SelectionDAG.cpp revision bbe2b709480f1b89d9ac4d42c2c29e7c29dca3bc
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/Support/MathExtras.h"
23#include "llvm/Target/MRegisterInfo.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetLowering.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/ADT/SetVector.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/StringExtras.h"
32#include <algorithm>
33#include <cmath>
34using namespace llvm;
35
36/// makeVTList - Return an instance of the SDVTList struct initialized with the
37/// specified members.
38static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
39  SDVTList Res = {VTs, NumVTs};
40  return Res;
41}
42
43//===----------------------------------------------------------------------===//
44//                              ConstantFPSDNode Class
45//===----------------------------------------------------------------------===//
46
47/// isExactlyValue - We don't rely on operator== working on double values, as
48/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
49/// As such, this method can be used to do an exact bit-for-bit comparison of
50/// two floating point values.
51bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
52  return Value.bitwiseIsEqual(V);
53}
54
55bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
56                                           const APFloat& Val) {
57  // convert modifies in place, so make a copy.
58  APFloat Val2 = APFloat(Val);
59  switch (VT) {
60  default:
61    return false;         // These can't be represented as floating point!
62
63  // FIXME rounding mode needs to be more flexible
64  case MVT::f32:
65    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
66           Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==
67              APFloat::opOK;
68  case MVT::f64:
69    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
70           &Val2.getSemantics() == &APFloat::IEEEdouble ||
71           Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==
72             APFloat::opOK;
73  // TODO: Figure out how to test if we can use a shorter type instead!
74  case MVT::f80:
75  case MVT::f128:
76  case MVT::ppcf128:
77    return true;
78  }
79}
80
81//===----------------------------------------------------------------------===//
82//                              ISD Namespace
83//===----------------------------------------------------------------------===//
84
85/// isBuildVectorAllOnes - Return true if the specified node is a
86/// BUILD_VECTOR where all of the elements are ~0 or undef.
87bool ISD::isBuildVectorAllOnes(const SDNode *N) {
88  // Look through a bit convert.
89  if (N->getOpcode() == ISD::BIT_CONVERT)
90    N = N->getOperand(0).Val;
91
92  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
93
94  unsigned i = 0, e = N->getNumOperands();
95
96  // Skip over all of the undef values.
97  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
98    ++i;
99
100  // Do not accept an all-undef vector.
101  if (i == e) return false;
102
103  // Do not accept build_vectors that aren't all constants or which have non-~0
104  // elements.
105  SDOperand NotZero = N->getOperand(i);
106  if (isa<ConstantSDNode>(NotZero)) {
107    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
108      return false;
109  } else if (isa<ConstantFPSDNode>(NotZero)) {
110    MVT::ValueType VT = NotZero.getValueType();
111    if (VT== MVT::f64) {
112      if (DoubleToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
113          (uint64_t)-1)
114        return false;
115    } else {
116      if (FloatToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
117          (uint32_t)-1)
118        return false;
119    }
120  } else
121    return false;
122
123  // Okay, we have at least one ~0 value, check to see if the rest match or are
124  // undefs.
125  for (++i; i != e; ++i)
126    if (N->getOperand(i) != NotZero &&
127        N->getOperand(i).getOpcode() != ISD::UNDEF)
128      return false;
129  return true;
130}
131
132
133/// isBuildVectorAllZeros - Return true if the specified node is a
134/// BUILD_VECTOR where all of the elements are 0 or undef.
135bool ISD::isBuildVectorAllZeros(const SDNode *N) {
136  // Look through a bit convert.
137  if (N->getOpcode() == ISD::BIT_CONVERT)
138    N = N->getOperand(0).Val;
139
140  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
141
142  unsigned i = 0, e = N->getNumOperands();
143
144  // Skip over all of the undef values.
145  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
146    ++i;
147
148  // Do not accept an all-undef vector.
149  if (i == e) return false;
150
151  // Do not accept build_vectors that aren't all constants or which have non-~0
152  // elements.
153  SDOperand Zero = N->getOperand(i);
154  if (isa<ConstantSDNode>(Zero)) {
155    if (!cast<ConstantSDNode>(Zero)->isNullValue())
156      return false;
157  } else if (isa<ConstantFPSDNode>(Zero)) {
158    if (!cast<ConstantFPSDNode>(Zero)->isExactlyValue(0.0))
159      return false;
160  } else
161    return false;
162
163  // Okay, we have at least one ~0 value, check to see if the rest match or are
164  // undefs.
165  for (++i; i != e; ++i)
166    if (N->getOperand(i) != Zero &&
167        N->getOperand(i).getOpcode() != ISD::UNDEF)
168      return false;
169  return true;
170}
171
172/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
173/// when given the operation for (X op Y).
174ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
175  // To perform this operation, we just need to swap the L and G bits of the
176  // operation.
177  unsigned OldL = (Operation >> 2) & 1;
178  unsigned OldG = (Operation >> 1) & 1;
179  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
180                       (OldL << 1) |       // New G bit
181                       (OldG << 2));        // New L bit.
182}
183
184/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
185/// 'op' is a valid SetCC operation.
186ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
187  unsigned Operation = Op;
188  if (isInteger)
189    Operation ^= 7;   // Flip L, G, E bits, but not U.
190  else
191    Operation ^= 15;  // Flip all of the condition bits.
192  if (Operation > ISD::SETTRUE2)
193    Operation &= ~8;     // Don't let N and U bits get set.
194  return ISD::CondCode(Operation);
195}
196
197
198/// isSignedOp - For an integer comparison, return 1 if the comparison is a
199/// signed operation and 2 if the result is an unsigned comparison.  Return zero
200/// if the operation does not depend on the sign of the input (setne and seteq).
201static int isSignedOp(ISD::CondCode Opcode) {
202  switch (Opcode) {
203  default: assert(0 && "Illegal integer setcc operation!");
204  case ISD::SETEQ:
205  case ISD::SETNE: return 0;
206  case ISD::SETLT:
207  case ISD::SETLE:
208  case ISD::SETGT:
209  case ISD::SETGE: return 1;
210  case ISD::SETULT:
211  case ISD::SETULE:
212  case ISD::SETUGT:
213  case ISD::SETUGE: return 2;
214  }
215}
216
217/// getSetCCOrOperation - Return the result of a logical OR between different
218/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
219/// returns SETCC_INVALID if it is not possible to represent the resultant
220/// comparison.
221ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
222                                       bool isInteger) {
223  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
224    // Cannot fold a signed integer setcc with an unsigned integer setcc.
225    return ISD::SETCC_INVALID;
226
227  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
228
229  // If the N and U bits get set then the resultant comparison DOES suddenly
230  // care about orderedness, and is true when ordered.
231  if (Op > ISD::SETTRUE2)
232    Op &= ~16;     // Clear the U bit if the N bit is set.
233
234  // Canonicalize illegal integer setcc's.
235  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
236    Op = ISD::SETNE;
237
238  return ISD::CondCode(Op);
239}
240
241/// getSetCCAndOperation - Return the result of a logical AND between different
242/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
243/// function returns zero if it is not possible to represent the resultant
244/// comparison.
245ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
246                                        bool isInteger) {
247  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
248    // Cannot fold a signed setcc with an unsigned setcc.
249    return ISD::SETCC_INVALID;
250
251  // Combine all of the condition bits.
252  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
253
254  // Canonicalize illegal integer setcc's.
255  if (isInteger) {
256    switch (Result) {
257    default: break;
258    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
259    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
260    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
261    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
262    }
263  }
264
265  return Result;
266}
267
268const TargetMachine &SelectionDAG::getTarget() const {
269  return TLI.getTargetMachine();
270}
271
272//===----------------------------------------------------------------------===//
273//                           SDNode Profile Support
274//===----------------------------------------------------------------------===//
275
276/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
277///
278static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
279  ID.AddInteger(OpC);
280}
281
282/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
283/// solely with their pointer.
284void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
285  ID.AddPointer(VTList.VTs);
286}
287
288/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
289///
290static void AddNodeIDOperands(FoldingSetNodeID &ID,
291                              const SDOperand *Ops, unsigned NumOps) {
292  for (; NumOps; --NumOps, ++Ops) {
293    ID.AddPointer(Ops->Val);
294    ID.AddInteger(Ops->ResNo);
295  }
296}
297
298static void AddNodeIDNode(FoldingSetNodeID &ID,
299                          unsigned short OpC, SDVTList VTList,
300                          const SDOperand *OpList, unsigned N) {
301  AddNodeIDOpcode(ID, OpC);
302  AddNodeIDValueTypes(ID, VTList);
303  AddNodeIDOperands(ID, OpList, N);
304}
305
306/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
307/// data.
308static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
309  AddNodeIDOpcode(ID, N->getOpcode());
310  // Add the return value info.
311  AddNodeIDValueTypes(ID, N->getVTList());
312  // Add the operand info.
313  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
314
315  // Handle SDNode leafs with special info.
316  switch (N->getOpcode()) {
317  default: break;  // Normal nodes don't need extra info.
318  case ISD::TargetConstant:
319  case ISD::Constant:
320    ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
321    break;
322  case ISD::TargetConstantFP:
323  case ISD::ConstantFP:
324    ID.AddDouble(cast<ConstantFPSDNode>(N)->getValue());
325    break;
326  case ISD::TargetGlobalAddress:
327  case ISD::GlobalAddress:
328  case ISD::TargetGlobalTLSAddress:
329  case ISD::GlobalTLSAddress: {
330    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
331    ID.AddPointer(GA->getGlobal());
332    ID.AddInteger(GA->getOffset());
333    break;
334  }
335  case ISD::BasicBlock:
336    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
337    break;
338  case ISD::Register:
339    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
340    break;
341  case ISD::SRCVALUE: {
342    SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
343    ID.AddPointer(SV->getValue());
344    ID.AddInteger(SV->getOffset());
345    break;
346  }
347  case ISD::FrameIndex:
348  case ISD::TargetFrameIndex:
349    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
350    break;
351  case ISD::JumpTable:
352  case ISD::TargetJumpTable:
353    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
354    break;
355  case ISD::ConstantPool:
356  case ISD::TargetConstantPool: {
357    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
358    ID.AddInteger(CP->getAlignment());
359    ID.AddInteger(CP->getOffset());
360    if (CP->isMachineConstantPoolEntry())
361      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
362    else
363      ID.AddPointer(CP->getConstVal());
364    break;
365  }
366  case ISD::LOAD: {
367    LoadSDNode *LD = cast<LoadSDNode>(N);
368    ID.AddInteger(LD->getAddressingMode());
369    ID.AddInteger(LD->getExtensionType());
370    ID.AddInteger(LD->getLoadedVT());
371    ID.AddPointer(LD->getSrcValue());
372    ID.AddInteger(LD->getSrcValueOffset());
373    ID.AddInteger(LD->getAlignment());
374    ID.AddInteger(LD->isVolatile());
375    break;
376  }
377  case ISD::STORE: {
378    StoreSDNode *ST = cast<StoreSDNode>(N);
379    ID.AddInteger(ST->getAddressingMode());
380    ID.AddInteger(ST->isTruncatingStore());
381    ID.AddInteger(ST->getStoredVT());
382    ID.AddPointer(ST->getSrcValue());
383    ID.AddInteger(ST->getSrcValueOffset());
384    ID.AddInteger(ST->getAlignment());
385    ID.AddInteger(ST->isVolatile());
386    break;
387  }
388  }
389}
390
391//===----------------------------------------------------------------------===//
392//                              SelectionDAG Class
393//===----------------------------------------------------------------------===//
394
395/// RemoveDeadNodes - This method deletes all unreachable nodes in the
396/// SelectionDAG.
397void SelectionDAG::RemoveDeadNodes() {
398  // Create a dummy node (which is not added to allnodes), that adds a reference
399  // to the root node, preventing it from being deleted.
400  HandleSDNode Dummy(getRoot());
401
402  SmallVector<SDNode*, 128> DeadNodes;
403
404  // Add all obviously-dead nodes to the DeadNodes worklist.
405  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
406    if (I->use_empty())
407      DeadNodes.push_back(I);
408
409  // Process the worklist, deleting the nodes and adding their uses to the
410  // worklist.
411  while (!DeadNodes.empty()) {
412    SDNode *N = DeadNodes.back();
413    DeadNodes.pop_back();
414
415    // Take the node out of the appropriate CSE map.
416    RemoveNodeFromCSEMaps(N);
417
418    // Next, brutally remove the operand list.  This is safe to do, as there are
419    // no cycles in the graph.
420    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
421      SDNode *Operand = I->Val;
422      Operand->removeUser(N);
423
424      // Now that we removed this operand, see if there are no uses of it left.
425      if (Operand->use_empty())
426        DeadNodes.push_back(Operand);
427    }
428    if (N->OperandsNeedDelete)
429      delete[] N->OperandList;
430    N->OperandList = 0;
431    N->NumOperands = 0;
432
433    // Finally, remove N itself.
434    AllNodes.erase(N);
435  }
436
437  // If the root changed (e.g. it was a dead load, update the root).
438  setRoot(Dummy.getValue());
439}
440
441void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
442  SmallVector<SDNode*, 16> DeadNodes;
443  DeadNodes.push_back(N);
444
445  // Process the worklist, deleting the nodes and adding their uses to the
446  // worklist.
447  while (!DeadNodes.empty()) {
448    SDNode *N = DeadNodes.back();
449    DeadNodes.pop_back();
450
451    // Take the node out of the appropriate CSE map.
452    RemoveNodeFromCSEMaps(N);
453
454    // Next, brutally remove the operand list.  This is safe to do, as there are
455    // no cycles in the graph.
456    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
457      SDNode *Operand = I->Val;
458      Operand->removeUser(N);
459
460      // Now that we removed this operand, see if there are no uses of it left.
461      if (Operand->use_empty())
462        DeadNodes.push_back(Operand);
463    }
464    if (N->OperandsNeedDelete)
465      delete[] N->OperandList;
466    N->OperandList = 0;
467    N->NumOperands = 0;
468
469    // Finally, remove N itself.
470    Deleted.push_back(N);
471    AllNodes.erase(N);
472  }
473}
474
475void SelectionDAG::DeleteNode(SDNode *N) {
476  assert(N->use_empty() && "Cannot delete a node that is not dead!");
477
478  // First take this out of the appropriate CSE map.
479  RemoveNodeFromCSEMaps(N);
480
481  // Finally, remove uses due to operands of this node, remove from the
482  // AllNodes list, and delete the node.
483  DeleteNodeNotInCSEMaps(N);
484}
485
486void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
487
488  // Remove it from the AllNodes list.
489  AllNodes.remove(N);
490
491  // Drop all of the operands and decrement used nodes use counts.
492  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
493    I->Val->removeUser(N);
494  if (N->OperandsNeedDelete)
495    delete[] N->OperandList;
496  N->OperandList = 0;
497  N->NumOperands = 0;
498
499  delete N;
500}
501
502/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
503/// correspond to it.  This is useful when we're about to delete or repurpose
504/// the node.  We don't want future request for structurally identical nodes
505/// to return N anymore.
506void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
507  bool Erased = false;
508  switch (N->getOpcode()) {
509  case ISD::HANDLENODE: return;  // noop.
510  case ISD::STRING:
511    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
512    break;
513  case ISD::CONDCODE:
514    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
515           "Cond code doesn't exist!");
516    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
517    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
518    break;
519  case ISD::ExternalSymbol:
520    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
521    break;
522  case ISD::TargetExternalSymbol:
523    Erased =
524      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
525    break;
526  case ISD::VALUETYPE:
527    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
528    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
529    break;
530  default:
531    // Remove it from the CSE Map.
532    Erased = CSEMap.RemoveNode(N);
533    break;
534  }
535#ifndef NDEBUG
536  // Verify that the node was actually in one of the CSE maps, unless it has a
537  // flag result (which cannot be CSE'd) or is one of the special cases that are
538  // not subject to CSE.
539  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
540      !N->isTargetOpcode()) {
541    N->dump(this);
542    cerr << "\n";
543    assert(0 && "Node is not in map!");
544  }
545#endif
546}
547
548/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
549/// has been taken out and modified in some way.  If the specified node already
550/// exists in the CSE maps, do not modify the maps, but return the existing node
551/// instead.  If it doesn't exist, add it and return null.
552///
553SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
554  assert(N->getNumOperands() && "This is a leaf node!");
555  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
556    return 0;    // Never add these nodes.
557
558  // Check that remaining values produced are not flags.
559  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
560    if (N->getValueType(i) == MVT::Flag)
561      return 0;   // Never CSE anything that produces a flag.
562
563  SDNode *New = CSEMap.GetOrInsertNode(N);
564  if (New != N) return New;  // Node already existed.
565  return 0;
566}
567
568/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
569/// were replaced with those specified.  If this node is never memoized,
570/// return null, otherwise return a pointer to the slot it would take.  If a
571/// node already exists with these operands, the slot will be non-null.
572SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
573                                           void *&InsertPos) {
574  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
575    return 0;    // Never add these nodes.
576
577  // Check that remaining values produced are not flags.
578  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
579    if (N->getValueType(i) == MVT::Flag)
580      return 0;   // Never CSE anything that produces a flag.
581
582  SDOperand Ops[] = { Op };
583  FoldingSetNodeID ID;
584  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
585  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
586}
587
588/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
589/// were replaced with those specified.  If this node is never memoized,
590/// return null, otherwise return a pointer to the slot it would take.  If a
591/// node already exists with these operands, the slot will be non-null.
592SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
593                                           SDOperand Op1, SDOperand Op2,
594                                           void *&InsertPos) {
595  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
596    return 0;    // Never add these nodes.
597
598  // Check that remaining values produced are not flags.
599  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
600    if (N->getValueType(i) == MVT::Flag)
601      return 0;   // Never CSE anything that produces a flag.
602
603  SDOperand Ops[] = { Op1, Op2 };
604  FoldingSetNodeID ID;
605  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
606  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
607}
608
609
610/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
611/// were replaced with those specified.  If this node is never memoized,
612/// return null, otherwise return a pointer to the slot it would take.  If a
613/// node already exists with these operands, the slot will be non-null.
614SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
615                                           const SDOperand *Ops,unsigned NumOps,
616                                           void *&InsertPos) {
617  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
618    return 0;    // Never add these nodes.
619
620  // Check that remaining values produced are not flags.
621  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
622    if (N->getValueType(i) == MVT::Flag)
623      return 0;   // Never CSE anything that produces a flag.
624
625  FoldingSetNodeID ID;
626  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
627
628  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
629    ID.AddInteger(LD->getAddressingMode());
630    ID.AddInteger(LD->getExtensionType());
631    ID.AddInteger(LD->getLoadedVT());
632    ID.AddPointer(LD->getSrcValue());
633    ID.AddInteger(LD->getSrcValueOffset());
634    ID.AddInteger(LD->getAlignment());
635    ID.AddInteger(LD->isVolatile());
636  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
637    ID.AddInteger(ST->getAddressingMode());
638    ID.AddInteger(ST->isTruncatingStore());
639    ID.AddInteger(ST->getStoredVT());
640    ID.AddPointer(ST->getSrcValue());
641    ID.AddInteger(ST->getSrcValueOffset());
642    ID.AddInteger(ST->getAlignment());
643    ID.AddInteger(ST->isVolatile());
644  }
645
646  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
647}
648
649
650SelectionDAG::~SelectionDAG() {
651  while (!AllNodes.empty()) {
652    SDNode *N = AllNodes.begin();
653    N->SetNextInBucket(0);
654    if (N->OperandsNeedDelete)
655      delete [] N->OperandList;
656    N->OperandList = 0;
657    N->NumOperands = 0;
658    AllNodes.pop_front();
659  }
660}
661
662SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
663  if (Op.getValueType() == VT) return Op;
664  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
665  return getNode(ISD::AND, Op.getValueType(), Op,
666                 getConstant(Imm, Op.getValueType()));
667}
668
669SDOperand SelectionDAG::getString(const std::string &Val) {
670  StringSDNode *&N = StringNodes[Val];
671  if (!N) {
672    N = new StringSDNode(Val);
673    AllNodes.push_back(N);
674  }
675  return SDOperand(N, 0);
676}
677
678SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
679  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
680  assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
681
682  // Mask out any bits that are not valid for this constant.
683  Val &= MVT::getIntVTBitMask(VT);
684
685  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
686  FoldingSetNodeID ID;
687  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
688  ID.AddInteger(Val);
689  void *IP = 0;
690  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
691    return SDOperand(E, 0);
692  SDNode *N = new ConstantSDNode(isT, Val, VT);
693  CSEMap.InsertNode(N, IP);
694  AllNodes.push_back(N);
695  return SDOperand(N, 0);
696}
697
698SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
699                                      bool isTarget) {
700  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
701
702  MVT::ValueType EltVT =
703    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
704  bool isDouble = (EltVT == MVT::f64);
705  double Val = isDouble ? V.convertToDouble() : (double)V.convertToFloat();
706
707  // Do the map lookup using the actual bit pattern for the floating point
708  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
709  // we don't have issues with SNANs.
710  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
711  // ?? Should we store float/double/longdouble separately in ID?
712  FoldingSetNodeID ID;
713  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
714  ID.AddDouble(Val);
715  void *IP = 0;
716  SDNode *N = NULL;
717  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
718    if (!MVT::isVector(VT))
719      return SDOperand(N, 0);
720  if (!N) {
721    N = new ConstantFPSDNode(isTarget, Val, EltVT);
722    CSEMap.InsertNode(N, IP);
723    AllNodes.push_back(N);
724  }
725
726  SDOperand Result(N, 0);
727  if (MVT::isVector(VT)) {
728    SmallVector<SDOperand, 8> Ops;
729    Ops.assign(MVT::getVectorNumElements(VT), Result);
730    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
731  }
732  return Result;
733}
734
735SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
736                                      bool isTarget) {
737  MVT::ValueType EltVT =
738    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
739  if (EltVT==MVT::f32)
740    return getConstantFP(APFloat((float)Val), VT, isTarget);
741  else
742    return getConstantFP(APFloat(Val), VT, isTarget);
743}
744
745SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
746                                         MVT::ValueType VT, int Offset,
747                                         bool isTargetGA) {
748  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
749  unsigned Opc;
750  if (GVar && GVar->isThreadLocal())
751    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
752  else
753    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
754  FoldingSetNodeID ID;
755  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
756  ID.AddPointer(GV);
757  ID.AddInteger(Offset);
758  void *IP = 0;
759  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
760   return SDOperand(E, 0);
761  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
762  CSEMap.InsertNode(N, IP);
763  AllNodes.push_back(N);
764  return SDOperand(N, 0);
765}
766
767SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
768                                      bool isTarget) {
769  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
770  FoldingSetNodeID ID;
771  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
772  ID.AddInteger(FI);
773  void *IP = 0;
774  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
775    return SDOperand(E, 0);
776  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
777  CSEMap.InsertNode(N, IP);
778  AllNodes.push_back(N);
779  return SDOperand(N, 0);
780}
781
782SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
783  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
784  FoldingSetNodeID ID;
785  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
786  ID.AddInteger(JTI);
787  void *IP = 0;
788  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
789    return SDOperand(E, 0);
790  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
791  CSEMap.InsertNode(N, IP);
792  AllNodes.push_back(N);
793  return SDOperand(N, 0);
794}
795
796SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
797                                        unsigned Alignment, int Offset,
798                                        bool isTarget) {
799  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
800  FoldingSetNodeID ID;
801  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
802  ID.AddInteger(Alignment);
803  ID.AddInteger(Offset);
804  ID.AddPointer(C);
805  void *IP = 0;
806  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
807    return SDOperand(E, 0);
808  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
809  CSEMap.InsertNode(N, IP);
810  AllNodes.push_back(N);
811  return SDOperand(N, 0);
812}
813
814
815SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
816                                        MVT::ValueType VT,
817                                        unsigned Alignment, int Offset,
818                                        bool isTarget) {
819  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
820  FoldingSetNodeID ID;
821  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
822  ID.AddInteger(Alignment);
823  ID.AddInteger(Offset);
824  C->AddSelectionDAGCSEId(ID);
825  void *IP = 0;
826  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
827    return SDOperand(E, 0);
828  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
829  CSEMap.InsertNode(N, IP);
830  AllNodes.push_back(N);
831  return SDOperand(N, 0);
832}
833
834
835SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
836  FoldingSetNodeID ID;
837  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
838  ID.AddPointer(MBB);
839  void *IP = 0;
840  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
841    return SDOperand(E, 0);
842  SDNode *N = new BasicBlockSDNode(MBB);
843  CSEMap.InsertNode(N, IP);
844  AllNodes.push_back(N);
845  return SDOperand(N, 0);
846}
847
848SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
849  if ((unsigned)VT >= ValueTypeNodes.size())
850    ValueTypeNodes.resize(VT+1);
851  if (ValueTypeNodes[VT] == 0) {
852    ValueTypeNodes[VT] = new VTSDNode(VT);
853    AllNodes.push_back(ValueTypeNodes[VT]);
854  }
855
856  return SDOperand(ValueTypeNodes[VT], 0);
857}
858
859SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
860  SDNode *&N = ExternalSymbols[Sym];
861  if (N) return SDOperand(N, 0);
862  N = new ExternalSymbolSDNode(false, Sym, VT);
863  AllNodes.push_back(N);
864  return SDOperand(N, 0);
865}
866
867SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
868                                                MVT::ValueType VT) {
869  SDNode *&N = TargetExternalSymbols[Sym];
870  if (N) return SDOperand(N, 0);
871  N = new ExternalSymbolSDNode(true, Sym, VT);
872  AllNodes.push_back(N);
873  return SDOperand(N, 0);
874}
875
876SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
877  if ((unsigned)Cond >= CondCodeNodes.size())
878    CondCodeNodes.resize(Cond+1);
879
880  if (CondCodeNodes[Cond] == 0) {
881    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
882    AllNodes.push_back(CondCodeNodes[Cond]);
883  }
884  return SDOperand(CondCodeNodes[Cond], 0);
885}
886
887SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
888  FoldingSetNodeID ID;
889  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
890  ID.AddInteger(RegNo);
891  void *IP = 0;
892  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
893    return SDOperand(E, 0);
894  SDNode *N = new RegisterSDNode(RegNo, VT);
895  CSEMap.InsertNode(N, IP);
896  AllNodes.push_back(N);
897  return SDOperand(N, 0);
898}
899
900SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
901  assert((!V || isa<PointerType>(V->getType())) &&
902         "SrcValue is not a pointer?");
903
904  FoldingSetNodeID ID;
905  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
906  ID.AddPointer(V);
907  ID.AddInteger(Offset);
908  void *IP = 0;
909  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
910    return SDOperand(E, 0);
911  SDNode *N = new SrcValueSDNode(V, Offset);
912  CSEMap.InsertNode(N, IP);
913  AllNodes.push_back(N);
914  return SDOperand(N, 0);
915}
916
917SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
918                                  SDOperand N2, ISD::CondCode Cond) {
919  // These setcc operations always fold.
920  switch (Cond) {
921  default: break;
922  case ISD::SETFALSE:
923  case ISD::SETFALSE2: return getConstant(0, VT);
924  case ISD::SETTRUE:
925  case ISD::SETTRUE2:  return getConstant(1, VT);
926
927  case ISD::SETOEQ:
928  case ISD::SETOGT:
929  case ISD::SETOGE:
930  case ISD::SETOLT:
931  case ISD::SETOLE:
932  case ISD::SETONE:
933  case ISD::SETO:
934  case ISD::SETUO:
935  case ISD::SETUEQ:
936  case ISD::SETUNE:
937    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
938    break;
939  }
940
941  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
942    uint64_t C2 = N2C->getValue();
943    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
944      uint64_t C1 = N1C->getValue();
945
946      // Sign extend the operands if required
947      if (ISD::isSignedIntSetCC(Cond)) {
948        C1 = N1C->getSignExtended();
949        C2 = N2C->getSignExtended();
950      }
951
952      switch (Cond) {
953      default: assert(0 && "Unknown integer setcc!");
954      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
955      case ISD::SETNE:  return getConstant(C1 != C2, VT);
956      case ISD::SETULT: return getConstant(C1 <  C2, VT);
957      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
958      case ISD::SETULE: return getConstant(C1 <= C2, VT);
959      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
960      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
961      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
962      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
963      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
964      }
965    }
966  }
967  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
968    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
969      double C1 = N1C->getValue(), C2 = N2C->getValue();
970
971      switch (Cond) {
972      default: break; // FIXME: Implement the rest of these!
973      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
974      case ISD::SETNE:  return getConstant(C1 != C2, VT);
975      case ISD::SETLT:  return getConstant(C1 < C2, VT);
976      case ISD::SETGT:  return getConstant(C1 > C2, VT);
977      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
978      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
979      }
980    } else {
981      // Ensure that the constant occurs on the RHS.
982      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
983    }
984
985  // Could not fold it.
986  return SDOperand();
987}
988
989/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
990/// this predicate to simplify operations downstream.  Mask is known to be zero
991/// for bits that V cannot have.
992bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
993                                     unsigned Depth) const {
994  // The masks are not wide enough to represent this type!  Should use APInt.
995  if (Op.getValueType() == MVT::i128)
996    return false;
997
998  uint64_t KnownZero, KnownOne;
999  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1000  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1001  return (KnownZero & Mask) == Mask;
1002}
1003
1004/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1005/// known to be either zero or one and return them in the KnownZero/KnownOne
1006/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1007/// processing.
1008void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
1009                                     uint64_t &KnownZero, uint64_t &KnownOne,
1010                                     unsigned Depth) const {
1011  KnownZero = KnownOne = 0;   // Don't know anything.
1012  if (Depth == 6 || Mask == 0)
1013    return;  // Limit search depth.
1014
1015  // The masks are not wide enough to represent this type!  Should use APInt.
1016  if (Op.getValueType() == MVT::i128)
1017    return;
1018
1019  uint64_t KnownZero2, KnownOne2;
1020
1021  switch (Op.getOpcode()) {
1022  case ISD::Constant:
1023    // We know all of the bits for a constant!
1024    KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
1025    KnownZero = ~KnownOne & Mask;
1026    return;
1027  case ISD::AND:
1028    // If either the LHS or the RHS are Zero, the result is zero.
1029    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1030    Mask &= ~KnownZero;
1031    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1032    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1033    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1034
1035    // Output known-1 bits are only known if set in both the LHS & RHS.
1036    KnownOne &= KnownOne2;
1037    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1038    KnownZero |= KnownZero2;
1039    return;
1040  case ISD::OR:
1041    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1042    Mask &= ~KnownOne;
1043    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1044    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1045    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1046
1047    // Output known-0 bits are only known if clear in both the LHS & RHS.
1048    KnownZero &= KnownZero2;
1049    // Output known-1 are known to be set if set in either the LHS | RHS.
1050    KnownOne |= KnownOne2;
1051    return;
1052  case ISD::XOR: {
1053    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1054    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1055    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1056    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1057
1058    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1059    uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1060    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1061    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1062    KnownZero = KnownZeroOut;
1063    return;
1064  }
1065  case ISD::SELECT:
1066    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1067    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1068    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1069    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1070
1071    // Only known if known in both the LHS and RHS.
1072    KnownOne &= KnownOne2;
1073    KnownZero &= KnownZero2;
1074    return;
1075  case ISD::SELECT_CC:
1076    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1077    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1078    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1079    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1080
1081    // Only known if known in both the LHS and RHS.
1082    KnownOne &= KnownOne2;
1083    KnownZero &= KnownZero2;
1084    return;
1085  case ISD::SETCC:
1086    // If we know the result of a setcc has the top bits zero, use this info.
1087    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
1088      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
1089    return;
1090  case ISD::SHL:
1091    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1092    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1093      ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
1094                        KnownZero, KnownOne, Depth+1);
1095      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1096      KnownZero <<= SA->getValue();
1097      KnownOne  <<= SA->getValue();
1098      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
1099    }
1100    return;
1101  case ISD::SRL:
1102    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1103    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1104      MVT::ValueType VT = Op.getValueType();
1105      unsigned ShAmt = SA->getValue();
1106
1107      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1108      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
1109                        KnownZero, KnownOne, Depth+1);
1110      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1111      KnownZero &= TypeMask;
1112      KnownOne  &= TypeMask;
1113      KnownZero >>= ShAmt;
1114      KnownOne  >>= ShAmt;
1115
1116      uint64_t HighBits = (1ULL << ShAmt)-1;
1117      HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
1118      KnownZero |= HighBits;  // High bits known zero.
1119    }
1120    return;
1121  case ISD::SRA:
1122    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1123      MVT::ValueType VT = Op.getValueType();
1124      unsigned ShAmt = SA->getValue();
1125
1126      // Compute the new bits that are at the top now.
1127      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1128
1129      uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
1130      // If any of the demanded bits are produced by the sign extension, we also
1131      // demand the input sign bit.
1132      uint64_t HighBits = (1ULL << ShAmt)-1;
1133      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
1134      if (HighBits & Mask)
1135        InDemandedMask |= MVT::getIntVTSignBit(VT);
1136
1137      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1138                        Depth+1);
1139      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1140      KnownZero &= TypeMask;
1141      KnownOne  &= TypeMask;
1142      KnownZero >>= ShAmt;
1143      KnownOne  >>= ShAmt;
1144
1145      // Handle the sign bits.
1146      uint64_t SignBit = MVT::getIntVTSignBit(VT);
1147      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
1148
1149      if (KnownZero & SignBit) {
1150        KnownZero |= HighBits;  // New bits are known zero.
1151      } else if (KnownOne & SignBit) {
1152        KnownOne  |= HighBits;  // New bits are known one.
1153      }
1154    }
1155    return;
1156  case ISD::SIGN_EXTEND_INREG: {
1157    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1158
1159    // Sign extension.  Compute the demanded bits in the result that are not
1160    // present in the input.
1161    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
1162
1163    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
1164    int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
1165
1166    // If the sign extended bits are demanded, we know that the sign
1167    // bit is demanded.
1168    if (NewBits)
1169      InputDemandedBits |= InSignBit;
1170
1171    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1172                      KnownZero, KnownOne, Depth+1);
1173    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1174
1175    // If the sign bit of the input is known set or clear, then we know the
1176    // top bits of the result.
1177    if (KnownZero & InSignBit) {          // Input sign bit known clear
1178      KnownZero |= NewBits;
1179      KnownOne  &= ~NewBits;
1180    } else if (KnownOne & InSignBit) {    // Input sign bit known set
1181      KnownOne  |= NewBits;
1182      KnownZero &= ~NewBits;
1183    } else {                              // Input sign bit unknown
1184      KnownZero &= ~NewBits;
1185      KnownOne  &= ~NewBits;
1186    }
1187    return;
1188  }
1189  case ISD::CTTZ:
1190  case ISD::CTLZ:
1191  case ISD::CTPOP: {
1192    MVT::ValueType VT = Op.getValueType();
1193    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
1194    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
1195    KnownOne  = 0;
1196    return;
1197  }
1198  case ISD::LOAD: {
1199    if (ISD::isZEXTLoad(Op.Val)) {
1200      LoadSDNode *LD = cast<LoadSDNode>(Op);
1201      MVT::ValueType VT = LD->getLoadedVT();
1202      KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
1203    }
1204    return;
1205  }
1206  case ISD::ZERO_EXTEND: {
1207    uint64_t InMask  = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
1208    uint64_t NewBits = (~InMask) & Mask;
1209    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1210                      KnownOne, Depth+1);
1211    KnownZero |= NewBits & Mask;
1212    KnownOne  &= ~NewBits;
1213    return;
1214  }
1215  case ISD::SIGN_EXTEND: {
1216    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1217    unsigned InBits    = MVT::getSizeInBits(InVT);
1218    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
1219    uint64_t InSignBit = 1ULL << (InBits-1);
1220    uint64_t NewBits   = (~InMask) & Mask;
1221    uint64_t InDemandedBits = Mask & InMask;
1222
1223    // If any of the sign extended bits are demanded, we know that the sign
1224    // bit is demanded.
1225    if (NewBits & Mask)
1226      InDemandedBits |= InSignBit;
1227
1228    ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1229                      KnownOne, Depth+1);
1230    // If the sign bit is known zero or one, the  top bits match.
1231    if (KnownZero & InSignBit) {
1232      KnownZero |= NewBits;
1233      KnownOne  &= ~NewBits;
1234    } else if (KnownOne & InSignBit) {
1235      KnownOne  |= NewBits;
1236      KnownZero &= ~NewBits;
1237    } else {   // Otherwise, top bits aren't known.
1238      KnownOne  &= ~NewBits;
1239      KnownZero &= ~NewBits;
1240    }
1241    return;
1242  }
1243  case ISD::ANY_EXTEND: {
1244    MVT::ValueType VT = Op.getOperand(0).getValueType();
1245    ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
1246                      KnownZero, KnownOne, Depth+1);
1247    return;
1248  }
1249  case ISD::TRUNCATE: {
1250    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1251    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1252    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
1253    KnownZero &= OutMask;
1254    KnownOne &= OutMask;
1255    break;
1256  }
1257  case ISD::AssertZext: {
1258    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1259    uint64_t InMask = MVT::getIntVTBitMask(VT);
1260    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1261                      KnownOne, Depth+1);
1262    KnownZero |= (~InMask) & Mask;
1263    return;
1264  }
1265  case ISD::ADD: {
1266    // If either the LHS or the RHS are Zero, the result is zero.
1267    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1268    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1269    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1270    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1271
1272    // Output known-0 bits are known if clear or set in both the low clear bits
1273    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1274    // low 3 bits clear.
1275    uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
1276                                     CountTrailingZeros_64(~KnownZero2));
1277
1278    KnownZero = (1ULL << KnownZeroOut) - 1;
1279    KnownOne = 0;
1280    return;
1281  }
1282  case ISD::SUB: {
1283    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1284    if (!CLHS) return;
1285
1286    // We know that the top bits of C-X are clear if X contains less bits
1287    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1288    // positive if we can prove that X is >= 0 and < 16.
1289    MVT::ValueType VT = CLHS->getValueType(0);
1290    if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) {  // sign bit clear
1291      unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
1292      uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
1293      MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
1294      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1295
1296      // If all of the MaskV bits are known to be zero, then we know the output
1297      // top bits are zero, because we now know that the output is from [0-C].
1298      if ((KnownZero & MaskV) == MaskV) {
1299        unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
1300        KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask;  // Top bits known zero.
1301        KnownOne = 0;   // No one bits known.
1302      } else {
1303        KnownZero = KnownOne = 0;  // Otherwise, nothing known.
1304      }
1305    }
1306    return;
1307  }
1308  default:
1309    // Allow the target to implement this method for its nodes.
1310    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1311  case ISD::INTRINSIC_WO_CHAIN:
1312  case ISD::INTRINSIC_W_CHAIN:
1313  case ISD::INTRINSIC_VOID:
1314      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1315    }
1316    return;
1317  }
1318}
1319
1320/// ComputeNumSignBits - Return the number of times the sign bit of the
1321/// register is replicated into the other bits.  We know that at least 1 bit
1322/// is always equal to the sign bit (itself), but other cases can give us
1323/// information.  For example, immediately after an "SRA X, 2", we know that
1324/// the top 3 bits are all equal to each other, so we return 3.
1325unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1326  MVT::ValueType VT = Op.getValueType();
1327  assert(MVT::isInteger(VT) && "Invalid VT!");
1328  unsigned VTBits = MVT::getSizeInBits(VT);
1329  unsigned Tmp, Tmp2;
1330
1331  if (Depth == 6)
1332    return 1;  // Limit search depth.
1333
1334  switch (Op.getOpcode()) {
1335  default: break;
1336  case ISD::AssertSext:
1337    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1338    return VTBits-Tmp+1;
1339  case ISD::AssertZext:
1340    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1341    return VTBits-Tmp;
1342
1343  case ISD::Constant: {
1344    uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1345    // If negative, invert the bits, then look at it.
1346    if (Val & MVT::getIntVTSignBit(VT))
1347      Val = ~Val;
1348
1349    // Shift the bits so they are the leading bits in the int64_t.
1350    Val <<= 64-VTBits;
1351
1352    // Return # leading zeros.  We use 'min' here in case Val was zero before
1353    // shifting.  We don't want to return '64' as for an i32 "0".
1354    return std::min(VTBits, CountLeadingZeros_64(Val));
1355  }
1356
1357  case ISD::SIGN_EXTEND:
1358    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1359    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1360
1361  case ISD::SIGN_EXTEND_INREG:
1362    // Max of the input and what this extends.
1363    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1364    Tmp = VTBits-Tmp+1;
1365
1366    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1367    return std::max(Tmp, Tmp2);
1368
1369  case ISD::SRA:
1370    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1371    // SRA X, C   -> adds C sign bits.
1372    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1373      Tmp += C->getValue();
1374      if (Tmp > VTBits) Tmp = VTBits;
1375    }
1376    return Tmp;
1377  case ISD::SHL:
1378    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1379      // shl destroys sign bits.
1380      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1381      if (C->getValue() >= VTBits ||      // Bad shift.
1382          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1383      return Tmp - C->getValue();
1384    }
1385    break;
1386  case ISD::AND:
1387  case ISD::OR:
1388  case ISD::XOR:    // NOT is handled here.
1389    // Logical binary ops preserve the number of sign bits.
1390    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1391    if (Tmp == 1) return 1;  // Early out.
1392    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1393    return std::min(Tmp, Tmp2);
1394
1395  case ISD::SELECT:
1396    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1397    if (Tmp == 1) return 1;  // Early out.
1398    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1399    return std::min(Tmp, Tmp2);
1400
1401  case ISD::SETCC:
1402    // If setcc returns 0/-1, all bits are sign bits.
1403    if (TLI.getSetCCResultContents() ==
1404        TargetLowering::ZeroOrNegativeOneSetCCResult)
1405      return VTBits;
1406    break;
1407  case ISD::ROTL:
1408  case ISD::ROTR:
1409    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1410      unsigned RotAmt = C->getValue() & (VTBits-1);
1411
1412      // Handle rotate right by N like a rotate left by 32-N.
1413      if (Op.getOpcode() == ISD::ROTR)
1414        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1415
1416      // If we aren't rotating out all of the known-in sign bits, return the
1417      // number that are left.  This handles rotl(sext(x), 1) for example.
1418      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1419      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1420    }
1421    break;
1422  case ISD::ADD:
1423    // Add can have at most one carry bit.  Thus we know that the output
1424    // is, at worst, one more bit than the inputs.
1425    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1426    if (Tmp == 1) return 1;  // Early out.
1427
1428    // Special case decrementing a value (ADD X, -1):
1429    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1430      if (CRHS->isAllOnesValue()) {
1431        uint64_t KnownZero, KnownOne;
1432        uint64_t Mask = MVT::getIntVTBitMask(VT);
1433        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1434
1435        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1436        // sign bits set.
1437        if ((KnownZero|1) == Mask)
1438          return VTBits;
1439
1440        // If we are subtracting one from a positive number, there is no carry
1441        // out of the result.
1442        if (KnownZero & MVT::getIntVTSignBit(VT))
1443          return Tmp;
1444      }
1445
1446    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1447    if (Tmp2 == 1) return 1;
1448      return std::min(Tmp, Tmp2)-1;
1449    break;
1450
1451  case ISD::SUB:
1452    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1453    if (Tmp2 == 1) return 1;
1454
1455    // Handle NEG.
1456    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1457      if (CLHS->getValue() == 0) {
1458        uint64_t KnownZero, KnownOne;
1459        uint64_t Mask = MVT::getIntVTBitMask(VT);
1460        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1461        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1462        // sign bits set.
1463        if ((KnownZero|1) == Mask)
1464          return VTBits;
1465
1466        // If the input is known to be positive (the sign bit is known clear),
1467        // the output of the NEG has the same number of sign bits as the input.
1468        if (KnownZero & MVT::getIntVTSignBit(VT))
1469          return Tmp2;
1470
1471        // Otherwise, we treat this like a SUB.
1472      }
1473
1474    // Sub can have at most one carry bit.  Thus we know that the output
1475    // is, at worst, one more bit than the inputs.
1476    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1477    if (Tmp == 1) return 1;  // Early out.
1478      return std::min(Tmp, Tmp2)-1;
1479    break;
1480  case ISD::TRUNCATE:
1481    // FIXME: it's tricky to do anything useful for this, but it is an important
1482    // case for targets like X86.
1483    break;
1484  }
1485
1486  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1487  if (Op.getOpcode() == ISD::LOAD) {
1488    LoadSDNode *LD = cast<LoadSDNode>(Op);
1489    unsigned ExtType = LD->getExtensionType();
1490    switch (ExtType) {
1491    default: break;
1492    case ISD::SEXTLOAD:    // '17' bits known
1493      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1494      return VTBits-Tmp+1;
1495    case ISD::ZEXTLOAD:    // '16' bits known
1496      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1497      return VTBits-Tmp;
1498    }
1499  }
1500
1501  // Allow the target to implement this method for its nodes.
1502  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1503      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1504      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1505      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1506    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1507    if (NumBits > 1) return NumBits;
1508  }
1509
1510  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1511  // use this information.
1512  uint64_t KnownZero, KnownOne;
1513  uint64_t Mask = MVT::getIntVTBitMask(VT);
1514  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1515
1516  uint64_t SignBit = MVT::getIntVTSignBit(VT);
1517  if (KnownZero & SignBit) {        // SignBit is 0
1518    Mask = KnownZero;
1519  } else if (KnownOne & SignBit) {  // SignBit is 1;
1520    Mask = KnownOne;
1521  } else {
1522    // Nothing known.
1523    return 1;
1524  }
1525
1526  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1527  // the number of identical bits in the top of the input value.
1528  Mask ^= ~0ULL;
1529  Mask <<= 64-VTBits;
1530  // Return # leading zeros.  We use 'min' here in case Val was zero before
1531  // shifting.  We don't want to return '64' as for an i32 "0".
1532  return std::min(VTBits, CountLeadingZeros_64(Mask));
1533}
1534
1535
1536/// getNode - Gets or creates the specified node.
1537///
1538SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1539  FoldingSetNodeID ID;
1540  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1541  void *IP = 0;
1542  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1543    return SDOperand(E, 0);
1544  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1545  CSEMap.InsertNode(N, IP);
1546
1547  AllNodes.push_back(N);
1548  return SDOperand(N, 0);
1549}
1550
1551SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1552                                SDOperand Operand) {
1553  unsigned Tmp1;
1554  // Constant fold unary operations with an integer constant operand.
1555  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1556    uint64_t Val = C->getValue();
1557    switch (Opcode) {
1558    default: break;
1559    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1560    case ISD::ANY_EXTEND:
1561    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1562    case ISD::TRUNCATE:    return getConstant(Val, VT);
1563    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
1564    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
1565    case ISD::BIT_CONVERT:
1566      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1567        return getConstantFP(BitsToFloat(Val), VT);
1568      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1569        return getConstantFP(BitsToDouble(Val), VT);
1570      break;
1571    case ISD::BSWAP:
1572      switch(VT) {
1573      default: assert(0 && "Invalid bswap!"); break;
1574      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1575      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1576      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1577      }
1578      break;
1579    case ISD::CTPOP:
1580      switch(VT) {
1581      default: assert(0 && "Invalid ctpop!"); break;
1582      case MVT::i1: return getConstant(Val != 0, VT);
1583      case MVT::i8:
1584        Tmp1 = (unsigned)Val & 0xFF;
1585        return getConstant(CountPopulation_32(Tmp1), VT);
1586      case MVT::i16:
1587        Tmp1 = (unsigned)Val & 0xFFFF;
1588        return getConstant(CountPopulation_32(Tmp1), VT);
1589      case MVT::i32:
1590        return getConstant(CountPopulation_32((unsigned)Val), VT);
1591      case MVT::i64:
1592        return getConstant(CountPopulation_64(Val), VT);
1593      }
1594    case ISD::CTLZ:
1595      switch(VT) {
1596      default: assert(0 && "Invalid ctlz!"); break;
1597      case MVT::i1: return getConstant(Val == 0, VT);
1598      case MVT::i8:
1599        Tmp1 = (unsigned)Val & 0xFF;
1600        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1601      case MVT::i16:
1602        Tmp1 = (unsigned)Val & 0xFFFF;
1603        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1604      case MVT::i32:
1605        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1606      case MVT::i64:
1607        return getConstant(CountLeadingZeros_64(Val), VT);
1608      }
1609    case ISD::CTTZ:
1610      switch(VT) {
1611      default: assert(0 && "Invalid cttz!"); break;
1612      case MVT::i1: return getConstant(Val == 0, VT);
1613      case MVT::i8:
1614        Tmp1 = (unsigned)Val | 0x100;
1615        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1616      case MVT::i16:
1617        Tmp1 = (unsigned)Val | 0x10000;
1618        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1619      case MVT::i32:
1620        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1621      case MVT::i64:
1622        return getConstant(CountTrailingZeros_64(Val), VT);
1623      }
1624    }
1625  }
1626
1627  // Constant fold unary operations with an floating point constant operand.
1628  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1629    switch (Opcode) {
1630    case ISD::FNEG:
1631      return getConstantFP(-C->getValue(), VT);
1632    case ISD::FABS:
1633      return getConstantFP(fabs(C->getValue()), VT);
1634    case ISD::FP_ROUND:
1635    case ISD::FP_EXTEND:
1636      return getConstantFP(C->getValue(), VT);
1637    case ISD::FP_TO_SINT:
1638      return getConstant((int64_t)C->getValue(), VT);
1639    case ISD::FP_TO_UINT:
1640      return getConstant((uint64_t)C->getValue(), VT);
1641    case ISD::BIT_CONVERT:
1642      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1643        return getConstant(FloatToBits(C->getValue()), VT);
1644      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1645        return getConstant(DoubleToBits(C->getValue()), VT);
1646      break;
1647    }
1648
1649  unsigned OpOpcode = Operand.Val->getOpcode();
1650  switch (Opcode) {
1651  case ISD::TokenFactor:
1652    return Operand;         // Factor of one node?  No factor.
1653  case ISD::FP_ROUND:
1654  case ISD::FP_EXTEND:
1655    assert(MVT::isFloatingPoint(VT) &&
1656           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1657    break;
1658  case ISD::SIGN_EXTEND:
1659    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1660           "Invalid SIGN_EXTEND!");
1661    if (Operand.getValueType() == VT) return Operand;   // noop extension
1662    assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1663    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1664      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1665    break;
1666  case ISD::ZERO_EXTEND:
1667    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1668           "Invalid ZERO_EXTEND!");
1669    if (Operand.getValueType() == VT) return Operand;   // noop extension
1670    assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1671    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1672      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1673    break;
1674  case ISD::ANY_EXTEND:
1675    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1676           "Invalid ANY_EXTEND!");
1677    if (Operand.getValueType() == VT) return Operand;   // noop extension
1678    assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1679    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1680      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1681      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1682    break;
1683  case ISD::TRUNCATE:
1684    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1685           "Invalid TRUNCATE!");
1686    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1687    assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1688    if (OpOpcode == ISD::TRUNCATE)
1689      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1690    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1691             OpOpcode == ISD::ANY_EXTEND) {
1692      // If the source is smaller than the dest, we still need an extend.
1693      if (Operand.Val->getOperand(0).getValueType() < VT)
1694        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1695      else if (Operand.Val->getOperand(0).getValueType() > VT)
1696        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1697      else
1698        return Operand.Val->getOperand(0);
1699    }
1700    break;
1701  case ISD::BIT_CONVERT:
1702    // Basic sanity checking.
1703    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1704           && "Cannot BIT_CONVERT between types of different sizes!");
1705    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1706    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1707      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1708    if (OpOpcode == ISD::UNDEF)
1709      return getNode(ISD::UNDEF, VT);
1710    break;
1711  case ISD::SCALAR_TO_VECTOR:
1712    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1713           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1714           "Illegal SCALAR_TO_VECTOR node!");
1715    break;
1716  case ISD::FNEG:
1717    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1718      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1719                     Operand.Val->getOperand(0));
1720    if (OpOpcode == ISD::FNEG)  // --X -> X
1721      return Operand.Val->getOperand(0);
1722    break;
1723  case ISD::FABS:
1724    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1725      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1726    break;
1727  }
1728
1729  SDNode *N;
1730  SDVTList VTs = getVTList(VT);
1731  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1732    FoldingSetNodeID ID;
1733    SDOperand Ops[1] = { Operand };
1734    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1735    void *IP = 0;
1736    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1737      return SDOperand(E, 0);
1738    N = new UnarySDNode(Opcode, VTs, Operand);
1739    CSEMap.InsertNode(N, IP);
1740  } else {
1741    N = new UnarySDNode(Opcode, VTs, Operand);
1742  }
1743  AllNodes.push_back(N);
1744  return SDOperand(N, 0);
1745}
1746
1747
1748
1749SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1750                                SDOperand N1, SDOperand N2) {
1751#ifndef NDEBUG
1752  switch (Opcode) {
1753  case ISD::TokenFactor:
1754    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1755           N2.getValueType() == MVT::Other && "Invalid token factor!");
1756    break;
1757  case ISD::AND:
1758  case ISD::OR:
1759  case ISD::XOR:
1760  case ISD::UDIV:
1761  case ISD::UREM:
1762  case ISD::MULHU:
1763  case ISD::MULHS:
1764    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1765    // fall through
1766  case ISD::ADD:
1767  case ISD::SUB:
1768  case ISD::MUL:
1769  case ISD::SDIV:
1770  case ISD::SREM:
1771    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1772    // fall through.
1773  case ISD::FADD:
1774  case ISD::FSUB:
1775  case ISD::FMUL:
1776  case ISD::FDIV:
1777  case ISD::FREM:
1778    assert(N1.getValueType() == N2.getValueType() &&
1779           N1.getValueType() == VT && "Binary operator types must match!");
1780    break;
1781  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1782    assert(N1.getValueType() == VT &&
1783           MVT::isFloatingPoint(N1.getValueType()) &&
1784           MVT::isFloatingPoint(N2.getValueType()) &&
1785           "Invalid FCOPYSIGN!");
1786    break;
1787  case ISD::SHL:
1788  case ISD::SRA:
1789  case ISD::SRL:
1790  case ISD::ROTL:
1791  case ISD::ROTR:
1792    assert(VT == N1.getValueType() &&
1793           "Shift operators return type must be the same as their first arg");
1794    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1795           VT != MVT::i1 && "Shifts only work on integers");
1796    break;
1797  case ISD::FP_ROUND_INREG: {
1798    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1799    assert(VT == N1.getValueType() && "Not an inreg round!");
1800    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1801           "Cannot FP_ROUND_INREG integer types");
1802    assert(EVT <= VT && "Not rounding down!");
1803    break;
1804  }
1805  case ISD::AssertSext:
1806  case ISD::AssertZext:
1807  case ISD::SIGN_EXTEND_INREG: {
1808    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1809    assert(VT == N1.getValueType() && "Not an inreg extend!");
1810    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1811           "Cannot *_EXTEND_INREG FP types");
1812    assert(EVT <= VT && "Not extending!");
1813  }
1814
1815  default: break;
1816  }
1817#endif
1818
1819  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1820  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1821  if (N1C) {
1822    if (Opcode == ISD::SIGN_EXTEND_INREG) {
1823      int64_t Val = N1C->getValue();
1824      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1825      Val <<= 64-FromBits;
1826      Val >>= 64-FromBits;
1827      return getConstant(Val, VT);
1828    }
1829
1830    if (N2C) {
1831      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1832      switch (Opcode) {
1833      case ISD::ADD: return getConstant(C1 + C2, VT);
1834      case ISD::SUB: return getConstant(C1 - C2, VT);
1835      case ISD::MUL: return getConstant(C1 * C2, VT);
1836      case ISD::UDIV:
1837        if (C2) return getConstant(C1 / C2, VT);
1838        break;
1839      case ISD::UREM :
1840        if (C2) return getConstant(C1 % C2, VT);
1841        break;
1842      case ISD::SDIV :
1843        if (C2) return getConstant(N1C->getSignExtended() /
1844                                   N2C->getSignExtended(), VT);
1845        break;
1846      case ISD::SREM :
1847        if (C2) return getConstant(N1C->getSignExtended() %
1848                                   N2C->getSignExtended(), VT);
1849        break;
1850      case ISD::AND  : return getConstant(C1 & C2, VT);
1851      case ISD::OR   : return getConstant(C1 | C2, VT);
1852      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1853      case ISD::SHL  : return getConstant(C1 << C2, VT);
1854      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1855      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1856      case ISD::ROTL :
1857        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1858                           VT);
1859      case ISD::ROTR :
1860        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1861                           VT);
1862      default: break;
1863      }
1864    } else {      // Cannonicalize constant to RHS if commutative
1865      if (isCommutativeBinOp(Opcode)) {
1866        std::swap(N1C, N2C);
1867        std::swap(N1, N2);
1868      }
1869    }
1870  }
1871
1872  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1873  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1874  if (N1CFP) {
1875    if (N2CFP) {
1876      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1877      switch (Opcode) {
1878      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1879      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1880      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1881      case ISD::FDIV:
1882        if (C2) return getConstantFP(C1 / C2, VT);
1883        break;
1884      case ISD::FREM :
1885        if (C2) return getConstantFP(fmod(C1, C2), VT);
1886        break;
1887      case ISD::FCOPYSIGN: {
1888        union {
1889          double   F;
1890          uint64_t I;
1891        } u1;
1892        u1.F = C1;
1893        if (int64_t(DoubleToBits(C2)) < 0)  // Sign bit of RHS set?
1894          u1.I |= 1ULL << 63;      // Set the sign bit of the LHS.
1895        else
1896          u1.I &= (1ULL << 63)-1;  // Clear the sign bit of the LHS.
1897        return getConstantFP(u1.F, VT);
1898      }
1899      default: break;
1900      }
1901    } else {      // Cannonicalize constant to RHS if commutative
1902      if (isCommutativeBinOp(Opcode)) {
1903        std::swap(N1CFP, N2CFP);
1904        std::swap(N1, N2);
1905      }
1906    }
1907  }
1908
1909  // Canonicalize an UNDEF to the RHS, even over a constant.
1910  if (N1.getOpcode() == ISD::UNDEF) {
1911    if (isCommutativeBinOp(Opcode)) {
1912      std::swap(N1, N2);
1913    } else {
1914      switch (Opcode) {
1915      case ISD::FP_ROUND_INREG:
1916      case ISD::SIGN_EXTEND_INREG:
1917      case ISD::SUB:
1918      case ISD::FSUB:
1919      case ISD::FDIV:
1920      case ISD::FREM:
1921      case ISD::SRA:
1922        return N1;     // fold op(undef, arg2) -> undef
1923      case ISD::UDIV:
1924      case ISD::SDIV:
1925      case ISD::UREM:
1926      case ISD::SREM:
1927      case ISD::SRL:
1928      case ISD::SHL:
1929        if (!MVT::isVector(VT))
1930          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
1931        // For vectors, we can't easily build an all zero vector, just return
1932        // the LHS.
1933        return N2;
1934      }
1935    }
1936  }
1937
1938  // Fold a bunch of operators when the RHS is undef.
1939  if (N2.getOpcode() == ISD::UNDEF) {
1940    switch (Opcode) {
1941    case ISD::ADD:
1942    case ISD::ADDC:
1943    case ISD::ADDE:
1944    case ISD::SUB:
1945    case ISD::FADD:
1946    case ISD::FSUB:
1947    case ISD::FMUL:
1948    case ISD::FDIV:
1949    case ISD::FREM:
1950    case ISD::UDIV:
1951    case ISD::SDIV:
1952    case ISD::UREM:
1953    case ISD::SREM:
1954    case ISD::XOR:
1955      return N2;       // fold op(arg1, undef) -> undef
1956    case ISD::MUL:
1957    case ISD::AND:
1958    case ISD::SRL:
1959    case ISD::SHL:
1960      if (!MVT::isVector(VT))
1961        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
1962      // For vectors, we can't easily build an all zero vector, just return
1963      // the LHS.
1964      return N1;
1965    case ISD::OR:
1966      if (!MVT::isVector(VT))
1967        return getConstant(MVT::getIntVTBitMask(VT), VT);
1968      // For vectors, we can't easily build an all one vector, just return
1969      // the LHS.
1970      return N1;
1971    case ISD::SRA:
1972      return N1;
1973    }
1974  }
1975
1976  // Fold operations.
1977  switch (Opcode) {
1978  case ISD::TokenFactor:
1979    // Fold trivial token factors.
1980    if (N1.getOpcode() == ISD::EntryToken) return N2;
1981    if (N2.getOpcode() == ISD::EntryToken) return N1;
1982    break;
1983
1984  case ISD::AND:
1985    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
1986    // worth handling here.
1987    if (N2C && N2C->getValue() == 0)
1988      return N2;
1989    break;
1990  case ISD::OR:
1991  case ISD::XOR:
1992    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
1993    // worth handling here.
1994    if (N2C && N2C->getValue() == 0)
1995      return N1;
1996    break;
1997  case ISD::FP_ROUND_INREG:
1998    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1999    break;
2000  case ISD::SIGN_EXTEND_INREG: {
2001    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2002    if (EVT == VT) return N1;  // Not actually extending
2003    break;
2004  }
2005  case ISD::EXTRACT_VECTOR_ELT:
2006    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2007
2008    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2009    // expanding copies of large vectors from registers.
2010    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2011        N1.getNumOperands() > 0) {
2012      unsigned Factor =
2013        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2014      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2015                     N1.getOperand(N2C->getValue() / Factor),
2016                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2017    }
2018
2019    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2020    // expanding large vector constants.
2021    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2022      return N1.getOperand(N2C->getValue());
2023
2024    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2025    // operations are lowered to scalars.
2026    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2027      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2028        if (IEC == N2C)
2029          return N1.getOperand(1);
2030        else
2031          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2032      }
2033    break;
2034  case ISD::EXTRACT_ELEMENT:
2035    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2036
2037    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2038    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2039    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2040    if (N1.getOpcode() == ISD::BUILD_PAIR)
2041      return N1.getOperand(N2C->getValue());
2042
2043    // EXTRACT_ELEMENT of a constant int is also very common.
2044    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2045      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2046      return getConstant(C->getValue() >> Shift, VT);
2047    }
2048    break;
2049
2050  // FIXME: figure out how to safely handle things like
2051  // int foo(int x) { return 1 << (x & 255); }
2052  // int bar() { return foo(256); }
2053#if 0
2054  case ISD::SHL:
2055  case ISD::SRL:
2056  case ISD::SRA:
2057    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2058        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
2059      return getNode(Opcode, VT, N1, N2.getOperand(0));
2060    else if (N2.getOpcode() == ISD::AND)
2061      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
2062        // If the and is only masking out bits that cannot effect the shift,
2063        // eliminate the and.
2064        unsigned NumBits = MVT::getSizeInBits(VT);
2065        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2066          return getNode(Opcode, VT, N1, N2.getOperand(0));
2067      }
2068    break;
2069#endif
2070  }
2071
2072  // Memoize this node if possible.
2073  SDNode *N;
2074  SDVTList VTs = getVTList(VT);
2075  if (VT != MVT::Flag) {
2076    SDOperand Ops[] = { N1, N2 };
2077    FoldingSetNodeID ID;
2078    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2079    void *IP = 0;
2080    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2081      return SDOperand(E, 0);
2082    N = new BinarySDNode(Opcode, VTs, N1, N2);
2083    CSEMap.InsertNode(N, IP);
2084  } else {
2085    N = new BinarySDNode(Opcode, VTs, N1, N2);
2086  }
2087
2088  AllNodes.push_back(N);
2089  return SDOperand(N, 0);
2090}
2091
2092SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2093                                SDOperand N1, SDOperand N2, SDOperand N3) {
2094  // Perform various simplifications.
2095  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2096  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2097  switch (Opcode) {
2098  case ISD::SETCC: {
2099    // Use FoldSetCC to simplify SETCC's.
2100    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2101    if (Simp.Val) return Simp;
2102    break;
2103  }
2104  case ISD::SELECT:
2105    if (N1C)
2106      if (N1C->getValue())
2107        return N2;             // select true, X, Y -> X
2108      else
2109        return N3;             // select false, X, Y -> Y
2110
2111    if (N2 == N3) return N2;   // select C, X, X -> X
2112    break;
2113  case ISD::BRCOND:
2114    if (N2C)
2115      if (N2C->getValue()) // Unconditional branch
2116        return getNode(ISD::BR, MVT::Other, N1, N3);
2117      else
2118        return N1;         // Never-taken branch
2119    break;
2120  case ISD::VECTOR_SHUFFLE:
2121    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2122           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2123           N3.getOpcode() == ISD::BUILD_VECTOR &&
2124           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2125           "Illegal VECTOR_SHUFFLE node!");
2126    break;
2127  case ISD::BIT_CONVERT:
2128    // Fold bit_convert nodes from a type to themselves.
2129    if (N1.getValueType() == VT)
2130      return N1;
2131    break;
2132  }
2133
2134  // Memoize node if it doesn't produce a flag.
2135  SDNode *N;
2136  SDVTList VTs = getVTList(VT);
2137  if (VT != MVT::Flag) {
2138    SDOperand Ops[] = { N1, N2, N3 };
2139    FoldingSetNodeID ID;
2140    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2141    void *IP = 0;
2142    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2143      return SDOperand(E, 0);
2144    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2145    CSEMap.InsertNode(N, IP);
2146  } else {
2147    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2148  }
2149  AllNodes.push_back(N);
2150  return SDOperand(N, 0);
2151}
2152
2153SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2154                                SDOperand N1, SDOperand N2, SDOperand N3,
2155                                SDOperand N4) {
2156  SDOperand Ops[] = { N1, N2, N3, N4 };
2157  return getNode(Opcode, VT, Ops, 4);
2158}
2159
2160SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2161                                SDOperand N1, SDOperand N2, SDOperand N3,
2162                                SDOperand N4, SDOperand N5) {
2163  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2164  return getNode(Opcode, VT, Ops, 5);
2165}
2166
2167SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2168                                SDOperand Chain, SDOperand Ptr,
2169                                const Value *SV, int SVOffset,
2170                                bool isVolatile, unsigned Alignment) {
2171  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2172    const Type *Ty = 0;
2173    if (VT != MVT::iPTR) {
2174      Ty = MVT::getTypeForValueType(VT);
2175    } else if (SV) {
2176      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2177      assert(PT && "Value for load must be a pointer");
2178      Ty = PT->getElementType();
2179    }
2180    assert(Ty && "Could not get type information for load");
2181    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2182  }
2183  SDVTList VTs = getVTList(VT, MVT::Other);
2184  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2185  SDOperand Ops[] = { Chain, Ptr, Undef };
2186  FoldingSetNodeID ID;
2187  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2188  ID.AddInteger(ISD::UNINDEXED);
2189  ID.AddInteger(ISD::NON_EXTLOAD);
2190  ID.AddInteger(VT);
2191  ID.AddPointer(SV);
2192  ID.AddInteger(SVOffset);
2193  ID.AddInteger(Alignment);
2194  ID.AddInteger(isVolatile);
2195  void *IP = 0;
2196  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2197    return SDOperand(E, 0);
2198  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2199                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2200                             isVolatile);
2201  CSEMap.InsertNode(N, IP);
2202  AllNodes.push_back(N);
2203  return SDOperand(N, 0);
2204}
2205
2206SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2207                                   SDOperand Chain, SDOperand Ptr,
2208                                   const Value *SV,
2209                                   int SVOffset, MVT::ValueType EVT,
2210                                   bool isVolatile, unsigned Alignment) {
2211  // If they are asking for an extending load from/to the same thing, return a
2212  // normal load.
2213  if (VT == EVT)
2214    ExtType = ISD::NON_EXTLOAD;
2215
2216  if (MVT::isVector(VT))
2217    assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2218  else
2219    assert(EVT < VT && "Should only be an extending load, not truncating!");
2220  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2221         "Cannot sign/zero extend a FP/Vector load!");
2222  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2223         "Cannot convert from FP to Int or Int -> FP!");
2224
2225  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2226    const Type *Ty = 0;
2227    if (VT != MVT::iPTR) {
2228      Ty = MVT::getTypeForValueType(VT);
2229    } else if (SV) {
2230      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2231      assert(PT && "Value for load must be a pointer");
2232      Ty = PT->getElementType();
2233    }
2234    assert(Ty && "Could not get type information for load");
2235    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2236  }
2237  SDVTList VTs = getVTList(VT, MVT::Other);
2238  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2239  SDOperand Ops[] = { Chain, Ptr, Undef };
2240  FoldingSetNodeID ID;
2241  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2242  ID.AddInteger(ISD::UNINDEXED);
2243  ID.AddInteger(ExtType);
2244  ID.AddInteger(EVT);
2245  ID.AddPointer(SV);
2246  ID.AddInteger(SVOffset);
2247  ID.AddInteger(Alignment);
2248  ID.AddInteger(isVolatile);
2249  void *IP = 0;
2250  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2251    return SDOperand(E, 0);
2252  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2253                             SV, SVOffset, Alignment, isVolatile);
2254  CSEMap.InsertNode(N, IP);
2255  AllNodes.push_back(N);
2256  return SDOperand(N, 0);
2257}
2258
2259SDOperand
2260SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2261                             SDOperand Offset, ISD::MemIndexedMode AM) {
2262  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2263  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2264         "Load is already a indexed load!");
2265  MVT::ValueType VT = OrigLoad.getValueType();
2266  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2267  SDOperand Ops[] = { LD->getChain(), Base, Offset };
2268  FoldingSetNodeID ID;
2269  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2270  ID.AddInteger(AM);
2271  ID.AddInteger(LD->getExtensionType());
2272  ID.AddInteger(LD->getLoadedVT());
2273  ID.AddPointer(LD->getSrcValue());
2274  ID.AddInteger(LD->getSrcValueOffset());
2275  ID.AddInteger(LD->getAlignment());
2276  ID.AddInteger(LD->isVolatile());
2277  void *IP = 0;
2278  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2279    return SDOperand(E, 0);
2280  SDNode *N = new LoadSDNode(Ops, VTs, AM,
2281                             LD->getExtensionType(), LD->getLoadedVT(),
2282                             LD->getSrcValue(), LD->getSrcValueOffset(),
2283                             LD->getAlignment(), LD->isVolatile());
2284  CSEMap.InsertNode(N, IP);
2285  AllNodes.push_back(N);
2286  return SDOperand(N, 0);
2287}
2288
2289SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2290                                 SDOperand Ptr, const Value *SV, int SVOffset,
2291                                 bool isVolatile, unsigned Alignment) {
2292  MVT::ValueType VT = Val.getValueType();
2293
2294  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2295    const Type *Ty = 0;
2296    if (VT != MVT::iPTR) {
2297      Ty = MVT::getTypeForValueType(VT);
2298    } else if (SV) {
2299      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2300      assert(PT && "Value for store must be a pointer");
2301      Ty = PT->getElementType();
2302    }
2303    assert(Ty && "Could not get type information for store");
2304    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2305  }
2306  SDVTList VTs = getVTList(MVT::Other);
2307  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2308  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2309  FoldingSetNodeID ID;
2310  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2311  ID.AddInteger(ISD::UNINDEXED);
2312  ID.AddInteger(false);
2313  ID.AddInteger(VT);
2314  ID.AddPointer(SV);
2315  ID.AddInteger(SVOffset);
2316  ID.AddInteger(Alignment);
2317  ID.AddInteger(isVolatile);
2318  void *IP = 0;
2319  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2320    return SDOperand(E, 0);
2321  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2322                              VT, SV, SVOffset, Alignment, isVolatile);
2323  CSEMap.InsertNode(N, IP);
2324  AllNodes.push_back(N);
2325  return SDOperand(N, 0);
2326}
2327
2328SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2329                                      SDOperand Ptr, const Value *SV,
2330                                      int SVOffset, MVT::ValueType SVT,
2331                                      bool isVolatile, unsigned Alignment) {
2332  MVT::ValueType VT = Val.getValueType();
2333  bool isTrunc = VT != SVT;
2334
2335  assert(VT > SVT && "Not a truncation?");
2336  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2337         "Can't do FP-INT conversion!");
2338
2339  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2340    const Type *Ty = 0;
2341    if (VT != MVT::iPTR) {
2342      Ty = MVT::getTypeForValueType(VT);
2343    } else if (SV) {
2344      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2345      assert(PT && "Value for store must be a pointer");
2346      Ty = PT->getElementType();
2347    }
2348    assert(Ty && "Could not get type information for store");
2349    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2350  }
2351  SDVTList VTs = getVTList(MVT::Other);
2352  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2353  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2354  FoldingSetNodeID ID;
2355  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2356  ID.AddInteger(ISD::UNINDEXED);
2357  ID.AddInteger(isTrunc);
2358  ID.AddInteger(SVT);
2359  ID.AddPointer(SV);
2360  ID.AddInteger(SVOffset);
2361  ID.AddInteger(Alignment);
2362  ID.AddInteger(isVolatile);
2363  void *IP = 0;
2364  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2365    return SDOperand(E, 0);
2366  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, isTrunc,
2367                              SVT, SV, SVOffset, Alignment, isVolatile);
2368  CSEMap.InsertNode(N, IP);
2369  AllNodes.push_back(N);
2370  return SDOperand(N, 0);
2371}
2372
2373SDOperand
2374SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2375                              SDOperand Offset, ISD::MemIndexedMode AM) {
2376  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2377  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2378         "Store is already a indexed store!");
2379  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2380  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2381  FoldingSetNodeID ID;
2382  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2383  ID.AddInteger(AM);
2384  ID.AddInteger(ST->isTruncatingStore());
2385  ID.AddInteger(ST->getStoredVT());
2386  ID.AddPointer(ST->getSrcValue());
2387  ID.AddInteger(ST->getSrcValueOffset());
2388  ID.AddInteger(ST->getAlignment());
2389  ID.AddInteger(ST->isVolatile());
2390  void *IP = 0;
2391  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2392    return SDOperand(E, 0);
2393  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2394                              ST->isTruncatingStore(), ST->getStoredVT(),
2395                              ST->getSrcValue(), ST->getSrcValueOffset(),
2396                              ST->getAlignment(), ST->isVolatile());
2397  CSEMap.InsertNode(N, IP);
2398  AllNodes.push_back(N);
2399  return SDOperand(N, 0);
2400}
2401
2402SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2403                                 SDOperand Chain, SDOperand Ptr,
2404                                 SDOperand SV) {
2405  SDOperand Ops[] = { Chain, Ptr, SV };
2406  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2407}
2408
2409SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2410                                const SDOperand *Ops, unsigned NumOps) {
2411  switch (NumOps) {
2412  case 0: return getNode(Opcode, VT);
2413  case 1: return getNode(Opcode, VT, Ops[0]);
2414  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2415  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2416  default: break;
2417  }
2418
2419  switch (Opcode) {
2420  default: break;
2421  case ISD::SELECT_CC: {
2422    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2423    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2424           "LHS and RHS of condition must have same type!");
2425    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2426           "True and False arms of SelectCC must have same type!");
2427    assert(Ops[2].getValueType() == VT &&
2428           "select_cc node must be of same type as true and false value!");
2429    break;
2430  }
2431  case ISD::BR_CC: {
2432    assert(NumOps == 5 && "BR_CC takes 5 operands!");
2433    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2434           "LHS/RHS of comparison should match types!");
2435    break;
2436  }
2437  }
2438
2439  // Memoize nodes.
2440  SDNode *N;
2441  SDVTList VTs = getVTList(VT);
2442  if (VT != MVT::Flag) {
2443    FoldingSetNodeID ID;
2444    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2445    void *IP = 0;
2446    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2447      return SDOperand(E, 0);
2448    N = new SDNode(Opcode, VTs, Ops, NumOps);
2449    CSEMap.InsertNode(N, IP);
2450  } else {
2451    N = new SDNode(Opcode, VTs, Ops, NumOps);
2452  }
2453  AllNodes.push_back(N);
2454  return SDOperand(N, 0);
2455}
2456
2457SDOperand SelectionDAG::getNode(unsigned Opcode,
2458                                std::vector<MVT::ValueType> &ResultTys,
2459                                const SDOperand *Ops, unsigned NumOps) {
2460  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2461                 Ops, NumOps);
2462}
2463
2464SDOperand SelectionDAG::getNode(unsigned Opcode,
2465                                const MVT::ValueType *VTs, unsigned NumVTs,
2466                                const SDOperand *Ops, unsigned NumOps) {
2467  if (NumVTs == 1)
2468    return getNode(Opcode, VTs[0], Ops, NumOps);
2469  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2470}
2471
2472SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2473                                const SDOperand *Ops, unsigned NumOps) {
2474  if (VTList.NumVTs == 1)
2475    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2476
2477  switch (Opcode) {
2478  // FIXME: figure out how to safely handle things like
2479  // int foo(int x) { return 1 << (x & 255); }
2480  // int bar() { return foo(256); }
2481#if 0
2482  case ISD::SRA_PARTS:
2483  case ISD::SRL_PARTS:
2484  case ISD::SHL_PARTS:
2485    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2486        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2487      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2488    else if (N3.getOpcode() == ISD::AND)
2489      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2490        // If the and is only masking out bits that cannot effect the shift,
2491        // eliminate the and.
2492        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2493        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2494          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2495      }
2496    break;
2497#endif
2498  }
2499
2500  // Memoize the node unless it returns a flag.
2501  SDNode *N;
2502  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2503    FoldingSetNodeID ID;
2504    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2505    void *IP = 0;
2506    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2507      return SDOperand(E, 0);
2508    if (NumOps == 1)
2509      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2510    else if (NumOps == 2)
2511      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2512    else if (NumOps == 3)
2513      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2514    else
2515      N = new SDNode(Opcode, VTList, Ops, NumOps);
2516    CSEMap.InsertNode(N, IP);
2517  } else {
2518    if (NumOps == 1)
2519      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2520    else if (NumOps == 2)
2521      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2522    else if (NumOps == 3)
2523      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2524    else
2525      N = new SDNode(Opcode, VTList, Ops, NumOps);
2526  }
2527  AllNodes.push_back(N);
2528  return SDOperand(N, 0);
2529}
2530
2531SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2532  if (!MVT::isExtendedVT(VT))
2533    return makeVTList(SDNode::getValueTypeList(VT), 1);
2534
2535  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2536       E = VTList.end(); I != E; ++I) {
2537    if (I->size() == 1 && (*I)[0] == VT)
2538      return makeVTList(&(*I)[0], 1);
2539  }
2540  std::vector<MVT::ValueType> V;
2541  V.push_back(VT);
2542  VTList.push_front(V);
2543  return makeVTList(&(*VTList.begin())[0], 1);
2544}
2545
2546SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2547  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2548       E = VTList.end(); I != E; ++I) {
2549    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2550      return makeVTList(&(*I)[0], 2);
2551  }
2552  std::vector<MVT::ValueType> V;
2553  V.push_back(VT1);
2554  V.push_back(VT2);
2555  VTList.push_front(V);
2556  return makeVTList(&(*VTList.begin())[0], 2);
2557}
2558SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2559                                 MVT::ValueType VT3) {
2560  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2561       E = VTList.end(); I != E; ++I) {
2562    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2563        (*I)[2] == VT3)
2564      return makeVTList(&(*I)[0], 3);
2565  }
2566  std::vector<MVT::ValueType> V;
2567  V.push_back(VT1);
2568  V.push_back(VT2);
2569  V.push_back(VT3);
2570  VTList.push_front(V);
2571  return makeVTList(&(*VTList.begin())[0], 3);
2572}
2573
2574SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2575  switch (NumVTs) {
2576    case 0: assert(0 && "Cannot have nodes without results!");
2577    case 1: return getVTList(VTs[0]);
2578    case 2: return getVTList(VTs[0], VTs[1]);
2579    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2580    default: break;
2581  }
2582
2583  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2584       E = VTList.end(); I != E; ++I) {
2585    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2586
2587    bool NoMatch = false;
2588    for (unsigned i = 2; i != NumVTs; ++i)
2589      if (VTs[i] != (*I)[i]) {
2590        NoMatch = true;
2591        break;
2592      }
2593    if (!NoMatch)
2594      return makeVTList(&*I->begin(), NumVTs);
2595  }
2596
2597  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2598  return makeVTList(&*VTList.begin()->begin(), NumVTs);
2599}
2600
2601
2602/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2603/// specified operands.  If the resultant node already exists in the DAG,
2604/// this does not modify the specified node, instead it returns the node that
2605/// already exists.  If the resultant node does not exist in the DAG, the
2606/// input node is returned.  As a degenerate case, if you specify the same
2607/// input operands as the node already has, the input node is returned.
2608SDOperand SelectionDAG::
2609UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2610  SDNode *N = InN.Val;
2611  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2612
2613  // Check to see if there is no change.
2614  if (Op == N->getOperand(0)) return InN;
2615
2616  // See if the modified node already exists.
2617  void *InsertPos = 0;
2618  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2619    return SDOperand(Existing, InN.ResNo);
2620
2621  // Nope it doesn't.  Remove the node from it's current place in the maps.
2622  if (InsertPos)
2623    RemoveNodeFromCSEMaps(N);
2624
2625  // Now we update the operands.
2626  N->OperandList[0].Val->removeUser(N);
2627  Op.Val->addUser(N);
2628  N->OperandList[0] = Op;
2629
2630  // If this gets put into a CSE map, add it.
2631  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2632  return InN;
2633}
2634
2635SDOperand SelectionDAG::
2636UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2637  SDNode *N = InN.Val;
2638  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2639
2640  // Check to see if there is no change.
2641  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2642    return InN;   // No operands changed, just return the input node.
2643
2644  // See if the modified node already exists.
2645  void *InsertPos = 0;
2646  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2647    return SDOperand(Existing, InN.ResNo);
2648
2649  // Nope it doesn't.  Remove the node from it's current place in the maps.
2650  if (InsertPos)
2651    RemoveNodeFromCSEMaps(N);
2652
2653  // Now we update the operands.
2654  if (N->OperandList[0] != Op1) {
2655    N->OperandList[0].Val->removeUser(N);
2656    Op1.Val->addUser(N);
2657    N->OperandList[0] = Op1;
2658  }
2659  if (N->OperandList[1] != Op2) {
2660    N->OperandList[1].Val->removeUser(N);
2661    Op2.Val->addUser(N);
2662    N->OperandList[1] = Op2;
2663  }
2664
2665  // If this gets put into a CSE map, add it.
2666  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2667  return InN;
2668}
2669
2670SDOperand SelectionDAG::
2671UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2672  SDOperand Ops[] = { Op1, Op2, Op3 };
2673  return UpdateNodeOperands(N, Ops, 3);
2674}
2675
2676SDOperand SelectionDAG::
2677UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2678                   SDOperand Op3, SDOperand Op4) {
2679  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2680  return UpdateNodeOperands(N, Ops, 4);
2681}
2682
2683SDOperand SelectionDAG::
2684UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2685                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2686  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2687  return UpdateNodeOperands(N, Ops, 5);
2688}
2689
2690
2691SDOperand SelectionDAG::
2692UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2693  SDNode *N = InN.Val;
2694  assert(N->getNumOperands() == NumOps &&
2695         "Update with wrong number of operands");
2696
2697  // Check to see if there is no change.
2698  bool AnyChange = false;
2699  for (unsigned i = 0; i != NumOps; ++i) {
2700    if (Ops[i] != N->getOperand(i)) {
2701      AnyChange = true;
2702      break;
2703    }
2704  }
2705
2706  // No operands changed, just return the input node.
2707  if (!AnyChange) return InN;
2708
2709  // See if the modified node already exists.
2710  void *InsertPos = 0;
2711  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2712    return SDOperand(Existing, InN.ResNo);
2713
2714  // Nope it doesn't.  Remove the node from it's current place in the maps.
2715  if (InsertPos)
2716    RemoveNodeFromCSEMaps(N);
2717
2718  // Now we update the operands.
2719  for (unsigned i = 0; i != NumOps; ++i) {
2720    if (N->OperandList[i] != Ops[i]) {
2721      N->OperandList[i].Val->removeUser(N);
2722      Ops[i].Val->addUser(N);
2723      N->OperandList[i] = Ops[i];
2724    }
2725  }
2726
2727  // If this gets put into a CSE map, add it.
2728  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2729  return InN;
2730}
2731
2732
2733/// MorphNodeTo - This frees the operands of the current node, resets the
2734/// opcode, types, and operands to the specified value.  This should only be
2735/// used by the SelectionDAG class.
2736void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2737                         const SDOperand *Ops, unsigned NumOps) {
2738  NodeType = Opc;
2739  ValueList = L.VTs;
2740  NumValues = L.NumVTs;
2741
2742  // Clear the operands list, updating used nodes to remove this from their
2743  // use list.
2744  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2745    I->Val->removeUser(this);
2746
2747  // If NumOps is larger than the # of operands we currently have, reallocate
2748  // the operand list.
2749  if (NumOps > NumOperands) {
2750    if (OperandsNeedDelete)
2751      delete [] OperandList;
2752    OperandList = new SDOperand[NumOps];
2753    OperandsNeedDelete = true;
2754  }
2755
2756  // Assign the new operands.
2757  NumOperands = NumOps;
2758
2759  for (unsigned i = 0, e = NumOps; i != e; ++i) {
2760    OperandList[i] = Ops[i];
2761    SDNode *N = OperandList[i].Val;
2762    N->Uses.push_back(this);
2763  }
2764}
2765
2766/// SelectNodeTo - These are used for target selectors to *mutate* the
2767/// specified node to have the specified return type, Target opcode, and
2768/// operands.  Note that target opcodes are stored as
2769/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2770///
2771/// Note that SelectNodeTo returns the resultant node.  If there is already a
2772/// node of the specified opcode and operands, it returns that node instead of
2773/// the current one.
2774SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2775                                   MVT::ValueType VT) {
2776  SDVTList VTs = getVTList(VT);
2777  FoldingSetNodeID ID;
2778  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2779  void *IP = 0;
2780  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2781    return ON;
2782
2783  RemoveNodeFromCSEMaps(N);
2784
2785  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2786
2787  CSEMap.InsertNode(N, IP);
2788  return N;
2789}
2790
2791SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2792                                   MVT::ValueType VT, SDOperand Op1) {
2793  // If an identical node already exists, use it.
2794  SDVTList VTs = getVTList(VT);
2795  SDOperand Ops[] = { Op1 };
2796
2797  FoldingSetNodeID ID;
2798  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2799  void *IP = 0;
2800  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2801    return ON;
2802
2803  RemoveNodeFromCSEMaps(N);
2804  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2805  CSEMap.InsertNode(N, IP);
2806  return N;
2807}
2808
2809SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2810                                   MVT::ValueType VT, SDOperand Op1,
2811                                   SDOperand Op2) {
2812  // If an identical node already exists, use it.
2813  SDVTList VTs = getVTList(VT);
2814  SDOperand Ops[] = { Op1, Op2 };
2815
2816  FoldingSetNodeID ID;
2817  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2818  void *IP = 0;
2819  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2820    return ON;
2821
2822  RemoveNodeFromCSEMaps(N);
2823
2824  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2825
2826  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2827  return N;
2828}
2829
2830SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2831                                   MVT::ValueType VT, SDOperand Op1,
2832                                   SDOperand Op2, SDOperand Op3) {
2833  // If an identical node already exists, use it.
2834  SDVTList VTs = getVTList(VT);
2835  SDOperand Ops[] = { Op1, Op2, Op3 };
2836  FoldingSetNodeID ID;
2837  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2838  void *IP = 0;
2839  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2840    return ON;
2841
2842  RemoveNodeFromCSEMaps(N);
2843
2844  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2845
2846  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2847  return N;
2848}
2849
2850SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2851                                   MVT::ValueType VT, const SDOperand *Ops,
2852                                   unsigned NumOps) {
2853  // If an identical node already exists, use it.
2854  SDVTList VTs = getVTList(VT);
2855  FoldingSetNodeID ID;
2856  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2857  void *IP = 0;
2858  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2859    return ON;
2860
2861  RemoveNodeFromCSEMaps(N);
2862  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2863
2864  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2865  return N;
2866}
2867
2868SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2869                                   MVT::ValueType VT1, MVT::ValueType VT2,
2870                                   SDOperand Op1, SDOperand Op2) {
2871  SDVTList VTs = getVTList(VT1, VT2);
2872  FoldingSetNodeID ID;
2873  SDOperand Ops[] = { Op1, Op2 };
2874  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2875  void *IP = 0;
2876  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2877    return ON;
2878
2879  RemoveNodeFromCSEMaps(N);
2880  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2881  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2882  return N;
2883}
2884
2885SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2886                                   MVT::ValueType VT1, MVT::ValueType VT2,
2887                                   SDOperand Op1, SDOperand Op2,
2888                                   SDOperand Op3) {
2889  // If an identical node already exists, use it.
2890  SDVTList VTs = getVTList(VT1, VT2);
2891  SDOperand Ops[] = { Op1, Op2, Op3 };
2892  FoldingSetNodeID ID;
2893  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2894  void *IP = 0;
2895  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2896    return ON;
2897
2898  RemoveNodeFromCSEMaps(N);
2899
2900  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2901  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2902  return N;
2903}
2904
2905
2906/// getTargetNode - These are used for target selectors to create a new node
2907/// with specified return type(s), target opcode, and operands.
2908///
2909/// Note that getTargetNode returns the resultant node.  If there is already a
2910/// node of the specified opcode and operands, it returns that node instead of
2911/// the current one.
2912SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2913  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2914}
2915SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2916                                    SDOperand Op1) {
2917  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2918}
2919SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2920                                    SDOperand Op1, SDOperand Op2) {
2921  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2922}
2923SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2924                                    SDOperand Op1, SDOperand Op2,
2925                                    SDOperand Op3) {
2926  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2927}
2928SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2929                                    const SDOperand *Ops, unsigned NumOps) {
2930  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
2931}
2932SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2933                                    MVT::ValueType VT2, SDOperand Op1) {
2934  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2935  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
2936}
2937SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2938                                    MVT::ValueType VT2, SDOperand Op1,
2939                                    SDOperand Op2) {
2940  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2941  SDOperand Ops[] = { Op1, Op2 };
2942  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
2943}
2944SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2945                                    MVT::ValueType VT2, SDOperand Op1,
2946                                    SDOperand Op2, SDOperand Op3) {
2947  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2948  SDOperand Ops[] = { Op1, Op2, Op3 };
2949  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
2950}
2951SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2952                                    MVT::ValueType VT2,
2953                                    const SDOperand *Ops, unsigned NumOps) {
2954  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2955  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
2956}
2957SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2958                                    MVT::ValueType VT2, MVT::ValueType VT3,
2959                                    SDOperand Op1, SDOperand Op2) {
2960  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2961  SDOperand Ops[] = { Op1, Op2 };
2962  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
2963}
2964SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2965                                    MVT::ValueType VT2, MVT::ValueType VT3,
2966                                    SDOperand Op1, SDOperand Op2,
2967                                    SDOperand Op3) {
2968  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2969  SDOperand Ops[] = { Op1, Op2, Op3 };
2970  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
2971}
2972SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2973                                    MVT::ValueType VT2, MVT::ValueType VT3,
2974                                    const SDOperand *Ops, unsigned NumOps) {
2975  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2976  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
2977}
2978
2979/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2980/// This can cause recursive merging of nodes in the DAG.
2981///
2982/// This version assumes From/To have a single result value.
2983///
2984void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2985                                      std::vector<SDNode*> *Deleted) {
2986  SDNode *From = FromN.Val, *To = ToN.Val;
2987  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2988         "Cannot replace with this method!");
2989  assert(From != To && "Cannot replace uses of with self");
2990
2991  while (!From->use_empty()) {
2992    // Process users until they are all gone.
2993    SDNode *U = *From->use_begin();
2994
2995    // This node is about to morph, remove its old self from the CSE maps.
2996    RemoveNodeFromCSEMaps(U);
2997
2998    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2999         I != E; ++I)
3000      if (I->Val == From) {
3001        From->removeUser(U);
3002        I->Val = To;
3003        To->addUser(U);
3004      }
3005
3006    // Now that we have modified U, add it back to the CSE maps.  If it already
3007    // exists there, recursively merge the results together.
3008    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3009      ReplaceAllUsesWith(U, Existing, Deleted);
3010      // U is now dead.
3011      if (Deleted) Deleted->push_back(U);
3012      DeleteNodeNotInCSEMaps(U);
3013    }
3014  }
3015}
3016
3017/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3018/// This can cause recursive merging of nodes in the DAG.
3019///
3020/// This version assumes From/To have matching types and numbers of result
3021/// values.
3022///
3023void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3024                                      std::vector<SDNode*> *Deleted) {
3025  assert(From != To && "Cannot replace uses of with self");
3026  assert(From->getNumValues() == To->getNumValues() &&
3027         "Cannot use this version of ReplaceAllUsesWith!");
3028  if (From->getNumValues() == 1) {  // If possible, use the faster version.
3029    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
3030    return;
3031  }
3032
3033  while (!From->use_empty()) {
3034    // Process users until they are all gone.
3035    SDNode *U = *From->use_begin();
3036
3037    // This node is about to morph, remove its old self from the CSE maps.
3038    RemoveNodeFromCSEMaps(U);
3039
3040    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3041         I != E; ++I)
3042      if (I->Val == From) {
3043        From->removeUser(U);
3044        I->Val = To;
3045        To->addUser(U);
3046      }
3047
3048    // Now that we have modified U, add it back to the CSE maps.  If it already
3049    // exists there, recursively merge the results together.
3050    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3051      ReplaceAllUsesWith(U, Existing, Deleted);
3052      // U is now dead.
3053      if (Deleted) Deleted->push_back(U);
3054      DeleteNodeNotInCSEMaps(U);
3055    }
3056  }
3057}
3058
3059/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3060/// This can cause recursive merging of nodes in the DAG.
3061///
3062/// This version can replace From with any result values.  To must match the
3063/// number and types of values returned by From.
3064void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3065                                      const SDOperand *To,
3066                                      std::vector<SDNode*> *Deleted) {
3067  if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
3068    // Degenerate case handled above.
3069    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
3070    return;
3071  }
3072
3073  while (!From->use_empty()) {
3074    // Process users until they are all gone.
3075    SDNode *U = *From->use_begin();
3076
3077    // This node is about to morph, remove its old self from the CSE maps.
3078    RemoveNodeFromCSEMaps(U);
3079
3080    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3081         I != E; ++I)
3082      if (I->Val == From) {
3083        const SDOperand &ToOp = To[I->ResNo];
3084        From->removeUser(U);
3085        *I = ToOp;
3086        ToOp.Val->addUser(U);
3087      }
3088
3089    // Now that we have modified U, add it back to the CSE maps.  If it already
3090    // exists there, recursively merge the results together.
3091    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3092      ReplaceAllUsesWith(U, Existing, Deleted);
3093      // U is now dead.
3094      if (Deleted) Deleted->push_back(U);
3095      DeleteNodeNotInCSEMaps(U);
3096    }
3097  }
3098}
3099
3100/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3101/// uses of other values produced by From.Val alone.  The Deleted vector is
3102/// handled the same was as for ReplaceAllUsesWith.
3103void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3104                                             std::vector<SDNode*> &Deleted) {
3105  assert(From != To && "Cannot replace a value with itself");
3106  // Handle the simple, trivial, case efficiently.
3107  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
3108    ReplaceAllUsesWith(From, To, &Deleted);
3109    return;
3110  }
3111
3112  // Get all of the users of From.Val.  We want these in a nice,
3113  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3114  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3115
3116  while (!Users.empty()) {
3117    // We know that this user uses some value of From.  If it is the right
3118    // value, update it.
3119    SDNode *User = Users.back();
3120    Users.pop_back();
3121
3122    for (SDOperand *Op = User->OperandList,
3123         *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
3124      if (*Op == From) {
3125        // Okay, we know this user needs to be updated.  Remove its old self
3126        // from the CSE maps.
3127        RemoveNodeFromCSEMaps(User);
3128
3129        // Update all operands that match "From".
3130        for (; Op != E; ++Op) {
3131          if (*Op == From) {
3132            From.Val->removeUser(User);
3133            *Op = To;
3134            To.Val->addUser(User);
3135          }
3136        }
3137
3138        // Now that we have modified User, add it back to the CSE maps.  If it
3139        // already exists there, recursively merge the results together.
3140        if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
3141          unsigned NumDeleted = Deleted.size();
3142          ReplaceAllUsesWith(User, Existing, &Deleted);
3143
3144          // User is now dead.
3145          Deleted.push_back(User);
3146          DeleteNodeNotInCSEMaps(User);
3147
3148          // We have to be careful here, because ReplaceAllUsesWith could have
3149          // deleted a user of From, which means there may be dangling pointers
3150          // in the "Users" setvector.  Scan over the deleted node pointers and
3151          // remove them from the setvector.
3152          for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
3153            Users.remove(Deleted[i]);
3154        }
3155        break;   // Exit the operand scanning loop.
3156      }
3157    }
3158  }
3159}
3160
3161
3162/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3163/// their allnodes order. It returns the maximum id.
3164unsigned SelectionDAG::AssignNodeIds() {
3165  unsigned Id = 0;
3166  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3167    SDNode *N = I;
3168    N->setNodeId(Id++);
3169  }
3170  return Id;
3171}
3172
3173/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3174/// based on their topological order. It returns the maximum id and a vector
3175/// of the SDNodes* in assigned order by reference.
3176unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3177  unsigned DAGSize = AllNodes.size();
3178  std::vector<unsigned> InDegree(DAGSize);
3179  std::vector<SDNode*> Sources;
3180
3181  // Use a two pass approach to avoid using a std::map which is slow.
3182  unsigned Id = 0;
3183  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3184    SDNode *N = I;
3185    N->setNodeId(Id++);
3186    unsigned Degree = N->use_size();
3187    InDegree[N->getNodeId()] = Degree;
3188    if (Degree == 0)
3189      Sources.push_back(N);
3190  }
3191
3192  TopOrder.clear();
3193  while (!Sources.empty()) {
3194    SDNode *N = Sources.back();
3195    Sources.pop_back();
3196    TopOrder.push_back(N);
3197    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3198      SDNode *P = I->Val;
3199      unsigned Degree = --InDegree[P->getNodeId()];
3200      if (Degree == 0)
3201        Sources.push_back(P);
3202    }
3203  }
3204
3205  // Second pass, assign the actual topological order as node ids.
3206  Id = 0;
3207  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3208       TI != TE; ++TI)
3209    (*TI)->setNodeId(Id++);
3210
3211  return Id;
3212}
3213
3214
3215
3216//===----------------------------------------------------------------------===//
3217//                              SDNode Class
3218//===----------------------------------------------------------------------===//
3219
3220// Out-of-line virtual method to give class a home.
3221void SDNode::ANCHOR() {}
3222void UnarySDNode::ANCHOR() {}
3223void BinarySDNode::ANCHOR() {}
3224void TernarySDNode::ANCHOR() {}
3225void HandleSDNode::ANCHOR() {}
3226void StringSDNode::ANCHOR() {}
3227void ConstantSDNode::ANCHOR() {}
3228void ConstantFPSDNode::ANCHOR() {}
3229void GlobalAddressSDNode::ANCHOR() {}
3230void FrameIndexSDNode::ANCHOR() {}
3231void JumpTableSDNode::ANCHOR() {}
3232void ConstantPoolSDNode::ANCHOR() {}
3233void BasicBlockSDNode::ANCHOR() {}
3234void SrcValueSDNode::ANCHOR() {}
3235void RegisterSDNode::ANCHOR() {}
3236void ExternalSymbolSDNode::ANCHOR() {}
3237void CondCodeSDNode::ANCHOR() {}
3238void VTSDNode::ANCHOR() {}
3239void LoadSDNode::ANCHOR() {}
3240void StoreSDNode::ANCHOR() {}
3241
3242HandleSDNode::~HandleSDNode() {
3243  SDVTList VTs = { 0, 0 };
3244  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3245}
3246
3247GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3248                                         MVT::ValueType VT, int o)
3249  : SDNode(isa<GlobalVariable>(GA) &&
3250           cast<GlobalVariable>(GA)->isThreadLocal() ?
3251           // Thread Local
3252           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3253           // Non Thread Local
3254           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3255           getSDVTList(VT)), Offset(o) {
3256  TheGlobal = const_cast<GlobalValue*>(GA);
3257}
3258
3259/// Profile - Gather unique data for the node.
3260///
3261void SDNode::Profile(FoldingSetNodeID &ID) {
3262  AddNodeIDNode(ID, this);
3263}
3264
3265/// getValueTypeList - Return a pointer to the specified value type.
3266///
3267MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3268  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3269  VTs[VT] = VT;
3270  return &VTs[VT];
3271}
3272
3273/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3274/// indicated value.  This method ignores uses of other values defined by this
3275/// operation.
3276bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3277  assert(Value < getNumValues() && "Bad value!");
3278
3279  // If there is only one value, this is easy.
3280  if (getNumValues() == 1)
3281    return use_size() == NUses;
3282  if (use_size() < NUses) return false;
3283
3284  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3285
3286  SmallPtrSet<SDNode*, 32> UsersHandled;
3287
3288  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3289    SDNode *User = *UI;
3290    if (User->getNumOperands() == 1 ||
3291        UsersHandled.insert(User))     // First time we've seen this?
3292      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3293        if (User->getOperand(i) == TheValue) {
3294          if (NUses == 0)
3295            return false;   // too many uses
3296          --NUses;
3297        }
3298  }
3299
3300  // Found exactly the right number of uses?
3301  return NUses == 0;
3302}
3303
3304
3305/// hasAnyUseOfValue - Return true if there are any use of the indicated
3306/// value. This method ignores uses of other values defined by this operation.
3307bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3308  assert(Value < getNumValues() && "Bad value!");
3309
3310  if (use_size() == 0) return false;
3311
3312  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3313
3314  SmallPtrSet<SDNode*, 32> UsersHandled;
3315
3316  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3317    SDNode *User = *UI;
3318    if (User->getNumOperands() == 1 ||
3319        UsersHandled.insert(User))     // First time we've seen this?
3320      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3321        if (User->getOperand(i) == TheValue) {
3322          return true;
3323        }
3324  }
3325
3326  return false;
3327}
3328
3329
3330/// isOnlyUse - Return true if this node is the only use of N.
3331///
3332bool SDNode::isOnlyUse(SDNode *N) const {
3333  bool Seen = false;
3334  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3335    SDNode *User = *I;
3336    if (User == this)
3337      Seen = true;
3338    else
3339      return false;
3340  }
3341
3342  return Seen;
3343}
3344
3345/// isOperand - Return true if this node is an operand of N.
3346///
3347bool SDOperand::isOperand(SDNode *N) const {
3348  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3349    if (*this == N->getOperand(i))
3350      return true;
3351  return false;
3352}
3353
3354bool SDNode::isOperand(SDNode *N) const {
3355  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3356    if (this == N->OperandList[i].Val)
3357      return true;
3358  return false;
3359}
3360
3361static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3362                            SmallPtrSet<SDNode *, 32> &Visited) {
3363  if (found || !Visited.insert(N))
3364    return;
3365
3366  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3367    SDNode *Op = N->getOperand(i).Val;
3368    if (Op == P) {
3369      found = true;
3370      return;
3371    }
3372    findPredecessor(Op, P, found, Visited);
3373  }
3374}
3375
3376/// isPredecessor - Return true if this node is a predecessor of N. This node
3377/// is either an operand of N or it can be reached by recursively traversing
3378/// up the operands.
3379/// NOTE: this is an expensive method. Use it carefully.
3380bool SDNode::isPredecessor(SDNode *N) const {
3381  SmallPtrSet<SDNode *, 32> Visited;
3382  bool found = false;
3383  findPredecessor(N, this, found, Visited);
3384  return found;
3385}
3386
3387uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3388  assert(Num < NumOperands && "Invalid child # of SDNode!");
3389  return cast<ConstantSDNode>(OperandList[Num])->getValue();
3390}
3391
3392std::string SDNode::getOperationName(const SelectionDAG *G) const {
3393  switch (getOpcode()) {
3394  default:
3395    if (getOpcode() < ISD::BUILTIN_OP_END)
3396      return "<<Unknown DAG Node>>";
3397    else {
3398      if (G) {
3399        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3400          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3401            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
3402
3403        TargetLowering &TLI = G->getTargetLoweringInfo();
3404        const char *Name =
3405          TLI.getTargetNodeName(getOpcode());
3406        if (Name) return Name;
3407      }
3408
3409      return "<<Unknown Target Node>>";
3410    }
3411
3412  case ISD::PCMARKER:      return "PCMarker";
3413  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3414  case ISD::SRCVALUE:      return "SrcValue";
3415  case ISD::EntryToken:    return "EntryToken";
3416  case ISD::TokenFactor:   return "TokenFactor";
3417  case ISD::AssertSext:    return "AssertSext";
3418  case ISD::AssertZext:    return "AssertZext";
3419
3420  case ISD::STRING:        return "String";
3421  case ISD::BasicBlock:    return "BasicBlock";
3422  case ISD::VALUETYPE:     return "ValueType";
3423  case ISD::Register:      return "Register";
3424
3425  case ISD::Constant:      return "Constant";
3426  case ISD::ConstantFP:    return "ConstantFP";
3427  case ISD::GlobalAddress: return "GlobalAddress";
3428  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3429  case ISD::FrameIndex:    return "FrameIndex";
3430  case ISD::JumpTable:     return "JumpTable";
3431  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3432  case ISD::RETURNADDR: return "RETURNADDR";
3433  case ISD::FRAMEADDR: return "FRAMEADDR";
3434  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3435  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3436  case ISD::EHSELECTION: return "EHSELECTION";
3437  case ISD::EH_RETURN: return "EH_RETURN";
3438  case ISD::ConstantPool:  return "ConstantPool";
3439  case ISD::ExternalSymbol: return "ExternalSymbol";
3440  case ISD::INTRINSIC_WO_CHAIN: {
3441    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3442    return Intrinsic::getName((Intrinsic::ID)IID);
3443  }
3444  case ISD::INTRINSIC_VOID:
3445  case ISD::INTRINSIC_W_CHAIN: {
3446    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3447    return Intrinsic::getName((Intrinsic::ID)IID);
3448  }
3449
3450  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
3451  case ISD::TargetConstant: return "TargetConstant";
3452  case ISD::TargetConstantFP:return "TargetConstantFP";
3453  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3454  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3455  case ISD::TargetFrameIndex: return "TargetFrameIndex";
3456  case ISD::TargetJumpTable:  return "TargetJumpTable";
3457  case ISD::TargetConstantPool:  return "TargetConstantPool";
3458  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3459
3460  case ISD::CopyToReg:     return "CopyToReg";
3461  case ISD::CopyFromReg:   return "CopyFromReg";
3462  case ISD::UNDEF:         return "undef";
3463  case ISD::MERGE_VALUES:  return "merge_values";
3464  case ISD::INLINEASM:     return "inlineasm";
3465  case ISD::LABEL:         return "label";
3466  case ISD::HANDLENODE:    return "handlenode";
3467  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3468  case ISD::CALL:          return "call";
3469
3470  // Unary operators
3471  case ISD::FABS:   return "fabs";
3472  case ISD::FNEG:   return "fneg";
3473  case ISD::FSQRT:  return "fsqrt";
3474  case ISD::FSIN:   return "fsin";
3475  case ISD::FCOS:   return "fcos";
3476  case ISD::FPOWI:  return "fpowi";
3477
3478  // Binary operators
3479  case ISD::ADD:    return "add";
3480  case ISD::SUB:    return "sub";
3481  case ISD::MUL:    return "mul";
3482  case ISD::MULHU:  return "mulhu";
3483  case ISD::MULHS:  return "mulhs";
3484  case ISD::SDIV:   return "sdiv";
3485  case ISD::UDIV:   return "udiv";
3486  case ISD::SREM:   return "srem";
3487  case ISD::UREM:   return "urem";
3488  case ISD::AND:    return "and";
3489  case ISD::OR:     return "or";
3490  case ISD::XOR:    return "xor";
3491  case ISD::SHL:    return "shl";
3492  case ISD::SRA:    return "sra";
3493  case ISD::SRL:    return "srl";
3494  case ISD::ROTL:   return "rotl";
3495  case ISD::ROTR:   return "rotr";
3496  case ISD::FADD:   return "fadd";
3497  case ISD::FSUB:   return "fsub";
3498  case ISD::FMUL:   return "fmul";
3499  case ISD::FDIV:   return "fdiv";
3500  case ISD::FREM:   return "frem";
3501  case ISD::FCOPYSIGN: return "fcopysign";
3502
3503  case ISD::SETCC:       return "setcc";
3504  case ISD::SELECT:      return "select";
3505  case ISD::SELECT_CC:   return "select_cc";
3506  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
3507  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
3508  case ISD::CONCAT_VECTORS:      return "concat_vectors";
3509  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
3510  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
3511  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
3512  case ISD::CARRY_FALSE:         return "carry_false";
3513  case ISD::ADDC:        return "addc";
3514  case ISD::ADDE:        return "adde";
3515  case ISD::SUBC:        return "subc";
3516  case ISD::SUBE:        return "sube";
3517  case ISD::SHL_PARTS:   return "shl_parts";
3518  case ISD::SRA_PARTS:   return "sra_parts";
3519  case ISD::SRL_PARTS:   return "srl_parts";
3520
3521  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
3522  case ISD::INSERT_SUBREG:      return "insert_subreg";
3523
3524  // Conversion operators.
3525  case ISD::SIGN_EXTEND: return "sign_extend";
3526  case ISD::ZERO_EXTEND: return "zero_extend";
3527  case ISD::ANY_EXTEND:  return "any_extend";
3528  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3529  case ISD::TRUNCATE:    return "truncate";
3530  case ISD::FP_ROUND:    return "fp_round";
3531  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3532  case ISD::FP_EXTEND:   return "fp_extend";
3533
3534  case ISD::SINT_TO_FP:  return "sint_to_fp";
3535  case ISD::UINT_TO_FP:  return "uint_to_fp";
3536  case ISD::FP_TO_SINT:  return "fp_to_sint";
3537  case ISD::FP_TO_UINT:  return "fp_to_uint";
3538  case ISD::BIT_CONVERT: return "bit_convert";
3539
3540    // Control flow instructions
3541  case ISD::BR:      return "br";
3542  case ISD::BRIND:   return "brind";
3543  case ISD::BR_JT:   return "br_jt";
3544  case ISD::BRCOND:  return "brcond";
3545  case ISD::BR_CC:   return "br_cc";
3546  case ISD::RET:     return "ret";
3547  case ISD::CALLSEQ_START:  return "callseq_start";
3548  case ISD::CALLSEQ_END:    return "callseq_end";
3549
3550    // Other operators
3551  case ISD::LOAD:               return "load";
3552  case ISD::STORE:              return "store";
3553  case ISD::VAARG:              return "vaarg";
3554  case ISD::VACOPY:             return "vacopy";
3555  case ISD::VAEND:              return "vaend";
3556  case ISD::VASTART:            return "vastart";
3557  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3558  case ISD::EXTRACT_ELEMENT:    return "extract_element";
3559  case ISD::BUILD_PAIR:         return "build_pair";
3560  case ISD::STACKSAVE:          return "stacksave";
3561  case ISD::STACKRESTORE:       return "stackrestore";
3562
3563  // Block memory operations.
3564  case ISD::MEMSET:  return "memset";
3565  case ISD::MEMCPY:  return "memcpy";
3566  case ISD::MEMMOVE: return "memmove";
3567
3568  // Bit manipulation
3569  case ISD::BSWAP:   return "bswap";
3570  case ISD::CTPOP:   return "ctpop";
3571  case ISD::CTTZ:    return "cttz";
3572  case ISD::CTLZ:    return "ctlz";
3573
3574  // Debug info
3575  case ISD::LOCATION: return "location";
3576  case ISD::DEBUG_LOC: return "debug_loc";
3577
3578  // Trampolines
3579  case ISD::ADJUST_TRAMP: return "adjust_tramp";
3580  case ISD::TRAMPOLINE:   return "trampoline";
3581
3582  case ISD::CONDCODE:
3583    switch (cast<CondCodeSDNode>(this)->get()) {
3584    default: assert(0 && "Unknown setcc condition!");
3585    case ISD::SETOEQ:  return "setoeq";
3586    case ISD::SETOGT:  return "setogt";
3587    case ISD::SETOGE:  return "setoge";
3588    case ISD::SETOLT:  return "setolt";
3589    case ISD::SETOLE:  return "setole";
3590    case ISD::SETONE:  return "setone";
3591
3592    case ISD::SETO:    return "seto";
3593    case ISD::SETUO:   return "setuo";
3594    case ISD::SETUEQ:  return "setue";
3595    case ISD::SETUGT:  return "setugt";
3596    case ISD::SETUGE:  return "setuge";
3597    case ISD::SETULT:  return "setult";
3598    case ISD::SETULE:  return "setule";
3599    case ISD::SETUNE:  return "setune";
3600
3601    case ISD::SETEQ:   return "seteq";
3602    case ISD::SETGT:   return "setgt";
3603    case ISD::SETGE:   return "setge";
3604    case ISD::SETLT:   return "setlt";
3605    case ISD::SETLE:   return "setle";
3606    case ISD::SETNE:   return "setne";
3607    }
3608  }
3609}
3610
3611const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
3612  switch (AM) {
3613  default:
3614    return "";
3615  case ISD::PRE_INC:
3616    return "<pre-inc>";
3617  case ISD::PRE_DEC:
3618    return "<pre-dec>";
3619  case ISD::POST_INC:
3620    return "<post-inc>";
3621  case ISD::POST_DEC:
3622    return "<post-dec>";
3623  }
3624}
3625
3626void SDNode::dump() const { dump(0); }
3627void SDNode::dump(const SelectionDAG *G) const {
3628  cerr << (void*)this << ": ";
3629
3630  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
3631    if (i) cerr << ",";
3632    if (getValueType(i) == MVT::Other)
3633      cerr << "ch";
3634    else
3635      cerr << MVT::getValueTypeString(getValueType(i));
3636  }
3637  cerr << " = " << getOperationName(G);
3638
3639  cerr << " ";
3640  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3641    if (i) cerr << ", ";
3642    cerr << (void*)getOperand(i).Val;
3643    if (unsigned RN = getOperand(i).ResNo)
3644      cerr << ":" << RN;
3645  }
3646
3647  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
3648    cerr << "<" << CSDN->getValue() << ">";
3649  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
3650    cerr << "<" << CSDN->getValue() << ">";
3651  } else if (const GlobalAddressSDNode *GADN =
3652             dyn_cast<GlobalAddressSDNode>(this)) {
3653    int offset = GADN->getOffset();
3654    cerr << "<";
3655    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
3656    if (offset > 0)
3657      cerr << " + " << offset;
3658    else
3659      cerr << " " << offset;
3660  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
3661    cerr << "<" << FIDN->getIndex() << ">";
3662  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
3663    cerr << "<" << JTDN->getIndex() << ">";
3664  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
3665    int offset = CP->getOffset();
3666    if (CP->isMachineConstantPoolEntry())
3667      cerr << "<" << *CP->getMachineCPVal() << ">";
3668    else
3669      cerr << "<" << *CP->getConstVal() << ">";
3670    if (offset > 0)
3671      cerr << " + " << offset;
3672    else
3673      cerr << " " << offset;
3674  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
3675    cerr << "<";
3676    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
3677    if (LBB)
3678      cerr << LBB->getName() << " ";
3679    cerr << (const void*)BBDN->getBasicBlock() << ">";
3680  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
3681    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
3682      cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
3683    } else {
3684      cerr << " #" << R->getReg();
3685    }
3686  } else if (const ExternalSymbolSDNode *ES =
3687             dyn_cast<ExternalSymbolSDNode>(this)) {
3688    cerr << "'" << ES->getSymbol() << "'";
3689  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
3690    if (M->getValue())
3691      cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
3692    else
3693      cerr << "<null:" << M->getOffset() << ">";
3694  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
3695    cerr << ":" << MVT::getValueTypeString(N->getVT());
3696  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
3697    bool doExt = true;
3698    switch (LD->getExtensionType()) {
3699    default: doExt = false; break;
3700    case ISD::EXTLOAD:
3701      cerr << " <anyext ";
3702      break;
3703    case ISD::SEXTLOAD:
3704      cerr << " <sext ";
3705      break;
3706    case ISD::ZEXTLOAD:
3707      cerr << " <zext ";
3708      break;
3709    }
3710    if (doExt)
3711      cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
3712
3713    const char *AM = getIndexedModeName(LD->getAddressingMode());
3714    if (*AM)
3715      cerr << " " << AM;
3716  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
3717    if (ST->isTruncatingStore())
3718      cerr << " <trunc "
3719           << MVT::getValueTypeString(ST->getStoredVT()) << ">";
3720
3721    const char *AM = getIndexedModeName(ST->getAddressingMode());
3722    if (*AM)
3723      cerr << " " << AM;
3724  }
3725}
3726
3727static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
3728  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3729    if (N->getOperand(i).Val->hasOneUse())
3730      DumpNodes(N->getOperand(i).Val, indent+2, G);
3731    else
3732      cerr << "\n" << std::string(indent+2, ' ')
3733           << (void*)N->getOperand(i).Val << ": <multiple use>";
3734
3735
3736  cerr << "\n" << std::string(indent, ' ');
3737  N->dump(G);
3738}
3739
3740void SelectionDAG::dump() const {
3741  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
3742  std::vector<const SDNode*> Nodes;
3743  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
3744       I != E; ++I)
3745    Nodes.push_back(I);
3746
3747  std::sort(Nodes.begin(), Nodes.end());
3748
3749  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3750    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
3751      DumpNodes(Nodes[i], 2, this);
3752  }
3753
3754  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
3755
3756  cerr << "\n\n";
3757}
3758
3759const Type *ConstantPoolSDNode::getType() const {
3760  if (isMachineConstantPoolEntry())
3761    return Val.MachineCPVal->getType();
3762  return Val.ConstVal->getType();
3763}
3764