SelectionDAG.cpp revision bebba8d5cc675a8b9d7695c6105cff81b2e73fbd
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/ADT/SetVector.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/SmallSet.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/StringExtras.h"
40#include <algorithm>
41#include <cmath>
42using namespace llvm;
43
44/// makeVTList - Return an instance of the SDVTList struct initialized with the
45/// specified members.
46static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
47  SDVTList Res = {VTs, NumVTs};
48  return Res;
49}
50
51static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
52  switch (VT.getSimpleVT()) {
53  default: assert(0 && "Unknown FP format");
54  case MVT::f32:     return &APFloat::IEEEsingle;
55  case MVT::f64:     return &APFloat::IEEEdouble;
56  case MVT::f80:     return &APFloat::x87DoubleExtended;
57  case MVT::f128:    return &APFloat::IEEEquad;
58  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
59  }
60}
61
62SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
63
64//===----------------------------------------------------------------------===//
65//                              ConstantFPSDNode Class
66//===----------------------------------------------------------------------===//
67
68/// isExactlyValue - We don't rely on operator== working on double values, as
69/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
70/// As such, this method can be used to do an exact bit-for-bit comparison of
71/// two floating point values.
72bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
73  return getValueAPF().bitwiseIsEqual(V);
74}
75
76bool ConstantFPSDNode::isValueValidForType(MVT VT,
77                                           const APFloat& Val) {
78  assert(VT.isFloatingPoint() && "Can only convert between FP types");
79
80  // PPC long double cannot be converted to any other type.
81  if (VT == MVT::ppcf128 ||
82      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
83    return false;
84
85  // convert modifies in place, so make a copy.
86  APFloat Val2 = APFloat(Val);
87  bool losesInfo;
88  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
89                      &losesInfo);
90  return !losesInfo;
91}
92
93//===----------------------------------------------------------------------===//
94//                              ISD Namespace
95//===----------------------------------------------------------------------===//
96
97/// isBuildVectorAllOnes - Return true if the specified node is a
98/// BUILD_VECTOR where all of the elements are ~0 or undef.
99bool ISD::isBuildVectorAllOnes(const SDNode *N) {
100  // Look through a bit convert.
101  if (N->getOpcode() == ISD::BIT_CONVERT)
102    N = N->getOperand(0).getNode();
103
104  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
105
106  unsigned i = 0, e = N->getNumOperands();
107
108  // Skip over all of the undef values.
109  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
110    ++i;
111
112  // Do not accept an all-undef vector.
113  if (i == e) return false;
114
115  // Do not accept build_vectors that aren't all constants or which have non-~0
116  // elements.
117  SDValue NotZero = N->getOperand(i);
118  if (isa<ConstantSDNode>(NotZero)) {
119    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
120      return false;
121  } else if (isa<ConstantFPSDNode>(NotZero)) {
122    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
123                bitcastToAPInt().isAllOnesValue())
124      return false;
125  } else
126    return false;
127
128  // Okay, we have at least one ~0 value, check to see if the rest match or are
129  // undefs.
130  for (++i; i != e; ++i)
131    if (N->getOperand(i) != NotZero &&
132        N->getOperand(i).getOpcode() != ISD::UNDEF)
133      return false;
134  return true;
135}
136
137
138/// isBuildVectorAllZeros - Return true if the specified node is a
139/// BUILD_VECTOR where all of the elements are 0 or undef.
140bool ISD::isBuildVectorAllZeros(const SDNode *N) {
141  // Look through a bit convert.
142  if (N->getOpcode() == ISD::BIT_CONVERT)
143    N = N->getOperand(0).getNode();
144
145  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
146
147  unsigned i = 0, e = N->getNumOperands();
148
149  // Skip over all of the undef values.
150  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
151    ++i;
152
153  // Do not accept an all-undef vector.
154  if (i == e) return false;
155
156  // Do not accept build_vectors that aren't all constants or which have non-~0
157  // elements.
158  SDValue Zero = N->getOperand(i);
159  if (isa<ConstantSDNode>(Zero)) {
160    if (!cast<ConstantSDNode>(Zero)->isNullValue())
161      return false;
162  } else if (isa<ConstantFPSDNode>(Zero)) {
163    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
164      return false;
165  } else
166    return false;
167
168  // Okay, we have at least one ~0 value, check to see if the rest match or are
169  // undefs.
170  for (++i; i != e; ++i)
171    if (N->getOperand(i) != Zero &&
172        N->getOperand(i).getOpcode() != ISD::UNDEF)
173      return false;
174  return true;
175}
176
177/// isScalarToVector - Return true if the specified node is a
178/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
179/// element is not an undef.
180bool ISD::isScalarToVector(const SDNode *N) {
181  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
182    return true;
183
184  if (N->getOpcode() != ISD::BUILD_VECTOR)
185    return false;
186  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
187    return false;
188  unsigned NumElems = N->getNumOperands();
189  for (unsigned i = 1; i < NumElems; ++i) {
190    SDValue V = N->getOperand(i);
191    if (V.getOpcode() != ISD::UNDEF)
192      return false;
193  }
194  return true;
195}
196
197
198/// isDebugLabel - Return true if the specified node represents a debug
199/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
200bool ISD::isDebugLabel(const SDNode *N) {
201  SDValue Zero;
202  if (N->getOpcode() == ISD::DBG_LABEL)
203    return true;
204  if (N->isMachineOpcode() &&
205      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
206    return true;
207  return false;
208}
209
210/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
211/// when given the operation for (X op Y).
212ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
213  // To perform this operation, we just need to swap the L and G bits of the
214  // operation.
215  unsigned OldL = (Operation >> 2) & 1;
216  unsigned OldG = (Operation >> 1) & 1;
217  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
218                       (OldL << 1) |       // New G bit
219                       (OldG << 2));       // New L bit.
220}
221
222/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
223/// 'op' is a valid SetCC operation.
224ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
225  unsigned Operation = Op;
226  if (isInteger)
227    Operation ^= 7;   // Flip L, G, E bits, but not U.
228  else
229    Operation ^= 15;  // Flip all of the condition bits.
230
231  if (Operation > ISD::SETTRUE2)
232    Operation &= ~8;  // Don't let N and U bits get set.
233
234  return ISD::CondCode(Operation);
235}
236
237
238/// isSignedOp - For an integer comparison, return 1 if the comparison is a
239/// signed operation and 2 if the result is an unsigned comparison.  Return zero
240/// if the operation does not depend on the sign of the input (setne and seteq).
241static int isSignedOp(ISD::CondCode Opcode) {
242  switch (Opcode) {
243  default: assert(0 && "Illegal integer setcc operation!");
244  case ISD::SETEQ:
245  case ISD::SETNE: return 0;
246  case ISD::SETLT:
247  case ISD::SETLE:
248  case ISD::SETGT:
249  case ISD::SETGE: return 1;
250  case ISD::SETULT:
251  case ISD::SETULE:
252  case ISD::SETUGT:
253  case ISD::SETUGE: return 2;
254  }
255}
256
257/// getSetCCOrOperation - Return the result of a logical OR between different
258/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
259/// returns SETCC_INVALID if it is not possible to represent the resultant
260/// comparison.
261ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
262                                       bool isInteger) {
263  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
264    // Cannot fold a signed integer setcc with an unsigned integer setcc.
265    return ISD::SETCC_INVALID;
266
267  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
268
269  // If the N and U bits get set then the resultant comparison DOES suddenly
270  // care about orderedness, and is true when ordered.
271  if (Op > ISD::SETTRUE2)
272    Op &= ~16;     // Clear the U bit if the N bit is set.
273
274  // Canonicalize illegal integer setcc's.
275  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
276    Op = ISD::SETNE;
277
278  return ISD::CondCode(Op);
279}
280
281/// getSetCCAndOperation - Return the result of a logical AND between different
282/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
283/// function returns zero if it is not possible to represent the resultant
284/// comparison.
285ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
286                                        bool isInteger) {
287  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
288    // Cannot fold a signed setcc with an unsigned setcc.
289    return ISD::SETCC_INVALID;
290
291  // Combine all of the condition bits.
292  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
293
294  // Canonicalize illegal integer setcc's.
295  if (isInteger) {
296    switch (Result) {
297    default: break;
298    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
299    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
300    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
301    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
302    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
303    }
304  }
305
306  return Result;
307}
308
309const TargetMachine &SelectionDAG::getTarget() const {
310  return MF->getTarget();
311}
312
313//===----------------------------------------------------------------------===//
314//                           SDNode Profile Support
315//===----------------------------------------------------------------------===//
316
317/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
318///
319static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
320  ID.AddInteger(OpC);
321}
322
323/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
324/// solely with their pointer.
325static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
326  ID.AddPointer(VTList.VTs);
327}
328
329/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
330///
331static void AddNodeIDOperands(FoldingSetNodeID &ID,
332                              const SDValue *Ops, unsigned NumOps) {
333  for (; NumOps; --NumOps, ++Ops) {
334    ID.AddPointer(Ops->getNode());
335    ID.AddInteger(Ops->getResNo());
336  }
337}
338
339/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
340///
341static void AddNodeIDOperands(FoldingSetNodeID &ID,
342                              const SDUse *Ops, unsigned NumOps) {
343  for (; NumOps; --NumOps, ++Ops) {
344    ID.AddPointer(Ops->getVal());
345    ID.AddInteger(Ops->getSDValue().getResNo());
346  }
347}
348
349static void AddNodeIDNode(FoldingSetNodeID &ID,
350                          unsigned short OpC, SDVTList VTList,
351                          const SDValue *OpList, unsigned N) {
352  AddNodeIDOpcode(ID, OpC);
353  AddNodeIDValueTypes(ID, VTList);
354  AddNodeIDOperands(ID, OpList, N);
355}
356
357/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
358/// the NodeID data.
359static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
360  switch (N->getOpcode()) {
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::ARG_FLAGS:
363    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
364    break;
365  case ISD::TargetConstant:
366  case ISD::Constant:
367    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
368    break;
369  case ISD::TargetConstantFP:
370  case ISD::ConstantFP: {
371    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
372    break;
373  }
374  case ISD::TargetGlobalAddress:
375  case ISD::GlobalAddress:
376  case ISD::TargetGlobalTLSAddress:
377  case ISD::GlobalTLSAddress: {
378    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
379    ID.AddPointer(GA->getGlobal());
380    ID.AddInteger(GA->getOffset());
381    break;
382  }
383  case ISD::BasicBlock:
384    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
385    break;
386  case ISD::Register:
387    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
388    break;
389  case ISD::DBG_STOPPOINT: {
390    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
391    ID.AddInteger(DSP->getLine());
392    ID.AddInteger(DSP->getColumn());
393    ID.AddPointer(DSP->getCompileUnit());
394    break;
395  }
396  case ISD::SRCVALUE:
397    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
398    break;
399  case ISD::MEMOPERAND: {
400    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
401    MO.Profile(ID);
402    break;
403  }
404  case ISD::FrameIndex:
405  case ISD::TargetFrameIndex:
406    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
407    break;
408  case ISD::JumpTable:
409  case ISD::TargetJumpTable:
410    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
411    break;
412  case ISD::ConstantPool:
413  case ISD::TargetConstantPool: {
414    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
415    ID.AddInteger(CP->getAlignment());
416    ID.AddInteger(CP->getOffset());
417    if (CP->isMachineConstantPoolEntry())
418      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
419    else
420      ID.AddPointer(CP->getConstVal());
421    break;
422  }
423  case ISD::CALL: {
424    const CallSDNode *Call = cast<CallSDNode>(N);
425    ID.AddInteger(Call->getCallingConv());
426    ID.AddInteger(Call->isVarArg());
427    break;
428  }
429  case ISD::LOAD: {
430    const LoadSDNode *LD = cast<LoadSDNode>(N);
431    ID.AddInteger(LD->getAddressingMode());
432    ID.AddInteger(LD->getExtensionType());
433    ID.AddInteger(LD->getMemoryVT().getRawBits());
434    ID.AddInteger(LD->getRawFlags());
435    break;
436  }
437  case ISD::STORE: {
438    const StoreSDNode *ST = cast<StoreSDNode>(N);
439    ID.AddInteger(ST->getAddressingMode());
440    ID.AddInteger(ST->isTruncatingStore());
441    ID.AddInteger(ST->getMemoryVT().getRawBits());
442    ID.AddInteger(ST->getRawFlags());
443    break;
444  }
445  case ISD::ATOMIC_CMP_SWAP:
446  case ISD::ATOMIC_SWAP:
447  case ISD::ATOMIC_LOAD_ADD:
448  case ISD::ATOMIC_LOAD_SUB:
449  case ISD::ATOMIC_LOAD_AND:
450  case ISD::ATOMIC_LOAD_OR:
451  case ISD::ATOMIC_LOAD_XOR:
452  case ISD::ATOMIC_LOAD_NAND:
453  case ISD::ATOMIC_LOAD_MIN:
454  case ISD::ATOMIC_LOAD_MAX:
455  case ISD::ATOMIC_LOAD_UMIN:
456  case ISD::ATOMIC_LOAD_UMAX: {
457    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
458    ID.AddInteger(AT->getRawFlags());
459    break;
460  }
461  } // end switch (N->getOpcode())
462}
463
464/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
465/// data.
466static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
467  AddNodeIDOpcode(ID, N->getOpcode());
468  // Add the return value info.
469  AddNodeIDValueTypes(ID, N->getVTList());
470  // Add the operand info.
471  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
472
473  // Handle SDNode leafs with special info.
474  AddNodeIDCustom(ID, N);
475}
476
477/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
478/// the CSE map that carries both alignment and volatility information.
479///
480static inline unsigned
481encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) {
482  return isVolatile | ((Log2_32(Alignment) + 1) << 1);
483}
484
485//===----------------------------------------------------------------------===//
486//                              SelectionDAG Class
487//===----------------------------------------------------------------------===//
488
489/// doNotCSE - Return true if CSE should not be performed for this node.
490static bool doNotCSE(SDNode *N) {
491  if (N->getValueType(0) == MVT::Flag)
492    return true; // Never CSE anything that produces a flag.
493
494  switch (N->getOpcode()) {
495  default: break;
496  case ISD::HANDLENODE:
497  case ISD::DBG_LABEL:
498  case ISD::DBG_STOPPOINT:
499  case ISD::EH_LABEL:
500  case ISD::DECLARE:
501    return true;   // Never CSE these nodes.
502  }
503
504  // Check that remaining values produced are not flags.
505  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
506    if (N->getValueType(i) == MVT::Flag)
507      return true; // Never CSE anything that produces a flag.
508
509  return false;
510}
511
512/// RemoveDeadNodes - This method deletes all unreachable nodes in the
513/// SelectionDAG.
514void SelectionDAG::RemoveDeadNodes() {
515  // Create a dummy node (which is not added to allnodes), that adds a reference
516  // to the root node, preventing it from being deleted.
517  HandleSDNode Dummy(getRoot());
518
519  SmallVector<SDNode*, 128> DeadNodes;
520
521  // Add all obviously-dead nodes to the DeadNodes worklist.
522  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
523    if (I->use_empty())
524      DeadNodes.push_back(I);
525
526  RemoveDeadNodes(DeadNodes);
527
528  // If the root changed (e.g. it was a dead load, update the root).
529  setRoot(Dummy.getValue());
530}
531
532/// RemoveDeadNodes - This method deletes the unreachable nodes in the
533/// given list, and any nodes that become unreachable as a result.
534void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
535                                   DAGUpdateListener *UpdateListener) {
536
537  // Process the worklist, deleting the nodes and adding their uses to the
538  // worklist.
539  while (!DeadNodes.empty()) {
540    SDNode *N = DeadNodes.back();
541    DeadNodes.pop_back();
542
543    if (UpdateListener)
544      UpdateListener->NodeDeleted(N, 0);
545
546    // Take the node out of the appropriate CSE map.
547    RemoveNodeFromCSEMaps(N);
548
549    // Next, brutally remove the operand list.  This is safe to do, as there are
550    // no cycles in the graph.
551    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
552      SDNode *Operand = I->getVal();
553      Operand->removeUser(std::distance(N->op_begin(), I), N);
554
555      // Now that we removed this operand, see if there are no uses of it left.
556      if (Operand->use_empty())
557        DeadNodes.push_back(Operand);
558    }
559
560    if (N->OperandsNeedDelete)
561      delete[] N->OperandList;
562
563    N->OperandList = 0;
564    N->NumOperands = 0;
565
566    // Finally, remove N itself.
567    NodeAllocator.Deallocate(AllNodes.remove(N));
568  }
569}
570
571void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
572  SmallVector<SDNode*, 16> DeadNodes(1, N);
573  RemoveDeadNodes(DeadNodes, UpdateListener);
574}
575
576void SelectionDAG::DeleteNode(SDNode *N) {
577  assert(N->use_empty() && "Cannot delete a node that is not dead!");
578
579  // First take this out of the appropriate CSE map.
580  RemoveNodeFromCSEMaps(N);
581
582  // Finally, remove uses due to operands of this node, remove from the
583  // AllNodes list, and delete the node.
584  DeleteNodeNotInCSEMaps(N);
585}
586
587void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
588  // Drop all of the operands and decrement used node's use counts.
589  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
590    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
591
592  if (N->OperandsNeedDelete) {
593    delete[] N->OperandList;
594    N->OperandList = 0;
595  }
596
597  assert(N != AllNodes.begin());
598  NodeAllocator.Deallocate(AllNodes.remove(N));
599}
600
601/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
602/// correspond to it.  This is useful when we're about to delete or repurpose
603/// the node.  We don't want future request for structurally identical nodes
604/// to return N anymore.
605bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
606  bool Erased = false;
607  switch (N->getOpcode()) {
608  case ISD::EntryToken:
609    assert(0 && "EntryToken should not be in CSEMaps!");
610    return false;
611  case ISD::HANDLENODE: return false;  // noop.
612  case ISD::CONDCODE:
613    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
614           "Cond code doesn't exist!");
615    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
616    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
617    break;
618  case ISD::ExternalSymbol:
619    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
620    break;
621  case ISD::TargetExternalSymbol:
622    Erased =
623      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
624    break;
625  case ISD::VALUETYPE: {
626    MVT VT = cast<VTSDNode>(N)->getVT();
627    if (VT.isExtended()) {
628      Erased = ExtendedValueTypeNodes.erase(VT);
629    } else {
630      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
631      ValueTypeNodes[VT.getSimpleVT()] = 0;
632    }
633    break;
634  }
635  default:
636    // Remove it from the CSE Map.
637    Erased = CSEMap.RemoveNode(N);
638    break;
639  }
640#ifndef NDEBUG
641  // Verify that the node was actually in one of the CSE maps, unless it has a
642  // flag result (which cannot be CSE'd) or is one of the special cases that are
643  // not subject to CSE.
644  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
645      !N->isMachineOpcode() && !doNotCSE(N)) {
646    N->dump(this);
647    cerr << "\n";
648    assert(0 && "Node is not in map!");
649  }
650#endif
651  return Erased;
652}
653
654/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
655/// has been taken out and modified in some way.  If the specified node already
656/// exists in the CSE maps, do not modify the maps, but return the existing node
657/// instead.  If it doesn't exist, add it and return null.
658///
659SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
660  assert(N->getNumOperands() && "This is a leaf node!");
661
662  if (doNotCSE(N))
663    return 0;
664
665  SDNode *New = CSEMap.GetOrInsertNode(N);
666  if (New != N) return New;  // Node already existed.
667  return 0;
668}
669
670/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
671/// were replaced with those specified.  If this node is never memoized,
672/// return null, otherwise return a pointer to the slot it would take.  If a
673/// node already exists with these operands, the slot will be non-null.
674SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
675                                           void *&InsertPos) {
676  if (doNotCSE(N))
677    return 0;
678
679  SDValue Ops[] = { Op };
680  FoldingSetNodeID ID;
681  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
682  AddNodeIDCustom(ID, N);
683  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
684}
685
686/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
687/// were replaced with those specified.  If this node is never memoized,
688/// return null, otherwise return a pointer to the slot it would take.  If a
689/// node already exists with these operands, the slot will be non-null.
690SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
691                                           SDValue Op1, SDValue Op2,
692                                           void *&InsertPos) {
693  if (doNotCSE(N))
694    return 0;
695
696  SDValue Ops[] = { Op1, Op2 };
697  FoldingSetNodeID ID;
698  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
699  AddNodeIDCustom(ID, N);
700  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
701}
702
703
704/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
705/// were replaced with those specified.  If this node is never memoized,
706/// return null, otherwise return a pointer to the slot it would take.  If a
707/// node already exists with these operands, the slot will be non-null.
708SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
709                                           const SDValue *Ops,unsigned NumOps,
710                                           void *&InsertPos) {
711  if (doNotCSE(N))
712    return 0;
713
714  FoldingSetNodeID ID;
715  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
716  AddNodeIDCustom(ID, N);
717  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
718}
719
720/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
721void SelectionDAG::VerifyNode(SDNode *N) {
722  switch (N->getOpcode()) {
723  default:
724    break;
725  case ISD::BUILD_PAIR: {
726    MVT VT = N->getValueType(0);
727    assert(N->getNumValues() == 1 && "Too many results!");
728    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
729           "Wrong return type!");
730    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
731    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
732           "Mismatched operand types!");
733    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
734           "Wrong operand type!");
735    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
736           "Wrong return type size");
737    break;
738  }
739  case ISD::BUILD_VECTOR: {
740    assert(N->getNumValues() == 1 && "Too many results!");
741    assert(N->getValueType(0).isVector() && "Wrong return type!");
742    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
743           "Wrong number of operands!");
744    // FIXME: Change vector_shuffle to a variadic node with mask elements being
745    // operands of the node.  Currently the mask is a BUILD_VECTOR passed as an
746    // operand, and it is not always possible to legalize it.  Turning off the
747    // following checks at least makes it possible to legalize most of the time.
748//    MVT EltVT = N->getValueType(0).getVectorElementType();
749//    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
750//      assert(I->getSDValue().getValueType() == EltVT &&
751//             "Wrong operand type!");
752    break;
753  }
754  }
755}
756
757/// getMVTAlignment - Compute the default alignment value for the
758/// given type.
759///
760unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
761  const Type *Ty = VT == MVT::iPTR ?
762                   PointerType::get(Type::Int8Ty, 0) :
763                   VT.getTypeForMVT();
764
765  return TLI.getTargetData()->getABITypeAlignment(Ty);
766}
767
768SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
769  : TLI(tli), FLI(fli),
770    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
771    Root(getEntryNode()) {
772  AllNodes.push_back(&EntryNode);
773}
774
775void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi) {
776  MF = &mf;
777  MMI = mmi;
778}
779
780SelectionDAG::~SelectionDAG() {
781  allnodes_clear();
782}
783
784void SelectionDAG::allnodes_clear() {
785  assert(&*AllNodes.begin() == &EntryNode);
786  AllNodes.remove(AllNodes.begin());
787  while (!AllNodes.empty()) {
788    SDNode *N = AllNodes.remove(AllNodes.begin());
789    N->SetNextInBucket(0);
790
791    if (N->OperandsNeedDelete) {
792      delete [] N->OperandList;
793      N->OperandList = 0;
794    }
795
796    NodeAllocator.Deallocate(N);
797  }
798}
799
800void SelectionDAG::clear() {
801  allnodes_clear();
802  OperandAllocator.Reset();
803  CSEMap.clear();
804
805  ExtendedValueTypeNodes.clear();
806  ExternalSymbols.clear();
807  TargetExternalSymbols.clear();
808  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
809            static_cast<CondCodeSDNode*>(0));
810  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
811            static_cast<SDNode*>(0));
812
813  EntryNode.Uses = 0;
814  AllNodes.push_back(&EntryNode);
815  Root = getEntryNode();
816}
817
818SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
819  if (Op.getValueType() == VT) return Op;
820  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
821                                   VT.getSizeInBits());
822  return getNode(ISD::AND, Op.getValueType(), Op,
823                 getConstant(Imm, Op.getValueType()));
824}
825
826SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
827  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
828  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
829}
830
831SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
832  return getConstant(*ConstantInt::get(Val), VT, isT);
833}
834
835SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
836  assert(VT.isInteger() && "Cannot create FP integer constant!");
837
838  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
839  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
840         "APInt size does not match type size!");
841
842  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
843  FoldingSetNodeID ID;
844  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
845  ID.AddPointer(&Val);
846  void *IP = 0;
847  SDNode *N = NULL;
848  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
849    if (!VT.isVector())
850      return SDValue(N, 0);
851  if (!N) {
852    N = NodeAllocator.Allocate<ConstantSDNode>();
853    new (N) ConstantSDNode(isT, &Val, EltVT);
854    CSEMap.InsertNode(N, IP);
855    AllNodes.push_back(N);
856  }
857
858  SDValue Result(N, 0);
859  if (VT.isVector()) {
860    SmallVector<SDValue, 8> Ops;
861    Ops.assign(VT.getVectorNumElements(), Result);
862    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
863  }
864  return Result;
865}
866
867SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
868  return getConstant(Val, TLI.getPointerTy(), isTarget);
869}
870
871
872SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
873  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
874}
875
876SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
877  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
878
879  MVT EltVT =
880    VT.isVector() ? VT.getVectorElementType() : VT;
881
882  // Do the map lookup using the actual bit pattern for the floating point
883  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
884  // we don't have issues with SNANs.
885  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
886  FoldingSetNodeID ID;
887  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
888  ID.AddPointer(&V);
889  void *IP = 0;
890  SDNode *N = NULL;
891  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
892    if (!VT.isVector())
893      return SDValue(N, 0);
894  if (!N) {
895    N = NodeAllocator.Allocate<ConstantFPSDNode>();
896    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
897    CSEMap.InsertNode(N, IP);
898    AllNodes.push_back(N);
899  }
900
901  SDValue Result(N, 0);
902  if (VT.isVector()) {
903    SmallVector<SDValue, 8> Ops;
904    Ops.assign(VT.getVectorNumElements(), Result);
905    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
906  }
907  return Result;
908}
909
910SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
911  MVT EltVT =
912    VT.isVector() ? VT.getVectorElementType() : VT;
913  if (EltVT==MVT::f32)
914    return getConstantFP(APFloat((float)Val), VT, isTarget);
915  else
916    return getConstantFP(APFloat(Val), VT, isTarget);
917}
918
919SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
920                                       MVT VT, int64_t Offset,
921                                       bool isTargetGA) {
922  unsigned Opc;
923
924  // Truncate (with sign-extension) the offset value to the pointer size.
925  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
926  if (BitWidth < 64)
927    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
928
929  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
930  if (!GVar) {
931    // If GV is an alias then use the aliasee for determining thread-localness.
932    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
933      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
934  }
935
936  if (GVar && GVar->isThreadLocal())
937    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
938  else
939    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
940
941  FoldingSetNodeID ID;
942  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
943  ID.AddPointer(GV);
944  ID.AddInteger(Offset);
945  void *IP = 0;
946  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
947   return SDValue(E, 0);
948  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
949  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
950  CSEMap.InsertNode(N, IP);
951  AllNodes.push_back(N);
952  return SDValue(N, 0);
953}
954
955SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
956  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
957  FoldingSetNodeID ID;
958  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
959  ID.AddInteger(FI);
960  void *IP = 0;
961  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
962    return SDValue(E, 0);
963  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
964  new (N) FrameIndexSDNode(FI, VT, isTarget);
965  CSEMap.InsertNode(N, IP);
966  AllNodes.push_back(N);
967  return SDValue(N, 0);
968}
969
970SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
971  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
972  FoldingSetNodeID ID;
973  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
974  ID.AddInteger(JTI);
975  void *IP = 0;
976  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
977    return SDValue(E, 0);
978  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
979  new (N) JumpTableSDNode(JTI, VT, isTarget);
980  CSEMap.InsertNode(N, IP);
981  AllNodes.push_back(N);
982  return SDValue(N, 0);
983}
984
985SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
986                                      unsigned Alignment, int Offset,
987                                      bool isTarget) {
988  if (Alignment == 0)
989    Alignment =
990      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
991  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
992  FoldingSetNodeID ID;
993  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
994  ID.AddInteger(Alignment);
995  ID.AddInteger(Offset);
996  ID.AddPointer(C);
997  void *IP = 0;
998  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
999    return SDValue(E, 0);
1000  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1001  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1002  CSEMap.InsertNode(N, IP);
1003  AllNodes.push_back(N);
1004  return SDValue(N, 0);
1005}
1006
1007
1008SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1009                                      unsigned Alignment, int Offset,
1010                                      bool isTarget) {
1011  if (Alignment == 0)
1012    Alignment =
1013      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1014  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1015  FoldingSetNodeID ID;
1016  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1017  ID.AddInteger(Alignment);
1018  ID.AddInteger(Offset);
1019  C->AddSelectionDAGCSEId(ID);
1020  void *IP = 0;
1021  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1022    return SDValue(E, 0);
1023  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1024  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1025  CSEMap.InsertNode(N, IP);
1026  AllNodes.push_back(N);
1027  return SDValue(N, 0);
1028}
1029
1030
1031SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1032  FoldingSetNodeID ID;
1033  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1034  ID.AddPointer(MBB);
1035  void *IP = 0;
1036  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1037    return SDValue(E, 0);
1038  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1039  new (N) BasicBlockSDNode(MBB);
1040  CSEMap.InsertNode(N, IP);
1041  AllNodes.push_back(N);
1042  return SDValue(N, 0);
1043}
1044
1045SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1046  FoldingSetNodeID ID;
1047  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1048  ID.AddInteger(Flags.getRawBits());
1049  void *IP = 0;
1050  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1051    return SDValue(E, 0);
1052  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1053  new (N) ARG_FLAGSSDNode(Flags);
1054  CSEMap.InsertNode(N, IP);
1055  AllNodes.push_back(N);
1056  return SDValue(N, 0);
1057}
1058
1059SDValue SelectionDAG::getValueType(MVT VT) {
1060  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1061    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1062
1063  SDNode *&N = VT.isExtended() ?
1064    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1065
1066  if (N) return SDValue(N, 0);
1067  N = NodeAllocator.Allocate<VTSDNode>();
1068  new (N) VTSDNode(VT);
1069  AllNodes.push_back(N);
1070  return SDValue(N, 0);
1071}
1072
1073SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1074  SDNode *&N = ExternalSymbols[Sym];
1075  if (N) return SDValue(N, 0);
1076  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1077  new (N) ExternalSymbolSDNode(false, Sym, VT);
1078  AllNodes.push_back(N);
1079  return SDValue(N, 0);
1080}
1081
1082SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1083  SDNode *&N = TargetExternalSymbols[Sym];
1084  if (N) return SDValue(N, 0);
1085  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1086  new (N) ExternalSymbolSDNode(true, Sym, VT);
1087  AllNodes.push_back(N);
1088  return SDValue(N, 0);
1089}
1090
1091SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1092  if ((unsigned)Cond >= CondCodeNodes.size())
1093    CondCodeNodes.resize(Cond+1);
1094
1095  if (CondCodeNodes[Cond] == 0) {
1096    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1097    new (N) CondCodeSDNode(Cond);
1098    CondCodeNodes[Cond] = N;
1099    AllNodes.push_back(N);
1100  }
1101  return SDValue(CondCodeNodes[Cond], 0);
1102}
1103
1104SDValue SelectionDAG::getConvertRndSat(MVT VT, SDValue Val, SDValue DTy,
1105                                       SDValue STy, SDValue Rnd, SDValue Sat,
1106                                       ISD::CvtCode Code) {
1107  // If the src and dest types are the same, no conversion is necessary.
1108  if (DTy == STy)
1109    return Val;
1110
1111  FoldingSetNodeID ID;
1112  void* IP = 0;
1113  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1114    return SDValue(E, 0);
1115  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1116  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1117  new (N) CvtRndSatSDNode(VT, Ops, 5, Code);
1118  CSEMap.InsertNode(N, IP);
1119  AllNodes.push_back(N);
1120  return SDValue(N, 0);
1121}
1122
1123SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1124  FoldingSetNodeID ID;
1125  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1126  ID.AddInteger(RegNo);
1127  void *IP = 0;
1128  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1129    return SDValue(E, 0);
1130  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1131  new (N) RegisterSDNode(RegNo, VT);
1132  CSEMap.InsertNode(N, IP);
1133  AllNodes.push_back(N);
1134  return SDValue(N, 0);
1135}
1136
1137SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1138                                        unsigned Line, unsigned Col,
1139                                        const CompileUnitDesc *CU) {
1140  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1141  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1142  AllNodes.push_back(N);
1143  return SDValue(N, 0);
1144}
1145
1146SDValue SelectionDAG::getLabel(unsigned Opcode,
1147                               SDValue Root,
1148                               unsigned LabelID) {
1149  FoldingSetNodeID ID;
1150  SDValue Ops[] = { Root };
1151  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1152  ID.AddInteger(LabelID);
1153  void *IP = 0;
1154  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1155    return SDValue(E, 0);
1156  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1157  new (N) LabelSDNode(Opcode, Root, LabelID);
1158  CSEMap.InsertNode(N, IP);
1159  AllNodes.push_back(N);
1160  return SDValue(N, 0);
1161}
1162
1163SDValue SelectionDAG::getSrcValue(const Value *V) {
1164  assert((!V || isa<PointerType>(V->getType())) &&
1165         "SrcValue is not a pointer?");
1166
1167  FoldingSetNodeID ID;
1168  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1169  ID.AddPointer(V);
1170
1171  void *IP = 0;
1172  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1173    return SDValue(E, 0);
1174
1175  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1176  new (N) SrcValueSDNode(V);
1177  CSEMap.InsertNode(N, IP);
1178  AllNodes.push_back(N);
1179  return SDValue(N, 0);
1180}
1181
1182SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1183#ifndef NDEBUG
1184  const Value *v = MO.getValue();
1185  assert((!v || isa<PointerType>(v->getType())) &&
1186         "SrcValue is not a pointer?");
1187#endif
1188
1189  FoldingSetNodeID ID;
1190  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1191  MO.Profile(ID);
1192
1193  void *IP = 0;
1194  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1195    return SDValue(E, 0);
1196
1197  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1198  new (N) MemOperandSDNode(MO);
1199  CSEMap.InsertNode(N, IP);
1200  AllNodes.push_back(N);
1201  return SDValue(N, 0);
1202}
1203
1204/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1205/// specified value type.
1206SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1207  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1208  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1209  const Type *Ty = VT.getTypeForMVT();
1210  unsigned StackAlign =
1211  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1212
1213  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1214  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1215}
1216
1217/// CreateStackTemporary - Create a stack temporary suitable for holding
1218/// either of the specified value types.
1219SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1220  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1221                            VT2.getStoreSizeInBits())/8;
1222  const Type *Ty1 = VT1.getTypeForMVT();
1223  const Type *Ty2 = VT2.getTypeForMVT();
1224  const TargetData *TD = TLI.getTargetData();
1225  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1226                            TD->getPrefTypeAlignment(Ty2));
1227
1228  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1229  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1230  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1231}
1232
1233SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1234                                SDValue N2, ISD::CondCode Cond) {
1235  // These setcc operations always fold.
1236  switch (Cond) {
1237  default: break;
1238  case ISD::SETFALSE:
1239  case ISD::SETFALSE2: return getConstant(0, VT);
1240  case ISD::SETTRUE:
1241  case ISD::SETTRUE2:  return getConstant(1, VT);
1242
1243  case ISD::SETOEQ:
1244  case ISD::SETOGT:
1245  case ISD::SETOGE:
1246  case ISD::SETOLT:
1247  case ISD::SETOLE:
1248  case ISD::SETONE:
1249  case ISD::SETO:
1250  case ISD::SETUO:
1251  case ISD::SETUEQ:
1252  case ISD::SETUNE:
1253    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1254    break;
1255  }
1256
1257  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1258    const APInt &C2 = N2C->getAPIntValue();
1259    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1260      const APInt &C1 = N1C->getAPIntValue();
1261
1262      switch (Cond) {
1263      default: assert(0 && "Unknown integer setcc!");
1264      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1265      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1266      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1267      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1268      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1269      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1270      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1271      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1272      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1273      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1274      }
1275    }
1276  }
1277  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1278    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1279      // No compile time operations on this type yet.
1280      if (N1C->getValueType(0) == MVT::ppcf128)
1281        return SDValue();
1282
1283      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1284      switch (Cond) {
1285      default: break;
1286      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1287                          return getNode(ISD::UNDEF, VT);
1288                        // fall through
1289      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1290      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1291                          return getNode(ISD::UNDEF, VT);
1292                        // fall through
1293      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1294                                           R==APFloat::cmpLessThan, VT);
1295      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1296                          return getNode(ISD::UNDEF, VT);
1297                        // fall through
1298      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1299      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1300                          return getNode(ISD::UNDEF, VT);
1301                        // fall through
1302      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1303      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1304                          return getNode(ISD::UNDEF, VT);
1305                        // fall through
1306      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1307                                           R==APFloat::cmpEqual, VT);
1308      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1309                          return getNode(ISD::UNDEF, VT);
1310                        // fall through
1311      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1312                                           R==APFloat::cmpEqual, VT);
1313      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1314      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1315      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1316                                           R==APFloat::cmpEqual, VT);
1317      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1318      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1319                                           R==APFloat::cmpLessThan, VT);
1320      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1321                                           R==APFloat::cmpUnordered, VT);
1322      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1323      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1324      }
1325    } else {
1326      // Ensure that the constant occurs on the RHS.
1327      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1328    }
1329  }
1330
1331  // Could not fold it.
1332  return SDValue();
1333}
1334
1335/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1336/// use this predicate to simplify operations downstream.
1337bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1338  unsigned BitWidth = Op.getValueSizeInBits();
1339  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1340}
1341
1342/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1343/// this predicate to simplify operations downstream.  Mask is known to be zero
1344/// for bits that V cannot have.
1345bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1346                                     unsigned Depth) const {
1347  APInt KnownZero, KnownOne;
1348  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1349  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1350  return (KnownZero & Mask) == Mask;
1351}
1352
1353/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1354/// known to be either zero or one and return them in the KnownZero/KnownOne
1355/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1356/// processing.
1357void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1358                                     APInt &KnownZero, APInt &KnownOne,
1359                                     unsigned Depth) const {
1360  unsigned BitWidth = Mask.getBitWidth();
1361  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1362         "Mask size mismatches value type size!");
1363
1364  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1365  if (Depth == 6 || Mask == 0)
1366    return;  // Limit search depth.
1367
1368  APInt KnownZero2, KnownOne2;
1369
1370  switch (Op.getOpcode()) {
1371  case ISD::Constant:
1372    // We know all of the bits for a constant!
1373    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1374    KnownZero = ~KnownOne & Mask;
1375    return;
1376  case ISD::AND:
1377    // If either the LHS or the RHS are Zero, the result is zero.
1378    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1379    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1380                      KnownZero2, KnownOne2, Depth+1);
1381    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1382    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1383
1384    // Output known-1 bits are only known if set in both the LHS & RHS.
1385    KnownOne &= KnownOne2;
1386    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1387    KnownZero |= KnownZero2;
1388    return;
1389  case ISD::OR:
1390    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1391    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1392                      KnownZero2, KnownOne2, Depth+1);
1393    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1394    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1395
1396    // Output known-0 bits are only known if clear in both the LHS & RHS.
1397    KnownZero &= KnownZero2;
1398    // Output known-1 are known to be set if set in either the LHS | RHS.
1399    KnownOne |= KnownOne2;
1400    return;
1401  case ISD::XOR: {
1402    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1403    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1404    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1405    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1406
1407    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1408    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1409    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1410    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1411    KnownZero = KnownZeroOut;
1412    return;
1413  }
1414  case ISD::MUL: {
1415    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1416    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1417    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1418    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1419    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1420
1421    // If low bits are zero in either operand, output low known-0 bits.
1422    // Also compute a conserative estimate for high known-0 bits.
1423    // More trickiness is possible, but this is sufficient for the
1424    // interesting case of alignment computation.
1425    KnownOne.clear();
1426    unsigned TrailZ = KnownZero.countTrailingOnes() +
1427                      KnownZero2.countTrailingOnes();
1428    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1429                               KnownZero2.countLeadingOnes(),
1430                               BitWidth) - BitWidth;
1431
1432    TrailZ = std::min(TrailZ, BitWidth);
1433    LeadZ = std::min(LeadZ, BitWidth);
1434    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1435                APInt::getHighBitsSet(BitWidth, LeadZ);
1436    KnownZero &= Mask;
1437    return;
1438  }
1439  case ISD::UDIV: {
1440    // For the purposes of computing leading zeros we can conservatively
1441    // treat a udiv as a logical right shift by the power of 2 known to
1442    // be less than the denominator.
1443    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1444    ComputeMaskedBits(Op.getOperand(0),
1445                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1446    unsigned LeadZ = KnownZero2.countLeadingOnes();
1447
1448    KnownOne2.clear();
1449    KnownZero2.clear();
1450    ComputeMaskedBits(Op.getOperand(1),
1451                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1452    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1453    if (RHSUnknownLeadingOnes != BitWidth)
1454      LeadZ = std::min(BitWidth,
1455                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1456
1457    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1458    return;
1459  }
1460  case ISD::SELECT:
1461    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1462    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1463    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1464    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1465
1466    // Only known if known in both the LHS and RHS.
1467    KnownOne &= KnownOne2;
1468    KnownZero &= KnownZero2;
1469    return;
1470  case ISD::SELECT_CC:
1471    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1472    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1473    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1474    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1475
1476    // Only known if known in both the LHS and RHS.
1477    KnownOne &= KnownOne2;
1478    KnownZero &= KnownZero2;
1479    return;
1480  case ISD::SADDO:
1481  case ISD::UADDO:
1482  case ISD::SSUBO:
1483  case ISD::USUBO:
1484  case ISD::SMULO:
1485  case ISD::UMULO:
1486    if (Op.getResNo() != 1)
1487      return;
1488    // The boolean result conforms to getBooleanContents.  Fall through.
1489  case ISD::SETCC:
1490    // If we know the result of a setcc has the top bits zero, use this info.
1491    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1492        BitWidth > 1)
1493      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1494    return;
1495  case ISD::SHL:
1496    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1497    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1498      unsigned ShAmt = SA->getZExtValue();
1499
1500      // If the shift count is an invalid immediate, don't do anything.
1501      if (ShAmt >= BitWidth)
1502        return;
1503
1504      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1505                        KnownZero, KnownOne, Depth+1);
1506      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1507      KnownZero <<= ShAmt;
1508      KnownOne  <<= ShAmt;
1509      // low bits known zero.
1510      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1511    }
1512    return;
1513  case ISD::SRL:
1514    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1515    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1516      unsigned ShAmt = SA->getZExtValue();
1517
1518      // If the shift count is an invalid immediate, don't do anything.
1519      if (ShAmt >= BitWidth)
1520        return;
1521
1522      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1523                        KnownZero, KnownOne, Depth+1);
1524      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1525      KnownZero = KnownZero.lshr(ShAmt);
1526      KnownOne  = KnownOne.lshr(ShAmt);
1527
1528      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1529      KnownZero |= HighBits;  // High bits known zero.
1530    }
1531    return;
1532  case ISD::SRA:
1533    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1534      unsigned ShAmt = SA->getZExtValue();
1535
1536      // If the shift count is an invalid immediate, don't do anything.
1537      if (ShAmt >= BitWidth)
1538        return;
1539
1540      APInt InDemandedMask = (Mask << ShAmt);
1541      // If any of the demanded bits are produced by the sign extension, we also
1542      // demand the input sign bit.
1543      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1544      if (HighBits.getBoolValue())
1545        InDemandedMask |= APInt::getSignBit(BitWidth);
1546
1547      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1548                        Depth+1);
1549      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1550      KnownZero = KnownZero.lshr(ShAmt);
1551      KnownOne  = KnownOne.lshr(ShAmt);
1552
1553      // Handle the sign bits.
1554      APInt SignBit = APInt::getSignBit(BitWidth);
1555      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1556
1557      if (KnownZero.intersects(SignBit)) {
1558        KnownZero |= HighBits;  // New bits are known zero.
1559      } else if (KnownOne.intersects(SignBit)) {
1560        KnownOne  |= HighBits;  // New bits are known one.
1561      }
1562    }
1563    return;
1564  case ISD::SIGN_EXTEND_INREG: {
1565    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1566    unsigned EBits = EVT.getSizeInBits();
1567
1568    // Sign extension.  Compute the demanded bits in the result that are not
1569    // present in the input.
1570    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1571
1572    APInt InSignBit = APInt::getSignBit(EBits);
1573    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1574
1575    // If the sign extended bits are demanded, we know that the sign
1576    // bit is demanded.
1577    InSignBit.zext(BitWidth);
1578    if (NewBits.getBoolValue())
1579      InputDemandedBits |= InSignBit;
1580
1581    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1582                      KnownZero, KnownOne, Depth+1);
1583    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1584
1585    // If the sign bit of the input is known set or clear, then we know the
1586    // top bits of the result.
1587    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1588      KnownZero |= NewBits;
1589      KnownOne  &= ~NewBits;
1590    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1591      KnownOne  |= NewBits;
1592      KnownZero &= ~NewBits;
1593    } else {                              // Input sign bit unknown
1594      KnownZero &= ~NewBits;
1595      KnownOne  &= ~NewBits;
1596    }
1597    return;
1598  }
1599  case ISD::CTTZ:
1600  case ISD::CTLZ:
1601  case ISD::CTPOP: {
1602    unsigned LowBits = Log2_32(BitWidth)+1;
1603    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1604    KnownOne.clear();
1605    return;
1606  }
1607  case ISD::LOAD: {
1608    if (ISD::isZEXTLoad(Op.getNode())) {
1609      LoadSDNode *LD = cast<LoadSDNode>(Op);
1610      MVT VT = LD->getMemoryVT();
1611      unsigned MemBits = VT.getSizeInBits();
1612      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1613    }
1614    return;
1615  }
1616  case ISD::ZERO_EXTEND: {
1617    MVT InVT = Op.getOperand(0).getValueType();
1618    unsigned InBits = InVT.getSizeInBits();
1619    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1620    APInt InMask    = Mask;
1621    InMask.trunc(InBits);
1622    KnownZero.trunc(InBits);
1623    KnownOne.trunc(InBits);
1624    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1625    KnownZero.zext(BitWidth);
1626    KnownOne.zext(BitWidth);
1627    KnownZero |= NewBits;
1628    return;
1629  }
1630  case ISD::SIGN_EXTEND: {
1631    MVT InVT = Op.getOperand(0).getValueType();
1632    unsigned InBits = InVT.getSizeInBits();
1633    APInt InSignBit = APInt::getSignBit(InBits);
1634    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1635    APInt InMask = Mask;
1636    InMask.trunc(InBits);
1637
1638    // If any of the sign extended bits are demanded, we know that the sign
1639    // bit is demanded. Temporarily set this bit in the mask for our callee.
1640    if (NewBits.getBoolValue())
1641      InMask |= InSignBit;
1642
1643    KnownZero.trunc(InBits);
1644    KnownOne.trunc(InBits);
1645    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1646
1647    // Note if the sign bit is known to be zero or one.
1648    bool SignBitKnownZero = KnownZero.isNegative();
1649    bool SignBitKnownOne  = KnownOne.isNegative();
1650    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1651           "Sign bit can't be known to be both zero and one!");
1652
1653    // If the sign bit wasn't actually demanded by our caller, we don't
1654    // want it set in the KnownZero and KnownOne result values. Reset the
1655    // mask and reapply it to the result values.
1656    InMask = Mask;
1657    InMask.trunc(InBits);
1658    KnownZero &= InMask;
1659    KnownOne  &= InMask;
1660
1661    KnownZero.zext(BitWidth);
1662    KnownOne.zext(BitWidth);
1663
1664    // If the sign bit is known zero or one, the top bits match.
1665    if (SignBitKnownZero)
1666      KnownZero |= NewBits;
1667    else if (SignBitKnownOne)
1668      KnownOne  |= NewBits;
1669    return;
1670  }
1671  case ISD::ANY_EXTEND: {
1672    MVT InVT = Op.getOperand(0).getValueType();
1673    unsigned InBits = InVT.getSizeInBits();
1674    APInt InMask = Mask;
1675    InMask.trunc(InBits);
1676    KnownZero.trunc(InBits);
1677    KnownOne.trunc(InBits);
1678    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1679    KnownZero.zext(BitWidth);
1680    KnownOne.zext(BitWidth);
1681    return;
1682  }
1683  case ISD::TRUNCATE: {
1684    MVT InVT = Op.getOperand(0).getValueType();
1685    unsigned InBits = InVT.getSizeInBits();
1686    APInt InMask = Mask;
1687    InMask.zext(InBits);
1688    KnownZero.zext(InBits);
1689    KnownOne.zext(InBits);
1690    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1691    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1692    KnownZero.trunc(BitWidth);
1693    KnownOne.trunc(BitWidth);
1694    break;
1695  }
1696  case ISD::AssertZext: {
1697    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1698    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1699    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1700                      KnownOne, Depth+1);
1701    KnownZero |= (~InMask) & Mask;
1702    return;
1703  }
1704  case ISD::FGETSIGN:
1705    // All bits are zero except the low bit.
1706    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1707    return;
1708
1709  case ISD::SUB: {
1710    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1711      // We know that the top bits of C-X are clear if X contains less bits
1712      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1713      // positive if we can prove that X is >= 0 and < 16.
1714      if (CLHS->getAPIntValue().isNonNegative()) {
1715        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1716        // NLZ can't be BitWidth with no sign bit
1717        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1718        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1719                          Depth+1);
1720
1721        // If all of the MaskV bits are known to be zero, then we know the
1722        // output top bits are zero, because we now know that the output is
1723        // from [0-C].
1724        if ((KnownZero2 & MaskV) == MaskV) {
1725          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1726          // Top bits known zero.
1727          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1728        }
1729      }
1730    }
1731  }
1732  // fall through
1733  case ISD::ADD: {
1734    // Output known-0 bits are known if clear or set in both the low clear bits
1735    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1736    // low 3 bits clear.
1737    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1738    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1739    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1740    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1741
1742    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1743    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1744    KnownZeroOut = std::min(KnownZeroOut,
1745                            KnownZero2.countTrailingOnes());
1746
1747    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1748    return;
1749  }
1750  case ISD::SREM:
1751    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1752      const APInt &RA = Rem->getAPIntValue();
1753      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1754        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1755        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1756        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1757
1758        // If the sign bit of the first operand is zero, the sign bit of
1759        // the result is zero. If the first operand has no one bits below
1760        // the second operand's single 1 bit, its sign will be zero.
1761        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1762          KnownZero2 |= ~LowBits;
1763
1764        KnownZero |= KnownZero2 & Mask;
1765
1766        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1767      }
1768    }
1769    return;
1770  case ISD::UREM: {
1771    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1772      const APInt &RA = Rem->getAPIntValue();
1773      if (RA.isPowerOf2()) {
1774        APInt LowBits = (RA - 1);
1775        APInt Mask2 = LowBits & Mask;
1776        KnownZero |= ~LowBits & Mask;
1777        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1778        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1779        break;
1780      }
1781    }
1782
1783    // Since the result is less than or equal to either operand, any leading
1784    // zero bits in either operand must also exist in the result.
1785    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1786    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1787                      Depth+1);
1788    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1789                      Depth+1);
1790
1791    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1792                                KnownZero2.countLeadingOnes());
1793    KnownOne.clear();
1794    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1795    return;
1796  }
1797  default:
1798    // Allow the target to implement this method for its nodes.
1799    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1800  case ISD::INTRINSIC_WO_CHAIN:
1801  case ISD::INTRINSIC_W_CHAIN:
1802  case ISD::INTRINSIC_VOID:
1803      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1804    }
1805    return;
1806  }
1807}
1808
1809/// ComputeNumSignBits - Return the number of times the sign bit of the
1810/// register is replicated into the other bits.  We know that at least 1 bit
1811/// is always equal to the sign bit (itself), but other cases can give us
1812/// information.  For example, immediately after an "SRA X, 2", we know that
1813/// the top 3 bits are all equal to each other, so we return 3.
1814unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1815  MVT VT = Op.getValueType();
1816  assert(VT.isInteger() && "Invalid VT!");
1817  unsigned VTBits = VT.getSizeInBits();
1818  unsigned Tmp, Tmp2;
1819  unsigned FirstAnswer = 1;
1820
1821  if (Depth == 6)
1822    return 1;  // Limit search depth.
1823
1824  switch (Op.getOpcode()) {
1825  default: break;
1826  case ISD::AssertSext:
1827    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1828    return VTBits-Tmp+1;
1829  case ISD::AssertZext:
1830    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1831    return VTBits-Tmp;
1832
1833  case ISD::Constant: {
1834    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1835    // If negative, return # leading ones.
1836    if (Val.isNegative())
1837      return Val.countLeadingOnes();
1838
1839    // Return # leading zeros.
1840    return Val.countLeadingZeros();
1841  }
1842
1843  case ISD::SIGN_EXTEND:
1844    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1845    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1846
1847  case ISD::SIGN_EXTEND_INREG:
1848    // Max of the input and what this extends.
1849    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1850    Tmp = VTBits-Tmp+1;
1851
1852    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1853    return std::max(Tmp, Tmp2);
1854
1855  case ISD::SRA:
1856    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1857    // SRA X, C   -> adds C sign bits.
1858    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1859      Tmp += C->getZExtValue();
1860      if (Tmp > VTBits) Tmp = VTBits;
1861    }
1862    return Tmp;
1863  case ISD::SHL:
1864    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1865      // shl destroys sign bits.
1866      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1867      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1868          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1869      return Tmp - C->getZExtValue();
1870    }
1871    break;
1872  case ISD::AND:
1873  case ISD::OR:
1874  case ISD::XOR:    // NOT is handled here.
1875    // Logical binary ops preserve the number of sign bits at the worst.
1876    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1877    if (Tmp != 1) {
1878      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1879      FirstAnswer = std::min(Tmp, Tmp2);
1880      // We computed what we know about the sign bits as our first
1881      // answer. Now proceed to the generic code that uses
1882      // ComputeMaskedBits, and pick whichever answer is better.
1883    }
1884    break;
1885
1886  case ISD::SELECT:
1887    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1888    if (Tmp == 1) return 1;  // Early out.
1889    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1890    return std::min(Tmp, Tmp2);
1891
1892  case ISD::SADDO:
1893  case ISD::UADDO:
1894  case ISD::SSUBO:
1895  case ISD::USUBO:
1896  case ISD::SMULO:
1897  case ISD::UMULO:
1898    if (Op.getResNo() != 1)
1899      break;
1900    // The boolean result conforms to getBooleanContents.  Fall through.
1901  case ISD::SETCC:
1902    // If setcc returns 0/-1, all bits are sign bits.
1903    if (TLI.getBooleanContents() ==
1904        TargetLowering::ZeroOrNegativeOneBooleanContent)
1905      return VTBits;
1906    break;
1907  case ISD::ROTL:
1908  case ISD::ROTR:
1909    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1910      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1911
1912      // Handle rotate right by N like a rotate left by 32-N.
1913      if (Op.getOpcode() == ISD::ROTR)
1914        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1915
1916      // If we aren't rotating out all of the known-in sign bits, return the
1917      // number that are left.  This handles rotl(sext(x), 1) for example.
1918      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1919      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1920    }
1921    break;
1922  case ISD::ADD:
1923    // Add can have at most one carry bit.  Thus we know that the output
1924    // is, at worst, one more bit than the inputs.
1925    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1926    if (Tmp == 1) return 1;  // Early out.
1927
1928    // Special case decrementing a value (ADD X, -1):
1929    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1930      if (CRHS->isAllOnesValue()) {
1931        APInt KnownZero, KnownOne;
1932        APInt Mask = APInt::getAllOnesValue(VTBits);
1933        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1934
1935        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1936        // sign bits set.
1937        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1938          return VTBits;
1939
1940        // If we are subtracting one from a positive number, there is no carry
1941        // out of the result.
1942        if (KnownZero.isNegative())
1943          return Tmp;
1944      }
1945
1946    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1947    if (Tmp2 == 1) return 1;
1948      return std::min(Tmp, Tmp2)-1;
1949    break;
1950
1951  case ISD::SUB:
1952    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1953    if (Tmp2 == 1) return 1;
1954
1955    // Handle NEG.
1956    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1957      if (CLHS->isNullValue()) {
1958        APInt KnownZero, KnownOne;
1959        APInt Mask = APInt::getAllOnesValue(VTBits);
1960        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1961        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1962        // sign bits set.
1963        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1964          return VTBits;
1965
1966        // If the input is known to be positive (the sign bit is known clear),
1967        // the output of the NEG has the same number of sign bits as the input.
1968        if (KnownZero.isNegative())
1969          return Tmp2;
1970
1971        // Otherwise, we treat this like a SUB.
1972      }
1973
1974    // Sub can have at most one carry bit.  Thus we know that the output
1975    // is, at worst, one more bit than the inputs.
1976    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1977    if (Tmp == 1) return 1;  // Early out.
1978      return std::min(Tmp, Tmp2)-1;
1979    break;
1980  case ISD::TRUNCATE:
1981    // FIXME: it's tricky to do anything useful for this, but it is an important
1982    // case for targets like X86.
1983    break;
1984  }
1985
1986  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1987  if (Op.getOpcode() == ISD::LOAD) {
1988    LoadSDNode *LD = cast<LoadSDNode>(Op);
1989    unsigned ExtType = LD->getExtensionType();
1990    switch (ExtType) {
1991    default: break;
1992    case ISD::SEXTLOAD:    // '17' bits known
1993      Tmp = LD->getMemoryVT().getSizeInBits();
1994      return VTBits-Tmp+1;
1995    case ISD::ZEXTLOAD:    // '16' bits known
1996      Tmp = LD->getMemoryVT().getSizeInBits();
1997      return VTBits-Tmp;
1998    }
1999  }
2000
2001  // Allow the target to implement this method for its nodes.
2002  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2003      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2004      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2005      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2006    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2007    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2008  }
2009
2010  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2011  // use this information.
2012  APInt KnownZero, KnownOne;
2013  APInt Mask = APInt::getAllOnesValue(VTBits);
2014  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2015
2016  if (KnownZero.isNegative()) {        // sign bit is 0
2017    Mask = KnownZero;
2018  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2019    Mask = KnownOne;
2020  } else {
2021    // Nothing known.
2022    return FirstAnswer;
2023  }
2024
2025  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2026  // the number of identical bits in the top of the input value.
2027  Mask = ~Mask;
2028  Mask <<= Mask.getBitWidth()-VTBits;
2029  // Return # leading zeros.  We use 'min' here in case Val was zero before
2030  // shifting.  We don't want to return '64' as for an i32 "0".
2031  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2032}
2033
2034
2035bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2036  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2037  if (!GA) return false;
2038  if (GA->getOffset() != 0) return false;
2039  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2040  if (!GV) return false;
2041  MachineModuleInfo *MMI = getMachineModuleInfo();
2042  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
2043}
2044
2045
2046/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2047/// element of the result of the vector shuffle.
2048SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2049  MVT VT = N->getValueType(0);
2050  SDValue PermMask = N->getOperand(2);
2051  SDValue Idx = PermMask.getOperand(i);
2052  if (Idx.getOpcode() == ISD::UNDEF)
2053    return getNode(ISD::UNDEF, VT.getVectorElementType());
2054  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2055  unsigned NumElems = PermMask.getNumOperands();
2056  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2057  Index %= NumElems;
2058
2059  if (V.getOpcode() == ISD::BIT_CONVERT) {
2060    V = V.getOperand(0);
2061    MVT VVT = V.getValueType();
2062    if (!VVT.isVector() || VVT.getVectorNumElements() != NumElems)
2063      return SDValue();
2064  }
2065  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2066    return (Index == 0) ? V.getOperand(0)
2067                      : getNode(ISD::UNDEF, VT.getVectorElementType());
2068  if (V.getOpcode() == ISD::BUILD_VECTOR)
2069    return V.getOperand(Index);
2070  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2071    return getShuffleScalarElt(V.getNode(), Index);
2072  return SDValue();
2073}
2074
2075
2076/// getNode - Gets or creates the specified node.
2077///
2078SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
2079  FoldingSetNodeID ID;
2080  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2081  void *IP = 0;
2082  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2083    return SDValue(E, 0);
2084  SDNode *N = NodeAllocator.Allocate<SDNode>();
2085  new (N) SDNode(Opcode, SDNode::getSDVTList(VT));
2086  CSEMap.InsertNode(N, IP);
2087
2088  AllNodes.push_back(N);
2089#ifndef NDEBUG
2090  VerifyNode(N);
2091#endif
2092  return SDValue(N, 0);
2093}
2094
2095SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
2096  // Constant fold unary operations with an integer constant operand.
2097  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2098    const APInt &Val = C->getAPIntValue();
2099    unsigned BitWidth = VT.getSizeInBits();
2100    switch (Opcode) {
2101    default: break;
2102    case ISD::SIGN_EXTEND:
2103      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2104    case ISD::ANY_EXTEND:
2105    case ISD::ZERO_EXTEND:
2106    case ISD::TRUNCATE:
2107      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2108    case ISD::UINT_TO_FP:
2109    case ISD::SINT_TO_FP: {
2110      const uint64_t zero[] = {0, 0};
2111      // No compile time operations on this type.
2112      if (VT==MVT::ppcf128)
2113        break;
2114      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2115      (void)apf.convertFromAPInt(Val,
2116                                 Opcode==ISD::SINT_TO_FP,
2117                                 APFloat::rmNearestTiesToEven);
2118      return getConstantFP(apf, VT);
2119    }
2120    case ISD::BIT_CONVERT:
2121      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2122        return getConstantFP(Val.bitsToFloat(), VT);
2123      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2124        return getConstantFP(Val.bitsToDouble(), VT);
2125      break;
2126    case ISD::BSWAP:
2127      return getConstant(Val.byteSwap(), VT);
2128    case ISD::CTPOP:
2129      return getConstant(Val.countPopulation(), VT);
2130    case ISD::CTLZ:
2131      return getConstant(Val.countLeadingZeros(), VT);
2132    case ISD::CTTZ:
2133      return getConstant(Val.countTrailingZeros(), VT);
2134    }
2135  }
2136
2137  // Constant fold unary operations with a floating point constant operand.
2138  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2139    APFloat V = C->getValueAPF();    // make copy
2140    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2141      switch (Opcode) {
2142      case ISD::FNEG:
2143        V.changeSign();
2144        return getConstantFP(V, VT);
2145      case ISD::FABS:
2146        V.clearSign();
2147        return getConstantFP(V, VT);
2148      case ISD::FP_ROUND:
2149      case ISD::FP_EXTEND: {
2150        bool ignored;
2151        // This can return overflow, underflow, or inexact; we don't care.
2152        // FIXME need to be more flexible about rounding mode.
2153        (void)V.convert(*MVTToAPFloatSemantics(VT),
2154                        APFloat::rmNearestTiesToEven, &ignored);
2155        return getConstantFP(V, VT);
2156      }
2157      case ISD::FP_TO_SINT:
2158      case ISD::FP_TO_UINT: {
2159        integerPart x;
2160        bool ignored;
2161        assert(integerPartWidth >= 64);
2162        // FIXME need to be more flexible about rounding mode.
2163        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2164                              Opcode==ISD::FP_TO_SINT,
2165                              APFloat::rmTowardZero, &ignored);
2166        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2167          break;
2168        return getConstant(x, VT);
2169      }
2170      case ISD::BIT_CONVERT:
2171        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2172          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2173        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2174          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2175        break;
2176      }
2177    }
2178  }
2179
2180  unsigned OpOpcode = Operand.getNode()->getOpcode();
2181  switch (Opcode) {
2182  case ISD::TokenFactor:
2183  case ISD::MERGE_VALUES:
2184  case ISD::CONCAT_VECTORS:
2185    return Operand;         // Factor, merge or concat of one node?  No need.
2186  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2187  case ISD::FP_EXTEND:
2188    assert(VT.isFloatingPoint() &&
2189           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2190    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2191    if (Operand.getOpcode() == ISD::UNDEF)
2192      return getNode(ISD::UNDEF, VT);
2193    break;
2194  case ISD::SIGN_EXTEND:
2195    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2196           "Invalid SIGN_EXTEND!");
2197    if (Operand.getValueType() == VT) return Operand;   // noop extension
2198    assert(Operand.getValueType().bitsLT(VT)
2199           && "Invalid sext node, dst < src!");
2200    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2201      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2202    break;
2203  case ISD::ZERO_EXTEND:
2204    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2205           "Invalid ZERO_EXTEND!");
2206    if (Operand.getValueType() == VT) return Operand;   // noop extension
2207    assert(Operand.getValueType().bitsLT(VT)
2208           && "Invalid zext node, dst < src!");
2209    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2210      return getNode(ISD::ZERO_EXTEND, VT, Operand.getNode()->getOperand(0));
2211    break;
2212  case ISD::ANY_EXTEND:
2213    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2214           "Invalid ANY_EXTEND!");
2215    if (Operand.getValueType() == VT) return Operand;   // noop extension
2216    assert(Operand.getValueType().bitsLT(VT)
2217           && "Invalid anyext node, dst < src!");
2218    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2219      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2220      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2221    break;
2222  case ISD::TRUNCATE:
2223    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2224           "Invalid TRUNCATE!");
2225    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2226    assert(Operand.getValueType().bitsGT(VT)
2227           && "Invalid truncate node, src < dst!");
2228    if (OpOpcode == ISD::TRUNCATE)
2229      return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2230    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2231             OpOpcode == ISD::ANY_EXTEND) {
2232      // If the source is smaller than the dest, we still need an extend.
2233      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2234        return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2235      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2236        return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2237      else
2238        return Operand.getNode()->getOperand(0);
2239    }
2240    break;
2241  case ISD::BIT_CONVERT:
2242    // Basic sanity checking.
2243    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2244           && "Cannot BIT_CONVERT between types of different sizes!");
2245    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2246    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2247      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2248    if (OpOpcode == ISD::UNDEF)
2249      return getNode(ISD::UNDEF, VT);
2250    break;
2251  case ISD::SCALAR_TO_VECTOR:
2252    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2253           VT.getVectorElementType() == Operand.getValueType() &&
2254           "Illegal SCALAR_TO_VECTOR node!");
2255    if (OpOpcode == ISD::UNDEF)
2256      return getNode(ISD::UNDEF, VT);
2257    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2258    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2259        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2260        Operand.getConstantOperandVal(1) == 0 &&
2261        Operand.getOperand(0).getValueType() == VT)
2262      return Operand.getOperand(0);
2263    break;
2264  case ISD::FNEG:
2265    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2266      return getNode(ISD::FSUB, VT, Operand.getNode()->getOperand(1),
2267                     Operand.getNode()->getOperand(0));
2268    if (OpOpcode == ISD::FNEG)  // --X -> X
2269      return Operand.getNode()->getOperand(0);
2270    break;
2271  case ISD::FABS:
2272    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2273      return getNode(ISD::FABS, VT, Operand.getNode()->getOperand(0));
2274    break;
2275  }
2276
2277  SDNode *N;
2278  SDVTList VTs = getVTList(VT);
2279  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2280    FoldingSetNodeID ID;
2281    SDValue Ops[1] = { Operand };
2282    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2283    void *IP = 0;
2284    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2285      return SDValue(E, 0);
2286    N = NodeAllocator.Allocate<UnarySDNode>();
2287    new (N) UnarySDNode(Opcode, VTs, Operand);
2288    CSEMap.InsertNode(N, IP);
2289  } else {
2290    N = NodeAllocator.Allocate<UnarySDNode>();
2291    new (N) UnarySDNode(Opcode, VTs, Operand);
2292  }
2293
2294  AllNodes.push_back(N);
2295#ifndef NDEBUG
2296  VerifyNode(N);
2297#endif
2298  return SDValue(N, 0);
2299}
2300
2301SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2302                                             MVT VT,
2303                                             ConstantSDNode *Cst1,
2304                                             ConstantSDNode *Cst2) {
2305  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2306
2307  switch (Opcode) {
2308  case ISD::ADD:  return getConstant(C1 + C2, VT);
2309  case ISD::SUB:  return getConstant(C1 - C2, VT);
2310  case ISD::MUL:  return getConstant(C1 * C2, VT);
2311  case ISD::UDIV:
2312    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2313    break;
2314  case ISD::UREM:
2315    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2316    break;
2317  case ISD::SDIV:
2318    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2319    break;
2320  case ISD::SREM:
2321    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2322    break;
2323  case ISD::AND:  return getConstant(C1 & C2, VT);
2324  case ISD::OR:   return getConstant(C1 | C2, VT);
2325  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2326  case ISD::SHL:  return getConstant(C1 << C2, VT);
2327  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2328  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2329  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2330  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2331  default: break;
2332  }
2333
2334  return SDValue();
2335}
2336
2337SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2338                              SDValue N1, SDValue N2) {
2339  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2340  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2341  switch (Opcode) {
2342  default: break;
2343  case ISD::TokenFactor:
2344    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2345           N2.getValueType() == MVT::Other && "Invalid token factor!");
2346    // Fold trivial token factors.
2347    if (N1.getOpcode() == ISD::EntryToken) return N2;
2348    if (N2.getOpcode() == ISD::EntryToken) return N1;
2349    if (N1 == N2) return N1;
2350    break;
2351  case ISD::CONCAT_VECTORS:
2352    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2353    // one big BUILD_VECTOR.
2354    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2355        N2.getOpcode() == ISD::BUILD_VECTOR) {
2356      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2357      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2358      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2359    }
2360    break;
2361  case ISD::AND:
2362    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2363           N1.getValueType() == VT && "Binary operator types must match!");
2364    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2365    // worth handling here.
2366    if (N2C && N2C->isNullValue())
2367      return N2;
2368    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2369      return N1;
2370    break;
2371  case ISD::OR:
2372  case ISD::XOR:
2373  case ISD::ADD:
2374  case ISD::SUB:
2375    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2376           N1.getValueType() == VT && "Binary operator types must match!");
2377    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2378    // it's worth handling here.
2379    if (N2C && N2C->isNullValue())
2380      return N1;
2381    break;
2382  case ISD::UDIV:
2383  case ISD::UREM:
2384  case ISD::MULHU:
2385  case ISD::MULHS:
2386    assert(VT.isInteger() && "This operator does not apply to FP types!");
2387    // fall through
2388  case ISD::MUL:
2389  case ISD::SDIV:
2390  case ISD::SREM:
2391  case ISD::FADD:
2392  case ISD::FSUB:
2393  case ISD::FMUL:
2394  case ISD::FDIV:
2395  case ISD::FREM:
2396    assert(N1.getValueType() == N2.getValueType() &&
2397           N1.getValueType() == VT && "Binary operator types must match!");
2398    break;
2399  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2400    assert(N1.getValueType() == VT &&
2401           N1.getValueType().isFloatingPoint() &&
2402           N2.getValueType().isFloatingPoint() &&
2403           "Invalid FCOPYSIGN!");
2404    break;
2405  case ISD::SHL:
2406  case ISD::SRA:
2407  case ISD::SRL:
2408  case ISD::ROTL:
2409  case ISD::ROTR:
2410    assert(VT == N1.getValueType() &&
2411           "Shift operators return type must be the same as their first arg");
2412    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2413           "Shifts only work on integers");
2414    assert((N2.getValueType() == TLI.getShiftAmountTy() ||
2415            (N2.getValueType().isVector() && N2.getValueType().isInteger())) &&
2416           "Wrong type for shift amount");
2417
2418    // Always fold shifts of i1 values so the code generator doesn't need to
2419    // handle them.  Since we know the size of the shift has to be less than the
2420    // size of the value, the shift/rotate count is guaranteed to be zero.
2421    if (VT == MVT::i1)
2422      return N1;
2423    break;
2424  case ISD::FP_ROUND_INREG: {
2425    MVT EVT = cast<VTSDNode>(N2)->getVT();
2426    assert(VT == N1.getValueType() && "Not an inreg round!");
2427    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2428           "Cannot FP_ROUND_INREG integer types");
2429    assert(EVT.bitsLE(VT) && "Not rounding down!");
2430    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2431    break;
2432  }
2433  case ISD::FP_ROUND:
2434    assert(VT.isFloatingPoint() &&
2435           N1.getValueType().isFloatingPoint() &&
2436           VT.bitsLE(N1.getValueType()) &&
2437           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2438    if (N1.getValueType() == VT) return N1;  // noop conversion.
2439    break;
2440  case ISD::AssertSext:
2441  case ISD::AssertZext: {
2442    MVT EVT = cast<VTSDNode>(N2)->getVT();
2443    assert(VT == N1.getValueType() && "Not an inreg extend!");
2444    assert(VT.isInteger() && EVT.isInteger() &&
2445           "Cannot *_EXTEND_INREG FP types");
2446    assert(EVT.bitsLE(VT) && "Not extending!");
2447    if (VT == EVT) return N1; // noop assertion.
2448    break;
2449  }
2450  case ISD::SIGN_EXTEND_INREG: {
2451    MVT EVT = cast<VTSDNode>(N2)->getVT();
2452    assert(VT == N1.getValueType() && "Not an inreg extend!");
2453    assert(VT.isInteger() && EVT.isInteger() &&
2454           "Cannot *_EXTEND_INREG FP types");
2455    assert(EVT.bitsLE(VT) && "Not extending!");
2456    if (EVT == VT) return N1;  // Not actually extending
2457
2458    if (N1C) {
2459      APInt Val = N1C->getAPIntValue();
2460      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2461      Val <<= Val.getBitWidth()-FromBits;
2462      Val = Val.ashr(Val.getBitWidth()-FromBits);
2463      return getConstant(Val, VT);
2464    }
2465    break;
2466  }
2467  case ISD::EXTRACT_VECTOR_ELT:
2468    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2469    if (N1.getOpcode() == ISD::UNDEF)
2470      return getNode(ISD::UNDEF, VT);
2471
2472    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2473    // expanding copies of large vectors from registers.
2474    if (N2C &&
2475        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2476        N1.getNumOperands() > 0) {
2477      unsigned Factor =
2478        N1.getOperand(0).getValueType().getVectorNumElements();
2479      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2480                     N1.getOperand(N2C->getZExtValue() / Factor),
2481                     getConstant(N2C->getZExtValue() % Factor,
2482                                 N2.getValueType()));
2483    }
2484
2485    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2486    // expanding large vector constants.
2487    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2488      return N1.getOperand(N2C->getZExtValue());
2489
2490    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2491    // operations are lowered to scalars.
2492    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2493      if (N1.getOperand(2) == N2)
2494        return N1.getOperand(1);
2495      else
2496        return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2497    }
2498    break;
2499  case ISD::EXTRACT_ELEMENT:
2500    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2501    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2502           (N1.getValueType().isInteger() == VT.isInteger()) &&
2503           "Wrong types for EXTRACT_ELEMENT!");
2504
2505    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2506    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2507    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2508    if (N1.getOpcode() == ISD::BUILD_PAIR)
2509      return N1.getOperand(N2C->getZExtValue());
2510
2511    // EXTRACT_ELEMENT of a constant int is also very common.
2512    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2513      unsigned ElementSize = VT.getSizeInBits();
2514      unsigned Shift = ElementSize * N2C->getZExtValue();
2515      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2516      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2517    }
2518    break;
2519  case ISD::EXTRACT_SUBVECTOR:
2520    if (N1.getValueType() == VT) // Trivial extraction.
2521      return N1;
2522    break;
2523  }
2524
2525  if (N1C) {
2526    if (N2C) {
2527      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2528      if (SV.getNode()) return SV;
2529    } else {      // Cannonicalize constant to RHS if commutative
2530      if (isCommutativeBinOp(Opcode)) {
2531        std::swap(N1C, N2C);
2532        std::swap(N1, N2);
2533      }
2534    }
2535  }
2536
2537  // Constant fold FP operations.
2538  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2539  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2540  if (N1CFP) {
2541    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2542      // Cannonicalize constant to RHS if commutative
2543      std::swap(N1CFP, N2CFP);
2544      std::swap(N1, N2);
2545    } else if (N2CFP && VT != MVT::ppcf128) {
2546      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2547      APFloat::opStatus s;
2548      switch (Opcode) {
2549      case ISD::FADD:
2550        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2551        if (s != APFloat::opInvalidOp)
2552          return getConstantFP(V1, VT);
2553        break;
2554      case ISD::FSUB:
2555        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2556        if (s!=APFloat::opInvalidOp)
2557          return getConstantFP(V1, VT);
2558        break;
2559      case ISD::FMUL:
2560        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2561        if (s!=APFloat::opInvalidOp)
2562          return getConstantFP(V1, VT);
2563        break;
2564      case ISD::FDIV:
2565        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2566        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2567          return getConstantFP(V1, VT);
2568        break;
2569      case ISD::FREM :
2570        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2571        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2572          return getConstantFP(V1, VT);
2573        break;
2574      case ISD::FCOPYSIGN:
2575        V1.copySign(V2);
2576        return getConstantFP(V1, VT);
2577      default: break;
2578      }
2579    }
2580  }
2581
2582  // Canonicalize an UNDEF to the RHS, even over a constant.
2583  if (N1.getOpcode() == ISD::UNDEF) {
2584    if (isCommutativeBinOp(Opcode)) {
2585      std::swap(N1, N2);
2586    } else {
2587      switch (Opcode) {
2588      case ISD::FP_ROUND_INREG:
2589      case ISD::SIGN_EXTEND_INREG:
2590      case ISD::SUB:
2591      case ISD::FSUB:
2592      case ISD::FDIV:
2593      case ISD::FREM:
2594      case ISD::SRA:
2595        return N1;     // fold op(undef, arg2) -> undef
2596      case ISD::UDIV:
2597      case ISD::SDIV:
2598      case ISD::UREM:
2599      case ISD::SREM:
2600      case ISD::SRL:
2601      case ISD::SHL:
2602        if (!VT.isVector())
2603          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2604        // For vectors, we can't easily build an all zero vector, just return
2605        // the LHS.
2606        return N2;
2607      }
2608    }
2609  }
2610
2611  // Fold a bunch of operators when the RHS is undef.
2612  if (N2.getOpcode() == ISD::UNDEF) {
2613    switch (Opcode) {
2614    case ISD::XOR:
2615      if (N1.getOpcode() == ISD::UNDEF)
2616        // Handle undef ^ undef -> 0 special case. This is a common
2617        // idiom (misuse).
2618        return getConstant(0, VT);
2619      // fallthrough
2620    case ISD::ADD:
2621    case ISD::ADDC:
2622    case ISD::ADDE:
2623    case ISD::SUB:
2624    case ISD::FADD:
2625    case ISD::FSUB:
2626    case ISD::FMUL:
2627    case ISD::FDIV:
2628    case ISD::FREM:
2629    case ISD::UDIV:
2630    case ISD::SDIV:
2631    case ISD::UREM:
2632    case ISD::SREM:
2633      return N2;       // fold op(arg1, undef) -> undef
2634    case ISD::MUL:
2635    case ISD::AND:
2636    case ISD::SRL:
2637    case ISD::SHL:
2638      if (!VT.isVector())
2639        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2640      // For vectors, we can't easily build an all zero vector, just return
2641      // the LHS.
2642      return N1;
2643    case ISD::OR:
2644      if (!VT.isVector())
2645        return getConstant(VT.getIntegerVTBitMask(), VT);
2646      // For vectors, we can't easily build an all one vector, just return
2647      // the LHS.
2648      return N1;
2649    case ISD::SRA:
2650      return N1;
2651    }
2652  }
2653
2654  // Memoize this node if possible.
2655  SDNode *N;
2656  SDVTList VTs = getVTList(VT);
2657  if (VT != MVT::Flag) {
2658    SDValue Ops[] = { N1, N2 };
2659    FoldingSetNodeID ID;
2660    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2661    void *IP = 0;
2662    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2663      return SDValue(E, 0);
2664    N = NodeAllocator.Allocate<BinarySDNode>();
2665    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2666    CSEMap.InsertNode(N, IP);
2667  } else {
2668    N = NodeAllocator.Allocate<BinarySDNode>();
2669    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2670  }
2671
2672  AllNodes.push_back(N);
2673#ifndef NDEBUG
2674  VerifyNode(N);
2675#endif
2676  return SDValue(N, 0);
2677}
2678
2679SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2680                              SDValue N1, SDValue N2, SDValue N3) {
2681  // Perform various simplifications.
2682  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2683  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2684  switch (Opcode) {
2685  case ISD::CONCAT_VECTORS:
2686    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2687    // one big BUILD_VECTOR.
2688    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2689        N2.getOpcode() == ISD::BUILD_VECTOR &&
2690        N3.getOpcode() == ISD::BUILD_VECTOR) {
2691      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2692      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2693      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2694      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2695    }
2696    break;
2697  case ISD::SETCC: {
2698    // Use FoldSetCC to simplify SETCC's.
2699    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2700    if (Simp.getNode()) return Simp;
2701    break;
2702  }
2703  case ISD::SELECT:
2704    if (N1C) {
2705     if (N1C->getZExtValue())
2706        return N2;             // select true, X, Y -> X
2707      else
2708        return N3;             // select false, X, Y -> Y
2709    }
2710
2711    if (N2 == N3) return N2;   // select C, X, X -> X
2712    break;
2713  case ISD::BRCOND:
2714    if (N2C) {
2715      if (N2C->getZExtValue()) // Unconditional branch
2716        return getNode(ISD::BR, MVT::Other, N1, N3);
2717      else
2718        return N1;         // Never-taken branch
2719    }
2720    break;
2721  case ISD::VECTOR_SHUFFLE:
2722    assert(N1.getValueType() == N2.getValueType() &&
2723           N1.getValueType().isVector() &&
2724           VT.isVector() && N3.getValueType().isVector() &&
2725           N3.getOpcode() == ISD::BUILD_VECTOR &&
2726           VT.getVectorNumElements() == N3.getNumOperands() &&
2727           "Illegal VECTOR_SHUFFLE node!");
2728    break;
2729  case ISD::BIT_CONVERT:
2730    // Fold bit_convert nodes from a type to themselves.
2731    if (N1.getValueType() == VT)
2732      return N1;
2733    break;
2734  }
2735
2736  // Memoize node if it doesn't produce a flag.
2737  SDNode *N;
2738  SDVTList VTs = getVTList(VT);
2739  if (VT != MVT::Flag) {
2740    SDValue Ops[] = { N1, N2, N3 };
2741    FoldingSetNodeID ID;
2742    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2743    void *IP = 0;
2744    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2745      return SDValue(E, 0);
2746    N = NodeAllocator.Allocate<TernarySDNode>();
2747    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2748    CSEMap.InsertNode(N, IP);
2749  } else {
2750    N = NodeAllocator.Allocate<TernarySDNode>();
2751    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2752  }
2753  AllNodes.push_back(N);
2754#ifndef NDEBUG
2755  VerifyNode(N);
2756#endif
2757  return SDValue(N, 0);
2758}
2759
2760SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2761                              SDValue N1, SDValue N2, SDValue N3,
2762                              SDValue N4) {
2763  SDValue Ops[] = { N1, N2, N3, N4 };
2764  return getNode(Opcode, VT, Ops, 4);
2765}
2766
2767SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2768                              SDValue N1, SDValue N2, SDValue N3,
2769                              SDValue N4, SDValue N5) {
2770  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2771  return getNode(Opcode, VT, Ops, 5);
2772}
2773
2774/// getMemsetValue - Vectorized representation of the memset value
2775/// operand.
2776static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) {
2777  unsigned NumBits = VT.isVector() ?
2778    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2779  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2780    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2781    unsigned Shift = 8;
2782    for (unsigned i = NumBits; i > 8; i >>= 1) {
2783      Val = (Val << Shift) | Val;
2784      Shift <<= 1;
2785    }
2786    if (VT.isInteger())
2787      return DAG.getConstant(Val, VT);
2788    return DAG.getConstantFP(APFloat(Val), VT);
2789  }
2790
2791  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2792  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2793  unsigned Shift = 8;
2794  for (unsigned i = NumBits; i > 8; i >>= 1) {
2795    Value = DAG.getNode(ISD::OR, VT,
2796                        DAG.getNode(ISD::SHL, VT, Value,
2797                                    DAG.getConstant(Shift,
2798                                                    TLI.getShiftAmountTy())),
2799                        Value);
2800    Shift <<= 1;
2801  }
2802
2803  return Value;
2804}
2805
2806/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2807/// used when a memcpy is turned into a memset when the source is a constant
2808/// string ptr.
2809static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2810                                    const TargetLowering &TLI,
2811                                    std::string &Str, unsigned Offset) {
2812  // Handle vector with all elements zero.
2813  if (Str.empty()) {
2814    if (VT.isInteger())
2815      return DAG.getConstant(0, VT);
2816    unsigned NumElts = VT.getVectorNumElements();
2817    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2818    return DAG.getNode(ISD::BIT_CONVERT, VT,
2819                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2820  }
2821
2822  assert(!VT.isVector() && "Can't handle vector type here!");
2823  unsigned NumBits = VT.getSizeInBits();
2824  unsigned MSB = NumBits / 8;
2825  uint64_t Val = 0;
2826  if (TLI.isLittleEndian())
2827    Offset = Offset + MSB - 1;
2828  for (unsigned i = 0; i != MSB; ++i) {
2829    Val = (Val << 8) | (unsigned char)Str[Offset];
2830    Offset += TLI.isLittleEndian() ? -1 : 1;
2831  }
2832  return DAG.getConstant(Val, VT);
2833}
2834
2835/// getMemBasePlusOffset - Returns base and offset node for the
2836///
2837static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2838                                      SelectionDAG &DAG) {
2839  MVT VT = Base.getValueType();
2840  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2841}
2842
2843/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2844///
2845static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2846  unsigned SrcDelta = 0;
2847  GlobalAddressSDNode *G = NULL;
2848  if (Src.getOpcode() == ISD::GlobalAddress)
2849    G = cast<GlobalAddressSDNode>(Src);
2850  else if (Src.getOpcode() == ISD::ADD &&
2851           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2852           Src.getOperand(1).getOpcode() == ISD::Constant) {
2853    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2854    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2855  }
2856  if (!G)
2857    return false;
2858
2859  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2860  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2861    return true;
2862
2863  return false;
2864}
2865
2866/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2867/// to replace the memset / memcpy is below the threshold. It also returns the
2868/// types of the sequence of memory ops to perform memset / memcpy.
2869static
2870bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2871                              SDValue Dst, SDValue Src,
2872                              unsigned Limit, uint64_t Size, unsigned &Align,
2873                              std::string &Str, bool &isSrcStr,
2874                              SelectionDAG &DAG,
2875                              const TargetLowering &TLI) {
2876  isSrcStr = isMemSrcFromString(Src, Str);
2877  bool isSrcConst = isa<ConstantSDNode>(Src);
2878  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2879  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2880  if (VT != MVT::iAny) {
2881    unsigned NewAlign = (unsigned)
2882      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2883    // If source is a string constant, this will require an unaligned load.
2884    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2885      if (Dst.getOpcode() != ISD::FrameIndex) {
2886        // Can't change destination alignment. It requires a unaligned store.
2887        if (AllowUnalign)
2888          VT = MVT::iAny;
2889      } else {
2890        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2891        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2892        if (MFI->isFixedObjectIndex(FI)) {
2893          // Can't change destination alignment. It requires a unaligned store.
2894          if (AllowUnalign)
2895            VT = MVT::iAny;
2896        } else {
2897          // Give the stack frame object a larger alignment if needed.
2898          if (MFI->getObjectAlignment(FI) < NewAlign)
2899            MFI->setObjectAlignment(FI, NewAlign);
2900          Align = NewAlign;
2901        }
2902      }
2903    }
2904  }
2905
2906  if (VT == MVT::iAny) {
2907    if (AllowUnalign) {
2908      VT = MVT::i64;
2909    } else {
2910      switch (Align & 7) {
2911      case 0:  VT = MVT::i64; break;
2912      case 4:  VT = MVT::i32; break;
2913      case 2:  VT = MVT::i16; break;
2914      default: VT = MVT::i8;  break;
2915      }
2916    }
2917
2918    MVT LVT = MVT::i64;
2919    while (!TLI.isTypeLegal(LVT))
2920      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2921    assert(LVT.isInteger());
2922
2923    if (VT.bitsGT(LVT))
2924      VT = LVT;
2925  }
2926
2927  unsigned NumMemOps = 0;
2928  while (Size != 0) {
2929    unsigned VTSize = VT.getSizeInBits() / 8;
2930    while (VTSize > Size) {
2931      // For now, only use non-vector load / store's for the left-over pieces.
2932      if (VT.isVector()) {
2933        VT = MVT::i64;
2934        while (!TLI.isTypeLegal(VT))
2935          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2936        VTSize = VT.getSizeInBits() / 8;
2937      } else {
2938        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2939        VTSize >>= 1;
2940      }
2941    }
2942
2943    if (++NumMemOps > Limit)
2944      return false;
2945    MemOps.push_back(VT);
2946    Size -= VTSize;
2947  }
2948
2949  return true;
2950}
2951
2952static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG,
2953                                         SDValue Chain, SDValue Dst,
2954                                         SDValue Src, uint64_t Size,
2955                                         unsigned Align, bool AlwaysInline,
2956                                         const Value *DstSV, uint64_t DstSVOff,
2957                                         const Value *SrcSV, uint64_t SrcSVOff){
2958  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2959
2960  // Expand memcpy to a series of load and store ops if the size operand falls
2961  // below a certain threshold.
2962  std::vector<MVT> MemOps;
2963  uint64_t Limit = -1ULL;
2964  if (!AlwaysInline)
2965    Limit = TLI.getMaxStoresPerMemcpy();
2966  unsigned DstAlign = Align;  // Destination alignment can change.
2967  std::string Str;
2968  bool CopyFromStr;
2969  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2970                                Str, CopyFromStr, DAG, TLI))
2971    return SDValue();
2972
2973
2974  bool isZeroStr = CopyFromStr && Str.empty();
2975  SmallVector<SDValue, 8> OutChains;
2976  unsigned NumMemOps = MemOps.size();
2977  uint64_t SrcOff = 0, DstOff = 0;
2978  for (unsigned i = 0; i < NumMemOps; i++) {
2979    MVT VT = MemOps[i];
2980    unsigned VTSize = VT.getSizeInBits() / 8;
2981    SDValue Value, Store;
2982
2983    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
2984      // It's unlikely a store of a vector immediate can be done in a single
2985      // instruction. It would require a load from a constantpool first.
2986      // We also handle store a vector with all zero's.
2987      // FIXME: Handle other cases where store of vector immediate is done in
2988      // a single instruction.
2989      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2990      Store = DAG.getStore(Chain, Value,
2991                           getMemBasePlusOffset(Dst, DstOff, DAG),
2992                           DstSV, DstSVOff + DstOff, false, DstAlign);
2993    } else {
2994      Value = DAG.getLoad(VT, Chain,
2995                          getMemBasePlusOffset(Src, SrcOff, DAG),
2996                          SrcSV, SrcSVOff + SrcOff, false, Align);
2997      Store = DAG.getStore(Chain, Value,
2998                           getMemBasePlusOffset(Dst, DstOff, DAG),
2999                           DstSV, DstSVOff + DstOff, false, DstAlign);
3000    }
3001    OutChains.push_back(Store);
3002    SrcOff += VTSize;
3003    DstOff += VTSize;
3004  }
3005
3006  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3007                     &OutChains[0], OutChains.size());
3008}
3009
3010static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG,
3011                                          SDValue Chain, SDValue Dst,
3012                                          SDValue Src, uint64_t Size,
3013                                          unsigned Align, bool AlwaysInline,
3014                                          const Value *DstSV, uint64_t DstSVOff,
3015                                          const Value *SrcSV, uint64_t SrcSVOff){
3016  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3017
3018  // Expand memmove to a series of load and store ops if the size operand falls
3019  // below a certain threshold.
3020  std::vector<MVT> MemOps;
3021  uint64_t Limit = -1ULL;
3022  if (!AlwaysInline)
3023    Limit = TLI.getMaxStoresPerMemmove();
3024  unsigned DstAlign = Align;  // Destination alignment can change.
3025  std::string Str;
3026  bool CopyFromStr;
3027  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3028                                Str, CopyFromStr, DAG, TLI))
3029    return SDValue();
3030
3031  uint64_t SrcOff = 0, DstOff = 0;
3032
3033  SmallVector<SDValue, 8> LoadValues;
3034  SmallVector<SDValue, 8> LoadChains;
3035  SmallVector<SDValue, 8> OutChains;
3036  unsigned NumMemOps = MemOps.size();
3037  for (unsigned i = 0; i < NumMemOps; i++) {
3038    MVT VT = MemOps[i];
3039    unsigned VTSize = VT.getSizeInBits() / 8;
3040    SDValue Value, Store;
3041
3042    Value = DAG.getLoad(VT, Chain,
3043                        getMemBasePlusOffset(Src, SrcOff, DAG),
3044                        SrcSV, SrcSVOff + SrcOff, false, Align);
3045    LoadValues.push_back(Value);
3046    LoadChains.push_back(Value.getValue(1));
3047    SrcOff += VTSize;
3048  }
3049  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3050                      &LoadChains[0], LoadChains.size());
3051  OutChains.clear();
3052  for (unsigned i = 0; i < NumMemOps; i++) {
3053    MVT VT = MemOps[i];
3054    unsigned VTSize = VT.getSizeInBits() / 8;
3055    SDValue Value, Store;
3056
3057    Store = DAG.getStore(Chain, LoadValues[i],
3058                         getMemBasePlusOffset(Dst, DstOff, DAG),
3059                         DstSV, DstSVOff + DstOff, false, DstAlign);
3060    OutChains.push_back(Store);
3061    DstOff += VTSize;
3062  }
3063
3064  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3065                     &OutChains[0], OutChains.size());
3066}
3067
3068static SDValue getMemsetStores(SelectionDAG &DAG,
3069                                 SDValue Chain, SDValue Dst,
3070                                 SDValue Src, uint64_t Size,
3071                                 unsigned Align,
3072                                 const Value *DstSV, uint64_t DstSVOff) {
3073  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3074
3075  // Expand memset to a series of load/store ops if the size operand
3076  // falls below a certain threshold.
3077  std::vector<MVT> MemOps;
3078  std::string Str;
3079  bool CopyFromStr;
3080  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3081                                Size, Align, Str, CopyFromStr, DAG, TLI))
3082    return SDValue();
3083
3084  SmallVector<SDValue, 8> OutChains;
3085  uint64_t DstOff = 0;
3086
3087  unsigned NumMemOps = MemOps.size();
3088  for (unsigned i = 0; i < NumMemOps; i++) {
3089    MVT VT = MemOps[i];
3090    unsigned VTSize = VT.getSizeInBits() / 8;
3091    SDValue Value = getMemsetValue(Src, VT, DAG);
3092    SDValue Store = DAG.getStore(Chain, Value,
3093                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3094                                 DstSV, DstSVOff + DstOff);
3095    OutChains.push_back(Store);
3096    DstOff += VTSize;
3097  }
3098
3099  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3100                     &OutChains[0], OutChains.size());
3101}
3102
3103SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst,
3104                                SDValue Src, SDValue Size,
3105                                unsigned Align, bool AlwaysInline,
3106                                const Value *DstSV, uint64_t DstSVOff,
3107                                const Value *SrcSV, uint64_t SrcSVOff) {
3108
3109  // Check to see if we should lower the memcpy to loads and stores first.
3110  // For cases within the target-specified limits, this is the best choice.
3111  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3112  if (ConstantSize) {
3113    // Memcpy with size zero? Just return the original chain.
3114    if (ConstantSize->isNullValue())
3115      return Chain;
3116
3117    SDValue Result =
3118      getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3119                              ConstantSize->getZExtValue(),
3120                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3121    if (Result.getNode())
3122      return Result;
3123  }
3124
3125  // Then check to see if we should lower the memcpy with target-specific
3126  // code. If the target chooses to do this, this is the next best.
3127  SDValue Result =
3128    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
3129                                AlwaysInline,
3130                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3131  if (Result.getNode())
3132    return Result;
3133
3134  // If we really need inline code and the target declined to provide it,
3135  // use a (potentially long) sequence of loads and stores.
3136  if (AlwaysInline) {
3137    assert(ConstantSize && "AlwaysInline requires a constant size!");
3138    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3139                                   ConstantSize->getZExtValue(), Align, true,
3140                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3141  }
3142
3143  // Emit a library call.
3144  TargetLowering::ArgListTy Args;
3145  TargetLowering::ArgListEntry Entry;
3146  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3147  Entry.Node = Dst; Args.push_back(Entry);
3148  Entry.Node = Src; Args.push_back(Entry);
3149  Entry.Node = Size; Args.push_back(Entry);
3150  std::pair<SDValue,SDValue> CallResult =
3151    TLI.LowerCallTo(Chain, Type::VoidTy,
3152                    false, false, false, false, CallingConv::C, false,
3153                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3154                    Args, *this);
3155  return CallResult.second;
3156}
3157
3158SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst,
3159                                 SDValue Src, SDValue Size,
3160                                 unsigned Align,
3161                                 const Value *DstSV, uint64_t DstSVOff,
3162                                 const Value *SrcSV, uint64_t SrcSVOff) {
3163
3164  // Check to see if we should lower the memmove to loads and stores first.
3165  // For cases within the target-specified limits, this is the best choice.
3166  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3167  if (ConstantSize) {
3168    // Memmove with size zero? Just return the original chain.
3169    if (ConstantSize->isNullValue())
3170      return Chain;
3171
3172    SDValue Result =
3173      getMemmoveLoadsAndStores(*this, Chain, Dst, Src,
3174                               ConstantSize->getZExtValue(),
3175                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3176    if (Result.getNode())
3177      return Result;
3178  }
3179
3180  // Then check to see if we should lower the memmove with target-specific
3181  // code. If the target chooses to do this, this is the next best.
3182  SDValue Result =
3183    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
3184                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3185  if (Result.getNode())
3186    return Result;
3187
3188  // Emit a library call.
3189  TargetLowering::ArgListTy Args;
3190  TargetLowering::ArgListEntry Entry;
3191  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3192  Entry.Node = Dst; Args.push_back(Entry);
3193  Entry.Node = Src; Args.push_back(Entry);
3194  Entry.Node = Size; Args.push_back(Entry);
3195  std::pair<SDValue,SDValue> CallResult =
3196    TLI.LowerCallTo(Chain, Type::VoidTy,
3197                    false, false, false, false, CallingConv::C, false,
3198                    getExternalSymbol("memmove", TLI.getPointerTy()),
3199                    Args, *this);
3200  return CallResult.second;
3201}
3202
3203SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst,
3204                                SDValue Src, SDValue Size,
3205                                unsigned Align,
3206                                const Value *DstSV, uint64_t DstSVOff) {
3207
3208  // Check to see if we should lower the memset to stores first.
3209  // For cases within the target-specified limits, this is the best choice.
3210  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3211  if (ConstantSize) {
3212    // Memset with size zero? Just return the original chain.
3213    if (ConstantSize->isNullValue())
3214      return Chain;
3215
3216    SDValue Result =
3217      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(),
3218                      Align, DstSV, DstSVOff);
3219    if (Result.getNode())
3220      return Result;
3221  }
3222
3223  // Then check to see if we should lower the memset with target-specific
3224  // code. If the target chooses to do this, this is the next best.
3225  SDValue Result =
3226    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3227                                DstSV, DstSVOff);
3228  if (Result.getNode())
3229    return Result;
3230
3231  // Emit a library call.
3232  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3233  TargetLowering::ArgListTy Args;
3234  TargetLowering::ArgListEntry Entry;
3235  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3236  Args.push_back(Entry);
3237  // Extend or truncate the argument to be an i32 value for the call.
3238  if (Src.getValueType().bitsGT(MVT::i32))
3239    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3240  else
3241    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3242  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3243  Args.push_back(Entry);
3244  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3245  Args.push_back(Entry);
3246  std::pair<SDValue,SDValue> CallResult =
3247    TLI.LowerCallTo(Chain, Type::VoidTy,
3248                    false, false, false, false, CallingConv::C, false,
3249                    getExternalSymbol("memset", TLI.getPointerTy()),
3250                    Args, *this);
3251  return CallResult.second;
3252}
3253
3254SDValue SelectionDAG::getAtomic(unsigned Opcode, MVT MemVT,
3255                                SDValue Chain,
3256                                SDValue Ptr, SDValue Cmp,
3257                                SDValue Swp, const Value* PtrVal,
3258                                unsigned Alignment) {
3259  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3260  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3261
3262  MVT VT = Cmp.getValueType();
3263
3264  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3265    Alignment = getMVTAlignment(MemVT);
3266
3267  SDVTList VTs = getVTList(VT, MVT::Other);
3268  FoldingSetNodeID ID;
3269  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3270  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3271  void* IP = 0;
3272  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3273    return SDValue(E, 0);
3274  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3275  new (N) AtomicSDNode(Opcode, VTs, MemVT,
3276                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3277  CSEMap.InsertNode(N, IP);
3278  AllNodes.push_back(N);
3279  return SDValue(N, 0);
3280}
3281
3282SDValue SelectionDAG::getAtomic(unsigned Opcode, MVT MemVT,
3283                                SDValue Chain,
3284                                SDValue Ptr, SDValue Val,
3285                                const Value* PtrVal,
3286                                unsigned Alignment) {
3287  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3288          Opcode == ISD::ATOMIC_LOAD_SUB ||
3289          Opcode == ISD::ATOMIC_LOAD_AND ||
3290          Opcode == ISD::ATOMIC_LOAD_OR ||
3291          Opcode == ISD::ATOMIC_LOAD_XOR ||
3292          Opcode == ISD::ATOMIC_LOAD_NAND ||
3293          Opcode == ISD::ATOMIC_LOAD_MIN ||
3294          Opcode == ISD::ATOMIC_LOAD_MAX ||
3295          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3296          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3297          Opcode == ISD::ATOMIC_SWAP) &&
3298         "Invalid Atomic Op");
3299
3300  MVT VT = Val.getValueType();
3301
3302  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3303    Alignment = getMVTAlignment(MemVT);
3304
3305  SDVTList VTs = getVTList(VT, MVT::Other);
3306  FoldingSetNodeID ID;
3307  SDValue Ops[] = {Chain, Ptr, Val};
3308  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3309  void* IP = 0;
3310  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3311    return SDValue(E, 0);
3312  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3313  new (N) AtomicSDNode(Opcode, VTs, MemVT,
3314                       Chain, Ptr, Val, PtrVal, Alignment);
3315  CSEMap.InsertNode(N, IP);
3316  AllNodes.push_back(N);
3317  return SDValue(N, 0);
3318}
3319
3320/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3321/// Allowed to return something different (and simpler) if Simplify is true.
3322SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps) {
3323  if (NumOps == 1)
3324    return Ops[0];
3325
3326  SmallVector<MVT, 4> VTs;
3327  VTs.reserve(NumOps);
3328  for (unsigned i = 0; i < NumOps; ++i)
3329    VTs.push_back(Ops[i].getValueType());
3330  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3331}
3332
3333SDValue
3334SelectionDAG::getMemIntrinsicNode(unsigned Opcode,
3335                                  const MVT *VTs, unsigned NumVTs,
3336                                  const SDValue *Ops, unsigned NumOps,
3337                                  MVT MemVT, const Value *srcValue, int SVOff,
3338                                  unsigned Align, bool Vol,
3339                                  bool ReadMem, bool WriteMem) {
3340  return getMemIntrinsicNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps,
3341                             MemVT, srcValue, SVOff, Align, Vol,
3342                             ReadMem, WriteMem);
3343}
3344
3345SDValue
3346SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDVTList VTList,
3347                                  const SDValue *Ops, unsigned NumOps,
3348                                  MVT MemVT, const Value *srcValue, int SVOff,
3349                                  unsigned Align, bool Vol,
3350                                  bool ReadMem, bool WriteMem) {
3351  // Memoize the node unless it returns a flag.
3352  MemIntrinsicSDNode *N;
3353  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3354    FoldingSetNodeID ID;
3355    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3356    void *IP = 0;
3357    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3358      return SDValue(E, 0);
3359
3360    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3361    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3362                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3363    CSEMap.InsertNode(N, IP);
3364  } else {
3365    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3366    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3367                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3368  }
3369  AllNodes.push_back(N);
3370  return SDValue(N, 0);
3371}
3372
3373SDValue
3374SelectionDAG::getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall,
3375                      bool IsInreg, SDVTList VTs,
3376                      const SDValue *Operands, unsigned NumOperands) {
3377  // Do not include isTailCall in the folding set profile.
3378  FoldingSetNodeID ID;
3379  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3380  ID.AddInteger(CallingConv);
3381  ID.AddInteger(IsVarArgs);
3382  void *IP = 0;
3383  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3384    // Instead of including isTailCall in the folding set, we just
3385    // set the flag of the existing node.
3386    if (!IsTailCall)
3387      cast<CallSDNode>(E)->setNotTailCall();
3388    return SDValue(E, 0);
3389  }
3390  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3391  new (N) CallSDNode(CallingConv, IsVarArgs, IsTailCall, IsInreg,
3392                     VTs, Operands, NumOperands);
3393  CSEMap.InsertNode(N, IP);
3394  AllNodes.push_back(N);
3395  return SDValue(N, 0);
3396}
3397
3398SDValue
3399SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3400                      MVT VT, SDValue Chain,
3401                      SDValue Ptr, SDValue Offset,
3402                      const Value *SV, int SVOffset, MVT EVT,
3403                      bool isVolatile, unsigned Alignment) {
3404  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3405    Alignment = getMVTAlignment(VT);
3406
3407  if (VT == EVT) {
3408    ExtType = ISD::NON_EXTLOAD;
3409  } else if (ExtType == ISD::NON_EXTLOAD) {
3410    assert(VT == EVT && "Non-extending load from different memory type!");
3411  } else {
3412    // Extending load.
3413    if (VT.isVector())
3414      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3415             "Invalid vector extload!");
3416    else
3417      assert(EVT.bitsLT(VT) &&
3418             "Should only be an extending load, not truncating!");
3419    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3420           "Cannot sign/zero extend a FP/Vector load!");
3421    assert(VT.isInteger() == EVT.isInteger() &&
3422           "Cannot convert from FP to Int or Int -> FP!");
3423  }
3424
3425  bool Indexed = AM != ISD::UNINDEXED;
3426  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3427         "Unindexed load with an offset!");
3428
3429  SDVTList VTs = Indexed ?
3430    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3431  SDValue Ops[] = { Chain, Ptr, Offset };
3432  FoldingSetNodeID ID;
3433  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3434  ID.AddInteger(AM);
3435  ID.AddInteger(ExtType);
3436  ID.AddInteger(EVT.getRawBits());
3437  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3438  void *IP = 0;
3439  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3440    return SDValue(E, 0);
3441  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3442  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3443                     Alignment, isVolatile);
3444  CSEMap.InsertNode(N, IP);
3445  AllNodes.push_back(N);
3446  return SDValue(N, 0);
3447}
3448
3449SDValue SelectionDAG::getLoad(MVT VT,
3450                              SDValue Chain, SDValue Ptr,
3451                              const Value *SV, int SVOffset,
3452                              bool isVolatile, unsigned Alignment) {
3453  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3454  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3455                 SV, SVOffset, VT, isVolatile, Alignment);
3456}
3457
3458SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3459                                 SDValue Chain, SDValue Ptr,
3460                                 const Value *SV,
3461                                 int SVOffset, MVT EVT,
3462                                 bool isVolatile, unsigned Alignment) {
3463  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3464  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3465                 SV, SVOffset, EVT, isVolatile, Alignment);
3466}
3467
3468SDValue
3469SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
3470                             SDValue Offset, ISD::MemIndexedMode AM) {
3471  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3472  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3473         "Load is already a indexed load!");
3474  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3475                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3476                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3477                 LD->isVolatile(), LD->getAlignment());
3478}
3479
3480SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
3481                               SDValue Ptr, const Value *SV, int SVOffset,
3482                               bool isVolatile, unsigned Alignment) {
3483  MVT VT = Val.getValueType();
3484
3485  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3486    Alignment = getMVTAlignment(VT);
3487
3488  SDVTList VTs = getVTList(MVT::Other);
3489  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3490  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3491  FoldingSetNodeID ID;
3492  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3493  ID.AddInteger(ISD::UNINDEXED);
3494  ID.AddInteger(false);
3495  ID.AddInteger(VT.getRawBits());
3496  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3497  void *IP = 0;
3498  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3499    return SDValue(E, 0);
3500  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3501  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3502                      VT, SV, SVOffset, Alignment, isVolatile);
3503  CSEMap.InsertNode(N, IP);
3504  AllNodes.push_back(N);
3505  return SDValue(N, 0);
3506}
3507
3508SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
3509                                    SDValue Ptr, const Value *SV,
3510                                    int SVOffset, MVT SVT,
3511                                    bool isVolatile, unsigned Alignment) {
3512  MVT VT = Val.getValueType();
3513
3514  if (VT == SVT)
3515    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3516
3517  assert(VT.bitsGT(SVT) && "Not a truncation?");
3518  assert(VT.isInteger() == SVT.isInteger() &&
3519         "Can't do FP-INT conversion!");
3520
3521  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3522    Alignment = getMVTAlignment(VT);
3523
3524  SDVTList VTs = getVTList(MVT::Other);
3525  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3526  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3527  FoldingSetNodeID ID;
3528  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3529  ID.AddInteger(ISD::UNINDEXED);
3530  ID.AddInteger(1);
3531  ID.AddInteger(SVT.getRawBits());
3532  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3533  void *IP = 0;
3534  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3535    return SDValue(E, 0);
3536  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3537  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3538                      SVT, SV, SVOffset, Alignment, isVolatile);
3539  CSEMap.InsertNode(N, IP);
3540  AllNodes.push_back(N);
3541  return SDValue(N, 0);
3542}
3543
3544SDValue
3545SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
3546                              SDValue Offset, ISD::MemIndexedMode AM) {
3547  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3548  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3549         "Store is already a indexed store!");
3550  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3551  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3552  FoldingSetNodeID ID;
3553  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3554  ID.AddInteger(AM);
3555  ID.AddInteger(ST->isTruncatingStore());
3556  ID.AddInteger(ST->getMemoryVT().getRawBits());
3557  ID.AddInteger(ST->getRawFlags());
3558  void *IP = 0;
3559  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3560    return SDValue(E, 0);
3561  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3562  new (N) StoreSDNode(Ops, VTs, AM,
3563                      ST->isTruncatingStore(), ST->getMemoryVT(),
3564                      ST->getSrcValue(), ST->getSrcValueOffset(),
3565                      ST->getAlignment(), ST->isVolatile());
3566  CSEMap.InsertNode(N, IP);
3567  AllNodes.push_back(N);
3568  return SDValue(N, 0);
3569}
3570
3571SDValue SelectionDAG::getVAArg(MVT VT,
3572                               SDValue Chain, SDValue Ptr,
3573                               SDValue SV) {
3574  SDValue Ops[] = { Chain, Ptr, SV };
3575  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3576}
3577
3578SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3579                              const SDUse *Ops, unsigned NumOps) {
3580  switch (NumOps) {
3581  case 0: return getNode(Opcode, VT);
3582  case 1: return getNode(Opcode, VT, Ops[0]);
3583  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3584  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3585  default: break;
3586  }
3587
3588  // Copy from an SDUse array into an SDValue array for use with
3589  // the regular getNode logic.
3590  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3591  return getNode(Opcode, VT, &NewOps[0], NumOps);
3592}
3593
3594SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3595                              const SDValue *Ops, unsigned NumOps) {
3596  switch (NumOps) {
3597  case 0: return getNode(Opcode, VT);
3598  case 1: return getNode(Opcode, VT, Ops[0]);
3599  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3600  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3601  default: break;
3602  }
3603
3604  switch (Opcode) {
3605  default: break;
3606  case ISD::SELECT_CC: {
3607    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3608    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3609           "LHS and RHS of condition must have same type!");
3610    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3611           "True and False arms of SelectCC must have same type!");
3612    assert(Ops[2].getValueType() == VT &&
3613           "select_cc node must be of same type as true and false value!");
3614    break;
3615  }
3616  case ISD::BR_CC: {
3617    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3618    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3619           "LHS/RHS of comparison should match types!");
3620    break;
3621  }
3622  }
3623
3624  // Memoize nodes.
3625  SDNode *N;
3626  SDVTList VTs = getVTList(VT);
3627  if (VT != MVT::Flag) {
3628    FoldingSetNodeID ID;
3629    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3630    void *IP = 0;
3631    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3632      return SDValue(E, 0);
3633    N = NodeAllocator.Allocate<SDNode>();
3634    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3635    CSEMap.InsertNode(N, IP);
3636  } else {
3637    N = NodeAllocator.Allocate<SDNode>();
3638    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3639  }
3640  AllNodes.push_back(N);
3641#ifndef NDEBUG
3642  VerifyNode(N);
3643#endif
3644  return SDValue(N, 0);
3645}
3646
3647SDValue SelectionDAG::getNode(unsigned Opcode,
3648                              const std::vector<MVT> &ResultTys,
3649                              const SDValue *Ops, unsigned NumOps) {
3650  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3651                 Ops, NumOps);
3652}
3653
3654SDValue SelectionDAG::getNode(unsigned Opcode,
3655                              const MVT *VTs, unsigned NumVTs,
3656                              const SDValue *Ops, unsigned NumOps) {
3657  if (NumVTs == 1)
3658    return getNode(Opcode, VTs[0], Ops, NumOps);
3659  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3660}
3661
3662SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3663                              const SDValue *Ops, unsigned NumOps) {
3664  if (VTList.NumVTs == 1)
3665    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3666
3667  switch (Opcode) {
3668  // FIXME: figure out how to safely handle things like
3669  // int foo(int x) { return 1 << (x & 255); }
3670  // int bar() { return foo(256); }
3671#if 0
3672  case ISD::SRA_PARTS:
3673  case ISD::SRL_PARTS:
3674  case ISD::SHL_PARTS:
3675    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3676        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3677      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3678    else if (N3.getOpcode() == ISD::AND)
3679      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3680        // If the and is only masking out bits that cannot effect the shift,
3681        // eliminate the and.
3682        unsigned NumBits = VT.getSizeInBits()*2;
3683        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3684          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3685      }
3686    break;
3687#endif
3688  }
3689
3690  // Memoize the node unless it returns a flag.
3691  SDNode *N;
3692  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3693    FoldingSetNodeID ID;
3694    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3695    void *IP = 0;
3696    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3697      return SDValue(E, 0);
3698    if (NumOps == 1) {
3699      N = NodeAllocator.Allocate<UnarySDNode>();
3700      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3701    } else if (NumOps == 2) {
3702      N = NodeAllocator.Allocate<BinarySDNode>();
3703      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3704    } else if (NumOps == 3) {
3705      N = NodeAllocator.Allocate<TernarySDNode>();
3706      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3707    } else {
3708      N = NodeAllocator.Allocate<SDNode>();
3709      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3710    }
3711    CSEMap.InsertNode(N, IP);
3712  } else {
3713    if (NumOps == 1) {
3714      N = NodeAllocator.Allocate<UnarySDNode>();
3715      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3716    } else if (NumOps == 2) {
3717      N = NodeAllocator.Allocate<BinarySDNode>();
3718      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3719    } else if (NumOps == 3) {
3720      N = NodeAllocator.Allocate<TernarySDNode>();
3721      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3722    } else {
3723      N = NodeAllocator.Allocate<SDNode>();
3724      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3725    }
3726  }
3727  AllNodes.push_back(N);
3728#ifndef NDEBUG
3729  VerifyNode(N);
3730#endif
3731  return SDValue(N, 0);
3732}
3733
3734SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3735  return getNode(Opcode, VTList, 0, 0);
3736}
3737
3738SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3739                                SDValue N1) {
3740  SDValue Ops[] = { N1 };
3741  return getNode(Opcode, VTList, Ops, 1);
3742}
3743
3744SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3745                              SDValue N1, SDValue N2) {
3746  SDValue Ops[] = { N1, N2 };
3747  return getNode(Opcode, VTList, Ops, 2);
3748}
3749
3750SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3751                              SDValue N1, SDValue N2, SDValue N3) {
3752  SDValue Ops[] = { N1, N2, N3 };
3753  return getNode(Opcode, VTList, Ops, 3);
3754}
3755
3756SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3757                              SDValue N1, SDValue N2, SDValue N3,
3758                              SDValue N4) {
3759  SDValue Ops[] = { N1, N2, N3, N4 };
3760  return getNode(Opcode, VTList, Ops, 4);
3761}
3762
3763SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3764                              SDValue N1, SDValue N2, SDValue N3,
3765                              SDValue N4, SDValue N5) {
3766  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3767  return getNode(Opcode, VTList, Ops, 5);
3768}
3769
3770SDVTList SelectionDAG::getVTList(MVT VT) {
3771  return makeVTList(SDNode::getValueTypeList(VT), 1);
3772}
3773
3774SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3775  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3776       E = VTList.rend(); I != E; ++I)
3777    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3778      return *I;
3779
3780  MVT *Array = Allocator.Allocate<MVT>(2);
3781  Array[0] = VT1;
3782  Array[1] = VT2;
3783  SDVTList Result = makeVTList(Array, 2);
3784  VTList.push_back(Result);
3785  return Result;
3786}
3787
3788SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3789  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3790       E = VTList.rend(); I != E; ++I)
3791    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3792                          I->VTs[2] == VT3)
3793      return *I;
3794
3795  MVT *Array = Allocator.Allocate<MVT>(3);
3796  Array[0] = VT1;
3797  Array[1] = VT2;
3798  Array[2] = VT3;
3799  SDVTList Result = makeVTList(Array, 3);
3800  VTList.push_back(Result);
3801  return Result;
3802}
3803
3804SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
3805  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3806       E = VTList.rend(); I != E; ++I)
3807    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3808                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
3809      return *I;
3810
3811  MVT *Array = Allocator.Allocate<MVT>(3);
3812  Array[0] = VT1;
3813  Array[1] = VT2;
3814  Array[2] = VT3;
3815  Array[3] = VT4;
3816  SDVTList Result = makeVTList(Array, 4);
3817  VTList.push_back(Result);
3818  return Result;
3819}
3820
3821SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3822  switch (NumVTs) {
3823    case 0: assert(0 && "Cannot have nodes without results!");
3824    case 1: return getVTList(VTs[0]);
3825    case 2: return getVTList(VTs[0], VTs[1]);
3826    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3827    default: break;
3828  }
3829
3830  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3831       E = VTList.rend(); I != E; ++I) {
3832    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3833      continue;
3834
3835    bool NoMatch = false;
3836    for (unsigned i = 2; i != NumVTs; ++i)
3837      if (VTs[i] != I->VTs[i]) {
3838        NoMatch = true;
3839        break;
3840      }
3841    if (!NoMatch)
3842      return *I;
3843  }
3844
3845  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3846  std::copy(VTs, VTs+NumVTs, Array);
3847  SDVTList Result = makeVTList(Array, NumVTs);
3848  VTList.push_back(Result);
3849  return Result;
3850}
3851
3852
3853/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3854/// specified operands.  If the resultant node already exists in the DAG,
3855/// this does not modify the specified node, instead it returns the node that
3856/// already exists.  If the resultant node does not exist in the DAG, the
3857/// input node is returned.  As a degenerate case, if you specify the same
3858/// input operands as the node already has, the input node is returned.
3859SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3860  SDNode *N = InN.getNode();
3861  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3862
3863  // Check to see if there is no change.
3864  if (Op == N->getOperand(0)) return InN;
3865
3866  // See if the modified node already exists.
3867  void *InsertPos = 0;
3868  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3869    return SDValue(Existing, InN.getResNo());
3870
3871  // Nope it doesn't.  Remove the node from its current place in the maps.
3872  if (InsertPos)
3873    if (!RemoveNodeFromCSEMaps(N))
3874      InsertPos = 0;
3875
3876  // Now we update the operands.
3877  N->OperandList[0].getVal()->removeUser(0, N);
3878  N->OperandList[0] = Op;
3879  N->OperandList[0].setUser(N);
3880  Op.getNode()->addUser(0, N);
3881
3882  // If this gets put into a CSE map, add it.
3883  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3884  return InN;
3885}
3886
3887SDValue SelectionDAG::
3888UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3889  SDNode *N = InN.getNode();
3890  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3891
3892  // Check to see if there is no change.
3893  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3894    return InN;   // No operands changed, just return the input node.
3895
3896  // See if the modified node already exists.
3897  void *InsertPos = 0;
3898  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3899    return SDValue(Existing, InN.getResNo());
3900
3901  // Nope it doesn't.  Remove the node from its current place in the maps.
3902  if (InsertPos)
3903    if (!RemoveNodeFromCSEMaps(N))
3904      InsertPos = 0;
3905
3906  // Now we update the operands.
3907  if (N->OperandList[0] != Op1) {
3908    N->OperandList[0].getVal()->removeUser(0, N);
3909    N->OperandList[0] = Op1;
3910    N->OperandList[0].setUser(N);
3911    Op1.getNode()->addUser(0, N);
3912  }
3913  if (N->OperandList[1] != Op2) {
3914    N->OperandList[1].getVal()->removeUser(1, N);
3915    N->OperandList[1] = Op2;
3916    N->OperandList[1].setUser(N);
3917    Op2.getNode()->addUser(1, N);
3918  }
3919
3920  // If this gets put into a CSE map, add it.
3921  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3922  return InN;
3923}
3924
3925SDValue SelectionDAG::
3926UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3927  SDValue Ops[] = { Op1, Op2, Op3 };
3928  return UpdateNodeOperands(N, Ops, 3);
3929}
3930
3931SDValue SelectionDAG::
3932UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3933                   SDValue Op3, SDValue Op4) {
3934  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
3935  return UpdateNodeOperands(N, Ops, 4);
3936}
3937
3938SDValue SelectionDAG::
3939UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3940                   SDValue Op3, SDValue Op4, SDValue Op5) {
3941  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3942  return UpdateNodeOperands(N, Ops, 5);
3943}
3944
3945SDValue SelectionDAG::
3946UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
3947  SDNode *N = InN.getNode();
3948  assert(N->getNumOperands() == NumOps &&
3949         "Update with wrong number of operands");
3950
3951  // Check to see if there is no change.
3952  bool AnyChange = false;
3953  for (unsigned i = 0; i != NumOps; ++i) {
3954    if (Ops[i] != N->getOperand(i)) {
3955      AnyChange = true;
3956      break;
3957    }
3958  }
3959
3960  // No operands changed, just return the input node.
3961  if (!AnyChange) return InN;
3962
3963  // See if the modified node already exists.
3964  void *InsertPos = 0;
3965  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3966    return SDValue(Existing, InN.getResNo());
3967
3968  // Nope it doesn't.  Remove the node from its current place in the maps.
3969  if (InsertPos)
3970    if (!RemoveNodeFromCSEMaps(N))
3971      InsertPos = 0;
3972
3973  // Now we update the operands.
3974  for (unsigned i = 0; i != NumOps; ++i) {
3975    if (N->OperandList[i] != Ops[i]) {
3976      N->OperandList[i].getVal()->removeUser(i, N);
3977      N->OperandList[i] = Ops[i];
3978      N->OperandList[i].setUser(N);
3979      Ops[i].getNode()->addUser(i, N);
3980    }
3981  }
3982
3983  // If this gets put into a CSE map, add it.
3984  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3985  return InN;
3986}
3987
3988/// DropOperands - Release the operands and set this node to have
3989/// zero operands.
3990void SDNode::DropOperands() {
3991  // Unlike the code in MorphNodeTo that does this, we don't need to
3992  // watch for dead nodes here.
3993  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3994    I->getVal()->removeUser(std::distance(op_begin(), I), this);
3995
3996  NumOperands = 0;
3997}
3998
3999/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4000/// machine opcode.
4001///
4002SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4003                                   MVT VT) {
4004  SDVTList VTs = getVTList(VT);
4005  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4006}
4007
4008SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4009                                   MVT VT, SDValue Op1) {
4010  SDVTList VTs = getVTList(VT);
4011  SDValue Ops[] = { Op1 };
4012  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4013}
4014
4015SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4016                                   MVT VT, SDValue Op1,
4017                                   SDValue Op2) {
4018  SDVTList VTs = getVTList(VT);
4019  SDValue Ops[] = { Op1, Op2 };
4020  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4021}
4022
4023SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4024                                   MVT VT, SDValue Op1,
4025                                   SDValue Op2, SDValue Op3) {
4026  SDVTList VTs = getVTList(VT);
4027  SDValue Ops[] = { Op1, Op2, Op3 };
4028  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4029}
4030
4031SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4032                                   MVT VT, const SDValue *Ops,
4033                                   unsigned NumOps) {
4034  SDVTList VTs = getVTList(VT);
4035  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4036}
4037
4038SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4039                                   MVT VT1, MVT VT2, const SDValue *Ops,
4040                                   unsigned NumOps) {
4041  SDVTList VTs = getVTList(VT1, VT2);
4042  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4043}
4044
4045SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4046                                   MVT VT1, MVT VT2) {
4047  SDVTList VTs = getVTList(VT1, VT2);
4048  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4049}
4050
4051SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4052                                   MVT VT1, MVT VT2, MVT VT3,
4053                                   const SDValue *Ops, unsigned NumOps) {
4054  SDVTList VTs = getVTList(VT1, VT2, VT3);
4055  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4056}
4057
4058SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4059                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4060                                   const SDValue *Ops, unsigned NumOps) {
4061  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4062  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4063}
4064
4065SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4066                                   MVT VT1, MVT VT2,
4067                                   SDValue Op1) {
4068  SDVTList VTs = getVTList(VT1, VT2);
4069  SDValue Ops[] = { Op1 };
4070  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4071}
4072
4073SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4074                                   MVT VT1, MVT VT2,
4075                                   SDValue Op1, SDValue Op2) {
4076  SDVTList VTs = getVTList(VT1, VT2);
4077  SDValue Ops[] = { Op1, Op2 };
4078  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4079}
4080
4081SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4082                                   MVT VT1, MVT VT2,
4083                                   SDValue Op1, SDValue Op2,
4084                                   SDValue Op3) {
4085  SDVTList VTs = getVTList(VT1, VT2);
4086  SDValue Ops[] = { Op1, Op2, Op3 };
4087  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4088}
4089
4090SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4091                                   MVT VT1, MVT VT2, MVT VT3,
4092                                   SDValue Op1, SDValue Op2,
4093                                   SDValue Op3) {
4094  SDVTList VTs = getVTList(VT1, VT2, VT3);
4095  SDValue Ops[] = { Op1, Op2, Op3 };
4096  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4097}
4098
4099SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4100                                   SDVTList VTs, const SDValue *Ops,
4101                                   unsigned NumOps) {
4102  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4103}
4104
4105SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4106                                  MVT VT) {
4107  SDVTList VTs = getVTList(VT);
4108  return MorphNodeTo(N, Opc, VTs, 0, 0);
4109}
4110
4111SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4112                                  MVT VT, SDValue Op1) {
4113  SDVTList VTs = getVTList(VT);
4114  SDValue Ops[] = { Op1 };
4115  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4116}
4117
4118SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4119                                  MVT VT, SDValue Op1,
4120                                  SDValue Op2) {
4121  SDVTList VTs = getVTList(VT);
4122  SDValue Ops[] = { Op1, Op2 };
4123  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4124}
4125
4126SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4127                                  MVT VT, SDValue Op1,
4128                                  SDValue Op2, SDValue Op3) {
4129  SDVTList VTs = getVTList(VT);
4130  SDValue Ops[] = { Op1, Op2, Op3 };
4131  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4132}
4133
4134SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4135                                  MVT VT, const SDValue *Ops,
4136                                  unsigned NumOps) {
4137  SDVTList VTs = getVTList(VT);
4138  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4139}
4140
4141SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4142                                  MVT VT1, MVT VT2, const SDValue *Ops,
4143                                  unsigned NumOps) {
4144  SDVTList VTs = getVTList(VT1, VT2);
4145  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4146}
4147
4148SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4149                                  MVT VT1, MVT VT2) {
4150  SDVTList VTs = getVTList(VT1, VT2);
4151  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4152}
4153
4154SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4155                                  MVT VT1, MVT VT2, MVT VT3,
4156                                  const SDValue *Ops, unsigned NumOps) {
4157  SDVTList VTs = getVTList(VT1, VT2, VT3);
4158  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4159}
4160
4161SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4162                                  MVT VT1, MVT VT2,
4163                                  SDValue Op1) {
4164  SDVTList VTs = getVTList(VT1, VT2);
4165  SDValue Ops[] = { Op1 };
4166  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4167}
4168
4169SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4170                                  MVT VT1, MVT VT2,
4171                                  SDValue Op1, SDValue Op2) {
4172  SDVTList VTs = getVTList(VT1, VT2);
4173  SDValue Ops[] = { Op1, Op2 };
4174  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4175}
4176
4177SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4178                                  MVT VT1, MVT VT2,
4179                                  SDValue Op1, SDValue Op2,
4180                                  SDValue Op3) {
4181  SDVTList VTs = getVTList(VT1, VT2);
4182  SDValue Ops[] = { Op1, Op2, Op3 };
4183  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4184}
4185
4186/// MorphNodeTo - These *mutate* the specified node to have the specified
4187/// return type, opcode, and operands.
4188///
4189/// Note that MorphNodeTo returns the resultant node.  If there is already a
4190/// node of the specified opcode and operands, it returns that node instead of
4191/// the current one.
4192///
4193/// Using MorphNodeTo is faster than creating a new node and swapping it in
4194/// with ReplaceAllUsesWith both because it often avoids allocating a new
4195/// node, and because it doesn't require CSE recalculation for any of
4196/// the node's users.
4197///
4198SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4199                                  SDVTList VTs, const SDValue *Ops,
4200                                  unsigned NumOps) {
4201  // If an identical node already exists, use it.
4202  void *IP = 0;
4203  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4204    FoldingSetNodeID ID;
4205    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4206    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4207      return ON;
4208  }
4209
4210  if (!RemoveNodeFromCSEMaps(N))
4211    IP = 0;
4212
4213  // Start the morphing.
4214  N->NodeType = Opc;
4215  N->ValueList = VTs.VTs;
4216  N->NumValues = VTs.NumVTs;
4217
4218  // Clear the operands list, updating used nodes to remove this from their
4219  // use list.  Keep track of any operands that become dead as a result.
4220  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4221  for (SDNode::op_iterator B = N->op_begin(), I = B, E = N->op_end();
4222       I != E; ++I) {
4223    SDNode *Used = I->getVal();
4224    Used->removeUser(std::distance(B, I), N);
4225    if (Used->use_empty())
4226      DeadNodeSet.insert(Used);
4227  }
4228
4229  // If NumOps is larger than the # of operands we currently have, reallocate
4230  // the operand list.
4231  if (NumOps > N->NumOperands) {
4232    if (N->OperandsNeedDelete)
4233      delete[] N->OperandList;
4234
4235    if (N->isMachineOpcode()) {
4236      // We're creating a final node that will live unmorphed for the
4237      // remainder of the current SelectionDAG iteration, so we can allocate
4238      // the operands directly out of a pool with no recycling metadata.
4239      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4240      N->OperandsNeedDelete = false;
4241    } else {
4242      N->OperandList = new SDUse[NumOps];
4243      N->OperandsNeedDelete = true;
4244    }
4245  }
4246
4247  // Assign the new operands.
4248  N->NumOperands = NumOps;
4249  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4250    N->OperandList[i] = Ops[i];
4251    N->OperandList[i].setUser(N);
4252    SDNode *ToUse = N->OperandList[i].getVal();
4253    ToUse->addUser(i, N);
4254  }
4255
4256  // Delete any nodes that are still dead after adding the uses for the
4257  // new operands.
4258  SmallVector<SDNode *, 16> DeadNodes;
4259  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4260       E = DeadNodeSet.end(); I != E; ++I)
4261    if ((*I)->use_empty())
4262      DeadNodes.push_back(*I);
4263  RemoveDeadNodes(DeadNodes);
4264
4265  if (IP)
4266    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4267  return N;
4268}
4269
4270
4271/// getTargetNode - These are used for target selectors to create a new node
4272/// with specified return type(s), target opcode, and operands.
4273///
4274/// Note that getTargetNode returns the resultant node.  If there is already a
4275/// node of the specified opcode and operands, it returns that node instead of
4276/// the current one.
4277SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4278  return getNode(~Opcode, VT).getNode();
4279}
4280SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4281  return getNode(~Opcode, VT, Op1).getNode();
4282}
4283SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4284                                    SDValue Op1, SDValue Op2) {
4285  return getNode(~Opcode, VT, Op1, Op2).getNode();
4286}
4287SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4288                                    SDValue Op1, SDValue Op2,
4289                                    SDValue Op3) {
4290  return getNode(~Opcode, VT, Op1, Op2, Op3).getNode();
4291}
4292SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4293                                    const SDValue *Ops, unsigned NumOps) {
4294  return getNode(~Opcode, VT, Ops, NumOps).getNode();
4295}
4296SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4297  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4298  SDValue Op;
4299  return getNode(~Opcode, VTs, 2, &Op, 0).getNode();
4300}
4301SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4302                                    MVT VT2, SDValue Op1) {
4303  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4304  return getNode(~Opcode, VTs, 2, &Op1, 1).getNode();
4305}
4306SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4307                                    MVT VT2, SDValue Op1,
4308                                    SDValue Op2) {
4309  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4310  SDValue Ops[] = { Op1, Op2 };
4311  return getNode(~Opcode, VTs, 2, Ops, 2).getNode();
4312}
4313SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4314                                    MVT VT2, SDValue Op1,
4315                                    SDValue Op2, SDValue Op3) {
4316  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4317  SDValue Ops[] = { Op1, Op2, Op3 };
4318  return getNode(~Opcode, VTs, 2, Ops, 3).getNode();
4319}
4320SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4321                                    const SDValue *Ops, unsigned NumOps) {
4322  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4323  return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode();
4324}
4325SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4326                                    SDValue Op1, SDValue Op2) {
4327  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4328  SDValue Ops[] = { Op1, Op2 };
4329  return getNode(~Opcode, VTs, 3, Ops, 2).getNode();
4330}
4331SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4332                                    SDValue Op1, SDValue Op2,
4333                                    SDValue Op3) {
4334  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4335  SDValue Ops[] = { Op1, Op2, Op3 };
4336  return getNode(~Opcode, VTs, 3, Ops, 3).getNode();
4337}
4338SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4339                                    const SDValue *Ops, unsigned NumOps) {
4340  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4341  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4342}
4343SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4344                                    MVT VT2, MVT VT3, MVT VT4,
4345                                    const SDValue *Ops, unsigned NumOps) {
4346  std::vector<MVT> VTList;
4347  VTList.push_back(VT1);
4348  VTList.push_back(VT2);
4349  VTList.push_back(VT3);
4350  VTList.push_back(VT4);
4351  const MVT *VTs = getNodeValueTypes(VTList);
4352  return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode();
4353}
4354SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4355                                    const std::vector<MVT> &ResultTys,
4356                                    const SDValue *Ops, unsigned NumOps) {
4357  const MVT *VTs = getNodeValueTypes(ResultTys);
4358  return getNode(~Opcode, VTs, ResultTys.size(),
4359                 Ops, NumOps).getNode();
4360}
4361
4362/// getNodeIfExists - Get the specified node if it's already available, or
4363/// else return NULL.
4364SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4365                                      const SDValue *Ops, unsigned NumOps) {
4366  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4367    FoldingSetNodeID ID;
4368    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4369    void *IP = 0;
4370    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4371      return E;
4372  }
4373  return NULL;
4374}
4375
4376
4377/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4378/// This can cause recursive merging of nodes in the DAG.
4379///
4380/// This version assumes From has a single result value.
4381///
4382void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4383                                      DAGUpdateListener *UpdateListener) {
4384  SDNode *From = FromN.getNode();
4385  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4386         "Cannot replace with this method!");
4387  assert(From != To.getNode() && "Cannot replace uses of with self");
4388
4389  while (!From->use_empty()) {
4390    SDNode::use_iterator UI = From->use_begin();
4391    SDNode *U = *UI;
4392
4393    // This node is about to morph, remove its old self from the CSE maps.
4394    RemoveNodeFromCSEMaps(U);
4395    int operandNum = 0;
4396    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4397         I != E; ++I, ++operandNum)
4398      if (I->getVal() == From) {
4399        From->removeUser(operandNum, U);
4400        *I = To;
4401        I->setUser(U);
4402        To.getNode()->addUser(operandNum, U);
4403      }
4404
4405    // Now that we have modified U, add it back to the CSE maps.  If it already
4406    // exists there, recursively merge the results together.
4407    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4408      ReplaceAllUsesWith(U, Existing, UpdateListener);
4409      // U is now dead.  Inform the listener if it exists and delete it.
4410      if (UpdateListener)
4411        UpdateListener->NodeDeleted(U, Existing);
4412      DeleteNodeNotInCSEMaps(U);
4413    } else {
4414      // If the node doesn't already exist, we updated it.  Inform a listener if
4415      // it exists.
4416      if (UpdateListener)
4417        UpdateListener->NodeUpdated(U);
4418    }
4419  }
4420}
4421
4422/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4423/// This can cause recursive merging of nodes in the DAG.
4424///
4425/// This version assumes From/To have matching types and numbers of result
4426/// values.
4427///
4428void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4429                                      DAGUpdateListener *UpdateListener) {
4430  assert(From->getVTList().VTs == To->getVTList().VTs &&
4431         From->getNumValues() == To->getNumValues() &&
4432         "Cannot use this version of ReplaceAllUsesWith!");
4433
4434  // Handle the trivial case.
4435  if (From == To)
4436    return;
4437
4438  while (!From->use_empty()) {
4439    SDNode::use_iterator UI = From->use_begin();
4440    SDNode *U = *UI;
4441
4442    // This node is about to morph, remove its old self from the CSE maps.
4443    RemoveNodeFromCSEMaps(U);
4444    int operandNum = 0;
4445    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4446         I != E; ++I, ++operandNum)
4447      if (I->getVal() == From) {
4448        From->removeUser(operandNum, U);
4449        I->getSDValue().setNode(To);
4450        To->addUser(operandNum, U);
4451      }
4452
4453    // Now that we have modified U, add it back to the CSE maps.  If it already
4454    // exists there, recursively merge the results together.
4455    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4456      ReplaceAllUsesWith(U, Existing, UpdateListener);
4457      // U is now dead.  Inform the listener if it exists and delete it.
4458      if (UpdateListener)
4459        UpdateListener->NodeDeleted(U, Existing);
4460      DeleteNodeNotInCSEMaps(U);
4461    } else {
4462      // If the node doesn't already exist, we updated it.  Inform a listener if
4463      // it exists.
4464      if (UpdateListener)
4465        UpdateListener->NodeUpdated(U);
4466    }
4467  }
4468}
4469
4470/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4471/// This can cause recursive merging of nodes in the DAG.
4472///
4473/// This version can replace From with any result values.  To must match the
4474/// number and types of values returned by From.
4475void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4476                                      const SDValue *To,
4477                                      DAGUpdateListener *UpdateListener) {
4478  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4479    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4480
4481  while (!From->use_empty()) {
4482    SDNode::use_iterator UI = From->use_begin();
4483    SDNode *U = *UI;
4484
4485    // This node is about to morph, remove its old self from the CSE maps.
4486    RemoveNodeFromCSEMaps(U);
4487    int operandNum = 0;
4488    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4489         I != E; ++I, ++operandNum)
4490      if (I->getVal() == From) {
4491        const SDValue &ToOp = To[I->getSDValue().getResNo()];
4492        From->removeUser(operandNum, U);
4493        *I = ToOp;
4494        I->setUser(U);
4495        ToOp.getNode()->addUser(operandNum, U);
4496      }
4497
4498    // Now that we have modified U, add it back to the CSE maps.  If it already
4499    // exists there, recursively merge the results together.
4500    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4501      ReplaceAllUsesWith(U, Existing, UpdateListener);
4502      // U is now dead.  Inform the listener if it exists and delete it.
4503      if (UpdateListener)
4504        UpdateListener->NodeDeleted(U, Existing);
4505      DeleteNodeNotInCSEMaps(U);
4506    } else {
4507      // If the node doesn't already exist, we updated it.  Inform a listener if
4508      // it exists.
4509      if (UpdateListener)
4510        UpdateListener->NodeUpdated(U);
4511    }
4512  }
4513}
4514
4515/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4516/// uses of other values produced by From.getVal() alone.  The Deleted vector is
4517/// handled the same way as for ReplaceAllUsesWith.
4518void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4519                                             DAGUpdateListener *UpdateListener){
4520  // Handle the really simple, really trivial case efficiently.
4521  if (From == To) return;
4522
4523  // Handle the simple, trivial, case efficiently.
4524  if (From.getNode()->getNumValues() == 1) {
4525    ReplaceAllUsesWith(From, To, UpdateListener);
4526    return;
4527  }
4528
4529  // Get all of the users of From.getNode().  We want these in a nice,
4530  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4531  SmallSetVector<SDNode*, 16> Users(From.getNode()->use_begin(), From.getNode()->use_end());
4532
4533  while (!Users.empty()) {
4534    // We know that this user uses some value of From.  If it is the right
4535    // value, update it.
4536    SDNode *User = Users.back();
4537    Users.pop_back();
4538
4539    // Scan for an operand that matches From.
4540    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4541    for (; Op != E; ++Op)
4542      if (*Op == From) break;
4543
4544    // If there are no matches, the user must use some other result of From.
4545    if (Op == E) continue;
4546
4547    // Okay, we know this user needs to be updated.  Remove its old self
4548    // from the CSE maps.
4549    RemoveNodeFromCSEMaps(User);
4550
4551    // Update all operands that match "From" in case there are multiple uses.
4552    for (; Op != E; ++Op) {
4553      if (*Op == From) {
4554        From.getNode()->removeUser(Op-User->op_begin(), User);
4555        *Op = To;
4556        Op->setUser(User);
4557        To.getNode()->addUser(Op-User->op_begin(), User);
4558      }
4559    }
4560
4561    // Now that we have modified User, add it back to the CSE maps.  If it
4562    // already exists there, recursively merge the results together.
4563    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4564    if (!Existing) {
4565      if (UpdateListener) UpdateListener->NodeUpdated(User);
4566      continue;  // Continue on to next user.
4567    }
4568
4569    // If there was already an existing matching node, use ReplaceAllUsesWith
4570    // to replace the dead one with the existing one.  This can cause
4571    // recursive merging of other unrelated nodes down the line.
4572    ReplaceAllUsesWith(User, Existing, UpdateListener);
4573
4574    // User is now dead.  Notify a listener if present.
4575    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4576    DeleteNodeNotInCSEMaps(User);
4577  }
4578}
4579
4580/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4581/// uses of other values produced by From.getVal() alone.  The same value may
4582/// appear in both the From and To list.  The Deleted vector is
4583/// handled the same way as for ReplaceAllUsesWith.
4584void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4585                                              const SDValue *To,
4586                                              unsigned Num,
4587                                              DAGUpdateListener *UpdateListener){
4588  // Handle the simple, trivial case efficiently.
4589  if (Num == 1)
4590    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4591
4592  SmallVector<std::pair<SDNode *, unsigned>, 16> Users;
4593  for (unsigned i = 0; i != Num; ++i)
4594    for (SDNode::use_iterator UI = From[i].getNode()->use_begin(),
4595         E = From[i].getNode()->use_end(); UI != E; ++UI)
4596      Users.push_back(std::make_pair(*UI, i));
4597
4598  while (!Users.empty()) {
4599    // We know that this user uses some value of From.  If it is the right
4600    // value, update it.
4601    SDNode *User = Users.back().first;
4602    unsigned i = Users.back().second;
4603    Users.pop_back();
4604
4605    // Scan for an operand that matches From.
4606    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4607    for (; Op != E; ++Op)
4608      if (*Op == From[i]) break;
4609
4610    // If there are no matches, the user must use some other result of From.
4611    if (Op == E) continue;
4612
4613    // Okay, we know this user needs to be updated.  Remove its old self
4614    // from the CSE maps.
4615    RemoveNodeFromCSEMaps(User);
4616
4617    // Update all operands that match "From" in case there are multiple uses.
4618    for (; Op != E; ++Op) {
4619      if (*Op == From[i]) {
4620        From[i].getNode()->removeUser(Op-User->op_begin(), User);
4621        *Op = To[i];
4622        Op->setUser(User);
4623        To[i].getNode()->addUser(Op-User->op_begin(), User);
4624      }
4625    }
4626
4627    // Now that we have modified User, add it back to the CSE maps.  If it
4628    // already exists there, recursively merge the results together.
4629    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4630    if (!Existing) {
4631      if (UpdateListener) UpdateListener->NodeUpdated(User);
4632      continue;  // Continue on to next user.
4633    }
4634
4635    // If there was already an existing matching node, use ReplaceAllUsesWith
4636    // to replace the dead one with the existing one.  This can cause
4637    // recursive merging of other unrelated nodes down the line.
4638    ReplaceAllUsesWith(User, Existing, UpdateListener);
4639
4640    // User is now dead.  Notify a listener if present.
4641    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4642    DeleteNodeNotInCSEMaps(User);
4643  }
4644}
4645
4646/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4647/// based on their topological order. It returns the maximum id and a vector
4648/// of the SDNodes* in assigned order by reference.
4649unsigned SelectionDAG::AssignTopologicalOrder() {
4650
4651  unsigned DAGSize = 0;
4652
4653  // SortedPos tracks the progress of the algorithm. Nodes before it are
4654  // sorted, nodes after it are unsorted. When the algorithm completes
4655  // it is at the end of the list.
4656  allnodes_iterator SortedPos = allnodes_begin();
4657
4658  // Visit all the nodes. Move nodes with no operands to the front of
4659  // the list immediately. Annotate nodes that do have operands with their
4660  // operand count. Before we do this, the Node Id fields of the nodes
4661  // may contain arbitrary values. After, the Node Id fields for nodes
4662  // before SortedPos will contain the topological sort index, and the
4663  // Node Id fields for nodes At SortedPos and after will contain the
4664  // count of outstanding operands.
4665  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4666    SDNode *N = I++;
4667    unsigned Degree = N->getNumOperands();
4668    if (Degree == 0) {
4669      // A node with no uses, add it to the result array immediately.
4670      N->setNodeId(DAGSize++);
4671      allnodes_iterator Q = N;
4672      if (Q != SortedPos)
4673        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4674      ++SortedPos;
4675    } else {
4676      // Temporarily use the Node Id as scratch space for the degree count.
4677      N->setNodeId(Degree);
4678    }
4679  }
4680
4681  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4682  // such that by the time the end is reached all nodes will be sorted.
4683  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4684    SDNode *N = I;
4685    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4686         UI != UE; ++UI) {
4687      SDNode *P = *UI;
4688      unsigned Degree = P->getNodeId();
4689      --Degree;
4690      if (Degree == 0) {
4691        // All of P's operands are sorted, so P may sorted now.
4692        P->setNodeId(DAGSize++);
4693        if (P != SortedPos)
4694          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4695        ++SortedPos;
4696      } else {
4697        // Update P's outstanding operand count.
4698        P->setNodeId(Degree);
4699      }
4700    }
4701  }
4702
4703  assert(SortedPos == AllNodes.end() &&
4704         "Topological sort incomplete!");
4705  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4706         "First node in topological sort is not the entry token!");
4707  assert(AllNodes.front().getNodeId() == 0 &&
4708         "First node in topological sort has non-zero id!");
4709  assert(AllNodes.front().getNumOperands() == 0 &&
4710         "First node in topological sort has operands!");
4711  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4712         "Last node in topologic sort has unexpected id!");
4713  assert(AllNodes.back().use_empty() &&
4714         "Last node in topologic sort has users!");
4715  assert(DAGSize == allnodes_size() && "Node count mismatch!");
4716  return DAGSize;
4717}
4718
4719
4720
4721//===----------------------------------------------------------------------===//
4722//                              SDNode Class
4723//===----------------------------------------------------------------------===//
4724
4725// Out-of-line virtual method to give class a home.
4726void SDNode::ANCHOR() {}
4727void UnarySDNode::ANCHOR() {}
4728void BinarySDNode::ANCHOR() {}
4729void TernarySDNode::ANCHOR() {}
4730void HandleSDNode::ANCHOR() {}
4731void ConstantSDNode::ANCHOR() {}
4732void ConstantFPSDNode::ANCHOR() {}
4733void GlobalAddressSDNode::ANCHOR() {}
4734void FrameIndexSDNode::ANCHOR() {}
4735void JumpTableSDNode::ANCHOR() {}
4736void ConstantPoolSDNode::ANCHOR() {}
4737void BasicBlockSDNode::ANCHOR() {}
4738void SrcValueSDNode::ANCHOR() {}
4739void MemOperandSDNode::ANCHOR() {}
4740void RegisterSDNode::ANCHOR() {}
4741void DbgStopPointSDNode::ANCHOR() {}
4742void LabelSDNode::ANCHOR() {}
4743void ExternalSymbolSDNode::ANCHOR() {}
4744void CondCodeSDNode::ANCHOR() {}
4745void ARG_FLAGSSDNode::ANCHOR() {}
4746void VTSDNode::ANCHOR() {}
4747void MemSDNode::ANCHOR() {}
4748void LoadSDNode::ANCHOR() {}
4749void StoreSDNode::ANCHOR() {}
4750void AtomicSDNode::ANCHOR() {}
4751void MemIntrinsicSDNode::ANCHOR() {}
4752void CallSDNode::ANCHOR() {}
4753void CvtRndSatSDNode::ANCHOR() {}
4754
4755HandleSDNode::~HandleSDNode() {
4756  DropOperands();
4757}
4758
4759GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4760                                         MVT VT, int64_t o)
4761  : SDNode(isa<GlobalVariable>(GA) &&
4762           cast<GlobalVariable>(GA)->isThreadLocal() ?
4763           // Thread Local
4764           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4765           // Non Thread Local
4766           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4767           getSDVTList(VT)), Offset(o) {
4768  TheGlobal = const_cast<GlobalValue*>(GA);
4769}
4770
4771MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
4772                     const Value *srcValue, int SVO,
4773                     unsigned alignment, bool vol)
4774 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4775   Flags(encodeMemSDNodeFlags(vol, alignment)) {
4776
4777  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4778  assert(getAlignment() == alignment && "Alignment representation error!");
4779  assert(isVolatile() == vol && "Volatile representation error!");
4780}
4781
4782MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops,
4783                     unsigned NumOps, MVT memvt, const Value *srcValue,
4784                     int SVO, unsigned alignment, bool vol)
4785   : SDNode(Opc, VTs, Ops, NumOps),
4786     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4787     Flags(vol | ((Log2_32(alignment) + 1) << 1)) {
4788  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4789  assert(getAlignment() == alignment && "Alignment representation error!");
4790  assert(isVolatile() == vol && "Volatile representation error!");
4791}
4792
4793/// getMemOperand - Return a MachineMemOperand object describing the memory
4794/// reference performed by this memory reference.
4795MachineMemOperand MemSDNode::getMemOperand() const {
4796  int Flags = 0;
4797  if (isa<LoadSDNode>(this))
4798    Flags = MachineMemOperand::MOLoad;
4799  else if (isa<StoreSDNode>(this))
4800    Flags = MachineMemOperand::MOStore;
4801  else if (isa<AtomicSDNode>(this)) {
4802    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4803  }
4804  else {
4805    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4806    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4807    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4808    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4809  }
4810
4811  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4812  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4813
4814  // Check if the memory reference references a frame index
4815  const FrameIndexSDNode *FI =
4816  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4817  if (!getSrcValue() && FI)
4818    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4819                             Flags, 0, Size, getAlignment());
4820  else
4821    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4822                             Size, getAlignment());
4823}
4824
4825/// Profile - Gather unique data for the node.
4826///
4827void SDNode::Profile(FoldingSetNodeID &ID) const {
4828  AddNodeIDNode(ID, this);
4829}
4830
4831/// getValueTypeList - Return a pointer to the specified value type.
4832///
4833const MVT *SDNode::getValueTypeList(MVT VT) {
4834  if (VT.isExtended()) {
4835    static std::set<MVT, MVT::compareRawBits> EVTs;
4836    return &(*EVTs.insert(VT).first);
4837  } else {
4838    static MVT VTs[MVT::LAST_VALUETYPE];
4839    VTs[VT.getSimpleVT()] = VT;
4840    return &VTs[VT.getSimpleVT()];
4841  }
4842}
4843
4844/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4845/// indicated value.  This method ignores uses of other values defined by this
4846/// operation.
4847bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4848  assert(Value < getNumValues() && "Bad value!");
4849
4850  // TODO: Only iterate over uses of a given value of the node
4851  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4852    if (UI.getUse().getSDValue().getResNo() == Value) {
4853      if (NUses == 0)
4854        return false;
4855      --NUses;
4856    }
4857  }
4858
4859  // Found exactly the right number of uses?
4860  return NUses == 0;
4861}
4862
4863
4864/// hasAnyUseOfValue - Return true if there are any use of the indicated
4865/// value. This method ignores uses of other values defined by this operation.
4866bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4867  assert(Value < getNumValues() && "Bad value!");
4868
4869  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4870    if (UI.getUse().getSDValue().getResNo() == Value)
4871      return true;
4872
4873  return false;
4874}
4875
4876
4877/// isOnlyUserOf - Return true if this node is the only use of N.
4878///
4879bool SDNode::isOnlyUserOf(SDNode *N) const {
4880  bool Seen = false;
4881  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4882    SDNode *User = *I;
4883    if (User == this)
4884      Seen = true;
4885    else
4886      return false;
4887  }
4888
4889  return Seen;
4890}
4891
4892/// isOperand - Return true if this node is an operand of N.
4893///
4894bool SDValue::isOperandOf(SDNode *N) const {
4895  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4896    if (*this == N->getOperand(i))
4897      return true;
4898  return false;
4899}
4900
4901bool SDNode::isOperandOf(SDNode *N) const {
4902  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4903    if (this == N->OperandList[i].getVal())
4904      return true;
4905  return false;
4906}
4907
4908/// reachesChainWithoutSideEffects - Return true if this operand (which must
4909/// be a chain) reaches the specified operand without crossing any
4910/// side-effecting instructions.  In practice, this looks through token
4911/// factors and non-volatile loads.  In order to remain efficient, this only
4912/// looks a couple of nodes in, it does not do an exhaustive search.
4913bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4914                                               unsigned Depth) const {
4915  if (*this == Dest) return true;
4916
4917  // Don't search too deeply, we just want to be able to see through
4918  // TokenFactor's etc.
4919  if (Depth == 0) return false;
4920
4921  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4922  // of the operands of the TF reach dest, then we can do the xform.
4923  if (getOpcode() == ISD::TokenFactor) {
4924    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4925      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4926        return true;
4927    return false;
4928  }
4929
4930  // Loads don't have side effects, look through them.
4931  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4932    if (!Ld->isVolatile())
4933      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4934  }
4935  return false;
4936}
4937
4938
4939static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4940                            SmallPtrSet<SDNode *, 32> &Visited) {
4941  if (found || !Visited.insert(N))
4942    return;
4943
4944  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4945    SDNode *Op = N->getOperand(i).getNode();
4946    if (Op == P) {
4947      found = true;
4948      return;
4949    }
4950    findPredecessor(Op, P, found, Visited);
4951  }
4952}
4953
4954/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4955/// is either an operand of N or it can be reached by recursively traversing
4956/// up the operands.
4957/// NOTE: this is an expensive method. Use it carefully.
4958bool SDNode::isPredecessorOf(SDNode *N) const {
4959  SmallPtrSet<SDNode *, 32> Visited;
4960  bool found = false;
4961  findPredecessor(N, this, found, Visited);
4962  return found;
4963}
4964
4965uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4966  assert(Num < NumOperands && "Invalid child # of SDNode!");
4967  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
4968}
4969
4970std::string SDNode::getOperationName(const SelectionDAG *G) const {
4971  switch (getOpcode()) {
4972  default:
4973    if (getOpcode() < ISD::BUILTIN_OP_END)
4974      return "<<Unknown DAG Node>>";
4975    if (isMachineOpcode()) {
4976      if (G)
4977        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4978          if (getMachineOpcode() < TII->getNumOpcodes())
4979            return TII->get(getMachineOpcode()).getName();
4980      return "<<Unknown Machine Node>>";
4981    }
4982    if (G) {
4983      TargetLowering &TLI = G->getTargetLoweringInfo();
4984      const char *Name = TLI.getTargetNodeName(getOpcode());
4985      if (Name) return Name;
4986      return "<<Unknown Target Node>>";
4987    }
4988    return "<<Unknown Node>>";
4989
4990#ifndef NDEBUG
4991  case ISD::DELETED_NODE:
4992    return "<<Deleted Node!>>";
4993#endif
4994  case ISD::PREFETCH:      return "Prefetch";
4995  case ISD::MEMBARRIER:    return "MemBarrier";
4996  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
4997  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
4998  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
4999  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5000  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5001  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5002  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5003  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5004  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5005  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5006  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5007  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5008  case ISD::PCMARKER:      return "PCMarker";
5009  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5010  case ISD::SRCVALUE:      return "SrcValue";
5011  case ISD::MEMOPERAND:    return "MemOperand";
5012  case ISD::EntryToken:    return "EntryToken";
5013  case ISD::TokenFactor:   return "TokenFactor";
5014  case ISD::AssertSext:    return "AssertSext";
5015  case ISD::AssertZext:    return "AssertZext";
5016
5017  case ISD::BasicBlock:    return "BasicBlock";
5018  case ISD::ARG_FLAGS:     return "ArgFlags";
5019  case ISD::VALUETYPE:     return "ValueType";
5020  case ISD::Register:      return "Register";
5021
5022  case ISD::Constant:      return "Constant";
5023  case ISD::ConstantFP:    return "ConstantFP";
5024  case ISD::GlobalAddress: return "GlobalAddress";
5025  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5026  case ISD::FrameIndex:    return "FrameIndex";
5027  case ISD::JumpTable:     return "JumpTable";
5028  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5029  case ISD::RETURNADDR: return "RETURNADDR";
5030  case ISD::FRAMEADDR: return "FRAMEADDR";
5031  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5032  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5033  case ISD::EHSELECTION: return "EHSELECTION";
5034  case ISD::EH_RETURN: return "EH_RETURN";
5035  case ISD::ConstantPool:  return "ConstantPool";
5036  case ISD::ExternalSymbol: return "ExternalSymbol";
5037  case ISD::INTRINSIC_WO_CHAIN: {
5038    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5039    return Intrinsic::getName((Intrinsic::ID)IID);
5040  }
5041  case ISD::INTRINSIC_VOID:
5042  case ISD::INTRINSIC_W_CHAIN: {
5043    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5044    return Intrinsic::getName((Intrinsic::ID)IID);
5045  }
5046
5047  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5048  case ISD::TargetConstant: return "TargetConstant";
5049  case ISD::TargetConstantFP:return "TargetConstantFP";
5050  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5051  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5052  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5053  case ISD::TargetJumpTable:  return "TargetJumpTable";
5054  case ISD::TargetConstantPool:  return "TargetConstantPool";
5055  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5056
5057  case ISD::CopyToReg:     return "CopyToReg";
5058  case ISD::CopyFromReg:   return "CopyFromReg";
5059  case ISD::UNDEF:         return "undef";
5060  case ISD::MERGE_VALUES:  return "merge_values";
5061  case ISD::INLINEASM:     return "inlineasm";
5062  case ISD::DBG_LABEL:     return "dbg_label";
5063  case ISD::EH_LABEL:      return "eh_label";
5064  case ISD::DECLARE:       return "declare";
5065  case ISD::HANDLENODE:    return "handlenode";
5066  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5067  case ISD::CALL:          return "call";
5068
5069  // Unary operators
5070  case ISD::FABS:   return "fabs";
5071  case ISD::FNEG:   return "fneg";
5072  case ISD::FSQRT:  return "fsqrt";
5073  case ISD::FSIN:   return "fsin";
5074  case ISD::FCOS:   return "fcos";
5075  case ISD::FPOWI:  return "fpowi";
5076  case ISD::FPOW:   return "fpow";
5077  case ISD::FTRUNC: return "ftrunc";
5078  case ISD::FFLOOR: return "ffloor";
5079  case ISD::FCEIL:  return "fceil";
5080  case ISD::FRINT:  return "frint";
5081  case ISD::FNEARBYINT: return "fnearbyint";
5082
5083  // Binary operators
5084  case ISD::ADD:    return "add";
5085  case ISD::SUB:    return "sub";
5086  case ISD::MUL:    return "mul";
5087  case ISD::MULHU:  return "mulhu";
5088  case ISD::MULHS:  return "mulhs";
5089  case ISD::SDIV:   return "sdiv";
5090  case ISD::UDIV:   return "udiv";
5091  case ISD::SREM:   return "srem";
5092  case ISD::UREM:   return "urem";
5093  case ISD::SMUL_LOHI:  return "smul_lohi";
5094  case ISD::UMUL_LOHI:  return "umul_lohi";
5095  case ISD::SDIVREM:    return "sdivrem";
5096  case ISD::UDIVREM:    return "udivrem";
5097  case ISD::AND:    return "and";
5098  case ISD::OR:     return "or";
5099  case ISD::XOR:    return "xor";
5100  case ISD::SHL:    return "shl";
5101  case ISD::SRA:    return "sra";
5102  case ISD::SRL:    return "srl";
5103  case ISD::ROTL:   return "rotl";
5104  case ISD::ROTR:   return "rotr";
5105  case ISD::FADD:   return "fadd";
5106  case ISD::FSUB:   return "fsub";
5107  case ISD::FMUL:   return "fmul";
5108  case ISD::FDIV:   return "fdiv";
5109  case ISD::FREM:   return "frem";
5110  case ISD::FCOPYSIGN: return "fcopysign";
5111  case ISD::FGETSIGN:  return "fgetsign";
5112
5113  case ISD::SETCC:       return "setcc";
5114  case ISD::VSETCC:      return "vsetcc";
5115  case ISD::SELECT:      return "select";
5116  case ISD::SELECT_CC:   return "select_cc";
5117  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5118  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5119  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5120  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5121  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5122  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5123  case ISD::CARRY_FALSE:         return "carry_false";
5124  case ISD::ADDC:        return "addc";
5125  case ISD::ADDE:        return "adde";
5126  case ISD::SADDO:       return "saddo";
5127  case ISD::UADDO:       return "uaddo";
5128  case ISD::SSUBO:       return "ssubo";
5129  case ISD::USUBO:       return "usubo";
5130  case ISD::SMULO:       return "smulo";
5131  case ISD::UMULO:       return "umulo";
5132  case ISD::SUBC:        return "subc";
5133  case ISD::SUBE:        return "sube";
5134  case ISD::SHL_PARTS:   return "shl_parts";
5135  case ISD::SRA_PARTS:   return "sra_parts";
5136  case ISD::SRL_PARTS:   return "srl_parts";
5137
5138  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5139  case ISD::INSERT_SUBREG:      return "insert_subreg";
5140
5141  // Conversion operators.
5142  case ISD::SIGN_EXTEND: return "sign_extend";
5143  case ISD::ZERO_EXTEND: return "zero_extend";
5144  case ISD::ANY_EXTEND:  return "any_extend";
5145  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5146  case ISD::TRUNCATE:    return "truncate";
5147  case ISD::FP_ROUND:    return "fp_round";
5148  case ISD::FLT_ROUNDS_: return "flt_rounds";
5149  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5150  case ISD::FP_EXTEND:   return "fp_extend";
5151
5152  case ISD::SINT_TO_FP:  return "sint_to_fp";
5153  case ISD::UINT_TO_FP:  return "uint_to_fp";
5154  case ISD::FP_TO_SINT:  return "fp_to_sint";
5155  case ISD::FP_TO_UINT:  return "fp_to_uint";
5156  case ISD::BIT_CONVERT: return "bit_convert";
5157
5158  case ISD::CONVERT_RNDSAT: {
5159    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5160    default: assert(0 && "Unknown cvt code!");
5161    case ISD::CVT_FF:  return "cvt_ff";
5162    case ISD::CVT_FS:  return "cvt_fs";
5163    case ISD::CVT_FU:  return "cvt_fu";
5164    case ISD::CVT_SF:  return "cvt_sf";
5165    case ISD::CVT_UF:  return "cvt_uf";
5166    case ISD::CVT_SS:  return "cvt_ss";
5167    case ISD::CVT_SU:  return "cvt_su";
5168    case ISD::CVT_US:  return "cvt_us";
5169    case ISD::CVT_UU:  return "cvt_uu";
5170    }
5171  }
5172
5173    // Control flow instructions
5174  case ISD::BR:      return "br";
5175  case ISD::BRIND:   return "brind";
5176  case ISD::BR_JT:   return "br_jt";
5177  case ISD::BRCOND:  return "brcond";
5178  case ISD::BR_CC:   return "br_cc";
5179  case ISD::RET:     return "ret";
5180  case ISD::CALLSEQ_START:  return "callseq_start";
5181  case ISD::CALLSEQ_END:    return "callseq_end";
5182
5183    // Other operators
5184  case ISD::LOAD:               return "load";
5185  case ISD::STORE:              return "store";
5186  case ISD::VAARG:              return "vaarg";
5187  case ISD::VACOPY:             return "vacopy";
5188  case ISD::VAEND:              return "vaend";
5189  case ISD::VASTART:            return "vastart";
5190  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5191  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5192  case ISD::BUILD_PAIR:         return "build_pair";
5193  case ISD::STACKSAVE:          return "stacksave";
5194  case ISD::STACKRESTORE:       return "stackrestore";
5195  case ISD::TRAP:               return "trap";
5196
5197  // Bit manipulation
5198  case ISD::BSWAP:   return "bswap";
5199  case ISD::CTPOP:   return "ctpop";
5200  case ISD::CTTZ:    return "cttz";
5201  case ISD::CTLZ:    return "ctlz";
5202
5203  // Debug info
5204  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5205  case ISD::DEBUG_LOC: return "debug_loc";
5206
5207  // Trampolines
5208  case ISD::TRAMPOLINE: return "trampoline";
5209
5210  case ISD::CONDCODE:
5211    switch (cast<CondCodeSDNode>(this)->get()) {
5212    default: assert(0 && "Unknown setcc condition!");
5213    case ISD::SETOEQ:  return "setoeq";
5214    case ISD::SETOGT:  return "setogt";
5215    case ISD::SETOGE:  return "setoge";
5216    case ISD::SETOLT:  return "setolt";
5217    case ISD::SETOLE:  return "setole";
5218    case ISD::SETONE:  return "setone";
5219
5220    case ISD::SETO:    return "seto";
5221    case ISD::SETUO:   return "setuo";
5222    case ISD::SETUEQ:  return "setue";
5223    case ISD::SETUGT:  return "setugt";
5224    case ISD::SETUGE:  return "setuge";
5225    case ISD::SETULT:  return "setult";
5226    case ISD::SETULE:  return "setule";
5227    case ISD::SETUNE:  return "setune";
5228
5229    case ISD::SETEQ:   return "seteq";
5230    case ISD::SETGT:   return "setgt";
5231    case ISD::SETGE:   return "setge";
5232    case ISD::SETLT:   return "setlt";
5233    case ISD::SETLE:   return "setle";
5234    case ISD::SETNE:   return "setne";
5235    }
5236  }
5237}
5238
5239const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5240  switch (AM) {
5241  default:
5242    return "";
5243  case ISD::PRE_INC:
5244    return "<pre-inc>";
5245  case ISD::PRE_DEC:
5246    return "<pre-dec>";
5247  case ISD::POST_INC:
5248    return "<post-inc>";
5249  case ISD::POST_DEC:
5250    return "<post-dec>";
5251  }
5252}
5253
5254std::string ISD::ArgFlagsTy::getArgFlagsString() {
5255  std::string S = "< ";
5256
5257  if (isZExt())
5258    S += "zext ";
5259  if (isSExt())
5260    S += "sext ";
5261  if (isInReg())
5262    S += "inreg ";
5263  if (isSRet())
5264    S += "sret ";
5265  if (isByVal())
5266    S += "byval ";
5267  if (isNest())
5268    S += "nest ";
5269  if (getByValAlign())
5270    S += "byval-align:" + utostr(getByValAlign()) + " ";
5271  if (getOrigAlign())
5272    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5273  if (getByValSize())
5274    S += "byval-size:" + utostr(getByValSize()) + " ";
5275  return S + ">";
5276}
5277
5278void SDNode::dump() const { dump(0); }
5279void SDNode::dump(const SelectionDAG *G) const {
5280  print(errs(), G);
5281  errs().flush();
5282}
5283
5284void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5285  OS << (void*)this << ": ";
5286
5287  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5288    if (i) OS << ",";
5289    if (getValueType(i) == MVT::Other)
5290      OS << "ch";
5291    else
5292      OS << getValueType(i).getMVTString();
5293  }
5294  OS << " = " << getOperationName(G);
5295
5296  OS << " ";
5297  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5298    if (i) OS << ", ";
5299    OS << (void*)getOperand(i).getNode();
5300    if (unsigned RN = getOperand(i).getResNo())
5301      OS << ":" << RN;
5302  }
5303
5304  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5305    SDNode *Mask = getOperand(2).getNode();
5306    OS << "<";
5307    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5308      if (i) OS << ",";
5309      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5310        OS << "u";
5311      else
5312        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5313    }
5314    OS << ">";
5315  }
5316
5317  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5318    OS << '<' << CSDN->getAPIntValue() << '>';
5319  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5320    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5321      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5322    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5323      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5324    else {
5325      OS << "<APFloat(";
5326      CSDN->getValueAPF().bitcastToAPInt().dump();
5327      OS << ")>";
5328    }
5329  } else if (const GlobalAddressSDNode *GADN =
5330             dyn_cast<GlobalAddressSDNode>(this)) {
5331    int64_t offset = GADN->getOffset();
5332    OS << '<';
5333    WriteAsOperand(OS, GADN->getGlobal());
5334    OS << '>';
5335    if (offset > 0)
5336      OS << " + " << offset;
5337    else
5338      OS << " " << offset;
5339  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5340    OS << "<" << FIDN->getIndex() << ">";
5341  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5342    OS << "<" << JTDN->getIndex() << ">";
5343  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5344    int offset = CP->getOffset();
5345    if (CP->isMachineConstantPoolEntry())
5346      OS << "<" << *CP->getMachineCPVal() << ">";
5347    else
5348      OS << "<" << *CP->getConstVal() << ">";
5349    if (offset > 0)
5350      OS << " + " << offset;
5351    else
5352      OS << " " << offset;
5353  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5354    OS << "<";
5355    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5356    if (LBB)
5357      OS << LBB->getName() << " ";
5358    OS << (const void*)BBDN->getBasicBlock() << ">";
5359  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5360    if (G && R->getReg() &&
5361        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5362      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5363    } else {
5364      OS << " #" << R->getReg();
5365    }
5366  } else if (const ExternalSymbolSDNode *ES =
5367             dyn_cast<ExternalSymbolSDNode>(this)) {
5368    OS << "'" << ES->getSymbol() << "'";
5369  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5370    if (M->getValue())
5371      OS << "<" << M->getValue() << ">";
5372    else
5373      OS << "<null>";
5374  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5375    if (M->MO.getValue())
5376      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5377    else
5378      OS << "<null:" << M->MO.getOffset() << ">";
5379  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5380    OS << N->getArgFlags().getArgFlagsString();
5381  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5382    OS << ":" << N->getVT().getMVTString();
5383  }
5384  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5385    const Value *SrcValue = LD->getSrcValue();
5386    int SrcOffset = LD->getSrcValueOffset();
5387    OS << " <";
5388    if (SrcValue)
5389      OS << SrcValue;
5390    else
5391      OS << "null";
5392    OS << ":" << SrcOffset << ">";
5393
5394    bool doExt = true;
5395    switch (LD->getExtensionType()) {
5396    default: doExt = false; break;
5397    case ISD::EXTLOAD: OS << " <anyext "; break;
5398    case ISD::SEXTLOAD: OS << " <sext "; break;
5399    case ISD::ZEXTLOAD: OS << " <zext "; break;
5400    }
5401    if (doExt)
5402      OS << LD->getMemoryVT().getMVTString() << ">";
5403
5404    const char *AM = getIndexedModeName(LD->getAddressingMode());
5405    if (*AM)
5406      OS << " " << AM;
5407    if (LD->isVolatile())
5408      OS << " <volatile>";
5409    OS << " alignment=" << LD->getAlignment();
5410  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5411    const Value *SrcValue = ST->getSrcValue();
5412    int SrcOffset = ST->getSrcValueOffset();
5413    OS << " <";
5414    if (SrcValue)
5415      OS << SrcValue;
5416    else
5417      OS << "null";
5418    OS << ":" << SrcOffset << ">";
5419
5420    if (ST->isTruncatingStore())
5421      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5422
5423    const char *AM = getIndexedModeName(ST->getAddressingMode());
5424    if (*AM)
5425      OS << " " << AM;
5426    if (ST->isVolatile())
5427      OS << " <volatile>";
5428    OS << " alignment=" << ST->getAlignment();
5429  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5430    const Value *SrcValue = AT->getSrcValue();
5431    int SrcOffset = AT->getSrcValueOffset();
5432    OS << " <";
5433    if (SrcValue)
5434      OS << SrcValue;
5435    else
5436      OS << "null";
5437    OS << ":" << SrcOffset << ">";
5438    if (AT->isVolatile())
5439      OS << " <volatile>";
5440    OS << " alignment=" << AT->getAlignment();
5441  }
5442}
5443
5444static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5445  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5446    if (N->getOperand(i).getNode()->hasOneUse())
5447      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5448    else
5449      cerr << "\n" << std::string(indent+2, ' ')
5450           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5451
5452
5453  cerr << "\n" << std::string(indent, ' ');
5454  N->dump(G);
5455}
5456
5457void SelectionDAG::dump() const {
5458  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5459
5460  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5461       I != E; ++I) {
5462    const SDNode *N = I;
5463    if (!N->hasOneUse() && N != getRoot().getNode())
5464      DumpNodes(N, 2, this);
5465  }
5466
5467  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5468
5469  cerr << "\n\n";
5470}
5471
5472const Type *ConstantPoolSDNode::getType() const {
5473  if (isMachineConstantPoolEntry())
5474    return Val.MachineCPVal->getType();
5475  return Val.ConstVal->getType();
5476}
5477