SelectionDAG.cpp revision ba9d87fffb3ac331ec143eeeb555524abb76eff1
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/SetVector.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/StringExtras.h"
41#include <algorithm>
42#include <cmath>
43using namespace llvm;
44
45/// makeVTList - Return an instance of the SDVTList struct initialized with the
46/// specified members.
47static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
48  SDVTList Res = {VTs, NumVTs};
49  return Res;
50}
51
52static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
53  switch (VT.getSimpleVT()) {
54  default: assert(0 && "Unknown FP format");
55  case MVT::f32:     return &APFloat::IEEEsingle;
56  case MVT::f64:     return &APFloat::IEEEdouble;
57  case MVT::f80:     return &APFloat::x87DoubleExtended;
58  case MVT::f128:    return &APFloat::IEEEquad;
59  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
60  }
61}
62
63SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
64
65//===----------------------------------------------------------------------===//
66//                              ConstantFPSDNode Class
67//===----------------------------------------------------------------------===//
68
69/// isExactlyValue - We don't rely on operator== working on double values, as
70/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
71/// As such, this method can be used to do an exact bit-for-bit comparison of
72/// two floating point values.
73bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
74  return getValueAPF().bitwiseIsEqual(V);
75}
76
77bool ConstantFPSDNode::isValueValidForType(MVT VT,
78                                           const APFloat& Val) {
79  assert(VT.isFloatingPoint() && "Can only convert between FP types");
80
81  // PPC long double cannot be converted to any other type.
82  if (VT == MVT::ppcf128 ||
83      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
84    return false;
85
86  // convert modifies in place, so make a copy.
87  APFloat Val2 = APFloat(Val);
88  bool losesInfo;
89  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
90                      &losesInfo);
91  return !losesInfo;
92}
93
94//===----------------------------------------------------------------------===//
95//                              ISD Namespace
96//===----------------------------------------------------------------------===//
97
98/// isBuildVectorAllOnes - Return true if the specified node is a
99/// BUILD_VECTOR where all of the elements are ~0 or undef.
100bool ISD::isBuildVectorAllOnes(const SDNode *N) {
101  // Look through a bit convert.
102  if (N->getOpcode() == ISD::BIT_CONVERT)
103    N = N->getOperand(0).getNode();
104
105  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
106
107  unsigned i = 0, e = N->getNumOperands();
108
109  // Skip over all of the undef values.
110  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
111    ++i;
112
113  // Do not accept an all-undef vector.
114  if (i == e) return false;
115
116  // Do not accept build_vectors that aren't all constants or which have non-~0
117  // elements.
118  SDValue NotZero = N->getOperand(i);
119  if (isa<ConstantSDNode>(NotZero)) {
120    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
121      return false;
122  } else if (isa<ConstantFPSDNode>(NotZero)) {
123    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
124                bitcastToAPInt().isAllOnesValue())
125      return false;
126  } else
127    return false;
128
129  // Okay, we have at least one ~0 value, check to see if the rest match or are
130  // undefs.
131  for (++i; i != e; ++i)
132    if (N->getOperand(i) != NotZero &&
133        N->getOperand(i).getOpcode() != ISD::UNDEF)
134      return false;
135  return true;
136}
137
138
139/// isBuildVectorAllZeros - Return true if the specified node is a
140/// BUILD_VECTOR where all of the elements are 0 or undef.
141bool ISD::isBuildVectorAllZeros(const SDNode *N) {
142  // Look through a bit convert.
143  if (N->getOpcode() == ISD::BIT_CONVERT)
144    N = N->getOperand(0).getNode();
145
146  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
147
148  unsigned i = 0, e = N->getNumOperands();
149
150  // Skip over all of the undef values.
151  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
152    ++i;
153
154  // Do not accept an all-undef vector.
155  if (i == e) return false;
156
157  // Do not accept build_vectors that aren't all constants or which have non-~0
158  // elements.
159  SDValue Zero = N->getOperand(i);
160  if (isa<ConstantSDNode>(Zero)) {
161    if (!cast<ConstantSDNode>(Zero)->isNullValue())
162      return false;
163  } else if (isa<ConstantFPSDNode>(Zero)) {
164    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
165      return false;
166  } else
167    return false;
168
169  // Okay, we have at least one ~0 value, check to see if the rest match or are
170  // undefs.
171  for (++i; i != e; ++i)
172    if (N->getOperand(i) != Zero &&
173        N->getOperand(i).getOpcode() != ISD::UNDEF)
174      return false;
175  return true;
176}
177
178/// isScalarToVector - Return true if the specified node is a
179/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
180/// element is not an undef.
181bool ISD::isScalarToVector(const SDNode *N) {
182  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
183    return true;
184
185  if (N->getOpcode() != ISD::BUILD_VECTOR)
186    return false;
187  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
188    return false;
189  unsigned NumElems = N->getNumOperands();
190  for (unsigned i = 1; i < NumElems; ++i) {
191    SDValue V = N->getOperand(i);
192    if (V.getOpcode() != ISD::UNDEF)
193      return false;
194  }
195  return true;
196}
197
198
199/// isDebugLabel - Return true if the specified node represents a debug
200/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
201bool ISD::isDebugLabel(const SDNode *N) {
202  SDValue Zero;
203  if (N->getOpcode() == ISD::DBG_LABEL)
204    return true;
205  if (N->isMachineOpcode() &&
206      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
207    return true;
208  return false;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: assert(0 && "Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310const TargetMachine &SelectionDAG::getTarget() const {
311  return MF->getTarget();
312}
313
314//===----------------------------------------------------------------------===//
315//                           SDNode Profile Support
316//===----------------------------------------------------------------------===//
317
318/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
319///
320static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
321  ID.AddInteger(OpC);
322}
323
324/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
325/// solely with their pointer.
326static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
327  ID.AddPointer(VTList.VTs);
328}
329
330/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
331///
332static void AddNodeIDOperands(FoldingSetNodeID &ID,
333                              const SDValue *Ops, unsigned NumOps) {
334  for (; NumOps; --NumOps, ++Ops) {
335    ID.AddPointer(Ops->getNode());
336    ID.AddInteger(Ops->getResNo());
337  }
338}
339
340/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
341///
342static void AddNodeIDOperands(FoldingSetNodeID &ID,
343                              const SDUse *Ops, unsigned NumOps) {
344  for (; NumOps; --NumOps, ++Ops) {
345    ID.AddPointer(Ops->getNode());
346    ID.AddInteger(Ops->getResNo());
347  }
348}
349
350static void AddNodeIDNode(FoldingSetNodeID &ID,
351                          unsigned short OpC, SDVTList VTList,
352                          const SDValue *OpList, unsigned N) {
353  AddNodeIDOpcode(ID, OpC);
354  AddNodeIDValueTypes(ID, VTList);
355  AddNodeIDOperands(ID, OpList, N);
356}
357
358/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
359/// the NodeID data.
360static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
361  switch (N->getOpcode()) {
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::ARG_FLAGS:
364    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
365    break;
366  case ISD::TargetConstant:
367  case ISD::Constant:
368    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
369    break;
370  case ISD::TargetConstantFP:
371  case ISD::ConstantFP: {
372    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
373    break;
374  }
375  case ISD::TargetGlobalAddress:
376  case ISD::GlobalAddress:
377  case ISD::TargetGlobalTLSAddress:
378  case ISD::GlobalTLSAddress: {
379    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
380    ID.AddPointer(GA->getGlobal());
381    ID.AddInteger(GA->getOffset());
382    break;
383  }
384  case ISD::BasicBlock:
385    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
386    break;
387  case ISD::Register:
388    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
389    break;
390  case ISD::DBG_STOPPOINT: {
391    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
392    ID.AddInteger(DSP->getLine());
393    ID.AddInteger(DSP->getColumn());
394    ID.AddPointer(DSP->getCompileUnit());
395    break;
396  }
397  case ISD::SRCVALUE:
398    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
399    break;
400  case ISD::MEMOPERAND: {
401    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
402    MO.Profile(ID);
403    break;
404  }
405  case ISD::FrameIndex:
406  case ISD::TargetFrameIndex:
407    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
408    break;
409  case ISD::JumpTable:
410  case ISD::TargetJumpTable:
411    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
412    break;
413  case ISD::ConstantPool:
414  case ISD::TargetConstantPool: {
415    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
416    ID.AddInteger(CP->getAlignment());
417    ID.AddInteger(CP->getOffset());
418    if (CP->isMachineConstantPoolEntry())
419      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
420    else
421      ID.AddPointer(CP->getConstVal());
422    break;
423  }
424  case ISD::CALL: {
425    const CallSDNode *Call = cast<CallSDNode>(N);
426    ID.AddInteger(Call->getCallingConv());
427    ID.AddInteger(Call->isVarArg());
428    break;
429  }
430  case ISD::LOAD: {
431    const LoadSDNode *LD = cast<LoadSDNode>(N);
432    ID.AddInteger(LD->getAddressingMode());
433    ID.AddInteger(LD->getExtensionType());
434    ID.AddInteger(LD->getMemoryVT().getRawBits());
435    ID.AddInteger(LD->getRawFlags());
436    break;
437  }
438  case ISD::STORE: {
439    const StoreSDNode *ST = cast<StoreSDNode>(N);
440    ID.AddInteger(ST->getAddressingMode());
441    ID.AddInteger(ST->isTruncatingStore());
442    ID.AddInteger(ST->getMemoryVT().getRawBits());
443    ID.AddInteger(ST->getRawFlags());
444    break;
445  }
446  case ISD::ATOMIC_CMP_SWAP:
447  case ISD::ATOMIC_SWAP:
448  case ISD::ATOMIC_LOAD_ADD:
449  case ISD::ATOMIC_LOAD_SUB:
450  case ISD::ATOMIC_LOAD_AND:
451  case ISD::ATOMIC_LOAD_OR:
452  case ISD::ATOMIC_LOAD_XOR:
453  case ISD::ATOMIC_LOAD_NAND:
454  case ISD::ATOMIC_LOAD_MIN:
455  case ISD::ATOMIC_LOAD_MAX:
456  case ISD::ATOMIC_LOAD_UMIN:
457  case ISD::ATOMIC_LOAD_UMAX: {
458    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
459    ID.AddInteger(AT->getRawFlags());
460    break;
461  }
462  } // end switch (N->getOpcode())
463}
464
465/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
466/// data.
467static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
468  AddNodeIDOpcode(ID, N->getOpcode());
469  // Add the return value info.
470  AddNodeIDValueTypes(ID, N->getVTList());
471  // Add the operand info.
472  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
473
474  // Handle SDNode leafs with special info.
475  AddNodeIDCustom(ID, N);
476}
477
478/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
479/// the CSE map that carries both alignment and volatility information.
480///
481static inline unsigned
482encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) {
483  return isVolatile | ((Log2_32(Alignment) + 1) << 1);
484}
485
486//===----------------------------------------------------------------------===//
487//                              SelectionDAG Class
488//===----------------------------------------------------------------------===//
489
490/// doNotCSE - Return true if CSE should not be performed for this node.
491static bool doNotCSE(SDNode *N) {
492  if (N->getValueType(0) == MVT::Flag)
493    return true; // Never CSE anything that produces a flag.
494
495  switch (N->getOpcode()) {
496  default: break;
497  case ISD::HANDLENODE:
498  case ISD::DBG_LABEL:
499  case ISD::DBG_STOPPOINT:
500  case ISD::EH_LABEL:
501  case ISD::DECLARE:
502    return true;   // Never CSE these nodes.
503  }
504
505  // Check that remaining values produced are not flags.
506  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
507    if (N->getValueType(i) == MVT::Flag)
508      return true; // Never CSE anything that produces a flag.
509
510  return false;
511}
512
513/// RemoveDeadNodes - This method deletes all unreachable nodes in the
514/// SelectionDAG.
515void SelectionDAG::RemoveDeadNodes() {
516  // Create a dummy node (which is not added to allnodes), that adds a reference
517  // to the root node, preventing it from being deleted.
518  HandleSDNode Dummy(getRoot());
519
520  SmallVector<SDNode*, 128> DeadNodes;
521
522  // Add all obviously-dead nodes to the DeadNodes worklist.
523  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
524    if (I->use_empty())
525      DeadNodes.push_back(I);
526
527  RemoveDeadNodes(DeadNodes);
528
529  // If the root changed (e.g. it was a dead load, update the root).
530  setRoot(Dummy.getValue());
531}
532
533/// RemoveDeadNodes - This method deletes the unreachable nodes in the
534/// given list, and any nodes that become unreachable as a result.
535void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
536                                   DAGUpdateListener *UpdateListener) {
537
538  // Process the worklist, deleting the nodes and adding their uses to the
539  // worklist.
540  while (!DeadNodes.empty()) {
541    SDNode *N = DeadNodes.pop_back_val();
542
543    if (UpdateListener)
544      UpdateListener->NodeDeleted(N, 0);
545
546    // Take the node out of the appropriate CSE map.
547    RemoveNodeFromCSEMaps(N);
548
549    // Next, brutally remove the operand list.  This is safe to do, as there are
550    // no cycles in the graph.
551    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
552      SDUse &Use = *I++;
553      SDNode *Operand = Use.getNode();
554      Use.set(SDValue());
555
556      // Now that we removed this operand, see if there are no uses of it left.
557      if (Operand->use_empty())
558        DeadNodes.push_back(Operand);
559    }
560
561    DeallocateNode(N);
562  }
563}
564
565void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
566  SmallVector<SDNode*, 16> DeadNodes(1, N);
567  RemoveDeadNodes(DeadNodes, UpdateListener);
568}
569
570void SelectionDAG::DeleteNode(SDNode *N) {
571  // First take this out of the appropriate CSE map.
572  RemoveNodeFromCSEMaps(N);
573
574  // Finally, remove uses due to operands of this node, remove from the
575  // AllNodes list, and delete the node.
576  DeleteNodeNotInCSEMaps(N);
577}
578
579void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
580  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
581  assert(N->use_empty() && "Cannot delete a node that is not dead!");
582
583  // Drop all of the operands and decrement used node's use counts.
584  N->DropOperands();
585
586  DeallocateNode(N);
587}
588
589void SelectionDAG::DeallocateNode(SDNode *N) {
590  if (N->OperandsNeedDelete)
591    delete[] N->OperandList;
592
593  // Set the opcode to DELETED_NODE to help catch bugs when node
594  // memory is reallocated.
595  N->NodeType = ISD::DELETED_NODE;
596
597  NodeAllocator.Deallocate(AllNodes.remove(N));
598}
599
600/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
601/// correspond to it.  This is useful when we're about to delete or repurpose
602/// the node.  We don't want future request for structurally identical nodes
603/// to return N anymore.
604bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
605  bool Erased = false;
606  switch (N->getOpcode()) {
607  case ISD::EntryToken:
608    assert(0 && "EntryToken should not be in CSEMaps!");
609    return false;
610  case ISD::HANDLENODE: return false;  // noop.
611  case ISD::CONDCODE:
612    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
613           "Cond code doesn't exist!");
614    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
615    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
616    break;
617  case ISD::ExternalSymbol:
618    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
619    break;
620  case ISD::TargetExternalSymbol:
621    Erased =
622      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
623    break;
624  case ISD::VALUETYPE: {
625    MVT VT = cast<VTSDNode>(N)->getVT();
626    if (VT.isExtended()) {
627      Erased = ExtendedValueTypeNodes.erase(VT);
628    } else {
629      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
630      ValueTypeNodes[VT.getSimpleVT()] = 0;
631    }
632    break;
633  }
634  default:
635    // Remove it from the CSE Map.
636    Erased = CSEMap.RemoveNode(N);
637    break;
638  }
639#ifndef NDEBUG
640  // Verify that the node was actually in one of the CSE maps, unless it has a
641  // flag result (which cannot be CSE'd) or is one of the special cases that are
642  // not subject to CSE.
643  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
644      !N->isMachineOpcode() && !doNotCSE(N)) {
645    N->dump(this);
646    cerr << "\n";
647    assert(0 && "Node is not in map!");
648  }
649#endif
650  return Erased;
651}
652
653/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
654/// maps and modified in place. Add it back to the CSE maps, unless an identical
655/// node already exists, in which case transfer all its users to the existing
656/// node. This transfer can potentially trigger recursive merging.
657///
658void
659SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
660                                       DAGUpdateListener *UpdateListener) {
661  // For node types that aren't CSE'd, just act as if no identical node
662  // already exists.
663  if (!doNotCSE(N)) {
664    SDNode *Existing = CSEMap.GetOrInsertNode(N);
665    if (Existing != N) {
666      // If there was already an existing matching node, use ReplaceAllUsesWith
667      // to replace the dead one with the existing one.  This can cause
668      // recursive merging of other unrelated nodes down the line.
669      ReplaceAllUsesWith(N, Existing, UpdateListener);
670
671      // N is now dead.  Inform the listener if it exists and delete it.
672      if (UpdateListener)
673        UpdateListener->NodeDeleted(N, Existing);
674      DeleteNodeNotInCSEMaps(N);
675      return;
676    }
677  }
678
679  // If the node doesn't already exist, we updated it.  Inform a listener if
680  // it exists.
681  if (UpdateListener)
682    UpdateListener->NodeUpdated(N);
683}
684
685/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
686/// were replaced with those specified.  If this node is never memoized,
687/// return null, otherwise return a pointer to the slot it would take.  If a
688/// node already exists with these operands, the slot will be non-null.
689SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
690                                           void *&InsertPos) {
691  if (doNotCSE(N))
692    return 0;
693
694  SDValue Ops[] = { Op };
695  FoldingSetNodeID ID;
696  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
697  AddNodeIDCustom(ID, N);
698  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
699}
700
701/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
702/// were replaced with those specified.  If this node is never memoized,
703/// return null, otherwise return a pointer to the slot it would take.  If a
704/// node already exists with these operands, the slot will be non-null.
705SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
706                                           SDValue Op1, SDValue Op2,
707                                           void *&InsertPos) {
708  if (doNotCSE(N))
709    return 0;
710
711  SDValue Ops[] = { Op1, Op2 };
712  FoldingSetNodeID ID;
713  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
714  AddNodeIDCustom(ID, N);
715  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
716}
717
718
719/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
720/// were replaced with those specified.  If this node is never memoized,
721/// return null, otherwise return a pointer to the slot it would take.  If a
722/// node already exists with these operands, the slot will be non-null.
723SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
724                                           const SDValue *Ops,unsigned NumOps,
725                                           void *&InsertPos) {
726  if (doNotCSE(N))
727    return 0;
728
729  FoldingSetNodeID ID;
730  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
731  AddNodeIDCustom(ID, N);
732  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
733}
734
735/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
736void SelectionDAG::VerifyNode(SDNode *N) {
737  switch (N->getOpcode()) {
738  default:
739    break;
740  case ISD::BUILD_PAIR: {
741    MVT VT = N->getValueType(0);
742    assert(N->getNumValues() == 1 && "Too many results!");
743    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
744           "Wrong return type!");
745    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
746    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
747           "Mismatched operand types!");
748    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
749           "Wrong operand type!");
750    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
751           "Wrong return type size");
752    break;
753  }
754  case ISD::BUILD_VECTOR: {
755    assert(N->getNumValues() == 1 && "Too many results!");
756    assert(N->getValueType(0).isVector() && "Wrong return type!");
757    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
758           "Wrong number of operands!");
759    // FIXME: Change vector_shuffle to a variadic node with mask elements being
760    // operands of the node.  Currently the mask is a BUILD_VECTOR passed as an
761    // operand, and it is not always possible to legalize it.  Turning off the
762    // following checks at least makes it possible to legalize most of the time.
763//    MVT EltVT = N->getValueType(0).getVectorElementType();
764//    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
765//      assert(I->getValueType() == EltVT &&
766//             "Wrong operand type!");
767    break;
768  }
769  }
770}
771
772/// getMVTAlignment - Compute the default alignment value for the
773/// given type.
774///
775unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
776  const Type *Ty = VT == MVT::iPTR ?
777                   PointerType::get(Type::Int8Ty, 0) :
778                   VT.getTypeForMVT();
779
780  return TLI.getTargetData()->getABITypeAlignment(Ty);
781}
782
783SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
784  : TLI(tli), FLI(fli),
785    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
786    Root(getEntryNode()) {
787  AllNodes.push_back(&EntryNode);
788}
789
790void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
791                        DwarfWriter *dw) {
792  MF = &mf;
793  MMI = mmi;
794  DW = dw;
795}
796
797SelectionDAG::~SelectionDAG() {
798  allnodes_clear();
799}
800
801void SelectionDAG::allnodes_clear() {
802  assert(&*AllNodes.begin() == &EntryNode);
803  AllNodes.remove(AllNodes.begin());
804  while (!AllNodes.empty())
805    DeallocateNode(AllNodes.begin());
806}
807
808void SelectionDAG::clear() {
809  allnodes_clear();
810  OperandAllocator.Reset();
811  CSEMap.clear();
812
813  ExtendedValueTypeNodes.clear();
814  ExternalSymbols.clear();
815  TargetExternalSymbols.clear();
816  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
817            static_cast<CondCodeSDNode*>(0));
818  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
819            static_cast<SDNode*>(0));
820
821  EntryNode.UseList = 0;
822  AllNodes.push_back(&EntryNode);
823  Root = getEntryNode();
824}
825
826SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
827  if (Op.getValueType() == VT) return Op;
828  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
829                                   VT.getSizeInBits());
830  return getNode(ISD::AND, Op.getValueType(), Op,
831                 getConstant(Imm, Op.getValueType()));
832}
833
834/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
835///
836SDValue SelectionDAG::getNOT(SDValue Val, MVT VT) {
837  SDValue NegOne;
838  if (VT.isVector()) {
839    MVT EltVT = VT.getVectorElementType();
840    SDValue NegOneElt = getConstant(EltVT.getIntegerVTBitMask(), EltVT);
841    std::vector<SDValue> NegOnes(VT.getVectorNumElements(), NegOneElt);
842    NegOne = getNode(ISD::BUILD_VECTOR, VT, &NegOnes[0], NegOnes.size());
843  } else
844    NegOne = getConstant(VT.getIntegerVTBitMask(), VT);
845
846  return getNode(ISD::XOR, VT, Val, NegOne);
847}
848
849SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
850  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
851  assert((EltVT.getSizeInBits() >= 64 ||
852         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
853         "getConstant with a uint64_t value that doesn't fit in the type!");
854  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
855}
856
857SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
858  return getConstant(*ConstantInt::get(Val), VT, isT);
859}
860
861SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
862  assert(VT.isInteger() && "Cannot create FP integer constant!");
863
864  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
865  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
866         "APInt size does not match type size!");
867
868  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
869  FoldingSetNodeID ID;
870  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
871  ID.AddPointer(&Val);
872  void *IP = 0;
873  SDNode *N = NULL;
874  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
875    if (!VT.isVector())
876      return SDValue(N, 0);
877  if (!N) {
878    N = NodeAllocator.Allocate<ConstantSDNode>();
879    new (N) ConstantSDNode(isT, &Val, EltVT);
880    CSEMap.InsertNode(N, IP);
881    AllNodes.push_back(N);
882  }
883
884  SDValue Result(N, 0);
885  if (VT.isVector()) {
886    SmallVector<SDValue, 8> Ops;
887    Ops.assign(VT.getVectorNumElements(), Result);
888    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
889  }
890  return Result;
891}
892
893SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
894  return getConstant(Val, TLI.getPointerTy(), isTarget);
895}
896
897
898SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
899  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
900}
901
902SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
903  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
904
905  MVT EltVT =
906    VT.isVector() ? VT.getVectorElementType() : VT;
907
908  // Do the map lookup using the actual bit pattern for the floating point
909  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
910  // we don't have issues with SNANs.
911  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
912  FoldingSetNodeID ID;
913  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
914  ID.AddPointer(&V);
915  void *IP = 0;
916  SDNode *N = NULL;
917  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
918    if (!VT.isVector())
919      return SDValue(N, 0);
920  if (!N) {
921    N = NodeAllocator.Allocate<ConstantFPSDNode>();
922    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
923    CSEMap.InsertNode(N, IP);
924    AllNodes.push_back(N);
925  }
926
927  SDValue Result(N, 0);
928  if (VT.isVector()) {
929    SmallVector<SDValue, 8> Ops;
930    Ops.assign(VT.getVectorNumElements(), Result);
931    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
932  }
933  return Result;
934}
935
936SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
937  MVT EltVT =
938    VT.isVector() ? VT.getVectorElementType() : VT;
939  if (EltVT==MVT::f32)
940    return getConstantFP(APFloat((float)Val), VT, isTarget);
941  else
942    return getConstantFP(APFloat(Val), VT, isTarget);
943}
944
945SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
946                                       MVT VT, int64_t Offset,
947                                       bool isTargetGA) {
948  unsigned Opc;
949
950  // Truncate (with sign-extension) the offset value to the pointer size.
951  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
952  if (BitWidth < 64)
953    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
954
955  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
956  if (!GVar) {
957    // If GV is an alias then use the aliasee for determining thread-localness.
958    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
959      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
960  }
961
962  if (GVar && GVar->isThreadLocal())
963    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
964  else
965    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
966
967  FoldingSetNodeID ID;
968  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
969  ID.AddPointer(GV);
970  ID.AddInteger(Offset);
971  void *IP = 0;
972  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
973    return SDValue(E, 0);
974  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
975  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
976  CSEMap.InsertNode(N, IP);
977  AllNodes.push_back(N);
978  return SDValue(N, 0);
979}
980
981SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
982  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
983  FoldingSetNodeID ID;
984  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
985  ID.AddInteger(FI);
986  void *IP = 0;
987  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
988    return SDValue(E, 0);
989  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
990  new (N) FrameIndexSDNode(FI, VT, isTarget);
991  CSEMap.InsertNode(N, IP);
992  AllNodes.push_back(N);
993  return SDValue(N, 0);
994}
995
996SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
997  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
998  FoldingSetNodeID ID;
999  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1000  ID.AddInteger(JTI);
1001  void *IP = 0;
1002  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1003    return SDValue(E, 0);
1004  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1005  new (N) JumpTableSDNode(JTI, VT, isTarget);
1006  CSEMap.InsertNode(N, IP);
1007  AllNodes.push_back(N);
1008  return SDValue(N, 0);
1009}
1010
1011SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1012                                      unsigned Alignment, int Offset,
1013                                      bool isTarget) {
1014  if (Alignment == 0)
1015    Alignment =
1016      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1017  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1018  FoldingSetNodeID ID;
1019  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1020  ID.AddInteger(Alignment);
1021  ID.AddInteger(Offset);
1022  ID.AddPointer(C);
1023  void *IP = 0;
1024  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1025    return SDValue(E, 0);
1026  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1027  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1028  CSEMap.InsertNode(N, IP);
1029  AllNodes.push_back(N);
1030  return SDValue(N, 0);
1031}
1032
1033
1034SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1035                                      unsigned Alignment, int Offset,
1036                                      bool isTarget) {
1037  if (Alignment == 0)
1038    Alignment =
1039      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1040  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1041  FoldingSetNodeID ID;
1042  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1043  ID.AddInteger(Alignment);
1044  ID.AddInteger(Offset);
1045  C->AddSelectionDAGCSEId(ID);
1046  void *IP = 0;
1047  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1048    return SDValue(E, 0);
1049  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1050  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1051  CSEMap.InsertNode(N, IP);
1052  AllNodes.push_back(N);
1053  return SDValue(N, 0);
1054}
1055
1056
1057SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1058  FoldingSetNodeID ID;
1059  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1060  ID.AddPointer(MBB);
1061  void *IP = 0;
1062  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1063    return SDValue(E, 0);
1064  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1065  new (N) BasicBlockSDNode(MBB);
1066  CSEMap.InsertNode(N, IP);
1067  AllNodes.push_back(N);
1068  return SDValue(N, 0);
1069}
1070
1071SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB, DebugLoc dl) {
1072  FoldingSetNodeID ID;
1073  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1074  ID.AddPointer(MBB);
1075  void *IP = 0;
1076  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1077    return SDValue(E, 0);
1078  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1079  new (N) BasicBlockSDNode(MBB, dl);
1080  CSEMap.InsertNode(N, IP);
1081  AllNodes.push_back(N);
1082  return SDValue(N, 0);
1083}
1084
1085SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1086  FoldingSetNodeID ID;
1087  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1088  ID.AddInteger(Flags.getRawBits());
1089  void *IP = 0;
1090  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1091    return SDValue(E, 0);
1092  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1093  new (N) ARG_FLAGSSDNode(Flags);
1094  CSEMap.InsertNode(N, IP);
1095  AllNodes.push_back(N);
1096  return SDValue(N, 0);
1097}
1098
1099SDValue SelectionDAG::getValueType(MVT VT) {
1100  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1101    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1102
1103  SDNode *&N = VT.isExtended() ?
1104    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1105
1106  if (N) return SDValue(N, 0);
1107  N = NodeAllocator.Allocate<VTSDNode>();
1108  new (N) VTSDNode(VT);
1109  AllNodes.push_back(N);
1110  return SDValue(N, 0);
1111}
1112
1113SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1114  SDNode *&N = ExternalSymbols[Sym];
1115  if (N) return SDValue(N, 0);
1116  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1117  new (N) ExternalSymbolSDNode(false, Sym, VT);
1118  AllNodes.push_back(N);
1119  return SDValue(N, 0);
1120}
1121
1122SDValue SelectionDAG::getExternalSymbol(const char *Sym, DebugLoc dl, MVT VT) {
1123  SDNode *&N = ExternalSymbols[Sym];
1124  if (N) return SDValue(N, 0);
1125  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1126  new (N) ExternalSymbolSDNode(false, dl, Sym, VT);
1127  AllNodes.push_back(N);
1128  return SDValue(N, 0);
1129}
1130
1131SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1132  SDNode *&N = TargetExternalSymbols[Sym];
1133  if (N) return SDValue(N, 0);
1134  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1135  new (N) ExternalSymbolSDNode(true, Sym, VT);
1136  AllNodes.push_back(N);
1137  return SDValue(N, 0);
1138}
1139
1140SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, DebugLoc dl,
1141                                              MVT VT) {
1142  SDNode *&N = TargetExternalSymbols[Sym];
1143  if (N) return SDValue(N, 0);
1144  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1145  new (N) ExternalSymbolSDNode(true, dl, Sym, VT);
1146  AllNodes.push_back(N);
1147  return SDValue(N, 0);
1148}
1149
1150SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1151  if ((unsigned)Cond >= CondCodeNodes.size())
1152    CondCodeNodes.resize(Cond+1);
1153
1154  if (CondCodeNodes[Cond] == 0) {
1155    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1156    new (N) CondCodeSDNode(Cond);
1157    CondCodeNodes[Cond] = N;
1158    AllNodes.push_back(N);
1159  }
1160  return SDValue(CondCodeNodes[Cond], 0);
1161}
1162
1163SDValue SelectionDAG::getConvertRndSat(MVT VT, SDValue Val, SDValue DTy,
1164                                       SDValue STy, SDValue Rnd, SDValue Sat,
1165                                       ISD::CvtCode Code) {
1166  // If the src and dest types are the same, no conversion is necessary.
1167  if (DTy == STy)
1168    return Val;
1169
1170  FoldingSetNodeID ID;
1171  void* IP = 0;
1172  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1173    return SDValue(E, 0);
1174  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1175  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1176  new (N) CvtRndSatSDNode(VT, Ops, 5, Code);
1177  CSEMap.InsertNode(N, IP);
1178  AllNodes.push_back(N);
1179  return SDValue(N, 0);
1180}
1181
1182SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1183  FoldingSetNodeID ID;
1184  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1185  ID.AddInteger(RegNo);
1186  void *IP = 0;
1187  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1188    return SDValue(E, 0);
1189  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1190  new (N) RegisterSDNode(RegNo, VT);
1191  CSEMap.InsertNode(N, IP);
1192  AllNodes.push_back(N);
1193  return SDValue(N, 0);
1194}
1195
1196SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1197                                      unsigned Line, unsigned Col,
1198                                      Value *CU) {
1199  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1200  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1201  AllNodes.push_back(N);
1202  return SDValue(N, 0);
1203}
1204
1205SDValue SelectionDAG::getLabel(unsigned Opcode,
1206                               SDValue Root,
1207                               unsigned LabelID) {
1208  FoldingSetNodeID ID;
1209  SDValue Ops[] = { Root };
1210  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1211  ID.AddInteger(LabelID);
1212  void *IP = 0;
1213  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1214    return SDValue(E, 0);
1215  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1216  new (N) LabelSDNode(Opcode, Root, LabelID);
1217  CSEMap.InsertNode(N, IP);
1218  AllNodes.push_back(N);
1219  return SDValue(N, 0);
1220}
1221
1222SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1223                               SDValue Root,
1224                               unsigned LabelID) {
1225  FoldingSetNodeID ID;
1226  SDValue Ops[] = { Root };
1227  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1228  ID.AddInteger(LabelID);
1229  void *IP = 0;
1230  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1231    return SDValue(E, 0);
1232  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1233  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1234  CSEMap.InsertNode(N, IP);
1235  AllNodes.push_back(N);
1236  return SDValue(N, 0);
1237}
1238
1239SDValue SelectionDAG::getSrcValue(const Value *V) {
1240  assert((!V || isa<PointerType>(V->getType())) &&
1241         "SrcValue is not a pointer?");
1242
1243  FoldingSetNodeID ID;
1244  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1245  ID.AddPointer(V);
1246
1247  void *IP = 0;
1248  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1249    return SDValue(E, 0);
1250
1251  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1252  new (N) SrcValueSDNode(V);
1253  CSEMap.InsertNode(N, IP);
1254  AllNodes.push_back(N);
1255  return SDValue(N, 0);
1256}
1257
1258SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1259#ifndef NDEBUG
1260  const Value *v = MO.getValue();
1261  assert((!v || isa<PointerType>(v->getType())) &&
1262         "SrcValue is not a pointer?");
1263#endif
1264
1265  FoldingSetNodeID ID;
1266  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1267  MO.Profile(ID);
1268
1269  void *IP = 0;
1270  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1271    return SDValue(E, 0);
1272
1273  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1274  new (N) MemOperandSDNode(MO);
1275  CSEMap.InsertNode(N, IP);
1276  AllNodes.push_back(N);
1277  return SDValue(N, 0);
1278}
1279
1280/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1281/// specified value type.
1282SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1283  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1284  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1285  const Type *Ty = VT.getTypeForMVT();
1286  unsigned StackAlign =
1287  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1288
1289  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1290  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1291}
1292
1293/// CreateStackTemporary - Create a stack temporary suitable for holding
1294/// either of the specified value types.
1295SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1296  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1297                            VT2.getStoreSizeInBits())/8;
1298  const Type *Ty1 = VT1.getTypeForMVT();
1299  const Type *Ty2 = VT2.getTypeForMVT();
1300  const TargetData *TD = TLI.getTargetData();
1301  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1302                            TD->getPrefTypeAlignment(Ty2));
1303
1304  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1305  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1306  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1307}
1308
1309SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1310                                SDValue N2, ISD::CondCode Cond) {
1311  // These setcc operations always fold.
1312  switch (Cond) {
1313  default: break;
1314  case ISD::SETFALSE:
1315  case ISD::SETFALSE2: return getConstant(0, VT);
1316  case ISD::SETTRUE:
1317  case ISD::SETTRUE2:  return getConstant(1, VT);
1318
1319  case ISD::SETOEQ:
1320  case ISD::SETOGT:
1321  case ISD::SETOGE:
1322  case ISD::SETOLT:
1323  case ISD::SETOLE:
1324  case ISD::SETONE:
1325  case ISD::SETO:
1326  case ISD::SETUO:
1327  case ISD::SETUEQ:
1328  case ISD::SETUNE:
1329    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1330    break;
1331  }
1332
1333  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1334    const APInt &C2 = N2C->getAPIntValue();
1335    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1336      const APInt &C1 = N1C->getAPIntValue();
1337
1338      switch (Cond) {
1339      default: assert(0 && "Unknown integer setcc!");
1340      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1341      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1342      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1343      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1344      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1345      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1346      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1347      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1348      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1349      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1350      }
1351    }
1352  }
1353  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1354    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1355      // No compile time operations on this type yet.
1356      if (N1C->getValueType(0) == MVT::ppcf128)
1357        return SDValue();
1358
1359      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1360      switch (Cond) {
1361      default: break;
1362      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1363                          return getNode(ISD::UNDEF, VT);
1364                        // fall through
1365      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1366      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1367                          return getNode(ISD::UNDEF, VT);
1368                        // fall through
1369      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1370                                           R==APFloat::cmpLessThan, VT);
1371      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1372                          return getNode(ISD::UNDEF, VT);
1373                        // fall through
1374      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1375      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1376                          return getNode(ISD::UNDEF, VT);
1377                        // fall through
1378      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1379      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1380                          return getNode(ISD::UNDEF, VT);
1381                        // fall through
1382      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1383                                           R==APFloat::cmpEqual, VT);
1384      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1385                          return getNode(ISD::UNDEF, VT);
1386                        // fall through
1387      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1388                                           R==APFloat::cmpEqual, VT);
1389      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1390      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1391      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1392                                           R==APFloat::cmpEqual, VT);
1393      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1394      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1395                                           R==APFloat::cmpLessThan, VT);
1396      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1397                                           R==APFloat::cmpUnordered, VT);
1398      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1399      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1400      }
1401    } else {
1402      // Ensure that the constant occurs on the RHS.
1403      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1404    }
1405  }
1406
1407  // Could not fold it.
1408  return SDValue();
1409}
1410
1411/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1412/// use this predicate to simplify operations downstream.
1413bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1414  unsigned BitWidth = Op.getValueSizeInBits();
1415  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1416}
1417
1418/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1419/// this predicate to simplify operations downstream.  Mask is known to be zero
1420/// for bits that V cannot have.
1421bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1422                                     unsigned Depth) const {
1423  APInt KnownZero, KnownOne;
1424  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1425  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1426  return (KnownZero & Mask) == Mask;
1427}
1428
1429/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1430/// known to be either zero or one and return them in the KnownZero/KnownOne
1431/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1432/// processing.
1433void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1434                                     APInt &KnownZero, APInt &KnownOne,
1435                                     unsigned Depth) const {
1436  unsigned BitWidth = Mask.getBitWidth();
1437  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1438         "Mask size mismatches value type size!");
1439
1440  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1441  if (Depth == 6 || Mask == 0)
1442    return;  // Limit search depth.
1443
1444  APInt KnownZero2, KnownOne2;
1445
1446  switch (Op.getOpcode()) {
1447  case ISD::Constant:
1448    // We know all of the bits for a constant!
1449    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1450    KnownZero = ~KnownOne & Mask;
1451    return;
1452  case ISD::AND:
1453    // If either the LHS or the RHS are Zero, the result is zero.
1454    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1455    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1456                      KnownZero2, KnownOne2, Depth+1);
1457    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1458    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1459
1460    // Output known-1 bits are only known if set in both the LHS & RHS.
1461    KnownOne &= KnownOne2;
1462    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1463    KnownZero |= KnownZero2;
1464    return;
1465  case ISD::OR:
1466    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1467    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1468                      KnownZero2, KnownOne2, Depth+1);
1469    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1470    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1471
1472    // Output known-0 bits are only known if clear in both the LHS & RHS.
1473    KnownZero &= KnownZero2;
1474    // Output known-1 are known to be set if set in either the LHS | RHS.
1475    KnownOne |= KnownOne2;
1476    return;
1477  case ISD::XOR: {
1478    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1479    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1480    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1481    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1482
1483    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1484    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1485    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1486    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1487    KnownZero = KnownZeroOut;
1488    return;
1489  }
1490  case ISD::MUL: {
1491    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1492    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1493    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1494    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1495    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1496
1497    // If low bits are zero in either operand, output low known-0 bits.
1498    // Also compute a conserative estimate for high known-0 bits.
1499    // More trickiness is possible, but this is sufficient for the
1500    // interesting case of alignment computation.
1501    KnownOne.clear();
1502    unsigned TrailZ = KnownZero.countTrailingOnes() +
1503                      KnownZero2.countTrailingOnes();
1504    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1505                               KnownZero2.countLeadingOnes(),
1506                               BitWidth) - BitWidth;
1507
1508    TrailZ = std::min(TrailZ, BitWidth);
1509    LeadZ = std::min(LeadZ, BitWidth);
1510    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1511                APInt::getHighBitsSet(BitWidth, LeadZ);
1512    KnownZero &= Mask;
1513    return;
1514  }
1515  case ISD::UDIV: {
1516    // For the purposes of computing leading zeros we can conservatively
1517    // treat a udiv as a logical right shift by the power of 2 known to
1518    // be less than the denominator.
1519    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1520    ComputeMaskedBits(Op.getOperand(0),
1521                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1522    unsigned LeadZ = KnownZero2.countLeadingOnes();
1523
1524    KnownOne2.clear();
1525    KnownZero2.clear();
1526    ComputeMaskedBits(Op.getOperand(1),
1527                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1528    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1529    if (RHSUnknownLeadingOnes != BitWidth)
1530      LeadZ = std::min(BitWidth,
1531                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1532
1533    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1534    return;
1535  }
1536  case ISD::SELECT:
1537    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1538    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1539    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1540    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1541
1542    // Only known if known in both the LHS and RHS.
1543    KnownOne &= KnownOne2;
1544    KnownZero &= KnownZero2;
1545    return;
1546  case ISD::SELECT_CC:
1547    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1548    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1549    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1550    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1551
1552    // Only known if known in both the LHS and RHS.
1553    KnownOne &= KnownOne2;
1554    KnownZero &= KnownZero2;
1555    return;
1556  case ISD::SADDO:
1557  case ISD::UADDO:
1558  case ISD::SSUBO:
1559  case ISD::USUBO:
1560  case ISD::SMULO:
1561  case ISD::UMULO:
1562    if (Op.getResNo() != 1)
1563      return;
1564    // The boolean result conforms to getBooleanContents.  Fall through.
1565  case ISD::SETCC:
1566    // If we know the result of a setcc has the top bits zero, use this info.
1567    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1568        BitWidth > 1)
1569      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1570    return;
1571  case ISD::SHL:
1572    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1573    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1574      unsigned ShAmt = SA->getZExtValue();
1575
1576      // If the shift count is an invalid immediate, don't do anything.
1577      if (ShAmt >= BitWidth)
1578        return;
1579
1580      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1581                        KnownZero, KnownOne, Depth+1);
1582      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1583      KnownZero <<= ShAmt;
1584      KnownOne  <<= ShAmt;
1585      // low bits known zero.
1586      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1587    }
1588    return;
1589  case ISD::SRL:
1590    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1591    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1592      unsigned ShAmt = SA->getZExtValue();
1593
1594      // If the shift count is an invalid immediate, don't do anything.
1595      if (ShAmt >= BitWidth)
1596        return;
1597
1598      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1599                        KnownZero, KnownOne, Depth+1);
1600      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1601      KnownZero = KnownZero.lshr(ShAmt);
1602      KnownOne  = KnownOne.lshr(ShAmt);
1603
1604      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1605      KnownZero |= HighBits;  // High bits known zero.
1606    }
1607    return;
1608  case ISD::SRA:
1609    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1610      unsigned ShAmt = SA->getZExtValue();
1611
1612      // If the shift count is an invalid immediate, don't do anything.
1613      if (ShAmt >= BitWidth)
1614        return;
1615
1616      APInt InDemandedMask = (Mask << ShAmt);
1617      // If any of the demanded bits are produced by the sign extension, we also
1618      // demand the input sign bit.
1619      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1620      if (HighBits.getBoolValue())
1621        InDemandedMask |= APInt::getSignBit(BitWidth);
1622
1623      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1624                        Depth+1);
1625      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1626      KnownZero = KnownZero.lshr(ShAmt);
1627      KnownOne  = KnownOne.lshr(ShAmt);
1628
1629      // Handle the sign bits.
1630      APInt SignBit = APInt::getSignBit(BitWidth);
1631      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1632
1633      if (KnownZero.intersects(SignBit)) {
1634        KnownZero |= HighBits;  // New bits are known zero.
1635      } else if (KnownOne.intersects(SignBit)) {
1636        KnownOne  |= HighBits;  // New bits are known one.
1637      }
1638    }
1639    return;
1640  case ISD::SIGN_EXTEND_INREG: {
1641    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1642    unsigned EBits = EVT.getSizeInBits();
1643
1644    // Sign extension.  Compute the demanded bits in the result that are not
1645    // present in the input.
1646    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1647
1648    APInt InSignBit = APInt::getSignBit(EBits);
1649    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1650
1651    // If the sign extended bits are demanded, we know that the sign
1652    // bit is demanded.
1653    InSignBit.zext(BitWidth);
1654    if (NewBits.getBoolValue())
1655      InputDemandedBits |= InSignBit;
1656
1657    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1658                      KnownZero, KnownOne, Depth+1);
1659    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1660
1661    // If the sign bit of the input is known set or clear, then we know the
1662    // top bits of the result.
1663    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1664      KnownZero |= NewBits;
1665      KnownOne  &= ~NewBits;
1666    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1667      KnownOne  |= NewBits;
1668      KnownZero &= ~NewBits;
1669    } else {                              // Input sign bit unknown
1670      KnownZero &= ~NewBits;
1671      KnownOne  &= ~NewBits;
1672    }
1673    return;
1674  }
1675  case ISD::CTTZ:
1676  case ISD::CTLZ:
1677  case ISD::CTPOP: {
1678    unsigned LowBits = Log2_32(BitWidth)+1;
1679    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1680    KnownOne.clear();
1681    return;
1682  }
1683  case ISD::LOAD: {
1684    if (ISD::isZEXTLoad(Op.getNode())) {
1685      LoadSDNode *LD = cast<LoadSDNode>(Op);
1686      MVT VT = LD->getMemoryVT();
1687      unsigned MemBits = VT.getSizeInBits();
1688      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1689    }
1690    return;
1691  }
1692  case ISD::ZERO_EXTEND: {
1693    MVT InVT = Op.getOperand(0).getValueType();
1694    unsigned InBits = InVT.getSizeInBits();
1695    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1696    APInt InMask    = Mask;
1697    InMask.trunc(InBits);
1698    KnownZero.trunc(InBits);
1699    KnownOne.trunc(InBits);
1700    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1701    KnownZero.zext(BitWidth);
1702    KnownOne.zext(BitWidth);
1703    KnownZero |= NewBits;
1704    return;
1705  }
1706  case ISD::SIGN_EXTEND: {
1707    MVT InVT = Op.getOperand(0).getValueType();
1708    unsigned InBits = InVT.getSizeInBits();
1709    APInt InSignBit = APInt::getSignBit(InBits);
1710    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1711    APInt InMask = Mask;
1712    InMask.trunc(InBits);
1713
1714    // If any of the sign extended bits are demanded, we know that the sign
1715    // bit is demanded. Temporarily set this bit in the mask for our callee.
1716    if (NewBits.getBoolValue())
1717      InMask |= InSignBit;
1718
1719    KnownZero.trunc(InBits);
1720    KnownOne.trunc(InBits);
1721    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1722
1723    // Note if the sign bit is known to be zero or one.
1724    bool SignBitKnownZero = KnownZero.isNegative();
1725    bool SignBitKnownOne  = KnownOne.isNegative();
1726    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1727           "Sign bit can't be known to be both zero and one!");
1728
1729    // If the sign bit wasn't actually demanded by our caller, we don't
1730    // want it set in the KnownZero and KnownOne result values. Reset the
1731    // mask and reapply it to the result values.
1732    InMask = Mask;
1733    InMask.trunc(InBits);
1734    KnownZero &= InMask;
1735    KnownOne  &= InMask;
1736
1737    KnownZero.zext(BitWidth);
1738    KnownOne.zext(BitWidth);
1739
1740    // If the sign bit is known zero or one, the top bits match.
1741    if (SignBitKnownZero)
1742      KnownZero |= NewBits;
1743    else if (SignBitKnownOne)
1744      KnownOne  |= NewBits;
1745    return;
1746  }
1747  case ISD::ANY_EXTEND: {
1748    MVT InVT = Op.getOperand(0).getValueType();
1749    unsigned InBits = InVT.getSizeInBits();
1750    APInt InMask = Mask;
1751    InMask.trunc(InBits);
1752    KnownZero.trunc(InBits);
1753    KnownOne.trunc(InBits);
1754    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1755    KnownZero.zext(BitWidth);
1756    KnownOne.zext(BitWidth);
1757    return;
1758  }
1759  case ISD::TRUNCATE: {
1760    MVT InVT = Op.getOperand(0).getValueType();
1761    unsigned InBits = InVT.getSizeInBits();
1762    APInt InMask = Mask;
1763    InMask.zext(InBits);
1764    KnownZero.zext(InBits);
1765    KnownOne.zext(InBits);
1766    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1767    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1768    KnownZero.trunc(BitWidth);
1769    KnownOne.trunc(BitWidth);
1770    break;
1771  }
1772  case ISD::AssertZext: {
1773    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1774    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1775    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1776                      KnownOne, Depth+1);
1777    KnownZero |= (~InMask) & Mask;
1778    return;
1779  }
1780  case ISD::FGETSIGN:
1781    // All bits are zero except the low bit.
1782    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1783    return;
1784
1785  case ISD::SUB: {
1786    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1787      // We know that the top bits of C-X are clear if X contains less bits
1788      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1789      // positive if we can prove that X is >= 0 and < 16.
1790      if (CLHS->getAPIntValue().isNonNegative()) {
1791        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1792        // NLZ can't be BitWidth with no sign bit
1793        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1794        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1795                          Depth+1);
1796
1797        // If all of the MaskV bits are known to be zero, then we know the
1798        // output top bits are zero, because we now know that the output is
1799        // from [0-C].
1800        if ((KnownZero2 & MaskV) == MaskV) {
1801          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1802          // Top bits known zero.
1803          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1804        }
1805      }
1806    }
1807  }
1808  // fall through
1809  case ISD::ADD: {
1810    // Output known-0 bits are known if clear or set in both the low clear bits
1811    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1812    // low 3 bits clear.
1813    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1814    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1815    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1816    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1817
1818    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1819    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1820    KnownZeroOut = std::min(KnownZeroOut,
1821                            KnownZero2.countTrailingOnes());
1822
1823    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1824    return;
1825  }
1826  case ISD::SREM:
1827    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1828      const APInt &RA = Rem->getAPIntValue();
1829      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1830        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1831        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1832        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1833
1834        // If the sign bit of the first operand is zero, the sign bit of
1835        // the result is zero. If the first operand has no one bits below
1836        // the second operand's single 1 bit, its sign will be zero.
1837        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1838          KnownZero2 |= ~LowBits;
1839
1840        KnownZero |= KnownZero2 & Mask;
1841
1842        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1843      }
1844    }
1845    return;
1846  case ISD::UREM: {
1847    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1848      const APInt &RA = Rem->getAPIntValue();
1849      if (RA.isPowerOf2()) {
1850        APInt LowBits = (RA - 1);
1851        APInt Mask2 = LowBits & Mask;
1852        KnownZero |= ~LowBits & Mask;
1853        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1854        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1855        break;
1856      }
1857    }
1858
1859    // Since the result is less than or equal to either operand, any leading
1860    // zero bits in either operand must also exist in the result.
1861    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1862    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1863                      Depth+1);
1864    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1865                      Depth+1);
1866
1867    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1868                                KnownZero2.countLeadingOnes());
1869    KnownOne.clear();
1870    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1871    return;
1872  }
1873  default:
1874    // Allow the target to implement this method for its nodes.
1875    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1876  case ISD::INTRINSIC_WO_CHAIN:
1877  case ISD::INTRINSIC_W_CHAIN:
1878  case ISD::INTRINSIC_VOID:
1879      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1880    }
1881    return;
1882  }
1883}
1884
1885/// ComputeNumSignBits - Return the number of times the sign bit of the
1886/// register is replicated into the other bits.  We know that at least 1 bit
1887/// is always equal to the sign bit (itself), but other cases can give us
1888/// information.  For example, immediately after an "SRA X, 2", we know that
1889/// the top 3 bits are all equal to each other, so we return 3.
1890unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1891  MVT VT = Op.getValueType();
1892  assert(VT.isInteger() && "Invalid VT!");
1893  unsigned VTBits = VT.getSizeInBits();
1894  unsigned Tmp, Tmp2;
1895  unsigned FirstAnswer = 1;
1896
1897  if (Depth == 6)
1898    return 1;  // Limit search depth.
1899
1900  switch (Op.getOpcode()) {
1901  default: break;
1902  case ISD::AssertSext:
1903    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1904    return VTBits-Tmp+1;
1905  case ISD::AssertZext:
1906    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1907    return VTBits-Tmp;
1908
1909  case ISD::Constant: {
1910    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1911    // If negative, return # leading ones.
1912    if (Val.isNegative())
1913      return Val.countLeadingOnes();
1914
1915    // Return # leading zeros.
1916    return Val.countLeadingZeros();
1917  }
1918
1919  case ISD::SIGN_EXTEND:
1920    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1921    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1922
1923  case ISD::SIGN_EXTEND_INREG:
1924    // Max of the input and what this extends.
1925    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1926    Tmp = VTBits-Tmp+1;
1927
1928    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1929    return std::max(Tmp, Tmp2);
1930
1931  case ISD::SRA:
1932    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1933    // SRA X, C   -> adds C sign bits.
1934    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1935      Tmp += C->getZExtValue();
1936      if (Tmp > VTBits) Tmp = VTBits;
1937    }
1938    return Tmp;
1939  case ISD::SHL:
1940    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1941      // shl destroys sign bits.
1942      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1943      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1944          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1945      return Tmp - C->getZExtValue();
1946    }
1947    break;
1948  case ISD::AND:
1949  case ISD::OR:
1950  case ISD::XOR:    // NOT is handled here.
1951    // Logical binary ops preserve the number of sign bits at the worst.
1952    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1953    if (Tmp != 1) {
1954      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1955      FirstAnswer = std::min(Tmp, Tmp2);
1956      // We computed what we know about the sign bits as our first
1957      // answer. Now proceed to the generic code that uses
1958      // ComputeMaskedBits, and pick whichever answer is better.
1959    }
1960    break;
1961
1962  case ISD::SELECT:
1963    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1964    if (Tmp == 1) return 1;  // Early out.
1965    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1966    return std::min(Tmp, Tmp2);
1967
1968  case ISD::SADDO:
1969  case ISD::UADDO:
1970  case ISD::SSUBO:
1971  case ISD::USUBO:
1972  case ISD::SMULO:
1973  case ISD::UMULO:
1974    if (Op.getResNo() != 1)
1975      break;
1976    // The boolean result conforms to getBooleanContents.  Fall through.
1977  case ISD::SETCC:
1978    // If setcc returns 0/-1, all bits are sign bits.
1979    if (TLI.getBooleanContents() ==
1980        TargetLowering::ZeroOrNegativeOneBooleanContent)
1981      return VTBits;
1982    break;
1983  case ISD::ROTL:
1984  case ISD::ROTR:
1985    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1986      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1987
1988      // Handle rotate right by N like a rotate left by 32-N.
1989      if (Op.getOpcode() == ISD::ROTR)
1990        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1991
1992      // If we aren't rotating out all of the known-in sign bits, return the
1993      // number that are left.  This handles rotl(sext(x), 1) for example.
1994      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1995      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1996    }
1997    break;
1998  case ISD::ADD:
1999    // Add can have at most one carry bit.  Thus we know that the output
2000    // is, at worst, one more bit than the inputs.
2001    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2002    if (Tmp == 1) return 1;  // Early out.
2003
2004    // Special case decrementing a value (ADD X, -1):
2005    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2006      if (CRHS->isAllOnesValue()) {
2007        APInt KnownZero, KnownOne;
2008        APInt Mask = APInt::getAllOnesValue(VTBits);
2009        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2010
2011        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2012        // sign bits set.
2013        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2014          return VTBits;
2015
2016        // If we are subtracting one from a positive number, there is no carry
2017        // out of the result.
2018        if (KnownZero.isNegative())
2019          return Tmp;
2020      }
2021
2022    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2023    if (Tmp2 == 1) return 1;
2024      return std::min(Tmp, Tmp2)-1;
2025    break;
2026
2027  case ISD::SUB:
2028    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2029    if (Tmp2 == 1) return 1;
2030
2031    // Handle NEG.
2032    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2033      if (CLHS->isNullValue()) {
2034        APInt KnownZero, KnownOne;
2035        APInt Mask = APInt::getAllOnesValue(VTBits);
2036        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2037        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2038        // sign bits set.
2039        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2040          return VTBits;
2041
2042        // If the input is known to be positive (the sign bit is known clear),
2043        // the output of the NEG has the same number of sign bits as the input.
2044        if (KnownZero.isNegative())
2045          return Tmp2;
2046
2047        // Otherwise, we treat this like a SUB.
2048      }
2049
2050    // Sub can have at most one carry bit.  Thus we know that the output
2051    // is, at worst, one more bit than the inputs.
2052    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2053    if (Tmp == 1) return 1;  // Early out.
2054      return std::min(Tmp, Tmp2)-1;
2055    break;
2056  case ISD::TRUNCATE:
2057    // FIXME: it's tricky to do anything useful for this, but it is an important
2058    // case for targets like X86.
2059    break;
2060  }
2061
2062  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2063  if (Op.getOpcode() == ISD::LOAD) {
2064    LoadSDNode *LD = cast<LoadSDNode>(Op);
2065    unsigned ExtType = LD->getExtensionType();
2066    switch (ExtType) {
2067    default: break;
2068    case ISD::SEXTLOAD:    // '17' bits known
2069      Tmp = LD->getMemoryVT().getSizeInBits();
2070      return VTBits-Tmp+1;
2071    case ISD::ZEXTLOAD:    // '16' bits known
2072      Tmp = LD->getMemoryVT().getSizeInBits();
2073      return VTBits-Tmp;
2074    }
2075  }
2076
2077  // Allow the target to implement this method for its nodes.
2078  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2079      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2080      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2081      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2082    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2083    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2084  }
2085
2086  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2087  // use this information.
2088  APInt KnownZero, KnownOne;
2089  APInt Mask = APInt::getAllOnesValue(VTBits);
2090  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2091
2092  if (KnownZero.isNegative()) {        // sign bit is 0
2093    Mask = KnownZero;
2094  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2095    Mask = KnownOne;
2096  } else {
2097    // Nothing known.
2098    return FirstAnswer;
2099  }
2100
2101  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2102  // the number of identical bits in the top of the input value.
2103  Mask = ~Mask;
2104  Mask <<= Mask.getBitWidth()-VTBits;
2105  // Return # leading zeros.  We use 'min' here in case Val was zero before
2106  // shifting.  We don't want to return '64' as for an i32 "0".
2107  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2108}
2109
2110
2111bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2112  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2113  if (!GA) return false;
2114  if (GA->getOffset() != 0) return false;
2115  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2116  if (!GV) return false;
2117  MachineModuleInfo *MMI = getMachineModuleInfo();
2118  return MMI && MMI->hasDebugInfo();
2119}
2120
2121
2122/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2123/// element of the result of the vector shuffle.
2124SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2125  MVT VT = N->getValueType(0);
2126  SDValue PermMask = N->getOperand(2);
2127  SDValue Idx = PermMask.getOperand(i);
2128  if (Idx.getOpcode() == ISD::UNDEF)
2129    return getNode(ISD::UNDEF, VT.getVectorElementType());
2130  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2131  unsigned NumElems = PermMask.getNumOperands();
2132  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2133  Index %= NumElems;
2134
2135  if (V.getOpcode() == ISD::BIT_CONVERT) {
2136    V = V.getOperand(0);
2137    MVT VVT = V.getValueType();
2138    if (!VVT.isVector() || VVT.getVectorNumElements() != NumElems)
2139      return SDValue();
2140  }
2141  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2142    return (Index == 0) ? V.getOperand(0)
2143                      : getNode(ISD::UNDEF, VT.getVectorElementType());
2144  if (V.getOpcode() == ISD::BUILD_VECTOR)
2145    return V.getOperand(Index);
2146  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2147    return getShuffleScalarElt(V.getNode(), Index);
2148  return SDValue();
2149}
2150
2151
2152/// getNode - Gets or creates the specified node.
2153///
2154SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
2155  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT);
2156}
2157
2158SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT) {
2159  FoldingSetNodeID ID;
2160  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2161  void *IP = 0;
2162  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2163    return SDValue(E, 0);
2164  SDNode *N = NodeAllocator.Allocate<SDNode>();
2165  new (N) SDNode(Opcode, DL, SDNode::getSDVTList(VT));
2166  CSEMap.InsertNode(N, IP);
2167
2168  AllNodes.push_back(N);
2169#ifndef NDEBUG
2170  VerifyNode(N);
2171#endif
2172  return SDValue(N, 0);
2173}
2174
2175SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
2176  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, Operand);
2177}
2178
2179SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2180                              MVT VT, SDValue Operand) {
2181  // Constant fold unary operations with an integer constant operand.
2182  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2183    const APInt &Val = C->getAPIntValue();
2184    unsigned BitWidth = VT.getSizeInBits();
2185    switch (Opcode) {
2186    default: break;
2187    case ISD::SIGN_EXTEND:
2188      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2189    case ISD::ANY_EXTEND:
2190    case ISD::ZERO_EXTEND:
2191    case ISD::TRUNCATE:
2192      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2193    case ISD::UINT_TO_FP:
2194    case ISD::SINT_TO_FP: {
2195      const uint64_t zero[] = {0, 0};
2196      // No compile time operations on this type.
2197      if (VT==MVT::ppcf128)
2198        break;
2199      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2200      (void)apf.convertFromAPInt(Val,
2201                                 Opcode==ISD::SINT_TO_FP,
2202                                 APFloat::rmNearestTiesToEven);
2203      return getConstantFP(apf, VT);
2204    }
2205    case ISD::BIT_CONVERT:
2206      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2207        return getConstantFP(Val.bitsToFloat(), VT);
2208      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2209        return getConstantFP(Val.bitsToDouble(), VT);
2210      break;
2211    case ISD::BSWAP:
2212      return getConstant(Val.byteSwap(), VT);
2213    case ISD::CTPOP:
2214      return getConstant(Val.countPopulation(), VT);
2215    case ISD::CTLZ:
2216      return getConstant(Val.countLeadingZeros(), VT);
2217    case ISD::CTTZ:
2218      return getConstant(Val.countTrailingZeros(), VT);
2219    }
2220  }
2221
2222  // Constant fold unary operations with a floating point constant operand.
2223  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2224    APFloat V = C->getValueAPF();    // make copy
2225    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2226      switch (Opcode) {
2227      case ISD::FNEG:
2228        V.changeSign();
2229        return getConstantFP(V, VT);
2230      case ISD::FABS:
2231        V.clearSign();
2232        return getConstantFP(V, VT);
2233      case ISD::FP_ROUND:
2234      case ISD::FP_EXTEND: {
2235        bool ignored;
2236        // This can return overflow, underflow, or inexact; we don't care.
2237        // FIXME need to be more flexible about rounding mode.
2238        (void)V.convert(*MVTToAPFloatSemantics(VT),
2239                        APFloat::rmNearestTiesToEven, &ignored);
2240        return getConstantFP(V, VT);
2241      }
2242      case ISD::FP_TO_SINT:
2243      case ISD::FP_TO_UINT: {
2244        integerPart x;
2245        bool ignored;
2246        assert(integerPartWidth >= 64);
2247        // FIXME need to be more flexible about rounding mode.
2248        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2249                              Opcode==ISD::FP_TO_SINT,
2250                              APFloat::rmTowardZero, &ignored);
2251        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2252          break;
2253        return getConstant(x, VT);
2254      }
2255      case ISD::BIT_CONVERT:
2256        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2257          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2258        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2259          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2260        break;
2261      }
2262    }
2263  }
2264
2265  unsigned OpOpcode = Operand.getNode()->getOpcode();
2266  switch (Opcode) {
2267  case ISD::TokenFactor:
2268  case ISD::MERGE_VALUES:
2269  case ISD::CONCAT_VECTORS:
2270    return Operand;         // Factor, merge or concat of one node?  No need.
2271  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2272  case ISD::FP_EXTEND:
2273    assert(VT.isFloatingPoint() &&
2274           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2275    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2276    if (Operand.getOpcode() == ISD::UNDEF)
2277      return getNode(ISD::UNDEF, VT);
2278    break;
2279  case ISD::SIGN_EXTEND:
2280    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2281           "Invalid SIGN_EXTEND!");
2282    if (Operand.getValueType() == VT) return Operand;   // noop extension
2283    assert(Operand.getValueType().bitsLT(VT)
2284           && "Invalid sext node, dst < src!");
2285    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2286      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2287    break;
2288  case ISD::ZERO_EXTEND:
2289    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2290           "Invalid ZERO_EXTEND!");
2291    if (Operand.getValueType() == VT) return Operand;   // noop extension
2292    assert(Operand.getValueType().bitsLT(VT)
2293           && "Invalid zext node, dst < src!");
2294    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2295      return getNode(ISD::ZERO_EXTEND, VT, Operand.getNode()->getOperand(0));
2296    break;
2297  case ISD::ANY_EXTEND:
2298    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2299           "Invalid ANY_EXTEND!");
2300    if (Operand.getValueType() == VT) return Operand;   // noop extension
2301    assert(Operand.getValueType().bitsLT(VT)
2302           && "Invalid anyext node, dst < src!");
2303    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2304      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2305      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2306    break;
2307  case ISD::TRUNCATE:
2308    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2309           "Invalid TRUNCATE!");
2310    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2311    assert(Operand.getValueType().bitsGT(VT)
2312           && "Invalid truncate node, src < dst!");
2313    if (OpOpcode == ISD::TRUNCATE)
2314      return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2315    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2316             OpOpcode == ISD::ANY_EXTEND) {
2317      // If the source is smaller than the dest, we still need an extend.
2318      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2319        return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2320      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2321        return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2322      else
2323        return Operand.getNode()->getOperand(0);
2324    }
2325    break;
2326  case ISD::BIT_CONVERT:
2327    // Basic sanity checking.
2328    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2329           && "Cannot BIT_CONVERT between types of different sizes!");
2330    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2331    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2332      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2333    if (OpOpcode == ISD::UNDEF)
2334      return getNode(ISD::UNDEF, VT);
2335    break;
2336  case ISD::SCALAR_TO_VECTOR:
2337    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2338           VT.getVectorElementType() == Operand.getValueType() &&
2339           "Illegal SCALAR_TO_VECTOR node!");
2340    if (OpOpcode == ISD::UNDEF)
2341      return getNode(ISD::UNDEF, VT);
2342    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2343    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2344        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2345        Operand.getConstantOperandVal(1) == 0 &&
2346        Operand.getOperand(0).getValueType() == VT)
2347      return Operand.getOperand(0);
2348    break;
2349  case ISD::FNEG:
2350    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2351      return getNode(ISD::FSUB, VT, Operand.getNode()->getOperand(1),
2352                     Operand.getNode()->getOperand(0));
2353    if (OpOpcode == ISD::FNEG)  // --X -> X
2354      return Operand.getNode()->getOperand(0);
2355    break;
2356  case ISD::FABS:
2357    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2358      return getNode(ISD::FABS, VT, Operand.getNode()->getOperand(0));
2359    break;
2360  }
2361
2362  SDNode *N;
2363  SDVTList VTs = getVTList(VT);
2364  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2365    FoldingSetNodeID ID;
2366    SDValue Ops[1] = { Operand };
2367    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2368    void *IP = 0;
2369    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2370      return SDValue(E, 0);
2371    N = NodeAllocator.Allocate<UnarySDNode>();
2372    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2373    CSEMap.InsertNode(N, IP);
2374  } else {
2375    N = NodeAllocator.Allocate<UnarySDNode>();
2376    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2377  }
2378
2379  AllNodes.push_back(N);
2380#ifndef NDEBUG
2381  VerifyNode(N);
2382#endif
2383  return SDValue(N, 0);
2384}
2385
2386SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2387                                             MVT VT,
2388                                             ConstantSDNode *Cst1,
2389                                             ConstantSDNode *Cst2) {
2390  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2391
2392  switch (Opcode) {
2393  case ISD::ADD:  return getConstant(C1 + C2, VT);
2394  case ISD::SUB:  return getConstant(C1 - C2, VT);
2395  case ISD::MUL:  return getConstant(C1 * C2, VT);
2396  case ISD::UDIV:
2397    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2398    break;
2399  case ISD::UREM:
2400    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2401    break;
2402  case ISD::SDIV:
2403    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2404    break;
2405  case ISD::SREM:
2406    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2407    break;
2408  case ISD::AND:  return getConstant(C1 & C2, VT);
2409  case ISD::OR:   return getConstant(C1 | C2, VT);
2410  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2411  case ISD::SHL:  return getConstant(C1 << C2, VT);
2412  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2413  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2414  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2415  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2416  default: break;
2417  }
2418
2419  return SDValue();
2420}
2421
2422SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2423                              SDValue N1, SDValue N2) {
2424  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, N1, N2);
2425}
2426
2427SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2428                              SDValue N1, SDValue N2) {
2429  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2430  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2431  switch (Opcode) {
2432  default: break;
2433  case ISD::TokenFactor:
2434    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2435           N2.getValueType() == MVT::Other && "Invalid token factor!");
2436    // Fold trivial token factors.
2437    if (N1.getOpcode() == ISD::EntryToken) return N2;
2438    if (N2.getOpcode() == ISD::EntryToken) return N1;
2439    if (N1 == N2) return N1;
2440    break;
2441  case ISD::CONCAT_VECTORS:
2442    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2443    // one big BUILD_VECTOR.
2444    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2445        N2.getOpcode() == ISD::BUILD_VECTOR) {
2446      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2447      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2448      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2449    }
2450    break;
2451  case ISD::AND:
2452    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2453           N1.getValueType() == VT && "Binary operator types must match!");
2454    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2455    // worth handling here.
2456    if (N2C && N2C->isNullValue())
2457      return N2;
2458    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2459      return N1;
2460    break;
2461  case ISD::OR:
2462  case ISD::XOR:
2463  case ISD::ADD:
2464  case ISD::SUB:
2465    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2466           N1.getValueType() == VT && "Binary operator types must match!");
2467    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2468    // it's worth handling here.
2469    if (N2C && N2C->isNullValue())
2470      return N1;
2471    break;
2472  case ISD::UDIV:
2473  case ISD::UREM:
2474  case ISD::MULHU:
2475  case ISD::MULHS:
2476  case ISD::MUL:
2477  case ISD::SDIV:
2478  case ISD::SREM:
2479    assert(VT.isInteger() && "This operator does not apply to FP types!");
2480    // fall through
2481  case ISD::FADD:
2482  case ISD::FSUB:
2483  case ISD::FMUL:
2484  case ISD::FDIV:
2485  case ISD::FREM:
2486    if (UnsafeFPMath) {
2487      if (Opcode == ISD::FADD) {
2488        // 0+x --> x
2489        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2490          if (CFP->getValueAPF().isZero())
2491            return N2;
2492        // x+0 --> x
2493        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2494          if (CFP->getValueAPF().isZero())
2495            return N1;
2496      } else if (Opcode == ISD::FSUB) {
2497        // x-0 --> x
2498        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2499          if (CFP->getValueAPF().isZero())
2500            return N1;
2501      }
2502    }
2503    assert(N1.getValueType() == N2.getValueType() &&
2504           N1.getValueType() == VT && "Binary operator types must match!");
2505    break;
2506  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2507    assert(N1.getValueType() == VT &&
2508           N1.getValueType().isFloatingPoint() &&
2509           N2.getValueType().isFloatingPoint() &&
2510           "Invalid FCOPYSIGN!");
2511    break;
2512  case ISD::SHL:
2513  case ISD::SRA:
2514  case ISD::SRL:
2515  case ISD::ROTL:
2516  case ISD::ROTR:
2517    assert(VT == N1.getValueType() &&
2518           "Shift operators return type must be the same as their first arg");
2519    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2520           "Shifts only work on integers");
2521    assert((N2.getValueType() == TLI.getShiftAmountTy() ||
2522            (N2.getValueType().isVector() && N2.getValueType().isInteger())) &&
2523           "Wrong type for shift amount");
2524
2525    // Always fold shifts of i1 values so the code generator doesn't need to
2526    // handle them.  Since we know the size of the shift has to be less than the
2527    // size of the value, the shift/rotate count is guaranteed to be zero.
2528    if (VT == MVT::i1)
2529      return N1;
2530    break;
2531  case ISD::FP_ROUND_INREG: {
2532    MVT EVT = cast<VTSDNode>(N2)->getVT();
2533    assert(VT == N1.getValueType() && "Not an inreg round!");
2534    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2535           "Cannot FP_ROUND_INREG integer types");
2536    assert(EVT.bitsLE(VT) && "Not rounding down!");
2537    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2538    break;
2539  }
2540  case ISD::FP_ROUND:
2541    assert(VT.isFloatingPoint() &&
2542           N1.getValueType().isFloatingPoint() &&
2543           VT.bitsLE(N1.getValueType()) &&
2544           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2545    if (N1.getValueType() == VT) return N1;  // noop conversion.
2546    break;
2547  case ISD::AssertSext:
2548  case ISD::AssertZext: {
2549    MVT EVT = cast<VTSDNode>(N2)->getVT();
2550    assert(VT == N1.getValueType() && "Not an inreg extend!");
2551    assert(VT.isInteger() && EVT.isInteger() &&
2552           "Cannot *_EXTEND_INREG FP types");
2553    assert(EVT.bitsLE(VT) && "Not extending!");
2554    if (VT == EVT) return N1; // noop assertion.
2555    break;
2556  }
2557  case ISD::SIGN_EXTEND_INREG: {
2558    MVT EVT = cast<VTSDNode>(N2)->getVT();
2559    assert(VT == N1.getValueType() && "Not an inreg extend!");
2560    assert(VT.isInteger() && EVT.isInteger() &&
2561           "Cannot *_EXTEND_INREG FP types");
2562    assert(EVT.bitsLE(VT) && "Not extending!");
2563    if (EVT == VT) return N1;  // Not actually extending
2564
2565    if (N1C) {
2566      APInt Val = N1C->getAPIntValue();
2567      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2568      Val <<= Val.getBitWidth()-FromBits;
2569      Val = Val.ashr(Val.getBitWidth()-FromBits);
2570      return getConstant(Val, VT);
2571    }
2572    break;
2573  }
2574  case ISD::EXTRACT_VECTOR_ELT:
2575    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2576    if (N1.getOpcode() == ISD::UNDEF)
2577      return getNode(ISD::UNDEF, VT);
2578
2579    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2580    // expanding copies of large vectors from registers.
2581    if (N2C &&
2582        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2583        N1.getNumOperands() > 0) {
2584      unsigned Factor =
2585        N1.getOperand(0).getValueType().getVectorNumElements();
2586      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2587                     N1.getOperand(N2C->getZExtValue() / Factor),
2588                     getConstant(N2C->getZExtValue() % Factor,
2589                                 N2.getValueType()));
2590    }
2591
2592    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2593    // expanding large vector constants.
2594    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2595      return N1.getOperand(N2C->getZExtValue());
2596
2597    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2598    // operations are lowered to scalars.
2599    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2600      if (N1.getOperand(2) == N2)
2601        return N1.getOperand(1);
2602      else
2603        return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2604    }
2605    break;
2606  case ISD::EXTRACT_ELEMENT:
2607    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2608    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2609           (N1.getValueType().isInteger() == VT.isInteger()) &&
2610           "Wrong types for EXTRACT_ELEMENT!");
2611
2612    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2613    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2614    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2615    if (N1.getOpcode() == ISD::BUILD_PAIR)
2616      return N1.getOperand(N2C->getZExtValue());
2617
2618    // EXTRACT_ELEMENT of a constant int is also very common.
2619    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2620      unsigned ElementSize = VT.getSizeInBits();
2621      unsigned Shift = ElementSize * N2C->getZExtValue();
2622      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2623      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2624    }
2625    break;
2626  case ISD::EXTRACT_SUBVECTOR:
2627    if (N1.getValueType() == VT) // Trivial extraction.
2628      return N1;
2629    break;
2630  }
2631
2632  if (N1C) {
2633    if (N2C) {
2634      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2635      if (SV.getNode()) return SV;
2636    } else {      // Cannonicalize constant to RHS if commutative
2637      if (isCommutativeBinOp(Opcode)) {
2638        std::swap(N1C, N2C);
2639        std::swap(N1, N2);
2640      }
2641    }
2642  }
2643
2644  // Constant fold FP operations.
2645  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2646  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2647  if (N1CFP) {
2648    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2649      // Cannonicalize constant to RHS if commutative
2650      std::swap(N1CFP, N2CFP);
2651      std::swap(N1, N2);
2652    } else if (N2CFP && VT != MVT::ppcf128) {
2653      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2654      APFloat::opStatus s;
2655      switch (Opcode) {
2656      case ISD::FADD:
2657        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2658        if (s != APFloat::opInvalidOp)
2659          return getConstantFP(V1, VT);
2660        break;
2661      case ISD::FSUB:
2662        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2663        if (s!=APFloat::opInvalidOp)
2664          return getConstantFP(V1, VT);
2665        break;
2666      case ISD::FMUL:
2667        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2668        if (s!=APFloat::opInvalidOp)
2669          return getConstantFP(V1, VT);
2670        break;
2671      case ISD::FDIV:
2672        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2673        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2674          return getConstantFP(V1, VT);
2675        break;
2676      case ISD::FREM :
2677        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2678        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2679          return getConstantFP(V1, VT);
2680        break;
2681      case ISD::FCOPYSIGN:
2682        V1.copySign(V2);
2683        return getConstantFP(V1, VT);
2684      default: break;
2685      }
2686    }
2687  }
2688
2689  // Canonicalize an UNDEF to the RHS, even over a constant.
2690  if (N1.getOpcode() == ISD::UNDEF) {
2691    if (isCommutativeBinOp(Opcode)) {
2692      std::swap(N1, N2);
2693    } else {
2694      switch (Opcode) {
2695      case ISD::FP_ROUND_INREG:
2696      case ISD::SIGN_EXTEND_INREG:
2697      case ISD::SUB:
2698      case ISD::FSUB:
2699      case ISD::FDIV:
2700      case ISD::FREM:
2701      case ISD::SRA:
2702        return N1;     // fold op(undef, arg2) -> undef
2703      case ISD::UDIV:
2704      case ISD::SDIV:
2705      case ISD::UREM:
2706      case ISD::SREM:
2707      case ISD::SRL:
2708      case ISD::SHL:
2709        if (!VT.isVector())
2710          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2711        // For vectors, we can't easily build an all zero vector, just return
2712        // the LHS.
2713        return N2;
2714      }
2715    }
2716  }
2717
2718  // Fold a bunch of operators when the RHS is undef.
2719  if (N2.getOpcode() == ISD::UNDEF) {
2720    switch (Opcode) {
2721    case ISD::XOR:
2722      if (N1.getOpcode() == ISD::UNDEF)
2723        // Handle undef ^ undef -> 0 special case. This is a common
2724        // idiom (misuse).
2725        return getConstant(0, VT);
2726      // fallthrough
2727    case ISD::ADD:
2728    case ISD::ADDC:
2729    case ISD::ADDE:
2730    case ISD::SUB:
2731    case ISD::FADD:
2732    case ISD::FSUB:
2733    case ISD::FMUL:
2734    case ISD::FDIV:
2735    case ISD::FREM:
2736    case ISD::UDIV:
2737    case ISD::SDIV:
2738    case ISD::UREM:
2739    case ISD::SREM:
2740      return N2;       // fold op(arg1, undef) -> undef
2741    case ISD::MUL:
2742    case ISD::AND:
2743    case ISD::SRL:
2744    case ISD::SHL:
2745      if (!VT.isVector())
2746        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2747      // For vectors, we can't easily build an all zero vector, just return
2748      // the LHS.
2749      return N1;
2750    case ISD::OR:
2751      if (!VT.isVector())
2752        return getConstant(VT.getIntegerVTBitMask(), VT);
2753      // For vectors, we can't easily build an all one vector, just return
2754      // the LHS.
2755      return N1;
2756    case ISD::SRA:
2757      return N1;
2758    }
2759  }
2760
2761  // Memoize this node if possible.
2762  SDNode *N;
2763  SDVTList VTs = getVTList(VT);
2764  if (VT != MVT::Flag) {
2765    SDValue Ops[] = { N1, N2 };
2766    FoldingSetNodeID ID;
2767    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2768    void *IP = 0;
2769    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2770      return SDValue(E, 0);
2771    N = NodeAllocator.Allocate<BinarySDNode>();
2772    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2773    CSEMap.InsertNode(N, IP);
2774  } else {
2775    N = NodeAllocator.Allocate<BinarySDNode>();
2776    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2777  }
2778
2779  AllNodes.push_back(N);
2780#ifndef NDEBUG
2781  VerifyNode(N);
2782#endif
2783  return SDValue(N, 0);
2784}
2785
2786SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2787                              SDValue N1, SDValue N2, SDValue N3) {
2788  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, N1, N2, N3);
2789}
2790
2791SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2792                              SDValue N1, SDValue N2, SDValue N3) {
2793  // Perform various simplifications.
2794  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2795  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2796  switch (Opcode) {
2797  case ISD::CONCAT_VECTORS:
2798    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2799    // one big BUILD_VECTOR.
2800    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2801        N2.getOpcode() == ISD::BUILD_VECTOR &&
2802        N3.getOpcode() == ISD::BUILD_VECTOR) {
2803      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2804      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2805      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2806      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2807    }
2808    break;
2809  case ISD::SETCC: {
2810    // Use FoldSetCC to simplify SETCC's.
2811    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2812    if (Simp.getNode()) return Simp;
2813    break;
2814  }
2815  case ISD::SELECT:
2816    if (N1C) {
2817     if (N1C->getZExtValue())
2818        return N2;             // select true, X, Y -> X
2819      else
2820        return N3;             // select false, X, Y -> Y
2821    }
2822
2823    if (N2 == N3) return N2;   // select C, X, X -> X
2824    break;
2825  case ISD::BRCOND:
2826    if (N2C) {
2827      if (N2C->getZExtValue()) // Unconditional branch
2828        return getNode(ISD::BR, MVT::Other, N1, N3);
2829      else
2830        return N1;         // Never-taken branch
2831    }
2832    break;
2833  case ISD::VECTOR_SHUFFLE:
2834    assert(N1.getValueType() == N2.getValueType() &&
2835           N1.getValueType().isVector() &&
2836           VT.isVector() && N3.getValueType().isVector() &&
2837           N3.getOpcode() == ISD::BUILD_VECTOR &&
2838           VT.getVectorNumElements() == N3.getNumOperands() &&
2839           "Illegal VECTOR_SHUFFLE node!");
2840    break;
2841  case ISD::BIT_CONVERT:
2842    // Fold bit_convert nodes from a type to themselves.
2843    if (N1.getValueType() == VT)
2844      return N1;
2845    break;
2846  }
2847
2848  // Memoize node if it doesn't produce a flag.
2849  SDNode *N;
2850  SDVTList VTs = getVTList(VT);
2851  if (VT != MVT::Flag) {
2852    SDValue Ops[] = { N1, N2, N3 };
2853    FoldingSetNodeID ID;
2854    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2855    void *IP = 0;
2856    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2857      return SDValue(E, 0);
2858    N = NodeAllocator.Allocate<TernarySDNode>();
2859    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2860    CSEMap.InsertNode(N, IP);
2861  } else {
2862    N = NodeAllocator.Allocate<TernarySDNode>();
2863    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2864  }
2865  AllNodes.push_back(N);
2866#ifndef NDEBUG
2867  VerifyNode(N);
2868#endif
2869  return SDValue(N, 0);
2870}
2871
2872SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2873                              SDValue N1, SDValue N2, SDValue N3,
2874                              SDValue N4) {
2875  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, N1, N2, N3, N4);
2876}
2877
2878SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2879                              SDValue N1, SDValue N2, SDValue N3,
2880                              SDValue N4) {
2881  SDValue Ops[] = { N1, N2, N3, N4 };
2882  return getNode(Opcode, DL, VT, Ops, 4);
2883}
2884
2885SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2886                              SDValue N1, SDValue N2, SDValue N3,
2887                              SDValue N4, SDValue N5) {
2888  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, N1, N2, N3, N4, N5);
2889}
2890
2891SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2892                              SDValue N1, SDValue N2, SDValue N3,
2893                              SDValue N4, SDValue N5) {
2894  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2895  return getNode(Opcode, DL, VT, Ops, 5);
2896}
2897
2898/// getMemsetValue - Vectorized representation of the memset value
2899/// operand.
2900static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) {
2901  unsigned NumBits = VT.isVector() ?
2902    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2903  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2904    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2905    unsigned Shift = 8;
2906    for (unsigned i = NumBits; i > 8; i >>= 1) {
2907      Val = (Val << Shift) | Val;
2908      Shift <<= 1;
2909    }
2910    if (VT.isInteger())
2911      return DAG.getConstant(Val, VT);
2912    return DAG.getConstantFP(APFloat(Val), VT);
2913  }
2914
2915  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2916  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2917  unsigned Shift = 8;
2918  for (unsigned i = NumBits; i > 8; i >>= 1) {
2919    Value = DAG.getNode(ISD::OR, VT,
2920                        DAG.getNode(ISD::SHL, VT, Value,
2921                                    DAG.getConstant(Shift,
2922                                                    TLI.getShiftAmountTy())),
2923                        Value);
2924    Shift <<= 1;
2925  }
2926
2927  return Value;
2928}
2929
2930/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2931/// used when a memcpy is turned into a memset when the source is a constant
2932/// string ptr.
2933static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2934                                    const TargetLowering &TLI,
2935                                    std::string &Str, unsigned Offset) {
2936  // Handle vector with all elements zero.
2937  if (Str.empty()) {
2938    if (VT.isInteger())
2939      return DAG.getConstant(0, VT);
2940    unsigned NumElts = VT.getVectorNumElements();
2941    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2942    return DAG.getNode(ISD::BIT_CONVERT, VT,
2943                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2944  }
2945
2946  assert(!VT.isVector() && "Can't handle vector type here!");
2947  unsigned NumBits = VT.getSizeInBits();
2948  unsigned MSB = NumBits / 8;
2949  uint64_t Val = 0;
2950  if (TLI.isLittleEndian())
2951    Offset = Offset + MSB - 1;
2952  for (unsigned i = 0; i != MSB; ++i) {
2953    Val = (Val << 8) | (unsigned char)Str[Offset];
2954    Offset += TLI.isLittleEndian() ? -1 : 1;
2955  }
2956  return DAG.getConstant(Val, VT);
2957}
2958
2959/// getMemBasePlusOffset - Returns base and offset node for the
2960///
2961static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2962                                      SelectionDAG &DAG) {
2963  MVT VT = Base.getValueType();
2964  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2965}
2966
2967/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2968///
2969static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2970  unsigned SrcDelta = 0;
2971  GlobalAddressSDNode *G = NULL;
2972  if (Src.getOpcode() == ISD::GlobalAddress)
2973    G = cast<GlobalAddressSDNode>(Src);
2974  else if (Src.getOpcode() == ISD::ADD &&
2975           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2976           Src.getOperand(1).getOpcode() == ISD::Constant) {
2977    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2978    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2979  }
2980  if (!G)
2981    return false;
2982
2983  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2984  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2985    return true;
2986
2987  return false;
2988}
2989
2990/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2991/// to replace the memset / memcpy is below the threshold. It also returns the
2992/// types of the sequence of memory ops to perform memset / memcpy.
2993static
2994bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2995                              SDValue Dst, SDValue Src,
2996                              unsigned Limit, uint64_t Size, unsigned &Align,
2997                              std::string &Str, bool &isSrcStr,
2998                              SelectionDAG &DAG,
2999                              const TargetLowering &TLI) {
3000  isSrcStr = isMemSrcFromString(Src, Str);
3001  bool isSrcConst = isa<ConstantSDNode>(Src);
3002  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
3003  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
3004  if (VT != MVT::iAny) {
3005    unsigned NewAlign = (unsigned)
3006      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
3007    // If source is a string constant, this will require an unaligned load.
3008    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3009      if (Dst.getOpcode() != ISD::FrameIndex) {
3010        // Can't change destination alignment. It requires a unaligned store.
3011        if (AllowUnalign)
3012          VT = MVT::iAny;
3013      } else {
3014        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3015        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3016        if (MFI->isFixedObjectIndex(FI)) {
3017          // Can't change destination alignment. It requires a unaligned store.
3018          if (AllowUnalign)
3019            VT = MVT::iAny;
3020        } else {
3021          // Give the stack frame object a larger alignment if needed.
3022          if (MFI->getObjectAlignment(FI) < NewAlign)
3023            MFI->setObjectAlignment(FI, NewAlign);
3024          Align = NewAlign;
3025        }
3026      }
3027    }
3028  }
3029
3030  if (VT == MVT::iAny) {
3031    if (AllowUnalign) {
3032      VT = MVT::i64;
3033    } else {
3034      switch (Align & 7) {
3035      case 0:  VT = MVT::i64; break;
3036      case 4:  VT = MVT::i32; break;
3037      case 2:  VT = MVT::i16; break;
3038      default: VT = MVT::i8;  break;
3039      }
3040    }
3041
3042    MVT LVT = MVT::i64;
3043    while (!TLI.isTypeLegal(LVT))
3044      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
3045    assert(LVT.isInteger());
3046
3047    if (VT.bitsGT(LVT))
3048      VT = LVT;
3049  }
3050
3051  unsigned NumMemOps = 0;
3052  while (Size != 0) {
3053    unsigned VTSize = VT.getSizeInBits() / 8;
3054    while (VTSize > Size) {
3055      // For now, only use non-vector load / store's for the left-over pieces.
3056      if (VT.isVector()) {
3057        VT = MVT::i64;
3058        while (!TLI.isTypeLegal(VT))
3059          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3060        VTSize = VT.getSizeInBits() / 8;
3061      } else {
3062        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3063        VTSize >>= 1;
3064      }
3065    }
3066
3067    if (++NumMemOps > Limit)
3068      return false;
3069    MemOps.push_back(VT);
3070    Size -= VTSize;
3071  }
3072
3073  return true;
3074}
3075
3076static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG,
3077                                         SDValue Chain, SDValue Dst,
3078                                         SDValue Src, uint64_t Size,
3079                                         unsigned Align, bool AlwaysInline,
3080                                         const Value *DstSV, uint64_t DstSVOff,
3081                                         const Value *SrcSV, uint64_t SrcSVOff){
3082  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3083
3084  // Expand memcpy to a series of load and store ops if the size operand falls
3085  // below a certain threshold.
3086  std::vector<MVT> MemOps;
3087  uint64_t Limit = -1ULL;
3088  if (!AlwaysInline)
3089    Limit = TLI.getMaxStoresPerMemcpy();
3090  unsigned DstAlign = Align;  // Destination alignment can change.
3091  std::string Str;
3092  bool CopyFromStr;
3093  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3094                                Str, CopyFromStr, DAG, TLI))
3095    return SDValue();
3096
3097
3098  bool isZeroStr = CopyFromStr && Str.empty();
3099  SmallVector<SDValue, 8> OutChains;
3100  unsigned NumMemOps = MemOps.size();
3101  uint64_t SrcOff = 0, DstOff = 0;
3102  for (unsigned i = 0; i < NumMemOps; i++) {
3103    MVT VT = MemOps[i];
3104    unsigned VTSize = VT.getSizeInBits() / 8;
3105    SDValue Value, Store;
3106
3107    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3108      // It's unlikely a store of a vector immediate can be done in a single
3109      // instruction. It would require a load from a constantpool first.
3110      // We also handle store a vector with all zero's.
3111      // FIXME: Handle other cases where store of vector immediate is done in
3112      // a single instruction.
3113      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
3114      Store = DAG.getStore(Chain, Value,
3115                           getMemBasePlusOffset(Dst, DstOff, DAG),
3116                           DstSV, DstSVOff + DstOff, false, DstAlign);
3117    } else {
3118      Value = DAG.getLoad(VT, Chain,
3119                          getMemBasePlusOffset(Src, SrcOff, DAG),
3120                          SrcSV, SrcSVOff + SrcOff, false, Align);
3121      Store = DAG.getStore(Chain, Value,
3122                           getMemBasePlusOffset(Dst, DstOff, DAG),
3123                           DstSV, DstSVOff + DstOff, false, DstAlign);
3124    }
3125    OutChains.push_back(Store);
3126    SrcOff += VTSize;
3127    DstOff += VTSize;
3128  }
3129
3130  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3131                     &OutChains[0], OutChains.size());
3132}
3133
3134static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG,
3135                                          SDValue Chain, SDValue Dst,
3136                                          SDValue Src, uint64_t Size,
3137                                          unsigned Align, bool AlwaysInline,
3138                                          const Value *DstSV, uint64_t DstSVOff,
3139                                          const Value *SrcSV, uint64_t SrcSVOff){
3140  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3141
3142  // Expand memmove to a series of load and store ops if the size operand falls
3143  // below a certain threshold.
3144  std::vector<MVT> MemOps;
3145  uint64_t Limit = -1ULL;
3146  if (!AlwaysInline)
3147    Limit = TLI.getMaxStoresPerMemmove();
3148  unsigned DstAlign = Align;  // Destination alignment can change.
3149  std::string Str;
3150  bool CopyFromStr;
3151  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3152                                Str, CopyFromStr, DAG, TLI))
3153    return SDValue();
3154
3155  uint64_t SrcOff = 0, DstOff = 0;
3156
3157  SmallVector<SDValue, 8> LoadValues;
3158  SmallVector<SDValue, 8> LoadChains;
3159  SmallVector<SDValue, 8> OutChains;
3160  unsigned NumMemOps = MemOps.size();
3161  for (unsigned i = 0; i < NumMemOps; i++) {
3162    MVT VT = MemOps[i];
3163    unsigned VTSize = VT.getSizeInBits() / 8;
3164    SDValue Value, Store;
3165
3166    Value = DAG.getLoad(VT, Chain,
3167                        getMemBasePlusOffset(Src, SrcOff, DAG),
3168                        SrcSV, SrcSVOff + SrcOff, false, Align);
3169    LoadValues.push_back(Value);
3170    LoadChains.push_back(Value.getValue(1));
3171    SrcOff += VTSize;
3172  }
3173  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3174                      &LoadChains[0], LoadChains.size());
3175  OutChains.clear();
3176  for (unsigned i = 0; i < NumMemOps; i++) {
3177    MVT VT = MemOps[i];
3178    unsigned VTSize = VT.getSizeInBits() / 8;
3179    SDValue Value, Store;
3180
3181    Store = DAG.getStore(Chain, LoadValues[i],
3182                         getMemBasePlusOffset(Dst, DstOff, DAG),
3183                         DstSV, DstSVOff + DstOff, false, DstAlign);
3184    OutChains.push_back(Store);
3185    DstOff += VTSize;
3186  }
3187
3188  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3189                     &OutChains[0], OutChains.size());
3190}
3191
3192static SDValue getMemsetStores(SelectionDAG &DAG,
3193                                 SDValue Chain, SDValue Dst,
3194                                 SDValue Src, uint64_t Size,
3195                                 unsigned Align,
3196                                 const Value *DstSV, uint64_t DstSVOff) {
3197  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3198
3199  // Expand memset to a series of load/store ops if the size operand
3200  // falls below a certain threshold.
3201  std::vector<MVT> MemOps;
3202  std::string Str;
3203  bool CopyFromStr;
3204  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3205                                Size, Align, Str, CopyFromStr, DAG, TLI))
3206    return SDValue();
3207
3208  SmallVector<SDValue, 8> OutChains;
3209  uint64_t DstOff = 0;
3210
3211  unsigned NumMemOps = MemOps.size();
3212  for (unsigned i = 0; i < NumMemOps; i++) {
3213    MVT VT = MemOps[i];
3214    unsigned VTSize = VT.getSizeInBits() / 8;
3215    SDValue Value = getMemsetValue(Src, VT, DAG);
3216    SDValue Store = DAG.getStore(Chain, Value,
3217                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3218                                 DstSV, DstSVOff + DstOff);
3219    OutChains.push_back(Store);
3220    DstOff += VTSize;
3221  }
3222
3223  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3224                     &OutChains[0], OutChains.size());
3225}
3226
3227SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst,
3228                                SDValue Src, SDValue Size,
3229                                unsigned Align, bool AlwaysInline,
3230                                const Value *DstSV, uint64_t DstSVOff,
3231                                const Value *SrcSV, uint64_t SrcSVOff) {
3232
3233  // Check to see if we should lower the memcpy to loads and stores first.
3234  // For cases within the target-specified limits, this is the best choice.
3235  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3236  if (ConstantSize) {
3237    // Memcpy with size zero? Just return the original chain.
3238    if (ConstantSize->isNullValue())
3239      return Chain;
3240
3241    SDValue Result =
3242      getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3243                              ConstantSize->getZExtValue(),
3244                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3245    if (Result.getNode())
3246      return Result;
3247  }
3248
3249  // Then check to see if we should lower the memcpy with target-specific
3250  // code. If the target chooses to do this, this is the next best.
3251  SDValue Result =
3252    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
3253                                AlwaysInline,
3254                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3255  if (Result.getNode())
3256    return Result;
3257
3258  // If we really need inline code and the target declined to provide it,
3259  // use a (potentially long) sequence of loads and stores.
3260  if (AlwaysInline) {
3261    assert(ConstantSize && "AlwaysInline requires a constant size!");
3262    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3263                                   ConstantSize->getZExtValue(), Align, true,
3264                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3265  }
3266
3267  // Emit a library call.
3268  TargetLowering::ArgListTy Args;
3269  TargetLowering::ArgListEntry Entry;
3270  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3271  Entry.Node = Dst; Args.push_back(Entry);
3272  Entry.Node = Src; Args.push_back(Entry);
3273  Entry.Node = Size; Args.push_back(Entry);
3274  std::pair<SDValue,SDValue> CallResult =
3275    TLI.LowerCallTo(Chain, Type::VoidTy,
3276                    false, false, false, false, CallingConv::C, false,
3277                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3278                    Args, *this);
3279  return CallResult.second;
3280}
3281
3282SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst,
3283                                 SDValue Src, SDValue Size,
3284                                 unsigned Align,
3285                                 const Value *DstSV, uint64_t DstSVOff,
3286                                 const Value *SrcSV, uint64_t SrcSVOff) {
3287
3288  // Check to see if we should lower the memmove to loads and stores first.
3289  // For cases within the target-specified limits, this is the best choice.
3290  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3291  if (ConstantSize) {
3292    // Memmove with size zero? Just return the original chain.
3293    if (ConstantSize->isNullValue())
3294      return Chain;
3295
3296    SDValue Result =
3297      getMemmoveLoadsAndStores(*this, Chain, Dst, Src,
3298                               ConstantSize->getZExtValue(),
3299                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3300    if (Result.getNode())
3301      return Result;
3302  }
3303
3304  // Then check to see if we should lower the memmove with target-specific
3305  // code. If the target chooses to do this, this is the next best.
3306  SDValue Result =
3307    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
3308                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3309  if (Result.getNode())
3310    return Result;
3311
3312  // Emit a library call.
3313  TargetLowering::ArgListTy Args;
3314  TargetLowering::ArgListEntry Entry;
3315  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3316  Entry.Node = Dst; Args.push_back(Entry);
3317  Entry.Node = Src; Args.push_back(Entry);
3318  Entry.Node = Size; Args.push_back(Entry);
3319  std::pair<SDValue,SDValue> CallResult =
3320    TLI.LowerCallTo(Chain, Type::VoidTy,
3321                    false, false, false, false, CallingConv::C, false,
3322                    getExternalSymbol("memmove", TLI.getPointerTy()),
3323                    Args, *this);
3324  return CallResult.second;
3325}
3326
3327SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst,
3328                                SDValue Src, SDValue Size,
3329                                unsigned Align,
3330                                const Value *DstSV, uint64_t DstSVOff) {
3331
3332  // Check to see if we should lower the memset to stores first.
3333  // For cases within the target-specified limits, this is the best choice.
3334  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3335  if (ConstantSize) {
3336    // Memset with size zero? Just return the original chain.
3337    if (ConstantSize->isNullValue())
3338      return Chain;
3339
3340    SDValue Result =
3341      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(),
3342                      Align, DstSV, DstSVOff);
3343    if (Result.getNode())
3344      return Result;
3345  }
3346
3347  // Then check to see if we should lower the memset with target-specific
3348  // code. If the target chooses to do this, this is the next best.
3349  SDValue Result =
3350    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3351                                DstSV, DstSVOff);
3352  if (Result.getNode())
3353    return Result;
3354
3355  // Emit a library call.
3356  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3357  TargetLowering::ArgListTy Args;
3358  TargetLowering::ArgListEntry Entry;
3359  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3360  Args.push_back(Entry);
3361  // Extend or truncate the argument to be an i32 value for the call.
3362  if (Src.getValueType().bitsGT(MVT::i32))
3363    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3364  else
3365    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3366  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3367  Args.push_back(Entry);
3368  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3369  Args.push_back(Entry);
3370  std::pair<SDValue,SDValue> CallResult =
3371    TLI.LowerCallTo(Chain, Type::VoidTy,
3372                    false, false, false, false, CallingConv::C, false,
3373                    getExternalSymbol("memset", TLI.getPointerTy()),
3374                    Args, *this);
3375  return CallResult.second;
3376}
3377
3378SDValue SelectionDAG::getAtomic(unsigned Opcode, MVT MemVT,
3379                                SDValue Chain,
3380                                SDValue Ptr, SDValue Cmp,
3381                                SDValue Swp, const Value* PtrVal,
3382                                unsigned Alignment) {
3383  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3384  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3385
3386  MVT VT = Cmp.getValueType();
3387
3388  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3389    Alignment = getMVTAlignment(MemVT);
3390
3391  SDVTList VTs = getVTList(VT, MVT::Other);
3392  FoldingSetNodeID ID;
3393  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3394  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3395  void* IP = 0;
3396  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3397    return SDValue(E, 0);
3398  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3399  new (N) AtomicSDNode(Opcode, VTs, MemVT,
3400                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3401  CSEMap.InsertNode(N, IP);
3402  AllNodes.push_back(N);
3403  return SDValue(N, 0);
3404}
3405
3406SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3407                                SDValue Chain,
3408                                SDValue Ptr, SDValue Cmp,
3409                                SDValue Swp, const Value* PtrVal,
3410                                unsigned Alignment) {
3411  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3412  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3413
3414  MVT VT = Cmp.getValueType();
3415
3416  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3417    Alignment = getMVTAlignment(MemVT);
3418
3419  SDVTList VTs = getVTList(VT, MVT::Other);
3420  FoldingSetNodeID ID;
3421  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3422  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3423  void* IP = 0;
3424  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3425    return SDValue(E, 0);
3426  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3427  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3428                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3429  CSEMap.InsertNode(N, IP);
3430  AllNodes.push_back(N);
3431  return SDValue(N, 0);
3432}
3433
3434SDValue SelectionDAG::getAtomic(unsigned Opcode, MVT MemVT,
3435                                SDValue Chain,
3436                                SDValue Ptr, SDValue Val,
3437                                const Value* PtrVal,
3438                                unsigned Alignment) {
3439  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3440          Opcode == ISD::ATOMIC_LOAD_SUB ||
3441          Opcode == ISD::ATOMIC_LOAD_AND ||
3442          Opcode == ISD::ATOMIC_LOAD_OR ||
3443          Opcode == ISD::ATOMIC_LOAD_XOR ||
3444          Opcode == ISD::ATOMIC_LOAD_NAND ||
3445          Opcode == ISD::ATOMIC_LOAD_MIN ||
3446          Opcode == ISD::ATOMIC_LOAD_MAX ||
3447          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3448          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3449          Opcode == ISD::ATOMIC_SWAP) &&
3450         "Invalid Atomic Op");
3451
3452  MVT VT = Val.getValueType();
3453
3454  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3455    Alignment = getMVTAlignment(MemVT);
3456
3457  SDVTList VTs = getVTList(VT, MVT::Other);
3458  FoldingSetNodeID ID;
3459  SDValue Ops[] = {Chain, Ptr, Val};
3460  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3461  void* IP = 0;
3462  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3463    return SDValue(E, 0);
3464  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3465  new (N) AtomicSDNode(Opcode, VTs, MemVT,
3466                       Chain, Ptr, Val, PtrVal, Alignment);
3467  CSEMap.InsertNode(N, IP);
3468  AllNodes.push_back(N);
3469  return SDValue(N, 0);
3470}
3471
3472SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3473                                SDValue Chain,
3474                                SDValue Ptr, SDValue Val,
3475                                const Value* PtrVal,
3476                                unsigned Alignment) {
3477  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3478          Opcode == ISD::ATOMIC_LOAD_SUB ||
3479          Opcode == ISD::ATOMIC_LOAD_AND ||
3480          Opcode == ISD::ATOMIC_LOAD_OR ||
3481          Opcode == ISD::ATOMIC_LOAD_XOR ||
3482          Opcode == ISD::ATOMIC_LOAD_NAND ||
3483          Opcode == ISD::ATOMIC_LOAD_MIN ||
3484          Opcode == ISD::ATOMIC_LOAD_MAX ||
3485          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3486          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3487          Opcode == ISD::ATOMIC_SWAP) &&
3488         "Invalid Atomic Op");
3489
3490  MVT VT = Val.getValueType();
3491
3492  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3493    Alignment = getMVTAlignment(MemVT);
3494
3495  SDVTList VTs = getVTList(VT, MVT::Other);
3496  FoldingSetNodeID ID;
3497  SDValue Ops[] = {Chain, Ptr, Val};
3498  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3499  void* IP = 0;
3500  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3501    return SDValue(E, 0);
3502  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3503  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3504                       Chain, Ptr, Val, PtrVal, Alignment);
3505  CSEMap.InsertNode(N, IP);
3506  AllNodes.push_back(N);
3507  return SDValue(N, 0);
3508}
3509
3510/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3511/// Allowed to return something different (and simpler) if Simplify is true.
3512SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps) {
3513  if (NumOps == 1)
3514    return Ops[0];
3515
3516  SmallVector<MVT, 4> VTs;
3517  VTs.reserve(NumOps);
3518  for (unsigned i = 0; i < NumOps; ++i)
3519    VTs.push_back(Ops[i].getValueType());
3520  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3521}
3522
3523SDValue
3524SelectionDAG::getMemIntrinsicNode(unsigned Opcode,
3525                                  const MVT *VTs, unsigned NumVTs,
3526                                  const SDValue *Ops, unsigned NumOps,
3527                                  MVT MemVT, const Value *srcValue, int SVOff,
3528                                  unsigned Align, bool Vol,
3529                                  bool ReadMem, bool WriteMem) {
3530  return getMemIntrinsicNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps,
3531                             MemVT, srcValue, SVOff, Align, Vol,
3532                             ReadMem, WriteMem);
3533}
3534
3535SDValue
3536SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3537                                  const MVT *VTs, unsigned NumVTs,
3538                                  const SDValue *Ops, unsigned NumOps,
3539                                  MVT MemVT, const Value *srcValue, int SVOff,
3540                                  unsigned Align, bool Vol,
3541                                  bool ReadMem, bool WriteMem) {
3542  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3543                             MemVT, srcValue, SVOff, Align, Vol,
3544                             ReadMem, WriteMem);
3545}
3546
3547SDValue
3548SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDVTList VTList,
3549                                  const SDValue *Ops, unsigned NumOps,
3550                                  MVT MemVT, const Value *srcValue, int SVOff,
3551                                  unsigned Align, bool Vol,
3552                                  bool ReadMem, bool WriteMem) {
3553  // Memoize the node unless it returns a flag.
3554  MemIntrinsicSDNode *N;
3555  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3556    FoldingSetNodeID ID;
3557    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3558    void *IP = 0;
3559    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3560      return SDValue(E, 0);
3561
3562    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3563    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3564                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3565    CSEMap.InsertNode(N, IP);
3566  } else {
3567    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3568    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3569                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3570  }
3571  AllNodes.push_back(N);
3572  return SDValue(N, 0);
3573}
3574
3575SDValue
3576SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3577                                  const SDValue *Ops, unsigned NumOps,
3578                                  MVT MemVT, const Value *srcValue, int SVOff,
3579                                  unsigned Align, bool Vol,
3580                                  bool ReadMem, bool WriteMem) {
3581  // Memoize the node unless it returns a flag.
3582  MemIntrinsicSDNode *N;
3583  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3584    FoldingSetNodeID ID;
3585    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3586    void *IP = 0;
3587    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3588      return SDValue(E, 0);
3589
3590    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3591    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3592                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3593    CSEMap.InsertNode(N, IP);
3594  } else {
3595    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3596    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3597                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3598  }
3599  AllNodes.push_back(N);
3600  return SDValue(N, 0);
3601}
3602
3603SDValue
3604SelectionDAG::getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall,
3605                      bool IsInreg, SDVTList VTs,
3606                      const SDValue *Operands, unsigned NumOperands) {
3607  // Do not include isTailCall in the folding set profile.
3608  FoldingSetNodeID ID;
3609  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3610  ID.AddInteger(CallingConv);
3611  ID.AddInteger(IsVarArgs);
3612  void *IP = 0;
3613  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3614    // Instead of including isTailCall in the folding set, we just
3615    // set the flag of the existing node.
3616    if (!IsTailCall)
3617      cast<CallSDNode>(E)->setNotTailCall();
3618    return SDValue(E, 0);
3619  }
3620  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3621  new (N) CallSDNode(CallingConv, IsVarArgs, IsTailCall, IsInreg,
3622                     VTs, Operands, NumOperands);
3623  CSEMap.InsertNode(N, IP);
3624  AllNodes.push_back(N);
3625  return SDValue(N, 0);
3626}
3627
3628SDValue
3629SelectionDAG::getCall(unsigned CallingConv, DebugLoc dl, bool IsVarArgs,
3630                      bool IsTailCall, bool IsInreg, SDVTList VTs,
3631                      const SDValue *Operands, unsigned NumOperands) {
3632  // Do not include isTailCall in the folding set profile.
3633  FoldingSetNodeID ID;
3634  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3635  ID.AddInteger(CallingConv);
3636  ID.AddInteger(IsVarArgs);
3637  void *IP = 0;
3638  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3639    // Instead of including isTailCall in the folding set, we just
3640    // set the flag of the existing node.
3641    if (!IsTailCall)
3642      cast<CallSDNode>(E)->setNotTailCall();
3643    return SDValue(E, 0);
3644  }
3645  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3646  new (N) CallSDNode(CallingConv, dl, IsVarArgs, IsTailCall, IsInreg,
3647                     VTs, Operands, NumOperands);
3648  CSEMap.InsertNode(N, IP);
3649  AllNodes.push_back(N);
3650  return SDValue(N, 0);
3651}
3652
3653SDValue
3654SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3655                      MVT VT, SDValue Chain,
3656                      SDValue Ptr, SDValue Offset,
3657                      const Value *SV, int SVOffset, MVT EVT,
3658                      bool isVolatile, unsigned Alignment) {
3659  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3660    Alignment = getMVTAlignment(VT);
3661
3662  if (VT == EVT) {
3663    ExtType = ISD::NON_EXTLOAD;
3664  } else if (ExtType == ISD::NON_EXTLOAD) {
3665    assert(VT == EVT && "Non-extending load from different memory type!");
3666  } else {
3667    // Extending load.
3668    if (VT.isVector())
3669      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3670             "Invalid vector extload!");
3671    else
3672      assert(EVT.bitsLT(VT) &&
3673             "Should only be an extending load, not truncating!");
3674    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3675           "Cannot sign/zero extend a FP/Vector load!");
3676    assert(VT.isInteger() == EVT.isInteger() &&
3677           "Cannot convert from FP to Int or Int -> FP!");
3678  }
3679
3680  bool Indexed = AM != ISD::UNINDEXED;
3681  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3682         "Unindexed load with an offset!");
3683
3684  SDVTList VTs = Indexed ?
3685    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3686  SDValue Ops[] = { Chain, Ptr, Offset };
3687  FoldingSetNodeID ID;
3688  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3689  ID.AddInteger(AM);
3690  ID.AddInteger(ExtType);
3691  ID.AddInteger(EVT.getRawBits());
3692  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3693  void *IP = 0;
3694  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3695    return SDValue(E, 0);
3696  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3697  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3698                     Alignment, isVolatile);
3699  CSEMap.InsertNode(N, IP);
3700  AllNodes.push_back(N);
3701  return SDValue(N, 0);
3702}
3703
3704SDValue
3705SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3706                      ISD::LoadExtType ExtType, MVT VT, SDValue Chain,
3707                      SDValue Ptr, SDValue Offset,
3708                      const Value *SV, int SVOffset, MVT EVT,
3709                      bool isVolatile, unsigned Alignment) {
3710  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3711    Alignment = getMVTAlignment(VT);
3712
3713  if (VT == EVT) {
3714    ExtType = ISD::NON_EXTLOAD;
3715  } else if (ExtType == ISD::NON_EXTLOAD) {
3716    assert(VT == EVT && "Non-extending load from different memory type!");
3717  } else {
3718    // Extending load.
3719    if (VT.isVector())
3720      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3721             "Invalid vector extload!");
3722    else
3723      assert(EVT.bitsLT(VT) &&
3724             "Should only be an extending load, not truncating!");
3725    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3726           "Cannot sign/zero extend a FP/Vector load!");
3727    assert(VT.isInteger() == EVT.isInteger() &&
3728           "Cannot convert from FP to Int or Int -> FP!");
3729  }
3730
3731  bool Indexed = AM != ISD::UNINDEXED;
3732  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3733         "Unindexed load with an offset!");
3734
3735  SDVTList VTs = Indexed ?
3736    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3737  SDValue Ops[] = { Chain, Ptr, Offset };
3738  FoldingSetNodeID ID;
3739  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3740  ID.AddInteger(AM);
3741  ID.AddInteger(ExtType);
3742  ID.AddInteger(EVT.getRawBits());
3743  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3744  void *IP = 0;
3745  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3746    return SDValue(E, 0);
3747  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3748  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, EVT, SV, SVOffset,
3749                     Alignment, isVolatile);
3750  CSEMap.InsertNode(N, IP);
3751  AllNodes.push_back(N);
3752  return SDValue(N, 0);
3753}
3754
3755SDValue SelectionDAG::getLoad(MVT VT,
3756                              SDValue Chain, SDValue Ptr,
3757                              const Value *SV, int SVOffset,
3758                              bool isVolatile, unsigned Alignment) {
3759  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3760  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3761                 SV, SVOffset, VT, isVolatile, Alignment);
3762}
3763
3764SDValue SelectionDAG::getLoad(MVT VT, DebugLoc dl,
3765                              SDValue Chain, SDValue Ptr,
3766                              const Value *SV, int SVOffset,
3767                              bool isVolatile, unsigned Alignment) {
3768  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3769  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3770                 SV, SVOffset, VT, isVolatile, Alignment);
3771}
3772
3773SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3774                                 SDValue Chain, SDValue Ptr,
3775                                 const Value *SV,
3776                                 int SVOffset, MVT EVT,
3777                                 bool isVolatile, unsigned Alignment) {
3778  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3779  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3780                 SV, SVOffset, EVT, isVolatile, Alignment);
3781}
3782
3783SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, MVT VT,
3784                                 SDValue Chain, SDValue Ptr,
3785                                 const Value *SV,
3786                                 int SVOffset, MVT EVT,
3787                                 bool isVolatile, unsigned Alignment) {
3788  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3789  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3790                 SV, SVOffset, EVT, isVolatile, Alignment);
3791}
3792
3793SDValue
3794SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
3795                             SDValue Offset, ISD::MemIndexedMode AM) {
3796  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3797  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3798         "Load is already a indexed load!");
3799  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3800                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3801                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3802                 LD->isVolatile(), LD->getAlignment());
3803}
3804
3805SDValue
3806SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3807                             SDValue Offset, ISD::MemIndexedMode AM) {
3808  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3809  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3810         "Load is already a indexed load!");
3811  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3812                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3813                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3814                 LD->isVolatile(), LD->getAlignment());
3815}
3816
3817SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
3818                               SDValue Ptr, const Value *SV, int SVOffset,
3819                               bool isVolatile, unsigned Alignment) {
3820  MVT VT = Val.getValueType();
3821
3822  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3823    Alignment = getMVTAlignment(VT);
3824
3825  SDVTList VTs = getVTList(MVT::Other);
3826  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3827  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3828  FoldingSetNodeID ID;
3829  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3830  ID.AddInteger(ISD::UNINDEXED);
3831  ID.AddInteger(false);
3832  ID.AddInteger(VT.getRawBits());
3833  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3834  void *IP = 0;
3835  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3836    return SDValue(E, 0);
3837  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3838  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3839                      VT, SV, SVOffset, Alignment, isVolatile);
3840  CSEMap.InsertNode(N, IP);
3841  AllNodes.push_back(N);
3842  return SDValue(N, 0);
3843}
3844
3845SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3846                               SDValue Ptr, const Value *SV, int SVOffset,
3847                               bool isVolatile, unsigned Alignment) {
3848  MVT VT = Val.getValueType();
3849
3850  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3851    Alignment = getMVTAlignment(VT);
3852
3853  SDVTList VTs = getVTList(MVT::Other);
3854  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3855  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3856  FoldingSetNodeID ID;
3857  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3858  ID.AddInteger(ISD::UNINDEXED);
3859  ID.AddInteger(false);
3860  ID.AddInteger(VT.getRawBits());
3861  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3862  void *IP = 0;
3863  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3864    return SDValue(E, 0);
3865  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3866  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false,
3867                      VT, SV, SVOffset, Alignment, isVolatile);
3868  CSEMap.InsertNode(N, IP);
3869  AllNodes.push_back(N);
3870  return SDValue(N, 0);
3871}
3872
3873SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
3874                                    SDValue Ptr, const Value *SV,
3875                                    int SVOffset, MVT SVT,
3876                                    bool isVolatile, unsigned Alignment) {
3877  MVT VT = Val.getValueType();
3878
3879  if (VT == SVT)
3880    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3881
3882  assert(VT.bitsGT(SVT) && "Not a truncation?");
3883  assert(VT.isInteger() == SVT.isInteger() &&
3884         "Can't do FP-INT conversion!");
3885
3886  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3887    Alignment = getMVTAlignment(VT);
3888
3889  SDVTList VTs = getVTList(MVT::Other);
3890  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3891  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3892  FoldingSetNodeID ID;
3893  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3894  ID.AddInteger(ISD::UNINDEXED);
3895  ID.AddInteger(1);
3896  ID.AddInteger(SVT.getRawBits());
3897  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3898  void *IP = 0;
3899  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3900    return SDValue(E, 0);
3901  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3902  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3903                      SVT, SV, SVOffset, Alignment, isVolatile);
3904  CSEMap.InsertNode(N, IP);
3905  AllNodes.push_back(N);
3906  return SDValue(N, 0);
3907}
3908
3909SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3910                                    SDValue Ptr, const Value *SV,
3911                                    int SVOffset, MVT SVT,
3912                                    bool isVolatile, unsigned Alignment) {
3913  MVT VT = Val.getValueType();
3914
3915  if (VT == SVT)
3916    return getStore(Chain, dl, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3917
3918  assert(VT.bitsGT(SVT) && "Not a truncation?");
3919  assert(VT.isInteger() == SVT.isInteger() &&
3920         "Can't do FP-INT conversion!");
3921
3922  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3923    Alignment = getMVTAlignment(VT);
3924
3925  SDVTList VTs = getVTList(MVT::Other);
3926  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3927  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3928  FoldingSetNodeID ID;
3929  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3930  ID.AddInteger(ISD::UNINDEXED);
3931  ID.AddInteger(1);
3932  ID.AddInteger(SVT.getRawBits());
3933  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3934  void *IP = 0;
3935  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3936    return SDValue(E, 0);
3937  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3938  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true,
3939                      SVT, SV, SVOffset, Alignment, isVolatile);
3940  CSEMap.InsertNode(N, IP);
3941  AllNodes.push_back(N);
3942  return SDValue(N, 0);
3943}
3944
3945SDValue
3946SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
3947                              SDValue Offset, ISD::MemIndexedMode AM) {
3948  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3949  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3950         "Store is already a indexed store!");
3951  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3952  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3953  FoldingSetNodeID ID;
3954  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3955  ID.AddInteger(AM);
3956  ID.AddInteger(ST->isTruncatingStore());
3957  ID.AddInteger(ST->getMemoryVT().getRawBits());
3958  ID.AddInteger(ST->getRawFlags());
3959  void *IP = 0;
3960  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3961    return SDValue(E, 0);
3962  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3963  new (N) StoreSDNode(Ops, VTs, AM,
3964                      ST->isTruncatingStore(), ST->getMemoryVT(),
3965                      ST->getSrcValue(), ST->getSrcValueOffset(),
3966                      ST->getAlignment(), ST->isVolatile());
3967  CSEMap.InsertNode(N, IP);
3968  AllNodes.push_back(N);
3969  return SDValue(N, 0);
3970}
3971
3972SDValue
3973SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3974                              SDValue Offset, ISD::MemIndexedMode AM) {
3975  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3976  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3977         "Store is already a indexed store!");
3978  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3979  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3980  FoldingSetNodeID ID;
3981  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3982  ID.AddInteger(AM);
3983  ID.AddInteger(ST->isTruncatingStore());
3984  ID.AddInteger(ST->getMemoryVT().getRawBits());
3985  ID.AddInteger(ST->getRawFlags());
3986  void *IP = 0;
3987  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3988    return SDValue(E, 0);
3989  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3990  new (N) StoreSDNode(Ops, dl, VTs, AM,
3991                      ST->isTruncatingStore(), ST->getMemoryVT(),
3992                      ST->getSrcValue(), ST->getSrcValueOffset(),
3993                      ST->getAlignment(), ST->isVolatile());
3994  CSEMap.InsertNode(N, IP);
3995  AllNodes.push_back(N);
3996  return SDValue(N, 0);
3997}
3998
3999SDValue SelectionDAG::getVAArg(MVT VT,
4000                               SDValue Chain, SDValue Ptr,
4001                               SDValue SV) {
4002  SDValue Ops[] = { Chain, Ptr, SV };
4003  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
4004}
4005
4006SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
4007                              const SDUse *Ops, unsigned NumOps) {
4008  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, Ops, NumOps);
4009}
4010
4011SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
4012                              const SDUse *Ops, unsigned NumOps) {
4013  switch (NumOps) {
4014  case 0: return getNode(Opcode, DL, VT);
4015  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4016  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4017  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4018  default: break;
4019  }
4020
4021  // Copy from an SDUse array into an SDValue array for use with
4022  // the regular getNode logic.
4023  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4024  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4025}
4026
4027SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
4028                              const SDValue *Ops, unsigned NumOps) {
4029  return getNode(Opcode, DebugLoc::getUnknownLoc(), VT, Ops, NumOps);
4030}
4031
4032SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
4033                              const SDValue *Ops, unsigned NumOps) {
4034  switch (NumOps) {
4035  case 0: return getNode(Opcode, DL, VT);
4036  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4037  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4038  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4039  default: break;
4040  }
4041
4042  switch (Opcode) {
4043  default: break;
4044  case ISD::SELECT_CC: {
4045    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4046    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4047           "LHS and RHS of condition must have same type!");
4048    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4049           "True and False arms of SelectCC must have same type!");
4050    assert(Ops[2].getValueType() == VT &&
4051           "select_cc node must be of same type as true and false value!");
4052    break;
4053  }
4054  case ISD::BR_CC: {
4055    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4056    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4057           "LHS/RHS of comparison should match types!");
4058    break;
4059  }
4060  }
4061
4062  // Memoize nodes.
4063  SDNode *N;
4064  SDVTList VTs = getVTList(VT);
4065
4066  if (VT != MVT::Flag) {
4067    FoldingSetNodeID ID;
4068    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4069    void *IP = 0;
4070
4071    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4072      return SDValue(E, 0);
4073
4074    N = NodeAllocator.Allocate<SDNode>();
4075    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4076    CSEMap.InsertNode(N, IP);
4077  } else {
4078    N = NodeAllocator.Allocate<SDNode>();
4079    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4080  }
4081
4082  AllNodes.push_back(N);
4083#ifndef NDEBUG
4084  VerifyNode(N);
4085#endif
4086  return SDValue(N, 0);
4087}
4088
4089SDValue SelectionDAG::getNode(unsigned Opcode,
4090                              const std::vector<MVT> &ResultTys,
4091                              const SDValue *Ops, unsigned NumOps) {
4092  return getNode(Opcode, DebugLoc::getUnknownLoc(), ResultTys, Ops, NumOps);
4093}
4094
4095SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4096                              const std::vector<MVT> &ResultTys,
4097                              const SDValue *Ops, unsigned NumOps) {
4098  return getNode(Opcode, DL, getNodeValueTypes(ResultTys), ResultTys.size(),
4099                 Ops, NumOps);
4100}
4101
4102SDValue SelectionDAG::getNode(unsigned Opcode,
4103                              const MVT *VTs, unsigned NumVTs,
4104                              const SDValue *Ops, unsigned NumOps) {
4105  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTs, NumVTs, Ops, NumOps);
4106}
4107
4108SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4109                              const MVT *VTs, unsigned NumVTs,
4110                              const SDValue *Ops, unsigned NumOps) {
4111  if (NumVTs == 1)
4112    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4113  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4114}
4115
4116SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4117                              const SDValue *Ops, unsigned NumOps) {
4118  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, Ops, NumOps);
4119}
4120
4121SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4122                              const SDValue *Ops, unsigned NumOps) {
4123  if (VTList.NumVTs == 1)
4124    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4125
4126  switch (Opcode) {
4127  // FIXME: figure out how to safely handle things like
4128  // int foo(int x) { return 1 << (x & 255); }
4129  // int bar() { return foo(256); }
4130#if 0
4131  case ISD::SRA_PARTS:
4132  case ISD::SRL_PARTS:
4133  case ISD::SHL_PARTS:
4134    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4135        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4136      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4137    else if (N3.getOpcode() == ISD::AND)
4138      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4139        // If the and is only masking out bits that cannot effect the shift,
4140        // eliminate the and.
4141        unsigned NumBits = VT.getSizeInBits()*2;
4142        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4143          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4144      }
4145    break;
4146#endif
4147  }
4148
4149  // Memoize the node unless it returns a flag.
4150  SDNode *N;
4151  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4152    FoldingSetNodeID ID;
4153    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4154    void *IP = 0;
4155    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4156      return SDValue(E, 0);
4157    if (NumOps == 1) {
4158      N = NodeAllocator.Allocate<UnarySDNode>();
4159      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4160    } else if (NumOps == 2) {
4161      N = NodeAllocator.Allocate<BinarySDNode>();
4162      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4163    } else if (NumOps == 3) {
4164      N = NodeAllocator.Allocate<TernarySDNode>();
4165      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4166    } else {
4167      N = NodeAllocator.Allocate<SDNode>();
4168      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4169    }
4170    CSEMap.InsertNode(N, IP);
4171  } else {
4172    if (NumOps == 1) {
4173      N = NodeAllocator.Allocate<UnarySDNode>();
4174      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4175    } else if (NumOps == 2) {
4176      N = NodeAllocator.Allocate<BinarySDNode>();
4177      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4178    } else if (NumOps == 3) {
4179      N = NodeAllocator.Allocate<TernarySDNode>();
4180      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4181    } else {
4182      N = NodeAllocator.Allocate<SDNode>();
4183      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4184    }
4185  }
4186  AllNodes.push_back(N);
4187#ifndef NDEBUG
4188  VerifyNode(N);
4189#endif
4190  return SDValue(N, 0);
4191}
4192
4193SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
4194  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList);
4195}
4196
4197SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4198  return getNode(Opcode, DL, VTList, 0, 0);
4199}
4200
4201SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4202                              SDValue N1) {
4203  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, N1);
4204}
4205
4206SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4207                              SDValue N1) {
4208  SDValue Ops[] = { N1 };
4209  return getNode(Opcode, DL, VTList, Ops, 1);
4210}
4211
4212SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4213                              SDValue N1, SDValue N2) {
4214  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, N1, N2);
4215}
4216
4217SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4218                              SDValue N1, SDValue N2) {
4219  SDValue Ops[] = { N1, N2 };
4220  return getNode(Opcode, DL, VTList, Ops, 2);
4221}
4222
4223SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4224                              SDValue N1, SDValue N2, SDValue N3) {
4225  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, N1, N2, N3);
4226}
4227
4228SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4229                              SDValue N1, SDValue N2, SDValue N3) {
4230  SDValue Ops[] = { N1, N2, N3 };
4231  return getNode(Opcode, DL, VTList, Ops, 3);
4232}
4233
4234SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4235                              SDValue N1, SDValue N2, SDValue N3,
4236                              SDValue N4) {
4237  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, N1, N2, N3, N4);
4238}
4239
4240SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4241                              SDValue N1, SDValue N2, SDValue N3,
4242                              SDValue N4) {
4243  SDValue Ops[] = { N1, N2, N3, N4 };
4244  return getNode(Opcode, DL, VTList, Ops, 4);
4245}
4246
4247SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
4248                              SDValue N1, SDValue N2, SDValue N3,
4249                              SDValue N4, SDValue N5) {
4250  return getNode(Opcode, DebugLoc::getUnknownLoc(), VTList, N1, N2, N3, N4, N5);
4251}
4252
4253SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4254                              SDValue N1, SDValue N2, SDValue N3,
4255                              SDValue N4, SDValue N5) {
4256  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4257  return getNode(Opcode, DL, VTList, Ops, 5);
4258}
4259
4260SDVTList SelectionDAG::getVTList(MVT VT) {
4261  return makeVTList(SDNode::getValueTypeList(VT), 1);
4262}
4263
4264SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
4265  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4266       E = VTList.rend(); I != E; ++I)
4267    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4268      return *I;
4269
4270  MVT *Array = Allocator.Allocate<MVT>(2);
4271  Array[0] = VT1;
4272  Array[1] = VT2;
4273  SDVTList Result = makeVTList(Array, 2);
4274  VTList.push_back(Result);
4275  return Result;
4276}
4277
4278SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
4279  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4280       E = VTList.rend(); I != E; ++I)
4281    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4282                          I->VTs[2] == VT3)
4283      return *I;
4284
4285  MVT *Array = Allocator.Allocate<MVT>(3);
4286  Array[0] = VT1;
4287  Array[1] = VT2;
4288  Array[2] = VT3;
4289  SDVTList Result = makeVTList(Array, 3);
4290  VTList.push_back(Result);
4291  return Result;
4292}
4293
4294SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
4295  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4296       E = VTList.rend(); I != E; ++I)
4297    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4298                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4299      return *I;
4300
4301  MVT *Array = Allocator.Allocate<MVT>(3);
4302  Array[0] = VT1;
4303  Array[1] = VT2;
4304  Array[2] = VT3;
4305  Array[3] = VT4;
4306  SDVTList Result = makeVTList(Array, 4);
4307  VTList.push_back(Result);
4308  return Result;
4309}
4310
4311SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
4312  switch (NumVTs) {
4313    case 0: assert(0 && "Cannot have nodes without results!");
4314    case 1: return getVTList(VTs[0]);
4315    case 2: return getVTList(VTs[0], VTs[1]);
4316    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4317    default: break;
4318  }
4319
4320  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4321       E = VTList.rend(); I != E; ++I) {
4322    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4323      continue;
4324
4325    bool NoMatch = false;
4326    for (unsigned i = 2; i != NumVTs; ++i)
4327      if (VTs[i] != I->VTs[i]) {
4328        NoMatch = true;
4329        break;
4330      }
4331    if (!NoMatch)
4332      return *I;
4333  }
4334
4335  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
4336  std::copy(VTs, VTs+NumVTs, Array);
4337  SDVTList Result = makeVTList(Array, NumVTs);
4338  VTList.push_back(Result);
4339  return Result;
4340}
4341
4342
4343/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4344/// specified operands.  If the resultant node already exists in the DAG,
4345/// this does not modify the specified node, instead it returns the node that
4346/// already exists.  If the resultant node does not exist in the DAG, the
4347/// input node is returned.  As a degenerate case, if you specify the same
4348/// input operands as the node already has, the input node is returned.
4349SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4350  SDNode *N = InN.getNode();
4351  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4352
4353  // Check to see if there is no change.
4354  if (Op == N->getOperand(0)) return InN;
4355
4356  // See if the modified node already exists.
4357  void *InsertPos = 0;
4358  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4359    return SDValue(Existing, InN.getResNo());
4360
4361  // Nope it doesn't.  Remove the node from its current place in the maps.
4362  if (InsertPos)
4363    if (!RemoveNodeFromCSEMaps(N))
4364      InsertPos = 0;
4365
4366  // Now we update the operands.
4367  N->OperandList[0].set(Op);
4368
4369  // If this gets put into a CSE map, add it.
4370  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4371  return InN;
4372}
4373
4374SDValue SelectionDAG::
4375UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4376  SDNode *N = InN.getNode();
4377  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4378
4379  // Check to see if there is no change.
4380  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4381    return InN;   // No operands changed, just return the input node.
4382
4383  // See if the modified node already exists.
4384  void *InsertPos = 0;
4385  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4386    return SDValue(Existing, InN.getResNo());
4387
4388  // Nope it doesn't.  Remove the node from its current place in the maps.
4389  if (InsertPos)
4390    if (!RemoveNodeFromCSEMaps(N))
4391      InsertPos = 0;
4392
4393  // Now we update the operands.
4394  if (N->OperandList[0] != Op1)
4395    N->OperandList[0].set(Op1);
4396  if (N->OperandList[1] != Op2)
4397    N->OperandList[1].set(Op2);
4398
4399  // If this gets put into a CSE map, add it.
4400  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4401  return InN;
4402}
4403
4404SDValue SelectionDAG::
4405UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4406  SDValue Ops[] = { Op1, Op2, Op3 };
4407  return UpdateNodeOperands(N, Ops, 3);
4408}
4409
4410SDValue SelectionDAG::
4411UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4412                   SDValue Op3, SDValue Op4) {
4413  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4414  return UpdateNodeOperands(N, Ops, 4);
4415}
4416
4417SDValue SelectionDAG::
4418UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4419                   SDValue Op3, SDValue Op4, SDValue Op5) {
4420  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4421  return UpdateNodeOperands(N, Ops, 5);
4422}
4423
4424SDValue SelectionDAG::
4425UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4426  SDNode *N = InN.getNode();
4427  assert(N->getNumOperands() == NumOps &&
4428         "Update with wrong number of operands");
4429
4430  // Check to see if there is no change.
4431  bool AnyChange = false;
4432  for (unsigned i = 0; i != NumOps; ++i) {
4433    if (Ops[i] != N->getOperand(i)) {
4434      AnyChange = true;
4435      break;
4436    }
4437  }
4438
4439  // No operands changed, just return the input node.
4440  if (!AnyChange) return InN;
4441
4442  // See if the modified node already exists.
4443  void *InsertPos = 0;
4444  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4445    return SDValue(Existing, InN.getResNo());
4446
4447  // Nope it doesn't.  Remove the node from its current place in the maps.
4448  if (InsertPos)
4449    if (!RemoveNodeFromCSEMaps(N))
4450      InsertPos = 0;
4451
4452  // Now we update the operands.
4453  for (unsigned i = 0; i != NumOps; ++i)
4454    if (N->OperandList[i] != Ops[i])
4455      N->OperandList[i].set(Ops[i]);
4456
4457  // If this gets put into a CSE map, add it.
4458  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4459  return InN;
4460}
4461
4462/// DropOperands - Release the operands and set this node to have
4463/// zero operands.
4464void SDNode::DropOperands() {
4465  // Unlike the code in MorphNodeTo that does this, we don't need to
4466  // watch for dead nodes here.
4467  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4468    SDUse &Use = *I++;
4469    Use.set(SDValue());
4470  }
4471}
4472
4473/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4474/// machine opcode.
4475///
4476SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4477                                   MVT VT) {
4478  SDVTList VTs = getVTList(VT);
4479  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4480}
4481
4482SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4483                                   MVT VT, SDValue Op1) {
4484  SDVTList VTs = getVTList(VT);
4485  SDValue Ops[] = { Op1 };
4486  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4487}
4488
4489SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4490                                   MVT VT, SDValue Op1,
4491                                   SDValue Op2) {
4492  SDVTList VTs = getVTList(VT);
4493  SDValue Ops[] = { Op1, Op2 };
4494  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4495}
4496
4497SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4498                                   MVT VT, SDValue Op1,
4499                                   SDValue Op2, SDValue Op3) {
4500  SDVTList VTs = getVTList(VT);
4501  SDValue Ops[] = { Op1, Op2, Op3 };
4502  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4503}
4504
4505SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4506                                   MVT VT, const SDValue *Ops,
4507                                   unsigned NumOps) {
4508  SDVTList VTs = getVTList(VT);
4509  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4510}
4511
4512SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4513                                   MVT VT1, MVT VT2, const SDValue *Ops,
4514                                   unsigned NumOps) {
4515  SDVTList VTs = getVTList(VT1, VT2);
4516  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4517}
4518
4519SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4520                                   MVT VT1, MVT VT2) {
4521  SDVTList VTs = getVTList(VT1, VT2);
4522  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4523}
4524
4525SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4526                                   MVT VT1, MVT VT2, MVT VT3,
4527                                   const SDValue *Ops, unsigned NumOps) {
4528  SDVTList VTs = getVTList(VT1, VT2, VT3);
4529  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4530}
4531
4532SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4533                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4534                                   const SDValue *Ops, unsigned NumOps) {
4535  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4536  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4537}
4538
4539SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4540                                   MVT VT1, MVT VT2,
4541                                   SDValue Op1) {
4542  SDVTList VTs = getVTList(VT1, VT2);
4543  SDValue Ops[] = { Op1 };
4544  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4545}
4546
4547SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4548                                   MVT VT1, MVT VT2,
4549                                   SDValue Op1, SDValue Op2) {
4550  SDVTList VTs = getVTList(VT1, VT2);
4551  SDValue Ops[] = { Op1, Op2 };
4552  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4553}
4554
4555SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4556                                   MVT VT1, MVT VT2,
4557                                   SDValue Op1, SDValue Op2,
4558                                   SDValue Op3) {
4559  SDVTList VTs = getVTList(VT1, VT2);
4560  SDValue Ops[] = { Op1, Op2, Op3 };
4561  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4562}
4563
4564SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4565                                   MVT VT1, MVT VT2, MVT VT3,
4566                                   SDValue Op1, SDValue Op2,
4567                                   SDValue Op3) {
4568  SDVTList VTs = getVTList(VT1, VT2, VT3);
4569  SDValue Ops[] = { Op1, Op2, Op3 };
4570  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4571}
4572
4573SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4574                                   SDVTList VTs, const SDValue *Ops,
4575                                   unsigned NumOps) {
4576  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4577}
4578
4579SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4580                                  MVT VT) {
4581  SDVTList VTs = getVTList(VT);
4582  return MorphNodeTo(N, Opc, VTs, 0, 0);
4583}
4584
4585SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4586                                  MVT VT, SDValue Op1) {
4587  SDVTList VTs = getVTList(VT);
4588  SDValue Ops[] = { Op1 };
4589  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4590}
4591
4592SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4593                                  MVT VT, SDValue Op1,
4594                                  SDValue Op2) {
4595  SDVTList VTs = getVTList(VT);
4596  SDValue Ops[] = { Op1, Op2 };
4597  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4598}
4599
4600SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4601                                  MVT VT, SDValue Op1,
4602                                  SDValue Op2, SDValue Op3) {
4603  SDVTList VTs = getVTList(VT);
4604  SDValue Ops[] = { Op1, Op2, Op3 };
4605  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4606}
4607
4608SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4609                                  MVT VT, const SDValue *Ops,
4610                                  unsigned NumOps) {
4611  SDVTList VTs = getVTList(VT);
4612  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4613}
4614
4615SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4616                                  MVT VT1, MVT VT2, const SDValue *Ops,
4617                                  unsigned NumOps) {
4618  SDVTList VTs = getVTList(VT1, VT2);
4619  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4620}
4621
4622SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4623                                  MVT VT1, MVT VT2) {
4624  SDVTList VTs = getVTList(VT1, VT2);
4625  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4626}
4627
4628SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4629                                  MVT VT1, MVT VT2, MVT VT3,
4630                                  const SDValue *Ops, unsigned NumOps) {
4631  SDVTList VTs = getVTList(VT1, VT2, VT3);
4632  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4633}
4634
4635SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4636                                  MVT VT1, MVT VT2,
4637                                  SDValue Op1) {
4638  SDVTList VTs = getVTList(VT1, VT2);
4639  SDValue Ops[] = { Op1 };
4640  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4641}
4642
4643SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4644                                  MVT VT1, MVT VT2,
4645                                  SDValue Op1, SDValue Op2) {
4646  SDVTList VTs = getVTList(VT1, VT2);
4647  SDValue Ops[] = { Op1, Op2 };
4648  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4649}
4650
4651SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4652                                  MVT VT1, MVT VT2,
4653                                  SDValue Op1, SDValue Op2,
4654                                  SDValue Op3) {
4655  SDVTList VTs = getVTList(VT1, VT2);
4656  SDValue Ops[] = { Op1, Op2, Op3 };
4657  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4658}
4659
4660/// MorphNodeTo - These *mutate* the specified node to have the specified
4661/// return type, opcode, and operands.
4662///
4663/// Note that MorphNodeTo returns the resultant node.  If there is already a
4664/// node of the specified opcode and operands, it returns that node instead of
4665/// the current one.
4666///
4667/// Using MorphNodeTo is faster than creating a new node and swapping it in
4668/// with ReplaceAllUsesWith both because it often avoids allocating a new
4669/// node, and because it doesn't require CSE recalculation for any of
4670/// the node's users.
4671///
4672SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4673                                  SDVTList VTs, const SDValue *Ops,
4674                                  unsigned NumOps) {
4675  // If an identical node already exists, use it.
4676  void *IP = 0;
4677  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4678    FoldingSetNodeID ID;
4679    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4680    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4681      return ON;
4682  }
4683
4684  if (!RemoveNodeFromCSEMaps(N))
4685    IP = 0;
4686
4687  // Start the morphing.
4688  N->NodeType = Opc;
4689  N->ValueList = VTs.VTs;
4690  N->NumValues = VTs.NumVTs;
4691
4692  // Clear the operands list, updating used nodes to remove this from their
4693  // use list.  Keep track of any operands that become dead as a result.
4694  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4695  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4696    SDUse &Use = *I++;
4697    SDNode *Used = Use.getNode();
4698    Use.set(SDValue());
4699    if (Used->use_empty())
4700      DeadNodeSet.insert(Used);
4701  }
4702
4703  // If NumOps is larger than the # of operands we currently have, reallocate
4704  // the operand list.
4705  if (NumOps > N->NumOperands) {
4706    if (N->OperandsNeedDelete)
4707      delete[] N->OperandList;
4708
4709    if (N->isMachineOpcode()) {
4710      // We're creating a final node that will live unmorphed for the
4711      // remainder of the current SelectionDAG iteration, so we can allocate
4712      // the operands directly out of a pool with no recycling metadata.
4713      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4714      N->OperandsNeedDelete = false;
4715    } else {
4716      N->OperandList = new SDUse[NumOps];
4717      N->OperandsNeedDelete = true;
4718    }
4719  }
4720
4721  // Assign the new operands.
4722  N->NumOperands = NumOps;
4723  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4724    N->OperandList[i].setUser(N);
4725    N->OperandList[i].setInitial(Ops[i]);
4726  }
4727
4728  // Delete any nodes that are still dead after adding the uses for the
4729  // new operands.
4730  SmallVector<SDNode *, 16> DeadNodes;
4731  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4732       E = DeadNodeSet.end(); I != E; ++I)
4733    if ((*I)->use_empty())
4734      DeadNodes.push_back(*I);
4735  RemoveDeadNodes(DeadNodes);
4736
4737  if (IP)
4738    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4739  return N;
4740}
4741
4742
4743/// getTargetNode - These are used for target selectors to create a new node
4744/// with specified return type(s), target opcode, and operands.
4745///
4746/// Note that getTargetNode returns the resultant node.  If there is already a
4747/// node of the specified opcode and operands, it returns that node instead of
4748/// the current one.
4749SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4750  return getNode(~Opcode, VT).getNode();
4751}
4752SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT) {
4753  return getNode(~Opcode, dl, VT).getNode();
4754}
4755
4756SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4757  return getNode(~Opcode, VT, Op1).getNode();
4758}
4759SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4760                                    SDValue Op1) {
4761  return getNode(~Opcode, dl, VT, Op1).getNode();
4762}
4763
4764SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4765                                    SDValue Op1, SDValue Op2) {
4766  return getNode(~Opcode, VT, Op1, Op2).getNode();
4767}
4768SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4769                                    SDValue Op1, SDValue Op2) {
4770  return getNode(~Opcode, dl, VT, Op1, Op2).getNode();
4771}
4772
4773SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4774                                    SDValue Op1, SDValue Op2,
4775                                    SDValue Op3) {
4776  return getNode(~Opcode, VT, Op1, Op2, Op3).getNode();
4777}
4778SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4779                                    SDValue Op1, SDValue Op2,
4780                                    SDValue Op3) {
4781  return getNode(~Opcode, dl, VT, Op1, Op2, Op3).getNode();
4782}
4783
4784SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4785                                    const SDValue *Ops, unsigned NumOps) {
4786  return getNode(~Opcode, VT, Ops, NumOps).getNode();
4787}
4788SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4789                                    const SDValue *Ops, unsigned NumOps) {
4790  return getNode(~Opcode, dl, VT, Ops, NumOps).getNode();
4791}
4792
4793SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4794  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4795  SDValue Op;
4796  return getNode(~Opcode, VTs, 2, &Op, 0).getNode();
4797}
4798SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4799                                    MVT VT1, MVT VT2) {
4800  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4801  SDValue Op;
4802  return getNode(~Opcode, dl, VTs, 2, &Op, 0).getNode();
4803}
4804
4805SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4806                                    MVT VT2, SDValue Op1) {
4807  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4808  return getNode(~Opcode, VTs, 2, &Op1, 1).getNode();
4809}
4810SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4811                                    MVT VT2, SDValue Op1) {
4812  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4813  return getNode(~Opcode, dl, VTs, 2, &Op1, 1).getNode();
4814}
4815
4816SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4817                                    MVT VT2, SDValue Op1,
4818                                    SDValue Op2) {
4819  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4820  SDValue Ops[] = { Op1, Op2 };
4821  return getNode(~Opcode, VTs, 2, Ops, 2).getNode();
4822}
4823SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4824                                    MVT VT2, SDValue Op1,
4825                                    SDValue Op2) {
4826  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4827  SDValue Ops[] = { Op1, Op2 };
4828  return getNode(~Opcode, dl, VTs, 2, Ops, 2).getNode();
4829}
4830
4831SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4832                                    MVT VT2, SDValue Op1,
4833                                    SDValue Op2, SDValue Op3) {
4834  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4835  SDValue Ops[] = { Op1, Op2, Op3 };
4836  return getNode(~Opcode, VTs, 2, Ops, 3).getNode();
4837}
4838SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4839                                    MVT VT2, SDValue Op1,
4840                                    SDValue Op2, SDValue Op3) {
4841  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4842  SDValue Ops[] = { Op1, Op2, Op3 };
4843  return getNode(~Opcode, dl, VTs, 2, Ops, 3).getNode();
4844}
4845
4846SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4847                                    const SDValue *Ops, unsigned NumOps) {
4848  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4849  return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode();
4850}
4851SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4852                                    MVT VT1, MVT VT2,
4853                                    const SDValue *Ops, unsigned NumOps) {
4854  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4855  return getNode(~Opcode, dl, VTs, 2, Ops, NumOps).getNode();
4856}
4857
4858SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4859                                    SDValue Op1, SDValue Op2) {
4860  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4861  SDValue Ops[] = { Op1, Op2 };
4862  return getNode(~Opcode, VTs, 3, Ops, 2).getNode();
4863}
4864SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4865                                    MVT VT1, MVT VT2, MVT VT3,
4866                                    SDValue Op1, SDValue Op2) {
4867  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4868  SDValue Ops[] = { Op1, Op2 };
4869  return getNode(~Opcode, dl, VTs, 3, Ops, 2).getNode();
4870}
4871
4872SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4873                                    SDValue Op1, SDValue Op2,
4874                                    SDValue Op3) {
4875  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4876  SDValue Ops[] = { Op1, Op2, Op3 };
4877  return getNode(~Opcode, VTs, 3, Ops, 3).getNode();
4878}
4879SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4880                                    MVT VT1, MVT VT2, MVT VT3,
4881                                    SDValue Op1, SDValue Op2,
4882                                    SDValue Op3) {
4883  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4884  SDValue Ops[] = { Op1, Op2, Op3 };
4885  return getNode(~Opcode, dl, VTs, 3, Ops, 3).getNode();
4886}
4887
4888SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4889                                    const SDValue *Ops, unsigned NumOps) {
4890  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4891  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4892}
4893SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4894                                    MVT VT1, MVT VT2, MVT VT3,
4895                                    const SDValue *Ops, unsigned NumOps) {
4896  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4897  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4898}
4899
4900SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4901                                    MVT VT2, MVT VT3, MVT VT4,
4902                                    const SDValue *Ops, unsigned NumOps) {
4903  std::vector<MVT> VTList;
4904  VTList.push_back(VT1);
4905  VTList.push_back(VT2);
4906  VTList.push_back(VT3);
4907  VTList.push_back(VT4);
4908  const MVT *VTs = getNodeValueTypes(VTList);
4909  return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode();
4910}
4911SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4912                                    MVT VT2, MVT VT3, MVT VT4,
4913                                    const SDValue *Ops, unsigned NumOps) {
4914  std::vector<MVT> VTList;
4915  VTList.push_back(VT1);
4916  VTList.push_back(VT2);
4917  VTList.push_back(VT3);
4918  VTList.push_back(VT4);
4919  const MVT *VTs = getNodeValueTypes(VTList);
4920  return getNode(~Opcode, dl, VTs, 4, Ops, NumOps).getNode();
4921}
4922
4923SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4924                                    const std::vector<MVT> &ResultTys,
4925                                    const SDValue *Ops, unsigned NumOps) {
4926  const MVT *VTs = getNodeValueTypes(ResultTys);
4927  return getNode(~Opcode, VTs, ResultTys.size(),
4928                 Ops, NumOps).getNode();
4929}
4930SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4931                                    const std::vector<MVT> &ResultTys,
4932                                    const SDValue *Ops, unsigned NumOps) {
4933  const MVT *VTs = getNodeValueTypes(ResultTys);
4934  return getNode(~Opcode, dl, VTs, ResultTys.size(),
4935                 Ops, NumOps).getNode();
4936}
4937
4938/// getNodeIfExists - Get the specified node if it's already available, or
4939/// else return NULL.
4940SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4941                                      const SDValue *Ops, unsigned NumOps) {
4942  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4943    FoldingSetNodeID ID;
4944    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4945    void *IP = 0;
4946    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4947      return E;
4948  }
4949  return NULL;
4950}
4951
4952/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4953/// This can cause recursive merging of nodes in the DAG.
4954///
4955/// This version assumes From has a single result value.
4956///
4957void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4958                                      DAGUpdateListener *UpdateListener) {
4959  SDNode *From = FromN.getNode();
4960  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4961         "Cannot replace with this method!");
4962  assert(From != To.getNode() && "Cannot replace uses of with self");
4963
4964  // Iterate over all the existing uses of From. New uses will be added
4965  // to the beginning of the use list, which we avoid visiting.
4966  // This specifically avoids visiting uses of From that arise while the
4967  // replacement is happening, because any such uses would be the result
4968  // of CSE: If an existing node looks like From after one of its operands
4969  // is replaced by To, we don't want to replace of all its users with To
4970  // too. See PR3018 for more info.
4971  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4972  while (UI != UE) {
4973    SDNode *User = *UI;
4974
4975    // This node is about to morph, remove its old self from the CSE maps.
4976    RemoveNodeFromCSEMaps(User);
4977
4978    // A user can appear in a use list multiple times, and when this
4979    // happens the uses are usually next to each other in the list.
4980    // To help reduce the number of CSE recomputations, process all
4981    // the uses of this user that we can find this way.
4982    do {
4983      SDUse &Use = UI.getUse();
4984      ++UI;
4985      Use.set(To);
4986    } while (UI != UE && *UI == User);
4987
4988    // Now that we have modified User, add it back to the CSE maps.  If it
4989    // already exists there, recursively merge the results together.
4990    AddModifiedNodeToCSEMaps(User, UpdateListener);
4991  }
4992}
4993
4994/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4995/// This can cause recursive merging of nodes in the DAG.
4996///
4997/// This version assumes From/To have matching types and numbers of result
4998/// values.
4999///
5000void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5001                                      DAGUpdateListener *UpdateListener) {
5002  assert(From->getVTList().VTs == To->getVTList().VTs &&
5003         From->getNumValues() == To->getNumValues() &&
5004         "Cannot use this version of ReplaceAllUsesWith!");
5005
5006  // Handle the trivial case.
5007  if (From == To)
5008    return;
5009
5010  // Iterate over just the existing users of From. See the comments in
5011  // the ReplaceAllUsesWith above.
5012  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5013  while (UI != UE) {
5014    SDNode *User = *UI;
5015
5016    // This node is about to morph, remove its old self from the CSE maps.
5017    RemoveNodeFromCSEMaps(User);
5018
5019    // A user can appear in a use list multiple times, and when this
5020    // happens the uses are usually next to each other in the list.
5021    // To help reduce the number of CSE recomputations, process all
5022    // the uses of this user that we can find this way.
5023    do {
5024      SDUse &Use = UI.getUse();
5025      ++UI;
5026      Use.setNode(To);
5027    } while (UI != UE && *UI == User);
5028
5029    // Now that we have modified User, add it back to the CSE maps.  If it
5030    // already exists there, recursively merge the results together.
5031    AddModifiedNodeToCSEMaps(User, UpdateListener);
5032  }
5033}
5034
5035/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5036/// This can cause recursive merging of nodes in the DAG.
5037///
5038/// This version can replace From with any result values.  To must match the
5039/// number and types of values returned by From.
5040void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5041                                      const SDValue *To,
5042                                      DAGUpdateListener *UpdateListener) {
5043  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5044    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5045
5046  // Iterate over just the existing users of From. See the comments in
5047  // the ReplaceAllUsesWith above.
5048  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5049  while (UI != UE) {
5050    SDNode *User = *UI;
5051
5052    // This node is about to morph, remove its old self from the CSE maps.
5053    RemoveNodeFromCSEMaps(User);
5054
5055    // A user can appear in a use list multiple times, and when this
5056    // happens the uses are usually next to each other in the list.
5057    // To help reduce the number of CSE recomputations, process all
5058    // the uses of this user that we can find this way.
5059    do {
5060      SDUse &Use = UI.getUse();
5061      const SDValue &ToOp = To[Use.getResNo()];
5062      ++UI;
5063      Use.set(ToOp);
5064    } while (UI != UE && *UI == User);
5065
5066    // Now that we have modified User, add it back to the CSE maps.  If it
5067    // already exists there, recursively merge the results together.
5068    AddModifiedNodeToCSEMaps(User, UpdateListener);
5069  }
5070}
5071
5072/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5073/// uses of other values produced by From.getNode() alone.  The Deleted
5074/// vector is handled the same way as for ReplaceAllUsesWith.
5075void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5076                                             DAGUpdateListener *UpdateListener){
5077  // Handle the really simple, really trivial case efficiently.
5078  if (From == To) return;
5079
5080  // Handle the simple, trivial, case efficiently.
5081  if (From.getNode()->getNumValues() == 1) {
5082    ReplaceAllUsesWith(From, To, UpdateListener);
5083    return;
5084  }
5085
5086  // Iterate over just the existing users of From. See the comments in
5087  // the ReplaceAllUsesWith above.
5088  SDNode::use_iterator UI = From.getNode()->use_begin(),
5089                       UE = From.getNode()->use_end();
5090  while (UI != UE) {
5091    SDNode *User = *UI;
5092    bool UserRemovedFromCSEMaps = false;
5093
5094    // A user can appear in a use list multiple times, and when this
5095    // happens the uses are usually next to each other in the list.
5096    // To help reduce the number of CSE recomputations, process all
5097    // the uses of this user that we can find this way.
5098    do {
5099      SDUse &Use = UI.getUse();
5100
5101      // Skip uses of different values from the same node.
5102      if (Use.getResNo() != From.getResNo()) {
5103        ++UI;
5104        continue;
5105      }
5106
5107      // If this node hasn't been modified yet, it's still in the CSE maps,
5108      // so remove its old self from the CSE maps.
5109      if (!UserRemovedFromCSEMaps) {
5110        RemoveNodeFromCSEMaps(User);
5111        UserRemovedFromCSEMaps = true;
5112      }
5113
5114      ++UI;
5115      Use.set(To);
5116    } while (UI != UE && *UI == User);
5117
5118    // We are iterating over all uses of the From node, so if a use
5119    // doesn't use the specific value, no changes are made.
5120    if (!UserRemovedFromCSEMaps)
5121      continue;
5122
5123    // Now that we have modified User, add it back to the CSE maps.  If it
5124    // already exists there, recursively merge the results together.
5125    AddModifiedNodeToCSEMaps(User, UpdateListener);
5126  }
5127}
5128
5129namespace {
5130  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5131  /// to record information about a use.
5132  struct UseMemo {
5133    SDNode *User;
5134    unsigned Index;
5135    SDUse *Use;
5136  };
5137
5138  /// operator< - Sort Memos by User.
5139  bool operator<(const UseMemo &L, const UseMemo &R) {
5140    return (intptr_t)L.User < (intptr_t)R.User;
5141  }
5142}
5143
5144/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5145/// uses of other values produced by From.getNode() alone.  The same value
5146/// may appear in both the From and To list.  The Deleted vector is
5147/// handled the same way as for ReplaceAllUsesWith.
5148void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5149                                              const SDValue *To,
5150                                              unsigned Num,
5151                                              DAGUpdateListener *UpdateListener){
5152  // Handle the simple, trivial case efficiently.
5153  if (Num == 1)
5154    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5155
5156  // Read up all the uses and make records of them. This helps
5157  // processing new uses that are introduced during the
5158  // replacement process.
5159  SmallVector<UseMemo, 4> Uses;
5160  for (unsigned i = 0; i != Num; ++i) {
5161    unsigned FromResNo = From[i].getResNo();
5162    SDNode *FromNode = From[i].getNode();
5163    for (SDNode::use_iterator UI = FromNode->use_begin(),
5164         E = FromNode->use_end(); UI != E; ++UI) {
5165      SDUse &Use = UI.getUse();
5166      if (Use.getResNo() == FromResNo) {
5167        UseMemo Memo = { *UI, i, &Use };
5168        Uses.push_back(Memo);
5169      }
5170    }
5171  }
5172
5173  // Sort the uses, so that all the uses from a given User are together.
5174  std::sort(Uses.begin(), Uses.end());
5175
5176  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5177       UseIndex != UseIndexEnd; ) {
5178    // We know that this user uses some value of From.  If it is the right
5179    // value, update it.
5180    SDNode *User = Uses[UseIndex].User;
5181
5182    // This node is about to morph, remove its old self from the CSE maps.
5183    RemoveNodeFromCSEMaps(User);
5184
5185    // The Uses array is sorted, so all the uses for a given User
5186    // are next to each other in the list.
5187    // To help reduce the number of CSE recomputations, process all
5188    // the uses of this user that we can find this way.
5189    do {
5190      unsigned i = Uses[UseIndex].Index;
5191      SDUse &Use = *Uses[UseIndex].Use;
5192      ++UseIndex;
5193
5194      Use.set(To[i]);
5195    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5196
5197    // Now that we have modified User, add it back to the CSE maps.  If it
5198    // already exists there, recursively merge the results together.
5199    AddModifiedNodeToCSEMaps(User, UpdateListener);
5200  }
5201}
5202
5203/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5204/// based on their topological order. It returns the maximum id and a vector
5205/// of the SDNodes* in assigned order by reference.
5206unsigned SelectionDAG::AssignTopologicalOrder() {
5207
5208  unsigned DAGSize = 0;
5209
5210  // SortedPos tracks the progress of the algorithm. Nodes before it are
5211  // sorted, nodes after it are unsorted. When the algorithm completes
5212  // it is at the end of the list.
5213  allnodes_iterator SortedPos = allnodes_begin();
5214
5215  // Visit all the nodes. Move nodes with no operands to the front of
5216  // the list immediately. Annotate nodes that do have operands with their
5217  // operand count. Before we do this, the Node Id fields of the nodes
5218  // may contain arbitrary values. After, the Node Id fields for nodes
5219  // before SortedPos will contain the topological sort index, and the
5220  // Node Id fields for nodes At SortedPos and after will contain the
5221  // count of outstanding operands.
5222  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5223    SDNode *N = I++;
5224    unsigned Degree = N->getNumOperands();
5225    if (Degree == 0) {
5226      // A node with no uses, add it to the result array immediately.
5227      N->setNodeId(DAGSize++);
5228      allnodes_iterator Q = N;
5229      if (Q != SortedPos)
5230        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5231      ++SortedPos;
5232    } else {
5233      // Temporarily use the Node Id as scratch space for the degree count.
5234      N->setNodeId(Degree);
5235    }
5236  }
5237
5238  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5239  // such that by the time the end is reached all nodes will be sorted.
5240  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5241    SDNode *N = I;
5242    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5243         UI != UE; ++UI) {
5244      SDNode *P = *UI;
5245      unsigned Degree = P->getNodeId();
5246      --Degree;
5247      if (Degree == 0) {
5248        // All of P's operands are sorted, so P may sorted now.
5249        P->setNodeId(DAGSize++);
5250        if (P != SortedPos)
5251          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5252        ++SortedPos;
5253      } else {
5254        // Update P's outstanding operand count.
5255        P->setNodeId(Degree);
5256      }
5257    }
5258  }
5259
5260  assert(SortedPos == AllNodes.end() &&
5261         "Topological sort incomplete!");
5262  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5263         "First node in topological sort is not the entry token!");
5264  assert(AllNodes.front().getNodeId() == 0 &&
5265         "First node in topological sort has non-zero id!");
5266  assert(AllNodes.front().getNumOperands() == 0 &&
5267         "First node in topological sort has operands!");
5268  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5269         "Last node in topologic sort has unexpected id!");
5270  assert(AllNodes.back().use_empty() &&
5271         "Last node in topologic sort has users!");
5272  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5273  return DAGSize;
5274}
5275
5276
5277
5278//===----------------------------------------------------------------------===//
5279//                              SDNode Class
5280//===----------------------------------------------------------------------===//
5281
5282HandleSDNode::~HandleSDNode() {
5283  DropOperands();
5284}
5285
5286GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
5287                                         MVT VT, int64_t o)
5288  : SDNode(isa<GlobalVariable>(GA) &&
5289           cast<GlobalVariable>(GA)->isThreadLocal() ?
5290           // Thread Local
5291           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
5292           // Non Thread Local
5293           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
5294           getSDVTList(VT)), Offset(o) {
5295  TheGlobal = const_cast<GlobalValue*>(GA);
5296}
5297
5298MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
5299                     const Value *srcValue, int SVO,
5300                     unsigned alignment, bool vol)
5301 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
5302   Flags(encodeMemSDNodeFlags(vol, alignment)) {
5303
5304  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
5305  assert(getAlignment() == alignment && "Alignment representation error!");
5306  assert(isVolatile() == vol && "Volatile representation error!");
5307}
5308
5309MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops,
5310                     unsigned NumOps, MVT memvt, const Value *srcValue,
5311                     int SVO, unsigned alignment, bool vol)
5312   : SDNode(Opc, VTs, Ops, NumOps),
5313     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
5314     Flags(vol | ((Log2_32(alignment) + 1) << 1)) {
5315  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
5316  assert(getAlignment() == alignment && "Alignment representation error!");
5317  assert(isVolatile() == vol && "Volatile representation error!");
5318}
5319
5320MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT memvt,
5321                     const Value *srcValue, int SVO,
5322                     unsigned alignment, bool vol)
5323 : SDNode(Opc, dl, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
5324   Flags(encodeMemSDNodeFlags(vol, alignment)) {
5325
5326  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
5327  assert(getAlignment() == alignment && "Alignment representation error!");
5328  assert(isVolatile() == vol && "Volatile representation error!");
5329}
5330
5331MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5332                     const SDValue *Ops,
5333                     unsigned NumOps, MVT memvt, const Value *srcValue,
5334                     int SVO, unsigned alignment, bool vol)
5335   : SDNode(Opc, dl, VTs, Ops, NumOps),
5336     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
5337     Flags(vol | ((Log2_32(alignment) + 1) << 1)) {
5338  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
5339  assert(getAlignment() == alignment && "Alignment representation error!");
5340  assert(isVolatile() == vol && "Volatile representation error!");
5341}
5342
5343/// getMemOperand - Return a MachineMemOperand object describing the memory
5344/// reference performed by this memory reference.
5345MachineMemOperand MemSDNode::getMemOperand() const {
5346  int Flags = 0;
5347  if (isa<LoadSDNode>(this))
5348    Flags = MachineMemOperand::MOLoad;
5349  else if (isa<StoreSDNode>(this))
5350    Flags = MachineMemOperand::MOStore;
5351  else if (isa<AtomicSDNode>(this)) {
5352    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
5353  }
5354  else {
5355    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
5356    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
5357    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
5358    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
5359  }
5360
5361  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
5362  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
5363
5364  // Check if the memory reference references a frame index
5365  const FrameIndexSDNode *FI =
5366  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
5367  if (!getSrcValue() && FI)
5368    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
5369                             Flags, 0, Size, getAlignment());
5370  else
5371    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
5372                             Size, getAlignment());
5373}
5374
5375/// Profile - Gather unique data for the node.
5376///
5377void SDNode::Profile(FoldingSetNodeID &ID) const {
5378  AddNodeIDNode(ID, this);
5379}
5380
5381/// getValueTypeList - Return a pointer to the specified value type.
5382///
5383const MVT *SDNode::getValueTypeList(MVT VT) {
5384  if (VT.isExtended()) {
5385    static std::set<MVT, MVT::compareRawBits> EVTs;
5386    return &(*EVTs.insert(VT).first);
5387  } else {
5388    static MVT VTs[MVT::LAST_VALUETYPE];
5389    VTs[VT.getSimpleVT()] = VT;
5390    return &VTs[VT.getSimpleVT()];
5391  }
5392}
5393
5394/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5395/// indicated value.  This method ignores uses of other values defined by this
5396/// operation.
5397bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5398  assert(Value < getNumValues() && "Bad value!");
5399
5400  // TODO: Only iterate over uses of a given value of the node
5401  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5402    if (UI.getUse().getResNo() == Value) {
5403      if (NUses == 0)
5404        return false;
5405      --NUses;
5406    }
5407  }
5408
5409  // Found exactly the right number of uses?
5410  return NUses == 0;
5411}
5412
5413
5414/// hasAnyUseOfValue - Return true if there are any use of the indicated
5415/// value. This method ignores uses of other values defined by this operation.
5416bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5417  assert(Value < getNumValues() && "Bad value!");
5418
5419  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5420    if (UI.getUse().getResNo() == Value)
5421      return true;
5422
5423  return false;
5424}
5425
5426
5427/// isOnlyUserOf - Return true if this node is the only use of N.
5428///
5429bool SDNode::isOnlyUserOf(SDNode *N) const {
5430  bool Seen = false;
5431  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5432    SDNode *User = *I;
5433    if (User == this)
5434      Seen = true;
5435    else
5436      return false;
5437  }
5438
5439  return Seen;
5440}
5441
5442/// isOperand - Return true if this node is an operand of N.
5443///
5444bool SDValue::isOperandOf(SDNode *N) const {
5445  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5446    if (*this == N->getOperand(i))
5447      return true;
5448  return false;
5449}
5450
5451bool SDNode::isOperandOf(SDNode *N) const {
5452  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5453    if (this == N->OperandList[i].getNode())
5454      return true;
5455  return false;
5456}
5457
5458/// reachesChainWithoutSideEffects - Return true if this operand (which must
5459/// be a chain) reaches the specified operand without crossing any
5460/// side-effecting instructions.  In practice, this looks through token
5461/// factors and non-volatile loads.  In order to remain efficient, this only
5462/// looks a couple of nodes in, it does not do an exhaustive search.
5463bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5464                                               unsigned Depth) const {
5465  if (*this == Dest) return true;
5466
5467  // Don't search too deeply, we just want to be able to see through
5468  // TokenFactor's etc.
5469  if (Depth == 0) return false;
5470
5471  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5472  // of the operands of the TF reach dest, then we can do the xform.
5473  if (getOpcode() == ISD::TokenFactor) {
5474    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5475      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5476        return true;
5477    return false;
5478  }
5479
5480  // Loads don't have side effects, look through them.
5481  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5482    if (!Ld->isVolatile())
5483      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5484  }
5485  return false;
5486}
5487
5488
5489static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
5490                            SmallPtrSet<SDNode *, 32> &Visited) {
5491  if (found || !Visited.insert(N))
5492    return;
5493
5494  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
5495    SDNode *Op = N->getOperand(i).getNode();
5496    if (Op == P) {
5497      found = true;
5498      return;
5499    }
5500    findPredecessor(Op, P, found, Visited);
5501  }
5502}
5503
5504/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5505/// is either an operand of N or it can be reached by recursively traversing
5506/// up the operands.
5507/// NOTE: this is an expensive method. Use it carefully.
5508bool SDNode::isPredecessorOf(SDNode *N) const {
5509  SmallPtrSet<SDNode *, 32> Visited;
5510  bool found = false;
5511  findPredecessor(N, this, found, Visited);
5512  return found;
5513}
5514
5515uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5516  assert(Num < NumOperands && "Invalid child # of SDNode!");
5517  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5518}
5519
5520std::string SDNode::getOperationName(const SelectionDAG *G) const {
5521  switch (getOpcode()) {
5522  default:
5523    if (getOpcode() < ISD::BUILTIN_OP_END)
5524      return "<<Unknown DAG Node>>";
5525    if (isMachineOpcode()) {
5526      if (G)
5527        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5528          if (getMachineOpcode() < TII->getNumOpcodes())
5529            return TII->get(getMachineOpcode()).getName();
5530      return "<<Unknown Machine Node>>";
5531    }
5532    if (G) {
5533      const TargetLowering &TLI = G->getTargetLoweringInfo();
5534      const char *Name = TLI.getTargetNodeName(getOpcode());
5535      if (Name) return Name;
5536      return "<<Unknown Target Node>>";
5537    }
5538    return "<<Unknown Node>>";
5539
5540#ifndef NDEBUG
5541  case ISD::DELETED_NODE:
5542    return "<<Deleted Node!>>";
5543#endif
5544  case ISD::PREFETCH:      return "Prefetch";
5545  case ISD::MEMBARRIER:    return "MemBarrier";
5546  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5547  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5548  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5549  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5550  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5551  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5552  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5553  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5554  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5555  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5556  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5557  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5558  case ISD::PCMARKER:      return "PCMarker";
5559  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5560  case ISD::SRCVALUE:      return "SrcValue";
5561  case ISD::MEMOPERAND:    return "MemOperand";
5562  case ISD::EntryToken:    return "EntryToken";
5563  case ISD::TokenFactor:   return "TokenFactor";
5564  case ISD::AssertSext:    return "AssertSext";
5565  case ISD::AssertZext:    return "AssertZext";
5566
5567  case ISD::BasicBlock:    return "BasicBlock";
5568  case ISD::ARG_FLAGS:     return "ArgFlags";
5569  case ISD::VALUETYPE:     return "ValueType";
5570  case ISD::Register:      return "Register";
5571
5572  case ISD::Constant:      return "Constant";
5573  case ISD::ConstantFP:    return "ConstantFP";
5574  case ISD::GlobalAddress: return "GlobalAddress";
5575  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5576  case ISD::FrameIndex:    return "FrameIndex";
5577  case ISD::JumpTable:     return "JumpTable";
5578  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5579  case ISD::RETURNADDR: return "RETURNADDR";
5580  case ISD::FRAMEADDR: return "FRAMEADDR";
5581  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5582  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5583  case ISD::EHSELECTION: return "EHSELECTION";
5584  case ISD::EH_RETURN: return "EH_RETURN";
5585  case ISD::ConstantPool:  return "ConstantPool";
5586  case ISD::ExternalSymbol: return "ExternalSymbol";
5587  case ISD::INTRINSIC_WO_CHAIN: {
5588    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5589    return Intrinsic::getName((Intrinsic::ID)IID);
5590  }
5591  case ISD::INTRINSIC_VOID:
5592  case ISD::INTRINSIC_W_CHAIN: {
5593    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5594    return Intrinsic::getName((Intrinsic::ID)IID);
5595  }
5596
5597  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5598  case ISD::TargetConstant: return "TargetConstant";
5599  case ISD::TargetConstantFP:return "TargetConstantFP";
5600  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5601  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5602  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5603  case ISD::TargetJumpTable:  return "TargetJumpTable";
5604  case ISD::TargetConstantPool:  return "TargetConstantPool";
5605  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5606
5607  case ISD::CopyToReg:     return "CopyToReg";
5608  case ISD::CopyFromReg:   return "CopyFromReg";
5609  case ISD::UNDEF:         return "undef";
5610  case ISD::MERGE_VALUES:  return "merge_values";
5611  case ISD::INLINEASM:     return "inlineasm";
5612  case ISD::DBG_LABEL:     return "dbg_label";
5613  case ISD::EH_LABEL:      return "eh_label";
5614  case ISD::DECLARE:       return "declare";
5615  case ISD::HANDLENODE:    return "handlenode";
5616  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5617  case ISD::CALL:          return "call";
5618
5619  // Unary operators
5620  case ISD::FABS:   return "fabs";
5621  case ISD::FNEG:   return "fneg";
5622  case ISD::FSQRT:  return "fsqrt";
5623  case ISD::FSIN:   return "fsin";
5624  case ISD::FCOS:   return "fcos";
5625  case ISD::FPOWI:  return "fpowi";
5626  case ISD::FPOW:   return "fpow";
5627  case ISD::FTRUNC: return "ftrunc";
5628  case ISD::FFLOOR: return "ffloor";
5629  case ISD::FCEIL:  return "fceil";
5630  case ISD::FRINT:  return "frint";
5631  case ISD::FNEARBYINT: return "fnearbyint";
5632
5633  // Binary operators
5634  case ISD::ADD:    return "add";
5635  case ISD::SUB:    return "sub";
5636  case ISD::MUL:    return "mul";
5637  case ISD::MULHU:  return "mulhu";
5638  case ISD::MULHS:  return "mulhs";
5639  case ISD::SDIV:   return "sdiv";
5640  case ISD::UDIV:   return "udiv";
5641  case ISD::SREM:   return "srem";
5642  case ISD::UREM:   return "urem";
5643  case ISD::SMUL_LOHI:  return "smul_lohi";
5644  case ISD::UMUL_LOHI:  return "umul_lohi";
5645  case ISD::SDIVREM:    return "sdivrem";
5646  case ISD::UDIVREM:    return "udivrem";
5647  case ISD::AND:    return "and";
5648  case ISD::OR:     return "or";
5649  case ISD::XOR:    return "xor";
5650  case ISD::SHL:    return "shl";
5651  case ISD::SRA:    return "sra";
5652  case ISD::SRL:    return "srl";
5653  case ISD::ROTL:   return "rotl";
5654  case ISD::ROTR:   return "rotr";
5655  case ISD::FADD:   return "fadd";
5656  case ISD::FSUB:   return "fsub";
5657  case ISD::FMUL:   return "fmul";
5658  case ISD::FDIV:   return "fdiv";
5659  case ISD::FREM:   return "frem";
5660  case ISD::FCOPYSIGN: return "fcopysign";
5661  case ISD::FGETSIGN:  return "fgetsign";
5662
5663  case ISD::SETCC:       return "setcc";
5664  case ISD::VSETCC:      return "vsetcc";
5665  case ISD::SELECT:      return "select";
5666  case ISD::SELECT_CC:   return "select_cc";
5667  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5668  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5669  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5670  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5671  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5672  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5673  case ISD::CARRY_FALSE:         return "carry_false";
5674  case ISD::ADDC:        return "addc";
5675  case ISD::ADDE:        return "adde";
5676  case ISD::SADDO:       return "saddo";
5677  case ISD::UADDO:       return "uaddo";
5678  case ISD::SSUBO:       return "ssubo";
5679  case ISD::USUBO:       return "usubo";
5680  case ISD::SMULO:       return "smulo";
5681  case ISD::UMULO:       return "umulo";
5682  case ISD::SUBC:        return "subc";
5683  case ISD::SUBE:        return "sube";
5684  case ISD::SHL_PARTS:   return "shl_parts";
5685  case ISD::SRA_PARTS:   return "sra_parts";
5686  case ISD::SRL_PARTS:   return "srl_parts";
5687
5688  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5689  case ISD::INSERT_SUBREG:      return "insert_subreg";
5690
5691  // Conversion operators.
5692  case ISD::SIGN_EXTEND: return "sign_extend";
5693  case ISD::ZERO_EXTEND: return "zero_extend";
5694  case ISD::ANY_EXTEND:  return "any_extend";
5695  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5696  case ISD::TRUNCATE:    return "truncate";
5697  case ISD::FP_ROUND:    return "fp_round";
5698  case ISD::FLT_ROUNDS_: return "flt_rounds";
5699  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5700  case ISD::FP_EXTEND:   return "fp_extend";
5701
5702  case ISD::SINT_TO_FP:  return "sint_to_fp";
5703  case ISD::UINT_TO_FP:  return "uint_to_fp";
5704  case ISD::FP_TO_SINT:  return "fp_to_sint";
5705  case ISD::FP_TO_UINT:  return "fp_to_uint";
5706  case ISD::BIT_CONVERT: return "bit_convert";
5707
5708  case ISD::CONVERT_RNDSAT: {
5709    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5710    default: assert(0 && "Unknown cvt code!");
5711    case ISD::CVT_FF:  return "cvt_ff";
5712    case ISD::CVT_FS:  return "cvt_fs";
5713    case ISD::CVT_FU:  return "cvt_fu";
5714    case ISD::CVT_SF:  return "cvt_sf";
5715    case ISD::CVT_UF:  return "cvt_uf";
5716    case ISD::CVT_SS:  return "cvt_ss";
5717    case ISD::CVT_SU:  return "cvt_su";
5718    case ISD::CVT_US:  return "cvt_us";
5719    case ISD::CVT_UU:  return "cvt_uu";
5720    }
5721  }
5722
5723    // Control flow instructions
5724  case ISD::BR:      return "br";
5725  case ISD::BRIND:   return "brind";
5726  case ISD::BR_JT:   return "br_jt";
5727  case ISD::BRCOND:  return "brcond";
5728  case ISD::BR_CC:   return "br_cc";
5729  case ISD::RET:     return "ret";
5730  case ISD::CALLSEQ_START:  return "callseq_start";
5731  case ISD::CALLSEQ_END:    return "callseq_end";
5732
5733    // Other operators
5734  case ISD::LOAD:               return "load";
5735  case ISD::STORE:              return "store";
5736  case ISD::VAARG:              return "vaarg";
5737  case ISD::VACOPY:             return "vacopy";
5738  case ISD::VAEND:              return "vaend";
5739  case ISD::VASTART:            return "vastart";
5740  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5741  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5742  case ISD::BUILD_PAIR:         return "build_pair";
5743  case ISD::STACKSAVE:          return "stacksave";
5744  case ISD::STACKRESTORE:       return "stackrestore";
5745  case ISD::TRAP:               return "trap";
5746
5747  // Bit manipulation
5748  case ISD::BSWAP:   return "bswap";
5749  case ISD::CTPOP:   return "ctpop";
5750  case ISD::CTTZ:    return "cttz";
5751  case ISD::CTLZ:    return "ctlz";
5752
5753  // Debug info
5754  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5755  case ISD::DEBUG_LOC: return "debug_loc";
5756
5757  // Trampolines
5758  case ISD::TRAMPOLINE: return "trampoline";
5759
5760  case ISD::CONDCODE:
5761    switch (cast<CondCodeSDNode>(this)->get()) {
5762    default: assert(0 && "Unknown setcc condition!");
5763    case ISD::SETOEQ:  return "setoeq";
5764    case ISD::SETOGT:  return "setogt";
5765    case ISD::SETOGE:  return "setoge";
5766    case ISD::SETOLT:  return "setolt";
5767    case ISD::SETOLE:  return "setole";
5768    case ISD::SETONE:  return "setone";
5769
5770    case ISD::SETO:    return "seto";
5771    case ISD::SETUO:   return "setuo";
5772    case ISD::SETUEQ:  return "setue";
5773    case ISD::SETUGT:  return "setugt";
5774    case ISD::SETUGE:  return "setuge";
5775    case ISD::SETULT:  return "setult";
5776    case ISD::SETULE:  return "setule";
5777    case ISD::SETUNE:  return "setune";
5778
5779    case ISD::SETEQ:   return "seteq";
5780    case ISD::SETGT:   return "setgt";
5781    case ISD::SETGE:   return "setge";
5782    case ISD::SETLT:   return "setlt";
5783    case ISD::SETLE:   return "setle";
5784    case ISD::SETNE:   return "setne";
5785    }
5786  }
5787}
5788
5789const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5790  switch (AM) {
5791  default:
5792    return "";
5793  case ISD::PRE_INC:
5794    return "<pre-inc>";
5795  case ISD::PRE_DEC:
5796    return "<pre-dec>";
5797  case ISD::POST_INC:
5798    return "<post-inc>";
5799  case ISD::POST_DEC:
5800    return "<post-dec>";
5801  }
5802}
5803
5804std::string ISD::ArgFlagsTy::getArgFlagsString() {
5805  std::string S = "< ";
5806
5807  if (isZExt())
5808    S += "zext ";
5809  if (isSExt())
5810    S += "sext ";
5811  if (isInReg())
5812    S += "inreg ";
5813  if (isSRet())
5814    S += "sret ";
5815  if (isByVal())
5816    S += "byval ";
5817  if (isNest())
5818    S += "nest ";
5819  if (getByValAlign())
5820    S += "byval-align:" + utostr(getByValAlign()) + " ";
5821  if (getOrigAlign())
5822    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5823  if (getByValSize())
5824    S += "byval-size:" + utostr(getByValSize()) + " ";
5825  return S + ">";
5826}
5827
5828void SDNode::dump() const { dump(0); }
5829void SDNode::dump(const SelectionDAG *G) const {
5830  print(errs(), G);
5831  errs().flush();
5832}
5833
5834void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5835  OS << (void*)this << ": ";
5836
5837  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5838    if (i) OS << ",";
5839    if (getValueType(i) == MVT::Other)
5840      OS << "ch";
5841    else
5842      OS << getValueType(i).getMVTString();
5843  }
5844  OS << " = " << getOperationName(G);
5845
5846  OS << " ";
5847  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5848    if (i) OS << ", ";
5849    OS << (void*)getOperand(i).getNode();
5850    if (unsigned RN = getOperand(i).getResNo())
5851      OS << ":" << RN;
5852  }
5853
5854  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5855    SDNode *Mask = getOperand(2).getNode();
5856    OS << "<";
5857    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5858      if (i) OS << ",";
5859      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5860        OS << "u";
5861      else
5862        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5863    }
5864    OS << ">";
5865  }
5866
5867  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5868    OS << '<' << CSDN->getAPIntValue() << '>';
5869  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5870    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5871      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5872    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5873      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5874    else {
5875      OS << "<APFloat(";
5876      CSDN->getValueAPF().bitcastToAPInt().dump();
5877      OS << ")>";
5878    }
5879  } else if (const GlobalAddressSDNode *GADN =
5880             dyn_cast<GlobalAddressSDNode>(this)) {
5881    int64_t offset = GADN->getOffset();
5882    OS << '<';
5883    WriteAsOperand(OS, GADN->getGlobal());
5884    OS << '>';
5885    if (offset > 0)
5886      OS << " + " << offset;
5887    else
5888      OS << " " << offset;
5889  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5890    OS << "<" << FIDN->getIndex() << ">";
5891  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5892    OS << "<" << JTDN->getIndex() << ">";
5893  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5894    int offset = CP->getOffset();
5895    if (CP->isMachineConstantPoolEntry())
5896      OS << "<" << *CP->getMachineCPVal() << ">";
5897    else
5898      OS << "<" << *CP->getConstVal() << ">";
5899    if (offset > 0)
5900      OS << " + " << offset;
5901    else
5902      OS << " " << offset;
5903  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5904    OS << "<";
5905    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5906    if (LBB)
5907      OS << LBB->getName() << " ";
5908    OS << (const void*)BBDN->getBasicBlock() << ">";
5909  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5910    if (G && R->getReg() &&
5911        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5912      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5913    } else {
5914      OS << " #" << R->getReg();
5915    }
5916  } else if (const ExternalSymbolSDNode *ES =
5917             dyn_cast<ExternalSymbolSDNode>(this)) {
5918    OS << "'" << ES->getSymbol() << "'";
5919  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5920    if (M->getValue())
5921      OS << "<" << M->getValue() << ">";
5922    else
5923      OS << "<null>";
5924  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5925    if (M->MO.getValue())
5926      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5927    else
5928      OS << "<null:" << M->MO.getOffset() << ">";
5929  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5930    OS << N->getArgFlags().getArgFlagsString();
5931  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5932    OS << ":" << N->getVT().getMVTString();
5933  }
5934  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5935    const Value *SrcValue = LD->getSrcValue();
5936    int SrcOffset = LD->getSrcValueOffset();
5937    OS << " <";
5938    if (SrcValue)
5939      OS << SrcValue;
5940    else
5941      OS << "null";
5942    OS << ":" << SrcOffset << ">";
5943
5944    bool doExt = true;
5945    switch (LD->getExtensionType()) {
5946    default: doExt = false; break;
5947    case ISD::EXTLOAD: OS << " <anyext "; break;
5948    case ISD::SEXTLOAD: OS << " <sext "; break;
5949    case ISD::ZEXTLOAD: OS << " <zext "; break;
5950    }
5951    if (doExt)
5952      OS << LD->getMemoryVT().getMVTString() << ">";
5953
5954    const char *AM = getIndexedModeName(LD->getAddressingMode());
5955    if (*AM)
5956      OS << " " << AM;
5957    if (LD->isVolatile())
5958      OS << " <volatile>";
5959    OS << " alignment=" << LD->getAlignment();
5960  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5961    const Value *SrcValue = ST->getSrcValue();
5962    int SrcOffset = ST->getSrcValueOffset();
5963    OS << " <";
5964    if (SrcValue)
5965      OS << SrcValue;
5966    else
5967      OS << "null";
5968    OS << ":" << SrcOffset << ">";
5969
5970    if (ST->isTruncatingStore())
5971      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5972
5973    const char *AM = getIndexedModeName(ST->getAddressingMode());
5974    if (*AM)
5975      OS << " " << AM;
5976    if (ST->isVolatile())
5977      OS << " <volatile>";
5978    OS << " alignment=" << ST->getAlignment();
5979  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5980    const Value *SrcValue = AT->getSrcValue();
5981    int SrcOffset = AT->getSrcValueOffset();
5982    OS << " <";
5983    if (SrcValue)
5984      OS << SrcValue;
5985    else
5986      OS << "null";
5987    OS << ":" << SrcOffset << ">";
5988    if (AT->isVolatile())
5989      OS << " <volatile>";
5990    OS << " alignment=" << AT->getAlignment();
5991  }
5992}
5993
5994static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5995  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5996    if (N->getOperand(i).getNode()->hasOneUse())
5997      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5998    else
5999      cerr << "\n" << std::string(indent+2, ' ')
6000           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6001
6002
6003  cerr << "\n" << std::string(indent, ' ');
6004  N->dump(G);
6005}
6006
6007void SelectionDAG::dump() const {
6008  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
6009
6010  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6011       I != E; ++I) {
6012    const SDNode *N = I;
6013    if (!N->hasOneUse() && N != getRoot().getNode())
6014      DumpNodes(N, 2, this);
6015  }
6016
6017  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6018
6019  cerr << "\n\n";
6020}
6021
6022const Type *ConstantPoolSDNode::getType() const {
6023  if (isMachineConstantPoolEntry())
6024    return Val.MachineCPVal->getType();
6025  return Val.ConstVal->getType();
6026}
6027