sign extension, we also
1712      // demand the input sign bit.
1713      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1714      if (HighBits.getBoolValue())
1715        InDemandedMask |= APInt::getSignBit(BitWidth);
1716
1717      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1718                        Depth+1);
1719      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1720      KnownZero = KnownZero.lshr(ShAmt);
1721      KnownOne  = KnownOne.lshr(ShAmt);
1722
1723      // Handle the sign bits.
1724      APInt SignBit = APInt::getSignBit(BitWidth);
1725      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1726
1727      if (KnownZero.intersects(SignBit)) {
1728        KnownZero |= HighBits;  // New bits are known zero.
1729      } else if (KnownOne.intersects(SignBit)) {
1730        KnownOne  |= HighBits;  // New bits are known one.
1731      }
1732    }
1733    return;
1734  case ISD::SIGN_EXTEND_INREG: {
1735    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1736    unsigned EBits = EVT.getScalarType().getSizeInBits();
1737
1738    // Sign extension.  Compute the demanded bits in the result that are not
1739    // present in the input.
1740    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1741
1742    APInt InSignBit = APInt::getSignBit(EBits);
1743    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1744
1745    // If the sign extended bits are demanded, we know that the sign
1746    // bit is demanded.
1747    InSignBit.zext(BitWidth);
1748    if (NewBits.getBoolValue())
1749      InputDemandedBits |= InSignBit;
1750
1751    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1752                      KnownZero, KnownOne, Depth+1);
1753    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1754
1755    // If the sign bit of the input is known set or clear, then we know the
1756    // top bits of the result.
1757    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1758      KnownZero |= NewBits;
1759      KnownOne  &= ~NewBits;
1760    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1761      KnownOne  |= NewBits;
1762      KnownZero &= ~NewBits;
1763    } else {                              // Input sign bit unknown
1764      KnownZero &= ~NewBits;
1765      KnownOne  &= ~NewBits;
1766    }
1767    return;
1768  }
1769  case ISD::CTTZ:
1770  case ISD::CTLZ:
1771  case ISD::CTPOP: {
1772    unsigned LowBits = Log2_32(BitWidth)+1;
1773    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1774    KnownOne.clear();
1775    return;
1776  }
1777  case ISD::LOAD: {
1778    if (ISD::isZEXTLoad(Op.getNode())) {
1779      LoadSDNode *LD = cast<LoadSDNode>(Op);
1780      EVT VT = LD->getMemoryVT();
1781      unsigned MemBits = VT.getScalarType().getSizeInBits();
1782      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1783    }
1784    return;
1785  }
1786  case ISD::ZERO_EXTEND: {
1787    EVT InVT = Op.getOperand(0).getValueType();
1788    unsigned InBits = InVT.getScalarType().getSizeInBits();
1789    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1790    APInt InMask    = Mask;
1791    InMask.trunc(InBits);
1792    KnownZero.trunc(InBits);
1793    KnownOne.trunc(InBits);
1794    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1795    KnownZero.zext(BitWidth);
1796    KnownOne.zext(BitWidth);
1797    KnownZero |= NewBits;
1798    return;
1799  }
1800  case ISD::SIGN_EXTEND: {
1801    EVT InVT = Op.getOperand(0).getValueType();
1802    unsigned InBits = InVT.getScalarType().getSizeInBits();
1803    APInt InSignBit = APInt::getSignBit(InBits);
1804    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1805    APInt InMask = Mask;
1806    InMask.trunc(InBits);
1807
1808    // If any of the sign extended bits are demanded, we know that the sign
1809    // bit is demanded. Temporarily set this bit in the mask for our callee.
1810    if (NewBits.getBoolValue())
1811      InMask |= InSignBit;
1812
1813    KnownZero.trunc(InBits);
1814    KnownOne.trunc(InBits);
1815    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1816
1817    // Note if the sign bit is known to be zero or one.
1818    bool SignBitKnownZero = KnownZero.isNegative();
1819    bool SignBitKnownOne  = KnownOne.isNegative();
1820    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1821           "Sign bit can't be known to be both zero and one!");
1822
1823    // If the sign bit wasn't actually demanded by our caller, we don't
1824    // want it set in the KnownZero and KnownOne result values. Reset the
1825    // mask and reapply it to the result values.
1826    InMask = Mask;
1827    InMask.trunc(InBits);
1828    KnownZero &= InMask;
1829    KnownOne  &= InMask;
1830
1831    KnownZero.zext(BitWidth);
1832    KnownOne.zext(BitWidth);
1833
1834    // If the sign bit is known zero or one, the top bits match.
1835    if (SignBitKnownZero)
1836      KnownZero |= NewBits;
1837    else if (SignBitKnownOne)
1838      KnownOne  |= NewBits;
1839    return;
1840  }
1841  case ISD::ANY_EXTEND: {
1842    EVT InVT = Op.getOperand(0).getValueType();
1843    unsigned InBits = InVT.getScalarType().getSizeInBits();
1844    APInt InMask = Mask;
1845    InMask.trunc(InBits);
1846    KnownZero.trunc(InBits);
1847    KnownOne.trunc(InBits);
1848    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1849    KnownZero.zext(BitWidth);
1850    KnownOne.zext(BitWidth);
1851    return;
1852  }
1853  case ISD::TRUNCATE: {
1854    EVT InVT = Op.getOperand(0).getValueType();
1855    unsigned InBits = InVT.getScalarType().getSizeInBits();
1856    APInt InMask = Mask;
1857    InMask.zext(InBits);
1858    KnownZero.zext(InBits);
1859    KnownOne.zext(InBits);
1860    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1861    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1862    KnownZero.trunc(BitWidth);
1863    KnownOne.trunc(BitWidth);
1864    break;
1865  }
1866  case ISD::AssertZext: {
1867    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1868    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1869    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1870                      KnownOne, Depth+1);
1871    KnownZero |= (~InMask) & Mask;
1872    return;
1873  }
1874  case ISD::FGETSIGN:
1875    // All bits are zero except the low bit.
1876    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1877    return;
1878
1879  case ISD::SUB: {
1880    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1881      // We know that the top bits of C-X are clear if X contains less bits
1882      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1883      // positive if we can prove that X is >= 0 and < 16.
1884      if (CLHS->getAPIntValue().isNonNegative()) {
1885        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1886        // NLZ can't be BitWidth with no sign bit
1887        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1888        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1889                          Depth+1);
1890
1891        // If all of the MaskV bits are known to be zero, then we know the
1892        // output top bits are zero, because we now know that the output is
1893        // from [0-C].
1894        if ((KnownZero2 & MaskV) == MaskV) {
1895          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1896          // Top bits known zero.
1897          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1898        }
1899      }
1900    }
1901  }
1902  // fall through
1903  case ISD::ADD: {
1904    // Output known-0 bits are known if clear or set in both the low clear bits
1905    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1906    // low 3 bits clear.
1907    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1908    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1909    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1910    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1911
1912    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1913    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1914    KnownZeroOut = std::min(KnownZeroOut,
1915                            KnownZero2.countTrailingOnes());
1916
1917    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1918    return;
1919  }
1920  case ISD::SREM:
1921    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1922      const APInt &RA = Rem->getAPIntValue().abs();
1923      if (RA.isPowerOf2()) {
1924        APInt LowBits = RA - 1;
1925        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1926        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1927
1928        // The low bits of the first operand are unchanged by the srem.
1929        KnownZero = KnownZero2 & LowBits;
1930        KnownOne = KnownOne2 & LowBits;
1931
1932        // If the first operand is non-negative or has all low bits zero, then
1933        // the upper bits are all zero.
1934        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1935          KnownZero |= ~LowBits;
1936
1937        // If the first operand is negative and not all low bits are zero, then
1938        // the upper bits are all one.
1939        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1940          KnownOne |= ~LowBits;
1941
1942        KnownZero &= Mask;
1943        KnownOne &= Mask;
1944
1945        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1946      }
1947    }
1948    return;
1949  case ISD::UREM: {
1950    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1951      const APInt &RA = Rem->getAPIntValue();
1952      if (RA.isPowerOf2()) {
1953        APInt LowBits = (RA - 1);
1954        APInt Mask2 = LowBits & Mask;
1955        KnownZero |= ~LowBits & Mask;
1956        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1957        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1958        break;
1959      }
1960    }
1961
1962    // Since the result is less than or equal to either operand, any leading
1963    // zero bits in either operand must also exist in the result.
1964    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1965    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1966                      Depth+1);
1967    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1968                      Depth+1);
1969
1970    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1971                                KnownZero2.countLeadingOnes());
1972    KnownOne.clear();
1973    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1974    return;
1975  }
1976  default:
1977    // Allow the target to implement this method for its nodes.
1978    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1979  case ISD::INTRINSIC_WO_CHAIN:
1980  case ISD::INTRINSIC_W_CHAIN:
1981  case ISD::INTRINSIC_VOID:
1982      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1983                                         Depth);
1984    }
1985    return;
1986  }
1987}
1988
1989/// ComputeNumSignBits - Return the number of times the sign bit of the
1990/// register is replicated into the other bits.  We know that at least 1 bit
1991/// is always equal to the sign bit (itself), but other cases can give us
1992/// information.  For example, immediately after an "SRA X, 2", we know that
1993/// the top 3 bits are all equal to each other, so we return 3.
1994unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1995  EVT VT = Op.getValueType();
1996  assert(VT.isInteger() && "Invalid VT!");
1997  unsigned VTBits = VT.getScalarType().getSizeInBits();
1998  unsigned Tmp, Tmp2;
1999  unsigned FirstAnswer = 1;
2000
2001  if (Depth == 6)
2002    return 1;  // Limit search depth.
2003
2004  switch (Op.getOpcode()) {
2005  default: break;
2006  case ISD::AssertSext:
2007    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2008    return VTBits-Tmp+1;
2009  case ISD::AssertZext:
2010    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2011    return VTBits-Tmp;
2012
2013  case ISD::Constant: {
2014    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2015    // If negative, return # leading ones.
2016    if (Val.isNegative())
2017      return Val.countLeadingOnes();
2018
2019    // Return # leading zeros.
2020    return Val.countLeadingZeros();
2021  }
2022
2023  case ISD::SIGN_EXTEND:
2024    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2025    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2026
2027  case ISD::SIGN_EXTEND_INREG:
2028    // Max of the input and what this extends.
2029    Tmp =
2030      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2031    Tmp = VTBits-Tmp+1;
2032
2033    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2034    return std::max(Tmp, Tmp2);
2035
2036  case ISD::SRA:
2037    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2038    // SRA X, C   -> adds C sign bits.
2039    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2040      Tmp += C->getZExtValue();
2041      if (Tmp > VTBits) Tmp = VTBits;
2042    }
2043    return Tmp;
2044  case ISD::SHL:
2045    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2046      // shl destroys sign bits.
2047      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2048      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2049          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2050      return Tmp - C->getZExtValue();
2051    }
2052    break;
2053  case ISD::AND:
2054  case ISD::OR:
2055  case ISD::XOR:    // NOT is handled here.
2056    // Logical binary ops preserve the number of sign bits at the worst.
2057    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2058    if (Tmp != 1) {
2059      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2060      FirstAnswer = std::min(Tmp, Tmp2);
2061      // We computed what we know about the sign bits as our first
2062      // answer. Now proceed to the generic code that uses
2063      // ComputeMaskedBits, and pick whichever answer is better.
2064    }
2065    break;
2066
2067  case ISD::SELECT:
2068    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2069    if (Tmp == 1) return 1;  // Early out.
2070    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2071    return std::min(Tmp, Tmp2);
2072
2073  case ISD::SADDO:
2074  case ISD::UADDO:
2075  case ISD::SSUBO:
2076  case ISD::USUBO:
2077  case ISD::SMULO:
2078  case ISD::UMULO:
2079    if (Op.getResNo() != 1)
2080      break;
2081    // The boolean result conforms to getBooleanContents.  Fall through.
2082  case ISD::SETCC:
2083    // If setcc returns 0/-1, all bits are sign bits.
2084    if (TLI.getBooleanContents() ==
2085        TargetLowering::ZeroOrNegativeOneBooleanContent)
2086      return VTBits;
2087    break;
2088  case ISD::ROTL:
2089  case ISD::ROTR:
2090    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2091      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2092
2093      // Handle rotate right by N like a rotate left by 32-N.
2094      if (Op.getOpcode() == ISD::ROTR)
2095        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2096
2097      // If we aren't rotating out all of the known-in sign bits, return the
2098      // number that are left.  This handles rotl(sext(x), 1) for example.
2099      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2100      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2101    }
2102    break;
2103  case ISD::ADD:
2104    // Add can have at most one carry bit.  Thus we know that the output
2105    // is, at worst, one more bit than the inputs.
2106    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2107    if (Tmp == 1) return 1;  // Early out.
2108
2109    // Special case decrementing a value (ADD X, -1):
2110    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2111      if (CRHS->isAllOnesValue()) {
2112        APInt KnownZero, KnownOne;
2113        APInt Mask = APInt::getAllOnesValue(VTBits);
2114        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2115
2116        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2117        // sign bits set.
2118        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2119          return VTBits;
2120
2121        // If we are subtracting one from a positive number, there is no carry
2122        // out of the result.
2123        if (KnownZero.isNegative())
2124          return Tmp;
2125      }
2126
2127    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2128    if (Tmp2 == 1) return 1;
2129      return std::min(Tmp, Tmp2)-1;
2130    break;
2131
2132  case ISD::SUB:
2133    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2134    if (Tmp2 == 1) return 1;
2135
2136    // Handle NEG.
2137    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2138      if (CLHS->isNullValue()) {
2139        APInt KnownZero, KnownOne;
2140        APInt Mask = APInt::getAllOnesValue(VTBits);
2141        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2142        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2143        // sign bits set.
2144        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2145          return VTBits;
2146
2147        // If the input is known to be positive (the sign bit is known clear),
2148        // the output of the NEG has the same number of sign bits as the input.
2149        if (KnownZero.isNegative())
2150          return Tmp2;
2151
2152        // Otherwise, we treat this like a SUB.
2153      }
2154
2155    // Sub can have at most one carry bit.  Thus we know that the output
2156    // is, at worst, one more bit than the inputs.
2157    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2158    if (Tmp == 1) return 1;  // Early out.
2159      return std::min(Tmp, Tmp2)-1;
2160    break;
2161  case ISD::TRUNCATE:
2162    // FIXME: it's tricky to do anything useful for this, but it is an important
2163    // case for targets like X86.
2164    break;
2165  }
2166
2167  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2168  if (Op.getOpcode() == ISD::LOAD) {
2169    LoadSDNode *LD = cast<LoadSDNode>(Op);
2170    unsigned ExtType = LD->getExtensionType();
2171    switch (ExtType) {
2172    default: break;
2173    case ISD::SEXTLOAD:    // '17' bits known
2174      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2175      return VTBits-Tmp+1;
2176    case ISD::ZEXTLOAD:    // '16' bits known
2177      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2178      return VTBits-Tmp;
2179    }
2180  }
2181
2182  // Allow the target to implement this method for its nodes.
2183  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2184      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2185      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2186      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2187    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2188    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2189  }
2190
2191  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2192  // use this information.
2193  APInt KnownZero, KnownOne;
2194  APInt Mask = APInt::getAllOnesValue(VTBits);
2195  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2196
2197  if (KnownZero.isNegative()) {        // sign bit is 0
2198    Mask = KnownZero;
2199  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2200    Mask = KnownOne;
2201  } else {
2202    // Nothing known.
2203    return FirstAnswer;
2204  }
2205
2206  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2207  // the number of identical bits in the top of the input value.
2208  Mask = ~Mask;
2209  Mask <<= Mask.getBitWidth()-VTBits;
2210  // Return # leading zeros.  We use 'min' here in case Val was zero before
2211  // shifting.  We don't want to return '64' as for an i32 "0".
2212  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2213}
2214
2215bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2216  // If we're told that NaNs won't happen, assume they won't.
2217  if (FiniteOnlyFPMath())
2218    return true;
2219
2220  // If the value is a constant, we can obviously see if it is a NaN or not.
2221  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2222    return !C->getValueAPF().isNaN();
2223
2224  // TODO: Recognize more cases here.
2225
2226  return false;
2227}
2228
2229bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2230  // If the value is a constant, we can obviously see if it is a zero or not.
2231  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2232    return !C->isZero();
2233
2234  // TODO: Recognize more cases here.
2235
2236  return false;
2237}
2238
2239bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2240  // Check the obvious case.
2241  if (A == B) return true;
2242
2243  // For for negative and positive zero.
2244  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2245    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2246      if (CA->isZero() && CB->isZero()) return true;
2247
2248  // Otherwise they may not be equal.
2249  return false;
2250}
2251
2252bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2253  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2254  if (!GA) return false;
2255  if (GA->getOffset() != 0) return false;
2256  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2257  if (!GV) return false;
2258  return MF->getMMI().hasDebugInfo();
2259}
2260
2261
2262/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2263/// element of the result of the vector shuffle.
2264SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2265                                          unsigned i) {
2266  EVT VT = N->getValueType(0);
2267  DebugLoc dl = N->getDebugLoc();
2268  if (N->getMaskElt(i) < 0)
2269    return getUNDEF(VT.getVectorElementType());
2270  unsigned Index = N->getMaskElt(i);
2271  unsigned NumElems = VT.getVectorNumElements();
2272  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2273  Index %= NumElems;
2274
2275  if (V.getOpcode() == ISD::BIT_CONVERT) {
2276    V = V.getOperand(0);
2277    EVT VVT = V.getValueType();
2278    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2279      return SDValue();
2280  }
2281  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2282    return (Index == 0) ? V.getOperand(0)
2283                      : getUNDEF(VT.getVectorElementType());
2284  if (V.getOpcode() == ISD::BUILD_VECTOR)
2285    return V.getOperand(Index);
2286  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2287    return getShuffleScalarElt(SVN, Index);
2288  return SDValue();
2289}
2290
2291
2292/// getNode - Gets or creates the specified node.
2293///
2294SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2295  FoldingSetNodeID ID;
2296  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2297  void *IP = 0;
2298  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2299    return SDValue(E, 0);
2300
2301  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2302  CSEMap.InsertNode(N, IP);
2303
2304  AllNodes.push_back(N);
2305#ifndef NDEBUG
2306  VerifyNode(N);
2307#endif
2308  return SDValue(N, 0);
2309}
2310
2311SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2312                              EVT VT, SDValue Operand) {
2313  // Constant fold unary operations with an integer constant operand.
2314  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2315    const APInt &Val = C->getAPIntValue();
2316    switch (Opcode) {
2317    default: break;
2318    case ISD::SIGN_EXTEND:
2319      return getConstant(APInt(Val).sextOrTrunc(VT.getSizeInBits()), VT);
2320    case ISD::ANY_EXTEND:
2321    case ISD::ZERO_EXTEND:
2322    case ISD::TRUNCATE:
2323      return getConstant(APInt(Val).zextOrTrunc(VT.getSizeInBits()), VT);
2324    case ISD::UINT_TO_FP:
2325    case ISD::SINT_TO_FP: {
2326      const uint64_t zero[] = {0, 0};
2327      // No compile time operations on ppcf128.
2328      if (VT == MVT::ppcf128) break;
2329      APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2330      (void)apf.convertFromAPInt(Val,
2331                                 Opcode==ISD::SINT_TO_FP,
2332                                 APFloat::rmNearestTiesToEven);
2333      return getConstantFP(apf, VT);
2334    }
2335    case ISD::BIT_CONVERT:
2336      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2337        return getConstantFP(Val.bitsToFloat(), VT);
2338      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2339        return getConstantFP(Val.bitsToDouble(), VT);
2340      break;
2341    case ISD::BSWAP:
2342      return getConstant(Val.byteSwap(), VT);
2343    case ISD::CTPOP:
2344      return getConstant(Val.countPopulation(), VT);
2345    case ISD::CTLZ:
2346      return getConstant(Val.countLeadingZeros(), VT);
2347    case ISD::CTTZ:
2348      return getConstant(Val.countTrailingZeros(), VT);
2349    }
2350  }
2351
2352  // Constant fold unary operations with a floating point constant operand.
2353  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2354    APFloat V = C->getValueAPF();    // make copy
2355    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2356      switch (Opcode) {
2357      case ISD::FNEG:
2358        V.changeSign();
2359        return getConstantFP(V, VT);
2360      case ISD::FABS:
2361        V.clearSign();
2362        return getConstantFP(V, VT);
2363      case ISD::FP_ROUND:
2364      case ISD::FP_EXTEND: {
2365        bool ignored;
2366        // This can return overflow, underflow, or inexact; we don't care.
2367        // FIXME need to be more flexible about rounding mode.
2368        (void)V.convert(*EVTToAPFloatSemantics(VT),
2369                        APFloat::rmNearestTiesToEven, &ignored);
2370        return getConstantFP(V, VT);
2371      }
2372      case ISD::FP_TO_SINT:
2373      case ISD::FP_TO_UINT: {
2374        integerPart x[2];
2375        bool ignored;
2376        assert(integerPartWidth >= 64);
2377        // FIXME need to be more flexible about rounding mode.
2378        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2379                              Opcode==ISD::FP_TO_SINT,
2380                              APFloat::rmTowardZero, &ignored);
2381        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2382          break;
2383        APInt api(VT.getSizeInBits(), 2, x);
2384        return getConstant(api, VT);
2385      }
2386      case ISD::BIT_CONVERT:
2387        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2388          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2389        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2390          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2391        break;
2392      }
2393    }
2394  }
2395
2396  unsigned OpOpcode = Operand.getNode()->getOpcode();
2397  switch (Opcode) {
2398  case ISD::TokenFactor:
2399  case ISD::MERGE_VALUES:
2400  case ISD::CONCAT_VECTORS:
2401    return Operand;         // Factor, merge or concat of one node?  No need.
2402  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2403  case ISD::FP_EXTEND:
2404    assert(VT.isFloatingPoint() &&
2405           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2406    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2407    assert((!VT.isVector() ||
2408            VT.getVectorNumElements() ==
2409            Operand.getValueType().getVectorNumElements()) &&
2410           "Vector element count mismatch!");
2411    if (Operand.getOpcode() == ISD::UNDEF)
2412      return getUNDEF(VT);
2413    break;
2414  case ISD::SIGN_EXTEND:
2415    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2416           "Invalid SIGN_EXTEND!");
2417    if (Operand.getValueType() == VT) return Operand;   // noop extension
2418    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2419           "Invalid sext node, dst < src!");
2420    assert((!VT.isVector() ||
2421            VT.getVectorNumElements() ==
2422            Operand.getValueType().getVectorNumElements()) &&
2423           "Vector element count mismatch!");
2424    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2425      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2426    break;
2427  case ISD::ZERO_EXTEND:
2428    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2429           "Invalid ZERO_EXTEND!");
2430    if (Operand.getValueType() == VT) return Operand;   // noop extension
2431    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2432           "Invalid zext node, dst < src!");
2433    assert((!VT.isVector() ||
2434            VT.getVectorNumElements() ==
2435            Operand.getValueType().getVectorNumElements()) &&
2436           "Vector element count mismatch!");
2437    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2438      return getNode(ISD::ZERO_EXTEND, DL, VT,
2439                     Operand.getNode()->getOperand(0));
2440    break;
2441  case ISD::ANY_EXTEND:
2442    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2443           "Invalid ANY_EXTEND!");
2444    if (Operand.getValueType() == VT) return Operand;   // noop extension
2445    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2446           "Invalid anyext node, dst < src!");
2447    assert((!VT.isVector() ||
2448            VT.getVectorNumElements() ==
2449            Operand.getValueType().getVectorNumElements()) &&
2450           "Vector element count mismatch!");
2451    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2452      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2453      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2454    break;
2455  case ISD::TRUNCATE:
2456    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2457           "Invalid TRUNCATE!");
2458    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2459    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2460           "Invalid truncate node, src < dst!");
2461    assert((!VT.isVector() ||
2462            VT.getVectorNumElements() ==
2463            Operand.getValueType().getVectorNumElements()) &&
2464           "Vector element count mismatch!");
2465    if (OpOpcode == ISD::TRUNCATE)
2466      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2467    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2468             OpOpcode == ISD::ANY_EXTEND) {
2469      // If the source is smaller than the dest, we still need an extend.
2470      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2471            .bitsLT(VT.getScalarType()))
2472        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2473      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2474        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2475      else
2476        return Operand.getNode()->getOperand(0);
2477    }
2478    break;
2479  case ISD::BIT_CONVERT:
2480    // Basic sanity checking.
2481    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2482           && "Cannot BIT_CONVERT between types of different sizes!");
2483    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2484    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2485      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2486    if (OpOpcode == ISD::UNDEF)
2487      return getUNDEF(VT);
2488    break;
2489  case ISD::SCALAR_TO_VECTOR:
2490    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2491           (VT.getVectorElementType() == Operand.getValueType() ||
2492            (VT.getVectorElementType().isInteger() &&
2493             Operand.getValueType().isInteger() &&
2494             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2495           "Illegal SCALAR_TO_VECTOR node!");
2496    if (OpOpcode == ISD::UNDEF)
2497      return getUNDEF(VT);
2498    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2499    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2500        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2501        Operand.getConstantOperandVal(1) == 0 &&
2502        Operand.getOperand(0).getValueType() == VT)
2503      return Operand.getOperand(0);
2504    break;
2505  case ISD::FNEG:
2506    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2507    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2508      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2509                     Operand.getNode()->getOperand(0));
2510    if (OpOpcode == ISD::FNEG)  // --X -> X
2511      return Operand.getNode()->getOperand(0);
2512    break;
2513  case ISD::FABS:
2514    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2515      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2516    break;
2517  }
2518
2519  SDNode *N;
2520  SDVTList VTs = getVTList(VT);
2521  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2522    FoldingSetNodeID ID;
2523    SDValue Ops[1] = { Operand };
2524    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2525    void *IP = 0;
2526    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2527      return SDValue(E, 0);
2528
2529    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2530    CSEMap.InsertNode(N, IP);
2531  } else {
2532    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2533  }
2534
2535  AllNodes.push_back(N);
2536#ifndef NDEBUG
2537  VerifyNode(N);
2538#endif
2539  return SDValue(N, 0);
2540}
2541
2542SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2543                                             EVT VT,
2544                                             ConstantSDNode *Cst1,
2545                                             ConstantSDNode *Cst2) {
2546  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2547
2548  switch (Opcode) {
2549  case ISD::ADD:  return getConstant(C1 + C2, VT);
2550  case ISD::SUB:  return getConstant(C1 - C2, VT);
2551  case ISD::MUL:  return getConstant(C1 * C2, VT);
2552  case ISD::UDIV:
2553    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2554    break;
2555  case ISD::UREM:
2556    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2557    break;
2558  case ISD::SDIV:
2559    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2560    break;
2561  case ISD::SREM:
2562    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2563    break;
2564  case ISD::AND:  return getConstant(C1 & C2, VT);
2565  case ISD::OR:   return getConstant(C1 | C2, VT);
2566  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2567  case ISD::SHL:  return getConstant(C1 << C2, VT);
2568  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2569  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2570  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2571  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2572  default: break;
2573  }
2574
2575  return SDValue();
2576}
2577
2578SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2579                              SDValue N1, SDValue N2) {
2580  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2581  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2582  switch (Opcode) {
2583  default: break;
2584  case ISD::TokenFactor:
2585    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2586           N2.getValueType() == MVT::Other && "Invalid token factor!");
2587    // Fold trivial token factors.
2588    if (N1.getOpcode() == ISD::EntryToken) return N2;
2589    if (N2.getOpcode() == ISD::EntryToken) return N1;
2590    if (N1 == N2) return N1;
2591    break;
2592  case ISD::CONCAT_VECTORS:
2593    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2594    // one big BUILD_VECTOR.
2595    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2596        N2.getOpcode() == ISD::BUILD_VECTOR) {
2597      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2598      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2599      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2600    }
2601    break;
2602  case ISD::AND:
2603    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2604           N1.getValueType() == VT && "Binary operator types must match!");
2605    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2606    // worth handling here.
2607    if (N2C && N2C->isNullValue())
2608      return N2;
2609    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2610      return N1;
2611    break;
2612  case ISD::OR:
2613  case ISD::XOR:
2614  case ISD::ADD:
2615  case ISD::SUB:
2616    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2617           N1.getValueType() == VT && "Binary operator types must match!");
2618    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2619    // it's worth handling here.
2620    if (N2C && N2C->isNullValue())
2621      return N1;
2622    break;
2623  case ISD::UDIV:
2624  case ISD::UREM:
2625  case ISD::MULHU:
2626  case ISD::MULHS:
2627  case ISD::MUL:
2628  case ISD::SDIV:
2629  case ISD::SREM:
2630    assert(VT.isInteger() && "This operator does not apply to FP types!");
2631    // fall through
2632  case ISD::FADD:
2633  case ISD::FSUB:
2634  case ISD::FMUL:
2635  case ISD::FDIV:
2636  case ISD::FREM:
2637    if (UnsafeFPMath) {
2638      if (Opcode == ISD::FADD) {
2639        // 0+x --> x
2640        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2641          if (CFP->getValueAPF().isZero())
2642            return N2;
2643        // x+0 --> x
2644        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2645          if (CFP->getValueAPF().isZero())
2646            return N1;
2647      } else if (Opcode == ISD::FSUB) {
2648        // x-0 --> x
2649        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2650          if (CFP->getValueAPF().isZero())
2651            return N1;
2652      }
2653    }
2654    assert(N1.getValueType() == N2.getValueType() &&
2655           N1.getValueType() == VT && "Binary operator types must match!");
2656    break;
2657  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2658    assert(N1.getValueType() == VT &&
2659           N1.getValueType().isFloatingPoint() &&
2660           N2.getValueType().isFloatingPoint() &&
2661           "Invalid FCOPYSIGN!");
2662    break;
2663  case ISD::SHL:
2664  case ISD::SRA:
2665  case ISD::SRL:
2666  case ISD::ROTL:
2667  case ISD::ROTR:
2668    assert(VT == N1.getValueType() &&
2669           "Shift operators return type must be the same as their first arg");
2670    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2671           "Shifts only work on integers");
2672
2673    // Always fold shifts of i1 values so the code generator doesn't need to
2674    // handle them.  Since we know the size of the shift has to be less than the
2675    // size of the value, the shift/rotate count is guaranteed to be zero.
2676    if (VT == MVT::i1)
2677      return N1;
2678    if (N2C && N2C->isNullValue())
2679      return N1;
2680    break;
2681  case ISD::FP_ROUND_INREG: {
2682    EVT EVT = cast<VTSDNode>(N2)->getVT();
2683    assert(VT == N1.getValueType() && "Not an inreg round!");
2684    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2685           "Cannot FP_ROUND_INREG integer types");
2686    assert(EVT.isVector() == VT.isVector() &&
2687           "FP_ROUND_INREG type should be vector iff the operand "
2688           "type is vector!");
2689    assert((!EVT.isVector() ||
2690            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2691           "Vector element counts must match in FP_ROUND_INREG");
2692    assert(EVT.bitsLE(VT) && "Not rounding down!");
2693    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2694    break;
2695  }
2696  case ISD::FP_ROUND:
2697    assert(VT.isFloatingPoint() &&
2698           N1.getValueType().isFloatingPoint() &&
2699           VT.bitsLE(N1.getValueType()) &&
2700           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2701    if (N1.getValueType() == VT) return N1;  // noop conversion.
2702    break;
2703  case ISD::AssertSext:
2704  case ISD::AssertZext: {
2705    EVT EVT = cast<VTSDNode>(N2)->getVT();
2706    assert(VT == N1.getValueType() && "Not an inreg extend!");
2707    assert(VT.isInteger() && EVT.isInteger() &&
2708           "Cannot *_EXTEND_INREG FP types");
2709    assert(!EVT.isVector() &&
2710           "AssertSExt/AssertZExt type should be the vector element type "
2711           "rather than the vector type!");
2712    assert(EVT.bitsLE(VT) && "Not extending!");
2713    if (VT == EVT) return N1; // noop assertion.
2714    break;
2715  }
2716  case ISD::SIGN_EXTEND_INREG: {
2717    EVT EVT = cast<VTSDNode>(N2)->getVT();
2718    assert(VT == N1.getValueType() && "Not an inreg extend!");
2719    assert(VT.isInteger() && EVT.isInteger() &&
2720           "Cannot *_EXTEND_INREG FP types");
2721    assert(EVT.isVector() == VT.isVector() &&
2722           "SIGN_EXTEND_INREG type should be vector iff the operand "
2723           "type is vector!");
2724    assert((!EVT.isVector() ||
2725            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2726           "Vector element counts must match in SIGN_EXTEND_INREG");
2727    assert(EVT.bitsLE(VT) && "Not extending!");
2728    if (EVT == VT) return N1;  // Not actually extending
2729
2730    if (N1C) {
2731      APInt Val = N1C->getAPIntValue();
2732      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2733      Val <<= Val.getBitWidth()-FromBits;
2734      Val = Val.ashr(Val.getBitWidth()-FromBits);
2735      return getConstant(Val, VT);
2736    }
2737    break;
2738  }
2739  case ISD::EXTRACT_VECTOR_ELT:
2740    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2741    if (N1.getOpcode() == ISD::UNDEF)
2742      return getUNDEF(VT);
2743
2744    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2745    // expanding copies of large vectors from registers.
2746    if (N2C &&
2747        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2748        N1.getNumOperands() > 0) {
2749      unsigned Factor =
2750        N1.getOperand(0).getValueType().getVectorNumElements();
2751      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2752                     N1.getOperand(N2C->getZExtValue() / Factor),
2753                     getConstant(N2C->getZExtValue() % Factor,
2754                                 N2.getValueType()));
2755    }
2756
2757    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2758    // expanding large vector constants.
2759    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2760      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2761      EVT VEltTy = N1.getValueType().getVectorElementType();
2762      if (Elt.getValueType() != VEltTy) {
2763        // If the vector element type is not legal, the BUILD_VECTOR operands
2764        // are promoted and implicitly truncated.  Make that explicit here.
2765        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2766      }
2767      if (VT != VEltTy) {
2768        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2769        // result is implicitly extended.
2770        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2771      }
2772      return Elt;
2773    }
2774
2775    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2776    // operations are lowered to scalars.
2777    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2778      // If the indices are the same, return the inserted element else
2779      // if the indices are known different, extract the element from
2780      // the original vector.
2781      if (N1.getOperand(2) == N2) {
2782        if (VT == N1.getOperand(1).getValueType())
2783          return N1.getOperand(1);
2784        else
2785          return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2786      } else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2787                 isa<ConstantSDNode>(N2))
2788        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2789    }
2790    break;
2791  case ISD::EXTRACT_ELEMENT:
2792    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2793    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2794           (N1.getValueType().isInteger() == VT.isInteger()) &&
2795           "Wrong types for EXTRACT_ELEMENT!");
2796
2797    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2798    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2799    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2800    if (N1.getOpcode() == ISD::BUILD_PAIR)
2801      return N1.getOperand(N2C->getZExtValue());
2802
2803    // EXTRACT_ELEMENT of a constant int is also very common.
2804    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2805      unsigned ElementSize = VT.getSizeInBits();
2806      unsigned Shift = ElementSize * N2C->getZExtValue();
2807      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2808      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2809    }
2810    break;
2811  case ISD::EXTRACT_SUBVECTOR:
2812    if (N1.getValueType() == VT) // Trivial extraction.
2813      return N1;
2814    break;
2815  }
2816
2817  if (N1C) {
2818    if (N2C) {
2819      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2820      if (SV.getNode()) return SV;
2821    } else {      // Cannonicalize constant to RHS if commutative
2822      if (isCommutativeBinOp(Opcode)) {
2823        std::swap(N1C, N2C);
2824        std::swap(N1, N2);
2825      }
2826    }
2827  }
2828
2829  // Constant fold FP operations.
2830  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2831  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2832  if (N1CFP) {
2833    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2834      // Cannonicalize constant to RHS if commutative
2835      std::swap(N1CFP, N2CFP);
2836      std::swap(N1, N2);
2837    } else if (N2CFP && VT != MVT::ppcf128) {
2838      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2839      APFloat::opStatus s;
2840      switch (Opcode) {
2841      case ISD::FADD:
2842        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2843        if (s != APFloat::opInvalidOp)
2844          return getConstantFP(V1, VT);
2845        break;
2846      case ISD::FSUB:
2847        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2848        if (s!=APFloat::opInvalidOp)
2849          return getConstantFP(V1, VT);
2850        break;
2851      case ISD::FMUL:
2852        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2853        if (s!=APFloat::opInvalidOp)
2854          return getConstantFP(V1, VT);
2855        break;
2856      case ISD::FDIV:
2857        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2858        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2859          return getConstantFP(V1, VT);
2860        break;
2861      case ISD::FREM :
2862        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2863        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2864          return getConstantFP(V1, VT);
2865        break;
2866      case ISD::FCOPYSIGN:
2867        V1.copySign(V2);
2868        return getConstantFP(V1, VT);
2869      default: break;
2870      }
2871    }
2872  }
2873
2874  // Canonicalize an UNDEF to the RHS, even over a constant.
2875  if (N1.getOpcode() == ISD::UNDEF) {
2876    if (isCommutativeBinOp(Opcode)) {
2877      std::swap(N1, N2);
2878    } else {
2879      switch (Opcode) {
2880      case ISD::FP_ROUND_INREG:
2881      case ISD::SIGN_EXTEND_INREG:
2882      case ISD::SUB:
2883      case ISD::FSUB:
2884      case ISD::FDIV:
2885      case ISD::FREM:
2886      case ISD::SRA:
2887        return N1;     // fold op(undef, arg2) -> undef
2888      case ISD::UDIV:
2889      case ISD::SDIV:
2890      case ISD::UREM:
2891      case ISD::SREM:
2892      case ISD::SRL:
2893      case ISD::SHL:
2894        if (!VT.isVector())
2895          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2896        // For vectors, we can't easily build an all zero vector, just return
2897        // the LHS.
2898        return N2;
2899      }
2900    }
2901  }
2902
2903  // Fold a bunch of operators when the RHS is undef.
2904  if (N2.getOpcode() == ISD::UNDEF) {
2905    switch (Opcode) {
2906    case ISD::XOR:
2907      if (N1.getOpcode() == ISD::UNDEF)
2908        // Handle undef ^ undef -> 0 special case. This is a common
2909        // idiom (misuse).
2910        return getConstant(0, VT);
2911      // fallthrough
2912    case ISD::ADD:
2913    case ISD::ADDC:
2914    case ISD::ADDE:
2915    case ISD::SUB:
2916    case ISD::UDIV:
2917    case ISD::SDIV:
2918    case ISD::UREM:
2919    case ISD::SREM:
2920      return N2;       // fold op(arg1, undef) -> undef
2921    case ISD::FADD:
2922    case ISD::FSUB:
2923    case ISD::FMUL:
2924    case ISD::FDIV:
2925    case ISD::FREM:
2926      if (UnsafeFPMath)
2927        return N2;
2928      break;
2929    case ISD::MUL:
2930    case ISD::AND:
2931    case ISD::SRL:
2932    case ISD::SHL:
2933      if (!VT.isVector())
2934        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2935      // For vectors, we can't easily build an all zero vector, just return
2936      // the LHS.
2937      return N1;
2938    case ISD::OR:
2939      if (!VT.isVector())
2940        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2941      // For vectors, we can't easily build an all one vector, just return
2942      // the LHS.
2943      return N1;
2944    case ISD::SRA:
2945      return N1;
2946    }
2947  }
2948
2949  // Memoize this node if possible.
2950  SDNode *N;
2951  SDVTList VTs = getVTList(VT);
2952  if (VT != MVT::Flag) {
2953    SDValue Ops[] = { N1, N2 };
2954    FoldingSetNodeID ID;
2955    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2956    void *IP = 0;
2957    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2958      return SDValue(E, 0);
2959
2960    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2961    CSEMap.InsertNode(N, IP);
2962  } else {
2963    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2964  }
2965
2966  AllNodes.push_back(N);
2967#ifndef NDEBUG
2968  VerifyNode(N);
2969#endif
2970  return SDValue(N, 0);
2971}
2972
2973SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2974                              SDValue N1, SDValue N2, SDValue N3) {
2975  // Perform various simplifications.
2976  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2977  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2978  switch (Opcode) {
2979  case ISD::CONCAT_VECTORS:
2980    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2981    // one big BUILD_VECTOR.
2982    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2983        N2.getOpcode() == ISD::BUILD_VECTOR &&
2984        N3.getOpcode() == ISD::BUILD_VECTOR) {
2985      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2986      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2987      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2988      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2989    }
2990    break;
2991  case ISD::SETCC: {
2992    // Use FoldSetCC to simplify SETCC's.
2993    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2994    if (Simp.getNode()) return Simp;
2995    break;
2996  }
2997  case ISD::SELECT:
2998    if (N1C) {
2999     if (N1C->getZExtValue())
3000        return N2;             // select true, X, Y -> X
3001      else
3002        return N3;             // select false, X, Y -> Y
3003    }
3004
3005    if (N2 == N3) return N2;   // select C, X, X -> X
3006    break;
3007  case ISD::BRCOND:
3008    if (N2C) {
3009      if (N2C->getZExtValue()) // Unconditional branch
3010        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
3011      else
3012        return N1;         // Never-taken branch
3013    }
3014    break;
3015  case ISD::VECTOR_SHUFFLE:
3016    llvm_unreachable("should use getVectorShuffle constructor!");
3017    break;
3018  case ISD::BIT_CONVERT:
3019    // Fold bit_convert nodes from a type to themselves.
3020    if (N1.getValueType() == VT)
3021      return N1;
3022    break;
3023  }
3024
3025  // Memoize node if it doesn't produce a flag.
3026  SDNode *N;
3027  SDVTList VTs = getVTList(VT);
3028  if (VT != MVT::Flag) {
3029    SDValue Ops[] = { N1, N2, N3 };
3030    FoldingSetNodeID ID;
3031    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3032    void *IP = 0;
3033    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3034      return SDValue(E, 0);
3035
3036    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3037    CSEMap.InsertNode(N, IP);
3038  } else {
3039    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3040  }
3041
3042  AllNodes.push_back(N);
3043#ifndef NDEBUG
3044  VerifyNode(N);
3045#endif
3046  return SDValue(N, 0);
3047}
3048
3049SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3050                              SDValue N1, SDValue N2, SDValue N3,
3051                              SDValue N4) {
3052  SDValue Ops[] = { N1, N2, N3, N4 };
3053  return getNode(Opcode, DL, VT, Ops, 4);
3054}
3055
3056SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3057                              SDValue N1, SDValue N2, SDValue N3,
3058                              SDValue N4, SDValue N5) {
3059  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3060  return getNode(Opcode, DL, VT, Ops, 5);
3061}
3062
3063/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3064/// the incoming stack arguments to be loaded from the stack.
3065SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3066  SmallVector<SDValue, 8> ArgChains;
3067
3068  // Include the original chain at the beginning of the list. When this is
3069  // used by target LowerCall hooks, this helps legalize find the
3070  // CALLSEQ_BEGIN node.
3071  ArgChains.push_back(Chain);
3072
3073  // Add a chain value for each stack argument.
3074  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3075       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3076    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3077      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3078        if (FI->getIndex() < 0)
3079          ArgChains.push_back(SDValue(L, 1));
3080
3081  // Build a tokenfactor for all the chains.
3082  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3083                 &ArgChains[0], ArgChains.size());
3084}
3085
3086/// getMemsetValue - Vectorized representation of the memset value
3087/// operand.
3088static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3089                              DebugLoc dl) {
3090  assert(Value.getOpcode() != ISD::UNDEF);
3091
3092  unsigned NumBits = VT.getScalarType().getSizeInBits();
3093  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3094    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3095    unsigned Shift = 8;
3096    for (unsigned i = NumBits; i > 8; i >>= 1) {
3097      Val = (Val << Shift) | Val;
3098      Shift <<= 1;
3099    }
3100    if (VT.isInteger())
3101      return DAG.getConstant(Val, VT);
3102    return DAG.getConstantFP(APFloat(Val), VT);
3103  }
3104
3105  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3106  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3107  unsigned Shift = 8;
3108  for (unsigned i = NumBits; i > 8; i >>= 1) {
3109    Value = DAG.getNode(ISD::OR, dl, VT,
3110                        DAG.getNode(ISD::SHL, dl, VT, Value,
3111                                    DAG.getConstant(Shift,
3112                                                    TLI.getShiftAmountTy())),
3113                        Value);
3114    Shift <<= 1;
3115  }
3116
3117  return Value;
3118}
3119
3120/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3121/// used when a memcpy is turned into a memset when the source is a constant
3122/// string ptr.
3123static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3124                                  const TargetLowering &TLI,
3125                                  std::string &Str, unsigned Offset) {
3126  // Handle vector with all elements zero.
3127  if (Str.empty()) {
3128    if (VT.isInteger())
3129      return DAG.getConstant(0, VT);
3130    else if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
3131             VT.getSimpleVT().SimpleTy == MVT::f64)
3132      return DAG.getConstantFP(0.0, VT);
3133    else if (VT.isVector()) {
3134      unsigned NumElts = VT.getVectorNumElements();
3135      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3136      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3137                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3138                                                             EltVT, NumElts)));
3139    } else
3140      llvm_unreachable("Expected type!");
3141  }
3142
3143  assert(!VT.isVector() && "Can't handle vector type here!");
3144  unsigned NumBits = VT.getSizeInBits();
3145  unsigned MSB = NumBits / 8;
3146  uint64_t Val = 0;
3147  if (TLI.isLittleEndian())
3148    Offset = Offset + MSB - 1;
3149  for (unsigned i = 0; i != MSB; ++i) {
3150    Val = (Val << 8) | (unsigned char)Str[Offset];
3151    Offset += TLI.isLittleEndian() ? -1 : 1;
3152  }
3153  return DAG.getConstant(Val, VT);
3154}
3155
3156/// getMemBasePlusOffset - Returns base and offset node for the
3157///
3158static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3159                                      SelectionDAG &DAG) {
3160  EVT VT = Base.getValueType();
3161  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3162                     VT, Base, DAG.getConstant(Offset, VT));
3163}
3164
3165/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3166///
3167static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3168  unsigned SrcDelta = 0;
3169  GlobalAddressSDNode *G = NULL;
3170  if (Src.getOpcode() == ISD::GlobalAddress)
3171    G = cast<GlobalAddressSDNode>(Src);
3172  else if (Src.getOpcode() == ISD::ADD &&
3173           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3174           Src.getOperand(1).getOpcode() == ISD::Constant) {
3175    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3176    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3177  }
3178  if (!G)
3179    return false;
3180
3181  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3182  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3183    return true;
3184
3185  return false;
3186}
3187
3188/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3189/// to replace the memset / memcpy. Return true if the number of memory ops
3190/// is below the threshold. It returns the types of the sequence of
3191/// memory ops to perform memset / memcpy by reference.
3192static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3193                                     unsigned Limit, uint64_t Size,
3194                                     unsigned DstAlign, unsigned SrcAlign,
3195                                     bool NonScalarIntSafe,
3196                                     SelectionDAG &DAG,
3197                                     const TargetLowering &TLI) {
3198  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3199         "Expecting memcpy / memset source to meet alignment requirement!");
3200  // If 'SrcAlign' is zero, that means the memory operation does not need load
3201  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3202  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3203  // specified alignment of the memory operation. If it is zero, that means
3204  // it's possible to change the alignment of the destination.
3205  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3206                                   NonScalarIntSafe, DAG);
3207
3208  if (VT == MVT::Other) {
3209    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3210        TLI.allowsUnalignedMemoryAccesses(VT)) {
3211      VT = TLI.getPointerTy();
3212    } else {
3213      switch (DstAlign & 7) {
3214      case 0:  VT = MVT::i64; break;
3215      case 4:  VT = MVT::i32; break;
3216      case 2:  VT = MVT::i16; break;
3217      default: VT = MVT::i8;  break;
3218      }
3219    }
3220
3221    MVT LVT = MVT::i64;
3222    while (!TLI.isTypeLegal(LVT))
3223      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3224    assert(LVT.isInteger());
3225
3226    if (VT.bitsGT(LVT))
3227      VT = LVT;
3228  }
3229
3230  unsigned NumMemOps = 0;
3231  while (Size != 0) {
3232    unsigned VTSize = VT.getSizeInBits() / 8;
3233    while (VTSize > Size) {
3234      // For now, only use non-vector load / store's for the left-over pieces.
3235      if (VT.isVector() || VT.isFloatingPoint()) {
3236        VT = MVT::i64;
3237        while (!TLI.isTypeLegal(VT))
3238          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3239        VTSize = VT.getSizeInBits() / 8;
3240      } else {
3241        // This can result in a type that is not legal on the target, e.g.
3242        // 1 or 2 bytes on PPC.
3243        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3244        VTSize >>= 1;
3245      }
3246    }
3247
3248    if (++NumMemOps > Limit)
3249      return false;
3250    MemOps.push_back(VT);
3251    Size -= VTSize;
3252  }
3253
3254  return true;
3255}
3256
3257static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3258                                       SDValue Chain, SDValue Dst,
3259                                       SDValue Src, uint64_t Size,
3260                                       unsigned Align, bool isVol,
3261                                       bool AlwaysInline,
3262                                       const Value *DstSV, uint64_t DstSVOff,
3263                                       const Value *SrcSV, uint64_t SrcSVOff) {
3264  // Turn a memcpy of undef to nop.
3265  if (Src.getOpcode() == ISD::UNDEF)
3266    return Chain;
3267
3268  // Expand memcpy to a series of load and store ops if the size operand falls
3269  // below a certain threshold.
3270  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3271  std::vector<EVT> MemOps;
3272  uint64_t Limit = -1ULL;
3273  if (!AlwaysInline)
3274    Limit = TLI.getMaxStoresPerMemcpy();
3275  bool DstAlignCanChange = false;
3276  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3277  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3278  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3279    DstAlignCanChange = true;
3280  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3281  if (Align > SrcAlign)
3282    SrcAlign = Align;
3283  std::string Str;
3284  bool CopyFromStr = isMemSrcFromString(Src, Str);
3285  bool isZeroStr = CopyFromStr && Str.empty();
3286  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3287                                (DstAlignCanChange ? 0 : Align),
3288                                (isZeroStr ? 0 : SrcAlign), true, DAG, TLI))
3289    return SDValue();
3290
3291  if (DstAlignCanChange) {
3292    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3293    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3294    if (NewAlign > Align) {
3295      // Give the stack frame object a larger alignment if needed.
3296      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3297        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3298      Align = NewAlign;
3299    }
3300  }
3301
3302  SmallVector<SDValue, 8> OutChains;
3303  unsigned NumMemOps = MemOps.size();
3304  uint64_t SrcOff = 0, DstOff = 0;
3305  for (unsigned i = 0; i != NumMemOps; ++i) {
3306    EVT VT = MemOps[i];
3307    unsigned VTSize = VT.getSizeInBits() / 8;
3308    SDValue Value, Store;
3309
3310    if (CopyFromStr &&
3311        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3312      // It's unlikely a store of a vector immediate can be done in a single
3313      // instruction. It would require a load from a constantpool first.
3314      // We only handle zero vectors here.
3315      // FIXME: Handle other cases where store of vector immediate is done in
3316      // a single instruction.
3317      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3318      Store = DAG.getStore(Chain, dl, Value,
3319                           getMemBasePlusOffset(Dst, DstOff, DAG),
3320                           DstSV, DstSVOff + DstOff, isVol, false, Align);
3321    } else {
3322      // The type might not be legal for the target.  This should only happen
3323      // if the type is smaller than a legal type, as on PPC, so the right
3324      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3325      // to Load/Store if NVT==VT.
3326      // FIXME does the case above also need this?
3327      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3328      assert(NVT.bitsGE(VT));
3329      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3330                             getMemBasePlusOffset(Src, SrcOff, DAG),
3331                             SrcSV, SrcSVOff + SrcOff, VT, isVol, false,
3332                             MinAlign(SrcAlign, SrcOff));
3333      Store = DAG.getTruncStore(Chain, dl, Value,
3334                                getMemBasePlusOffset(Dst, DstOff, DAG),
3335                                DstSV, DstSVOff + DstOff, VT, isVol, false,
3336                                Align);
3337    }
3338    OutChains.push_back(Store);
3339    SrcOff += VTSize;
3340    DstOff += VTSize;
3341  }
3342
3343  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3344                     &OutChains[0], OutChains.size());
3345}
3346
3347static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3348                                        SDValue Chain, SDValue Dst,
3349                                        SDValue Src, uint64_t Size,
3350                                        unsigned Align,  bool isVol,
3351                                        bool AlwaysInline,
3352                                        const Value *DstSV, uint64_t DstSVOff,
3353                                        const Value *SrcSV, uint64_t SrcSVOff) {
3354  // Turn a memmove of undef to nop.
3355  if (Src.getOpcode() == ISD::UNDEF)
3356    return Chain;
3357
3358  // Expand memmove to a series of load and store ops if the size operand falls
3359  // below a certain threshold.
3360  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3361  std::vector<EVT> MemOps;
3362  uint64_t Limit = -1ULL;
3363  if (!AlwaysInline)
3364    Limit = TLI.getMaxStoresPerMemmove();
3365  bool DstAlignCanChange = false;
3366  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3367  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3368  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3369    DstAlignCanChange = true;
3370  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3371  if (Align > SrcAlign)
3372    SrcAlign = Align;
3373
3374  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3375                                (DstAlignCanChange ? 0 : Align),
3376                                SrcAlign, true, DAG, TLI))
3377    return SDValue();
3378
3379  if (DstAlignCanChange) {
3380    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3381    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3382    if (NewAlign > Align) {
3383      // Give the stack frame object a larger alignment if needed.
3384      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3385        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3386      Align = NewAlign;
3387    }
3388  }
3389
3390  uint64_t SrcOff = 0, DstOff = 0;
3391  SmallVector<SDValue, 8> LoadValues;
3392  SmallVector<SDValue, 8> LoadChains;
3393  SmallVector<SDValue, 8> OutChains;
3394  unsigned NumMemOps = MemOps.size();
3395  for (unsigned i = 0; i < NumMemOps; i++) {
3396    EVT VT = MemOps[i];
3397    unsigned VTSize = VT.getSizeInBits() / 8;
3398    SDValue Value, Store;
3399
3400    Value = DAG.getLoad(VT, dl, Chain,
3401                        getMemBasePlusOffset(Src, SrcOff, DAG),
3402                        SrcSV, SrcSVOff + SrcOff, isVol, false, SrcAlign);
3403    LoadValues.push_back(Value);
3404    LoadChains.push_back(Value.getValue(1));
3405    SrcOff += VTSize;
3406  }
3407  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3408                      &LoadChains[0], LoadChains.size());
3409  OutChains.clear();
3410  for (unsigned i = 0; i < NumMemOps; i++) {
3411    EVT VT = MemOps[i];
3412    unsigned VTSize = VT.getSizeInBits() / 8;
3413    SDValue Value, Store;
3414
3415    Store = DAG.getStore(Chain, dl, LoadValues[i],
3416                         getMemBasePlusOffset(Dst, DstOff, DAG),
3417                         DstSV, DstSVOff + DstOff, isVol, false, Align);
3418    OutChains.push_back(Store);
3419    DstOff += VTSize;
3420  }
3421
3422  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3423                     &OutChains[0], OutChains.size());
3424}
3425
3426static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3427                               SDValue Chain, SDValue Dst,
3428                               SDValue Src, uint64_t Size,
3429                               unsigned Align, bool isVol,
3430                               const Value *DstSV, uint64_t DstSVOff) {
3431  // Turn a memset of undef to nop.
3432  if (Src.getOpcode() == ISD::UNDEF)
3433    return Chain;
3434
3435  // Expand memset to a series of load/store ops if the size operand
3436  // falls below a certain threshold.
3437  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3438  std::vector<EVT> MemOps;
3439  bool DstAlignCanChange = false;
3440  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3441  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3442  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3443    DstAlignCanChange = true;
3444  bool NonScalarIntSafe =
3445    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3446  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(),
3447                                Size, (DstAlignCanChange ? 0 : Align), 0,
3448                                NonScalarIntSafe, DAG, TLI))
3449    return SDValue();
3450
3451  if (DstAlignCanChange) {
3452    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3453    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3454    if (NewAlign > Align) {
3455      // Give the stack frame object a larger alignment if needed.
3456      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3457        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3458      Align = NewAlign;
3459    }
3460  }
3461
3462  SmallVector<SDValue, 8> OutChains;
3463  uint64_t DstOff = 0;
3464  unsigned NumMemOps = MemOps.size();
3465  for (unsigned i = 0; i < NumMemOps; i++) {
3466    EVT VT = MemOps[i];
3467    unsigned VTSize = VT.getSizeInBits() / 8;
3468    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3469    SDValue Store = DAG.getStore(Chain, dl, Value,
3470                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3471                                 DstSV, DstSVOff + DstOff, isVol, false, 0);
3472    OutChains.push_back(Store);
3473    DstOff += VTSize;
3474  }
3475
3476  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3477                     &OutChains[0], OutChains.size());
3478}
3479
3480SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3481                                SDValue Src, SDValue Size,
3482                                unsigned Align, bool isVol, bool AlwaysInline,
3483                                const Value *DstSV, uint64_t DstSVOff,
3484                                const Value *SrcSV, uint64_t SrcSVOff) {
3485
3486  // Check to see if we should lower the memcpy to loads and stores first.
3487  // For cases within the target-specified limits, this is the best choice.
3488  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3489  if (ConstantSize) {
3490    // Memcpy with size zero? Just return the original chain.
3491    if (ConstantSize->isNullValue())
3492      return Chain;
3493
3494    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3495                                             ConstantSize->getZExtValue(),Align,
3496                                isVol, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3497    if (Result.getNode())
3498      return Result;
3499  }
3500
3501  // Then check to see if we should lower the memcpy with target-specific
3502  // code. If the target chooses to do this, this is the next best.
3503  SDValue Result =
3504    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3505                                isVol, AlwaysInline,
3506                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3507  if (Result.getNode())
3508    return Result;
3509
3510  // If we really need inline code and the target declined to provide it,
3511  // use a (potentially long) sequence of loads and stores.
3512  if (AlwaysInline) {
3513    assert(ConstantSize && "AlwaysInline requires a constant size!");
3514    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3515                                   ConstantSize->getZExtValue(), Align, isVol,
3516                                   true, DstSV, DstSVOff, SrcSV, SrcSVOff);
3517  }
3518
3519  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3520  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3521  // respect volatile, so they may do things like read or write memory
3522  // beyond the given memory regions. But fixing this isn't easy, and most
3523  // people don't care.
3524
3525  // Emit a library call.
3526  TargetLowering::ArgListTy Args;
3527  TargetLowering::ArgListEntry Entry;
3528  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3529  Entry.Node = Dst; Args.push_back(Entry);
3530  Entry.Node = Src; Args.push_back(Entry);
3531  Entry.Node = Size; Args.push_back(Entry);
3532  // FIXME: pass in DebugLoc
3533  std::pair<SDValue,SDValue> CallResult =
3534    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3535                    false, false, false, false, 0,
3536                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3537                    /*isReturnValueUsed=*/false,
3538                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3539                                      TLI.getPointerTy()),
3540                    Args, *this, dl);
3541  return CallResult.second;
3542}
3543
3544SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3545                                 SDValue Src, SDValue Size,
3546                                 unsigned Align, bool isVol,
3547                                 const Value *DstSV, uint64_t DstSVOff,
3548                                 const Value *SrcSV, uint64_t SrcSVOff) {
3549
3550  // Check to see if we should lower the memmove to loads and stores first.
3551  // For cases within the target-specified limits, this is the best choice.
3552  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3553  if (ConstantSize) {
3554    // Memmove with size zero? Just return the original chain.
3555    if (ConstantSize->isNullValue())
3556      return Chain;
3557
3558    SDValue Result =
3559      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3560                               ConstantSize->getZExtValue(), Align, isVol,
3561                               false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3562    if (Result.getNode())
3563      return Result;
3564  }
3565
3566  // Then check to see if we should lower the memmove with target-specific
3567  // code. If the target chooses to do this, this is the next best.
3568  SDValue Result =
3569    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3570                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3571  if (Result.getNode())
3572    return Result;
3573
3574  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3575  // not be safe.  See memcpy above for more details.
3576
3577  // Emit a library call.
3578  TargetLowering::ArgListTy Args;
3579  TargetLowering::ArgListEntry Entry;
3580  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3581  Entry.Node = Dst; Args.push_back(Entry);
3582  Entry.Node = Src; Args.push_back(Entry);
3583  Entry.Node = Size; Args.push_back(Entry);
3584  // FIXME:  pass in DebugLoc
3585  std::pair<SDValue,SDValue> CallResult =
3586    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3587                    false, false, false, false, 0,
3588                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3589                    /*isReturnValueUsed=*/false,
3590                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3591                                      TLI.getPointerTy()),
3592                    Args, *this, dl);
3593  return CallResult.second;
3594}
3595
3596SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3597                                SDValue Src, SDValue Size,
3598                                unsigned Align, bool isVol,
3599                                const Value *DstSV, uint64_t DstSVOff) {
3600
3601  // Check to see if we should lower the memset to stores first.
3602  // For cases within the target-specified limits, this is the best choice.
3603  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3604  if (ConstantSize) {
3605    // Memset with size zero? Just return the original chain.
3606    if (ConstantSize->isNullValue())
3607      return Chain;
3608
3609    SDValue Result =
3610      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3611                      Align, isVol, DstSV, DstSVOff);
3612
3613    if (Result.getNode())
3614      return Result;
3615  }
3616
3617  // Then check to see if we should lower the memset with target-specific
3618  // code. If the target chooses to do this, this is the next best.
3619  SDValue Result =
3620    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3621                                DstSV, DstSVOff);
3622  if (Result.getNode())
3623    return Result;
3624
3625  // Emit a library call.
3626  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3627  TargetLowering::ArgListTy Args;
3628  TargetLowering::ArgListEntry Entry;
3629  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3630  Args.push_back(Entry);
3631  // Extend or truncate the argument to be an i32 value for the call.
3632  if (Src.getValueType().bitsGT(MVT::i32))
3633    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3634  else
3635    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3636  Entry.Node = Src;
3637  Entry.Ty = Type::getInt32Ty(*getContext());
3638  Entry.isSExt = true;
3639  Args.push_back(Entry);
3640  Entry.Node = Size;
3641  Entry.Ty = IntPtrTy;
3642  Entry.isSExt = false;
3643  Args.push_back(Entry);
3644  // FIXME: pass in DebugLoc
3645  std::pair<SDValue,SDValue> CallResult =
3646    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3647                    false, false, false, false, 0,
3648                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3649                    /*isReturnValueUsed=*/false,
3650                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3651                                      TLI.getPointerTy()),
3652                    Args, *this, dl);
3653  return CallResult.second;
3654}
3655
3656SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3657                                SDValue Chain,
3658                                SDValue Ptr, SDValue Cmp,
3659                                SDValue Swp, const Value* PtrVal,
3660                                unsigned Alignment) {
3661  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3662    Alignment = getEVTAlignment(MemVT);
3663
3664  // Check if the memory reference references a frame index
3665  if (!PtrVal)
3666    if (const FrameIndexSDNode *FI =
3667          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3668      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3669
3670  MachineFunction &MF = getMachineFunction();
3671  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3672
3673  // For now, atomics are considered to be volatile always.
3674  Flags |= MachineMemOperand::MOVolatile;
3675
3676  MachineMemOperand *MMO =
3677    MF.getMachineMemOperand(PtrVal, Flags, 0,
3678                            MemVT.getStoreSize(), Alignment);
3679
3680  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3681}
3682
3683SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3684                                SDValue Chain,
3685                                SDValue Ptr, SDValue Cmp,
3686                                SDValue Swp, MachineMemOperand *MMO) {
3687  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3688  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3689
3690  EVT VT = Cmp.getValueType();
3691
3692  SDVTList VTs = getVTList(VT, MVT::Other);
3693  FoldingSetNodeID ID;
3694  ID.AddInteger(MemVT.getRawBits());
3695  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3696  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3697  void* IP = 0;
3698  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3699    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3700    return SDValue(E, 0);
3701  }
3702  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3703                                               Ptr, Cmp, Swp, MMO);
3704  CSEMap.InsertNode(N, IP);
3705  AllNodes.push_back(N);
3706  return SDValue(N, 0);
3707}
3708
3709SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3710                                SDValue Chain,
3711                                SDValue Ptr, SDValue Val,
3712                                const Value* PtrVal,
3713                                unsigned Alignment) {
3714  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3715    Alignment = getEVTAlignment(MemVT);
3716
3717  // Check if the memory reference references a frame index
3718  if (!PtrVal)
3719    if (const FrameIndexSDNode *FI =
3720          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3721      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3722
3723  MachineFunction &MF = getMachineFunction();
3724  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3725
3726  // For now, atomics are considered to be volatile always.
3727  Flags |= MachineMemOperand::MOVolatile;
3728
3729  MachineMemOperand *MMO =
3730    MF.getMachineMemOperand(PtrVal, Flags, 0,
3731                            MemVT.getStoreSize(), Alignment);
3732
3733  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3734}
3735
3736SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3737                                SDValue Chain,
3738                                SDValue Ptr, SDValue Val,
3739                                MachineMemOperand *MMO) {
3740  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3741          Opcode == ISD::ATOMIC_LOAD_SUB ||
3742          Opcode == ISD::ATOMIC_LOAD_AND ||
3743          Opcode == ISD::ATOMIC_LOAD_OR ||
3744          Opcode == ISD::ATOMIC_LOAD_XOR ||
3745          Opcode == ISD::ATOMIC_LOAD_NAND ||
3746          Opcode == ISD::ATOMIC_LOAD_MIN ||
3747          Opcode == ISD::ATOMIC_LOAD_MAX ||
3748          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3749          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3750          Opcode == ISD::ATOMIC_SWAP) &&
3751         "Invalid Atomic Op");
3752
3753  EVT VT = Val.getValueType();
3754
3755  SDVTList VTs = getVTList(VT, MVT::Other);
3756  FoldingSetNodeID ID;
3757  ID.AddInteger(MemVT.getRawBits());
3758  SDValue Ops[] = {Chain, Ptr, Val};
3759  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3760  void* IP = 0;
3761  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3762    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3763    return SDValue(E, 0);
3764  }
3765  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3766                                               Ptr, Val, MMO);
3767  CSEMap.InsertNode(N, IP);
3768  AllNodes.push_back(N);
3769  return SDValue(N, 0);
3770}
3771
3772/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3773/// Allowed to return something different (and simpler) if Simplify is true.
3774SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3775                                     DebugLoc dl) {
3776  if (NumOps == 1)
3777    return Ops[0];
3778
3779  SmallVector<EVT, 4> VTs;
3780  VTs.reserve(NumOps);
3781  for (unsigned i = 0; i < NumOps; ++i)
3782    VTs.push_back(Ops[i].getValueType());
3783  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3784                 Ops, NumOps);
3785}
3786
3787SDValue
3788SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3789                                  const EVT *VTs, unsigned NumVTs,
3790                                  const SDValue *Ops, unsigned NumOps,
3791                                  EVT MemVT, const Value *srcValue, int SVOff,
3792                                  unsigned Align, bool Vol,
3793                                  bool ReadMem, bool WriteMem) {
3794  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3795                             MemVT, srcValue, SVOff, Align, Vol,
3796                             ReadMem, WriteMem);
3797}
3798
3799SDValue
3800SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3801                                  const SDValue *Ops, unsigned NumOps,
3802                                  EVT MemVT, const Value *srcValue, int SVOff,
3803                                  unsigned Align, bool Vol,
3804                                  bool ReadMem, bool WriteMem) {
3805  if (Align == 0)  // Ensure that codegen never sees alignment 0
3806    Align = getEVTAlignment(MemVT);
3807
3808  MachineFunction &MF = getMachineFunction();
3809  unsigned Flags = 0;
3810  if (WriteMem)
3811    Flags |= MachineMemOperand::MOStore;
3812  if (ReadMem)
3813    Flags |= MachineMemOperand::MOLoad;
3814  if (Vol)
3815    Flags |= MachineMemOperand::MOVolatile;
3816  MachineMemOperand *MMO =
3817    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3818                            MemVT.getStoreSize(), Align);
3819
3820  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3821}
3822
3823SDValue
3824SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3825                                  const SDValue *Ops, unsigned NumOps,
3826                                  EVT MemVT, MachineMemOperand *MMO) {
3827  assert((Opcode == ISD::INTRINSIC_VOID ||
3828          Opcode == ISD::INTRINSIC_W_CHAIN ||
3829          (Opcode <= INT_MAX &&
3830           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3831         "Opcode is not a memory-accessing opcode!");
3832
3833  // Memoize the node unless it returns a flag.
3834  MemIntrinsicSDNode *N;
3835  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3836    FoldingSetNodeID ID;
3837    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3838    void *IP = 0;
3839    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3840      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3841      return SDValue(E, 0);
3842    }
3843
3844    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3845                                               MemVT, MMO);
3846    CSEMap.InsertNode(N, IP);
3847  } else {
3848    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3849                                               MemVT, MMO);
3850  }
3851  AllNodes.push_back(N);
3852  return SDValue(N, 0);
3853}
3854
3855SDValue
3856SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3857                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3858                      SDValue Ptr, SDValue Offset,
3859                      const Value *SV, int SVOffset, EVT MemVT,
3860                      bool isVolatile, bool isNonTemporal,
3861                      unsigned Alignment) {
3862  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3863    Alignment = getEVTAlignment(VT);
3864
3865  // Check if the memory reference references a frame index
3866  if (!SV)
3867    if (const FrameIndexSDNode *FI =
3868          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3869      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3870
3871  MachineFunction &MF = getMachineFunction();
3872  unsigned Flags = MachineMemOperand::MOLoad;
3873  if (isVolatile)
3874    Flags |= MachineMemOperand::MOVolatile;
3875  if (isNonTemporal)
3876    Flags |= MachineMemOperand::MONonTemporal;
3877  MachineMemOperand *MMO =
3878    MF.getMachineMemOperand(SV, Flags, SVOffset,
3879                            MemVT.getStoreSize(), Alignment);
3880  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3881}
3882
3883SDValue
3884SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3885                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3886                      SDValue Ptr, SDValue Offset, EVT MemVT,
3887                      MachineMemOperand *MMO) {
3888  if (VT == MemVT) {
3889    ExtType = ISD::NON_EXTLOAD;
3890  } else if (ExtType == ISD::NON_EXTLOAD) {
3891    assert(VT == MemVT && "Non-extending load from different memory type!");
3892  } else {
3893    // Extending load.
3894    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3895           "Should only be an extending load, not truncating!");
3896    assert(VT.isInteger() == MemVT.isInteger() &&
3897           "Cannot convert from FP to Int or Int -> FP!");
3898    assert(VT.isVector() == MemVT.isVector() &&
3899           "Cannot use trunc store to convert to or from a vector!");
3900    assert((!VT.isVector() ||
3901            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3902           "Cannot use trunc store to change the number of vector elements!");
3903  }
3904
3905  bool Indexed = AM != ISD::UNINDEXED;
3906  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3907         "Unindexed load with an offset!");
3908
3909  SDVTList VTs = Indexed ?
3910    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3911  SDValue Ops[] = { Chain, Ptr, Offset };
3912  FoldingSetNodeID ID;
3913  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3914  ID.AddInteger(MemVT.getRawBits());
3915  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3916                                     MMO->isNonTemporal()));
3917  void *IP = 0;
3918  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3919    cast<LoadSDNode>(E)->refineAlignment(MMO);
3920    return SDValue(E, 0);
3921  }
3922  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
3923                                             MemVT, MMO);
3924  CSEMap.InsertNode(N, IP);
3925  AllNodes.push_back(N);
3926  return SDValue(N, 0);
3927}
3928
3929SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3930                              SDValue Chain, SDValue Ptr,
3931                              const Value *SV, int SVOffset,
3932                              bool isVolatile, bool isNonTemporal,
3933                              unsigned Alignment) {
3934  SDValue Undef = getUNDEF(Ptr.getValueType());
3935  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3936                 SV, SVOffset, VT, isVolatile, isNonTemporal, Alignment);
3937}
3938
3939SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3940                                 SDValue Chain, SDValue Ptr,
3941                                 const Value *SV,
3942                                 int SVOffset, EVT MemVT,
3943                                 bool isVolatile, bool isNonTemporal,
3944                                 unsigned Alignment) {
3945  SDValue Undef = getUNDEF(Ptr.getValueType());
3946  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3947                 SV, SVOffset, MemVT, isVolatile, isNonTemporal, Alignment);
3948}
3949
3950SDValue
3951SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3952                             SDValue Offset, ISD::MemIndexedMode AM) {
3953  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3954  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3955         "Load is already a indexed load!");
3956  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3957                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3958                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3959                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
3960}
3961
3962SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3963                               SDValue Ptr, const Value *SV, int SVOffset,
3964                               bool isVolatile, bool isNonTemporal,
3965                               unsigned Alignment) {
3966  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3967    Alignment = getEVTAlignment(Val.getValueType());
3968
3969  // Check if the memory reference references a frame index
3970  if (!SV)
3971    if (const FrameIndexSDNode *FI =
3972          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3973      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3974
3975  MachineFunction &MF = getMachineFunction();
3976  unsigned Flags = MachineMemOperand::MOStore;
3977  if (isVolatile)
3978    Flags |= MachineMemOperand::MOVolatile;
3979  if (isNonTemporal)
3980    Flags |= MachineMemOperand::MONonTemporal;
3981  MachineMemOperand *MMO =
3982    MF.getMachineMemOperand(SV, Flags, SVOffset,
3983                            Val.getValueType().getStoreSize(), Alignment);
3984
3985  return getStore(Chain, dl, Val, Ptr, MMO);
3986}
3987
3988SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3989                               SDValue Ptr, MachineMemOperand *MMO) {
3990  EVT VT = Val.getValueType();
3991  SDVTList VTs = getVTList(MVT::Other);
3992  SDValue Undef = getUNDEF(Ptr.getValueType());
3993  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3994  FoldingSetNodeID ID;
3995  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3996  ID.AddInteger(VT.getRawBits());
3997  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
3998                                     MMO->isNonTemporal()));
3999  void *IP = 0;
4000  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4001    cast<StoreSDNode>(E)->refineAlignment(MMO);
4002    return SDValue(E, 0);
4003  }
4004  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4005                                              false, VT, MMO);
4006  CSEMap.InsertNode(N, IP);
4007  AllNodes.push_back(N);
4008  return SDValue(N, 0);
4009}
4010
4011SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4012                                    SDValue Ptr, const Value *SV,
4013                                    int SVOffset, EVT SVT,
4014                                    bool isVolatile, bool isNonTemporal,
4015                                    unsigned Alignment) {
4016  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4017    Alignment = getEVTAlignment(SVT);
4018
4019  // Check if the memory reference references a frame index
4020  if (!SV)
4021    if (const FrameIndexSDNode *FI =
4022          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
4023      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
4024
4025  MachineFunction &MF = getMachineFunction();
4026  unsigned Flags = MachineMemOperand::MOStore;
4027  if (isVolatile)
4028    Flags |= MachineMemOperand::MOVolatile;
4029  if (isNonTemporal)
4030    Flags |= MachineMemOperand::MONonTemporal;
4031  MachineMemOperand *MMO =
4032    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
4033
4034  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4035}
4036
4037SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4038                                    SDValue Ptr, EVT SVT,
4039                                    MachineMemOperand *MMO) {
4040  EVT VT = Val.getValueType();
4041
4042  if (VT == SVT)
4043    return getStore(Chain, dl, Val, Ptr, MMO);
4044
4045  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4046         "Should only be a truncating store, not extending!");
4047  assert(VT.isInteger() == SVT.isInteger() &&
4048         "Can't do FP-INT conversion!");
4049  assert(VT.isVector() == SVT.isVector() &&
4050         "Cannot use trunc store to convert to or from a vector!");
4051  assert((!VT.isVector() ||
4052          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4053         "Cannot use trunc store to change the number of vector elements!");
4054
4055  SDVTList VTs = getVTList(MVT::Other);
4056  SDValue Undef = getUNDEF(Ptr.getValueType());
4057  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4058  FoldingSetNodeID ID;
4059  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4060  ID.AddInteger(SVT.getRawBits());
4061  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4062                                     MMO->isNonTemporal()));
4063  void *IP = 0;
4064  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4065    cast<StoreSDNode>(E)->refineAlignment(MMO);
4066    return SDValue(E, 0);
4067  }
4068  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4069                                              true, SVT, MMO);
4070  CSEMap.InsertNode(N, IP);
4071  AllNodes.push_back(N);
4072  return SDValue(N, 0);
4073}
4074
4075SDValue
4076SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4077                              SDValue Offset, ISD::MemIndexedMode AM) {
4078  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4079  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4080         "Store is already a indexed store!");
4081  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4082  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4083  FoldingSetNodeID ID;
4084  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4085  ID.AddInteger(ST->getMemoryVT().getRawBits());
4086  ID.AddInteger(ST->getRawSubclassData());
4087  void *IP = 0;
4088  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4089    return SDValue(E, 0);
4090
4091  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4092                                              ST->isTruncatingStore(),
4093                                              ST->getMemoryVT(),
4094                                              ST->getMemOperand());
4095  CSEMap.InsertNode(N, IP);
4096  AllNodes.push_back(N);
4097  return SDValue(N, 0);
4098}
4099
4100SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4101                               SDValue Chain, SDValue Ptr,
4102                               SDValue SV) {
4103  SDValue Ops[] = { Chain, Ptr, SV };
4104  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4105}
4106
4107SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4108                              const SDUse *Ops, unsigned NumOps) {
4109  switch (NumOps) {
4110  case 0: return getNode(Opcode, DL, VT);
4111  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4112  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4113  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4114  default: break;
4115  }
4116
4117  // Copy from an SDUse array into an SDValue array for use with
4118  // the regular getNode logic.
4119  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4120  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4121}
4122
4123SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4124                              const SDValue *Ops, unsigned NumOps) {
4125  switch (NumOps) {
4126  case 0: return getNode(Opcode, DL, VT);
4127  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4128  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4129  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4130  default: break;
4131  }
4132
4133  switch (Opcode) {
4134  default: break;
4135  case ISD::SELECT_CC: {
4136    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4137    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4138           "LHS and RHS of condition must have same type!");
4139    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4140           "True and False arms of SelectCC must have same type!");
4141    assert(Ops[2].getValueType() == VT &&
4142           "select_cc node must be of same type as true and false value!");
4143    break;
4144  }
4145  case ISD::BR_CC: {
4146    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4147    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4148           "LHS/RHS of comparison should match types!");
4149    break;
4150  }
4151  }
4152
4153  // Memoize nodes.
4154  SDNode *N;
4155  SDVTList VTs = getVTList(VT);
4156
4157  if (VT != MVT::Flag) {
4158    FoldingSetNodeID ID;
4159    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4160    void *IP = 0;
4161
4162    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4163      return SDValue(E, 0);
4164
4165    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4166    CSEMap.InsertNode(N, IP);
4167  } else {
4168    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4169  }
4170
4171  AllNodes.push_back(N);
4172#ifndef NDEBUG
4173  VerifyNode(N);
4174#endif
4175  return SDValue(N, 0);
4176}
4177
4178SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4179                              const std::vector<EVT> &ResultTys,
4180                              const SDValue *Ops, unsigned NumOps) {
4181  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4182                 Ops, NumOps);
4183}
4184
4185SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4186                              const EVT *VTs, unsigned NumVTs,
4187                              const SDValue *Ops, unsigned NumOps) {
4188  if (NumVTs == 1)
4189    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4190  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4191}
4192
4193SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4194                              const SDValue *Ops, unsigned NumOps) {
4195  if (VTList.NumVTs == 1)
4196    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4197
4198#if 0
4199  switch (Opcode) {
4200  // FIXME: figure out how to safely handle things like
4201  // int foo(int x) { return 1 << (x & 255); }
4202  // int bar() { return foo(256); }
4203  case ISD::SRA_PARTS:
4204  case ISD::SRL_PARTS:
4205  case ISD::SHL_PARTS:
4206    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4207        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4208      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4209    else if (N3.getOpcode() == ISD::AND)
4210      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4211        // If the and is only masking out bits that cannot effect the shift,
4212        // eliminate the and.
4213        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4214        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4215          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4216      }
4217    break;
4218  }
4219#endif
4220
4221  // Memoize the node unless it returns a flag.
4222  SDNode *N;
4223  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4224    FoldingSetNodeID ID;
4225    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4226    void *IP = 0;
4227    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4228      return SDValue(E, 0);
4229
4230    if (NumOps == 1) {
4231      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4232    } else if (NumOps == 2) {
4233      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4234    } else if (NumOps == 3) {
4235      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4236                                            Ops[2]);
4237    } else {
4238      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4239    }
4240    CSEMap.InsertNode(N, IP);
4241  } else {
4242    if (NumOps == 1) {
4243      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4244    } else if (NumOps == 2) {
4245      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4246    } else if (NumOps == 3) {
4247      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4248                                            Ops[2]);
4249    } else {
4250      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4251    }
4252  }
4253  AllNodes.push_back(N);
4254#ifndef NDEBUG
4255  VerifyNode(N);
4256#endif
4257  return SDValue(N, 0);
4258}
4259
4260SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4261  return getNode(Opcode, DL, VTList, 0, 0);
4262}
4263
4264SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4265                              SDValue N1) {
4266  SDValue Ops[] = { N1 };
4267  return getNode(Opcode, DL, VTList, Ops, 1);
4268}
4269
4270SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4271                              SDValue N1, SDValue N2) {
4272  SDValue Ops[] = { N1, N2 };
4273  return getNode(Opcode, DL, VTList, Ops, 2);
4274}
4275
4276SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4277                              SDValue N1, SDValue N2, SDValue N3) {
4278  SDValue Ops[] = { N1, N2, N3 };
4279  return getNode(Opcode, DL, VTList, Ops, 3);
4280}
4281
4282SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4283                              SDValue N1, SDValue N2, SDValue N3,
4284                              SDValue N4) {
4285  SDValue Ops[] = { N1, N2, N3, N4 };
4286  return getNode(Opcode, DL, VTList, Ops, 4);
4287}
4288
4289SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4290                              SDValue N1, SDValue N2, SDValue N3,
4291                              SDValue N4, SDValue N5) {
4292  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4293  return getNode(Opcode, DL, VTList, Ops, 5);
4294}
4295
4296SDVTList SelectionDAG::getVTList(EVT VT) {
4297  return makeVTList(SDNode::getValueTypeList(VT), 1);
4298}
4299
4300SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4301  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4302       E = VTList.rend(); I != E; ++I)
4303    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4304      return *I;
4305
4306  EVT *Array = Allocator.Allocate<EVT>(2);
4307  Array[0] = VT1;
4308  Array[1] = VT2;
4309  SDVTList Result = makeVTList(Array, 2);
4310  VTList.push_back(Result);
4311  return Result;
4312}
4313
4314SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4315  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4316       E = VTList.rend(); I != E; ++I)
4317    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4318                          I->VTs[2] == VT3)
4319      return *I;
4320
4321  EVT *Array = Allocator.Allocate<EVT>(3);
4322  Array[0] = VT1;
4323  Array[1] = VT2;
4324  Array[2] = VT3;
4325  SDVTList Result = makeVTList(Array, 3);
4326  VTList.push_back(Result);
4327  return Result;
4328}
4329
4330SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4331  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4332       E = VTList.rend(); I != E; ++I)
4333    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4334                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4335      return *I;
4336
4337  EVT *Array = Allocator.Allocate<EVT>(4);
4338  Array[0] = VT1;
4339  Array[1] = VT2;
4340  Array[2] = VT3;
4341  Array[3] = VT4;
4342  SDVTList Result = makeVTList(Array, 4);
4343  VTList.push_back(Result);
4344  return Result;
4345}
4346
4347SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4348  switch (NumVTs) {
4349    case 0: llvm_unreachable("Cannot have nodes without results!");
4350    case 1: return getVTList(VTs[0]);
4351    case 2: return getVTList(VTs[0], VTs[1]);
4352    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4353    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4354    default: break;
4355  }
4356
4357  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4358       E = VTList.rend(); I != E; ++I) {
4359    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4360      continue;
4361
4362    bool NoMatch = false;
4363    for (unsigned i = 2; i != NumVTs; ++i)
4364      if (VTs[i] != I->VTs[i]) {
4365        NoMatch = true;
4366        break;
4367      }
4368    if (!NoMatch)
4369      return *I;
4370  }
4371
4372  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4373  std::copy(VTs, VTs+NumVTs, Array);
4374  SDVTList Result = makeVTList(Array, NumVTs);
4375  VTList.push_back(Result);
4376  return Result;
4377}
4378
4379
4380/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4381/// specified operands.  If the resultant node already exists in the DAG,
4382/// this does not modify the specified node, instead it returns the node that
4383/// already exists.  If the resultant node does not exist in the DAG, the
4384/// input node is returned.  As a degenerate case, if you specify the same
4385/// input operands as the node already has, the input node is returned.
4386SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4387  SDNode *N = InN.getNode();
4388  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4389
4390  // Check to see if there is no change.
4391  if (Op == N->getOperand(0)) return InN;
4392
4393  // See if the modified node already exists.
4394  void *InsertPos = 0;
4395  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4396    return SDValue(Existing, InN.getResNo());
4397
4398  // Nope it doesn't.  Remove the node from its current place in the maps.
4399  if (InsertPos)
4400    if (!RemoveNodeFromCSEMaps(N))
4401      InsertPos = 0;
4402
4403  // Now we update the operands.
4404  N->OperandList[0].set(Op);
4405
4406  // If this gets put into a CSE map, add it.
4407  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4408  return InN;
4409}
4410
4411SDValue SelectionDAG::
4412UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4413  SDNode *N = InN.getNode();
4414  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4415
4416  // Check to see if there is no change.
4417  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4418    return InN;   // No operands changed, just return the input node.
4419
4420  // See if the modified node already exists.
4421  void *InsertPos = 0;
4422  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4423    return SDValue(Existing, InN.getResNo());
4424
4425  // Nope it doesn't.  Remove the node from its current place in the maps.
4426  if (InsertPos)
4427    if (!RemoveNodeFromCSEMaps(N))
4428      InsertPos = 0;
4429
4430  // Now we update the operands.
4431  if (N->OperandList[0] != Op1)
4432    N->OperandList[0].set(Op1);
4433  if (N->OperandList[1] != Op2)
4434    N->OperandList[1].set(Op2);
4435
4436  // If this gets put into a CSE map, add it.
4437  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4438  return InN;
4439}
4440
4441SDValue SelectionDAG::
4442UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4443  SDValue Ops[] = { Op1, Op2, Op3 };
4444  return UpdateNodeOperands(N, Ops, 3);
4445}
4446
4447SDValue SelectionDAG::
4448UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4449                   SDValue Op3, SDValue Op4) {
4450  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4451  return UpdateNodeOperands(N, Ops, 4);
4452}
4453
4454SDValue SelectionDAG::
4455UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4456                   SDValue Op3, SDValue Op4, SDValue Op5) {
4457  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4458  return UpdateNodeOperands(N, Ops, 5);
4459}
4460
4461SDValue SelectionDAG::
4462UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4463  SDNode *N = InN.getNode();
4464  assert(N->getNumOperands() == NumOps &&
4465         "Update with wrong number of operands");
4466
4467  // Check to see if there is no change.
4468  bool AnyChange = false;
4469  for (unsigned i = 0; i != NumOps; ++i) {
4470    if (Ops[i] != N->getOperand(i)) {
4471      AnyChange = true;
4472      break;
4473    }
4474  }
4475
4476  // No operands changed, just return the input node.
4477  if (!AnyChange) return InN;
4478
4479  // See if the modified node already exists.
4480  void *InsertPos = 0;
4481  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4482    return SDValue(Existing, InN.getResNo());
4483
4484  // Nope it doesn't.  Remove the node from its current place in the maps.
4485  if (InsertPos)
4486    if (!RemoveNodeFromCSEMaps(N))
4487      InsertPos = 0;
4488
4489  // Now we update the operands.
4490  for (unsigned i = 0; i != NumOps; ++i)
4491    if (N->OperandList[i] != Ops[i])
4492      N->OperandList[i].set(Ops[i]);
4493
4494  // If this gets put into a CSE map, add it.
4495  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4496  return InN;
4497}
4498
4499/// DropOperands - Release the operands and set this node to have
4500/// zero operands.
4501void SDNode::DropOperands() {
4502  // Unlike the code in MorphNodeTo that does this, we don't need to
4503  // watch for dead nodes here.
4504  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4505    SDUse &Use = *I++;
4506    Use.set(SDValue());
4507  }
4508}
4509
4510/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4511/// machine opcode.
4512///
4513SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4514                                   EVT VT) {
4515  SDVTList VTs = getVTList(VT);
4516  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4517}
4518
4519SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4520                                   EVT VT, SDValue Op1) {
4521  SDVTList VTs = getVTList(VT);
4522  SDValue Ops[] = { Op1 };
4523  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4524}
4525
4526SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4527                                   EVT VT, SDValue Op1,
4528                                   SDValue Op2) {
4529  SDVTList VTs = getVTList(VT);
4530  SDValue Ops[] = { Op1, Op2 };
4531  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4532}
4533
4534SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4535                                   EVT VT, SDValue Op1,
4536                                   SDValue Op2, SDValue Op3) {
4537  SDVTList VTs = getVTList(VT);
4538  SDValue Ops[] = { Op1, Op2, Op3 };
4539  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4540}
4541
4542SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4543                                   EVT VT, const SDValue *Ops,
4544                                   unsigned NumOps) {
4545  SDVTList VTs = getVTList(VT);
4546  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4547}
4548
4549SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4550                                   EVT VT1, EVT VT2, const SDValue *Ops,
4551                                   unsigned NumOps) {
4552  SDVTList VTs = getVTList(VT1, VT2);
4553  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4554}
4555
4556SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4557                                   EVT VT1, EVT VT2) {
4558  SDVTList VTs = getVTList(VT1, VT2);
4559  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4560}
4561
4562SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4563                                   EVT VT1, EVT VT2, EVT VT3,
4564                                   const SDValue *Ops, unsigned NumOps) {
4565  SDVTList VTs = getVTList(VT1, VT2, VT3);
4566  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4567}
4568
4569SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4570                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4571                                   const SDValue *Ops, unsigned NumOps) {
4572  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4573  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4574}
4575
4576SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4577                                   EVT VT1, EVT VT2,
4578                                   SDValue Op1) {
4579  SDVTList VTs = getVTList(VT1, VT2);
4580  SDValue Ops[] = { Op1 };
4581  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4582}
4583
4584SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4585                                   EVT VT1, EVT VT2,
4586                                   SDValue Op1, SDValue Op2) {
4587  SDVTList VTs = getVTList(VT1, VT2);
4588  SDValue Ops[] = { Op1, Op2 };
4589  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4590}
4591
4592SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4593                                   EVT VT1, EVT VT2,
4594                                   SDValue Op1, SDValue Op2,
4595                                   SDValue Op3) {
4596  SDVTList VTs = getVTList(VT1, VT2);
4597  SDValue Ops[] = { Op1, Op2, Op3 };
4598  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4599}
4600
4601SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4602                                   EVT VT1, EVT VT2, EVT VT3,
4603                                   SDValue Op1, SDValue Op2,
4604                                   SDValue Op3) {
4605  SDVTList VTs = getVTList(VT1, VT2, VT3);
4606  SDValue Ops[] = { Op1, Op2, Op3 };
4607  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4608}
4609
4610SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4611                                   SDVTList VTs, const SDValue *Ops,
4612                                   unsigned NumOps) {
4613  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4614  // Reset the NodeID to -1.
4615  N->setNodeId(-1);
4616  return N;
4617}
4618
4619/// MorphNodeTo - This *mutates* the specified node to have the specified
4620/// return type, opcode, and operands.
4621///
4622/// Note that MorphNodeTo returns the resultant node.  If there is already a
4623/// node of the specified opcode and operands, it returns that node instead of
4624/// the current one.  Note that the DebugLoc need not be the same.
4625///
4626/// Using MorphNodeTo is faster than creating a new node and swapping it in
4627/// with ReplaceAllUsesWith both because it often avoids allocating a new
4628/// node, and because it doesn't require CSE recalculation for any of
4629/// the node's users.
4630///
4631SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4632                                  SDVTList VTs, const SDValue *Ops,
4633                                  unsigned NumOps) {
4634  // If an identical node already exists, use it.
4635  void *IP = 0;
4636  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4637    FoldingSetNodeID ID;
4638    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4639    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4640      return ON;
4641  }
4642
4643  if (!RemoveNodeFromCSEMaps(N))
4644    IP = 0;
4645
4646  // Start the morphing.
4647  N->NodeType = Opc;
4648  N->ValueList = VTs.VTs;
4649  N->NumValues = VTs.NumVTs;
4650
4651  // Clear the operands list, updating used nodes to remove this from their
4652  // use list.  Keep track of any operands that become dead as a result.
4653  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4654  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4655    SDUse &Use = *I++;
4656    SDNode *Used = Use.getNode();
4657    Use.set(SDValue());
4658    if (Used->use_empty())
4659      DeadNodeSet.insert(Used);
4660  }
4661
4662  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4663    // Initialize the memory references information.
4664    MN->setMemRefs(0, 0);
4665    // If NumOps is larger than the # of operands we can have in a
4666    // MachineSDNode, reallocate the operand list.
4667    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4668      if (MN->OperandsNeedDelete)
4669        delete[] MN->OperandList;
4670      if (NumOps > array_lengthof(MN->LocalOperands))
4671        // We're creating a final node that will live unmorphed for the
4672        // remainder of the current SelectionDAG iteration, so we can allocate
4673        // the operands directly out of a pool with no recycling metadata.
4674        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4675                         Ops, NumOps);
4676      else
4677        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4678      MN->OperandsNeedDelete = false;
4679    } else
4680      MN->InitOperands(MN->OperandList, Ops, NumOps);
4681  } else {
4682    // If NumOps is larger than the # of operands we currently have, reallocate
4683    // the operand list.
4684    if (NumOps > N->NumOperands) {
4685      if (N->OperandsNeedDelete)
4686        delete[] N->OperandList;
4687      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4688      N->OperandsNeedDelete = true;
4689    } else
4690      N->InitOperands(N->OperandList, Ops, NumOps);
4691  }
4692
4693  // Delete any nodes that are still dead after adding the uses for the
4694  // new operands.
4695  if (!DeadNodeSet.empty()) {
4696    SmallVector<SDNode *, 16> DeadNodes;
4697    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4698         E = DeadNodeSet.end(); I != E; ++I)
4699      if ((*I)->use_empty())
4700        DeadNodes.push_back(*I);
4701    RemoveDeadNodes(DeadNodes);
4702  }
4703
4704  if (IP)
4705    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4706  return N;
4707}
4708
4709
4710/// getMachineNode - These are used for target selectors to create a new node
4711/// with specified return type(s), MachineInstr opcode, and operands.
4712///
4713/// Note that getMachineNode returns the resultant node.  If there is already a
4714/// node of the specified opcode and operands, it returns that node instead of
4715/// the current one.
4716MachineSDNode *
4717SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4718  SDVTList VTs = getVTList(VT);
4719  return getMachineNode(Opcode, dl, VTs, 0, 0);
4720}
4721
4722MachineSDNode *
4723SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4724  SDVTList VTs = getVTList(VT);
4725  SDValue Ops[] = { Op1 };
4726  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4727}
4728
4729MachineSDNode *
4730SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4731                             SDValue Op1, SDValue Op2) {
4732  SDVTList VTs = getVTList(VT);
4733  SDValue Ops[] = { Op1, Op2 };
4734  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4735}
4736
4737MachineSDNode *
4738SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4739                             SDValue Op1, SDValue Op2, SDValue Op3) {
4740  SDVTList VTs = getVTList(VT);
4741  SDValue Ops[] = { Op1, Op2, Op3 };
4742  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4743}
4744
4745MachineSDNode *
4746SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4747                             const SDValue *Ops, unsigned NumOps) {
4748  SDVTList VTs = getVTList(VT);
4749  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4750}
4751
4752MachineSDNode *
4753SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4754  SDVTList VTs = getVTList(VT1, VT2);
4755  return getMachineNode(Opcode, dl, VTs, 0, 0);
4756}
4757
4758MachineSDNode *
4759SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4760                             EVT VT1, EVT VT2, SDValue Op1) {
4761  SDVTList VTs = getVTList(VT1, VT2);
4762  SDValue Ops[] = { Op1 };
4763  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4764}
4765
4766MachineSDNode *
4767SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4768                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4769  SDVTList VTs = getVTList(VT1, VT2);
4770  SDValue Ops[] = { Op1, Op2 };
4771  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4772}
4773
4774MachineSDNode *
4775SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4776                             EVT VT1, EVT VT2, SDValue Op1,
4777                             SDValue Op2, SDValue Op3) {
4778  SDVTList VTs = getVTList(VT1, VT2);
4779  SDValue Ops[] = { Op1, Op2, Op3 };
4780  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4781}
4782
4783MachineSDNode *
4784SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4785                             EVT VT1, EVT VT2,
4786                             const SDValue *Ops, unsigned NumOps) {
4787  SDVTList VTs = getVTList(VT1, VT2);
4788  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4789}
4790
4791MachineSDNode *
4792SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4793                             EVT VT1, EVT VT2, EVT VT3,
4794                             SDValue Op1, SDValue Op2) {
4795  SDVTList VTs = getVTList(VT1, VT2, VT3);
4796  SDValue Ops[] = { Op1, Op2 };
4797  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4798}
4799
4800MachineSDNode *
4801SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4802                             EVT VT1, EVT VT2, EVT VT3,
4803                             SDValue Op1, SDValue Op2, SDValue Op3) {
4804  SDVTList VTs = getVTList(VT1, VT2, VT3);
4805  SDValue Ops[] = { Op1, Op2, Op3 };
4806  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4807}
4808
4809MachineSDNode *
4810SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4811                             EVT VT1, EVT VT2, EVT VT3,
4812                             const SDValue *Ops, unsigned NumOps) {
4813  SDVTList VTs = getVTList(VT1, VT2, VT3);
4814  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4815}
4816
4817MachineSDNode *
4818SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4819                             EVT VT2, EVT VT3, EVT VT4,
4820                             const SDValue *Ops, unsigned NumOps) {
4821  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4822  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4823}
4824
4825MachineSDNode *
4826SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4827                             const std::vector<EVT> &ResultTys,
4828                             const SDValue *Ops, unsigned NumOps) {
4829  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4830  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4831}
4832
4833MachineSDNode *
4834SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4835                             const SDValue *Ops, unsigned NumOps) {
4836  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4837  MachineSDNode *N;
4838  void *IP;
4839
4840  if (DoCSE) {
4841    FoldingSetNodeID ID;
4842    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4843    IP = 0;
4844    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4845      return cast<MachineSDNode>(E);
4846  }
4847
4848  // Allocate a new MachineSDNode.
4849  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
4850
4851  // Initialize the operands list.
4852  if (NumOps > array_lengthof(N->LocalOperands))
4853    // We're creating a final node that will live unmorphed for the
4854    // remainder of the current SelectionDAG iteration, so we can allocate
4855    // the operands directly out of a pool with no recycling metadata.
4856    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4857                    Ops, NumOps);
4858  else
4859    N->InitOperands(N->LocalOperands, Ops, NumOps);
4860  N->OperandsNeedDelete = false;
4861
4862  if (DoCSE)
4863    CSEMap.InsertNode(N, IP);
4864
4865  AllNodes.push_back(N);
4866#ifndef NDEBUG
4867  VerifyNode(N);
4868#endif
4869  return N;
4870}
4871
4872/// getTargetExtractSubreg - A convenience function for creating
4873/// TargetOpcode::EXTRACT_SUBREG nodes.
4874SDValue
4875SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4876                                     SDValue Operand) {
4877  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4878  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4879                                  VT, Operand, SRIdxVal);
4880  return SDValue(Subreg, 0);
4881}
4882
4883/// getTargetInsertSubreg - A convenience function for creating
4884/// TargetOpcode::INSERT_SUBREG nodes.
4885SDValue
4886SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4887                                    SDValue Operand, SDValue Subreg) {
4888  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4889  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4890                                  VT, Operand, Subreg, SRIdxVal);
4891  return SDValue(Result, 0);
4892}
4893
4894/// getNodeIfExists - Get the specified node if it's already available, or
4895/// else return NULL.
4896SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4897                                      const SDValue *Ops, unsigned NumOps) {
4898  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4899    FoldingSetNodeID ID;
4900    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4901    void *IP = 0;
4902    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4903      return E;
4904  }
4905  return NULL;
4906}
4907
4908/// getDbgValue - Creates a SDDbgValue node.
4909///
4910SDDbgValue *
4911SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
4912                          DebugLoc DL, unsigned O) {
4913  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
4914}
4915
4916SDDbgValue *
4917SelectionDAG::getDbgValue(MDNode *MDPtr, Value *C, uint64_t Off,
4918                          DebugLoc DL, unsigned O) {
4919  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
4920}
4921
4922SDDbgValue *
4923SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
4924                          DebugLoc DL, unsigned O) {
4925  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
4926}
4927
4928namespace {
4929
4930/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
4931/// pointed to by a use iterator is deleted, increment the use iterator
4932/// so that it doesn't dangle.
4933///
4934/// This class also manages a "downlink" DAGUpdateListener, to forward
4935/// messages to ReplaceAllUsesWith's callers.
4936///
4937class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
4938  SelectionDAG::DAGUpdateListener *DownLink;
4939  SDNode::use_iterator &UI;
4940  SDNode::use_iterator &UE;
4941
4942  virtual void NodeDeleted(SDNode *N, SDNode *E) {
4943    // Increment the iterator as needed.
4944    while (UI != UE && N == *UI)
4945      ++UI;
4946
4947    // Then forward the message.
4948    if (DownLink) DownLink->NodeDeleted(N, E);
4949  }
4950
4951  virtual void NodeUpdated(SDNode *N) {
4952    // Just forward the message.
4953    if (DownLink) DownLink->NodeUpdated(N);
4954  }
4955
4956public:
4957  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
4958                     SDNode::use_iterator &ui,
4959                     SDNode::use_iterator &ue)
4960    : DownLink(dl), UI(ui), UE(ue) {}
4961};
4962
4963}
4964
4965/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4966/// This can cause recursive merging of nodes in the DAG.
4967///
4968/// This version assumes From has a single result value.
4969///
4970void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4971                                      DAGUpdateListener *UpdateListener) {
4972  SDNode *From = FromN.getNode();
4973  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4974         "Cannot replace with this method!");
4975  assert(From != To.getNode() && "Cannot replace uses of with self");
4976
4977  // Iterate over all the existing uses of From. New uses will be added
4978  // to the beginning of the use list, which we avoid visiting.
4979  // This specifically avoids visiting uses of From that arise while the
4980  // replacement is happening, because any such uses would be the result
4981  // of CSE: If an existing node looks like From after one of its operands
4982  // is replaced by To, we don't want to replace of all its users with To
4983  // too. See PR3018 for more info.
4984  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4985  RAUWUpdateListener Listener(UpdateListener, UI, UE);
4986  while (UI != UE) {
4987    SDNode *User = *UI;
4988
4989    // This node is about to morph, remove its old self from the CSE maps.
4990    RemoveNodeFromCSEMaps(User);
4991
4992    // A user can appear in a use list multiple times, and when this
4993    // happens the uses are usually next to each other in the list.
4994    // To help reduce the number of CSE recomputations, process all
4995    // the uses of this user that we can find this way.
4996    do {
4997      SDUse &Use = UI.getUse();
4998      ++UI;
4999      Use.set(To);
5000    } while (UI != UE && *UI == User);
5001
5002    // Now that we have modified User, add it back to the CSE maps.  If it
5003    // already exists there, recursively merge the results together.
5004    AddModifiedNodeToCSEMaps(User, &Listener);
5005  }
5006}
5007
5008/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5009/// This can cause recursive merging of nodes in the DAG.
5010///
5011/// This version assumes that for each value of From, there is a
5012/// corresponding value in To in the same position with the same type.
5013///
5014void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5015                                      DAGUpdateListener *UpdateListener) {
5016#ifndef NDEBUG
5017  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5018    assert((!From->hasAnyUseOfValue(i) ||
5019            From->getValueType(i) == To->getValueType(i)) &&
5020           "Cannot use this version of ReplaceAllUsesWith!");
5021#endif
5022
5023  // Handle the trivial case.
5024  if (From == To)
5025    return;
5026
5027  // Iterate over just the existing users of From. See the comments in
5028  // the ReplaceAllUsesWith above.
5029  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5030  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5031  while (UI != UE) {
5032    SDNode *User = *UI;
5033
5034    // This node is about to morph, remove its old self from the CSE maps.
5035    RemoveNodeFromCSEMaps(User);
5036
5037    // A user can appear in a use list multiple times, and when this
5038    // happens the uses are usually next to each other in the list.
5039    // To help reduce the number of CSE recomputations, process all
5040    // the uses of this user that we can find this way.
5041    do {
5042      SDUse &Use = UI.getUse();
5043      ++UI;
5044      Use.setNode(To);
5045    } while (UI != UE && *UI == User);
5046
5047    // Now that we have modified User, add it back to the CSE maps.  If it
5048    // already exists there, recursively merge the results together.
5049    AddModifiedNodeToCSEMaps(User, &Listener);
5050  }
5051}
5052
5053/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5054/// This can cause recursive merging of nodes in the DAG.
5055///
5056/// This version can replace From with any result values.  To must match the
5057/// number and types of values returned by From.
5058void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5059                                      const SDValue *To,
5060                                      DAGUpdateListener *UpdateListener) {
5061  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5062    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5063
5064  // Iterate over just the existing users of From. See the comments in
5065  // the ReplaceAllUsesWith above.
5066  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5067  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5068  while (UI != UE) {
5069    SDNode *User = *UI;
5070
5071    // This node is about to morph, remove its old self from the CSE maps.
5072    RemoveNodeFromCSEMaps(User);
5073
5074    // A user can appear in a use list multiple times, and when this
5075    // happens the uses are usually next to each other in the list.
5076    // To help reduce the number of CSE recomputations, process all
5077    // the uses of this user that we can find this way.
5078    do {
5079      SDUse &Use = UI.getUse();
5080      const SDValue &ToOp = To[Use.getResNo()];
5081      ++UI;
5082      Use.set(ToOp);
5083    } while (UI != UE && *UI == User);
5084
5085    // Now that we have modified User, add it back to the CSE maps.  If it
5086    // already exists there, recursively merge the results together.
5087    AddModifiedNodeToCSEMaps(User, &Listener);
5088  }
5089}
5090
5091/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5092/// uses of other values produced by From.getNode() alone.  The Deleted
5093/// vector is handled the same way as for ReplaceAllUsesWith.
5094void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5095                                             DAGUpdateListener *UpdateListener){
5096  // Handle the really simple, really trivial case efficiently.
5097  if (From == To) return;
5098
5099  // Handle the simple, trivial, case efficiently.
5100  if (From.getNode()->getNumValues() == 1) {
5101    ReplaceAllUsesWith(From, To, UpdateListener);
5102    return;
5103  }
5104
5105  // Iterate over just the existing users of From. See the comments in
5106  // the ReplaceAllUsesWith above.
5107  SDNode::use_iterator UI = From.getNode()->use_begin(),
5108                       UE = From.getNode()->use_end();
5109  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5110  while (UI != UE) {
5111    SDNode *User = *UI;
5112    bool UserRemovedFromCSEMaps = false;
5113
5114    // A user can appear in a use list multiple times, and when this
5115    // happens the uses are usually next to each other in the list.
5116    // To help reduce the number of CSE recomputations, process all
5117    // the uses of this user that we can find this way.
5118    do {
5119      SDUse &Use = UI.getUse();
5120
5121      // Skip uses of different values from the same node.
5122      if (Use.getResNo() != From.getResNo()) {
5123        ++UI;
5124        continue;
5125      }
5126
5127      // If this node hasn't been modified yet, it's still in the CSE maps,
5128      // so remove its old self from the CSE maps.
5129      if (!UserRemovedFromCSEMaps) {
5130        RemoveNodeFromCSEMaps(User);
5131        UserRemovedFromCSEMaps = true;
5132      }
5133
5134      ++UI;
5135      Use.set(To);
5136    } while (UI != UE && *UI == User);
5137
5138    // We are iterating over all uses of the From node, so if a use
5139    // doesn't use the specific value, no changes are made.
5140    if (!UserRemovedFromCSEMaps)
5141      continue;
5142
5143    // Now that we have modified User, add it back to the CSE maps.  If it
5144    // already exists there, recursively merge the results together.
5145    AddModifiedNodeToCSEMaps(User, &Listener);
5146  }
5147}
5148
5149namespace {
5150  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5151  /// to record information about a use.
5152  struct UseMemo {
5153    SDNode *User;
5154    unsigned Index;
5155    SDUse *Use;
5156  };
5157
5158  /// operator< - Sort Memos by User.
5159  bool operator<(const UseMemo &L, const UseMemo &R) {
5160    return (intptr_t)L.User < (intptr_t)R.User;
5161  }
5162}
5163
5164/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5165/// uses of other values produced by From.getNode() alone.  The same value
5166/// may appear in both the From and To list.  The Deleted vector is
5167/// handled the same way as for ReplaceAllUsesWith.
5168void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5169                                              const SDValue *To,
5170                                              unsigned Num,
5171                                              DAGUpdateListener *UpdateListener){
5172  // Handle the simple, trivial case efficiently.
5173  if (Num == 1)
5174    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5175
5176  // Read up all the uses and make records of them. This helps
5177  // processing new uses that are introduced during the
5178  // replacement process.
5179  SmallVector<UseMemo, 4> Uses;
5180  for (unsigned i = 0; i != Num; ++i) {
5181    unsigned FromResNo = From[i].getResNo();
5182    SDNode *FromNode = From[i].getNode();
5183    for (SDNode::use_iterator UI = FromNode->use_begin(),
5184         E = FromNode->use_end(); UI != E; ++UI) {
5185      SDUse &Use = UI.getUse();
5186      if (Use.getResNo() == FromResNo) {
5187        UseMemo Memo = { *UI, i, &Use };
5188        Uses.push_back(Memo);
5189      }
5190    }
5191  }
5192
5193  // Sort the uses, so that all the uses from a given User are together.
5194  std::sort(Uses.begin(), Uses.end());
5195
5196  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5197       UseIndex != UseIndexEnd; ) {
5198    // We know that this user uses some value of From.  If it is the right
5199    // value, update it.
5200    SDNode *User = Uses[UseIndex].User;
5201
5202    // This node is about to morph, remove its old self from the CSE maps.
5203    RemoveNodeFromCSEMaps(User);
5204
5205    // The Uses array is sorted, so all the uses for a given User
5206    // are next to each other in the list.
5207    // To help reduce the number of CSE recomputations, process all
5208    // the uses of this user that we can find this way.
5209    do {
5210      unsigned i = Uses[UseIndex].Index;
5211      SDUse &Use = *Uses[UseIndex].Use;
5212      ++UseIndex;
5213
5214      Use.set(To[i]);
5215    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5216
5217    // Now that we have modified User, add it back to the CSE maps.  If it
5218    // already exists there, recursively merge the results together.
5219    AddModifiedNodeToCSEMaps(User, UpdateListener);
5220  }
5221}
5222
5223/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5224/// based on their topological order. It returns the maximum id and a vector
5225/// of the SDNodes* in assigned order by reference.
5226unsigned SelectionDAG::AssignTopologicalOrder() {
5227
5228  unsigned DAGSize = 0;
5229
5230  // SortedPos tracks the progress of the algorithm. Nodes before it are
5231  // sorted, nodes after it are unsorted. When the algorithm completes
5232  // it is at the end of the list.
5233  allnodes_iterator SortedPos = allnodes_begin();
5234
5235  // Visit all the nodes. Move nodes with no operands to the front of
5236  // the list immediately. Annotate nodes that do have operands with their
5237  // operand count. Before we do this, the Node Id fields of the nodes
5238  // may contain arbitrary values. After, the Node Id fields for nodes
5239  // before SortedPos will contain the topological sort index, and the
5240  // Node Id fields for nodes At SortedPos and after will contain the
5241  // count of outstanding operands.
5242  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5243    SDNode *N = I++;
5244    checkForCycles(N);
5245    unsigned Degree = N->getNumOperands();
5246    if (Degree == 0) {
5247      // A node with no uses, add it to the result array immediately.
5248      N->setNodeId(DAGSize++);
5249      allnodes_iterator Q = N;
5250      if (Q != SortedPos)
5251        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5252      assert(SortedPos != AllNodes.end() && "Overran node list");
5253      ++SortedPos;
5254    } else {
5255      // Temporarily use the Node Id as scratch space for the degree count.
5256      N->setNodeId(Degree);
5257    }
5258  }
5259
5260  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5261  // such that by the time the end is reached all nodes will be sorted.
5262  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5263    SDNode *N = I;
5264    checkForCycles(N);
5265    // N is in sorted position, so all its uses have one less operand
5266    // that needs to be sorted.
5267    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5268         UI != UE; ++UI) {
5269      SDNode *P = *UI;
5270      unsigned Degree = P->getNodeId();
5271      assert(Degree != 0 && "Invalid node degree");
5272      --Degree;
5273      if (Degree == 0) {
5274        // All of P's operands are sorted, so P may sorted now.
5275        P->setNodeId(DAGSize++);
5276        if (P != SortedPos)
5277          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5278        assert(SortedPos != AllNodes.end() && "Overran node list");
5279        ++SortedPos;
5280      } else {
5281        // Update P's outstanding operand count.
5282        P->setNodeId(Degree);
5283      }
5284    }
5285    if (I == SortedPos) {
5286#ifndef NDEBUG
5287      SDNode *S = ++I;
5288      dbgs() << "Overran sorted position:\n";
5289      S->dumprFull();
5290#endif
5291      llvm_unreachable(0);
5292    }
5293  }
5294
5295  assert(SortedPos == AllNodes.end() &&
5296         "Topological sort incomplete!");
5297  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5298         "First node in topological sort is not the entry token!");
5299  assert(AllNodes.front().getNodeId() == 0 &&
5300         "First node in topological sort has non-zero id!");
5301  assert(AllNodes.front().getNumOperands() == 0 &&
5302         "First node in topological sort has operands!");
5303  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5304         "Last node in topologic sort has unexpected id!");
5305  assert(AllNodes.back().use_empty() &&
5306         "Last node in topologic sort has users!");
5307  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5308  return DAGSize;
5309}
5310
5311/// AssignOrdering - Assign an order to the SDNode.
5312void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5313  assert(SD && "Trying to assign an order to a null node!");
5314  Ordering->add(SD, Order);
5315}
5316
5317/// GetOrdering - Get the order for the SDNode.
5318unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5319  assert(SD && "Trying to get the order of a null node!");
5320  return Ordering->getOrder(SD);
5321}
5322
5323/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5324/// value is produced by SD.
5325void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD) {
5326  DbgInfo->add(DB, SD);
5327  if (SD)
5328    SD->setHasDebugValue(true);
5329}
5330
5331//===----------------------------------------------------------------------===//
5332//                              SDNode Class
5333//===----------------------------------------------------------------------===//
5334
5335HandleSDNode::~HandleSDNode() {
5336  DropOperands();
5337}
5338
5339GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5340                                         EVT VT, int64_t o, unsigned char TF)
5341  : SDNode(Opc, DebugLoc(), getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5342  TheGlobal = const_cast<GlobalValue*>(GA);
5343}
5344
5345MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5346                     MachineMemOperand *mmo)
5347 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5348  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5349                                      MMO->isNonTemporal());
5350  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5351  assert(isNonTemporal() == MMO->isNonTemporal() &&
5352         "Non-temporal encoding error!");
5353  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5354}
5355
5356MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5357                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5358                     MachineMemOperand *mmo)
5359   : SDNode(Opc, dl, VTs, Ops, NumOps),
5360     MemoryVT(memvt), MMO(mmo) {
5361  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5362                                      MMO->isNonTemporal());
5363  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5364  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5365}
5366
5367/// Profile - Gather unique data for the node.
5368///
5369void SDNode::Profile(FoldingSetNodeID &ID) const {
5370  AddNodeIDNode(ID, this);
5371}
5372
5373namespace {
5374  struct EVTArray {
5375    std::vector<EVT> VTs;
5376
5377    EVTArray() {
5378      VTs.reserve(MVT::LAST_VALUETYPE);
5379      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5380        VTs.push_back(MVT((MVT::SimpleValueType)i));
5381    }
5382  };
5383}
5384
5385static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5386static ManagedStatic<EVTArray> SimpleVTArray;
5387static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5388
5389/// getValueTypeList - Return a pointer to the specified value type.
5390///
5391const EVT *SDNode::getValueTypeList(EVT VT) {
5392  if (VT.isExtended()) {
5393    sys::SmartScopedLock<true> Lock(*VTMutex);
5394    return &(*EVTs->insert(VT).first);
5395  } else {
5396    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5397  }
5398}
5399
5400/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5401/// indicated value.  This method ignores uses of other values defined by this
5402/// operation.
5403bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5404  assert(Value < getNumValues() && "Bad value!");
5405
5406  // TODO: Only iterate over uses of a given value of the node
5407  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5408    if (UI.getUse().getResNo() == Value) {
5409      if (NUses == 0)
5410        return false;
5411      --NUses;
5412    }
5413  }
5414
5415  // Found exactly the right number of uses?
5416  return NUses == 0;
5417}
5418
5419
5420/// hasAnyUseOfValue - Return true if there are any use of the indicated
5421/// value. This method ignores uses of other values defined by this operation.
5422bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5423  assert(Value < getNumValues() && "Bad value!");
5424
5425  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5426    if (UI.getUse().getResNo() == Value)
5427      return true;
5428
5429  return false;
5430}
5431
5432
5433/// isOnlyUserOf - Return true if this node is the only use of N.
5434///
5435bool SDNode::isOnlyUserOf(SDNode *N) const {
5436  bool Seen = false;
5437  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5438    SDNode *User = *I;
5439    if (User == this)
5440      Seen = true;
5441    else
5442      return false;
5443  }
5444
5445  return Seen;
5446}
5447
5448/// isOperand - Return true if this node is an operand of N.
5449///
5450bool SDValue::isOperandOf(SDNode *N) const {
5451  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5452    if (*this == N->getOperand(i))
5453      return true;
5454  return false;
5455}
5456
5457bool SDNode::isOperandOf(SDNode *N) const {
5458  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5459    if (this == N->OperandList[i].getNode())
5460      return true;
5461  return false;
5462}
5463
5464/// reachesChainWithoutSideEffects - Return true if this operand (which must
5465/// be a chain) reaches the specified operand without crossing any
5466/// side-effecting instructions.  In practice, this looks through token
5467/// factors and non-volatile loads.  In order to remain efficient, this only
5468/// looks a couple of nodes in, it does not do an exhaustive search.
5469bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5470                                               unsigned Depth) const {
5471  if (*this == Dest) return true;
5472
5473  // Don't search too deeply, we just want to be able to see through
5474  // TokenFactor's etc.
5475  if (Depth == 0) return false;
5476
5477  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5478  // of the operands of the TF reach dest, then we can do the xform.
5479  if (getOpcode() == ISD::TokenFactor) {
5480    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5481      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5482        return true;
5483    return false;
5484  }
5485
5486  // Loads don't have side effects, look through them.
5487  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5488    if (!Ld->isVolatile())
5489      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5490  }
5491  return false;
5492}
5493
5494/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5495/// is either an operand of N or it can be reached by traversing up the operands.
5496/// NOTE: this is an expensive method. Use it carefully.
5497bool SDNode::isPredecessorOf(SDNode *N) const {
5498  SmallPtrSet<SDNode *, 32> Visited;
5499  SmallVector<SDNode *, 16> Worklist;
5500  Worklist.push_back(N);
5501
5502  do {
5503    N = Worklist.pop_back_val();
5504    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5505      SDNode *Op = N->getOperand(i).getNode();
5506      if (Op == this)
5507        return true;
5508      if (Visited.insert(Op))
5509        Worklist.push_back(Op);
5510    }
5511  } while (!Worklist.empty());
5512
5513  return false;
5514}
5515
5516uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5517  assert(Num < NumOperands && "Invalid child # of SDNode!");
5518  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5519}
5520
5521std::string SDNode::getOperationName(const SelectionDAG *G) const {
5522  switch (getOpcode()) {
5523  default:
5524    if (getOpcode() < ISD::BUILTIN_OP_END)
5525      return "<<Unknown DAG Node>>";
5526    if (isMachineOpcode()) {
5527      if (G)
5528        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5529          if (getMachineOpcode() < TII->getNumOpcodes())
5530            return TII->get(getMachineOpcode()).getName();
5531      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5532    }
5533    if (G) {
5534      const TargetLowering &TLI = G->getTargetLoweringInfo();
5535      const char *Name = TLI.getTargetNodeName(getOpcode());
5536      if (Name) return Name;
5537      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5538    }
5539    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5540
5541#ifndef NDEBUG
5542  case ISD::DELETED_NODE:
5543    return "<<Deleted Node!>>";
5544#endif
5545  case ISD::PREFETCH:      return "Prefetch";
5546  case ISD::MEMBARRIER:    return "MemBarrier";
5547  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5548  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5549  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5550  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5551  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5552  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5553  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5554  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5555  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5556  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5557  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5558  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5559  case ISD::PCMARKER:      return "PCMarker";
5560  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5561  case ISD::SRCVALUE:      return "SrcValue";
5562  case ISD::EntryToken:    return "EntryToken";
5563  case ISD::TokenFactor:   return "TokenFactor";
5564  case ISD::AssertSext:    return "AssertSext";
5565  case ISD::AssertZext:    return "AssertZext";
5566
5567  case ISD::BasicBlock:    return "BasicBlock";
5568  case ISD::VALUETYPE:     return "ValueType";
5569  case ISD::Register:      return "Register";
5570
5571  case ISD::Constant:      return "Constant";
5572  case ISD::ConstantFP:    return "ConstantFP";
5573  case ISD::GlobalAddress: return "GlobalAddress";
5574  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5575  case ISD::FrameIndex:    return "FrameIndex";
5576  case ISD::JumpTable:     return "JumpTable";
5577  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5578  case ISD::RETURNADDR: return "RETURNADDR";
5579  case ISD::FRAMEADDR: return "FRAMEADDR";
5580  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5581  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5582  case ISD::LSDAADDR: return "LSDAADDR";
5583  case ISD::EHSELECTION: return "EHSELECTION";
5584  case ISD::EH_RETURN: return "EH_RETURN";
5585  case ISD::ConstantPool:  return "ConstantPool";
5586  case ISD::ExternalSymbol: return "ExternalSymbol";
5587  case ISD::BlockAddress:  return "BlockAddress";
5588  case ISD::INTRINSIC_WO_CHAIN:
5589  case ISD::INTRINSIC_VOID:
5590  case ISD::INTRINSIC_W_CHAIN: {
5591    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5592    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5593    if (IID < Intrinsic::num_intrinsics)
5594      return Intrinsic::getName((Intrinsic::ID)IID);
5595    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5596      return TII->getName(IID);
5597    llvm_unreachable("Invalid intrinsic ID");
5598  }
5599
5600  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5601  case ISD::TargetConstant: return "TargetConstant";
5602  case ISD::TargetConstantFP:return "TargetConstantFP";
5603  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5604  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5605  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5606  case ISD::TargetJumpTable:  return "TargetJumpTable";
5607  case ISD::TargetConstantPool:  return "TargetConstantPool";
5608  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5609  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5610
5611  case ISD::CopyToReg:     return "CopyToReg";
5612  case ISD::CopyFromReg:   return "CopyFromReg";
5613  case ISD::UNDEF:         return "undef";
5614  case ISD::MERGE_VALUES:  return "merge_values";
5615  case ISD::INLINEASM:     return "inlineasm";
5616  case ISD::EH_LABEL:      return "eh_label";
5617  case ISD::HANDLENODE:    return "handlenode";
5618
5619  // Unary operators
5620  case ISD::FABS:   return "fabs";
5621  case ISD::FNEG:   return "fneg";
5622  case ISD::FSQRT:  return "fsqrt";
5623  case ISD::FSIN:   return "fsin";
5624  case ISD::FCOS:   return "fcos";
5625  case ISD::FPOWI:  return "fpowi";
5626  case ISD::FPOW:   return "fpow";
5627  case ISD::FTRUNC: return "ftrunc";
5628  case ISD::FFLOOR: return "ffloor";
5629  case ISD::FCEIL:  return "fceil";
5630  case ISD::FRINT:  return "frint";
5631  case ISD::FNEARBYINT: return "fnearbyint";
5632
5633  // Binary operators
5634  case ISD::ADD:    return "add";
5635  case ISD::SUB:    return "sub";
5636  case ISD::MUL:    return "mul";
5637  case ISD::MULHU:  return "mulhu";
5638  case ISD::MULHS:  return "mulhs";
5639  case ISD::SDIV:   return "sdiv";
5640  case ISD::UDIV:   return "udiv";
5641  case ISD::SREM:   return "srem";
5642  case ISD::UREM:   return "urem";
5643  case ISD::SMUL_LOHI:  return "smul_lohi";
5644  case ISD::UMUL_LOHI:  return "umul_lohi";
5645  case ISD::SDIVREM:    return "sdivrem";
5646  case ISD::UDIVREM:    return "udivrem";
5647  case ISD::AND:    return "and";
5648  case ISD::OR:     return "or";
5649  case ISD::XOR:    return "xor";
5650  case ISD::SHL:    return "shl";
5651  case ISD::SRA:    return "sra";
5652  case ISD::SRL:    return "srl";
5653  case ISD::ROTL:   return "rotl";
5654  case ISD::ROTR:   return "rotr";
5655  case ISD::FADD:   return "fadd";
5656  case ISD::FSUB:   return "fsub";
5657  case ISD::FMUL:   return "fmul";
5658  case ISD::FDIV:   return "fdiv";
5659  case ISD::FREM:   return "frem";
5660  case ISD::FCOPYSIGN: return "fcopysign";
5661  case ISD::FGETSIGN:  return "fgetsign";
5662
5663  case ISD::SETCC:       return "setcc";
5664  case ISD::VSETCC:      return "vsetcc";
5665  case ISD::SELECT:      return "select";
5666  case ISD::SELECT_CC:   return "select_cc";
5667  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5668  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5669  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5670  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5671  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5672  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5673  case ISD::CARRY_FALSE:         return "carry_false";
5674  case ISD::ADDC:        return "addc";
5675  case ISD::ADDE:        return "adde";
5676  case ISD::SADDO:       return "saddo";
5677  case ISD::UADDO:       return "uaddo";
5678  case ISD::SSUBO:       return "ssubo";
5679  case ISD::USUBO:       return "usubo";
5680  case ISD::SMULO:       return "smulo";
5681  case ISD::UMULO:       return "umulo";
5682  case ISD::SUBC:        return "subc";
5683  case ISD::SUBE:        return "sube";
5684  case ISD::SHL_PARTS:   return "shl_parts";
5685  case ISD::SRA_PARTS:   return "sra_parts";
5686  case ISD::SRL_PARTS:   return "srl_parts";
5687
5688  // Conversion operators.
5689  case ISD::SIGN_EXTEND: return "sign_extend";
5690  case ISD::ZERO_EXTEND: return "zero_extend";
5691  case ISD::ANY_EXTEND:  return "any_extend";
5692  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5693  case ISD::TRUNCATE:    return "truncate";
5694  case ISD::FP_ROUND:    return "fp_round";
5695  case ISD::FLT_ROUNDS_: return "flt_rounds";
5696  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5697  case ISD::FP_EXTEND:   return "fp_extend";
5698
5699  case ISD::SINT_TO_FP:  return "sint_to_fp";
5700  case ISD::UINT_TO_FP:  return "uint_to_fp";
5701  case ISD::FP_TO_SINT:  return "fp_to_sint";
5702  case ISD::FP_TO_UINT:  return "fp_to_uint";
5703  case ISD::BIT_CONVERT: return "bit_convert";
5704  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5705  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5706
5707  case ISD::CONVERT_RNDSAT: {
5708    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5709    default: llvm_unreachable("Unknown cvt code!");
5710    case ISD::CVT_FF:  return "cvt_ff";
5711    case ISD::CVT_FS:  return "cvt_fs";
5712    case ISD::CVT_FU:  return "cvt_fu";
5713    case ISD::CVT_SF:  return "cvt_sf";
5714    case ISD::CVT_UF:  return "cvt_uf";
5715    case ISD::CVT_SS:  return "cvt_ss";
5716    case ISD::CVT_SU:  return "cvt_su";
5717    case ISD::CVT_US:  return "cvt_us";
5718    case ISD::CVT_UU:  return "cvt_uu";
5719    }
5720  }
5721
5722    // Control flow instructions
5723  case ISD::BR:      return "br";
5724  case ISD::BRIND:   return "brind";
5725  case ISD::BR_JT:   return "br_jt";
5726  case ISD::BRCOND:  return "brcond";
5727  case ISD::BR_CC:   return "br_cc";
5728  case ISD::CALLSEQ_START:  return "callseq_start";
5729  case ISD::CALLSEQ_END:    return "callseq_end";
5730
5731    // Other operators
5732  case ISD::LOAD:               return "load";
5733  case ISD::STORE:              return "store";
5734  case ISD::VAARG:              return "vaarg";
5735  case ISD::VACOPY:             return "vacopy";
5736  case ISD::VAEND:              return "vaend";
5737  case ISD::VASTART:            return "vastart";
5738  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5739  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5740  case ISD::BUILD_PAIR:         return "build_pair";
5741  case ISD::STACKSAVE:          return "stacksave";
5742  case ISD::STACKRESTORE:       return "stackrestore";
5743  case ISD::TRAP:               return "trap";
5744
5745  // Bit manipulation
5746  case ISD::BSWAP:   return "bswap";
5747  case ISD::CTPOP:   return "ctpop";
5748  case ISD::CTTZ:    return "cttz";
5749  case ISD::CTLZ:    return "ctlz";
5750
5751  // Trampolines
5752  case ISD::TRAMPOLINE: return "trampoline";
5753
5754  case ISD::CONDCODE:
5755    switch (cast<CondCodeSDNode>(this)->get()) {
5756    default: llvm_unreachable("Unknown setcc condition!");
5757    case ISD::SETOEQ:  return "setoeq";
5758    case ISD::SETOGT:  return "setogt";
5759    case ISD::SETOGE:  return "setoge";
5760    case ISD::SETOLT:  return "setolt";
5761    case ISD::SETOLE:  return "setole";
5762    case ISD::SETONE:  return "setone";
5763
5764    case ISD::SETO:    return "seto";
5765    case ISD::SETUO:   return "setuo";
5766    case ISD::SETUEQ:  return "setue";
5767    case ISD::SETUGT:  return "setugt";
5768    case ISD::SETUGE:  return "setuge";
5769    case ISD::SETULT:  return "setult";
5770    case ISD::SETULE:  return "setule";
5771    case ISD::SETUNE:  return "setune";
5772
5773    case ISD::SETEQ:   return "seteq";
5774    case ISD::SETGT:   return "setgt";
5775    case ISD::SETGE:   return "setge";
5776    case ISD::SETLT:   return "setlt";
5777    case ISD::SETLE:   return "setle";
5778    case ISD::SETNE:   return "setne";
5779    }
5780  }
5781}
5782
5783const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5784  switch (AM) {
5785  default:
5786    return "";
5787  case ISD::PRE_INC:
5788    return "<pre-inc>";
5789  case ISD::PRE_DEC:
5790    return "<pre-dec>";
5791  case ISD::POST_INC:
5792    return "<post-inc>";
5793  case ISD::POST_DEC:
5794    return "<post-dec>";
5795  }
5796}
5797
5798std::string ISD::ArgFlagsTy::getArgFlagsString() {
5799  std::string S = "< ";
5800
5801  if (isZExt())
5802    S += "zext ";
5803  if (isSExt())
5804    S += "sext ";
5805  if (isInReg())
5806    S += "inreg ";
5807  if (isSRet())
5808    S += "sret ";
5809  if (isByVal())
5810    S += "byval ";
5811  if (isNest())
5812    S += "nest ";
5813  if (getByValAlign())
5814    S += "byval-align:" + utostr(getByValAlign()) + " ";
5815  if (getOrigAlign())
5816    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5817  if (getByValSize())
5818    S += "byval-size:" + utostr(getByValSize()) + " ";
5819  return S + ">";
5820}
5821
5822void SDNode::dump() const { dump(0); }
5823void SDNode::dump(const SelectionDAG *G) const {
5824  print(dbgs(), G);
5825}
5826
5827void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5828  OS << (void*)this << ": ";
5829
5830  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5831    if (i) OS << ",";
5832    if (getValueType(i) == MVT::Other)
5833      OS << "ch";
5834    else
5835      OS << getValueType(i).getEVTString();
5836  }
5837  OS << " = " << getOperationName(G);
5838}
5839
5840void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5841  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5842    if (!MN->memoperands_empty()) {
5843      OS << "<";
5844      OS << "Mem:";
5845      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5846           e = MN->memoperands_end(); i != e; ++i) {
5847        OS << **i;
5848        if (next(i) != e)
5849          OS << " ";
5850      }
5851      OS << ">";
5852    }
5853  } else if (const ShuffleVectorSDNode *SVN =
5854               dyn_cast<ShuffleVectorSDNode>(this)) {
5855    OS << "<";
5856    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5857      int Idx = SVN->getMaskElt(i);
5858      if (i) OS << ",";
5859      if (Idx < 0)
5860        OS << "u";
5861      else
5862        OS << Idx;
5863    }
5864    OS << ">";
5865  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5866    OS << '<' << CSDN->getAPIntValue() << '>';
5867  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5868    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5869      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5870    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5871      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5872    else {
5873      OS << "<APFloat(";
5874      CSDN->getValueAPF().bitcastToAPInt().dump();
5875      OS << ")>";
5876    }
5877  } else if (const GlobalAddressSDNode *GADN =
5878             dyn_cast<GlobalAddressSDNode>(this)) {
5879    int64_t offset = GADN->getOffset();
5880    OS << '<';
5881    WriteAsOperand(OS, GADN->getGlobal());
5882    OS << '>';
5883    if (offset > 0)
5884      OS << " + " << offset;
5885    else
5886      OS << " " << offset;
5887    if (unsigned int TF = GADN->getTargetFlags())
5888      OS << " [TF=" << TF << ']';
5889  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5890    OS << "<" << FIDN->getIndex() << ">";
5891  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5892    OS << "<" << JTDN->getIndex() << ">";
5893    if (unsigned int TF = JTDN->getTargetFlags())
5894      OS << " [TF=" << TF << ']';
5895  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5896    int offset = CP->getOffset();
5897    if (CP->isMachineConstantPoolEntry())
5898      OS << "<" << *CP->getMachineCPVal() << ">";
5899    else
5900      OS << "<" << *CP->getConstVal() << ">";
5901    if (offset > 0)
5902      OS << " + " << offset;
5903    else
5904      OS << " " << offset;
5905    if (unsigned int TF = CP->getTargetFlags())
5906      OS << " [TF=" << TF << ']';
5907  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5908    OS << "<";
5909    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5910    if (LBB)
5911      OS << LBB->getName() << " ";
5912    OS << (const void*)BBDN->getBasicBlock() << ">";
5913  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5914    if (G && R->getReg() &&
5915        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5916      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5917    } else {
5918      OS << " %reg" << R->getReg();
5919    }
5920  } else if (const ExternalSymbolSDNode *ES =
5921             dyn_cast<ExternalSymbolSDNode>(this)) {
5922    OS << "'" << ES->getSymbol() << "'";
5923    if (unsigned int TF = ES->getTargetFlags())
5924      OS << " [TF=" << TF << ']';
5925  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5926    if (M->getValue())
5927      OS << "<" << M->getValue() << ">";
5928    else
5929      OS << "<null>";
5930  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5931    OS << ":" << N->getVT().getEVTString();
5932  }
5933  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5934    OS << "<" << *LD->getMemOperand();
5935
5936    bool doExt = true;
5937    switch (LD->getExtensionType()) {
5938    default: doExt = false; break;
5939    case ISD::EXTLOAD: OS << ", anyext"; break;
5940    case ISD::SEXTLOAD: OS << ", sext"; break;
5941    case ISD::ZEXTLOAD: OS << ", zext"; break;
5942    }
5943    if (doExt)
5944      OS << " from " << LD->getMemoryVT().getEVTString();
5945
5946    const char *AM = getIndexedModeName(LD->getAddressingMode());
5947    if (*AM)
5948      OS << ", " << AM;
5949
5950    OS << ">";
5951  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5952    OS << "<" << *ST->getMemOperand();
5953
5954    if (ST->isTruncatingStore())
5955      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5956
5957    const char *AM = getIndexedModeName(ST->getAddressingMode());
5958    if (*AM)
5959      OS << ", " << AM;
5960
5961    OS << ">";
5962  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5963    OS << "<" << *M->getMemOperand() << ">";
5964  } else if (const BlockAddressSDNode *BA =
5965               dyn_cast<BlockAddressSDNode>(this)) {
5966    OS << "<";
5967    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5968    OS << ", ";
5969    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
5970    OS << ">";
5971    if (unsigned int TF = BA->getTargetFlags())
5972      OS << " [TF=" << TF << ']';
5973  }
5974
5975  if (G)
5976    if (unsigned Order = G->GetOrdering(this))
5977      OS << " [ORD=" << Order << ']';
5978
5979  if (getNodeId() != -1)
5980    OS << " [ID=" << getNodeId() << ']';
5981}
5982
5983void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5984  print_types(OS, G);
5985  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5986    if (i) OS << ", "; else OS << " ";
5987    OS << (void*)getOperand(i).getNode();
5988    if (unsigned RN = getOperand(i).getResNo())
5989      OS << ":" << RN;
5990  }
5991  print_details(OS, G);
5992}
5993
5994static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
5995                                  const SelectionDAG *G, unsigned depth,
5996                                  unsigned indent)
5997{
5998  if (depth == 0)
5999    return;
6000
6001  OS.indent(indent);
6002
6003  N->print(OS, G);
6004
6005  if (depth < 1)
6006    return;
6007
6008  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6009    OS << '\n';
6010    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6011  }
6012}
6013
6014void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6015                            unsigned depth) const {
6016  printrWithDepthHelper(OS, this, G, depth, 0);
6017}
6018
6019void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6020  // Don't print impossibly deep things.
6021  printrWithDepth(OS, G, 100);
6022}
6023
6024void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6025  printrWithDepth(dbgs(), G, depth);
6026}
6027
6028void SDNode::dumprFull(const SelectionDAG *G) const {
6029  // Don't print impossibly deep things.
6030  dumprWithDepth(G, 100);
6031}
6032
6033static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6034  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6035    if (N->getOperand(i).getNode()->hasOneUse())
6036      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6037    else
6038      dbgs() << "\n" << std::string(indent+2, ' ')
6039           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6040
6041
6042  dbgs() << "\n";
6043  dbgs().indent(indent);
6044  N->dump(G);
6045}
6046
6047SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6048  assert(N->getNumValues() == 1 &&
6049         "Can't unroll a vector with multiple results!");
6050
6051  EVT VT = N->getValueType(0);
6052  unsigned NE = VT.getVectorNumElements();
6053  EVT EltVT = VT.getVectorElementType();
6054  DebugLoc dl = N->getDebugLoc();
6055
6056  SmallVector<SDValue, 8> Scalars;
6057  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6058
6059  // If ResNE is 0, fully unroll the vector op.
6060  if (ResNE == 0)
6061    ResNE = NE;
6062  else if (NE > ResNE)
6063    NE = ResNE;
6064
6065  unsigned i;
6066  for (i= 0; i != NE; ++i) {
6067    for (unsigned j = 0; j != N->getNumOperands(); ++j) {
6068      SDValue Operand = N->getOperand(j);
6069      EVT OperandVT = Operand.getValueType();
6070      if (OperandVT.isVector()) {
6071        // A vector operand; extract a single element.
6072        EVT OperandEltVT = OperandVT.getVectorElementType();
6073        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6074                              OperandEltVT,
6075                              Operand,
6076                              getConstant(i, MVT::i32));
6077      } else {
6078        // A scalar operand; just use it as is.
6079        Operands[j] = Operand;
6080      }
6081    }
6082
6083    switch (N->getOpcode()) {
6084    default:
6085      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6086                                &Operands[0], Operands.size()));
6087      break;
6088    case ISD::SHL:
6089    case ISD::SRA:
6090    case ISD::SRL:
6091    case ISD::ROTL:
6092    case ISD::ROTR:
6093      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6094                                getShiftAmountOperand(Operands[1])));
6095      break;
6096    case ISD::SIGN_EXTEND_INREG:
6097    case ISD::FP_ROUND_INREG: {
6098      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6099      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6100                                Operands[0],
6101                                getValueType(ExtVT)));
6102    }
6103    }
6104  }
6105
6106  for (; i < ResNE; ++i)
6107    Scalars.push_back(getUNDEF(EltVT));
6108
6109  return getNode(ISD::BUILD_VECTOR, dl,
6110                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6111                 &Scalars[0], Scalars.size());
6112}
6113
6114
6115/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6116/// location that is 'Dist' units away from the location that the 'Base' load
6117/// is loading from.
6118bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6119                                     unsigned Bytes, int Dist) const {
6120  if (LD->getChain() != Base->getChain())
6121    return false;
6122  EVT VT = LD->getValueType(0);
6123  if (VT.getSizeInBits() / 8 != Bytes)
6124    return false;
6125
6126  SDValue Loc = LD->getOperand(1);
6127  SDValue BaseLoc = Base->getOperand(1);
6128  if (Loc.getOpcode() == ISD::FrameIndex) {
6129    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6130      return false;
6131    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6132    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6133    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6134    int FS  = MFI->getObjectSize(FI);
6135    int BFS = MFI->getObjectSize(BFI);
6136    if (FS != BFS || FS != (int)Bytes) return false;
6137    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6138  }
6139  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6140    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6141    if (V && (V->getSExtValue() == Dist*Bytes))
6142      return true;
6143  }
6144
6145  GlobalValue *GV1 = NULL;
6146  GlobalValue *GV2 = NULL;
6147  int64_t Offset1 = 0;
6148  int64_t Offset2 = 0;
6149  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6150  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6151  if (isGA1 && isGA2 && GV1 == GV2)
6152    return Offset1 == (Offset2 + Dist*Bytes);
6153  return false;
6154}
6155
6156
6157/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6158/// it cannot be inferred.
6159unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6160  // If this is a GlobalAddress + cst, return the alignment.
6161  GlobalValue *GV;
6162  int64_t GVOffset = 0;
6163  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6164    // If GV has specified alignment, then use it. Otherwise, use the preferred
6165    // alignment.
6166    unsigned Align = GV->getAlignment();
6167    if (!Align) {
6168      if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6169        if (GVar->hasInitializer()) {
6170          const TargetData *TD = TLI.getTargetData();
6171          Align = TD->getPreferredAlignment(GVar);
6172        }
6173      }
6174    }
6175    return MinAlign(Align, GVOffset);
6176  }
6177
6178  // If this is a direct reference to a stack slot, use information about the
6179  // stack slot's alignment.
6180  int FrameIdx = 1 << 31;
6181  int64_t FrameOffset = 0;
6182  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6183    FrameIdx = FI->getIndex();
6184  } else if (Ptr.getOpcode() == ISD::ADD &&
6185             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6186             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6187    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6188    FrameOffset = Ptr.getConstantOperandVal(1);
6189  }
6190
6191  if (FrameIdx != (1 << 31)) {
6192    // FIXME: Handle FI+CST.
6193    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6194    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6195                                    FrameOffset);
6196    if (MFI.isFixedObjectIndex(FrameIdx)) {
6197      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6198
6199      // The alignment of the frame index can be determined from its offset from
6200      // the incoming frame position.  If the frame object is at offset 32 and
6201      // the stack is guaranteed to be 16-byte aligned, then we know that the
6202      // object is 16-byte aligned.
6203      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6204      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6205
6206      // Finally, the frame object itself may have a known alignment.  Factor
6207      // the alignment + offset into a new alignment.  For example, if we know
6208      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6209      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6210      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6211      return std::max(Align, FIInfoAlign);
6212    }
6213    return FIInfoAlign;
6214  }
6215
6216  return 0;
6217}
6218
6219void SelectionDAG::dump() const {
6220  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6221
6222  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6223       I != E; ++I) {
6224    const SDNode *N = I;
6225    if (!N->hasOneUse() && N != getRoot().getNode())
6226      DumpNodes(N, 2, this);
6227  }
6228
6229  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6230
6231  dbgs() << "\n\n";
6232}
6233
6234void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6235  print_types(OS, G);
6236  print_details(OS, G);
6237}
6238
6239typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6240static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6241                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6242  if (!once.insert(N))          // If we've been here before, return now.
6243    return;
6244
6245  // Dump the current SDNode, but don't end the line yet.
6246  OS << std::string(indent, ' ');
6247  N->printr(OS, G);
6248
6249  // Having printed this SDNode, walk the children:
6250  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6251    const SDNode *child = N->getOperand(i).getNode();
6252
6253    if (i) OS << ",";
6254    OS << " ";
6255
6256    if (child->getNumOperands() == 0) {
6257      // This child has no grandchildren; print it inline right here.
6258      child->printr(OS, G);
6259      once.insert(child);
6260    } else {         // Just the address. FIXME: also print the child's opcode.
6261      OS << (void*)child;
6262      if (unsigned RN = N->getOperand(i).getResNo())
6263        OS << ":" << RN;
6264    }
6265  }
6266
6267  OS << "\n";
6268
6269  // Dump children that have grandchildren on their own line(s).
6270  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6271    const SDNode *child = N->getOperand(i).getNode();
6272    DumpNodesr(OS, child, indent+2, G, once);
6273  }
6274}
6275
6276void SDNode::dumpr() const {
6277  VisitedSDNodeSet once;
6278  DumpNodesr(dbgs(), this, 0, 0, once);
6279}
6280
6281void SDNode::dumpr(const SelectionDAG *G) const {
6282  VisitedSDNodeSet once;
6283  DumpNodesr(dbgs(), this, 0, G, once);
6284}
6285
6286
6287// getAddressSpace - Return the address space this GlobalAddress belongs to.
6288unsigned GlobalAddressSDNode::getAddressSpace() const {
6289  return getGlobal()->getType()->getAddressSpace();
6290}
6291
6292
6293const Type *ConstantPoolSDNode::getType() const {
6294  if (isMachineConstantPoolEntry())
6295    return Val.MachineCPVal->getType();
6296  return Val.ConstVal->getType();
6297}
6298
6299bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6300                                        APInt &SplatUndef,
6301                                        unsigned &SplatBitSize,
6302                                        bool &HasAnyUndefs,
6303                                        unsigned MinSplatBits,
6304                                        bool isBigEndian) {
6305  EVT VT = getValueType(0);
6306  assert(VT.isVector() && "Expected a vector type");
6307  unsigned sz = VT.getSizeInBits();
6308  if (MinSplatBits > sz)
6309    return false;
6310
6311  SplatValue = APInt(sz, 0);
6312  SplatUndef = APInt(sz, 0);
6313
6314  // Get the bits.  Bits with undefined values (when the corresponding element
6315  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6316  // in SplatValue.  If any of the values are not constant, give up and return
6317  // false.
6318  unsigned int nOps = getNumOperands();
6319  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6320  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6321
6322  for (unsigned j = 0; j < nOps; ++j) {
6323    unsigned i = isBigEndian ? nOps-1-j : j;
6324    SDValue OpVal = getOperand(i);
6325    unsigned BitPos = j * EltBitSize;
6326
6327    if (OpVal.getOpcode() == ISD::UNDEF)
6328      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6329    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6330      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6331                     zextOrTrunc(sz) << BitPos);
6332    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6333      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6334     else
6335      return false;
6336  }
6337
6338  // The build_vector is all constants or undefs.  Find the smallest element
6339  // size that splats the vector.
6340
6341  HasAnyUndefs = (SplatUndef != 0);
6342  while (sz > 8) {
6343
6344    unsigned HalfSize = sz / 2;
6345    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6346    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6347    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6348    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6349
6350    // If the two halves do not match (ignoring undef bits), stop here.
6351    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6352        MinSplatBits > HalfSize)
6353      break;
6354
6355    SplatValue = HighValue | LowValue;
6356    SplatUndef = HighUndef & LowUndef;
6357
6358    sz = HalfSize;
6359  }
6360
6361  SplatBitSize = sz;
6362  return true;
6363}
6364
6365bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6366  // Find the first non-undef value in the shuffle mask.
6367  unsigned i, e;
6368  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6369    /* search */;
6370
6371  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6372
6373  // Make sure all remaining elements are either undef or the same as the first
6374  // non-undef value.
6375  for (int Idx = Mask[i]; i != e; ++i)
6376    if (Mask[i] >= 0 && Mask[i] != Idx)
6377      return false;
6378  return true;
6379}
6380
6381#ifdef XDEBUG
6382static void checkForCyclesHelper(const SDNode *N,
6383                                 SmallPtrSet<const SDNode*, 32> &Visited,
6384                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6385  // If this node has already been checked, don't check it again.
6386  if (Checked.count(N))
6387    return;
6388
6389  // If a node has already been visited on this depth-first walk, reject it as
6390  // a cycle.
6391  if (!Visited.insert(N)) {
6392    dbgs() << "Offending node:\n";
6393    N->dumprFull();
6394    errs() << "Detected cycle in SelectionDAG\n";
6395    abort();
6396  }
6397
6398  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6399    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6400
6401  Checked.insert(N);
6402  Visited.erase(N);
6403}
6404#endif
6405
6406void llvm::checkForCycles(const llvm::SDNode *N) {
6407#ifdef XDEBUG
6408  assert(N && "Checking nonexistant SDNode");
6409  SmallPtrSet<const SDNode*, 32> visited;
6410  SmallPtrSet<const SDNode*, 32> checked;
6411  checkForCyclesHelper(N, visited, checked);
6412#endif
6413}
6414
6415void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6416  checkForCycles(DAG->getRoot().getNode());
6417}
6418