SelectionDAG.cpp revision baeb05c7716a497cf25b4a81f0f7ebe02d0100e7
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/DebugInfo.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalAlias.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Assembly/Writer.h"
26#include "llvm/CallingConv.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/PseudoSourceValue.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetFrameInfo.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetSelectionDAGInfo.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetIntrinsicInfo.h"
40#include "llvm/Target/TargetMachine.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/ManagedStatic.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/System/Mutex.h"
48#include "llvm/ADT/SetVector.h"
49#include "llvm/ADT/SmallPtrSet.h"
50#include "llvm/ADT/SmallSet.h"
51#include "llvm/ADT/SmallVector.h"
52#include "llvm/ADT/StringExtras.h"
53#include <algorithm>
54#include <cmath>
55using namespace llvm;
56
57/// makeVTList - Return an instance of the SDVTList struct initialized with the
58/// specified members.
59static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
60  SDVTList Res = {VTs, NumVTs};
61  return Res;
62}
63
64static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
65  switch (VT.getSimpleVT().SimpleTy) {
66  default: llvm_unreachable("Unknown FP format");
67  case MVT::f32:     return &APFloat::IEEEsingle;
68  case MVT::f64:     return &APFloat::IEEEdouble;
69  case MVT::f80:     return &APFloat::x87DoubleExtended;
70  case MVT::f128:    return &APFloat::IEEEquad;
71  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
72  }
73}
74
75SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
76
77//===----------------------------------------------------------------------===//
78//                              ConstantFPSDNode Class
79//===----------------------------------------------------------------------===//
80
81/// isExactlyValue - We don't rely on operator== working on double values, as
82/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
83/// As such, this method can be used to do an exact bit-for-bit comparison of
84/// two floating point values.
85bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
86  return getValueAPF().bitwiseIsEqual(V);
87}
88
89bool ConstantFPSDNode::isValueValidForType(EVT VT,
90                                           const APFloat& Val) {
91  assert(VT.isFloatingPoint() && "Can only convert between FP types");
92
93  // PPC long double cannot be converted to any other type.
94  if (VT == MVT::ppcf128 ||
95      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
96    return false;
97
98  // convert modifies in place, so make a copy.
99  APFloat Val2 = APFloat(Val);
100  bool losesInfo;
101  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
102                      &losesInfo);
103  return !losesInfo;
104}
105
106//===----------------------------------------------------------------------===//
107//                              ISD Namespace
108//===----------------------------------------------------------------------===//
109
110/// isBuildVectorAllOnes - Return true if the specified node is a
111/// BUILD_VECTOR where all of the elements are ~0 or undef.
112bool ISD::isBuildVectorAllOnes(const SDNode *N) {
113  // Look through a bit convert.
114  if (N->getOpcode() == ISD::BIT_CONVERT)
115    N = N->getOperand(0).getNode();
116
117  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
118
119  unsigned i = 0, e = N->getNumOperands();
120
121  // Skip over all of the undef values.
122  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
123    ++i;
124
125  // Do not accept an all-undef vector.
126  if (i == e) return false;
127
128  // Do not accept build_vectors that aren't all constants or which have non-~0
129  // elements.
130  SDValue NotZero = N->getOperand(i);
131  if (isa<ConstantSDNode>(NotZero)) {
132    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
133      return false;
134  } else if (isa<ConstantFPSDNode>(NotZero)) {
135    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
136                bitcastToAPInt().isAllOnesValue())
137      return false;
138  } else
139    return false;
140
141  // Okay, we have at least one ~0 value, check to see if the rest match or are
142  // undefs.
143  for (++i; i != e; ++i)
144    if (N->getOperand(i) != NotZero &&
145        N->getOperand(i).getOpcode() != ISD::UNDEF)
146      return false;
147  return true;
148}
149
150
151/// isBuildVectorAllZeros - Return true if the specified node is a
152/// BUILD_VECTOR where all of the elements are 0 or undef.
153bool ISD::isBuildVectorAllZeros(const SDNode *N) {
154  // Look through a bit convert.
155  if (N->getOpcode() == ISD::BIT_CONVERT)
156    N = N->getOperand(0).getNode();
157
158  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
159
160  unsigned i = 0, e = N->getNumOperands();
161
162  // Skip over all of the undef values.
163  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
164    ++i;
165
166  // Do not accept an all-undef vector.
167  if (i == e) return false;
168
169  // Do not accept build_vectors that aren't all constants or which have non-0
170  // elements.
171  SDValue Zero = N->getOperand(i);
172  if (isa<ConstantSDNode>(Zero)) {
173    if (!cast<ConstantSDNode>(Zero)->isNullValue())
174      return false;
175  } else if (isa<ConstantFPSDNode>(Zero)) {
176    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
177      return false;
178  } else
179    return false;
180
181  // Okay, we have at least one 0 value, check to see if the rest match or are
182  // undefs.
183  for (++i; i != e; ++i)
184    if (N->getOperand(i) != Zero &&
185        N->getOperand(i).getOpcode() != ISD::UNDEF)
186      return false;
187  return true;
188}
189
190/// isScalarToVector - Return true if the specified node is a
191/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
192/// element is not an undef.
193bool ISD::isScalarToVector(const SDNode *N) {
194  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
195    return true;
196
197  if (N->getOpcode() != ISD::BUILD_VECTOR)
198    return false;
199  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
200    return false;
201  unsigned NumElems = N->getNumOperands();
202  for (unsigned i = 1; i < NumElems; ++i) {
203    SDValue V = N->getOperand(i);
204    if (V.getOpcode() != ISD::UNDEF)
205      return false;
206  }
207  return true;
208}
209
210/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
211/// when given the operation for (X op Y).
212ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
213  // To perform this operation, we just need to swap the L and G bits of the
214  // operation.
215  unsigned OldL = (Operation >> 2) & 1;
216  unsigned OldG = (Operation >> 1) & 1;
217  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
218                       (OldL << 1) |       // New G bit
219                       (OldG << 2));       // New L bit.
220}
221
222/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
223/// 'op' is a valid SetCC operation.
224ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
225  unsigned Operation = Op;
226  if (isInteger)
227    Operation ^= 7;   // Flip L, G, E bits, but not U.
228  else
229    Operation ^= 15;  // Flip all of the condition bits.
230
231  if (Operation > ISD::SETTRUE2)
232    Operation &= ~8;  // Don't let N and U bits get set.
233
234  return ISD::CondCode(Operation);
235}
236
237
238/// isSignedOp - For an integer comparison, return 1 if the comparison is a
239/// signed operation and 2 if the result is an unsigned comparison.  Return zero
240/// if the operation does not depend on the sign of the input (setne and seteq).
241static int isSignedOp(ISD::CondCode Opcode) {
242  switch (Opcode) {
243  default: llvm_unreachable("Illegal integer setcc operation!");
244  case ISD::SETEQ:
245  case ISD::SETNE: return 0;
246  case ISD::SETLT:
247  case ISD::SETLE:
248  case ISD::SETGT:
249  case ISD::SETGE: return 1;
250  case ISD::SETULT:
251  case ISD::SETULE:
252  case ISD::SETUGT:
253  case ISD::SETUGE: return 2;
254  }
255}
256
257/// getSetCCOrOperation - Return the result of a logical OR between different
258/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
259/// returns SETCC_INVALID if it is not possible to represent the resultant
260/// comparison.
261ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
262                                       bool isInteger) {
263  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
264    // Cannot fold a signed integer setcc with an unsigned integer setcc.
265    return ISD::SETCC_INVALID;
266
267  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
268
269  // If the N and U bits get set then the resultant comparison DOES suddenly
270  // care about orderedness, and is true when ordered.
271  if (Op > ISD::SETTRUE2)
272    Op &= ~16;     // Clear the U bit if the N bit is set.
273
274  // Canonicalize illegal integer setcc's.
275  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
276    Op = ISD::SETNE;
277
278  return ISD::CondCode(Op);
279}
280
281/// getSetCCAndOperation - Return the result of a logical AND between different
282/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
283/// function returns zero if it is not possible to represent the resultant
284/// comparison.
285ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
286                                        bool isInteger) {
287  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
288    // Cannot fold a signed setcc with an unsigned setcc.
289    return ISD::SETCC_INVALID;
290
291  // Combine all of the condition bits.
292  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
293
294  // Canonicalize illegal integer setcc's.
295  if (isInteger) {
296    switch (Result) {
297    default: break;
298    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
299    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
300    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
301    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
302    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
303    }
304  }
305
306  return Result;
307}
308
309//===----------------------------------------------------------------------===//
310//                           SDNode Profile Support
311//===----------------------------------------------------------------------===//
312
313/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
314///
315static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
316  ID.AddInteger(OpC);
317}
318
319/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
320/// solely with their pointer.
321static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
322  ID.AddPointer(VTList.VTs);
323}
324
325/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
326///
327static void AddNodeIDOperands(FoldingSetNodeID &ID,
328                              const SDValue *Ops, unsigned NumOps) {
329  for (; NumOps; --NumOps, ++Ops) {
330    ID.AddPointer(Ops->getNode());
331    ID.AddInteger(Ops->getResNo());
332  }
333}
334
335/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
336///
337static void AddNodeIDOperands(FoldingSetNodeID &ID,
338                              const SDUse *Ops, unsigned NumOps) {
339  for (; NumOps; --NumOps, ++Ops) {
340    ID.AddPointer(Ops->getNode());
341    ID.AddInteger(Ops->getResNo());
342  }
343}
344
345static void AddNodeIDNode(FoldingSetNodeID &ID,
346                          unsigned short OpC, SDVTList VTList,
347                          const SDValue *OpList, unsigned N) {
348  AddNodeIDOpcode(ID, OpC);
349  AddNodeIDValueTypes(ID, VTList);
350  AddNodeIDOperands(ID, OpList, N);
351}
352
353/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
354/// the NodeID data.
355static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
356  switch (N->getOpcode()) {
357  case ISD::TargetExternalSymbol:
358  case ISD::ExternalSymbol:
359    llvm_unreachable("Should only be used on nodes with operands");
360  default: break;  // Normal nodes don't need extra info.
361  case ISD::TargetConstant:
362  case ISD::Constant:
363    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
364    break;
365  case ISD::TargetConstantFP:
366  case ISD::ConstantFP: {
367    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
368    break;
369  }
370  case ISD::TargetGlobalAddress:
371  case ISD::GlobalAddress:
372  case ISD::TargetGlobalTLSAddress:
373  case ISD::GlobalTLSAddress: {
374    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
375    ID.AddPointer(GA->getGlobal());
376    ID.AddInteger(GA->getOffset());
377    ID.AddInteger(GA->getTargetFlags());
378    break;
379  }
380  case ISD::BasicBlock:
381    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
382    break;
383  case ISD::Register:
384    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
385    break;
386
387  case ISD::SRCVALUE:
388    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
389    break;
390  case ISD::FrameIndex:
391  case ISD::TargetFrameIndex:
392    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
393    break;
394  case ISD::JumpTable:
395  case ISD::TargetJumpTable:
396    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
397    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
398    break;
399  case ISD::ConstantPool:
400  case ISD::TargetConstantPool: {
401    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
402    ID.AddInteger(CP->getAlignment());
403    ID.AddInteger(CP->getOffset());
404    if (CP->isMachineConstantPoolEntry())
405      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
406    else
407      ID.AddPointer(CP->getConstVal());
408    ID.AddInteger(CP->getTargetFlags());
409    break;
410  }
411  case ISD::LOAD: {
412    const LoadSDNode *LD = cast<LoadSDNode>(N);
413    ID.AddInteger(LD->getMemoryVT().getRawBits());
414    ID.AddInteger(LD->getRawSubclassData());
415    break;
416  }
417  case ISD::STORE: {
418    const StoreSDNode *ST = cast<StoreSDNode>(N);
419    ID.AddInteger(ST->getMemoryVT().getRawBits());
420    ID.AddInteger(ST->getRawSubclassData());
421    break;
422  }
423  case ISD::ATOMIC_CMP_SWAP:
424  case ISD::ATOMIC_SWAP:
425  case ISD::ATOMIC_LOAD_ADD:
426  case ISD::ATOMIC_LOAD_SUB:
427  case ISD::ATOMIC_LOAD_AND:
428  case ISD::ATOMIC_LOAD_OR:
429  case ISD::ATOMIC_LOAD_XOR:
430  case ISD::ATOMIC_LOAD_NAND:
431  case ISD::ATOMIC_LOAD_MIN:
432  case ISD::ATOMIC_LOAD_MAX:
433  case ISD::ATOMIC_LOAD_UMIN:
434  case ISD::ATOMIC_LOAD_UMAX: {
435    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
436    ID.AddInteger(AT->getMemoryVT().getRawBits());
437    ID.AddInteger(AT->getRawSubclassData());
438    break;
439  }
440  case ISD::VECTOR_SHUFFLE: {
441    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
442    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
443         i != e; ++i)
444      ID.AddInteger(SVN->getMaskElt(i));
445    break;
446  }
447  case ISD::TargetBlockAddress:
448  case ISD::BlockAddress: {
449    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
450    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
451    break;
452  }
453  } // end switch (N->getOpcode())
454}
455
456/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
457/// data.
458static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
459  AddNodeIDOpcode(ID, N->getOpcode());
460  // Add the return value info.
461  AddNodeIDValueTypes(ID, N->getVTList());
462  // Add the operand info.
463  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
464
465  // Handle SDNode leafs with special info.
466  AddNodeIDCustom(ID, N);
467}
468
469/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
470/// the CSE map that carries volatility, temporalness, indexing mode, and
471/// extension/truncation information.
472///
473static inline unsigned
474encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
475                     bool isNonTemporal) {
476  assert((ConvType & 3) == ConvType &&
477         "ConvType may not require more than 2 bits!");
478  assert((AM & 7) == AM &&
479         "AM may not require more than 3 bits!");
480  return ConvType |
481         (AM << 2) |
482         (isVolatile << 5) |
483         (isNonTemporal << 6);
484}
485
486//===----------------------------------------------------------------------===//
487//                              SelectionDAG Class
488//===----------------------------------------------------------------------===//
489
490/// doNotCSE - Return true if CSE should not be performed for this node.
491static bool doNotCSE(SDNode *N) {
492  if (N->getValueType(0) == MVT::Flag)
493    return true; // Never CSE anything that produces a flag.
494
495  switch (N->getOpcode()) {
496  default: break;
497  case ISD::HANDLENODE:
498  case ISD::EH_LABEL:
499    return true;   // Never CSE these nodes.
500  }
501
502  // Check that remaining values produced are not flags.
503  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
504    if (N->getValueType(i) == MVT::Flag)
505      return true; // Never CSE anything that produces a flag.
506
507  return false;
508}
509
510/// RemoveDeadNodes - This method deletes all unreachable nodes in the
511/// SelectionDAG.
512void SelectionDAG::RemoveDeadNodes() {
513  // Create a dummy node (which is not added to allnodes), that adds a reference
514  // to the root node, preventing it from being deleted.
515  HandleSDNode Dummy(getRoot());
516
517  SmallVector<SDNode*, 128> DeadNodes;
518
519  // Add all obviously-dead nodes to the DeadNodes worklist.
520  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
521    if (I->use_empty())
522      DeadNodes.push_back(I);
523
524  RemoveDeadNodes(DeadNodes);
525
526  // If the root changed (e.g. it was a dead load, update the root).
527  setRoot(Dummy.getValue());
528}
529
530/// RemoveDeadNodes - This method deletes the unreachable nodes in the
531/// given list, and any nodes that become unreachable as a result.
532void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
533                                   DAGUpdateListener *UpdateListener) {
534
535  // Process the worklist, deleting the nodes and adding their uses to the
536  // worklist.
537  while (!DeadNodes.empty()) {
538    SDNode *N = DeadNodes.pop_back_val();
539
540    if (UpdateListener)
541      UpdateListener->NodeDeleted(N, 0);
542
543    // Take the node out of the appropriate CSE map.
544    RemoveNodeFromCSEMaps(N);
545
546    // Next, brutally remove the operand list.  This is safe to do, as there are
547    // no cycles in the graph.
548    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
549      SDUse &Use = *I++;
550      SDNode *Operand = Use.getNode();
551      Use.set(SDValue());
552
553      // Now that we removed this operand, see if there are no uses of it left.
554      if (Operand->use_empty())
555        DeadNodes.push_back(Operand);
556    }
557
558    DeallocateNode(N);
559  }
560}
561
562void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
563  SmallVector<SDNode*, 16> DeadNodes(1, N);
564  RemoveDeadNodes(DeadNodes, UpdateListener);
565}
566
567void SelectionDAG::DeleteNode(SDNode *N) {
568  // First take this out of the appropriate CSE map.
569  RemoveNodeFromCSEMaps(N);
570
571  // Finally, remove uses due to operands of this node, remove from the
572  // AllNodes list, and delete the node.
573  DeleteNodeNotInCSEMaps(N);
574}
575
576void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
577  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
578  assert(N->use_empty() && "Cannot delete a node that is not dead!");
579
580  // Drop all of the operands and decrement used node's use counts.
581  N->DropOperands();
582
583  DeallocateNode(N);
584}
585
586void SelectionDAG::DeallocateNode(SDNode *N) {
587  if (N->OperandsNeedDelete)
588    delete[] N->OperandList;
589
590  // Set the opcode to DELETED_NODE to help catch bugs when node
591  // memory is reallocated.
592  N->NodeType = ISD::DELETED_NODE;
593
594  NodeAllocator.Deallocate(AllNodes.remove(N));
595
596  // Remove the ordering of this node.
597  Ordering->remove(N);
598
599  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
600  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
601  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
602    DbgVals[i]->setIsInvalidated();
603}
604
605/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
606/// correspond to it.  This is useful when we're about to delete or repurpose
607/// the node.  We don't want future request for structurally identical nodes
608/// to return N anymore.
609bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
610  bool Erased = false;
611  switch (N->getOpcode()) {
612  case ISD::EntryToken:
613    llvm_unreachable("EntryToken should not be in CSEMaps!");
614    return false;
615  case ISD::HANDLENODE: return false;  // noop.
616  case ISD::CONDCODE:
617    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
618           "Cond code doesn't exist!");
619    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
620    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
621    break;
622  case ISD::ExternalSymbol:
623    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
624    break;
625  case ISD::TargetExternalSymbol: {
626    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
627    Erased = TargetExternalSymbols.erase(
628               std::pair<std::string,unsigned char>(ESN->getSymbol(),
629                                                    ESN->getTargetFlags()));
630    break;
631  }
632  case ISD::VALUETYPE: {
633    EVT VT = cast<VTSDNode>(N)->getVT();
634    if (VT.isExtended()) {
635      Erased = ExtendedValueTypeNodes.erase(VT);
636    } else {
637      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
638      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
639    }
640    break;
641  }
642  default:
643    // Remove it from the CSE Map.
644    Erased = CSEMap.RemoveNode(N);
645    break;
646  }
647#ifndef NDEBUG
648  // Verify that the node was actually in one of the CSE maps, unless it has a
649  // flag result (which cannot be CSE'd) or is one of the special cases that are
650  // not subject to CSE.
651  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
652      !N->isMachineOpcode() && !doNotCSE(N)) {
653    N->dump(this);
654    dbgs() << "\n";
655    llvm_unreachable("Node is not in map!");
656  }
657#endif
658  return Erased;
659}
660
661/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
662/// maps and modified in place. Add it back to the CSE maps, unless an identical
663/// node already exists, in which case transfer all its users to the existing
664/// node. This transfer can potentially trigger recursive merging.
665///
666void
667SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
668                                       DAGUpdateListener *UpdateListener) {
669  // For node types that aren't CSE'd, just act as if no identical node
670  // already exists.
671  if (!doNotCSE(N)) {
672    SDNode *Existing = CSEMap.GetOrInsertNode(N);
673    if (Existing != N) {
674      // If there was already an existing matching node, use ReplaceAllUsesWith
675      // to replace the dead one with the existing one.  This can cause
676      // recursive merging of other unrelated nodes down the line.
677      ReplaceAllUsesWith(N, Existing, UpdateListener);
678
679      // N is now dead.  Inform the listener if it exists and delete it.
680      if (UpdateListener)
681        UpdateListener->NodeDeleted(N, Existing);
682      DeleteNodeNotInCSEMaps(N);
683      return;
684    }
685  }
686
687  // If the node doesn't already exist, we updated it.  Inform a listener if
688  // it exists.
689  if (UpdateListener)
690    UpdateListener->NodeUpdated(N);
691}
692
693/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
694/// were replaced with those specified.  If this node is never memoized,
695/// return null, otherwise return a pointer to the slot it would take.  If a
696/// node already exists with these operands, the slot will be non-null.
697SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
698                                           void *&InsertPos) {
699  if (doNotCSE(N))
700    return 0;
701
702  SDValue Ops[] = { Op };
703  FoldingSetNodeID ID;
704  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
705  AddNodeIDCustom(ID, N);
706  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
707  return Node;
708}
709
710/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
711/// were replaced with those specified.  If this node is never memoized,
712/// return null, otherwise return a pointer to the slot it would take.  If a
713/// node already exists with these operands, the slot will be non-null.
714SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
715                                           SDValue Op1, SDValue Op2,
716                                           void *&InsertPos) {
717  if (doNotCSE(N))
718    return 0;
719
720  SDValue Ops[] = { Op1, Op2 };
721  FoldingSetNodeID ID;
722  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
723  AddNodeIDCustom(ID, N);
724  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
725  return Node;
726}
727
728
729/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
730/// were replaced with those specified.  If this node is never memoized,
731/// return null, otherwise return a pointer to the slot it would take.  If a
732/// node already exists with these operands, the slot will be non-null.
733SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
734                                           const SDValue *Ops,unsigned NumOps,
735                                           void *&InsertPos) {
736  if (doNotCSE(N))
737    return 0;
738
739  FoldingSetNodeID ID;
740  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
741  AddNodeIDCustom(ID, N);
742  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
743  return Node;
744}
745
746/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
747void SelectionDAG::VerifyNode(SDNode *N) {
748  switch (N->getOpcode()) {
749  default:
750    break;
751  case ISD::BUILD_PAIR: {
752    EVT VT = N->getValueType(0);
753    assert(N->getNumValues() == 1 && "Too many results!");
754    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
755           "Wrong return type!");
756    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
757    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
758           "Mismatched operand types!");
759    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
760           "Wrong operand type!");
761    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
762           "Wrong return type size");
763    break;
764  }
765  case ISD::BUILD_VECTOR: {
766    assert(N->getNumValues() == 1 && "Too many results!");
767    assert(N->getValueType(0).isVector() && "Wrong return type!");
768    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
769           "Wrong number of operands!");
770    EVT EltVT = N->getValueType(0).getVectorElementType();
771    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
772      assert((I->getValueType() == EltVT ||
773             (EltVT.isInteger() && I->getValueType().isInteger() &&
774              EltVT.bitsLE(I->getValueType()))) &&
775            "Wrong operand type!");
776    break;
777  }
778  }
779}
780
781/// getEVTAlignment - Compute the default alignment value for the
782/// given type.
783///
784unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
785  const Type *Ty = VT == MVT::iPTR ?
786                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
787                   VT.getTypeForEVT(*getContext());
788
789  return TLI.getTargetData()->getABITypeAlignment(Ty);
790}
791
792// EntryNode could meaningfully have debug info if we can find it...
793SelectionDAG::SelectionDAG(const TargetMachine &tm)
794  : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
795    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
796    Root(getEntryNode()), Ordering(0) {
797  AllNodes.push_back(&EntryNode);
798  Ordering = new SDNodeOrdering();
799  DbgInfo = new SDDbgInfo();
800}
801
802void SelectionDAG::init(MachineFunction &mf) {
803  MF = &mf;
804  Context = &mf.getFunction()->getContext();
805}
806
807SelectionDAG::~SelectionDAG() {
808  allnodes_clear();
809  delete Ordering;
810  delete DbgInfo;
811}
812
813void SelectionDAG::allnodes_clear() {
814  assert(&*AllNodes.begin() == &EntryNode);
815  AllNodes.remove(AllNodes.begin());
816  while (!AllNodes.empty())
817    DeallocateNode(AllNodes.begin());
818}
819
820void SelectionDAG::clear() {
821  allnodes_clear();
822  OperandAllocator.Reset();
823  CSEMap.clear();
824
825  ExtendedValueTypeNodes.clear();
826  ExternalSymbols.clear();
827  TargetExternalSymbols.clear();
828  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
829            static_cast<CondCodeSDNode*>(0));
830  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
831            static_cast<SDNode*>(0));
832
833  EntryNode.UseList = 0;
834  AllNodes.push_back(&EntryNode);
835  Root = getEntryNode();
836  Ordering->clear();
837  DbgInfo->clear();
838}
839
840SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
841  return VT.bitsGT(Op.getValueType()) ?
842    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
843    getNode(ISD::TRUNCATE, DL, VT, Op);
844}
845
846SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
847  return VT.bitsGT(Op.getValueType()) ?
848    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
849    getNode(ISD::TRUNCATE, DL, VT, Op);
850}
851
852SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
853  assert(!VT.isVector() &&
854         "getZeroExtendInReg should use the vector element type instead of "
855         "the vector type!");
856  if (Op.getValueType() == VT) return Op;
857  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
858  APInt Imm = APInt::getLowBitsSet(BitWidth,
859                                   VT.getSizeInBits());
860  return getNode(ISD::AND, DL, Op.getValueType(), Op,
861                 getConstant(Imm, Op.getValueType()));
862}
863
864/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
865///
866SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
867  EVT EltVT = VT.getScalarType();
868  SDValue NegOne =
869    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
870  return getNode(ISD::XOR, DL, VT, Val, NegOne);
871}
872
873SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
874  EVT EltVT = VT.getScalarType();
875  assert((EltVT.getSizeInBits() >= 64 ||
876         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
877         "getConstant with a uint64_t value that doesn't fit in the type!");
878  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
879}
880
881SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
882  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
883}
884
885SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
886  assert(VT.isInteger() && "Cannot create FP integer constant!");
887
888  EVT EltVT = VT.getScalarType();
889  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
890         "APInt size does not match type size!");
891
892  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
893  FoldingSetNodeID ID;
894  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
895  ID.AddPointer(&Val);
896  void *IP = 0;
897  SDNode *N = NULL;
898  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
899    if (!VT.isVector())
900      return SDValue(N, 0);
901
902  if (!N) {
903    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
904    CSEMap.InsertNode(N, IP);
905    AllNodes.push_back(N);
906  }
907
908  SDValue Result(N, 0);
909  if (VT.isVector()) {
910    SmallVector<SDValue, 8> Ops;
911    Ops.assign(VT.getVectorNumElements(), Result);
912    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
913  }
914  return Result;
915}
916
917SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
918  return getConstant(Val, TLI.getPointerTy(), isTarget);
919}
920
921
922SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
923  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
924}
925
926SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
927  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
928
929  EVT EltVT = VT.getScalarType();
930
931  // Do the map lookup using the actual bit pattern for the floating point
932  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
933  // we don't have issues with SNANs.
934  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
935  FoldingSetNodeID ID;
936  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
937  ID.AddPointer(&V);
938  void *IP = 0;
939  SDNode *N = NULL;
940  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
941    if (!VT.isVector())
942      return SDValue(N, 0);
943
944  if (!N) {
945    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
946    CSEMap.InsertNode(N, IP);
947    AllNodes.push_back(N);
948  }
949
950  SDValue Result(N, 0);
951  if (VT.isVector()) {
952    SmallVector<SDValue, 8> Ops;
953    Ops.assign(VT.getVectorNumElements(), Result);
954    // FIXME DebugLoc info might be appropriate here
955    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
956  }
957  return Result;
958}
959
960SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
961  EVT EltVT = VT.getScalarType();
962  if (EltVT==MVT::f32)
963    return getConstantFP(APFloat((float)Val), VT, isTarget);
964  else if (EltVT==MVT::f64)
965    return getConstantFP(APFloat(Val), VT, isTarget);
966  else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
967    bool ignored;
968    APFloat apf = APFloat(Val);
969    apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
970                &ignored);
971    return getConstantFP(apf, VT, isTarget);
972  } else {
973    assert(0 && "Unsupported type in getConstantFP");
974    return SDValue();
975  }
976}
977
978SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
979                                       EVT VT, int64_t Offset,
980                                       bool isTargetGA,
981                                       unsigned char TargetFlags) {
982  assert((TargetFlags == 0 || isTargetGA) &&
983         "Cannot set target flags on target-independent globals");
984
985  // Truncate (with sign-extension) the offset value to the pointer size.
986  EVT PTy = TLI.getPointerTy();
987  unsigned BitWidth = PTy.getSizeInBits();
988  if (BitWidth < 64)
989    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
990
991  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
992  if (!GVar) {
993    // If GV is an alias then use the aliasee for determining thread-localness.
994    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
995      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
996  }
997
998  unsigned Opc;
999  if (GVar && GVar->isThreadLocal())
1000    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1001  else
1002    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1003
1004  FoldingSetNodeID ID;
1005  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1006  ID.AddPointer(GV);
1007  ID.AddInteger(Offset);
1008  ID.AddInteger(TargetFlags);
1009  void *IP = 0;
1010  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1011    return SDValue(E, 0);
1012
1013  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
1014                                                      Offset, TargetFlags);
1015  CSEMap.InsertNode(N, IP);
1016  AllNodes.push_back(N);
1017  return SDValue(N, 0);
1018}
1019
1020SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1021  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1022  FoldingSetNodeID ID;
1023  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1024  ID.AddInteger(FI);
1025  void *IP = 0;
1026  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1027    return SDValue(E, 0);
1028
1029  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1030  CSEMap.InsertNode(N, IP);
1031  AllNodes.push_back(N);
1032  return SDValue(N, 0);
1033}
1034
1035SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1036                                   unsigned char TargetFlags) {
1037  assert((TargetFlags == 0 || isTarget) &&
1038         "Cannot set target flags on target-independent jump tables");
1039  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1040  FoldingSetNodeID ID;
1041  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1042  ID.AddInteger(JTI);
1043  ID.AddInteger(TargetFlags);
1044  void *IP = 0;
1045  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1046    return SDValue(E, 0);
1047
1048  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1049                                                  TargetFlags);
1050  CSEMap.InsertNode(N, IP);
1051  AllNodes.push_back(N);
1052  return SDValue(N, 0);
1053}
1054
1055SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1056                                      unsigned Alignment, int Offset,
1057                                      bool isTarget,
1058                                      unsigned char TargetFlags) {
1059  assert((TargetFlags == 0 || isTarget) &&
1060         "Cannot set target flags on target-independent globals");
1061  if (Alignment == 0)
1062    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1063  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1064  FoldingSetNodeID ID;
1065  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1066  ID.AddInteger(Alignment);
1067  ID.AddInteger(Offset);
1068  ID.AddPointer(C);
1069  ID.AddInteger(TargetFlags);
1070  void *IP = 0;
1071  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1072    return SDValue(E, 0);
1073
1074  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1075                                                     Alignment, TargetFlags);
1076  CSEMap.InsertNode(N, IP);
1077  AllNodes.push_back(N);
1078  return SDValue(N, 0);
1079}
1080
1081
1082SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1083                                      unsigned Alignment, int Offset,
1084                                      bool isTarget,
1085                                      unsigned char TargetFlags) {
1086  assert((TargetFlags == 0 || isTarget) &&
1087         "Cannot set target flags on target-independent globals");
1088  if (Alignment == 0)
1089    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1090  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1091  FoldingSetNodeID ID;
1092  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1093  ID.AddInteger(Alignment);
1094  ID.AddInteger(Offset);
1095  C->AddSelectionDAGCSEId(ID);
1096  ID.AddInteger(TargetFlags);
1097  void *IP = 0;
1098  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1099    return SDValue(E, 0);
1100
1101  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1102                                                     Alignment, TargetFlags);
1103  CSEMap.InsertNode(N, IP);
1104  AllNodes.push_back(N);
1105  return SDValue(N, 0);
1106}
1107
1108SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1109  FoldingSetNodeID ID;
1110  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1111  ID.AddPointer(MBB);
1112  void *IP = 0;
1113  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1114    return SDValue(E, 0);
1115
1116  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1117  CSEMap.InsertNode(N, IP);
1118  AllNodes.push_back(N);
1119  return SDValue(N, 0);
1120}
1121
1122SDValue SelectionDAG::getValueType(EVT VT) {
1123  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1124      ValueTypeNodes.size())
1125    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1126
1127  SDNode *&N = VT.isExtended() ?
1128    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1129
1130  if (N) return SDValue(N, 0);
1131  N = new (NodeAllocator) VTSDNode(VT);
1132  AllNodes.push_back(N);
1133  return SDValue(N, 0);
1134}
1135
1136SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1137  SDNode *&N = ExternalSymbols[Sym];
1138  if (N) return SDValue(N, 0);
1139  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1140  AllNodes.push_back(N);
1141  return SDValue(N, 0);
1142}
1143
1144SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1145                                              unsigned char TargetFlags) {
1146  SDNode *&N =
1147    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1148                                                               TargetFlags)];
1149  if (N) return SDValue(N, 0);
1150  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1151  AllNodes.push_back(N);
1152  return SDValue(N, 0);
1153}
1154
1155SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1156  if ((unsigned)Cond >= CondCodeNodes.size())
1157    CondCodeNodes.resize(Cond+1);
1158
1159  if (CondCodeNodes[Cond] == 0) {
1160    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1161    CondCodeNodes[Cond] = N;
1162    AllNodes.push_back(N);
1163  }
1164
1165  return SDValue(CondCodeNodes[Cond], 0);
1166}
1167
1168// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1169// the shuffle mask M that point at N1 to point at N2, and indices that point
1170// N2 to point at N1.
1171static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1172  std::swap(N1, N2);
1173  int NElts = M.size();
1174  for (int i = 0; i != NElts; ++i) {
1175    if (M[i] >= NElts)
1176      M[i] -= NElts;
1177    else if (M[i] >= 0)
1178      M[i] += NElts;
1179  }
1180}
1181
1182SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1183                                       SDValue N2, const int *Mask) {
1184  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1185  assert(VT.isVector() && N1.getValueType().isVector() &&
1186         "Vector Shuffle VTs must be a vectors");
1187  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1188         && "Vector Shuffle VTs must have same element type");
1189
1190  // Canonicalize shuffle undef, undef -> undef
1191  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1192    return getUNDEF(VT);
1193
1194  // Validate that all indices in Mask are within the range of the elements
1195  // input to the shuffle.
1196  unsigned NElts = VT.getVectorNumElements();
1197  SmallVector<int, 8> MaskVec;
1198  for (unsigned i = 0; i != NElts; ++i) {
1199    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1200    MaskVec.push_back(Mask[i]);
1201  }
1202
1203  // Canonicalize shuffle v, v -> v, undef
1204  if (N1 == N2) {
1205    N2 = getUNDEF(VT);
1206    for (unsigned i = 0; i != NElts; ++i)
1207      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1208  }
1209
1210  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1211  if (N1.getOpcode() == ISD::UNDEF)
1212    commuteShuffle(N1, N2, MaskVec);
1213
1214  // Canonicalize all index into lhs, -> shuffle lhs, undef
1215  // Canonicalize all index into rhs, -> shuffle rhs, undef
1216  bool AllLHS = true, AllRHS = true;
1217  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1218  for (unsigned i = 0; i != NElts; ++i) {
1219    if (MaskVec[i] >= (int)NElts) {
1220      if (N2Undef)
1221        MaskVec[i] = -1;
1222      else
1223        AllLHS = false;
1224    } else if (MaskVec[i] >= 0) {
1225      AllRHS = false;
1226    }
1227  }
1228  if (AllLHS && AllRHS)
1229    return getUNDEF(VT);
1230  if (AllLHS && !N2Undef)
1231    N2 = getUNDEF(VT);
1232  if (AllRHS) {
1233    N1 = getUNDEF(VT);
1234    commuteShuffle(N1, N2, MaskVec);
1235  }
1236
1237  // If Identity shuffle, or all shuffle in to undef, return that node.
1238  bool AllUndef = true;
1239  bool Identity = true;
1240  for (unsigned i = 0; i != NElts; ++i) {
1241    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1242    if (MaskVec[i] >= 0) AllUndef = false;
1243  }
1244  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1245    return N1;
1246  if (AllUndef)
1247    return getUNDEF(VT);
1248
1249  FoldingSetNodeID ID;
1250  SDValue Ops[2] = { N1, N2 };
1251  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1252  for (unsigned i = 0; i != NElts; ++i)
1253    ID.AddInteger(MaskVec[i]);
1254
1255  void* IP = 0;
1256  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1257    return SDValue(E, 0);
1258
1259  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1260  // SDNode doesn't have access to it.  This memory will be "leaked" when
1261  // the node is deallocated, but recovered when the NodeAllocator is released.
1262  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1263  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1264
1265  ShuffleVectorSDNode *N =
1266    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1267  CSEMap.InsertNode(N, IP);
1268  AllNodes.push_back(N);
1269  return SDValue(N, 0);
1270}
1271
1272SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1273                                       SDValue Val, SDValue DTy,
1274                                       SDValue STy, SDValue Rnd, SDValue Sat,
1275                                       ISD::CvtCode Code) {
1276  // If the src and dest types are the same and the conversion is between
1277  // integer types of the same sign or two floats, no conversion is necessary.
1278  if (DTy == STy &&
1279      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1280    return Val;
1281
1282  FoldingSetNodeID ID;
1283  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1284  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1285  void* IP = 0;
1286  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1287    return SDValue(E, 0);
1288
1289  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1290                                                           Code);
1291  CSEMap.InsertNode(N, IP);
1292  AllNodes.push_back(N);
1293  return SDValue(N, 0);
1294}
1295
1296SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1297  FoldingSetNodeID ID;
1298  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1299  ID.AddInteger(RegNo);
1300  void *IP = 0;
1301  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1302    return SDValue(E, 0);
1303
1304  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1305  CSEMap.InsertNode(N, IP);
1306  AllNodes.push_back(N);
1307  return SDValue(N, 0);
1308}
1309
1310SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1311  FoldingSetNodeID ID;
1312  SDValue Ops[] = { Root };
1313  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1314  ID.AddPointer(Label);
1315  void *IP = 0;
1316  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1317    return SDValue(E, 0);
1318
1319  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1320  CSEMap.InsertNode(N, IP);
1321  AllNodes.push_back(N);
1322  return SDValue(N, 0);
1323}
1324
1325
1326SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1327                                      bool isTarget,
1328                                      unsigned char TargetFlags) {
1329  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1330
1331  FoldingSetNodeID ID;
1332  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1333  ID.AddPointer(BA);
1334  ID.AddInteger(TargetFlags);
1335  void *IP = 0;
1336  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1337    return SDValue(E, 0);
1338
1339  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1340  CSEMap.InsertNode(N, IP);
1341  AllNodes.push_back(N);
1342  return SDValue(N, 0);
1343}
1344
1345SDValue SelectionDAG::getSrcValue(const Value *V) {
1346  assert((!V || V->getType()->isPointerTy()) &&
1347         "SrcValue is not a pointer?");
1348
1349  FoldingSetNodeID ID;
1350  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1351  ID.AddPointer(V);
1352
1353  void *IP = 0;
1354  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1355    return SDValue(E, 0);
1356
1357  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1358  CSEMap.InsertNode(N, IP);
1359  AllNodes.push_back(N);
1360  return SDValue(N, 0);
1361}
1362
1363/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1364SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1365  FoldingSetNodeID ID;
1366  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1367  ID.AddPointer(MD);
1368
1369  void *IP = 0;
1370  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1371    return SDValue(E, 0);
1372
1373  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1374  CSEMap.InsertNode(N, IP);
1375  AllNodes.push_back(N);
1376  return SDValue(N, 0);
1377}
1378
1379
1380/// getShiftAmountOperand - Return the specified value casted to
1381/// the target's desired shift amount type.
1382SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1383  EVT OpTy = Op.getValueType();
1384  MVT ShTy = TLI.getShiftAmountTy();
1385  if (OpTy == ShTy || OpTy.isVector()) return Op;
1386
1387  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1388  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1389}
1390
1391/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1392/// specified value type.
1393SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1394  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1395  unsigned ByteSize = VT.getStoreSize();
1396  const Type *Ty = VT.getTypeForEVT(*getContext());
1397  unsigned StackAlign =
1398  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1399
1400  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1401  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1402}
1403
1404/// CreateStackTemporary - Create a stack temporary suitable for holding
1405/// either of the specified value types.
1406SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1407  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1408                            VT2.getStoreSizeInBits())/8;
1409  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1410  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1411  const TargetData *TD = TLI.getTargetData();
1412  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1413                            TD->getPrefTypeAlignment(Ty2));
1414
1415  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1416  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1417  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1418}
1419
1420SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1421                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1422  // These setcc operations always fold.
1423  switch (Cond) {
1424  default: break;
1425  case ISD::SETFALSE:
1426  case ISD::SETFALSE2: return getConstant(0, VT);
1427  case ISD::SETTRUE:
1428  case ISD::SETTRUE2:  return getConstant(1, VT);
1429
1430  case ISD::SETOEQ:
1431  case ISD::SETOGT:
1432  case ISD::SETOGE:
1433  case ISD::SETOLT:
1434  case ISD::SETOLE:
1435  case ISD::SETONE:
1436  case ISD::SETO:
1437  case ISD::SETUO:
1438  case ISD::SETUEQ:
1439  case ISD::SETUNE:
1440    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1441    break;
1442  }
1443
1444  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1445    const APInt &C2 = N2C->getAPIntValue();
1446    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1447      const APInt &C1 = N1C->getAPIntValue();
1448
1449      switch (Cond) {
1450      default: llvm_unreachable("Unknown integer setcc!");
1451      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1452      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1453      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1454      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1455      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1456      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1457      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1458      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1459      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1460      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1461      }
1462    }
1463  }
1464  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1465    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1466      // No compile time operations on this type yet.
1467      if (N1C->getValueType(0) == MVT::ppcf128)
1468        return SDValue();
1469
1470      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1471      switch (Cond) {
1472      default: break;
1473      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1474                          return getUNDEF(VT);
1475                        // fall through
1476      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1477      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1478                          return getUNDEF(VT);
1479                        // fall through
1480      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1481                                           R==APFloat::cmpLessThan, VT);
1482      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1483                          return getUNDEF(VT);
1484                        // fall through
1485      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1486      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1487                          return getUNDEF(VT);
1488                        // fall through
1489      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1490      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1491                          return getUNDEF(VT);
1492                        // fall through
1493      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1494                                           R==APFloat::cmpEqual, VT);
1495      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1496                          return getUNDEF(VT);
1497                        // fall through
1498      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1499                                           R==APFloat::cmpEqual, VT);
1500      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1501      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1502      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1503                                           R==APFloat::cmpEqual, VT);
1504      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1505      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1506                                           R==APFloat::cmpLessThan, VT);
1507      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1508                                           R==APFloat::cmpUnordered, VT);
1509      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1510      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1511      }
1512    } else {
1513      // Ensure that the constant occurs on the RHS.
1514      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1515    }
1516  }
1517
1518  // Could not fold it.
1519  return SDValue();
1520}
1521
1522/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1523/// use this predicate to simplify operations downstream.
1524bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1525  // This predicate is not safe for vector operations.
1526  if (Op.getValueType().isVector())
1527    return false;
1528
1529  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1530  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1531}
1532
1533/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1534/// this predicate to simplify operations downstream.  Mask is known to be zero
1535/// for bits that V cannot have.
1536bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1537                                     unsigned Depth) const {
1538  APInt KnownZero, KnownOne;
1539  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1540  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1541  return (KnownZero & Mask) == Mask;
1542}
1543
1544/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1545/// known to be either zero or one and return them in the KnownZero/KnownOne
1546/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1547/// processing.
1548void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1549                                     APInt &KnownZero, APInt &KnownOne,
1550                                     unsigned Depth) const {
1551  unsigned BitWidth = Mask.getBitWidth();
1552  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1553         "Mask size mismatches value type size!");
1554
1555  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1556  if (Depth == 6 || Mask == 0)
1557    return;  // Limit search depth.
1558
1559  APInt KnownZero2, KnownOne2;
1560
1561  switch (Op.getOpcode()) {
1562  case ISD::Constant:
1563    // We know all of the bits for a constant!
1564    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1565    KnownZero = ~KnownOne & Mask;
1566    return;
1567  case ISD::AND:
1568    // If either the LHS or the RHS are Zero, the result is zero.
1569    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1570    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1571                      KnownZero2, KnownOne2, Depth+1);
1572    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1573    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1574
1575    // Output known-1 bits are only known if set in both the LHS & RHS.
1576    KnownOne &= KnownOne2;
1577    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1578    KnownZero |= KnownZero2;
1579    return;
1580  case ISD::OR:
1581    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1582    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1583                      KnownZero2, KnownOne2, Depth+1);
1584    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1585    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1586
1587    // Output known-0 bits are only known if clear in both the LHS & RHS.
1588    KnownZero &= KnownZero2;
1589    // Output known-1 are known to be set if set in either the LHS | RHS.
1590    KnownOne |= KnownOne2;
1591    return;
1592  case ISD::XOR: {
1593    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1594    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1595    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1596    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1597
1598    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1599    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1600    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1601    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1602    KnownZero = KnownZeroOut;
1603    return;
1604  }
1605  case ISD::MUL: {
1606    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1607    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1608    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1609    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1610    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1611
1612    // If low bits are zero in either operand, output low known-0 bits.
1613    // Also compute a conserative estimate for high known-0 bits.
1614    // More trickiness is possible, but this is sufficient for the
1615    // interesting case of alignment computation.
1616    KnownOne.clear();
1617    unsigned TrailZ = KnownZero.countTrailingOnes() +
1618                      KnownZero2.countTrailingOnes();
1619    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1620                               KnownZero2.countLeadingOnes(),
1621                               BitWidth) - BitWidth;
1622
1623    TrailZ = std::min(TrailZ, BitWidth);
1624    LeadZ = std::min(LeadZ, BitWidth);
1625    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1626                APInt::getHighBitsSet(BitWidth, LeadZ);
1627    KnownZero &= Mask;
1628    return;
1629  }
1630  case ISD::UDIV: {
1631    // For the purposes of computing leading zeros we can conservatively
1632    // treat a udiv as a logical right shift by the power of 2 known to
1633    // be less than the denominator.
1634    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1635    ComputeMaskedBits(Op.getOperand(0),
1636                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1637    unsigned LeadZ = KnownZero2.countLeadingOnes();
1638
1639    KnownOne2.clear();
1640    KnownZero2.clear();
1641    ComputeMaskedBits(Op.getOperand(1),
1642                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1643    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1644    if (RHSUnknownLeadingOnes != BitWidth)
1645      LeadZ = std::min(BitWidth,
1646                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1647
1648    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1649    return;
1650  }
1651  case ISD::SELECT:
1652    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1653    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1654    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1655    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1656
1657    // Only known if known in both the LHS and RHS.
1658    KnownOne &= KnownOne2;
1659    KnownZero &= KnownZero2;
1660    return;
1661  case ISD::SELECT_CC:
1662    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1663    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1664    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1665    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1666
1667    // Only known if known in both the LHS and RHS.
1668    KnownOne &= KnownOne2;
1669    KnownZero &= KnownZero2;
1670    return;
1671  case ISD::SADDO:
1672  case ISD::UADDO:
1673  case ISD::SSUBO:
1674  case ISD::USUBO:
1675  case ISD::SMULO:
1676  case ISD::UMULO:
1677    if (Op.getResNo() != 1)
1678      return;
1679    // The boolean result conforms to getBooleanContents.  Fall through.
1680  case ISD::SETCC:
1681    // If we know the result of a setcc has the top bits zero, use this info.
1682    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1683        BitWidth > 1)
1684      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1685    return;
1686  case ISD::SHL:
1687    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1688    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1689      unsigned ShAmt = SA->getZExtValue();
1690
1691      // If the shift count is an invalid immediate, don't do anything.
1692      if (ShAmt >= BitWidth)
1693        return;
1694
1695      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1696                        KnownZero, KnownOne, Depth+1);
1697      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1698      KnownZero <<= ShAmt;
1699      KnownOne  <<= ShAmt;
1700      // low bits known zero.
1701      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1702    }
1703    return;
1704  case ISD::SRL:
1705    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1706    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1707      unsigned ShAmt = SA->getZExtValue();
1708
1709      // If the shift count is an invalid immediate, don't do anything.
1710      if (ShAmt >= BitWidth)
1711        return;
1712
1713      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1714                        KnownZero, KnownOne, Depth+1);
1715      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1716      KnownZero = KnownZero.lshr(ShAmt);
1717      KnownOne  = KnownOne.lshr(ShAmt);
1718
1719      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1720      KnownZero |= HighBits;  // High bits known zero.
1721    }
1722    return;
1723  case ISD::SRA:
1724    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1725      unsigned ShAmt = SA->getZExtValue();
1726
1727      // If the shift count is an invalid immediate, don't do anything.
1728      if (ShAmt >= BitWidth)
1729        return;
1730
1731      APInt InDemandedMask = (Mask << ShAmt);
1732      // If any of the demanded bits are produced by the sign extension, we also
1733      // demand the input sign bit.
1734      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1735      if (HighBits.getBoolValue())
1736        InDemandedMask |= APInt::getSignBit(BitWidth);
1737
1738      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1739                        Depth+1);
1740      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1741      KnownZero = KnownZero.lshr(ShAmt);
1742      KnownOne  = KnownOne.lshr(ShAmt);
1743
1744      // Handle the sign bits.
1745      APInt SignBit = APInt::getSignBit(BitWidth);
1746      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1747
1748      if (KnownZero.intersects(SignBit)) {
1749        KnownZero |= HighBits;  // New bits are known zero.
1750      } else if (KnownOne.intersects(SignBit)) {
1751        KnownOne  |= HighBits;  // New bits are known one.
1752      }
1753    }
1754    return;
1755  case ISD::SIGN_EXTEND_INREG: {
1756    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1757    unsigned EBits = EVT.getScalarType().getSizeInBits();
1758
1759    // Sign extension.  Compute the demanded bits in the result that are not
1760    // present in the input.
1761    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1762
1763    APInt InSignBit = APInt::getSignBit(EBits);
1764    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1765
1766    // If the sign extended bits are demanded, we know that the sign
1767    // bit is demanded.
1768    InSignBit.zext(BitWidth);
1769    if (NewBits.getBoolValue())
1770      InputDemandedBits |= InSignBit;
1771
1772    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1773                      KnownZero, KnownOne, Depth+1);
1774    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1775
1776    // If the sign bit of the input is known set or clear, then we know the
1777    // top bits of the result.
1778    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1779      KnownZero |= NewBits;
1780      KnownOne  &= ~NewBits;
1781    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1782      KnownOne  |= NewBits;
1783      KnownZero &= ~NewBits;
1784    } else {                              // Input sign bit unknown
1785      KnownZero &= ~NewBits;
1786      KnownOne  &= ~NewBits;
1787    }
1788    return;
1789  }
1790  case ISD::CTTZ:
1791  case ISD::CTLZ:
1792  case ISD::CTPOP: {
1793    unsigned LowBits = Log2_32(BitWidth)+1;
1794    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1795    KnownOne.clear();
1796    return;
1797  }
1798  case ISD::LOAD: {
1799    if (ISD::isZEXTLoad(Op.getNode())) {
1800      LoadSDNode *LD = cast<LoadSDNode>(Op);
1801      EVT VT = LD->getMemoryVT();
1802      unsigned MemBits = VT.getScalarType().getSizeInBits();
1803      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1804    }
1805    return;
1806  }
1807  case ISD::ZERO_EXTEND: {
1808    EVT InVT = Op.getOperand(0).getValueType();
1809    unsigned InBits = InVT.getScalarType().getSizeInBits();
1810    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1811    APInt InMask    = Mask;
1812    InMask.trunc(InBits);
1813    KnownZero.trunc(InBits);
1814    KnownOne.trunc(InBits);
1815    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1816    KnownZero.zext(BitWidth);
1817    KnownOne.zext(BitWidth);
1818    KnownZero |= NewBits;
1819    return;
1820  }
1821  case ISD::SIGN_EXTEND: {
1822    EVT InVT = Op.getOperand(0).getValueType();
1823    unsigned InBits = InVT.getScalarType().getSizeInBits();
1824    APInt InSignBit = APInt::getSignBit(InBits);
1825    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1826    APInt InMask = Mask;
1827    InMask.trunc(InBits);
1828
1829    // If any of the sign extended bits are demanded, we know that the sign
1830    // bit is demanded. Temporarily set this bit in the mask for our callee.
1831    if (NewBits.getBoolValue())
1832      InMask |= InSignBit;
1833
1834    KnownZero.trunc(InBits);
1835    KnownOne.trunc(InBits);
1836    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1837
1838    // Note if the sign bit is known to be zero or one.
1839    bool SignBitKnownZero = KnownZero.isNegative();
1840    bool SignBitKnownOne  = KnownOne.isNegative();
1841    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1842           "Sign bit can't be known to be both zero and one!");
1843
1844    // If the sign bit wasn't actually demanded by our caller, we don't
1845    // want it set in the KnownZero and KnownOne result values. Reset the
1846    // mask and reapply it to the result values.
1847    InMask = Mask;
1848    InMask.trunc(InBits);
1849    KnownZero &= InMask;
1850    KnownOne  &= InMask;
1851
1852    KnownZero.zext(BitWidth);
1853    KnownOne.zext(BitWidth);
1854
1855    // If the sign bit is known zero or one, the top bits match.
1856    if (SignBitKnownZero)
1857      KnownZero |= NewBits;
1858    else if (SignBitKnownOne)
1859      KnownOne  |= NewBits;
1860    return;
1861  }
1862  case ISD::ANY_EXTEND: {
1863    EVT InVT = Op.getOperand(0).getValueType();
1864    unsigned InBits = InVT.getScalarType().getSizeInBits();
1865    APInt InMask = Mask;
1866    InMask.trunc(InBits);
1867    KnownZero.trunc(InBits);
1868    KnownOne.trunc(InBits);
1869    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1870    KnownZero.zext(BitWidth);
1871    KnownOne.zext(BitWidth);
1872    return;
1873  }
1874  case ISD::TRUNCATE: {
1875    EVT InVT = Op.getOperand(0).getValueType();
1876    unsigned InBits = InVT.getScalarType().getSizeInBits();
1877    APInt InMask = Mask;
1878    InMask.zext(InBits);
1879    KnownZero.zext(InBits);
1880    KnownOne.zext(InBits);
1881    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1882    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1883    KnownZero.trunc(BitWidth);
1884    KnownOne.trunc(BitWidth);
1885    break;
1886  }
1887  case ISD::AssertZext: {
1888    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1889    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1890    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1891                      KnownOne, Depth+1);
1892    KnownZero |= (~InMask) & Mask;
1893    return;
1894  }
1895  case ISD::FGETSIGN:
1896    // All bits are zero except the low bit.
1897    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1898    return;
1899
1900  case ISD::SUB: {
1901    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1902      // We know that the top bits of C-X are clear if X contains less bits
1903      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1904      // positive if we can prove that X is >= 0 and < 16.
1905      if (CLHS->getAPIntValue().isNonNegative()) {
1906        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1907        // NLZ can't be BitWidth with no sign bit
1908        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1909        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1910                          Depth+1);
1911
1912        // If all of the MaskV bits are known to be zero, then we know the
1913        // output top bits are zero, because we now know that the output is
1914        // from [0-C].
1915        if ((KnownZero2 & MaskV) == MaskV) {
1916          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1917          // Top bits known zero.
1918          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1919        }
1920      }
1921    }
1922  }
1923  // fall through
1924  case ISD::ADD: {
1925    // Output known-0 bits are known if clear or set in both the low clear bits
1926    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1927    // low 3 bits clear.
1928    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1929                                       BitWidth - Mask.countLeadingZeros());
1930    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1931    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1932    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1933
1934    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1935    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1936    KnownZeroOut = std::min(KnownZeroOut,
1937                            KnownZero2.countTrailingOnes());
1938
1939    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1940    return;
1941  }
1942  case ISD::SREM:
1943    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1944      const APInt &RA = Rem->getAPIntValue().abs();
1945      if (RA.isPowerOf2()) {
1946        APInt LowBits = RA - 1;
1947        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1948        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1949
1950        // The low bits of the first operand are unchanged by the srem.
1951        KnownZero = KnownZero2 & LowBits;
1952        KnownOne = KnownOne2 & LowBits;
1953
1954        // If the first operand is non-negative or has all low bits zero, then
1955        // the upper bits are all zero.
1956        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1957          KnownZero |= ~LowBits;
1958
1959        // If the first operand is negative and not all low bits are zero, then
1960        // the upper bits are all one.
1961        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1962          KnownOne |= ~LowBits;
1963
1964        KnownZero &= Mask;
1965        KnownOne &= Mask;
1966
1967        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1968      }
1969    }
1970    return;
1971  case ISD::UREM: {
1972    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1973      const APInt &RA = Rem->getAPIntValue();
1974      if (RA.isPowerOf2()) {
1975        APInt LowBits = (RA - 1);
1976        APInt Mask2 = LowBits & Mask;
1977        KnownZero |= ~LowBits & Mask;
1978        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1979        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1980        break;
1981      }
1982    }
1983
1984    // Since the result is less than or equal to either operand, any leading
1985    // zero bits in either operand must also exist in the result.
1986    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1987    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1988                      Depth+1);
1989    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1990                      Depth+1);
1991
1992    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1993                                KnownZero2.countLeadingOnes());
1994    KnownOne.clear();
1995    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1996    return;
1997  }
1998  default:
1999    // Allow the target to implement this method for its nodes.
2000    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2001  case ISD::INTRINSIC_WO_CHAIN:
2002  case ISD::INTRINSIC_W_CHAIN:
2003  case ISD::INTRINSIC_VOID:
2004      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2005                                         Depth);
2006    }
2007    return;
2008  }
2009}
2010
2011/// ComputeNumSignBits - Return the number of times the sign bit of the
2012/// register is replicated into the other bits.  We know that at least 1 bit
2013/// is always equal to the sign bit (itself), but other cases can give us
2014/// information.  For example, immediately after an "SRA X, 2", we know that
2015/// the top 3 bits are all equal to each other, so we return 3.
2016unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2017  EVT VT = Op.getValueType();
2018  assert(VT.isInteger() && "Invalid VT!");
2019  unsigned VTBits = VT.getScalarType().getSizeInBits();
2020  unsigned Tmp, Tmp2;
2021  unsigned FirstAnswer = 1;
2022
2023  if (Depth == 6)
2024    return 1;  // Limit search depth.
2025
2026  switch (Op.getOpcode()) {
2027  default: break;
2028  case ISD::AssertSext:
2029    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2030    return VTBits-Tmp+1;
2031  case ISD::AssertZext:
2032    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2033    return VTBits-Tmp;
2034
2035  case ISD::Constant: {
2036    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2037    // If negative, return # leading ones.
2038    if (Val.isNegative())
2039      return Val.countLeadingOnes();
2040
2041    // Return # leading zeros.
2042    return Val.countLeadingZeros();
2043  }
2044
2045  case ISD::SIGN_EXTEND:
2046    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2047    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2048
2049  case ISD::SIGN_EXTEND_INREG:
2050    // Max of the input and what this extends.
2051    Tmp =
2052      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2053    Tmp = VTBits-Tmp+1;
2054
2055    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2056    return std::max(Tmp, Tmp2);
2057
2058  case ISD::SRA:
2059    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2060    // SRA X, C   -> adds C sign bits.
2061    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2062      Tmp += C->getZExtValue();
2063      if (Tmp > VTBits) Tmp = VTBits;
2064    }
2065    return Tmp;
2066  case ISD::SHL:
2067    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2068      // shl destroys sign bits.
2069      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2070      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2071          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2072      return Tmp - C->getZExtValue();
2073    }
2074    break;
2075  case ISD::AND:
2076  case ISD::OR:
2077  case ISD::XOR:    // NOT is handled here.
2078    // Logical binary ops preserve the number of sign bits at the worst.
2079    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2080    if (Tmp != 1) {
2081      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2082      FirstAnswer = std::min(Tmp, Tmp2);
2083      // We computed what we know about the sign bits as our first
2084      // answer. Now proceed to the generic code that uses
2085      // ComputeMaskedBits, and pick whichever answer is better.
2086    }
2087    break;
2088
2089  case ISD::SELECT:
2090    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2091    if (Tmp == 1) return 1;  // Early out.
2092    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2093    return std::min(Tmp, Tmp2);
2094
2095  case ISD::SADDO:
2096  case ISD::UADDO:
2097  case ISD::SSUBO:
2098  case ISD::USUBO:
2099  case ISD::SMULO:
2100  case ISD::UMULO:
2101    if (Op.getResNo() != 1)
2102      break;
2103    // The boolean result conforms to getBooleanContents.  Fall through.
2104  case ISD::SETCC:
2105    // If setcc returns 0/-1, all bits are sign bits.
2106    if (TLI.getBooleanContents() ==
2107        TargetLowering::ZeroOrNegativeOneBooleanContent)
2108      return VTBits;
2109    break;
2110  case ISD::ROTL:
2111  case ISD::ROTR:
2112    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2113      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2114
2115      // Handle rotate right by N like a rotate left by 32-N.
2116      if (Op.getOpcode() == ISD::ROTR)
2117        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2118
2119      // If we aren't rotating out all of the known-in sign bits, return the
2120      // number that are left.  This handles rotl(sext(x), 1) for example.
2121      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2122      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2123    }
2124    break;
2125  case ISD::ADD:
2126    // Add can have at most one carry bit.  Thus we know that the output
2127    // is, at worst, one more bit than the inputs.
2128    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2129    if (Tmp == 1) return 1;  // Early out.
2130
2131    // Special case decrementing a value (ADD X, -1):
2132    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2133      if (CRHS->isAllOnesValue()) {
2134        APInt KnownZero, KnownOne;
2135        APInt Mask = APInt::getAllOnesValue(VTBits);
2136        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2137
2138        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2139        // sign bits set.
2140        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2141          return VTBits;
2142
2143        // If we are subtracting one from a positive number, there is no carry
2144        // out of the result.
2145        if (KnownZero.isNegative())
2146          return Tmp;
2147      }
2148
2149    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2150    if (Tmp2 == 1) return 1;
2151      return std::min(Tmp, Tmp2)-1;
2152    break;
2153
2154  case ISD::SUB:
2155    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2156    if (Tmp2 == 1) return 1;
2157
2158    // Handle NEG.
2159    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2160      if (CLHS->isNullValue()) {
2161        APInt KnownZero, KnownOne;
2162        APInt Mask = APInt::getAllOnesValue(VTBits);
2163        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2164        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2165        // sign bits set.
2166        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2167          return VTBits;
2168
2169        // If the input is known to be positive (the sign bit is known clear),
2170        // the output of the NEG has the same number of sign bits as the input.
2171        if (KnownZero.isNegative())
2172          return Tmp2;
2173
2174        // Otherwise, we treat this like a SUB.
2175      }
2176
2177    // Sub can have at most one carry bit.  Thus we know that the output
2178    // is, at worst, one more bit than the inputs.
2179    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2180    if (Tmp == 1) return 1;  // Early out.
2181      return std::min(Tmp, Tmp2)-1;
2182    break;
2183  case ISD::TRUNCATE:
2184    // FIXME: it's tricky to do anything useful for this, but it is an important
2185    // case for targets like X86.
2186    break;
2187  }
2188
2189  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2190  if (Op.getOpcode() == ISD::LOAD) {
2191    LoadSDNode *LD = cast<LoadSDNode>(Op);
2192    unsigned ExtType = LD->getExtensionType();
2193    switch (ExtType) {
2194    default: break;
2195    case ISD::SEXTLOAD:    // '17' bits known
2196      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2197      return VTBits-Tmp+1;
2198    case ISD::ZEXTLOAD:    // '16' bits known
2199      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2200      return VTBits-Tmp;
2201    }
2202  }
2203
2204  // Allow the target to implement this method for its nodes.
2205  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2206      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2207      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2208      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2209    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2210    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2211  }
2212
2213  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2214  // use this information.
2215  APInt KnownZero, KnownOne;
2216  APInt Mask = APInt::getAllOnesValue(VTBits);
2217  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2218
2219  if (KnownZero.isNegative()) {        // sign bit is 0
2220    Mask = KnownZero;
2221  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2222    Mask = KnownOne;
2223  } else {
2224    // Nothing known.
2225    return FirstAnswer;
2226  }
2227
2228  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2229  // the number of identical bits in the top of the input value.
2230  Mask = ~Mask;
2231  Mask <<= Mask.getBitWidth()-VTBits;
2232  // Return # leading zeros.  We use 'min' here in case Val was zero before
2233  // shifting.  We don't want to return '64' as for an i32 "0".
2234  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2235}
2236
2237bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2238  // If we're told that NaNs won't happen, assume they won't.
2239  if (NoNaNsFPMath)
2240    return true;
2241
2242  // If the value is a constant, we can obviously see if it is a NaN or not.
2243  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2244    return !C->getValueAPF().isNaN();
2245
2246  // TODO: Recognize more cases here.
2247
2248  return false;
2249}
2250
2251bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2252  // If the value is a constant, we can obviously see if it is a zero or not.
2253  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2254    return !C->isZero();
2255
2256  // TODO: Recognize more cases here.
2257
2258  return false;
2259}
2260
2261bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2262  // Check the obvious case.
2263  if (A == B) return true;
2264
2265  // For for negative and positive zero.
2266  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2267    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2268      if (CA->isZero() && CB->isZero()) return true;
2269
2270  // Otherwise they may not be equal.
2271  return false;
2272}
2273
2274bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2275  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2276  if (!GA) return false;
2277  if (GA->getOffset() != 0) return false;
2278  const GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2279  if (!GV) return false;
2280  return MF->getMMI().hasDebugInfo();
2281}
2282
2283
2284/// getNode - Gets or creates the specified node.
2285///
2286SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2287  FoldingSetNodeID ID;
2288  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2289  void *IP = 0;
2290  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2291    return SDValue(E, 0);
2292
2293  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2294  CSEMap.InsertNode(N, IP);
2295
2296  AllNodes.push_back(N);
2297#ifndef NDEBUG
2298  VerifyNode(N);
2299#endif
2300  return SDValue(N, 0);
2301}
2302
2303SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2304                              EVT VT, SDValue Operand) {
2305  // Constant fold unary operations with an integer constant operand.
2306  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2307    const APInt &Val = C->getAPIntValue();
2308    switch (Opcode) {
2309    default: break;
2310    case ISD::SIGN_EXTEND:
2311      return getConstant(APInt(Val).sextOrTrunc(VT.getSizeInBits()), VT);
2312    case ISD::ANY_EXTEND:
2313    case ISD::ZERO_EXTEND:
2314    case ISD::TRUNCATE:
2315      return getConstant(APInt(Val).zextOrTrunc(VT.getSizeInBits()), VT);
2316    case ISD::UINT_TO_FP:
2317    case ISD::SINT_TO_FP: {
2318      const uint64_t zero[] = {0, 0};
2319      // No compile time operations on ppcf128.
2320      if (VT == MVT::ppcf128) break;
2321      APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2322      (void)apf.convertFromAPInt(Val,
2323                                 Opcode==ISD::SINT_TO_FP,
2324                                 APFloat::rmNearestTiesToEven);
2325      return getConstantFP(apf, VT);
2326    }
2327    case ISD::BIT_CONVERT:
2328      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2329        return getConstantFP(Val.bitsToFloat(), VT);
2330      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2331        return getConstantFP(Val.bitsToDouble(), VT);
2332      break;
2333    case ISD::BSWAP:
2334      return getConstant(Val.byteSwap(), VT);
2335    case ISD::CTPOP:
2336      return getConstant(Val.countPopulation(), VT);
2337    case ISD::CTLZ:
2338      return getConstant(Val.countLeadingZeros(), VT);
2339    case ISD::CTTZ:
2340      return getConstant(Val.countTrailingZeros(), VT);
2341    }
2342  }
2343
2344  // Constant fold unary operations with a floating point constant operand.
2345  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2346    APFloat V = C->getValueAPF();    // make copy
2347    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2348      switch (Opcode) {
2349      case ISD::FNEG:
2350        V.changeSign();
2351        return getConstantFP(V, VT);
2352      case ISD::FABS:
2353        V.clearSign();
2354        return getConstantFP(V, VT);
2355      case ISD::FP_ROUND:
2356      case ISD::FP_EXTEND: {
2357        bool ignored;
2358        // This can return overflow, underflow, or inexact; we don't care.
2359        // FIXME need to be more flexible about rounding mode.
2360        (void)V.convert(*EVTToAPFloatSemantics(VT),
2361                        APFloat::rmNearestTiesToEven, &ignored);
2362        return getConstantFP(V, VT);
2363      }
2364      case ISD::FP_TO_SINT:
2365      case ISD::FP_TO_UINT: {
2366        integerPart x[2];
2367        bool ignored;
2368        assert(integerPartWidth >= 64);
2369        // FIXME need to be more flexible about rounding mode.
2370        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2371                              Opcode==ISD::FP_TO_SINT,
2372                              APFloat::rmTowardZero, &ignored);
2373        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2374          break;
2375        APInt api(VT.getSizeInBits(), 2, x);
2376        return getConstant(api, VT);
2377      }
2378      case ISD::BIT_CONVERT:
2379        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2380          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2381        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2382          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2383        break;
2384      }
2385    }
2386  }
2387
2388  unsigned OpOpcode = Operand.getNode()->getOpcode();
2389  switch (Opcode) {
2390  case ISD::TokenFactor:
2391  case ISD::MERGE_VALUES:
2392  case ISD::CONCAT_VECTORS:
2393    return Operand;         // Factor, merge or concat of one node?  No need.
2394  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2395  case ISD::FP_EXTEND:
2396    assert(VT.isFloatingPoint() &&
2397           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2398    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2399    assert((!VT.isVector() ||
2400            VT.getVectorNumElements() ==
2401            Operand.getValueType().getVectorNumElements()) &&
2402           "Vector element count mismatch!");
2403    if (Operand.getOpcode() == ISD::UNDEF)
2404      return getUNDEF(VT);
2405    break;
2406  case ISD::SIGN_EXTEND:
2407    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2408           "Invalid SIGN_EXTEND!");
2409    if (Operand.getValueType() == VT) return Operand;   // noop extension
2410    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2411           "Invalid sext node, dst < src!");
2412    assert((!VT.isVector() ||
2413            VT.getVectorNumElements() ==
2414            Operand.getValueType().getVectorNumElements()) &&
2415           "Vector element count mismatch!");
2416    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2417      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2418    break;
2419  case ISD::ZERO_EXTEND:
2420    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2421           "Invalid ZERO_EXTEND!");
2422    if (Operand.getValueType() == VT) return Operand;   // noop extension
2423    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2424           "Invalid zext node, dst < src!");
2425    assert((!VT.isVector() ||
2426            VT.getVectorNumElements() ==
2427            Operand.getValueType().getVectorNumElements()) &&
2428           "Vector element count mismatch!");
2429    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2430      return getNode(ISD::ZERO_EXTEND, DL, VT,
2431                     Operand.getNode()->getOperand(0));
2432    break;
2433  case ISD::ANY_EXTEND:
2434    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2435           "Invalid ANY_EXTEND!");
2436    if (Operand.getValueType() == VT) return Operand;   // noop extension
2437    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2438           "Invalid anyext node, dst < src!");
2439    assert((!VT.isVector() ||
2440            VT.getVectorNumElements() ==
2441            Operand.getValueType().getVectorNumElements()) &&
2442           "Vector element count mismatch!");
2443
2444    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2445        OpOpcode == ISD::ANY_EXTEND)
2446      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2447      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2448
2449    // (ext (trunx x)) -> x
2450    if (OpOpcode == ISD::TRUNCATE) {
2451      SDValue OpOp = Operand.getNode()->getOperand(0);
2452      if (OpOp.getValueType() == VT)
2453        return OpOp;
2454    }
2455    break;
2456  case ISD::TRUNCATE:
2457    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2458           "Invalid TRUNCATE!");
2459    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2460    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2461           "Invalid truncate node, src < dst!");
2462    assert((!VT.isVector() ||
2463            VT.getVectorNumElements() ==
2464            Operand.getValueType().getVectorNumElements()) &&
2465           "Vector element count mismatch!");
2466    if (OpOpcode == ISD::TRUNCATE)
2467      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2468    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2469             OpOpcode == ISD::ANY_EXTEND) {
2470      // If the source is smaller than the dest, we still need an extend.
2471      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2472            .bitsLT(VT.getScalarType()))
2473        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2474      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2475        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2476      else
2477        return Operand.getNode()->getOperand(0);
2478    }
2479    break;
2480  case ISD::BIT_CONVERT:
2481    // Basic sanity checking.
2482    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2483           && "Cannot BIT_CONVERT between types of different sizes!");
2484    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2485    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2486      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2487    if (OpOpcode == ISD::UNDEF)
2488      return getUNDEF(VT);
2489    break;
2490  case ISD::SCALAR_TO_VECTOR:
2491    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2492           (VT.getVectorElementType() == Operand.getValueType() ||
2493            (VT.getVectorElementType().isInteger() &&
2494             Operand.getValueType().isInteger() &&
2495             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2496           "Illegal SCALAR_TO_VECTOR node!");
2497    if (OpOpcode == ISD::UNDEF)
2498      return getUNDEF(VT);
2499    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2500    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2501        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2502        Operand.getConstantOperandVal(1) == 0 &&
2503        Operand.getOperand(0).getValueType() == VT)
2504      return Operand.getOperand(0);
2505    break;
2506  case ISD::FNEG:
2507    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2508    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2509      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2510                     Operand.getNode()->getOperand(0));
2511    if (OpOpcode == ISD::FNEG)  // --X -> X
2512      return Operand.getNode()->getOperand(0);
2513    break;
2514  case ISD::FABS:
2515    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2516      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2517    break;
2518  }
2519
2520  SDNode *N;
2521  SDVTList VTs = getVTList(VT);
2522  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2523    FoldingSetNodeID ID;
2524    SDValue Ops[1] = { Operand };
2525    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2526    void *IP = 0;
2527    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2528      return SDValue(E, 0);
2529
2530    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2531    CSEMap.InsertNode(N, IP);
2532  } else {
2533    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2534  }
2535
2536  AllNodes.push_back(N);
2537#ifndef NDEBUG
2538  VerifyNode(N);
2539#endif
2540  return SDValue(N, 0);
2541}
2542
2543SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2544                                             EVT VT,
2545                                             ConstantSDNode *Cst1,
2546                                             ConstantSDNode *Cst2) {
2547  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2548
2549  switch (Opcode) {
2550  case ISD::ADD:  return getConstant(C1 + C2, VT);
2551  case ISD::SUB:  return getConstant(C1 - C2, VT);
2552  case ISD::MUL:  return getConstant(C1 * C2, VT);
2553  case ISD::UDIV:
2554    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2555    break;
2556  case ISD::UREM:
2557    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2558    break;
2559  case ISD::SDIV:
2560    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2561    break;
2562  case ISD::SREM:
2563    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2564    break;
2565  case ISD::AND:  return getConstant(C1 & C2, VT);
2566  case ISD::OR:   return getConstant(C1 | C2, VT);
2567  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2568  case ISD::SHL:  return getConstant(C1 << C2, VT);
2569  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2570  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2571  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2572  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2573  default: break;
2574  }
2575
2576  return SDValue();
2577}
2578
2579SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2580                              SDValue N1, SDValue N2) {
2581  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2582  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2583  switch (Opcode) {
2584  default: break;
2585  case ISD::TokenFactor:
2586    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2587           N2.getValueType() == MVT::Other && "Invalid token factor!");
2588    // Fold trivial token factors.
2589    if (N1.getOpcode() == ISD::EntryToken) return N2;
2590    if (N2.getOpcode() == ISD::EntryToken) return N1;
2591    if (N1 == N2) return N1;
2592    break;
2593  case ISD::CONCAT_VECTORS:
2594    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2595    // one big BUILD_VECTOR.
2596    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2597        N2.getOpcode() == ISD::BUILD_VECTOR) {
2598      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
2599                                    N1.getNode()->op_end());
2600      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
2601      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2602    }
2603    break;
2604  case ISD::AND:
2605    assert(VT.isInteger() && "This operator does not apply to FP types!");
2606    assert(N1.getValueType() == N2.getValueType() &&
2607           N1.getValueType() == VT && "Binary operator types must match!");
2608    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2609    // worth handling here.
2610    if (N2C && N2C->isNullValue())
2611      return N2;
2612    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2613      return N1;
2614    break;
2615  case ISD::OR:
2616  case ISD::XOR:
2617  case ISD::ADD:
2618  case ISD::SUB:
2619    assert(VT.isInteger() && "This operator does not apply to FP types!");
2620    assert(N1.getValueType() == N2.getValueType() &&
2621           N1.getValueType() == VT && "Binary operator types must match!");
2622    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2623    // it's worth handling here.
2624    if (N2C && N2C->isNullValue())
2625      return N1;
2626    break;
2627  case ISD::UDIV:
2628  case ISD::UREM:
2629  case ISD::MULHU:
2630  case ISD::MULHS:
2631  case ISD::MUL:
2632  case ISD::SDIV:
2633  case ISD::SREM:
2634    assert(VT.isInteger() && "This operator does not apply to FP types!");
2635    assert(N1.getValueType() == N2.getValueType() &&
2636           N1.getValueType() == VT && "Binary operator types must match!");
2637    break;
2638  case ISD::FADD:
2639  case ISD::FSUB:
2640  case ISD::FMUL:
2641  case ISD::FDIV:
2642  case ISD::FREM:
2643    if (UnsafeFPMath) {
2644      if (Opcode == ISD::FADD) {
2645        // 0+x --> x
2646        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2647          if (CFP->getValueAPF().isZero())
2648            return N2;
2649        // x+0 --> x
2650        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2651          if (CFP->getValueAPF().isZero())
2652            return N1;
2653      } else if (Opcode == ISD::FSUB) {
2654        // x-0 --> x
2655        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2656          if (CFP->getValueAPF().isZero())
2657            return N1;
2658      }
2659    }
2660    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2661    assert(N1.getValueType() == N2.getValueType() &&
2662           N1.getValueType() == VT && "Binary operator types must match!");
2663    break;
2664  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2665    assert(N1.getValueType() == VT &&
2666           N1.getValueType().isFloatingPoint() &&
2667           N2.getValueType().isFloatingPoint() &&
2668           "Invalid FCOPYSIGN!");
2669    break;
2670  case ISD::SHL:
2671  case ISD::SRA:
2672  case ISD::SRL:
2673  case ISD::ROTL:
2674  case ISD::ROTR:
2675    assert(VT == N1.getValueType() &&
2676           "Shift operators return type must be the same as their first arg");
2677    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2678           "Shifts only work on integers");
2679
2680    // Always fold shifts of i1 values so the code generator doesn't need to
2681    // handle them.  Since we know the size of the shift has to be less than the
2682    // size of the value, the shift/rotate count is guaranteed to be zero.
2683    if (VT == MVT::i1)
2684      return N1;
2685    if (N2C && N2C->isNullValue())
2686      return N1;
2687    break;
2688  case ISD::FP_ROUND_INREG: {
2689    EVT EVT = cast<VTSDNode>(N2)->getVT();
2690    assert(VT == N1.getValueType() && "Not an inreg round!");
2691    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2692           "Cannot FP_ROUND_INREG integer types");
2693    assert(EVT.isVector() == VT.isVector() &&
2694           "FP_ROUND_INREG type should be vector iff the operand "
2695           "type is vector!");
2696    assert((!EVT.isVector() ||
2697            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2698           "Vector element counts must match in FP_ROUND_INREG");
2699    assert(EVT.bitsLE(VT) && "Not rounding down!");
2700    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2701    break;
2702  }
2703  case ISD::FP_ROUND:
2704    assert(VT.isFloatingPoint() &&
2705           N1.getValueType().isFloatingPoint() &&
2706           VT.bitsLE(N1.getValueType()) &&
2707           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2708    if (N1.getValueType() == VT) return N1;  // noop conversion.
2709    break;
2710  case ISD::AssertSext:
2711  case ISD::AssertZext: {
2712    EVT EVT = cast<VTSDNode>(N2)->getVT();
2713    assert(VT == N1.getValueType() && "Not an inreg extend!");
2714    assert(VT.isInteger() && EVT.isInteger() &&
2715           "Cannot *_EXTEND_INREG FP types");
2716    assert(!EVT.isVector() &&
2717           "AssertSExt/AssertZExt type should be the vector element type "
2718           "rather than the vector type!");
2719    assert(EVT.bitsLE(VT) && "Not extending!");
2720    if (VT == EVT) return N1; // noop assertion.
2721    break;
2722  }
2723  case ISD::SIGN_EXTEND_INREG: {
2724    EVT EVT = cast<VTSDNode>(N2)->getVT();
2725    assert(VT == N1.getValueType() && "Not an inreg extend!");
2726    assert(VT.isInteger() && EVT.isInteger() &&
2727           "Cannot *_EXTEND_INREG FP types");
2728    assert(EVT.isVector() == VT.isVector() &&
2729           "SIGN_EXTEND_INREG type should be vector iff the operand "
2730           "type is vector!");
2731    assert((!EVT.isVector() ||
2732            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2733           "Vector element counts must match in SIGN_EXTEND_INREG");
2734    assert(EVT.bitsLE(VT) && "Not extending!");
2735    if (EVT == VT) return N1;  // Not actually extending
2736
2737    if (N1C) {
2738      APInt Val = N1C->getAPIntValue();
2739      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2740      Val <<= Val.getBitWidth()-FromBits;
2741      Val = Val.ashr(Val.getBitWidth()-FromBits);
2742      return getConstant(Val, VT);
2743    }
2744    break;
2745  }
2746  case ISD::EXTRACT_VECTOR_ELT:
2747    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2748    if (N1.getOpcode() == ISD::UNDEF)
2749      return getUNDEF(VT);
2750
2751    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2752    // expanding copies of large vectors from registers.
2753    if (N2C &&
2754        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2755        N1.getNumOperands() > 0) {
2756      unsigned Factor =
2757        N1.getOperand(0).getValueType().getVectorNumElements();
2758      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2759                     N1.getOperand(N2C->getZExtValue() / Factor),
2760                     getConstant(N2C->getZExtValue() % Factor,
2761                                 N2.getValueType()));
2762    }
2763
2764    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2765    // expanding large vector constants.
2766    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2767      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2768      EVT VEltTy = N1.getValueType().getVectorElementType();
2769      if (Elt.getValueType() != VEltTy) {
2770        // If the vector element type is not legal, the BUILD_VECTOR operands
2771        // are promoted and implicitly truncated.  Make that explicit here.
2772        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2773      }
2774      if (VT != VEltTy) {
2775        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2776        // result is implicitly extended.
2777        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2778      }
2779      return Elt;
2780    }
2781
2782    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2783    // operations are lowered to scalars.
2784    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2785      // If the indices are the same, return the inserted element else
2786      // if the indices are known different, extract the element from
2787      // the original vector.
2788      SDValue N1Op2 = N1.getOperand(2);
2789      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2790
2791      if (N1Op2C && N2C) {
2792        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2793          if (VT == N1.getOperand(1).getValueType())
2794            return N1.getOperand(1);
2795          else
2796            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2797        }
2798
2799        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2800      }
2801    }
2802    break;
2803  case ISD::EXTRACT_ELEMENT:
2804    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2805    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2806           (N1.getValueType().isInteger() == VT.isInteger()) &&
2807           "Wrong types for EXTRACT_ELEMENT!");
2808
2809    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2810    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2811    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2812    if (N1.getOpcode() == ISD::BUILD_PAIR)
2813      return N1.getOperand(N2C->getZExtValue());
2814
2815    // EXTRACT_ELEMENT of a constant int is also very common.
2816    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2817      unsigned ElementSize = VT.getSizeInBits();
2818      unsigned Shift = ElementSize * N2C->getZExtValue();
2819      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2820      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2821    }
2822    break;
2823  case ISD::EXTRACT_SUBVECTOR:
2824    if (N1.getValueType() == VT) // Trivial extraction.
2825      return N1;
2826    break;
2827  }
2828
2829  if (N1C) {
2830    if (N2C) {
2831      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2832      if (SV.getNode()) return SV;
2833    } else {      // Cannonicalize constant to RHS if commutative
2834      if (isCommutativeBinOp(Opcode)) {
2835        std::swap(N1C, N2C);
2836        std::swap(N1, N2);
2837      }
2838    }
2839  }
2840
2841  // Constant fold FP operations.
2842  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2843  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2844  if (N1CFP) {
2845    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2846      // Cannonicalize constant to RHS if commutative
2847      std::swap(N1CFP, N2CFP);
2848      std::swap(N1, N2);
2849    } else if (N2CFP && VT != MVT::ppcf128) {
2850      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2851      APFloat::opStatus s;
2852      switch (Opcode) {
2853      case ISD::FADD:
2854        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2855        if (s != APFloat::opInvalidOp)
2856          return getConstantFP(V1, VT);
2857        break;
2858      case ISD::FSUB:
2859        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2860        if (s!=APFloat::opInvalidOp)
2861          return getConstantFP(V1, VT);
2862        break;
2863      case ISD::FMUL:
2864        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2865        if (s!=APFloat::opInvalidOp)
2866          return getConstantFP(V1, VT);
2867        break;
2868      case ISD::FDIV:
2869        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2870        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2871          return getConstantFP(V1, VT);
2872        break;
2873      case ISD::FREM :
2874        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2875        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2876          return getConstantFP(V1, VT);
2877        break;
2878      case ISD::FCOPYSIGN:
2879        V1.copySign(V2);
2880        return getConstantFP(V1, VT);
2881      default: break;
2882      }
2883    }
2884  }
2885
2886  // Canonicalize an UNDEF to the RHS, even over a constant.
2887  if (N1.getOpcode() == ISD::UNDEF) {
2888    if (isCommutativeBinOp(Opcode)) {
2889      std::swap(N1, N2);
2890    } else {
2891      switch (Opcode) {
2892      case ISD::FP_ROUND_INREG:
2893      case ISD::SIGN_EXTEND_INREG:
2894      case ISD::SUB:
2895      case ISD::FSUB:
2896      case ISD::FDIV:
2897      case ISD::FREM:
2898      case ISD::SRA:
2899        return N1;     // fold op(undef, arg2) -> undef
2900      case ISD::UDIV:
2901      case ISD::SDIV:
2902      case ISD::UREM:
2903      case ISD::SREM:
2904      case ISD::SRL:
2905      case ISD::SHL:
2906        if (!VT.isVector())
2907          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2908        // For vectors, we can't easily build an all zero vector, just return
2909        // the LHS.
2910        return N2;
2911      }
2912    }
2913  }
2914
2915  // Fold a bunch of operators when the RHS is undef.
2916  if (N2.getOpcode() == ISD::UNDEF) {
2917    switch (Opcode) {
2918    case ISD::XOR:
2919      if (N1.getOpcode() == ISD::UNDEF)
2920        // Handle undef ^ undef -> 0 special case. This is a common
2921        // idiom (misuse).
2922        return getConstant(0, VT);
2923      // fallthrough
2924    case ISD::ADD:
2925    case ISD::ADDC:
2926    case ISD::ADDE:
2927    case ISD::SUB:
2928    case ISD::UDIV:
2929    case ISD::SDIV:
2930    case ISD::UREM:
2931    case ISD::SREM:
2932      return N2;       // fold op(arg1, undef) -> undef
2933    case ISD::FADD:
2934    case ISD::FSUB:
2935    case ISD::FMUL:
2936    case ISD::FDIV:
2937    case ISD::FREM:
2938      if (UnsafeFPMath)
2939        return N2;
2940      break;
2941    case ISD::MUL:
2942    case ISD::AND:
2943    case ISD::SRL:
2944    case ISD::SHL:
2945      if (!VT.isVector())
2946        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2947      // For vectors, we can't easily build an all zero vector, just return
2948      // the LHS.
2949      return N1;
2950    case ISD::OR:
2951      if (!VT.isVector())
2952        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2953      // For vectors, we can't easily build an all one vector, just return
2954      // the LHS.
2955      return N1;
2956    case ISD::SRA:
2957      return N1;
2958    }
2959  }
2960
2961  // Memoize this node if possible.
2962  SDNode *N;
2963  SDVTList VTs = getVTList(VT);
2964  if (VT != MVT::Flag) {
2965    SDValue Ops[] = { N1, N2 };
2966    FoldingSetNodeID ID;
2967    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2968    void *IP = 0;
2969    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2970      return SDValue(E, 0);
2971
2972    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2973    CSEMap.InsertNode(N, IP);
2974  } else {
2975    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2976  }
2977
2978  AllNodes.push_back(N);
2979#ifndef NDEBUG
2980  VerifyNode(N);
2981#endif
2982  return SDValue(N, 0);
2983}
2984
2985SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2986                              SDValue N1, SDValue N2, SDValue N3) {
2987  // Perform various simplifications.
2988  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2989  switch (Opcode) {
2990  case ISD::CONCAT_VECTORS:
2991    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2992    // one big BUILD_VECTOR.
2993    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2994        N2.getOpcode() == ISD::BUILD_VECTOR &&
2995        N3.getOpcode() == ISD::BUILD_VECTOR) {
2996      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
2997                                    N1.getNode()->op_end());
2998      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
2999      Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
3000      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3001    }
3002    break;
3003  case ISD::SETCC: {
3004    // Use FoldSetCC to simplify SETCC's.
3005    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3006    if (Simp.getNode()) return Simp;
3007    break;
3008  }
3009  case ISD::SELECT:
3010    if (N1C) {
3011     if (N1C->getZExtValue())
3012        return N2;             // select true, X, Y -> X
3013      else
3014        return N3;             // select false, X, Y -> Y
3015    }
3016
3017    if (N2 == N3) return N2;   // select C, X, X -> X
3018    break;
3019  case ISD::VECTOR_SHUFFLE:
3020    llvm_unreachable("should use getVectorShuffle constructor!");
3021    break;
3022  case ISD::BIT_CONVERT:
3023    // Fold bit_convert nodes from a type to themselves.
3024    if (N1.getValueType() == VT)
3025      return N1;
3026    break;
3027  }
3028
3029  // Memoize node if it doesn't produce a flag.
3030  SDNode *N;
3031  SDVTList VTs = getVTList(VT);
3032  if (VT != MVT::Flag) {
3033    SDValue Ops[] = { N1, N2, N3 };
3034    FoldingSetNodeID ID;
3035    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3036    void *IP = 0;
3037    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3038      return SDValue(E, 0);
3039
3040    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3041    CSEMap.InsertNode(N, IP);
3042  } else {
3043    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3044  }
3045
3046  AllNodes.push_back(N);
3047#ifndef NDEBUG
3048  VerifyNode(N);
3049#endif
3050  return SDValue(N, 0);
3051}
3052
3053SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3054                              SDValue N1, SDValue N2, SDValue N3,
3055                              SDValue N4) {
3056  SDValue Ops[] = { N1, N2, N3, N4 };
3057  return getNode(Opcode, DL, VT, Ops, 4);
3058}
3059
3060SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3061                              SDValue N1, SDValue N2, SDValue N3,
3062                              SDValue N4, SDValue N5) {
3063  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3064  return getNode(Opcode, DL, VT, Ops, 5);
3065}
3066
3067/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3068/// the incoming stack arguments to be loaded from the stack.
3069SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3070  SmallVector<SDValue, 8> ArgChains;
3071
3072  // Include the original chain at the beginning of the list. When this is
3073  // used by target LowerCall hooks, this helps legalize find the
3074  // CALLSEQ_BEGIN node.
3075  ArgChains.push_back(Chain);
3076
3077  // Add a chain value for each stack argument.
3078  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3079       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3080    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3081      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3082        if (FI->getIndex() < 0)
3083          ArgChains.push_back(SDValue(L, 1));
3084
3085  // Build a tokenfactor for all the chains.
3086  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3087                 &ArgChains[0], ArgChains.size());
3088}
3089
3090/// getMemsetValue - Vectorized representation of the memset value
3091/// operand.
3092static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3093                              DebugLoc dl) {
3094  assert(Value.getOpcode() != ISD::UNDEF);
3095
3096  unsigned NumBits = VT.getScalarType().getSizeInBits();
3097  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3098    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3099    unsigned Shift = 8;
3100    for (unsigned i = NumBits; i > 8; i >>= 1) {
3101      Val = (Val << Shift) | Val;
3102      Shift <<= 1;
3103    }
3104    if (VT.isInteger())
3105      return DAG.getConstant(Val, VT);
3106    return DAG.getConstantFP(APFloat(Val), VT);
3107  }
3108
3109  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3110  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3111  unsigned Shift = 8;
3112  for (unsigned i = NumBits; i > 8; i >>= 1) {
3113    Value = DAG.getNode(ISD::OR, dl, VT,
3114                        DAG.getNode(ISD::SHL, dl, VT, Value,
3115                                    DAG.getConstant(Shift,
3116                                                    TLI.getShiftAmountTy())),
3117                        Value);
3118    Shift <<= 1;
3119  }
3120
3121  return Value;
3122}
3123
3124/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3125/// used when a memcpy is turned into a memset when the source is a constant
3126/// string ptr.
3127static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3128                                  const TargetLowering &TLI,
3129                                  std::string &Str, unsigned Offset) {
3130  // Handle vector with all elements zero.
3131  if (Str.empty()) {
3132    if (VT.isInteger())
3133      return DAG.getConstant(0, VT);
3134    else if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
3135             VT.getSimpleVT().SimpleTy == MVT::f64)
3136      return DAG.getConstantFP(0.0, VT);
3137    else if (VT.isVector()) {
3138      unsigned NumElts = VT.getVectorNumElements();
3139      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3140      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3141                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3142                                                             EltVT, NumElts)));
3143    } else
3144      llvm_unreachable("Expected type!");
3145  }
3146
3147  assert(!VT.isVector() && "Can't handle vector type here!");
3148  unsigned NumBits = VT.getSizeInBits();
3149  unsigned MSB = NumBits / 8;
3150  uint64_t Val = 0;
3151  if (TLI.isLittleEndian())
3152    Offset = Offset + MSB - 1;
3153  for (unsigned i = 0; i != MSB; ++i) {
3154    Val = (Val << 8) | (unsigned char)Str[Offset];
3155    Offset += TLI.isLittleEndian() ? -1 : 1;
3156  }
3157  return DAG.getConstant(Val, VT);
3158}
3159
3160/// getMemBasePlusOffset - Returns base and offset node for the
3161///
3162static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3163                                      SelectionDAG &DAG) {
3164  EVT VT = Base.getValueType();
3165  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3166                     VT, Base, DAG.getConstant(Offset, VT));
3167}
3168
3169/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3170///
3171static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3172  unsigned SrcDelta = 0;
3173  GlobalAddressSDNode *G = NULL;
3174  if (Src.getOpcode() == ISD::GlobalAddress)
3175    G = cast<GlobalAddressSDNode>(Src);
3176  else if (Src.getOpcode() == ISD::ADD &&
3177           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3178           Src.getOperand(1).getOpcode() == ISD::Constant) {
3179    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3180    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3181  }
3182  if (!G)
3183    return false;
3184
3185  const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3186  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3187    return true;
3188
3189  return false;
3190}
3191
3192/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3193/// to replace the memset / memcpy. Return true if the number of memory ops
3194/// is below the threshold. It returns the types of the sequence of
3195/// memory ops to perform memset / memcpy by reference.
3196static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3197                                     unsigned Limit, uint64_t Size,
3198                                     unsigned DstAlign, unsigned SrcAlign,
3199                                     bool NonScalarIntSafe,
3200                                     bool MemcpyStrSrc,
3201                                     SelectionDAG &DAG,
3202                                     const TargetLowering &TLI) {
3203  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3204         "Expecting memcpy / memset source to meet alignment requirement!");
3205  // If 'SrcAlign' is zero, that means the memory operation does not need load
3206  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3207  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3208  // specified alignment of the memory operation. If it is zero, that means
3209  // it's possible to change the alignment of the destination. 'MemcpyStrSrc'
3210  // indicates whether the memcpy source is constant so it does not need to be
3211  // loaded.
3212  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3213                                   NonScalarIntSafe, MemcpyStrSrc,
3214                                   DAG.getMachineFunction());
3215
3216  if (VT == MVT::Other) {
3217    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3218        TLI.allowsUnalignedMemoryAccesses(VT)) {
3219      VT = TLI.getPointerTy();
3220    } else {
3221      switch (DstAlign & 7) {
3222      case 0:  VT = MVT::i64; break;
3223      case 4:  VT = MVT::i32; break;
3224      case 2:  VT = MVT::i16; break;
3225      default: VT = MVT::i8;  break;
3226      }
3227    }
3228
3229    MVT LVT = MVT::i64;
3230    while (!TLI.isTypeLegal(LVT))
3231      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3232    assert(LVT.isInteger());
3233
3234    if (VT.bitsGT(LVT))
3235      VT = LVT;
3236  }
3237
3238  // If we're optimizing for size, and there is a limit, bump the maximum number
3239  // of operations inserted down to 4.  This is a wild guess that approximates
3240  // the size of a call to memcpy or memset (3 arguments + call).
3241  if (Limit != ~0U) {
3242    const Function *F = DAG.getMachineFunction().getFunction();
3243    if (F->hasFnAttr(Attribute::OptimizeForSize))
3244      Limit = 4;
3245  }
3246
3247  unsigned NumMemOps = 0;
3248  while (Size != 0) {
3249    unsigned VTSize = VT.getSizeInBits() / 8;
3250    while (VTSize > Size) {
3251      // For now, only use non-vector load / store's for the left-over pieces.
3252      if (VT.isVector() || VT.isFloatingPoint()) {
3253        VT = MVT::i64;
3254        while (!TLI.isTypeLegal(VT))
3255          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3256        VTSize = VT.getSizeInBits() / 8;
3257      } else {
3258        // This can result in a type that is not legal on the target, e.g.
3259        // 1 or 2 bytes on PPC.
3260        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3261        VTSize >>= 1;
3262      }
3263    }
3264
3265    if (++NumMemOps > Limit)
3266      return false;
3267    MemOps.push_back(VT);
3268    Size -= VTSize;
3269  }
3270
3271  return true;
3272}
3273
3274static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3275                                       SDValue Chain, SDValue Dst,
3276                                       SDValue Src, uint64_t Size,
3277                                       unsigned Align, bool isVol,
3278                                       bool AlwaysInline,
3279                                       MachinePointerInfo DstPtrInfo,
3280                                       MachinePointerInfo SrcPtrInfo) {
3281  // Turn a memcpy of undef to nop.
3282  if (Src.getOpcode() == ISD::UNDEF)
3283    return Chain;
3284
3285  // Expand memcpy to a series of load and store ops if the size operand falls
3286  // below a certain threshold.
3287  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3288  std::vector<EVT> MemOps;
3289  bool DstAlignCanChange = false;
3290  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3291  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3292  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3293    DstAlignCanChange = true;
3294  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3295  if (Align > SrcAlign)
3296    SrcAlign = Align;
3297  std::string Str;
3298  bool CopyFromStr = isMemSrcFromString(Src, Str);
3299  bool isZeroStr = CopyFromStr && Str.empty();
3300  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy();
3301
3302  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3303                                (DstAlignCanChange ? 0 : Align),
3304                                (isZeroStr ? 0 : SrcAlign),
3305                                true, CopyFromStr, DAG, TLI))
3306    return SDValue();
3307
3308  if (DstAlignCanChange) {
3309    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3310    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3311    if (NewAlign > Align) {
3312      // Give the stack frame object a larger alignment if needed.
3313      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3314        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3315      Align = NewAlign;
3316    }
3317  }
3318
3319  SmallVector<SDValue, 8> OutChains;
3320  unsigned NumMemOps = MemOps.size();
3321  uint64_t SrcOff = 0, DstOff = 0;
3322  for (unsigned i = 0; i != NumMemOps; ++i) {
3323    EVT VT = MemOps[i];
3324    unsigned VTSize = VT.getSizeInBits() / 8;
3325    SDValue Value, Store;
3326
3327    if (CopyFromStr &&
3328        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3329      // It's unlikely a store of a vector immediate can be done in a single
3330      // instruction. It would require a load from a constantpool first.
3331      // We only handle zero vectors here.
3332      // FIXME: Handle other cases where store of vector immediate is done in
3333      // a single instruction.
3334      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3335      Store = DAG.getStore(Chain, dl, Value,
3336                           getMemBasePlusOffset(Dst, DstOff, DAG),
3337                           DstPtrInfo.getWithOffset(DstOff), isVol,
3338                           false, Align);
3339    } else {
3340      // The type might not be legal for the target.  This should only happen
3341      // if the type is smaller than a legal type, as on PPC, so the right
3342      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3343      // to Load/Store if NVT==VT.
3344      // FIXME does the case above also need this?
3345      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3346      assert(NVT.bitsGE(VT));
3347      Value = DAG.getExtLoad(ISD::EXTLOAD, NVT, dl, Chain,
3348                             getMemBasePlusOffset(Src, SrcOff, DAG),
3349                             SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
3350                             MinAlign(SrcAlign, SrcOff));
3351      Store = DAG.getTruncStore(Chain, dl, Value,
3352                                getMemBasePlusOffset(Dst, DstOff, DAG),
3353                                DstPtrInfo.getWithOffset(DstOff), VT, isVol,
3354                                false, Align);
3355    }
3356    OutChains.push_back(Store);
3357    SrcOff += VTSize;
3358    DstOff += VTSize;
3359  }
3360
3361  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3362                     &OutChains[0], OutChains.size());
3363}
3364
3365static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3366                                        SDValue Chain, SDValue Dst,
3367                                        SDValue Src, uint64_t Size,
3368                                        unsigned Align,  bool isVol,
3369                                        bool AlwaysInline,
3370                                        MachinePointerInfo DstPtrInfo,
3371                                        MachinePointerInfo SrcPtrInfo) {
3372  // Turn a memmove of undef to nop.
3373  if (Src.getOpcode() == ISD::UNDEF)
3374    return Chain;
3375
3376  // Expand memmove to a series of load and store ops if the size operand falls
3377  // below a certain threshold.
3378  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3379  std::vector<EVT> MemOps;
3380  bool DstAlignCanChange = false;
3381  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3382  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3383  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3384    DstAlignCanChange = true;
3385  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3386  if (Align > SrcAlign)
3387    SrcAlign = Align;
3388  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove();
3389
3390  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3391                                (DstAlignCanChange ? 0 : Align),
3392                                SrcAlign, true, false, DAG, TLI))
3393    return SDValue();
3394
3395  if (DstAlignCanChange) {
3396    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3397    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3398    if (NewAlign > Align) {
3399      // Give the stack frame object a larger alignment if needed.
3400      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3401        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3402      Align = NewAlign;
3403    }
3404  }
3405
3406  uint64_t SrcOff = 0, DstOff = 0;
3407  SmallVector<SDValue, 8> LoadValues;
3408  SmallVector<SDValue, 8> LoadChains;
3409  SmallVector<SDValue, 8> OutChains;
3410  unsigned NumMemOps = MemOps.size();
3411  for (unsigned i = 0; i < NumMemOps; i++) {
3412    EVT VT = MemOps[i];
3413    unsigned VTSize = VT.getSizeInBits() / 8;
3414    SDValue Value, Store;
3415
3416    Value = DAG.getLoad(VT, dl, Chain,
3417                        getMemBasePlusOffset(Src, SrcOff, DAG),
3418                        SrcPtrInfo.getWithOffset(SrcOff), isVol,
3419                        false, SrcAlign);
3420    LoadValues.push_back(Value);
3421    LoadChains.push_back(Value.getValue(1));
3422    SrcOff += VTSize;
3423  }
3424  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3425                      &LoadChains[0], LoadChains.size());
3426  OutChains.clear();
3427  for (unsigned i = 0; i < NumMemOps; i++) {
3428    EVT VT = MemOps[i];
3429    unsigned VTSize = VT.getSizeInBits() / 8;
3430    SDValue Value, Store;
3431
3432    Store = DAG.getStore(Chain, dl, LoadValues[i],
3433                         getMemBasePlusOffset(Dst, DstOff, DAG),
3434                         DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
3435    OutChains.push_back(Store);
3436    DstOff += VTSize;
3437  }
3438
3439  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3440                     &OutChains[0], OutChains.size());
3441}
3442
3443static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3444                               SDValue Chain, SDValue Dst,
3445                               SDValue Src, uint64_t Size,
3446                               unsigned Align, bool isVol,
3447                               MachinePointerInfo DstPtrInfo) {
3448  // Turn a memset of undef to nop.
3449  if (Src.getOpcode() == ISD::UNDEF)
3450    return Chain;
3451
3452  // Expand memset to a series of load/store ops if the size operand
3453  // falls below a certain threshold.
3454  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3455  std::vector<EVT> MemOps;
3456  bool DstAlignCanChange = false;
3457  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3458  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3459  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3460    DstAlignCanChange = true;
3461  bool NonScalarIntSafe =
3462    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3463  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(),
3464                                Size, (DstAlignCanChange ? 0 : Align), 0,
3465                                NonScalarIntSafe, false, DAG, TLI))
3466    return SDValue();
3467
3468  if (DstAlignCanChange) {
3469    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3470    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3471    if (NewAlign > Align) {
3472      // Give the stack frame object a larger alignment if needed.
3473      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3474        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3475      Align = NewAlign;
3476    }
3477  }
3478
3479  SmallVector<SDValue, 8> OutChains;
3480  uint64_t DstOff = 0;
3481  unsigned NumMemOps = MemOps.size();
3482  for (unsigned i = 0; i < NumMemOps; i++) {
3483    EVT VT = MemOps[i];
3484    unsigned VTSize = VT.getSizeInBits() / 8;
3485    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3486    SDValue Store = DAG.getStore(Chain, dl, Value,
3487                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3488                                 DstPtrInfo.getWithOffset(DstOff),
3489                                 isVol, false, 0);
3490    OutChains.push_back(Store);
3491    DstOff += VTSize;
3492  }
3493
3494  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3495                     &OutChains[0], OutChains.size());
3496}
3497
3498SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3499                                SDValue Src, SDValue Size,
3500                                unsigned Align, bool isVol, bool AlwaysInline,
3501                                MachinePointerInfo DstPtrInfo,
3502                                MachinePointerInfo SrcPtrInfo) {
3503
3504  // Check to see if we should lower the memcpy to loads and stores first.
3505  // For cases within the target-specified limits, this is the best choice.
3506  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3507  if (ConstantSize) {
3508    // Memcpy with size zero? Just return the original chain.
3509    if (ConstantSize->isNullValue())
3510      return Chain;
3511
3512    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3513                                             ConstantSize->getZExtValue(),Align,
3514                                isVol, false, DstPtrInfo, SrcPtrInfo);
3515    if (Result.getNode())
3516      return Result;
3517  }
3518
3519  // Then check to see if we should lower the memcpy with target-specific
3520  // code. If the target chooses to do this, this is the next best.
3521  SDValue Result =
3522    TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3523                                isVol, AlwaysInline,
3524                                DstPtrInfo, SrcPtrInfo);
3525  if (Result.getNode())
3526    return Result;
3527
3528  // If we really need inline code and the target declined to provide it,
3529  // use a (potentially long) sequence of loads and stores.
3530  if (AlwaysInline) {
3531    assert(ConstantSize && "AlwaysInline requires a constant size!");
3532    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3533                                   ConstantSize->getZExtValue(), Align, isVol,
3534                                   true, DstPtrInfo, SrcPtrInfo);
3535  }
3536
3537  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3538  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3539  // respect volatile, so they may do things like read or write memory
3540  // beyond the given memory regions. But fixing this isn't easy, and most
3541  // people don't care.
3542
3543  // Emit a library call.
3544  TargetLowering::ArgListTy Args;
3545  TargetLowering::ArgListEntry Entry;
3546  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3547  Entry.Node = Dst; Args.push_back(Entry);
3548  Entry.Node = Src; Args.push_back(Entry);
3549  Entry.Node = Size; Args.push_back(Entry);
3550  // FIXME: pass in DebugLoc
3551  std::pair<SDValue,SDValue> CallResult =
3552    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3553                    false, false, false, false, 0,
3554                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3555                    /*isReturnValueUsed=*/false,
3556                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3557                                      TLI.getPointerTy()),
3558                    Args, *this, dl);
3559  return CallResult.second;
3560}
3561
3562SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3563                                 SDValue Src, SDValue Size,
3564                                 unsigned Align, bool isVol,
3565                                 MachinePointerInfo DstPtrInfo,
3566                                 MachinePointerInfo SrcPtrInfo) {
3567
3568  // Check to see if we should lower the memmove to loads and stores first.
3569  // For cases within the target-specified limits, this is the best choice.
3570  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3571  if (ConstantSize) {
3572    // Memmove with size zero? Just return the original chain.
3573    if (ConstantSize->isNullValue())
3574      return Chain;
3575
3576    SDValue Result =
3577      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3578                               ConstantSize->getZExtValue(), Align, isVol,
3579                               false, DstPtrInfo, SrcPtrInfo);
3580    if (Result.getNode())
3581      return Result;
3582  }
3583
3584  // Then check to see if we should lower the memmove with target-specific
3585  // code. If the target chooses to do this, this is the next best.
3586  SDValue Result =
3587    TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3588                                 DstPtrInfo, SrcPtrInfo);
3589  if (Result.getNode())
3590    return Result;
3591
3592  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3593  // not be safe.  See memcpy above for more details.
3594
3595  // Emit a library call.
3596  TargetLowering::ArgListTy Args;
3597  TargetLowering::ArgListEntry Entry;
3598  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3599  Entry.Node = Dst; Args.push_back(Entry);
3600  Entry.Node = Src; Args.push_back(Entry);
3601  Entry.Node = Size; Args.push_back(Entry);
3602  // FIXME:  pass in DebugLoc
3603  std::pair<SDValue,SDValue> CallResult =
3604    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3605                    false, false, false, false, 0,
3606                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3607                    /*isReturnValueUsed=*/false,
3608                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3609                                      TLI.getPointerTy()),
3610                    Args, *this, dl);
3611  return CallResult.second;
3612}
3613
3614SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3615                                SDValue Src, SDValue Size,
3616                                unsigned Align, bool isVol,
3617                                MachinePointerInfo DstPtrInfo) {
3618
3619  // Check to see if we should lower the memset to stores first.
3620  // For cases within the target-specified limits, this is the best choice.
3621  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3622  if (ConstantSize) {
3623    // Memset with size zero? Just return the original chain.
3624    if (ConstantSize->isNullValue())
3625      return Chain;
3626
3627    SDValue Result =
3628      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3629                      Align, isVol, DstPtrInfo);
3630
3631    if (Result.getNode())
3632      return Result;
3633  }
3634
3635  // Then check to see if we should lower the memset with target-specific
3636  // code. If the target chooses to do this, this is the next best.
3637  SDValue Result =
3638    TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3639                                DstPtrInfo);
3640  if (Result.getNode())
3641    return Result;
3642
3643  // Emit a library call.
3644  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3645  TargetLowering::ArgListTy Args;
3646  TargetLowering::ArgListEntry Entry;
3647  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3648  Args.push_back(Entry);
3649  // Extend or truncate the argument to be an i32 value for the call.
3650  if (Src.getValueType().bitsGT(MVT::i32))
3651    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3652  else
3653    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3654  Entry.Node = Src;
3655  Entry.Ty = Type::getInt32Ty(*getContext());
3656  Entry.isSExt = true;
3657  Args.push_back(Entry);
3658  Entry.Node = Size;
3659  Entry.Ty = IntPtrTy;
3660  Entry.isSExt = false;
3661  Args.push_back(Entry);
3662  // FIXME: pass in DebugLoc
3663  std::pair<SDValue,SDValue> CallResult =
3664    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3665                    false, false, false, false, 0,
3666                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3667                    /*isReturnValueUsed=*/false,
3668                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3669                                      TLI.getPointerTy()),
3670                    Args, *this, dl);
3671  return CallResult.second;
3672}
3673
3674SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3675                                SDValue Chain, SDValue Ptr, SDValue Cmp,
3676                                SDValue Swp, MachinePointerInfo PtrInfo,
3677                                unsigned Alignment) {
3678  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3679    Alignment = getEVTAlignment(MemVT);
3680
3681  MachineFunction &MF = getMachineFunction();
3682  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3683
3684  // For now, atomics are considered to be volatile always.
3685  Flags |= MachineMemOperand::MOVolatile;
3686
3687  MachineMemOperand *MMO =
3688    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
3689
3690  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3691}
3692
3693SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3694                                SDValue Chain,
3695                                SDValue Ptr, SDValue Cmp,
3696                                SDValue Swp, MachineMemOperand *MMO) {
3697  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3698  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3699
3700  EVT VT = Cmp.getValueType();
3701
3702  SDVTList VTs = getVTList(VT, MVT::Other);
3703  FoldingSetNodeID ID;
3704  ID.AddInteger(MemVT.getRawBits());
3705  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3706  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3707  void* IP = 0;
3708  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3709    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3710    return SDValue(E, 0);
3711  }
3712  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3713                                               Ptr, Cmp, Swp, MMO);
3714  CSEMap.InsertNode(N, IP);
3715  AllNodes.push_back(N);
3716  return SDValue(N, 0);
3717}
3718
3719SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3720                                SDValue Chain,
3721                                SDValue Ptr, SDValue Val,
3722                                const Value* PtrVal,
3723                                unsigned Alignment) {
3724  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3725    Alignment = getEVTAlignment(MemVT);
3726
3727  MachineFunction &MF = getMachineFunction();
3728  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3729
3730  // For now, atomics are considered to be volatile always.
3731  Flags |= MachineMemOperand::MOVolatile;
3732
3733  MachineMemOperand *MMO =
3734    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
3735                            MemVT.getStoreSize(), Alignment);
3736
3737  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3738}
3739
3740SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3741                                SDValue Chain,
3742                                SDValue Ptr, SDValue Val,
3743                                MachineMemOperand *MMO) {
3744  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3745          Opcode == ISD::ATOMIC_LOAD_SUB ||
3746          Opcode == ISD::ATOMIC_LOAD_AND ||
3747          Opcode == ISD::ATOMIC_LOAD_OR ||
3748          Opcode == ISD::ATOMIC_LOAD_XOR ||
3749          Opcode == ISD::ATOMIC_LOAD_NAND ||
3750          Opcode == ISD::ATOMIC_LOAD_MIN ||
3751          Opcode == ISD::ATOMIC_LOAD_MAX ||
3752          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3753          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3754          Opcode == ISD::ATOMIC_SWAP) &&
3755         "Invalid Atomic Op");
3756
3757  EVT VT = Val.getValueType();
3758
3759  SDVTList VTs = getVTList(VT, MVT::Other);
3760  FoldingSetNodeID ID;
3761  ID.AddInteger(MemVT.getRawBits());
3762  SDValue Ops[] = {Chain, Ptr, Val};
3763  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3764  void* IP = 0;
3765  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3766    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3767    return SDValue(E, 0);
3768  }
3769  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3770                                               Ptr, Val, MMO);
3771  CSEMap.InsertNode(N, IP);
3772  AllNodes.push_back(N);
3773  return SDValue(N, 0);
3774}
3775
3776/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3777/// Allowed to return something different (and simpler) if Simplify is true.
3778SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3779                                     DebugLoc dl) {
3780  if (NumOps == 1)
3781    return Ops[0];
3782
3783  SmallVector<EVT, 4> VTs;
3784  VTs.reserve(NumOps);
3785  for (unsigned i = 0; i < NumOps; ++i)
3786    VTs.push_back(Ops[i].getValueType());
3787  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3788                 Ops, NumOps);
3789}
3790
3791SDValue
3792SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3793                                  const EVT *VTs, unsigned NumVTs,
3794                                  const SDValue *Ops, unsigned NumOps,
3795                                  EVT MemVT, MachinePointerInfo PtrInfo,
3796                                  unsigned Align, bool Vol,
3797                                  bool ReadMem, bool WriteMem) {
3798  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3799                             MemVT, PtrInfo, Align, Vol,
3800                             ReadMem, WriteMem);
3801}
3802
3803SDValue
3804SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3805                                  const SDValue *Ops, unsigned NumOps,
3806                                  EVT MemVT, MachinePointerInfo PtrInfo,
3807                                  unsigned Align, bool Vol,
3808                                  bool ReadMem, bool WriteMem) {
3809  if (Align == 0)  // Ensure that codegen never sees alignment 0
3810    Align = getEVTAlignment(MemVT);
3811
3812  MachineFunction &MF = getMachineFunction();
3813  unsigned Flags = 0;
3814  if (WriteMem)
3815    Flags |= MachineMemOperand::MOStore;
3816  if (ReadMem)
3817    Flags |= MachineMemOperand::MOLoad;
3818  if (Vol)
3819    Flags |= MachineMemOperand::MOVolatile;
3820  MachineMemOperand *MMO =
3821    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
3822
3823  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3824}
3825
3826SDValue
3827SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3828                                  const SDValue *Ops, unsigned NumOps,
3829                                  EVT MemVT, MachineMemOperand *MMO) {
3830  assert((Opcode == ISD::INTRINSIC_VOID ||
3831          Opcode == ISD::INTRINSIC_W_CHAIN ||
3832          (Opcode <= INT_MAX &&
3833           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3834         "Opcode is not a memory-accessing opcode!");
3835
3836  // Memoize the node unless it returns a flag.
3837  MemIntrinsicSDNode *N;
3838  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3839    FoldingSetNodeID ID;
3840    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3841    void *IP = 0;
3842    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3843      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3844      return SDValue(E, 0);
3845    }
3846
3847    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3848                                               MemVT, MMO);
3849    CSEMap.InsertNode(N, IP);
3850  } else {
3851    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3852                                               MemVT, MMO);
3853  }
3854  AllNodes.push_back(N);
3855  return SDValue(N, 0);
3856}
3857
3858/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
3859/// MachinePointerInfo record from it.  This is particularly useful because the
3860/// code generator has many cases where it doesn't bother passing in a
3861/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
3862static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
3863  // If this is FI+Offset, we can model it.
3864  if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
3865    return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
3866
3867  // If this is (FI+Offset1)+Offset2, we can model it.
3868  if (Ptr.getOpcode() != ISD::ADD ||
3869      !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
3870      !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
3871    return MachinePointerInfo();
3872
3873  int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
3874  return MachinePointerInfo::getFixedStack(FI, Offset+
3875                       cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
3876}
3877
3878/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
3879/// MachinePointerInfo record from it.  This is particularly useful because the
3880/// code generator has many cases where it doesn't bother passing in a
3881/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
3882static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
3883  // If the 'Offset' value isn't a constant, we can't handle this.
3884  if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
3885    return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
3886  if (OffsetOp.getOpcode() == ISD::UNDEF)
3887    return InferPointerInfo(Ptr);
3888  return MachinePointerInfo();
3889}
3890
3891
3892SDValue
3893SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3894                      EVT VT, DebugLoc dl, SDValue Chain,
3895                      SDValue Ptr, SDValue Offset,
3896                      MachinePointerInfo PtrInfo, EVT MemVT,
3897                      bool isVolatile, bool isNonTemporal,
3898                      unsigned Alignment) {
3899  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3900    Alignment = getEVTAlignment(VT);
3901
3902  unsigned Flags = MachineMemOperand::MOLoad;
3903  if (isVolatile)
3904    Flags |= MachineMemOperand::MOVolatile;
3905  if (isNonTemporal)
3906    Flags |= MachineMemOperand::MONonTemporal;
3907
3908  // If we don't have a PtrInfo, infer the trivial frame index case to simplify
3909  // clients.
3910  if (PtrInfo.V == 0)
3911    PtrInfo = InferPointerInfo(Ptr, Offset);
3912
3913  MachineFunction &MF = getMachineFunction();
3914  MachineMemOperand *MMO =
3915    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
3916  return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
3917}
3918
3919SDValue
3920SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3921                      EVT VT, DebugLoc dl, SDValue Chain,
3922                      SDValue Ptr, SDValue Offset, EVT MemVT,
3923                      MachineMemOperand *MMO) {
3924  if (VT == MemVT) {
3925    ExtType = ISD::NON_EXTLOAD;
3926  } else if (ExtType == ISD::NON_EXTLOAD) {
3927    assert(VT == MemVT && "Non-extending load from different memory type!");
3928  } else {
3929    // Extending load.
3930    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3931           "Should only be an extending load, not truncating!");
3932    assert(VT.isInteger() == MemVT.isInteger() &&
3933           "Cannot convert from FP to Int or Int -> FP!");
3934    assert(VT.isVector() == MemVT.isVector() &&
3935           "Cannot use trunc store to convert to or from a vector!");
3936    assert((!VT.isVector() ||
3937            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3938           "Cannot use trunc store to change the number of vector elements!");
3939  }
3940
3941  bool Indexed = AM != ISD::UNINDEXED;
3942  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3943         "Unindexed load with an offset!");
3944
3945  SDVTList VTs = Indexed ?
3946    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3947  SDValue Ops[] = { Chain, Ptr, Offset };
3948  FoldingSetNodeID ID;
3949  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3950  ID.AddInteger(MemVT.getRawBits());
3951  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3952                                     MMO->isNonTemporal()));
3953  void *IP = 0;
3954  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3955    cast<LoadSDNode>(E)->refineAlignment(MMO);
3956    return SDValue(E, 0);
3957  }
3958  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
3959                                             MemVT, MMO);
3960  CSEMap.InsertNode(N, IP);
3961  AllNodes.push_back(N);
3962  return SDValue(N, 0);
3963}
3964
3965SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3966                              SDValue Chain, SDValue Ptr,
3967                              MachinePointerInfo PtrInfo,
3968                              bool isVolatile, bool isNonTemporal,
3969                              unsigned Alignment) {
3970  SDValue Undef = getUNDEF(Ptr.getValueType());
3971  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
3972                 PtrInfo, VT, isVolatile, isNonTemporal, Alignment);
3973}
3974
3975SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, EVT VT, DebugLoc dl,
3976                                 SDValue Chain, SDValue Ptr,
3977                                 MachinePointerInfo PtrInfo, EVT MemVT,
3978                                 bool isVolatile, bool isNonTemporal,
3979                                 unsigned Alignment) {
3980  SDValue Undef = getUNDEF(Ptr.getValueType());
3981  return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
3982                 PtrInfo, MemVT, isVolatile, isNonTemporal, Alignment);
3983}
3984
3985
3986SDValue
3987SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3988                             SDValue Offset, ISD::MemIndexedMode AM) {
3989  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3990  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3991         "Load is already a indexed load!");
3992  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
3993                 LD->getChain(), Base, Offset, LD->getPointerInfo(),
3994                 LD->getMemoryVT(),
3995                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
3996}
3997
3998SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3999                               SDValue Ptr, MachinePointerInfo PtrInfo,
4000                               bool isVolatile, bool isNonTemporal,
4001                               unsigned Alignment) {
4002  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4003    Alignment = getEVTAlignment(Val.getValueType());
4004
4005  unsigned Flags = MachineMemOperand::MOStore;
4006  if (isVolatile)
4007    Flags |= MachineMemOperand::MOVolatile;
4008  if (isNonTemporal)
4009    Flags |= MachineMemOperand::MONonTemporal;
4010
4011  if (PtrInfo.V == 0)
4012    PtrInfo = InferPointerInfo(Ptr);
4013
4014  MachineFunction &MF = getMachineFunction();
4015  MachineMemOperand *MMO =
4016    MF.getMachineMemOperand(PtrInfo, Flags,
4017                            Val.getValueType().getStoreSize(), Alignment);
4018
4019  return getStore(Chain, dl, Val, Ptr, MMO);
4020}
4021
4022SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4023                               SDValue Ptr,
4024                 const Value *SV, int SVOffset, bool isVolatile,
4025                 bool isNonTemporal, unsigned Alignment) {
4026
4027  return getStore(Chain, dl, Val, Ptr, MachinePointerInfo(SV, SVOffset),
4028                  isVolatile, isNonTemporal, Alignment);
4029}
4030
4031
4032SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4033                               SDValue Ptr, MachineMemOperand *MMO) {
4034  EVT VT = Val.getValueType();
4035  SDVTList VTs = getVTList(MVT::Other);
4036  SDValue Undef = getUNDEF(Ptr.getValueType());
4037  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4038  FoldingSetNodeID ID;
4039  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4040  ID.AddInteger(VT.getRawBits());
4041  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4042                                     MMO->isNonTemporal()));
4043  void *IP = 0;
4044  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4045    cast<StoreSDNode>(E)->refineAlignment(MMO);
4046    return SDValue(E, 0);
4047  }
4048  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4049                                              false, VT, MMO);
4050  CSEMap.InsertNode(N, IP);
4051  AllNodes.push_back(N);
4052  return SDValue(N, 0);
4053}
4054
4055SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4056                                    SDValue Ptr, const Value *SV,
4057                                    int SVOffset, EVT SVT,
4058                                    bool isVolatile, bool isNonTemporal,
4059                                    unsigned Alignment) {
4060
4061  return getTruncStore(Chain, dl, Val, Ptr, MachinePointerInfo(SV, SVOffset),
4062                       SVT, isVolatile, isNonTemporal, Alignment);
4063}
4064
4065SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4066                                    SDValue Ptr, MachinePointerInfo PtrInfo,
4067                                    EVT SVT,bool isVolatile, bool isNonTemporal,
4068                                    unsigned Alignment) {
4069  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4070    Alignment = getEVTAlignment(SVT);
4071
4072  unsigned Flags = MachineMemOperand::MOStore;
4073  if (isVolatile)
4074    Flags |= MachineMemOperand::MOVolatile;
4075  if (isNonTemporal)
4076    Flags |= MachineMemOperand::MONonTemporal;
4077
4078  if (PtrInfo.V == 0)
4079    PtrInfo = InferPointerInfo(Ptr);
4080
4081  MachineFunction &MF = getMachineFunction();
4082  MachineMemOperand *MMO =
4083    MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment);
4084
4085  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4086}
4087
4088SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4089                                    SDValue Ptr, EVT SVT,
4090                                    MachineMemOperand *MMO) {
4091  EVT VT = Val.getValueType();
4092
4093  if (VT == SVT)
4094    return getStore(Chain, dl, Val, Ptr, MMO);
4095
4096  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4097         "Should only be a truncating store, not extending!");
4098  assert(VT.isInteger() == SVT.isInteger() &&
4099         "Can't do FP-INT conversion!");
4100  assert(VT.isVector() == SVT.isVector() &&
4101         "Cannot use trunc store to convert to or from a vector!");
4102  assert((!VT.isVector() ||
4103          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4104         "Cannot use trunc store to change the number of vector elements!");
4105
4106  SDVTList VTs = getVTList(MVT::Other);
4107  SDValue Undef = getUNDEF(Ptr.getValueType());
4108  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4109  FoldingSetNodeID ID;
4110  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4111  ID.AddInteger(SVT.getRawBits());
4112  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4113                                     MMO->isNonTemporal()));
4114  void *IP = 0;
4115  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4116    cast<StoreSDNode>(E)->refineAlignment(MMO);
4117    return SDValue(E, 0);
4118  }
4119  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4120                                              true, SVT, MMO);
4121  CSEMap.InsertNode(N, IP);
4122  AllNodes.push_back(N);
4123  return SDValue(N, 0);
4124}
4125
4126SDValue
4127SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4128                              SDValue Offset, ISD::MemIndexedMode AM) {
4129  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4130  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4131         "Store is already a indexed store!");
4132  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4133  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4134  FoldingSetNodeID ID;
4135  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4136  ID.AddInteger(ST->getMemoryVT().getRawBits());
4137  ID.AddInteger(ST->getRawSubclassData());
4138  void *IP = 0;
4139  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4140    return SDValue(E, 0);
4141
4142  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4143                                              ST->isTruncatingStore(),
4144                                              ST->getMemoryVT(),
4145                                              ST->getMemOperand());
4146  CSEMap.InsertNode(N, IP);
4147  AllNodes.push_back(N);
4148  return SDValue(N, 0);
4149}
4150
4151SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4152                               SDValue Chain, SDValue Ptr,
4153                               SDValue SV,
4154                               unsigned Align) {
4155  SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
4156  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
4157}
4158
4159SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4160                              const SDUse *Ops, unsigned NumOps) {
4161  switch (NumOps) {
4162  case 0: return getNode(Opcode, DL, VT);
4163  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4164  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4165  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4166  default: break;
4167  }
4168
4169  // Copy from an SDUse array into an SDValue array for use with
4170  // the regular getNode logic.
4171  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4172  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4173}
4174
4175SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4176                              const SDValue *Ops, unsigned NumOps) {
4177  switch (NumOps) {
4178  case 0: return getNode(Opcode, DL, VT);
4179  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4180  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4181  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4182  default: break;
4183  }
4184
4185  switch (Opcode) {
4186  default: break;
4187  case ISD::SELECT_CC: {
4188    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4189    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4190           "LHS and RHS of condition must have same type!");
4191    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4192           "True and False arms of SelectCC must have same type!");
4193    assert(Ops[2].getValueType() == VT &&
4194           "select_cc node must be of same type as true and false value!");
4195    break;
4196  }
4197  case ISD::BR_CC: {
4198    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4199    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4200           "LHS/RHS of comparison should match types!");
4201    break;
4202  }
4203  }
4204
4205  // Memoize nodes.
4206  SDNode *N;
4207  SDVTList VTs = getVTList(VT);
4208
4209  if (VT != MVT::Flag) {
4210    FoldingSetNodeID ID;
4211    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4212    void *IP = 0;
4213
4214    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4215      return SDValue(E, 0);
4216
4217    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4218    CSEMap.InsertNode(N, IP);
4219  } else {
4220    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4221  }
4222
4223  AllNodes.push_back(N);
4224#ifndef NDEBUG
4225  VerifyNode(N);
4226#endif
4227  return SDValue(N, 0);
4228}
4229
4230SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4231                              const std::vector<EVT> &ResultTys,
4232                              const SDValue *Ops, unsigned NumOps) {
4233  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4234                 Ops, NumOps);
4235}
4236
4237SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4238                              const EVT *VTs, unsigned NumVTs,
4239                              const SDValue *Ops, unsigned NumOps) {
4240  if (NumVTs == 1)
4241    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4242  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4243}
4244
4245SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4246                              const SDValue *Ops, unsigned NumOps) {
4247  if (VTList.NumVTs == 1)
4248    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4249
4250#if 0
4251  switch (Opcode) {
4252  // FIXME: figure out how to safely handle things like
4253  // int foo(int x) { return 1 << (x & 255); }
4254  // int bar() { return foo(256); }
4255  case ISD::SRA_PARTS:
4256  case ISD::SRL_PARTS:
4257  case ISD::SHL_PARTS:
4258    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4259        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4260      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4261    else if (N3.getOpcode() == ISD::AND)
4262      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4263        // If the and is only masking out bits that cannot effect the shift,
4264        // eliminate the and.
4265        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4266        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4267          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4268      }
4269    break;
4270  }
4271#endif
4272
4273  // Memoize the node unless it returns a flag.
4274  SDNode *N;
4275  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4276    FoldingSetNodeID ID;
4277    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4278    void *IP = 0;
4279    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4280      return SDValue(E, 0);
4281
4282    if (NumOps == 1) {
4283      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4284    } else if (NumOps == 2) {
4285      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4286    } else if (NumOps == 3) {
4287      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4288                                            Ops[2]);
4289    } else {
4290      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4291    }
4292    CSEMap.InsertNode(N, IP);
4293  } else {
4294    if (NumOps == 1) {
4295      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4296    } else if (NumOps == 2) {
4297      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4298    } else if (NumOps == 3) {
4299      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4300                                            Ops[2]);
4301    } else {
4302      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4303    }
4304  }
4305  AllNodes.push_back(N);
4306#ifndef NDEBUG
4307  VerifyNode(N);
4308#endif
4309  return SDValue(N, 0);
4310}
4311
4312SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4313  return getNode(Opcode, DL, VTList, 0, 0);
4314}
4315
4316SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4317                              SDValue N1) {
4318  SDValue Ops[] = { N1 };
4319  return getNode(Opcode, DL, VTList, Ops, 1);
4320}
4321
4322SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4323                              SDValue N1, SDValue N2) {
4324  SDValue Ops[] = { N1, N2 };
4325  return getNode(Opcode, DL, VTList, Ops, 2);
4326}
4327
4328SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4329                              SDValue N1, SDValue N2, SDValue N3) {
4330  SDValue Ops[] = { N1, N2, N3 };
4331  return getNode(Opcode, DL, VTList, Ops, 3);
4332}
4333
4334SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4335                              SDValue N1, SDValue N2, SDValue N3,
4336                              SDValue N4) {
4337  SDValue Ops[] = { N1, N2, N3, N4 };
4338  return getNode(Opcode, DL, VTList, Ops, 4);
4339}
4340
4341SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4342                              SDValue N1, SDValue N2, SDValue N3,
4343                              SDValue N4, SDValue N5) {
4344  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4345  return getNode(Opcode, DL, VTList, Ops, 5);
4346}
4347
4348SDVTList SelectionDAG::getVTList(EVT VT) {
4349  return makeVTList(SDNode::getValueTypeList(VT), 1);
4350}
4351
4352SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4353  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4354       E = VTList.rend(); I != E; ++I)
4355    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4356      return *I;
4357
4358  EVT *Array = Allocator.Allocate<EVT>(2);
4359  Array[0] = VT1;
4360  Array[1] = VT2;
4361  SDVTList Result = makeVTList(Array, 2);
4362  VTList.push_back(Result);
4363  return Result;
4364}
4365
4366SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4367  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4368       E = VTList.rend(); I != E; ++I)
4369    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4370                          I->VTs[2] == VT3)
4371      return *I;
4372
4373  EVT *Array = Allocator.Allocate<EVT>(3);
4374  Array[0] = VT1;
4375  Array[1] = VT2;
4376  Array[2] = VT3;
4377  SDVTList Result = makeVTList(Array, 3);
4378  VTList.push_back(Result);
4379  return Result;
4380}
4381
4382SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4383  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4384       E = VTList.rend(); I != E; ++I)
4385    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4386                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4387      return *I;
4388
4389  EVT *Array = Allocator.Allocate<EVT>(4);
4390  Array[0] = VT1;
4391  Array[1] = VT2;
4392  Array[2] = VT3;
4393  Array[3] = VT4;
4394  SDVTList Result = makeVTList(Array, 4);
4395  VTList.push_back(Result);
4396  return Result;
4397}
4398
4399SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4400  switch (NumVTs) {
4401    case 0: llvm_unreachable("Cannot have nodes without results!");
4402    case 1: return getVTList(VTs[0]);
4403    case 2: return getVTList(VTs[0], VTs[1]);
4404    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4405    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4406    default: break;
4407  }
4408
4409  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4410       E = VTList.rend(); I != E; ++I) {
4411    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4412      continue;
4413
4414    bool NoMatch = false;
4415    for (unsigned i = 2; i != NumVTs; ++i)
4416      if (VTs[i] != I->VTs[i]) {
4417        NoMatch = true;
4418        break;
4419      }
4420    if (!NoMatch)
4421      return *I;
4422  }
4423
4424  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4425  std::copy(VTs, VTs+NumVTs, Array);
4426  SDVTList Result = makeVTList(Array, NumVTs);
4427  VTList.push_back(Result);
4428  return Result;
4429}
4430
4431
4432/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4433/// specified operands.  If the resultant node already exists in the DAG,
4434/// this does not modify the specified node, instead it returns the node that
4435/// already exists.  If the resultant node does not exist in the DAG, the
4436/// input node is returned.  As a degenerate case, if you specify the same
4437/// input operands as the node already has, the input node is returned.
4438SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
4439  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4440
4441  // Check to see if there is no change.
4442  if (Op == N->getOperand(0)) return N;
4443
4444  // See if the modified node already exists.
4445  void *InsertPos = 0;
4446  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4447    return Existing;
4448
4449  // Nope it doesn't.  Remove the node from its current place in the maps.
4450  if (InsertPos)
4451    if (!RemoveNodeFromCSEMaps(N))
4452      InsertPos = 0;
4453
4454  // Now we update the operands.
4455  N->OperandList[0].set(Op);
4456
4457  // If this gets put into a CSE map, add it.
4458  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4459  return N;
4460}
4461
4462SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
4463  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4464
4465  // Check to see if there is no change.
4466  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4467    return N;   // No operands changed, just return the input node.
4468
4469  // See if the modified node already exists.
4470  void *InsertPos = 0;
4471  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4472    return Existing;
4473
4474  // Nope it doesn't.  Remove the node from its current place in the maps.
4475  if (InsertPos)
4476    if (!RemoveNodeFromCSEMaps(N))
4477      InsertPos = 0;
4478
4479  // Now we update the operands.
4480  if (N->OperandList[0] != Op1)
4481    N->OperandList[0].set(Op1);
4482  if (N->OperandList[1] != Op2)
4483    N->OperandList[1].set(Op2);
4484
4485  // If this gets put into a CSE map, add it.
4486  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4487  return N;
4488}
4489
4490SDNode *SelectionDAG::
4491UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
4492  SDValue Ops[] = { Op1, Op2, Op3 };
4493  return UpdateNodeOperands(N, Ops, 3);
4494}
4495
4496SDNode *SelectionDAG::
4497UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4498                   SDValue Op3, SDValue Op4) {
4499  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4500  return UpdateNodeOperands(N, Ops, 4);
4501}
4502
4503SDNode *SelectionDAG::
4504UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4505                   SDValue Op3, SDValue Op4, SDValue Op5) {
4506  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4507  return UpdateNodeOperands(N, Ops, 5);
4508}
4509
4510SDNode *SelectionDAG::
4511UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
4512  assert(N->getNumOperands() == NumOps &&
4513         "Update with wrong number of operands");
4514
4515  // Check to see if there is no change.
4516  bool AnyChange = false;
4517  for (unsigned i = 0; i != NumOps; ++i) {
4518    if (Ops[i] != N->getOperand(i)) {
4519      AnyChange = true;
4520      break;
4521    }
4522  }
4523
4524  // No operands changed, just return the input node.
4525  if (!AnyChange) return N;
4526
4527  // See if the modified node already exists.
4528  void *InsertPos = 0;
4529  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4530    return Existing;
4531
4532  // Nope it doesn't.  Remove the node from its current place in the maps.
4533  if (InsertPos)
4534    if (!RemoveNodeFromCSEMaps(N))
4535      InsertPos = 0;
4536
4537  // Now we update the operands.
4538  for (unsigned i = 0; i != NumOps; ++i)
4539    if (N->OperandList[i] != Ops[i])
4540      N->OperandList[i].set(Ops[i]);
4541
4542  // If this gets put into a CSE map, add it.
4543  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4544  return N;
4545}
4546
4547/// DropOperands - Release the operands and set this node to have
4548/// zero operands.
4549void SDNode::DropOperands() {
4550  // Unlike the code in MorphNodeTo that does this, we don't need to
4551  // watch for dead nodes here.
4552  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4553    SDUse &Use = *I++;
4554    Use.set(SDValue());
4555  }
4556}
4557
4558/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4559/// machine opcode.
4560///
4561SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4562                                   EVT VT) {
4563  SDVTList VTs = getVTList(VT);
4564  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4565}
4566
4567SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4568                                   EVT VT, SDValue Op1) {
4569  SDVTList VTs = getVTList(VT);
4570  SDValue Ops[] = { Op1 };
4571  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4572}
4573
4574SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4575                                   EVT VT, SDValue Op1,
4576                                   SDValue Op2) {
4577  SDVTList VTs = getVTList(VT);
4578  SDValue Ops[] = { Op1, Op2 };
4579  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4580}
4581
4582SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4583                                   EVT VT, SDValue Op1,
4584                                   SDValue Op2, SDValue Op3) {
4585  SDVTList VTs = getVTList(VT);
4586  SDValue Ops[] = { Op1, Op2, Op3 };
4587  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4588}
4589
4590SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4591                                   EVT VT, const SDValue *Ops,
4592                                   unsigned NumOps) {
4593  SDVTList VTs = getVTList(VT);
4594  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4595}
4596
4597SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4598                                   EVT VT1, EVT VT2, const SDValue *Ops,
4599                                   unsigned NumOps) {
4600  SDVTList VTs = getVTList(VT1, VT2);
4601  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4602}
4603
4604SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4605                                   EVT VT1, EVT VT2) {
4606  SDVTList VTs = getVTList(VT1, VT2);
4607  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4608}
4609
4610SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4611                                   EVT VT1, EVT VT2, EVT VT3,
4612                                   const SDValue *Ops, unsigned NumOps) {
4613  SDVTList VTs = getVTList(VT1, VT2, VT3);
4614  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4615}
4616
4617SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4618                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4619                                   const SDValue *Ops, unsigned NumOps) {
4620  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4621  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4622}
4623
4624SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4625                                   EVT VT1, EVT VT2,
4626                                   SDValue Op1) {
4627  SDVTList VTs = getVTList(VT1, VT2);
4628  SDValue Ops[] = { Op1 };
4629  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4630}
4631
4632SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4633                                   EVT VT1, EVT VT2,
4634                                   SDValue Op1, SDValue Op2) {
4635  SDVTList VTs = getVTList(VT1, VT2);
4636  SDValue Ops[] = { Op1, Op2 };
4637  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4638}
4639
4640SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4641                                   EVT VT1, EVT VT2,
4642                                   SDValue Op1, SDValue Op2,
4643                                   SDValue Op3) {
4644  SDVTList VTs = getVTList(VT1, VT2);
4645  SDValue Ops[] = { Op1, Op2, Op3 };
4646  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4647}
4648
4649SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4650                                   EVT VT1, EVT VT2, EVT VT3,
4651                                   SDValue Op1, SDValue Op2,
4652                                   SDValue Op3) {
4653  SDVTList VTs = getVTList(VT1, VT2, VT3);
4654  SDValue Ops[] = { Op1, Op2, Op3 };
4655  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4656}
4657
4658SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4659                                   SDVTList VTs, const SDValue *Ops,
4660                                   unsigned NumOps) {
4661  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4662  // Reset the NodeID to -1.
4663  N->setNodeId(-1);
4664  return N;
4665}
4666
4667/// MorphNodeTo - This *mutates* the specified node to have the specified
4668/// return type, opcode, and operands.
4669///
4670/// Note that MorphNodeTo returns the resultant node.  If there is already a
4671/// node of the specified opcode and operands, it returns that node instead of
4672/// the current one.  Note that the DebugLoc need not be the same.
4673///
4674/// Using MorphNodeTo is faster than creating a new node and swapping it in
4675/// with ReplaceAllUsesWith both because it often avoids allocating a new
4676/// node, and because it doesn't require CSE recalculation for any of
4677/// the node's users.
4678///
4679SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4680                                  SDVTList VTs, const SDValue *Ops,
4681                                  unsigned NumOps) {
4682  // If an identical node already exists, use it.
4683  void *IP = 0;
4684  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4685    FoldingSetNodeID ID;
4686    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4687    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4688      return ON;
4689  }
4690
4691  if (!RemoveNodeFromCSEMaps(N))
4692    IP = 0;
4693
4694  // Start the morphing.
4695  N->NodeType = Opc;
4696  N->ValueList = VTs.VTs;
4697  N->NumValues = VTs.NumVTs;
4698
4699  // Clear the operands list, updating used nodes to remove this from their
4700  // use list.  Keep track of any operands that become dead as a result.
4701  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4702  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4703    SDUse &Use = *I++;
4704    SDNode *Used = Use.getNode();
4705    Use.set(SDValue());
4706    if (Used->use_empty())
4707      DeadNodeSet.insert(Used);
4708  }
4709
4710  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4711    // Initialize the memory references information.
4712    MN->setMemRefs(0, 0);
4713    // If NumOps is larger than the # of operands we can have in a
4714    // MachineSDNode, reallocate the operand list.
4715    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4716      if (MN->OperandsNeedDelete)
4717        delete[] MN->OperandList;
4718      if (NumOps > array_lengthof(MN->LocalOperands))
4719        // We're creating a final node that will live unmorphed for the
4720        // remainder of the current SelectionDAG iteration, so we can allocate
4721        // the operands directly out of a pool with no recycling metadata.
4722        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4723                         Ops, NumOps);
4724      else
4725        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4726      MN->OperandsNeedDelete = false;
4727    } else
4728      MN->InitOperands(MN->OperandList, Ops, NumOps);
4729  } else {
4730    // If NumOps is larger than the # of operands we currently have, reallocate
4731    // the operand list.
4732    if (NumOps > N->NumOperands) {
4733      if (N->OperandsNeedDelete)
4734        delete[] N->OperandList;
4735      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4736      N->OperandsNeedDelete = true;
4737    } else
4738      N->InitOperands(N->OperandList, Ops, NumOps);
4739  }
4740
4741  // Delete any nodes that are still dead after adding the uses for the
4742  // new operands.
4743  if (!DeadNodeSet.empty()) {
4744    SmallVector<SDNode *, 16> DeadNodes;
4745    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4746         E = DeadNodeSet.end(); I != E; ++I)
4747      if ((*I)->use_empty())
4748        DeadNodes.push_back(*I);
4749    RemoveDeadNodes(DeadNodes);
4750  }
4751
4752  if (IP)
4753    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4754  return N;
4755}
4756
4757
4758/// getMachineNode - These are used for target selectors to create a new node
4759/// with specified return type(s), MachineInstr opcode, and operands.
4760///
4761/// Note that getMachineNode returns the resultant node.  If there is already a
4762/// node of the specified opcode and operands, it returns that node instead of
4763/// the current one.
4764MachineSDNode *
4765SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4766  SDVTList VTs = getVTList(VT);
4767  return getMachineNode(Opcode, dl, VTs, 0, 0);
4768}
4769
4770MachineSDNode *
4771SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4772  SDVTList VTs = getVTList(VT);
4773  SDValue Ops[] = { Op1 };
4774  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4775}
4776
4777MachineSDNode *
4778SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4779                             SDValue Op1, SDValue Op2) {
4780  SDVTList VTs = getVTList(VT);
4781  SDValue Ops[] = { Op1, Op2 };
4782  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4783}
4784
4785MachineSDNode *
4786SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4787                             SDValue Op1, SDValue Op2, SDValue Op3) {
4788  SDVTList VTs = getVTList(VT);
4789  SDValue Ops[] = { Op1, Op2, Op3 };
4790  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4791}
4792
4793MachineSDNode *
4794SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4795                             const SDValue *Ops, unsigned NumOps) {
4796  SDVTList VTs = getVTList(VT);
4797  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4798}
4799
4800MachineSDNode *
4801SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4802  SDVTList VTs = getVTList(VT1, VT2);
4803  return getMachineNode(Opcode, dl, VTs, 0, 0);
4804}
4805
4806MachineSDNode *
4807SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4808                             EVT VT1, EVT VT2, SDValue Op1) {
4809  SDVTList VTs = getVTList(VT1, VT2);
4810  SDValue Ops[] = { Op1 };
4811  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4812}
4813
4814MachineSDNode *
4815SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4816                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4817  SDVTList VTs = getVTList(VT1, VT2);
4818  SDValue Ops[] = { Op1, Op2 };
4819  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4820}
4821
4822MachineSDNode *
4823SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4824                             EVT VT1, EVT VT2, SDValue Op1,
4825                             SDValue Op2, SDValue Op3) {
4826  SDVTList VTs = getVTList(VT1, VT2);
4827  SDValue Ops[] = { Op1, Op2, Op3 };
4828  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4829}
4830
4831MachineSDNode *
4832SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4833                             EVT VT1, EVT VT2,
4834                             const SDValue *Ops, unsigned NumOps) {
4835  SDVTList VTs = getVTList(VT1, VT2);
4836  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4837}
4838
4839MachineSDNode *
4840SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4841                             EVT VT1, EVT VT2, EVT VT3,
4842                             SDValue Op1, SDValue Op2) {
4843  SDVTList VTs = getVTList(VT1, VT2, VT3);
4844  SDValue Ops[] = { Op1, Op2 };
4845  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4846}
4847
4848MachineSDNode *
4849SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4850                             EVT VT1, EVT VT2, EVT VT3,
4851                             SDValue Op1, SDValue Op2, SDValue Op3) {
4852  SDVTList VTs = getVTList(VT1, VT2, VT3);
4853  SDValue Ops[] = { Op1, Op2, Op3 };
4854  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4855}
4856
4857MachineSDNode *
4858SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4859                             EVT VT1, EVT VT2, EVT VT3,
4860                             const SDValue *Ops, unsigned NumOps) {
4861  SDVTList VTs = getVTList(VT1, VT2, VT3);
4862  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4863}
4864
4865MachineSDNode *
4866SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4867                             EVT VT2, EVT VT3, EVT VT4,
4868                             const SDValue *Ops, unsigned NumOps) {
4869  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4870  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4871}
4872
4873MachineSDNode *
4874SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4875                             const std::vector<EVT> &ResultTys,
4876                             const SDValue *Ops, unsigned NumOps) {
4877  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4878  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4879}
4880
4881MachineSDNode *
4882SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4883                             const SDValue *Ops, unsigned NumOps) {
4884  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4885  MachineSDNode *N;
4886  void *IP;
4887
4888  if (DoCSE) {
4889    FoldingSetNodeID ID;
4890    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4891    IP = 0;
4892    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4893      return cast<MachineSDNode>(E);
4894  }
4895
4896  // Allocate a new MachineSDNode.
4897  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
4898
4899  // Initialize the operands list.
4900  if (NumOps > array_lengthof(N->LocalOperands))
4901    // We're creating a final node that will live unmorphed for the
4902    // remainder of the current SelectionDAG iteration, so we can allocate
4903    // the operands directly out of a pool with no recycling metadata.
4904    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4905                    Ops, NumOps);
4906  else
4907    N->InitOperands(N->LocalOperands, Ops, NumOps);
4908  N->OperandsNeedDelete = false;
4909
4910  if (DoCSE)
4911    CSEMap.InsertNode(N, IP);
4912
4913  AllNodes.push_back(N);
4914#ifndef NDEBUG
4915  VerifyNode(N);
4916#endif
4917  return N;
4918}
4919
4920/// getTargetExtractSubreg - A convenience function for creating
4921/// TargetOpcode::EXTRACT_SUBREG nodes.
4922SDValue
4923SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4924                                     SDValue Operand) {
4925  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4926  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4927                                  VT, Operand, SRIdxVal);
4928  return SDValue(Subreg, 0);
4929}
4930
4931/// getTargetInsertSubreg - A convenience function for creating
4932/// TargetOpcode::INSERT_SUBREG nodes.
4933SDValue
4934SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4935                                    SDValue Operand, SDValue Subreg) {
4936  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4937  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4938                                  VT, Operand, Subreg, SRIdxVal);
4939  return SDValue(Result, 0);
4940}
4941
4942/// getNodeIfExists - Get the specified node if it's already available, or
4943/// else return NULL.
4944SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4945                                      const SDValue *Ops, unsigned NumOps) {
4946  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4947    FoldingSetNodeID ID;
4948    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4949    void *IP = 0;
4950    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4951      return E;
4952  }
4953  return NULL;
4954}
4955
4956/// getDbgValue - Creates a SDDbgValue node.
4957///
4958SDDbgValue *
4959SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
4960                          DebugLoc DL, unsigned O) {
4961  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
4962}
4963
4964SDDbgValue *
4965SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
4966                          DebugLoc DL, unsigned O) {
4967  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
4968}
4969
4970SDDbgValue *
4971SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
4972                          DebugLoc DL, unsigned O) {
4973  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
4974}
4975
4976namespace {
4977
4978/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
4979/// pointed to by a use iterator is deleted, increment the use iterator
4980/// so that it doesn't dangle.
4981///
4982/// This class also manages a "downlink" DAGUpdateListener, to forward
4983/// messages to ReplaceAllUsesWith's callers.
4984///
4985class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
4986  SelectionDAG::DAGUpdateListener *DownLink;
4987  SDNode::use_iterator &UI;
4988  SDNode::use_iterator &UE;
4989
4990  virtual void NodeDeleted(SDNode *N, SDNode *E) {
4991    // Increment the iterator as needed.
4992    while (UI != UE && N == *UI)
4993      ++UI;
4994
4995    // Then forward the message.
4996    if (DownLink) DownLink->NodeDeleted(N, E);
4997  }
4998
4999  virtual void NodeUpdated(SDNode *N) {
5000    // Just forward the message.
5001    if (DownLink) DownLink->NodeUpdated(N);
5002  }
5003
5004public:
5005  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
5006                     SDNode::use_iterator &ui,
5007                     SDNode::use_iterator &ue)
5008    : DownLink(dl), UI(ui), UE(ue) {}
5009};
5010
5011}
5012
5013/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5014/// This can cause recursive merging of nodes in the DAG.
5015///
5016/// This version assumes From has a single result value.
5017///
5018void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
5019                                      DAGUpdateListener *UpdateListener) {
5020  SDNode *From = FromN.getNode();
5021  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5022         "Cannot replace with this method!");
5023  assert(From != To.getNode() && "Cannot replace uses of with self");
5024
5025  // Iterate over all the existing uses of From. New uses will be added
5026  // to the beginning of the use list, which we avoid visiting.
5027  // This specifically avoids visiting uses of From that arise while the
5028  // replacement is happening, because any such uses would be the result
5029  // of CSE: If an existing node looks like From after one of its operands
5030  // is replaced by To, we don't want to replace of all its users with To
5031  // too. See PR3018 for more info.
5032  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5033  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5034  while (UI != UE) {
5035    SDNode *User = *UI;
5036
5037    // This node is about to morph, remove its old self from the CSE maps.
5038    RemoveNodeFromCSEMaps(User);
5039
5040    // A user can appear in a use list multiple times, and when this
5041    // happens the uses are usually next to each other in the list.
5042    // To help reduce the number of CSE recomputations, process all
5043    // the uses of this user that we can find this way.
5044    do {
5045      SDUse &Use = UI.getUse();
5046      ++UI;
5047      Use.set(To);
5048    } while (UI != UE && *UI == User);
5049
5050    // Now that we have modified User, add it back to the CSE maps.  If it
5051    // already exists there, recursively merge the results together.
5052    AddModifiedNodeToCSEMaps(User, &Listener);
5053  }
5054}
5055
5056/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5057/// This can cause recursive merging of nodes in the DAG.
5058///
5059/// This version assumes that for each value of From, there is a
5060/// corresponding value in To in the same position with the same type.
5061///
5062void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5063                                      DAGUpdateListener *UpdateListener) {
5064#ifndef NDEBUG
5065  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5066    assert((!From->hasAnyUseOfValue(i) ||
5067            From->getValueType(i) == To->getValueType(i)) &&
5068           "Cannot use this version of ReplaceAllUsesWith!");
5069#endif
5070
5071  // Handle the trivial case.
5072  if (From == To)
5073    return;
5074
5075  // Iterate over just the existing users of From. See the comments in
5076  // the ReplaceAllUsesWith above.
5077  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5078  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5079  while (UI != UE) {
5080    SDNode *User = *UI;
5081
5082    // This node is about to morph, remove its old self from the CSE maps.
5083    RemoveNodeFromCSEMaps(User);
5084
5085    // A user can appear in a use list multiple times, and when this
5086    // happens the uses are usually next to each other in the list.
5087    // To help reduce the number of CSE recomputations, process all
5088    // the uses of this user that we can find this way.
5089    do {
5090      SDUse &Use = UI.getUse();
5091      ++UI;
5092      Use.setNode(To);
5093    } while (UI != UE && *UI == User);
5094
5095    // Now that we have modified User, add it back to the CSE maps.  If it
5096    // already exists there, recursively merge the results together.
5097    AddModifiedNodeToCSEMaps(User, &Listener);
5098  }
5099}
5100
5101/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5102/// This can cause recursive merging of nodes in the DAG.
5103///
5104/// This version can replace From with any result values.  To must match the
5105/// number and types of values returned by From.
5106void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5107                                      const SDValue *To,
5108                                      DAGUpdateListener *UpdateListener) {
5109  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5110    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5111
5112  // Iterate over just the existing users of From. See the comments in
5113  // the ReplaceAllUsesWith above.
5114  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5115  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5116  while (UI != UE) {
5117    SDNode *User = *UI;
5118
5119    // This node is about to morph, remove its old self from the CSE maps.
5120    RemoveNodeFromCSEMaps(User);
5121
5122    // A user can appear in a use list multiple times, and when this
5123    // happens the uses are usually next to each other in the list.
5124    // To help reduce the number of CSE recomputations, process all
5125    // the uses of this user that we can find this way.
5126    do {
5127      SDUse &Use = UI.getUse();
5128      const SDValue &ToOp = To[Use.getResNo()];
5129      ++UI;
5130      Use.set(ToOp);
5131    } while (UI != UE && *UI == User);
5132
5133    // Now that we have modified User, add it back to the CSE maps.  If it
5134    // already exists there, recursively merge the results together.
5135    AddModifiedNodeToCSEMaps(User, &Listener);
5136  }
5137}
5138
5139/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5140/// uses of other values produced by From.getNode() alone.  The Deleted
5141/// vector is handled the same way as for ReplaceAllUsesWith.
5142void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5143                                             DAGUpdateListener *UpdateListener){
5144  // Handle the really simple, really trivial case efficiently.
5145  if (From == To) return;
5146
5147  // Handle the simple, trivial, case efficiently.
5148  if (From.getNode()->getNumValues() == 1) {
5149    ReplaceAllUsesWith(From, To, UpdateListener);
5150    return;
5151  }
5152
5153  // Iterate over just the existing users of From. See the comments in
5154  // the ReplaceAllUsesWith above.
5155  SDNode::use_iterator UI = From.getNode()->use_begin(),
5156                       UE = From.getNode()->use_end();
5157  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5158  while (UI != UE) {
5159    SDNode *User = *UI;
5160    bool UserRemovedFromCSEMaps = false;
5161
5162    // A user can appear in a use list multiple times, and when this
5163    // happens the uses are usually next to each other in the list.
5164    // To help reduce the number of CSE recomputations, process all
5165    // the uses of this user that we can find this way.
5166    do {
5167      SDUse &Use = UI.getUse();
5168
5169      // Skip uses of different values from the same node.
5170      if (Use.getResNo() != From.getResNo()) {
5171        ++UI;
5172        continue;
5173      }
5174
5175      // If this node hasn't been modified yet, it's still in the CSE maps,
5176      // so remove its old self from the CSE maps.
5177      if (!UserRemovedFromCSEMaps) {
5178        RemoveNodeFromCSEMaps(User);
5179        UserRemovedFromCSEMaps = true;
5180      }
5181
5182      ++UI;
5183      Use.set(To);
5184    } while (UI != UE && *UI == User);
5185
5186    // We are iterating over all uses of the From node, so if a use
5187    // doesn't use the specific value, no changes are made.
5188    if (!UserRemovedFromCSEMaps)
5189      continue;
5190
5191    // Now that we have modified User, add it back to the CSE maps.  If it
5192    // already exists there, recursively merge the results together.
5193    AddModifiedNodeToCSEMaps(User, &Listener);
5194  }
5195}
5196
5197namespace {
5198  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5199  /// to record information about a use.
5200  struct UseMemo {
5201    SDNode *User;
5202    unsigned Index;
5203    SDUse *Use;
5204  };
5205
5206  /// operator< - Sort Memos by User.
5207  bool operator<(const UseMemo &L, const UseMemo &R) {
5208    return (intptr_t)L.User < (intptr_t)R.User;
5209  }
5210}
5211
5212/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5213/// uses of other values produced by From.getNode() alone.  The same value
5214/// may appear in both the From and To list.  The Deleted vector is
5215/// handled the same way as for ReplaceAllUsesWith.
5216void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5217                                              const SDValue *To,
5218                                              unsigned Num,
5219                                              DAGUpdateListener *UpdateListener){
5220  // Handle the simple, trivial case efficiently.
5221  if (Num == 1)
5222    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5223
5224  // Read up all the uses and make records of them. This helps
5225  // processing new uses that are introduced during the
5226  // replacement process.
5227  SmallVector<UseMemo, 4> Uses;
5228  for (unsigned i = 0; i != Num; ++i) {
5229    unsigned FromResNo = From[i].getResNo();
5230    SDNode *FromNode = From[i].getNode();
5231    for (SDNode::use_iterator UI = FromNode->use_begin(),
5232         E = FromNode->use_end(); UI != E; ++UI) {
5233      SDUse &Use = UI.getUse();
5234      if (Use.getResNo() == FromResNo) {
5235        UseMemo Memo = { *UI, i, &Use };
5236        Uses.push_back(Memo);
5237      }
5238    }
5239  }
5240
5241  // Sort the uses, so that all the uses from a given User are together.
5242  std::sort(Uses.begin(), Uses.end());
5243
5244  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5245       UseIndex != UseIndexEnd; ) {
5246    // We know that this user uses some value of From.  If it is the right
5247    // value, update it.
5248    SDNode *User = Uses[UseIndex].User;
5249
5250    // This node is about to morph, remove its old self from the CSE maps.
5251    RemoveNodeFromCSEMaps(User);
5252
5253    // The Uses array is sorted, so all the uses for a given User
5254    // are next to each other in the list.
5255    // To help reduce the number of CSE recomputations, process all
5256    // the uses of this user that we can find this way.
5257    do {
5258      unsigned i = Uses[UseIndex].Index;
5259      SDUse &Use = *Uses[UseIndex].Use;
5260      ++UseIndex;
5261
5262      Use.set(To[i]);
5263    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5264
5265    // Now that we have modified User, add it back to the CSE maps.  If it
5266    // already exists there, recursively merge the results together.
5267    AddModifiedNodeToCSEMaps(User, UpdateListener);
5268  }
5269}
5270
5271/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5272/// based on their topological order. It returns the maximum id and a vector
5273/// of the SDNodes* in assigned order by reference.
5274unsigned SelectionDAG::AssignTopologicalOrder() {
5275
5276  unsigned DAGSize = 0;
5277
5278  // SortedPos tracks the progress of the algorithm. Nodes before it are
5279  // sorted, nodes after it are unsorted. When the algorithm completes
5280  // it is at the end of the list.
5281  allnodes_iterator SortedPos = allnodes_begin();
5282
5283  // Visit all the nodes. Move nodes with no operands to the front of
5284  // the list immediately. Annotate nodes that do have operands with their
5285  // operand count. Before we do this, the Node Id fields of the nodes
5286  // may contain arbitrary values. After, the Node Id fields for nodes
5287  // before SortedPos will contain the topological sort index, and the
5288  // Node Id fields for nodes At SortedPos and after will contain the
5289  // count of outstanding operands.
5290  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5291    SDNode *N = I++;
5292    checkForCycles(N);
5293    unsigned Degree = N->getNumOperands();
5294    if (Degree == 0) {
5295      // A node with no uses, add it to the result array immediately.
5296      N->setNodeId(DAGSize++);
5297      allnodes_iterator Q = N;
5298      if (Q != SortedPos)
5299        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5300      assert(SortedPos != AllNodes.end() && "Overran node list");
5301      ++SortedPos;
5302    } else {
5303      // Temporarily use the Node Id as scratch space for the degree count.
5304      N->setNodeId(Degree);
5305    }
5306  }
5307
5308  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5309  // such that by the time the end is reached all nodes will be sorted.
5310  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5311    SDNode *N = I;
5312    checkForCycles(N);
5313    // N is in sorted position, so all its uses have one less operand
5314    // that needs to be sorted.
5315    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5316         UI != UE; ++UI) {
5317      SDNode *P = *UI;
5318      unsigned Degree = P->getNodeId();
5319      assert(Degree != 0 && "Invalid node degree");
5320      --Degree;
5321      if (Degree == 0) {
5322        // All of P's operands are sorted, so P may sorted now.
5323        P->setNodeId(DAGSize++);
5324        if (P != SortedPos)
5325          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5326        assert(SortedPos != AllNodes.end() && "Overran node list");
5327        ++SortedPos;
5328      } else {
5329        // Update P's outstanding operand count.
5330        P->setNodeId(Degree);
5331      }
5332    }
5333    if (I == SortedPos) {
5334#ifndef NDEBUG
5335      SDNode *S = ++I;
5336      dbgs() << "Overran sorted position:\n";
5337      S->dumprFull();
5338#endif
5339      llvm_unreachable(0);
5340    }
5341  }
5342
5343  assert(SortedPos == AllNodes.end() &&
5344         "Topological sort incomplete!");
5345  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5346         "First node in topological sort is not the entry token!");
5347  assert(AllNodes.front().getNodeId() == 0 &&
5348         "First node in topological sort has non-zero id!");
5349  assert(AllNodes.front().getNumOperands() == 0 &&
5350         "First node in topological sort has operands!");
5351  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5352         "Last node in topologic sort has unexpected id!");
5353  assert(AllNodes.back().use_empty() &&
5354         "Last node in topologic sort has users!");
5355  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5356  return DAGSize;
5357}
5358
5359/// AssignOrdering - Assign an order to the SDNode.
5360void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5361  assert(SD && "Trying to assign an order to a null node!");
5362  Ordering->add(SD, Order);
5363}
5364
5365/// GetOrdering - Get the order for the SDNode.
5366unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5367  assert(SD && "Trying to get the order of a null node!");
5368  return Ordering->getOrder(SD);
5369}
5370
5371/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5372/// value is produced by SD.
5373void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5374  DbgInfo->add(DB, SD, isParameter);
5375  if (SD)
5376    SD->setHasDebugValue(true);
5377}
5378
5379//===----------------------------------------------------------------------===//
5380//                              SDNode Class
5381//===----------------------------------------------------------------------===//
5382
5383HandleSDNode::~HandleSDNode() {
5384  DropOperands();
5385}
5386
5387GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
5388                                         const GlobalValue *GA,
5389                                         EVT VT, int64_t o, unsigned char TF)
5390  : SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5391  TheGlobal = GA;
5392}
5393
5394MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5395                     MachineMemOperand *mmo)
5396 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5397  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5398                                      MMO->isNonTemporal());
5399  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5400  assert(isNonTemporal() == MMO->isNonTemporal() &&
5401         "Non-temporal encoding error!");
5402  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5403}
5404
5405MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5406                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5407                     MachineMemOperand *mmo)
5408   : SDNode(Opc, dl, VTs, Ops, NumOps),
5409     MemoryVT(memvt), MMO(mmo) {
5410  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5411                                      MMO->isNonTemporal());
5412  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5413  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5414}
5415
5416/// Profile - Gather unique data for the node.
5417///
5418void SDNode::Profile(FoldingSetNodeID &ID) const {
5419  AddNodeIDNode(ID, this);
5420}
5421
5422namespace {
5423  struct EVTArray {
5424    std::vector<EVT> VTs;
5425
5426    EVTArray() {
5427      VTs.reserve(MVT::LAST_VALUETYPE);
5428      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5429        VTs.push_back(MVT((MVT::SimpleValueType)i));
5430    }
5431  };
5432}
5433
5434static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5435static ManagedStatic<EVTArray> SimpleVTArray;
5436static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5437
5438/// getValueTypeList - Return a pointer to the specified value type.
5439///
5440const EVT *SDNode::getValueTypeList(EVT VT) {
5441  if (VT.isExtended()) {
5442    sys::SmartScopedLock<true> Lock(*VTMutex);
5443    return &(*EVTs->insert(VT).first);
5444  } else {
5445    assert(VT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
5446           "Value type out of range!");
5447    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5448  }
5449}
5450
5451/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5452/// indicated value.  This method ignores uses of other values defined by this
5453/// operation.
5454bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5455  assert(Value < getNumValues() && "Bad value!");
5456
5457  // TODO: Only iterate over uses of a given value of the node
5458  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5459    if (UI.getUse().getResNo() == Value) {
5460      if (NUses == 0)
5461        return false;
5462      --NUses;
5463    }
5464  }
5465
5466  // Found exactly the right number of uses?
5467  return NUses == 0;
5468}
5469
5470
5471/// hasAnyUseOfValue - Return true if there are any use of the indicated
5472/// value. This method ignores uses of other values defined by this operation.
5473bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5474  assert(Value < getNumValues() && "Bad value!");
5475
5476  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5477    if (UI.getUse().getResNo() == Value)
5478      return true;
5479
5480  return false;
5481}
5482
5483
5484/// isOnlyUserOf - Return true if this node is the only use of N.
5485///
5486bool SDNode::isOnlyUserOf(SDNode *N) const {
5487  bool Seen = false;
5488  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5489    SDNode *User = *I;
5490    if (User == this)
5491      Seen = true;
5492    else
5493      return false;
5494  }
5495
5496  return Seen;
5497}
5498
5499/// isOperand - Return true if this node is an operand of N.
5500///
5501bool SDValue::isOperandOf(SDNode *N) const {
5502  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5503    if (*this == N->getOperand(i))
5504      return true;
5505  return false;
5506}
5507
5508bool SDNode::isOperandOf(SDNode *N) const {
5509  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5510    if (this == N->OperandList[i].getNode())
5511      return true;
5512  return false;
5513}
5514
5515/// reachesChainWithoutSideEffects - Return true if this operand (which must
5516/// be a chain) reaches the specified operand without crossing any
5517/// side-effecting instructions on any chain path.  In practice, this looks
5518/// through token factors and non-volatile loads.  In order to remain efficient,
5519/// this only looks a couple of nodes in, it does not do an exhaustive search.
5520bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5521                                               unsigned Depth) const {
5522  if (*this == Dest) return true;
5523
5524  // Don't search too deeply, we just want to be able to see through
5525  // TokenFactor's etc.
5526  if (Depth == 0) return false;
5527
5528  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5529  // of the operands of the TF does not reach dest, then we cannot do the xform.
5530  if (getOpcode() == ISD::TokenFactor) {
5531    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5532      if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5533        return false;
5534    return true;
5535  }
5536
5537  // Loads don't have side effects, look through them.
5538  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5539    if (!Ld->isVolatile())
5540      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5541  }
5542  return false;
5543}
5544
5545/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5546/// is either an operand of N or it can be reached by traversing up the operands.
5547/// NOTE: this is an expensive method. Use it carefully.
5548bool SDNode::isPredecessorOf(SDNode *N) const {
5549  SmallPtrSet<SDNode *, 32> Visited;
5550  SmallVector<SDNode *, 16> Worklist;
5551  Worklist.push_back(N);
5552
5553  do {
5554    N = Worklist.pop_back_val();
5555    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5556      SDNode *Op = N->getOperand(i).getNode();
5557      if (Op == this)
5558        return true;
5559      if (Visited.insert(Op))
5560        Worklist.push_back(Op);
5561    }
5562  } while (!Worklist.empty());
5563
5564  return false;
5565}
5566
5567uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5568  assert(Num < NumOperands && "Invalid child # of SDNode!");
5569  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5570}
5571
5572std::string SDNode::getOperationName(const SelectionDAG *G) const {
5573  switch (getOpcode()) {
5574  default:
5575    if (getOpcode() < ISD::BUILTIN_OP_END)
5576      return "<<Unknown DAG Node>>";
5577    if (isMachineOpcode()) {
5578      if (G)
5579        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5580          if (getMachineOpcode() < TII->getNumOpcodes())
5581            return TII->get(getMachineOpcode()).getName();
5582      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5583    }
5584    if (G) {
5585      const TargetLowering &TLI = G->getTargetLoweringInfo();
5586      const char *Name = TLI.getTargetNodeName(getOpcode());
5587      if (Name) return Name;
5588      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5589    }
5590    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5591
5592#ifndef NDEBUG
5593  case ISD::DELETED_NODE:
5594    return "<<Deleted Node!>>";
5595#endif
5596  case ISD::PREFETCH:      return "Prefetch";
5597  case ISD::MEMBARRIER:    return "MemBarrier";
5598  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5599  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5600  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5601  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5602  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5603  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5604  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5605  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5606  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5607  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5608  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5609  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5610  case ISD::PCMARKER:      return "PCMarker";
5611  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5612  case ISD::SRCVALUE:      return "SrcValue";
5613  case ISD::MDNODE_SDNODE: return "MDNode";
5614  case ISD::EntryToken:    return "EntryToken";
5615  case ISD::TokenFactor:   return "TokenFactor";
5616  case ISD::AssertSext:    return "AssertSext";
5617  case ISD::AssertZext:    return "AssertZext";
5618
5619  case ISD::BasicBlock:    return "BasicBlock";
5620  case ISD::VALUETYPE:     return "ValueType";
5621  case ISD::Register:      return "Register";
5622
5623  case ISD::Constant:      return "Constant";
5624  case ISD::ConstantFP:    return "ConstantFP";
5625  case ISD::GlobalAddress: return "GlobalAddress";
5626  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5627  case ISD::FrameIndex:    return "FrameIndex";
5628  case ISD::JumpTable:     return "JumpTable";
5629  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5630  case ISD::RETURNADDR: return "RETURNADDR";
5631  case ISD::FRAMEADDR: return "FRAMEADDR";
5632  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5633  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5634  case ISD::LSDAADDR: return "LSDAADDR";
5635  case ISD::EHSELECTION: return "EHSELECTION";
5636  case ISD::EH_RETURN: return "EH_RETURN";
5637  case ISD::EH_SJLJ_SETJMP: return "EH_SJLJ_SETJMP";
5638  case ISD::EH_SJLJ_LONGJMP: return "EH_SJLJ_LONGJMP";
5639  case ISD::ConstantPool:  return "ConstantPool";
5640  case ISD::ExternalSymbol: return "ExternalSymbol";
5641  case ISD::BlockAddress:  return "BlockAddress";
5642  case ISD::INTRINSIC_WO_CHAIN:
5643  case ISD::INTRINSIC_VOID:
5644  case ISD::INTRINSIC_W_CHAIN: {
5645    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5646    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5647    if (IID < Intrinsic::num_intrinsics)
5648      return Intrinsic::getName((Intrinsic::ID)IID);
5649    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5650      return TII->getName(IID);
5651    llvm_unreachable("Invalid intrinsic ID");
5652  }
5653
5654  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5655  case ISD::TargetConstant: return "TargetConstant";
5656  case ISD::TargetConstantFP:return "TargetConstantFP";
5657  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5658  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5659  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5660  case ISD::TargetJumpTable:  return "TargetJumpTable";
5661  case ISD::TargetConstantPool:  return "TargetConstantPool";
5662  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5663  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5664
5665  case ISD::CopyToReg:     return "CopyToReg";
5666  case ISD::CopyFromReg:   return "CopyFromReg";
5667  case ISD::UNDEF:         return "undef";
5668  case ISD::MERGE_VALUES:  return "merge_values";
5669  case ISD::INLINEASM:     return "inlineasm";
5670  case ISD::EH_LABEL:      return "eh_label";
5671  case ISD::HANDLENODE:    return "handlenode";
5672
5673  // Unary operators
5674  case ISD::FABS:   return "fabs";
5675  case ISD::FNEG:   return "fneg";
5676  case ISD::FSQRT:  return "fsqrt";
5677  case ISD::FSIN:   return "fsin";
5678  case ISD::FCOS:   return "fcos";
5679  case ISD::FTRUNC: return "ftrunc";
5680  case ISD::FFLOOR: return "ffloor";
5681  case ISD::FCEIL:  return "fceil";
5682  case ISD::FRINT:  return "frint";
5683  case ISD::FNEARBYINT: return "fnearbyint";
5684  case ISD::FEXP:   return "fexp";
5685  case ISD::FEXP2:  return "fexp2";
5686  case ISD::FLOG:   return "flog";
5687  case ISD::FLOG2:  return "flog2";
5688  case ISD::FLOG10: return "flog10";
5689
5690  // Binary operators
5691  case ISD::ADD:    return "add";
5692  case ISD::SUB:    return "sub";
5693  case ISD::MUL:    return "mul";
5694  case ISD::MULHU:  return "mulhu";
5695  case ISD::MULHS:  return "mulhs";
5696  case ISD::SDIV:   return "sdiv";
5697  case ISD::UDIV:   return "udiv";
5698  case ISD::SREM:   return "srem";
5699  case ISD::UREM:   return "urem";
5700  case ISD::SMUL_LOHI:  return "smul_lohi";
5701  case ISD::UMUL_LOHI:  return "umul_lohi";
5702  case ISD::SDIVREM:    return "sdivrem";
5703  case ISD::UDIVREM:    return "udivrem";
5704  case ISD::AND:    return "and";
5705  case ISD::OR:     return "or";
5706  case ISD::XOR:    return "xor";
5707  case ISD::SHL:    return "shl";
5708  case ISD::SRA:    return "sra";
5709  case ISD::SRL:    return "srl";
5710  case ISD::ROTL:   return "rotl";
5711  case ISD::ROTR:   return "rotr";
5712  case ISD::FADD:   return "fadd";
5713  case ISD::FSUB:   return "fsub";
5714  case ISD::FMUL:   return "fmul";
5715  case ISD::FDIV:   return "fdiv";
5716  case ISD::FREM:   return "frem";
5717  case ISD::FCOPYSIGN: return "fcopysign";
5718  case ISD::FGETSIGN:  return "fgetsign";
5719  case ISD::FPOW:   return "fpow";
5720
5721  case ISD::FPOWI:  return "fpowi";
5722  case ISD::SETCC:       return "setcc";
5723  case ISD::VSETCC:      return "vsetcc";
5724  case ISD::SELECT:      return "select";
5725  case ISD::SELECT_CC:   return "select_cc";
5726  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5727  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5728  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5729  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5730  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5731  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5732  case ISD::CARRY_FALSE:         return "carry_false";
5733  case ISD::ADDC:        return "addc";
5734  case ISD::ADDE:        return "adde";
5735  case ISD::SADDO:       return "saddo";
5736  case ISD::UADDO:       return "uaddo";
5737  case ISD::SSUBO:       return "ssubo";
5738  case ISD::USUBO:       return "usubo";
5739  case ISD::SMULO:       return "smulo";
5740  case ISD::UMULO:       return "umulo";
5741  case ISD::SUBC:        return "subc";
5742  case ISD::SUBE:        return "sube";
5743  case ISD::SHL_PARTS:   return "shl_parts";
5744  case ISD::SRA_PARTS:   return "sra_parts";
5745  case ISD::SRL_PARTS:   return "srl_parts";
5746
5747  // Conversion operators.
5748  case ISD::SIGN_EXTEND: return "sign_extend";
5749  case ISD::ZERO_EXTEND: return "zero_extend";
5750  case ISD::ANY_EXTEND:  return "any_extend";
5751  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5752  case ISD::TRUNCATE:    return "truncate";
5753  case ISD::FP_ROUND:    return "fp_round";
5754  case ISD::FLT_ROUNDS_: return "flt_rounds";
5755  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5756  case ISD::FP_EXTEND:   return "fp_extend";
5757
5758  case ISD::SINT_TO_FP:  return "sint_to_fp";
5759  case ISD::UINT_TO_FP:  return "uint_to_fp";
5760  case ISD::FP_TO_SINT:  return "fp_to_sint";
5761  case ISD::FP_TO_UINT:  return "fp_to_uint";
5762  case ISD::BIT_CONVERT: return "bit_convert";
5763  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5764  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5765
5766  case ISD::CONVERT_RNDSAT: {
5767    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5768    default: llvm_unreachable("Unknown cvt code!");
5769    case ISD::CVT_FF:  return "cvt_ff";
5770    case ISD::CVT_FS:  return "cvt_fs";
5771    case ISD::CVT_FU:  return "cvt_fu";
5772    case ISD::CVT_SF:  return "cvt_sf";
5773    case ISD::CVT_UF:  return "cvt_uf";
5774    case ISD::CVT_SS:  return "cvt_ss";
5775    case ISD::CVT_SU:  return "cvt_su";
5776    case ISD::CVT_US:  return "cvt_us";
5777    case ISD::CVT_UU:  return "cvt_uu";
5778    }
5779  }
5780
5781    // Control flow instructions
5782  case ISD::BR:      return "br";
5783  case ISD::BRIND:   return "brind";
5784  case ISD::BR_JT:   return "br_jt";
5785  case ISD::BRCOND:  return "brcond";
5786  case ISD::BR_CC:   return "br_cc";
5787  case ISD::CALLSEQ_START:  return "callseq_start";
5788  case ISD::CALLSEQ_END:    return "callseq_end";
5789
5790    // Other operators
5791  case ISD::LOAD:               return "load";
5792  case ISD::STORE:              return "store";
5793  case ISD::VAARG:              return "vaarg";
5794  case ISD::VACOPY:             return "vacopy";
5795  case ISD::VAEND:              return "vaend";
5796  case ISD::VASTART:            return "vastart";
5797  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5798  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5799  case ISD::BUILD_PAIR:         return "build_pair";
5800  case ISD::STACKSAVE:          return "stacksave";
5801  case ISD::STACKRESTORE:       return "stackrestore";
5802  case ISD::TRAP:               return "trap";
5803
5804  // Bit manipulation
5805  case ISD::BSWAP:   return "bswap";
5806  case ISD::CTPOP:   return "ctpop";
5807  case ISD::CTTZ:    return "cttz";
5808  case ISD::CTLZ:    return "ctlz";
5809
5810  // Trampolines
5811  case ISD::TRAMPOLINE: return "trampoline";
5812
5813  case ISD::CONDCODE:
5814    switch (cast<CondCodeSDNode>(this)->get()) {
5815    default: llvm_unreachable("Unknown setcc condition!");
5816    case ISD::SETOEQ:  return "setoeq";
5817    case ISD::SETOGT:  return "setogt";
5818    case ISD::SETOGE:  return "setoge";
5819    case ISD::SETOLT:  return "setolt";
5820    case ISD::SETOLE:  return "setole";
5821    case ISD::SETONE:  return "setone";
5822
5823    case ISD::SETO:    return "seto";
5824    case ISD::SETUO:   return "setuo";
5825    case ISD::SETUEQ:  return "setue";
5826    case ISD::SETUGT:  return "setugt";
5827    case ISD::SETUGE:  return "setuge";
5828    case ISD::SETULT:  return "setult";
5829    case ISD::SETULE:  return "setule";
5830    case ISD::SETUNE:  return "setune";
5831
5832    case ISD::SETEQ:   return "seteq";
5833    case ISD::SETGT:   return "setgt";
5834    case ISD::SETGE:   return "setge";
5835    case ISD::SETLT:   return "setlt";
5836    case ISD::SETLE:   return "setle";
5837    case ISD::SETNE:   return "setne";
5838    }
5839  }
5840}
5841
5842const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5843  switch (AM) {
5844  default:
5845    return "";
5846  case ISD::PRE_INC:
5847    return "<pre-inc>";
5848  case ISD::PRE_DEC:
5849    return "<pre-dec>";
5850  case ISD::POST_INC:
5851    return "<post-inc>";
5852  case ISD::POST_DEC:
5853    return "<post-dec>";
5854  }
5855}
5856
5857std::string ISD::ArgFlagsTy::getArgFlagsString() {
5858  std::string S = "< ";
5859
5860  if (isZExt())
5861    S += "zext ";
5862  if (isSExt())
5863    S += "sext ";
5864  if (isInReg())
5865    S += "inreg ";
5866  if (isSRet())
5867    S += "sret ";
5868  if (isByVal())
5869    S += "byval ";
5870  if (isNest())
5871    S += "nest ";
5872  if (getByValAlign())
5873    S += "byval-align:" + utostr(getByValAlign()) + " ";
5874  if (getOrigAlign())
5875    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5876  if (getByValSize())
5877    S += "byval-size:" + utostr(getByValSize()) + " ";
5878  return S + ">";
5879}
5880
5881void SDNode::dump() const { dump(0); }
5882void SDNode::dump(const SelectionDAG *G) const {
5883  print(dbgs(), G);
5884  dbgs() << '\n';
5885}
5886
5887void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5888  OS << (void*)this << ": ";
5889
5890  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5891    if (i) OS << ",";
5892    if (getValueType(i) == MVT::Other)
5893      OS << "ch";
5894    else
5895      OS << getValueType(i).getEVTString();
5896  }
5897  OS << " = " << getOperationName(G);
5898}
5899
5900void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5901  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5902    if (!MN->memoperands_empty()) {
5903      OS << "<";
5904      OS << "Mem:";
5905      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5906           e = MN->memoperands_end(); i != e; ++i) {
5907        OS << **i;
5908        if (llvm::next(i) != e)
5909          OS << " ";
5910      }
5911      OS << ">";
5912    }
5913  } else if (const ShuffleVectorSDNode *SVN =
5914               dyn_cast<ShuffleVectorSDNode>(this)) {
5915    OS << "<";
5916    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5917      int Idx = SVN->getMaskElt(i);
5918      if (i) OS << ",";
5919      if (Idx < 0)
5920        OS << "u";
5921      else
5922        OS << Idx;
5923    }
5924    OS << ">";
5925  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5926    OS << '<' << CSDN->getAPIntValue() << '>';
5927  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5928    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5929      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5930    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5931      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5932    else {
5933      OS << "<APFloat(";
5934      CSDN->getValueAPF().bitcastToAPInt().dump();
5935      OS << ")>";
5936    }
5937  } else if (const GlobalAddressSDNode *GADN =
5938             dyn_cast<GlobalAddressSDNode>(this)) {
5939    int64_t offset = GADN->getOffset();
5940    OS << '<';
5941    WriteAsOperand(OS, GADN->getGlobal());
5942    OS << '>';
5943    if (offset > 0)
5944      OS << " + " << offset;
5945    else
5946      OS << " " << offset;
5947    if (unsigned int TF = GADN->getTargetFlags())
5948      OS << " [TF=" << TF << ']';
5949  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5950    OS << "<" << FIDN->getIndex() << ">";
5951  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5952    OS << "<" << JTDN->getIndex() << ">";
5953    if (unsigned int TF = JTDN->getTargetFlags())
5954      OS << " [TF=" << TF << ']';
5955  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5956    int offset = CP->getOffset();
5957    if (CP->isMachineConstantPoolEntry())
5958      OS << "<" << *CP->getMachineCPVal() << ">";
5959    else
5960      OS << "<" << *CP->getConstVal() << ">";
5961    if (offset > 0)
5962      OS << " + " << offset;
5963    else
5964      OS << " " << offset;
5965    if (unsigned int TF = CP->getTargetFlags())
5966      OS << " [TF=" << TF << ']';
5967  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5968    OS << "<";
5969    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5970    if (LBB)
5971      OS << LBB->getName() << " ";
5972    OS << (const void*)BBDN->getBasicBlock() << ">";
5973  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5974    if (G && R->getReg() &&
5975        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5976      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5977    } else {
5978      OS << " %reg" << R->getReg();
5979    }
5980  } else if (const ExternalSymbolSDNode *ES =
5981             dyn_cast<ExternalSymbolSDNode>(this)) {
5982    OS << "'" << ES->getSymbol() << "'";
5983    if (unsigned int TF = ES->getTargetFlags())
5984      OS << " [TF=" << TF << ']';
5985  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5986    if (M->getValue())
5987      OS << "<" << M->getValue() << ">";
5988    else
5989      OS << "<null>";
5990  } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
5991    if (MD->getMD())
5992      OS << "<" << MD->getMD() << ">";
5993    else
5994      OS << "<null>";
5995  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5996    OS << ":" << N->getVT().getEVTString();
5997  }
5998  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5999    OS << "<" << *LD->getMemOperand();
6000
6001    bool doExt = true;
6002    switch (LD->getExtensionType()) {
6003    default: doExt = false; break;
6004    case ISD::EXTLOAD: OS << ", anyext"; break;
6005    case ISD::SEXTLOAD: OS << ", sext"; break;
6006    case ISD::ZEXTLOAD: OS << ", zext"; break;
6007    }
6008    if (doExt)
6009      OS << " from " << LD->getMemoryVT().getEVTString();
6010
6011    const char *AM = getIndexedModeName(LD->getAddressingMode());
6012    if (*AM)
6013      OS << ", " << AM;
6014
6015    OS << ">";
6016  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
6017    OS << "<" << *ST->getMemOperand();
6018
6019    if (ST->isTruncatingStore())
6020      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
6021
6022    const char *AM = getIndexedModeName(ST->getAddressingMode());
6023    if (*AM)
6024      OS << ", " << AM;
6025
6026    OS << ">";
6027  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
6028    OS << "<" << *M->getMemOperand() << ">";
6029  } else if (const BlockAddressSDNode *BA =
6030               dyn_cast<BlockAddressSDNode>(this)) {
6031    OS << "<";
6032    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
6033    OS << ", ";
6034    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
6035    OS << ">";
6036    if (unsigned int TF = BA->getTargetFlags())
6037      OS << " [TF=" << TF << ']';
6038  }
6039
6040  if (G)
6041    if (unsigned Order = G->GetOrdering(this))
6042      OS << " [ORD=" << Order << ']';
6043
6044  if (getNodeId() != -1)
6045    OS << " [ID=" << getNodeId() << ']';
6046
6047  DebugLoc dl = getDebugLoc();
6048  if (G && !dl.isUnknown()) {
6049    DIScope
6050      Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
6051    OS << " dbg:";
6052    // Omit the directory, since it's usually long and uninteresting.
6053    if (Scope.Verify())
6054      OS << Scope.getFilename();
6055    else
6056      OS << "<unknown>";
6057    OS << ':' << dl.getLine();
6058    if (dl.getCol() != 0)
6059      OS << ':' << dl.getCol();
6060  }
6061}
6062
6063void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6064  print_types(OS, G);
6065  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6066    if (i) OS << ", "; else OS << " ";
6067    OS << (void*)getOperand(i).getNode();
6068    if (unsigned RN = getOperand(i).getResNo())
6069      OS << ":" << RN;
6070  }
6071  print_details(OS, G);
6072}
6073
6074static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6075                                  const SelectionDAG *G, unsigned depth,
6076                                  unsigned indent)
6077{
6078  if (depth == 0)
6079    return;
6080
6081  OS.indent(indent);
6082
6083  N->print(OS, G);
6084
6085  if (depth < 1)
6086    return;
6087
6088  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6089    OS << '\n';
6090    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6091  }
6092}
6093
6094void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6095                            unsigned depth) const {
6096  printrWithDepthHelper(OS, this, G, depth, 0);
6097}
6098
6099void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6100  // Don't print impossibly deep things.
6101  printrWithDepth(OS, G, 100);
6102}
6103
6104void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6105  printrWithDepth(dbgs(), G, depth);
6106}
6107
6108void SDNode::dumprFull(const SelectionDAG *G) const {
6109  // Don't print impossibly deep things.
6110  dumprWithDepth(G, 100);
6111}
6112
6113static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6114  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6115    if (N->getOperand(i).getNode()->hasOneUse())
6116      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6117    else
6118      dbgs() << "\n" << std::string(indent+2, ' ')
6119           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6120
6121
6122  dbgs() << "\n";
6123  dbgs().indent(indent);
6124  N->dump(G);
6125}
6126
6127SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6128  assert(N->getNumValues() == 1 &&
6129         "Can't unroll a vector with multiple results!");
6130
6131  EVT VT = N->getValueType(0);
6132  unsigned NE = VT.getVectorNumElements();
6133  EVT EltVT = VT.getVectorElementType();
6134  DebugLoc dl = N->getDebugLoc();
6135
6136  SmallVector<SDValue, 8> Scalars;
6137  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6138
6139  // If ResNE is 0, fully unroll the vector op.
6140  if (ResNE == 0)
6141    ResNE = NE;
6142  else if (NE > ResNE)
6143    NE = ResNE;
6144
6145  unsigned i;
6146  for (i= 0; i != NE; ++i) {
6147    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6148      SDValue Operand = N->getOperand(j);
6149      EVT OperandVT = Operand.getValueType();
6150      if (OperandVT.isVector()) {
6151        // A vector operand; extract a single element.
6152        EVT OperandEltVT = OperandVT.getVectorElementType();
6153        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6154                              OperandEltVT,
6155                              Operand,
6156                              getConstant(i, MVT::i32));
6157      } else {
6158        // A scalar operand; just use it as is.
6159        Operands[j] = Operand;
6160      }
6161    }
6162
6163    switch (N->getOpcode()) {
6164    default:
6165      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6166                                &Operands[0], Operands.size()));
6167      break;
6168    case ISD::SHL:
6169    case ISD::SRA:
6170    case ISD::SRL:
6171    case ISD::ROTL:
6172    case ISD::ROTR:
6173      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6174                                getShiftAmountOperand(Operands[1])));
6175      break;
6176    case ISD::SIGN_EXTEND_INREG:
6177    case ISD::FP_ROUND_INREG: {
6178      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6179      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6180                                Operands[0],
6181                                getValueType(ExtVT)));
6182    }
6183    }
6184  }
6185
6186  for (; i < ResNE; ++i)
6187    Scalars.push_back(getUNDEF(EltVT));
6188
6189  return getNode(ISD::BUILD_VECTOR, dl,
6190                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6191                 &Scalars[0], Scalars.size());
6192}
6193
6194
6195/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6196/// location that is 'Dist' units away from the location that the 'Base' load
6197/// is loading from.
6198bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6199                                     unsigned Bytes, int Dist) const {
6200  if (LD->getChain() != Base->getChain())
6201    return false;
6202  EVT VT = LD->getValueType(0);
6203  if (VT.getSizeInBits() / 8 != Bytes)
6204    return false;
6205
6206  SDValue Loc = LD->getOperand(1);
6207  SDValue BaseLoc = Base->getOperand(1);
6208  if (Loc.getOpcode() == ISD::FrameIndex) {
6209    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6210      return false;
6211    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6212    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6213    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6214    int FS  = MFI->getObjectSize(FI);
6215    int BFS = MFI->getObjectSize(BFI);
6216    if (FS != BFS || FS != (int)Bytes) return false;
6217    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6218  }
6219  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6220    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6221    if (V && (V->getSExtValue() == Dist*Bytes))
6222      return true;
6223  }
6224
6225  const GlobalValue *GV1 = NULL;
6226  const GlobalValue *GV2 = NULL;
6227  int64_t Offset1 = 0;
6228  int64_t Offset2 = 0;
6229  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6230  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6231  if (isGA1 && isGA2 && GV1 == GV2)
6232    return Offset1 == (Offset2 + Dist*Bytes);
6233  return false;
6234}
6235
6236
6237/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6238/// it cannot be inferred.
6239unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6240  // If this is a GlobalAddress + cst, return the alignment.
6241  const GlobalValue *GV;
6242  int64_t GVOffset = 0;
6243  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6244    // If GV has specified alignment, then use it. Otherwise, use the preferred
6245    // alignment.
6246    unsigned Align = GV->getAlignment();
6247    if (!Align) {
6248      if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6249        if (GVar->hasInitializer()) {
6250          const TargetData *TD = TLI.getTargetData();
6251          Align = TD->getPreferredAlignment(GVar);
6252        }
6253      }
6254    }
6255    return MinAlign(Align, GVOffset);
6256  }
6257
6258  // If this is a direct reference to a stack slot, use information about the
6259  // stack slot's alignment.
6260  int FrameIdx = 1 << 31;
6261  int64_t FrameOffset = 0;
6262  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6263    FrameIdx = FI->getIndex();
6264  } else if (Ptr.getOpcode() == ISD::ADD &&
6265             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6266             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6267    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6268    FrameOffset = Ptr.getConstantOperandVal(1);
6269  }
6270
6271  if (FrameIdx != (1 << 31)) {
6272    // FIXME: Handle FI+CST.
6273    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6274    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6275                                    FrameOffset);
6276    return FIInfoAlign;
6277  }
6278
6279  return 0;
6280}
6281
6282void SelectionDAG::dump() const {
6283  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6284
6285  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6286       I != E; ++I) {
6287    const SDNode *N = I;
6288    if (!N->hasOneUse() && N != getRoot().getNode())
6289      DumpNodes(N, 2, this);
6290  }
6291
6292  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6293
6294  dbgs() << "\n\n";
6295}
6296
6297void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6298  print_types(OS, G);
6299  print_details(OS, G);
6300}
6301
6302typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6303static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6304                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6305  if (!once.insert(N))          // If we've been here before, return now.
6306    return;
6307
6308  // Dump the current SDNode, but don't end the line yet.
6309  OS << std::string(indent, ' ');
6310  N->printr(OS, G);
6311
6312  // Having printed this SDNode, walk the children:
6313  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6314    const SDNode *child = N->getOperand(i).getNode();
6315
6316    if (i) OS << ",";
6317    OS << " ";
6318
6319    if (child->getNumOperands() == 0) {
6320      // This child has no grandchildren; print it inline right here.
6321      child->printr(OS, G);
6322      once.insert(child);
6323    } else {         // Just the address. FIXME: also print the child's opcode.
6324      OS << (void*)child;
6325      if (unsigned RN = N->getOperand(i).getResNo())
6326        OS << ":" << RN;
6327    }
6328  }
6329
6330  OS << "\n";
6331
6332  // Dump children that have grandchildren on their own line(s).
6333  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6334    const SDNode *child = N->getOperand(i).getNode();
6335    DumpNodesr(OS, child, indent+2, G, once);
6336  }
6337}
6338
6339void SDNode::dumpr() const {
6340  VisitedSDNodeSet once;
6341  DumpNodesr(dbgs(), this, 0, 0, once);
6342}
6343
6344void SDNode::dumpr(const SelectionDAG *G) const {
6345  VisitedSDNodeSet once;
6346  DumpNodesr(dbgs(), this, 0, G, once);
6347}
6348
6349
6350// getAddressSpace - Return the address space this GlobalAddress belongs to.
6351unsigned GlobalAddressSDNode::getAddressSpace() const {
6352  return getGlobal()->getType()->getAddressSpace();
6353}
6354
6355
6356const Type *ConstantPoolSDNode::getType() const {
6357  if (isMachineConstantPoolEntry())
6358    return Val.MachineCPVal->getType();
6359  return Val.ConstVal->getType();
6360}
6361
6362bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6363                                        APInt &SplatUndef,
6364                                        unsigned &SplatBitSize,
6365                                        bool &HasAnyUndefs,
6366                                        unsigned MinSplatBits,
6367                                        bool isBigEndian) {
6368  EVT VT = getValueType(0);
6369  assert(VT.isVector() && "Expected a vector type");
6370  unsigned sz = VT.getSizeInBits();
6371  if (MinSplatBits > sz)
6372    return false;
6373
6374  SplatValue = APInt(sz, 0);
6375  SplatUndef = APInt(sz, 0);
6376
6377  // Get the bits.  Bits with undefined values (when the corresponding element
6378  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6379  // in SplatValue.  If any of the values are not constant, give up and return
6380  // false.
6381  unsigned int nOps = getNumOperands();
6382  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6383  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6384
6385  for (unsigned j = 0; j < nOps; ++j) {
6386    unsigned i = isBigEndian ? nOps-1-j : j;
6387    SDValue OpVal = getOperand(i);
6388    unsigned BitPos = j * EltBitSize;
6389
6390    if (OpVal.getOpcode() == ISD::UNDEF)
6391      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6392    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6393      SplatValue |= APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6394                    zextOrTrunc(sz) << BitPos;
6395    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6396      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6397     else
6398      return false;
6399  }
6400
6401  // The build_vector is all constants or undefs.  Find the smallest element
6402  // size that splats the vector.
6403
6404  HasAnyUndefs = (SplatUndef != 0);
6405  while (sz > 8) {
6406
6407    unsigned HalfSize = sz / 2;
6408    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6409    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6410    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6411    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6412
6413    // If the two halves do not match (ignoring undef bits), stop here.
6414    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6415        MinSplatBits > HalfSize)
6416      break;
6417
6418    SplatValue = HighValue | LowValue;
6419    SplatUndef = HighUndef & LowUndef;
6420
6421    sz = HalfSize;
6422  }
6423
6424  SplatBitSize = sz;
6425  return true;
6426}
6427
6428bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6429  // Find the first non-undef value in the shuffle mask.
6430  unsigned i, e;
6431  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6432    /* search */;
6433
6434  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6435
6436  // Make sure all remaining elements are either undef or the same as the first
6437  // non-undef value.
6438  for (int Idx = Mask[i]; i != e; ++i)
6439    if (Mask[i] >= 0 && Mask[i] != Idx)
6440      return false;
6441  return true;
6442}
6443
6444#ifdef XDEBUG
6445static void checkForCyclesHelper(const SDNode *N,
6446                                 SmallPtrSet<const SDNode*, 32> &Visited,
6447                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6448  // If this node has already been checked, don't check it again.
6449  if (Checked.count(N))
6450    return;
6451
6452  // If a node has already been visited on this depth-first walk, reject it as
6453  // a cycle.
6454  if (!Visited.insert(N)) {
6455    dbgs() << "Offending node:\n";
6456    N->dumprFull();
6457    errs() << "Detected cycle in SelectionDAG\n";
6458    abort();
6459  }
6460
6461  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6462    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6463
6464  Checked.insert(N);
6465  Visited.erase(N);
6466}
6467#endif
6468
6469void llvm::checkForCycles(const llvm::SDNode *N) {
6470#ifdef XDEBUG
6471  assert(N && "Checking nonexistant SDNode");
6472  SmallPtrSet<const SDNode*, 32> visited;
6473  SmallPtrSet<const SDNode*, 32> checked;
6474  checkForCyclesHelper(N, visited, checked);
6475#endif
6476}
6477
6478void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6479  checkForCycles(DAG->getRoot().getNode());
6480}
6481