SelectionDAG.cpp revision bfcb3051899b7141a946d769fcf6e8a8453bc530
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/ValueTracking.h"
19#include "llvm/Function.h"
20#include "llvm/GlobalAlias.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Intrinsics.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Assembly/Writer.h"
25#include "llvm/CallingConv.h"
26#include "llvm/CodeGen/MachineBasicBlock.h"
27#include "llvm/CodeGen/MachineConstantPool.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/PseudoSourceValue.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Target/TargetFrameInfo.h"
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetIntrinsicInfo.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/ManagedStatic.h"
43#include "llvm/Support/MathExtras.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/System/Mutex.h"
46#include "llvm/ADT/SetVector.h"
47#include "llvm/ADT/SmallPtrSet.h"
48#include "llvm/ADT/SmallSet.h"
49#include "llvm/ADT/SmallVector.h"
50#include "llvm/ADT/StringExtras.h"
51#include <algorithm>
52#include <cmath>
53using namespace llvm;
54
55/// makeVTList - Return an instance of the SDVTList struct initialized with the
56/// specified members.
57static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
58  SDVTList Res = {VTs, NumVTs};
59  return Res;
60}
61
62static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
63  switch (VT.getSimpleVT().SimpleTy) {
64  default: llvm_unreachable("Unknown FP format");
65  case MVT::f32:     return &APFloat::IEEEsingle;
66  case MVT::f64:     return &APFloat::IEEEdouble;
67  case MVT::f80:     return &APFloat::x87DoubleExtended;
68  case MVT::f128:    return &APFloat::IEEEquad;
69  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
70  }
71}
72
73SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
74
75//===----------------------------------------------------------------------===//
76//                              ConstantFPSDNode Class
77//===----------------------------------------------------------------------===//
78
79/// isExactlyValue - We don't rely on operator== working on double values, as
80/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
81/// As such, this method can be used to do an exact bit-for-bit comparison of
82/// two floating point values.
83bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
84  return getValueAPF().bitwiseIsEqual(V);
85}
86
87bool ConstantFPSDNode::isValueValidForType(EVT VT,
88                                           const APFloat& Val) {
89  assert(VT.isFloatingPoint() && "Can only convert between FP types");
90
91  // PPC long double cannot be converted to any other type.
92  if (VT == MVT::ppcf128 ||
93      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
94    return false;
95
96  // convert modifies in place, so make a copy.
97  APFloat Val2 = APFloat(Val);
98  bool losesInfo;
99  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
100                      &losesInfo);
101  return !losesInfo;
102}
103
104//===----------------------------------------------------------------------===//
105//                              ISD Namespace
106//===----------------------------------------------------------------------===//
107
108/// isBuildVectorAllOnes - Return true if the specified node is a
109/// BUILD_VECTOR where all of the elements are ~0 or undef.
110bool ISD::isBuildVectorAllOnes(const SDNode *N) {
111  // Look through a bit convert.
112  if (N->getOpcode() == ISD::BIT_CONVERT)
113    N = N->getOperand(0).getNode();
114
115  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
116
117  unsigned i = 0, e = N->getNumOperands();
118
119  // Skip over all of the undef values.
120  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
121    ++i;
122
123  // Do not accept an all-undef vector.
124  if (i == e) return false;
125
126  // Do not accept build_vectors that aren't all constants or which have non-~0
127  // elements.
128  SDValue NotZero = N->getOperand(i);
129  if (isa<ConstantSDNode>(NotZero)) {
130    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
131      return false;
132  } else if (isa<ConstantFPSDNode>(NotZero)) {
133    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
134                bitcastToAPInt().isAllOnesValue())
135      return false;
136  } else
137    return false;
138
139  // Okay, we have at least one ~0 value, check to see if the rest match or are
140  // undefs.
141  for (++i; i != e; ++i)
142    if (N->getOperand(i) != NotZero &&
143        N->getOperand(i).getOpcode() != ISD::UNDEF)
144      return false;
145  return true;
146}
147
148
149/// isBuildVectorAllZeros - Return true if the specified node is a
150/// BUILD_VECTOR where all of the elements are 0 or undef.
151bool ISD::isBuildVectorAllZeros(const SDNode *N) {
152  // Look through a bit convert.
153  if (N->getOpcode() == ISD::BIT_CONVERT)
154    N = N->getOperand(0).getNode();
155
156  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
157
158  unsigned i = 0, e = N->getNumOperands();
159
160  // Skip over all of the undef values.
161  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
162    ++i;
163
164  // Do not accept an all-undef vector.
165  if (i == e) return false;
166
167  // Do not accept build_vectors that aren't all constants or which have non-0
168  // elements.
169  SDValue Zero = N->getOperand(i);
170  if (isa<ConstantSDNode>(Zero)) {
171    if (!cast<ConstantSDNode>(Zero)->isNullValue())
172      return false;
173  } else if (isa<ConstantFPSDNode>(Zero)) {
174    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
175      return false;
176  } else
177    return false;
178
179  // Okay, we have at least one 0 value, check to see if the rest match or are
180  // undefs.
181  for (++i; i != e; ++i)
182    if (N->getOperand(i) != Zero &&
183        N->getOperand(i).getOpcode() != ISD::UNDEF)
184      return false;
185  return true;
186}
187
188/// isScalarToVector - Return true if the specified node is a
189/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
190/// element is not an undef.
191bool ISD::isScalarToVector(const SDNode *N) {
192  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
193    return true;
194
195  if (N->getOpcode() != ISD::BUILD_VECTOR)
196    return false;
197  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
198    return false;
199  unsigned NumElems = N->getNumOperands();
200  for (unsigned i = 1; i < NumElems; ++i) {
201    SDValue V = N->getOperand(i);
202    if (V.getOpcode() != ISD::UNDEF)
203      return false;
204  }
205  return true;
206}
207
208/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
209/// when given the operation for (X op Y).
210ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
211  // To perform this operation, we just need to swap the L and G bits of the
212  // operation.
213  unsigned OldL = (Operation >> 2) & 1;
214  unsigned OldG = (Operation >> 1) & 1;
215  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
216                       (OldL << 1) |       // New G bit
217                       (OldG << 2));       // New L bit.
218}
219
220/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
221/// 'op' is a valid SetCC operation.
222ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
223  unsigned Operation = Op;
224  if (isInteger)
225    Operation ^= 7;   // Flip L, G, E bits, but not U.
226  else
227    Operation ^= 15;  // Flip all of the condition bits.
228
229  if (Operation > ISD::SETTRUE2)
230    Operation &= ~8;  // Don't let N and U bits get set.
231
232  return ISD::CondCode(Operation);
233}
234
235
236/// isSignedOp - For an integer comparison, return 1 if the comparison is a
237/// signed operation and 2 if the result is an unsigned comparison.  Return zero
238/// if the operation does not depend on the sign of the input (setne and seteq).
239static int isSignedOp(ISD::CondCode Opcode) {
240  switch (Opcode) {
241  default: llvm_unreachable("Illegal integer setcc operation!");
242  case ISD::SETEQ:
243  case ISD::SETNE: return 0;
244  case ISD::SETLT:
245  case ISD::SETLE:
246  case ISD::SETGT:
247  case ISD::SETGE: return 1;
248  case ISD::SETULT:
249  case ISD::SETULE:
250  case ISD::SETUGT:
251  case ISD::SETUGE: return 2;
252  }
253}
254
255/// getSetCCOrOperation - Return the result of a logical OR between different
256/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
257/// returns SETCC_INVALID if it is not possible to represent the resultant
258/// comparison.
259ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
260                                       bool isInteger) {
261  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
262    // Cannot fold a signed integer setcc with an unsigned integer setcc.
263    return ISD::SETCC_INVALID;
264
265  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
266
267  // If the N and U bits get set then the resultant comparison DOES suddenly
268  // care about orderedness, and is true when ordered.
269  if (Op > ISD::SETTRUE2)
270    Op &= ~16;     // Clear the U bit if the N bit is set.
271
272  // Canonicalize illegal integer setcc's.
273  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
274    Op = ISD::SETNE;
275
276  return ISD::CondCode(Op);
277}
278
279/// getSetCCAndOperation - Return the result of a logical AND between different
280/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
281/// function returns zero if it is not possible to represent the resultant
282/// comparison.
283ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
284                                        bool isInteger) {
285  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
286    // Cannot fold a signed setcc with an unsigned setcc.
287    return ISD::SETCC_INVALID;
288
289  // Combine all of the condition bits.
290  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
291
292  // Canonicalize illegal integer setcc's.
293  if (isInteger) {
294    switch (Result) {
295    default: break;
296    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
297    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
298    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
299    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
300    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
301    }
302  }
303
304  return Result;
305}
306
307const TargetMachine &SelectionDAG::getTarget() const {
308  return MF->getTarget();
309}
310
311//===----------------------------------------------------------------------===//
312//                           SDNode Profile Support
313//===----------------------------------------------------------------------===//
314
315/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
316///
317static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
318  ID.AddInteger(OpC);
319}
320
321/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
322/// solely with their pointer.
323static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
324  ID.AddPointer(VTList.VTs);
325}
326
327/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
328///
329static void AddNodeIDOperands(FoldingSetNodeID &ID,
330                              const SDValue *Ops, unsigned NumOps) {
331  for (; NumOps; --NumOps, ++Ops) {
332    ID.AddPointer(Ops->getNode());
333    ID.AddInteger(Ops->getResNo());
334  }
335}
336
337/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
338///
339static void AddNodeIDOperands(FoldingSetNodeID &ID,
340                              const SDUse *Ops, unsigned NumOps) {
341  for (; NumOps; --NumOps, ++Ops) {
342    ID.AddPointer(Ops->getNode());
343    ID.AddInteger(Ops->getResNo());
344  }
345}
346
347static void AddNodeIDNode(FoldingSetNodeID &ID,
348                          unsigned short OpC, SDVTList VTList,
349                          const SDValue *OpList, unsigned N) {
350  AddNodeIDOpcode(ID, OpC);
351  AddNodeIDValueTypes(ID, VTList);
352  AddNodeIDOperands(ID, OpList, N);
353}
354
355/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
356/// the NodeID data.
357static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
358  switch (N->getOpcode()) {
359  case ISD::TargetExternalSymbol:
360  case ISD::ExternalSymbol:
361    llvm_unreachable("Should only be used on nodes with operands");
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::TargetConstant:
364  case ISD::Constant:
365    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
366    break;
367  case ISD::TargetConstantFP:
368  case ISD::ConstantFP: {
369    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
370    break;
371  }
372  case ISD::TargetGlobalAddress:
373  case ISD::GlobalAddress:
374  case ISD::TargetGlobalTLSAddress:
375  case ISD::GlobalTLSAddress: {
376    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
377    ID.AddPointer(GA->getGlobal());
378    ID.AddInteger(GA->getOffset());
379    ID.AddInteger(GA->getTargetFlags());
380    break;
381  }
382  case ISD::BasicBlock:
383    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
384    break;
385  case ISD::Register:
386    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
387    break;
388
389  case ISD::SRCVALUE:
390    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
391    break;
392  case ISD::FrameIndex:
393  case ISD::TargetFrameIndex:
394    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
395    break;
396  case ISD::JumpTable:
397  case ISD::TargetJumpTable:
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
399    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
400    break;
401  case ISD::ConstantPool:
402  case ISD::TargetConstantPool: {
403    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
404    ID.AddInteger(CP->getAlignment());
405    ID.AddInteger(CP->getOffset());
406    if (CP->isMachineConstantPoolEntry())
407      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
408    else
409      ID.AddPointer(CP->getConstVal());
410    ID.AddInteger(CP->getTargetFlags());
411    break;
412  }
413  case ISD::LOAD: {
414    const LoadSDNode *LD = cast<LoadSDNode>(N);
415    ID.AddInteger(LD->getMemoryVT().getRawBits());
416    ID.AddInteger(LD->getRawSubclassData());
417    break;
418  }
419  case ISD::STORE: {
420    const StoreSDNode *ST = cast<StoreSDNode>(N);
421    ID.AddInteger(ST->getMemoryVT().getRawBits());
422    ID.AddInteger(ST->getRawSubclassData());
423    break;
424  }
425  case ISD::ATOMIC_CMP_SWAP:
426  case ISD::ATOMIC_SWAP:
427  case ISD::ATOMIC_LOAD_ADD:
428  case ISD::ATOMIC_LOAD_SUB:
429  case ISD::ATOMIC_LOAD_AND:
430  case ISD::ATOMIC_LOAD_OR:
431  case ISD::ATOMIC_LOAD_XOR:
432  case ISD::ATOMIC_LOAD_NAND:
433  case ISD::ATOMIC_LOAD_MIN:
434  case ISD::ATOMIC_LOAD_MAX:
435  case ISD::ATOMIC_LOAD_UMIN:
436  case ISD::ATOMIC_LOAD_UMAX: {
437    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
438    ID.AddInteger(AT->getMemoryVT().getRawBits());
439    ID.AddInteger(AT->getRawSubclassData());
440    break;
441  }
442  case ISD::VECTOR_SHUFFLE: {
443    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
444    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
445         i != e; ++i)
446      ID.AddInteger(SVN->getMaskElt(i));
447    break;
448  }
449  case ISD::TargetBlockAddress:
450  case ISD::BlockAddress: {
451    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
452    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
453    break;
454  }
455  } // end switch (N->getOpcode())
456}
457
458/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
459/// data.
460static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
461  AddNodeIDOpcode(ID, N->getOpcode());
462  // Add the return value info.
463  AddNodeIDValueTypes(ID, N->getVTList());
464  // Add the operand info.
465  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
466
467  // Handle SDNode leafs with special info.
468  AddNodeIDCustom(ID, N);
469}
470
471/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
472/// the CSE map that carries volatility, temporalness, indexing mode, and
473/// extension/truncation information.
474///
475static inline unsigned
476encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
477                     bool isNonTemporal) {
478  assert((ConvType & 3) == ConvType &&
479         "ConvType may not require more than 2 bits!");
480  assert((AM & 7) == AM &&
481         "AM may not require more than 3 bits!");
482  return ConvType |
483         (AM << 2) |
484         (isVolatile << 5) |
485         (isNonTemporal << 6);
486}
487
488//===----------------------------------------------------------------------===//
489//                              SelectionDAG Class
490//===----------------------------------------------------------------------===//
491
492/// doNotCSE - Return true if CSE should not be performed for this node.
493static bool doNotCSE(SDNode *N) {
494  if (N->getValueType(0) == MVT::Flag)
495    return true; // Never CSE anything that produces a flag.
496
497  switch (N->getOpcode()) {
498  default: break;
499  case ISD::HANDLENODE:
500  case ISD::EH_LABEL:
501    return true;   // Never CSE these nodes.
502  }
503
504  // Check that remaining values produced are not flags.
505  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
506    if (N->getValueType(i) == MVT::Flag)
507      return true; // Never CSE anything that produces a flag.
508
509  return false;
510}
511
512/// RemoveDeadNodes - This method deletes all unreachable nodes in the
513/// SelectionDAG.
514void SelectionDAG::RemoveDeadNodes() {
515  // Create a dummy node (which is not added to allnodes), that adds a reference
516  // to the root node, preventing it from being deleted.
517  HandleSDNode Dummy(getRoot());
518
519  SmallVector<SDNode*, 128> DeadNodes;
520
521  // Add all obviously-dead nodes to the DeadNodes worklist.
522  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
523    if (I->use_empty())
524      DeadNodes.push_back(I);
525
526  RemoveDeadNodes(DeadNodes);
527
528  // If the root changed (e.g. it was a dead load, update the root).
529  setRoot(Dummy.getValue());
530}
531
532/// RemoveDeadNodes - This method deletes the unreachable nodes in the
533/// given list, and any nodes that become unreachable as a result.
534void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
535                                   DAGUpdateListener *UpdateListener) {
536
537  // Process the worklist, deleting the nodes and adding their uses to the
538  // worklist.
539  while (!DeadNodes.empty()) {
540    SDNode *N = DeadNodes.pop_back_val();
541
542    if (UpdateListener)
543      UpdateListener->NodeDeleted(N, 0);
544
545    // Take the node out of the appropriate CSE map.
546    RemoveNodeFromCSEMaps(N);
547
548    // Next, brutally remove the operand list.  This is safe to do, as there are
549    // no cycles in the graph.
550    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
551      SDUse &Use = *I++;
552      SDNode *Operand = Use.getNode();
553      Use.set(SDValue());
554
555      // Now that we removed this operand, see if there are no uses of it left.
556      if (Operand->use_empty())
557        DeadNodes.push_back(Operand);
558    }
559
560    DeallocateNode(N);
561  }
562}
563
564void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
565  SmallVector<SDNode*, 16> DeadNodes(1, N);
566  RemoveDeadNodes(DeadNodes, UpdateListener);
567}
568
569void SelectionDAG::DeleteNode(SDNode *N) {
570  // First take this out of the appropriate CSE map.
571  RemoveNodeFromCSEMaps(N);
572
573  // Finally, remove uses due to operands of this node, remove from the
574  // AllNodes list, and delete the node.
575  DeleteNodeNotInCSEMaps(N);
576}
577
578void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
579  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
580  assert(N->use_empty() && "Cannot delete a node that is not dead!");
581
582  // Drop all of the operands and decrement used node's use counts.
583  N->DropOperands();
584
585  DeallocateNode(N);
586}
587
588void SelectionDAG::DeallocateNode(SDNode *N) {
589  if (N->OperandsNeedDelete)
590    delete[] N->OperandList;
591
592  // Set the opcode to DELETED_NODE to help catch bugs when node
593  // memory is reallocated.
594  N->NodeType = ISD::DELETED_NODE;
595
596  NodeAllocator.Deallocate(AllNodes.remove(N));
597
598  // Remove the ordering of this node.
599  Ordering->remove(N);
600
601  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
602  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
603  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
604    DbgVals[i]->setIsInvalidated();
605}
606
607/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
608/// correspond to it.  This is useful when we're about to delete or repurpose
609/// the node.  We don't want future request for structurally identical nodes
610/// to return N anymore.
611bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
612  bool Erased = false;
613  switch (N->getOpcode()) {
614  case ISD::EntryToken:
615    llvm_unreachable("EntryToken should not be in CSEMaps!");
616    return false;
617  case ISD::HANDLENODE: return false;  // noop.
618  case ISD::CONDCODE:
619    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
620           "Cond code doesn't exist!");
621    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
622    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
623    break;
624  case ISD::ExternalSymbol:
625    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
626    break;
627  case ISD::TargetExternalSymbol: {
628    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
629    Erased = TargetExternalSymbols.erase(
630               std::pair<std::string,unsigned char>(ESN->getSymbol(),
631                                                    ESN->getTargetFlags()));
632    break;
633  }
634  case ISD::VALUETYPE: {
635    EVT VT = cast<VTSDNode>(N)->getVT();
636    if (VT.isExtended()) {
637      Erased = ExtendedValueTypeNodes.erase(VT);
638    } else {
639      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
640      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
641    }
642    break;
643  }
644  default:
645    // Remove it from the CSE Map.
646    Erased = CSEMap.RemoveNode(N);
647    break;
648  }
649#ifndef NDEBUG
650  // Verify that the node was actually in one of the CSE maps, unless it has a
651  // flag result (which cannot be CSE'd) or is one of the special cases that are
652  // not subject to CSE.
653  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
654      !N->isMachineOpcode() && !doNotCSE(N)) {
655    N->dump(this);
656    dbgs() << "\n";
657    llvm_unreachable("Node is not in map!");
658  }
659#endif
660  return Erased;
661}
662
663/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
664/// maps and modified in place. Add it back to the CSE maps, unless an identical
665/// node already exists, in which case transfer all its users to the existing
666/// node. This transfer can potentially trigger recursive merging.
667///
668void
669SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
670                                       DAGUpdateListener *UpdateListener) {
671  // For node types that aren't CSE'd, just act as if no identical node
672  // already exists.
673  if (!doNotCSE(N)) {
674    SDNode *Existing = CSEMap.GetOrInsertNode(N);
675    if (Existing != N) {
676      // If there was already an existing matching node, use ReplaceAllUsesWith
677      // to replace the dead one with the existing one.  This can cause
678      // recursive merging of other unrelated nodes down the line.
679      ReplaceAllUsesWith(N, Existing, UpdateListener);
680
681      // N is now dead.  Inform the listener if it exists and delete it.
682      if (UpdateListener)
683        UpdateListener->NodeDeleted(N, Existing);
684      DeleteNodeNotInCSEMaps(N);
685      return;
686    }
687  }
688
689  // If the node doesn't already exist, we updated it.  Inform a listener if
690  // it exists.
691  if (UpdateListener)
692    UpdateListener->NodeUpdated(N);
693}
694
695/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
696/// were replaced with those specified.  If this node is never memoized,
697/// return null, otherwise return a pointer to the slot it would take.  If a
698/// node already exists with these operands, the slot will be non-null.
699SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
700                                           void *&InsertPos) {
701  if (doNotCSE(N))
702    return 0;
703
704  SDValue Ops[] = { Op };
705  FoldingSetNodeID ID;
706  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
707  AddNodeIDCustom(ID, N);
708  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
709  return Node;
710}
711
712/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
713/// were replaced with those specified.  If this node is never memoized,
714/// return null, otherwise return a pointer to the slot it would take.  If a
715/// node already exists with these operands, the slot will be non-null.
716SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
717                                           SDValue Op1, SDValue Op2,
718                                           void *&InsertPos) {
719  if (doNotCSE(N))
720    return 0;
721
722  SDValue Ops[] = { Op1, Op2 };
723  FoldingSetNodeID ID;
724  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
725  AddNodeIDCustom(ID, N);
726  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
727  return Node;
728}
729
730
731/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
732/// were replaced with those specified.  If this node is never memoized,
733/// return null, otherwise return a pointer to the slot it would take.  If a
734/// node already exists with these operands, the slot will be non-null.
735SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
736                                           const SDValue *Ops,unsigned NumOps,
737                                           void *&InsertPos) {
738  if (doNotCSE(N))
739    return 0;
740
741  FoldingSetNodeID ID;
742  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
743  AddNodeIDCustom(ID, N);
744  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
745  return Node;
746}
747
748/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
749void SelectionDAG::VerifyNode(SDNode *N) {
750  switch (N->getOpcode()) {
751  default:
752    break;
753  case ISD::BUILD_PAIR: {
754    EVT VT = N->getValueType(0);
755    assert(N->getNumValues() == 1 && "Too many results!");
756    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
757           "Wrong return type!");
758    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
759    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
760           "Mismatched operand types!");
761    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
762           "Wrong operand type!");
763    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
764           "Wrong return type size");
765    break;
766  }
767  case ISD::BUILD_VECTOR: {
768    assert(N->getNumValues() == 1 && "Too many results!");
769    assert(N->getValueType(0).isVector() && "Wrong return type!");
770    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
771           "Wrong number of operands!");
772    EVT EltVT = N->getValueType(0).getVectorElementType();
773    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
774      assert((I->getValueType() == EltVT ||
775             (EltVT.isInteger() && I->getValueType().isInteger() &&
776              EltVT.bitsLE(I->getValueType()))) &&
777            "Wrong operand type!");
778    break;
779  }
780  }
781}
782
783/// getEVTAlignment - Compute the default alignment value for the
784/// given type.
785///
786unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
787  const Type *Ty = VT == MVT::iPTR ?
788                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
789                   VT.getTypeForEVT(*getContext());
790
791  return TLI.getTargetData()->getABITypeAlignment(Ty);
792}
793
794// EntryNode could meaningfully have debug info if we can find it...
795SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
796  : TLI(tli), FLI(fli), DW(0),
797    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
798              getVTList(MVT::Other)),
799    Root(getEntryNode()), Ordering(0) {
800  AllNodes.push_back(&EntryNode);
801  Ordering = new SDNodeOrdering();
802  DbgInfo = new SDDbgInfo();
803}
804
805void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
806                        DwarfWriter *dw) {
807  MF = &mf;
808  MMI = mmi;
809  DW = dw;
810  Context = &mf.getFunction()->getContext();
811}
812
813SelectionDAG::~SelectionDAG() {
814  allnodes_clear();
815  delete Ordering;
816  DbgInfo->clear();
817  delete DbgInfo;
818}
819
820void SelectionDAG::allnodes_clear() {
821  assert(&*AllNodes.begin() == &EntryNode);
822  AllNodes.remove(AllNodes.begin());
823  while (!AllNodes.empty())
824    DeallocateNode(AllNodes.begin());
825}
826
827void SelectionDAG::clear() {
828  allnodes_clear();
829  OperandAllocator.Reset();
830  CSEMap.clear();
831
832  ExtendedValueTypeNodes.clear();
833  ExternalSymbols.clear();
834  TargetExternalSymbols.clear();
835  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
836            static_cast<CondCodeSDNode*>(0));
837  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
838            static_cast<SDNode*>(0));
839
840  EntryNode.UseList = 0;
841  AllNodes.push_back(&EntryNode);
842  Root = getEntryNode();
843  delete Ordering;
844  Ordering = new SDNodeOrdering();
845  delete DbgInfo;
846  DbgInfo = new SDDbgInfo();
847}
848
849SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
850  return VT.bitsGT(Op.getValueType()) ?
851    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
852    getNode(ISD::TRUNCATE, DL, VT, Op);
853}
854
855SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
856  return VT.bitsGT(Op.getValueType()) ?
857    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
858    getNode(ISD::TRUNCATE, DL, VT, Op);
859}
860
861SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
862  assert(!VT.isVector() &&
863         "getZeroExtendInReg should use the vector element type instead of "
864         "the vector type!");
865  if (Op.getValueType() == VT) return Op;
866  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
867  APInt Imm = APInt::getLowBitsSet(BitWidth,
868                                   VT.getSizeInBits());
869  return getNode(ISD::AND, DL, Op.getValueType(), Op,
870                 getConstant(Imm, Op.getValueType()));
871}
872
873/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
874///
875SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
876  EVT EltVT = VT.getScalarType();
877  SDValue NegOne =
878    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
879  return getNode(ISD::XOR, DL, VT, Val, NegOne);
880}
881
882SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
883  EVT EltVT = VT.getScalarType();
884  assert((EltVT.getSizeInBits() >= 64 ||
885         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
886         "getConstant with a uint64_t value that doesn't fit in the type!");
887  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
888}
889
890SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
891  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
892}
893
894SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
895  assert(VT.isInteger() && "Cannot create FP integer constant!");
896
897  EVT EltVT = VT.getScalarType();
898  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
899         "APInt size does not match type size!");
900
901  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
902  FoldingSetNodeID ID;
903  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
904  ID.AddPointer(&Val);
905  void *IP = 0;
906  SDNode *N = NULL;
907  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
908    if (!VT.isVector())
909      return SDValue(N, 0);
910
911  if (!N) {
912    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
913    CSEMap.InsertNode(N, IP);
914    AllNodes.push_back(N);
915  }
916
917  SDValue Result(N, 0);
918  if (VT.isVector()) {
919    SmallVector<SDValue, 8> Ops;
920    Ops.assign(VT.getVectorNumElements(), Result);
921    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
922                     VT, &Ops[0], Ops.size());
923  }
924  return Result;
925}
926
927SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
928  return getConstant(Val, TLI.getPointerTy(), isTarget);
929}
930
931
932SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
933  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
934}
935
936SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
937  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
938
939  EVT EltVT = VT.getScalarType();
940
941  // Do the map lookup using the actual bit pattern for the floating point
942  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
943  // we don't have issues with SNANs.
944  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
945  FoldingSetNodeID ID;
946  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
947  ID.AddPointer(&V);
948  void *IP = 0;
949  SDNode *N = NULL;
950  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
951    if (!VT.isVector())
952      return SDValue(N, 0);
953
954  if (!N) {
955    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
956    CSEMap.InsertNode(N, IP);
957    AllNodes.push_back(N);
958  }
959
960  SDValue Result(N, 0);
961  if (VT.isVector()) {
962    SmallVector<SDValue, 8> Ops;
963    Ops.assign(VT.getVectorNumElements(), Result);
964    // FIXME DebugLoc info might be appropriate here
965    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
966                     VT, &Ops[0], Ops.size());
967  }
968  return Result;
969}
970
971SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
972  EVT EltVT = VT.getScalarType();
973  if (EltVT==MVT::f32)
974    return getConstantFP(APFloat((float)Val), VT, isTarget);
975  else
976    return getConstantFP(APFloat(Val), VT, isTarget);
977}
978
979SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
980                                       EVT VT, int64_t Offset,
981                                       bool isTargetGA,
982                                       unsigned char TargetFlags) {
983  assert((TargetFlags == 0 || isTargetGA) &&
984         "Cannot set target flags on target-independent globals");
985
986  // Truncate (with sign-extension) the offset value to the pointer size.
987  EVT PTy = TLI.getPointerTy();
988  unsigned BitWidth = PTy.getSizeInBits();
989  if (BitWidth < 64)
990    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
991
992  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
993  if (!GVar) {
994    // If GV is an alias then use the aliasee for determining thread-localness.
995    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
996      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
997  }
998
999  unsigned Opc;
1000  if (GVar && GVar->isThreadLocal())
1001    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1002  else
1003    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1004
1005  FoldingSetNodeID ID;
1006  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1007  ID.AddPointer(GV);
1008  ID.AddInteger(Offset);
1009  ID.AddInteger(TargetFlags);
1010  void *IP = 0;
1011  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1012    return SDValue(E, 0);
1013
1014  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, GV, VT,
1015                                                      Offset, TargetFlags);
1016  CSEMap.InsertNode(N, IP);
1017  AllNodes.push_back(N);
1018  return SDValue(N, 0);
1019}
1020
1021SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1022  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1023  FoldingSetNodeID ID;
1024  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1025  ID.AddInteger(FI);
1026  void *IP = 0;
1027  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1028    return SDValue(E, 0);
1029
1030  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1031  CSEMap.InsertNode(N, IP);
1032  AllNodes.push_back(N);
1033  return SDValue(N, 0);
1034}
1035
1036SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1037                                   unsigned char TargetFlags) {
1038  assert((TargetFlags == 0 || isTarget) &&
1039         "Cannot set target flags on target-independent jump tables");
1040  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1041  FoldingSetNodeID ID;
1042  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1043  ID.AddInteger(JTI);
1044  ID.AddInteger(TargetFlags);
1045  void *IP = 0;
1046  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1047    return SDValue(E, 0);
1048
1049  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1050                                                  TargetFlags);
1051  CSEMap.InsertNode(N, IP);
1052  AllNodes.push_back(N);
1053  return SDValue(N, 0);
1054}
1055
1056SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1057                                      unsigned Alignment, int Offset,
1058                                      bool isTarget,
1059                                      unsigned char TargetFlags) {
1060  assert((TargetFlags == 0 || isTarget) &&
1061         "Cannot set target flags on target-independent globals");
1062  if (Alignment == 0)
1063    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1064  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1065  FoldingSetNodeID ID;
1066  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1067  ID.AddInteger(Alignment);
1068  ID.AddInteger(Offset);
1069  ID.AddPointer(C);
1070  ID.AddInteger(TargetFlags);
1071  void *IP = 0;
1072  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1073    return SDValue(E, 0);
1074
1075  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1076                                                     Alignment, TargetFlags);
1077  CSEMap.InsertNode(N, IP);
1078  AllNodes.push_back(N);
1079  return SDValue(N, 0);
1080}
1081
1082
1083SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1084                                      unsigned Alignment, int Offset,
1085                                      bool isTarget,
1086                                      unsigned char TargetFlags) {
1087  assert((TargetFlags == 0 || isTarget) &&
1088         "Cannot set target flags on target-independent globals");
1089  if (Alignment == 0)
1090    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1091  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1092  FoldingSetNodeID ID;
1093  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1094  ID.AddInteger(Alignment);
1095  ID.AddInteger(Offset);
1096  C->AddSelectionDAGCSEId(ID);
1097  ID.AddInteger(TargetFlags);
1098  void *IP = 0;
1099  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1100    return SDValue(E, 0);
1101
1102  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1103                                                     Alignment, TargetFlags);
1104  CSEMap.InsertNode(N, IP);
1105  AllNodes.push_back(N);
1106  return SDValue(N, 0);
1107}
1108
1109SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1110  FoldingSetNodeID ID;
1111  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1112  ID.AddPointer(MBB);
1113  void *IP = 0;
1114  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1115    return SDValue(E, 0);
1116
1117  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1118  CSEMap.InsertNode(N, IP);
1119  AllNodes.push_back(N);
1120  return SDValue(N, 0);
1121}
1122
1123SDValue SelectionDAG::getValueType(EVT VT) {
1124  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1125      ValueTypeNodes.size())
1126    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1127
1128  SDNode *&N = VT.isExtended() ?
1129    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1130
1131  if (N) return SDValue(N, 0);
1132  N = new (NodeAllocator) VTSDNode(VT);
1133  AllNodes.push_back(N);
1134  return SDValue(N, 0);
1135}
1136
1137SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1138  SDNode *&N = ExternalSymbols[Sym];
1139  if (N) return SDValue(N, 0);
1140  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1141  AllNodes.push_back(N);
1142  return SDValue(N, 0);
1143}
1144
1145SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1146                                              unsigned char TargetFlags) {
1147  SDNode *&N =
1148    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1149                                                               TargetFlags)];
1150  if (N) return SDValue(N, 0);
1151  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1152  AllNodes.push_back(N);
1153  return SDValue(N, 0);
1154}
1155
1156SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1157  if ((unsigned)Cond >= CondCodeNodes.size())
1158    CondCodeNodes.resize(Cond+1);
1159
1160  if (CondCodeNodes[Cond] == 0) {
1161    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1162    CondCodeNodes[Cond] = N;
1163    AllNodes.push_back(N);
1164  }
1165
1166  return SDValue(CondCodeNodes[Cond], 0);
1167}
1168
1169// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1170// the shuffle mask M that point at N1 to point at N2, and indices that point
1171// N2 to point at N1.
1172static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1173  std::swap(N1, N2);
1174  int NElts = M.size();
1175  for (int i = 0; i != NElts; ++i) {
1176    if (M[i] >= NElts)
1177      M[i] -= NElts;
1178    else if (M[i] >= 0)
1179      M[i] += NElts;
1180  }
1181}
1182
1183SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1184                                       SDValue N2, const int *Mask) {
1185  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1186  assert(VT.isVector() && N1.getValueType().isVector() &&
1187         "Vector Shuffle VTs must be a vectors");
1188  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1189         && "Vector Shuffle VTs must have same element type");
1190
1191  // Canonicalize shuffle undef, undef -> undef
1192  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1193    return getUNDEF(VT);
1194
1195  // Validate that all indices in Mask are within the range of the elements
1196  // input to the shuffle.
1197  unsigned NElts = VT.getVectorNumElements();
1198  SmallVector<int, 8> MaskVec;
1199  for (unsigned i = 0; i != NElts; ++i) {
1200    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1201    MaskVec.push_back(Mask[i]);
1202  }
1203
1204  // Canonicalize shuffle v, v -> v, undef
1205  if (N1 == N2) {
1206    N2 = getUNDEF(VT);
1207    for (unsigned i = 0; i != NElts; ++i)
1208      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1209  }
1210
1211  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1212  if (N1.getOpcode() == ISD::UNDEF)
1213    commuteShuffle(N1, N2, MaskVec);
1214
1215  // Canonicalize all index into lhs, -> shuffle lhs, undef
1216  // Canonicalize all index into rhs, -> shuffle rhs, undef
1217  bool AllLHS = true, AllRHS = true;
1218  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1219  for (unsigned i = 0; i != NElts; ++i) {
1220    if (MaskVec[i] >= (int)NElts) {
1221      if (N2Undef)
1222        MaskVec[i] = -1;
1223      else
1224        AllLHS = false;
1225    } else if (MaskVec[i] >= 0) {
1226      AllRHS = false;
1227    }
1228  }
1229  if (AllLHS && AllRHS)
1230    return getUNDEF(VT);
1231  if (AllLHS && !N2Undef)
1232    N2 = getUNDEF(VT);
1233  if (AllRHS) {
1234    N1 = getUNDEF(VT);
1235    commuteShuffle(N1, N2, MaskVec);
1236  }
1237
1238  // If Identity shuffle, or all shuffle in to undef, return that node.
1239  bool AllUndef = true;
1240  bool Identity = true;
1241  for (unsigned i = 0; i != NElts; ++i) {
1242    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1243    if (MaskVec[i] >= 0) AllUndef = false;
1244  }
1245  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1246    return N1;
1247  if (AllUndef)
1248    return getUNDEF(VT);
1249
1250  FoldingSetNodeID ID;
1251  SDValue Ops[2] = { N1, N2 };
1252  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1253  for (unsigned i = 0; i != NElts; ++i)
1254    ID.AddInteger(MaskVec[i]);
1255
1256  void* IP = 0;
1257  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1258    return SDValue(E, 0);
1259
1260  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1261  // SDNode doesn't have access to it.  This memory will be "leaked" when
1262  // the node is deallocated, but recovered when the NodeAllocator is released.
1263  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1264  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1265
1266  ShuffleVectorSDNode *N =
1267    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1268  CSEMap.InsertNode(N, IP);
1269  AllNodes.push_back(N);
1270  return SDValue(N, 0);
1271}
1272
1273SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1274                                       SDValue Val, SDValue DTy,
1275                                       SDValue STy, SDValue Rnd, SDValue Sat,
1276                                       ISD::CvtCode Code) {
1277  // If the src and dest types are the same and the conversion is between
1278  // integer types of the same sign or two floats, no conversion is necessary.
1279  if (DTy == STy &&
1280      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1281    return Val;
1282
1283  FoldingSetNodeID ID;
1284  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1285  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1286  void* IP = 0;
1287  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1288    return SDValue(E, 0);
1289
1290  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1291                                                           Code);
1292  CSEMap.InsertNode(N, IP);
1293  AllNodes.push_back(N);
1294  return SDValue(N, 0);
1295}
1296
1297SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1298  FoldingSetNodeID ID;
1299  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1300  ID.AddInteger(RegNo);
1301  void *IP = 0;
1302  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1303    return SDValue(E, 0);
1304
1305  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1306  CSEMap.InsertNode(N, IP);
1307  AllNodes.push_back(N);
1308  return SDValue(N, 0);
1309}
1310
1311SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1312  FoldingSetNodeID ID;
1313  SDValue Ops[] = { Root };
1314  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1315  ID.AddPointer(Label);
1316  void *IP = 0;
1317  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1318    return SDValue(E, 0);
1319
1320  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1321  CSEMap.InsertNode(N, IP);
1322  AllNodes.push_back(N);
1323  return SDValue(N, 0);
1324}
1325
1326
1327SDValue SelectionDAG::getBlockAddress(BlockAddress *BA, EVT VT,
1328                                      bool isTarget,
1329                                      unsigned char TargetFlags) {
1330  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1331
1332  FoldingSetNodeID ID;
1333  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1334  ID.AddPointer(BA);
1335  ID.AddInteger(TargetFlags);
1336  void *IP = 0;
1337  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1338    return SDValue(E, 0);
1339
1340  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1341  CSEMap.InsertNode(N, IP);
1342  AllNodes.push_back(N);
1343  return SDValue(N, 0);
1344}
1345
1346SDValue SelectionDAG::getSrcValue(const Value *V) {
1347  assert((!V || V->getType()->isPointerTy()) &&
1348         "SrcValue is not a pointer?");
1349
1350  FoldingSetNodeID ID;
1351  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1352  ID.AddPointer(V);
1353
1354  void *IP = 0;
1355  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1356    return SDValue(E, 0);
1357
1358  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1359  CSEMap.InsertNode(N, IP);
1360  AllNodes.push_back(N);
1361  return SDValue(N, 0);
1362}
1363
1364/// getShiftAmountOperand - Return the specified value casted to
1365/// the target's desired shift amount type.
1366SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1367  EVT OpTy = Op.getValueType();
1368  MVT ShTy = TLI.getShiftAmountTy();
1369  if (OpTy == ShTy || OpTy.isVector()) return Op;
1370
1371  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1372  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1373}
1374
1375/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1376/// specified value type.
1377SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1378  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1379  unsigned ByteSize = VT.getStoreSize();
1380  const Type *Ty = VT.getTypeForEVT(*getContext());
1381  unsigned StackAlign =
1382  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1383
1384  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1385  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1386}
1387
1388/// CreateStackTemporary - Create a stack temporary suitable for holding
1389/// either of the specified value types.
1390SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1391  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1392                            VT2.getStoreSizeInBits())/8;
1393  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1394  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1395  const TargetData *TD = TLI.getTargetData();
1396  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1397                            TD->getPrefTypeAlignment(Ty2));
1398
1399  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1400  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1401  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1402}
1403
1404SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1405                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1406  // These setcc operations always fold.
1407  switch (Cond) {
1408  default: break;
1409  case ISD::SETFALSE:
1410  case ISD::SETFALSE2: return getConstant(0, VT);
1411  case ISD::SETTRUE:
1412  case ISD::SETTRUE2:  return getConstant(1, VT);
1413
1414  case ISD::SETOEQ:
1415  case ISD::SETOGT:
1416  case ISD::SETOGE:
1417  case ISD::SETOLT:
1418  case ISD::SETOLE:
1419  case ISD::SETONE:
1420  case ISD::SETO:
1421  case ISD::SETUO:
1422  case ISD::SETUEQ:
1423  case ISD::SETUNE:
1424    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1425    break;
1426  }
1427
1428  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1429    const APInt &C2 = N2C->getAPIntValue();
1430    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1431      const APInt &C1 = N1C->getAPIntValue();
1432
1433      switch (Cond) {
1434      default: llvm_unreachable("Unknown integer setcc!");
1435      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1436      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1437      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1438      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1439      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1440      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1441      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1442      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1443      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1444      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1445      }
1446    }
1447  }
1448  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1449    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1450      // No compile time operations on this type yet.
1451      if (N1C->getValueType(0) == MVT::ppcf128)
1452        return SDValue();
1453
1454      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1455      switch (Cond) {
1456      default: break;
1457      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1458                          return getUNDEF(VT);
1459                        // fall through
1460      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1461      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1462                          return getUNDEF(VT);
1463                        // fall through
1464      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1465                                           R==APFloat::cmpLessThan, VT);
1466      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1467                          return getUNDEF(VT);
1468                        // fall through
1469      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1470      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1471                          return getUNDEF(VT);
1472                        // fall through
1473      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1474      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1475                          return getUNDEF(VT);
1476                        // fall through
1477      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1478                                           R==APFloat::cmpEqual, VT);
1479      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1480                          return getUNDEF(VT);
1481                        // fall through
1482      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1483                                           R==APFloat::cmpEqual, VT);
1484      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1485      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1486      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1487                                           R==APFloat::cmpEqual, VT);
1488      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1489      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1490                                           R==APFloat::cmpLessThan, VT);
1491      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1492                                           R==APFloat::cmpUnordered, VT);
1493      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1494      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1495      }
1496    } else {
1497      // Ensure that the constant occurs on the RHS.
1498      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1499    }
1500  }
1501
1502  // Could not fold it.
1503  return SDValue();
1504}
1505
1506/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1507/// use this predicate to simplify operations downstream.
1508bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1509  // This predicate is not safe for vector operations.
1510  if (Op.getValueType().isVector())
1511    return false;
1512
1513  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1514  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1515}
1516
1517/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1518/// this predicate to simplify operations downstream.  Mask is known to be zero
1519/// for bits that V cannot have.
1520bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1521                                     unsigned Depth) const {
1522  APInt KnownZero, KnownOne;
1523  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1524  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1525  return (KnownZero & Mask) == Mask;
1526}
1527
1528/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1529/// known to be either zero or one and return them in the KnownZero/KnownOne
1530/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1531/// processing.
1532void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1533                                     APInt &KnownZero, APInt &KnownOne,
1534                                     unsigned Depth) const {
1535  unsigned BitWidth = Mask.getBitWidth();
1536  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1537         "Mask size mismatches value type size!");
1538
1539  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1540  if (Depth == 6 || Mask == 0)
1541    return;  // Limit search depth.
1542
1543  APInt KnownZero2, KnownOne2;
1544
1545  switch (Op.getOpcode()) {
1546  case ISD::Constant:
1547    // We know all of the bits for a constant!
1548    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1549    KnownZero = ~KnownOne & Mask;
1550    return;
1551  case ISD::AND:
1552    // If either the LHS or the RHS are Zero, the result is zero.
1553    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1554    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1555                      KnownZero2, KnownOne2, Depth+1);
1556    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1557    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1558
1559    // Output known-1 bits are only known if set in both the LHS & RHS.
1560    KnownOne &= KnownOne2;
1561    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1562    KnownZero |= KnownZero2;
1563    return;
1564  case ISD::OR:
1565    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1566    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1567                      KnownZero2, KnownOne2, Depth+1);
1568    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1569    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1570
1571    // Output known-0 bits are only known if clear in both the LHS & RHS.
1572    KnownZero &= KnownZero2;
1573    // Output known-1 are known to be set if set in either the LHS | RHS.
1574    KnownOne |= KnownOne2;
1575    return;
1576  case ISD::XOR: {
1577    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1578    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1579    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1580    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1581
1582    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1583    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1584    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1585    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1586    KnownZero = KnownZeroOut;
1587    return;
1588  }
1589  case ISD::MUL: {
1590    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1591    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1592    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1593    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1594    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1595
1596    // If low bits are zero in either operand, output low known-0 bits.
1597    // Also compute a conserative estimate for high known-0 bits.
1598    // More trickiness is possible, but this is sufficient for the
1599    // interesting case of alignment computation.
1600    KnownOne.clear();
1601    unsigned TrailZ = KnownZero.countTrailingOnes() +
1602                      KnownZero2.countTrailingOnes();
1603    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1604                               KnownZero2.countLeadingOnes(),
1605                               BitWidth) - BitWidth;
1606
1607    TrailZ = std::min(TrailZ, BitWidth);
1608    LeadZ = std::min(LeadZ, BitWidth);
1609    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1610                APInt::getHighBitsSet(BitWidth, LeadZ);
1611    KnownZero &= Mask;
1612    return;
1613  }
1614  case ISD::UDIV: {
1615    // For the purposes of computing leading zeros we can conservatively
1616    // treat a udiv as a logical right shift by the power of 2 known to
1617    // be less than the denominator.
1618    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1619    ComputeMaskedBits(Op.getOperand(0),
1620                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1621    unsigned LeadZ = KnownZero2.countLeadingOnes();
1622
1623    KnownOne2.clear();
1624    KnownZero2.clear();
1625    ComputeMaskedBits(Op.getOperand(1),
1626                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1627    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1628    if (RHSUnknownLeadingOnes != BitWidth)
1629      LeadZ = std::min(BitWidth,
1630                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1631
1632    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1633    return;
1634  }
1635  case ISD::SELECT:
1636    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1637    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1638    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1639    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1640
1641    // Only known if known in both the LHS and RHS.
1642    KnownOne &= KnownOne2;
1643    KnownZero &= KnownZero2;
1644    return;
1645  case ISD::SELECT_CC:
1646    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1647    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1648    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1649    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1650
1651    // Only known if known in both the LHS and RHS.
1652    KnownOne &= KnownOne2;
1653    KnownZero &= KnownZero2;
1654    return;
1655  case ISD::SADDO:
1656  case ISD::UADDO:
1657  case ISD::SSUBO:
1658  case ISD::USUBO:
1659  case ISD::SMULO:
1660  case ISD::UMULO:
1661    if (Op.getResNo() != 1)
1662      return;
1663    // The boolean result conforms to getBooleanContents.  Fall through.
1664  case ISD::SETCC:
1665    // If we know the result of a setcc has the top bits zero, use this info.
1666    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1667        BitWidth > 1)
1668      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1669    return;
1670  case ISD::SHL:
1671    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1672    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1673      unsigned ShAmt = SA->getZExtValue();
1674
1675      // If the shift count is an invalid immediate, don't do anything.
1676      if (ShAmt >= BitWidth)
1677        return;
1678
1679      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1680                        KnownZero, KnownOne, Depth+1);
1681      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1682      KnownZero <<= ShAmt;
1683      KnownOne  <<= ShAmt;
1684      // low bits known zero.
1685      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1686    }
1687    return;
1688  case ISD::SRL:
1689    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1690    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1691      unsigned ShAmt = SA->getZExtValue();
1692
1693      // If the shift count is an invalid immediate, don't do anything.
1694      if (ShAmt >= BitWidth)
1695        return;
1696
1697      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1698                        KnownZero, KnownOne, Depth+1);
1699      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1700      KnownZero = KnownZero.lshr(ShAmt);
1701      KnownOne  = KnownOne.lshr(ShAmt);
1702
1703      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1704      KnownZero |= HighBits;  // High bits known zero.
1705    }
1706    return;
1707  case ISD::SRA:
1708    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1709      unsigned ShAmt = SA->getZExtValue();
1710
1711      // If the shift count is an invalid immediate, don't do anything.
1712      if (ShAmt >= BitWidth)
1713        return;
1714
1715      APInt InDemandedMask = (Mask << ShAmt);
1716      // If any of the demanded bits are produced by the sign extension, we also
1717      // demand the input sign bit.
1718      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1719      if (HighBits.getBoolValue())
1720        InDemandedMask |= APInt::getSignBit(BitWidth);
1721
1722      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1723                        Depth+1);
1724      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1725      KnownZero = KnownZero.lshr(ShAmt);
1726      KnownOne  = KnownOne.lshr(ShAmt);
1727
1728      // Handle the sign bits.
1729      APInt SignBit = APInt::getSignBit(BitWidth);
1730      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1731
1732      if (KnownZero.intersects(SignBit)) {
1733        KnownZero |= HighBits;  // New bits are known zero.
1734      } else if (KnownOne.intersects(SignBit)) {
1735        KnownOne  |= HighBits;  // New bits are known one.
1736      }
1737    }
1738    return;
1739  case ISD::SIGN_EXTEND_INREG: {
1740    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1741    unsigned EBits = EVT.getScalarType().getSizeInBits();
1742
1743    // Sign extension.  Compute the demanded bits in the result that are not
1744    // present in the input.
1745    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1746
1747    APInt InSignBit = APInt::getSignBit(EBits);
1748    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1749
1750    // If the sign extended bits are demanded, we know that the sign
1751    // bit is demanded.
1752    InSignBit.zext(BitWidth);
1753    if (NewBits.getBoolValue())
1754      InputDemandedBits |= InSignBit;
1755
1756    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1757                      KnownZero, KnownOne, Depth+1);
1758    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1759
1760    // If the sign bit of the input is known set or clear, then we know the
1761    // top bits of the result.
1762    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1763      KnownZero |= NewBits;
1764      KnownOne  &= ~NewBits;
1765    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1766      KnownOne  |= NewBits;
1767      KnownZero &= ~NewBits;
1768    } else {                              // Input sign bit unknown
1769      KnownZero &= ~NewBits;
1770      KnownOne  &= ~NewBits;
1771    }
1772    return;
1773  }
1774  case ISD::CTTZ:
1775  case ISD::CTLZ:
1776  case ISD::CTPOP: {
1777    unsigned LowBits = Log2_32(BitWidth)+1;
1778    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1779    KnownOne.clear();
1780    return;
1781  }
1782  case ISD::LOAD: {
1783    if (ISD::isZEXTLoad(Op.getNode())) {
1784      LoadSDNode *LD = cast<LoadSDNode>(Op);
1785      EVT VT = LD->getMemoryVT();
1786      unsigned MemBits = VT.getScalarType().getSizeInBits();
1787      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1788    }
1789    return;
1790  }
1791  case ISD::ZERO_EXTEND: {
1792    EVT InVT = Op.getOperand(0).getValueType();
1793    unsigned InBits = InVT.getScalarType().getSizeInBits();
1794    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1795    APInt InMask    = Mask;
1796    InMask.trunc(InBits);
1797    KnownZero.trunc(InBits);
1798    KnownOne.trunc(InBits);
1799    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1800    KnownZero.zext(BitWidth);
1801    KnownOne.zext(BitWidth);
1802    KnownZero |= NewBits;
1803    return;
1804  }
1805  case ISD::SIGN_EXTEND: {
1806    EVT InVT = Op.getOperand(0).getValueType();
1807    unsigned InBits = InVT.getScalarType().getSizeInBits();
1808    APInt InSignBit = APInt::getSignBit(InBits);
1809    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1810    APInt InMask = Mask;
1811    InMask.trunc(InBits);
1812
1813    // If any of the sign extended bits are demanded, we know that the sign
1814    // bit is demanded. Temporarily set this bit in the mask for our callee.
1815    if (NewBits.getBoolValue())
1816      InMask |= InSignBit;
1817
1818    KnownZero.trunc(InBits);
1819    KnownOne.trunc(InBits);
1820    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1821
1822    // Note if the sign bit is known to be zero or one.
1823    bool SignBitKnownZero = KnownZero.isNegative();
1824    bool SignBitKnownOne  = KnownOne.isNegative();
1825    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1826           "Sign bit can't be known to be both zero and one!");
1827
1828    // If the sign bit wasn't actually demanded by our caller, we don't
1829    // want it set in the KnownZero and KnownOne result values. Reset the
1830    // mask and reapply it to the result values.
1831    InMask = Mask;
1832    InMask.trunc(InBits);
1833    KnownZero &= InMask;
1834    KnownOne  &= InMask;
1835
1836    KnownZero.zext(BitWidth);
1837    KnownOne.zext(BitWidth);
1838
1839    // If the sign bit is known zero or one, the top bits match.
1840    if (SignBitKnownZero)
1841      KnownZero |= NewBits;
1842    else if (SignBitKnownOne)
1843      KnownOne  |= NewBits;
1844    return;
1845  }
1846  case ISD::ANY_EXTEND: {
1847    EVT InVT = Op.getOperand(0).getValueType();
1848    unsigned InBits = InVT.getScalarType().getSizeInBits();
1849    APInt InMask = Mask;
1850    InMask.trunc(InBits);
1851    KnownZero.trunc(InBits);
1852    KnownOne.trunc(InBits);
1853    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1854    KnownZero.zext(BitWidth);
1855    KnownOne.zext(BitWidth);
1856    return;
1857  }
1858  case ISD::TRUNCATE: {
1859    EVT InVT = Op.getOperand(0).getValueType();
1860    unsigned InBits = InVT.getScalarType().getSizeInBits();
1861    APInt InMask = Mask;
1862    InMask.zext(InBits);
1863    KnownZero.zext(InBits);
1864    KnownOne.zext(InBits);
1865    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1866    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1867    KnownZero.trunc(BitWidth);
1868    KnownOne.trunc(BitWidth);
1869    break;
1870  }
1871  case ISD::AssertZext: {
1872    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1873    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1874    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1875                      KnownOne, Depth+1);
1876    KnownZero |= (~InMask) & Mask;
1877    return;
1878  }
1879  case ISD::FGETSIGN:
1880    // All bits are zero except the low bit.
1881    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1882    return;
1883
1884  case ISD::SUB: {
1885    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1886      // We know that the top bits of C-X are clear if X contains less bits
1887      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1888      // positive if we can prove that X is >= 0 and < 16.
1889      if (CLHS->getAPIntValue().isNonNegative()) {
1890        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1891        // NLZ can't be BitWidth with no sign bit
1892        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1893        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1894                          Depth+1);
1895
1896        // If all of the MaskV bits are known to be zero, then we know the
1897        // output top bits are zero, because we now know that the output is
1898        // from [0-C].
1899        if ((KnownZero2 & MaskV) == MaskV) {
1900          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1901          // Top bits known zero.
1902          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1903        }
1904      }
1905    }
1906  }
1907  // fall through
1908  case ISD::ADD: {
1909    // Output known-0 bits are known if clear or set in both the low clear bits
1910    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1911    // low 3 bits clear.
1912    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1913    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1914    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1915    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1916
1917    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1918    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1919    KnownZeroOut = std::min(KnownZeroOut,
1920                            KnownZero2.countTrailingOnes());
1921
1922    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1923    return;
1924  }
1925  case ISD::SREM:
1926    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1927      const APInt &RA = Rem->getAPIntValue().abs();
1928      if (RA.isPowerOf2()) {
1929        APInt LowBits = RA - 1;
1930        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1931        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1932
1933        // The low bits of the first operand are unchanged by the srem.
1934        KnownZero = KnownZero2 & LowBits;
1935        KnownOne = KnownOne2 & LowBits;
1936
1937        // If the first operand is non-negative or has all low bits zero, then
1938        // the upper bits are all zero.
1939        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1940          KnownZero |= ~LowBits;
1941
1942        // If the first operand is negative and not all low bits are zero, then
1943        // the upper bits are all one.
1944        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1945          KnownOne |= ~LowBits;
1946
1947        KnownZero &= Mask;
1948        KnownOne &= Mask;
1949
1950        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1951      }
1952    }
1953    return;
1954  case ISD::UREM: {
1955    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1956      const APInt &RA = Rem->getAPIntValue();
1957      if (RA.isPowerOf2()) {
1958        APInt LowBits = (RA - 1);
1959        APInt Mask2 = LowBits & Mask;
1960        KnownZero |= ~LowBits & Mask;
1961        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1962        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1963        break;
1964      }
1965    }
1966
1967    // Since the result is less than or equal to either operand, any leading
1968    // zero bits in either operand must also exist in the result.
1969    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1970    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1971                      Depth+1);
1972    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1973                      Depth+1);
1974
1975    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1976                                KnownZero2.countLeadingOnes());
1977    KnownOne.clear();
1978    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1979    return;
1980  }
1981  default:
1982    // Allow the target to implement this method for its nodes.
1983    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1984  case ISD::INTRINSIC_WO_CHAIN:
1985  case ISD::INTRINSIC_W_CHAIN:
1986  case ISD::INTRINSIC_VOID:
1987      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1988                                         Depth);
1989    }
1990    return;
1991  }
1992}
1993
1994/// ComputeNumSignBits - Return the number of times the sign bit of the
1995/// register is replicated into the other bits.  We know that at least 1 bit
1996/// is always equal to the sign bit (itself), but other cases can give us
1997/// information.  For example, immediately after an "SRA X, 2", we know that
1998/// the top 3 bits are all equal to each other, so we return 3.
1999unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2000  EVT VT = Op.getValueType();
2001  assert(VT.isInteger() && "Invalid VT!");
2002  unsigned VTBits = VT.getScalarType().getSizeInBits();
2003  unsigned Tmp, Tmp2;
2004  unsigned FirstAnswer = 1;
2005
2006  if (Depth == 6)
2007    return 1;  // Limit search depth.
2008
2009  switch (Op.getOpcode()) {
2010  default: break;
2011  case ISD::AssertSext:
2012    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2013    return VTBits-Tmp+1;
2014  case ISD::AssertZext:
2015    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2016    return VTBits-Tmp;
2017
2018  case ISD::Constant: {
2019    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2020    // If negative, return # leading ones.
2021    if (Val.isNegative())
2022      return Val.countLeadingOnes();
2023
2024    // Return # leading zeros.
2025    return Val.countLeadingZeros();
2026  }
2027
2028  case ISD::SIGN_EXTEND:
2029    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2030    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2031
2032  case ISD::SIGN_EXTEND_INREG:
2033    // Max of the input and what this extends.
2034    Tmp =
2035      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2036    Tmp = VTBits-Tmp+1;
2037
2038    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2039    return std::max(Tmp, Tmp2);
2040
2041  case ISD::SRA:
2042    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2043    // SRA X, C   -> adds C sign bits.
2044    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2045      Tmp += C->getZExtValue();
2046      if (Tmp > VTBits) Tmp = VTBits;
2047    }
2048    return Tmp;
2049  case ISD::SHL:
2050    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2051      // shl destroys sign bits.
2052      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2053      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2054          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2055      return Tmp - C->getZExtValue();
2056    }
2057    break;
2058  case ISD::AND:
2059  case ISD::OR:
2060  case ISD::XOR:    // NOT is handled here.
2061    // Logical binary ops preserve the number of sign bits at the worst.
2062    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2063    if (Tmp != 1) {
2064      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2065      FirstAnswer = std::min(Tmp, Tmp2);
2066      // We computed what we know about the sign bits as our first
2067      // answer. Now proceed to the generic code that uses
2068      // ComputeMaskedBits, and pick whichever answer is better.
2069    }
2070    break;
2071
2072  case ISD::SELECT:
2073    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2074    if (Tmp == 1) return 1;  // Early out.
2075    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2076    return std::min(Tmp, Tmp2);
2077
2078  case ISD::SADDO:
2079  case ISD::UADDO:
2080  case ISD::SSUBO:
2081  case ISD::USUBO:
2082  case ISD::SMULO:
2083  case ISD::UMULO:
2084    if (Op.getResNo() != 1)
2085      break;
2086    // The boolean result conforms to getBooleanContents.  Fall through.
2087  case ISD::SETCC:
2088    // If setcc returns 0/-1, all bits are sign bits.
2089    if (TLI.getBooleanContents() ==
2090        TargetLowering::ZeroOrNegativeOneBooleanContent)
2091      return VTBits;
2092    break;
2093  case ISD::ROTL:
2094  case ISD::ROTR:
2095    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2096      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2097
2098      // Handle rotate right by N like a rotate left by 32-N.
2099      if (Op.getOpcode() == ISD::ROTR)
2100        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2101
2102      // If we aren't rotating out all of the known-in sign bits, return the
2103      // number that are left.  This handles rotl(sext(x), 1) for example.
2104      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2105      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2106    }
2107    break;
2108  case ISD::ADD:
2109    // Add can have at most one carry bit.  Thus we know that the output
2110    // is, at worst, one more bit than the inputs.
2111    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2112    if (Tmp == 1) return 1;  // Early out.
2113
2114    // Special case decrementing a value (ADD X, -1):
2115    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2116      if (CRHS->isAllOnesValue()) {
2117        APInt KnownZero, KnownOne;
2118        APInt Mask = APInt::getAllOnesValue(VTBits);
2119        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2120
2121        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2122        // sign bits set.
2123        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2124          return VTBits;
2125
2126        // If we are subtracting one from a positive number, there is no carry
2127        // out of the result.
2128        if (KnownZero.isNegative())
2129          return Tmp;
2130      }
2131
2132    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2133    if (Tmp2 == 1) return 1;
2134      return std::min(Tmp, Tmp2)-1;
2135    break;
2136
2137  case ISD::SUB:
2138    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2139    if (Tmp2 == 1) return 1;
2140
2141    // Handle NEG.
2142    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2143      if (CLHS->isNullValue()) {
2144        APInt KnownZero, KnownOne;
2145        APInt Mask = APInt::getAllOnesValue(VTBits);
2146        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2147        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2148        // sign bits set.
2149        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2150          return VTBits;
2151
2152        // If the input is known to be positive (the sign bit is known clear),
2153        // the output of the NEG has the same number of sign bits as the input.
2154        if (KnownZero.isNegative())
2155          return Tmp2;
2156
2157        // Otherwise, we treat this like a SUB.
2158      }
2159
2160    // Sub can have at most one carry bit.  Thus we know that the output
2161    // is, at worst, one more bit than the inputs.
2162    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2163    if (Tmp == 1) return 1;  // Early out.
2164      return std::min(Tmp, Tmp2)-1;
2165    break;
2166  case ISD::TRUNCATE:
2167    // FIXME: it's tricky to do anything useful for this, but it is an important
2168    // case for targets like X86.
2169    break;
2170  }
2171
2172  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2173  if (Op.getOpcode() == ISD::LOAD) {
2174    LoadSDNode *LD = cast<LoadSDNode>(Op);
2175    unsigned ExtType = LD->getExtensionType();
2176    switch (ExtType) {
2177    default: break;
2178    case ISD::SEXTLOAD:    // '17' bits known
2179      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2180      return VTBits-Tmp+1;
2181    case ISD::ZEXTLOAD:    // '16' bits known
2182      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2183      return VTBits-Tmp;
2184    }
2185  }
2186
2187  // Allow the target to implement this method for its nodes.
2188  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2189      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2190      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2191      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2192    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2193    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2194  }
2195
2196  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2197  // use this information.
2198  APInt KnownZero, KnownOne;
2199  APInt Mask = APInt::getAllOnesValue(VTBits);
2200  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2201
2202  if (KnownZero.isNegative()) {        // sign bit is 0
2203    Mask = KnownZero;
2204  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2205    Mask = KnownOne;
2206  } else {
2207    // Nothing known.
2208    return FirstAnswer;
2209  }
2210
2211  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2212  // the number of identical bits in the top of the input value.
2213  Mask = ~Mask;
2214  Mask <<= Mask.getBitWidth()-VTBits;
2215  // Return # leading zeros.  We use 'min' here in case Val was zero before
2216  // shifting.  We don't want to return '64' as for an i32 "0".
2217  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2218}
2219
2220bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2221  // If we're told that NaNs won't happen, assume they won't.
2222  if (FiniteOnlyFPMath())
2223    return true;
2224
2225  // If the value is a constant, we can obviously see if it is a NaN or not.
2226  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2227    return !C->getValueAPF().isNaN();
2228
2229  // TODO: Recognize more cases here.
2230
2231  return false;
2232}
2233
2234bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2235  // If the value is a constant, we can obviously see if it is a zero or not.
2236  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2237    return !C->isZero();
2238
2239  // TODO: Recognize more cases here.
2240
2241  return false;
2242}
2243
2244bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2245  // Check the obvious case.
2246  if (A == B) return true;
2247
2248  // For for negative and positive zero.
2249  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2250    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2251      if (CA->isZero() && CB->isZero()) return true;
2252
2253  // Otherwise they may not be equal.
2254  return false;
2255}
2256
2257bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2258  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2259  if (!GA) return false;
2260  if (GA->getOffset() != 0) return false;
2261  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2262  if (!GV) return false;
2263  MachineModuleInfo *MMI = getMachineModuleInfo();
2264  return MMI && MMI->hasDebugInfo();
2265}
2266
2267
2268/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2269/// element of the result of the vector shuffle.
2270SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2271                                          unsigned i) {
2272  EVT VT = N->getValueType(0);
2273  DebugLoc dl = N->getDebugLoc();
2274  if (N->getMaskElt(i) < 0)
2275    return getUNDEF(VT.getVectorElementType());
2276  unsigned Index = N->getMaskElt(i);
2277  unsigned NumElems = VT.getVectorNumElements();
2278  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2279  Index %= NumElems;
2280
2281  if (V.getOpcode() == ISD::BIT_CONVERT) {
2282    V = V.getOperand(0);
2283    EVT VVT = V.getValueType();
2284    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2285      return SDValue();
2286  }
2287  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2288    return (Index == 0) ? V.getOperand(0)
2289                      : getUNDEF(VT.getVectorElementType());
2290  if (V.getOpcode() == ISD::BUILD_VECTOR)
2291    return V.getOperand(Index);
2292  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2293    return getShuffleScalarElt(SVN, Index);
2294  return SDValue();
2295}
2296
2297
2298/// getNode - Gets or creates the specified node.
2299///
2300SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2301  FoldingSetNodeID ID;
2302  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2303  void *IP = 0;
2304  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2305    return SDValue(E, 0);
2306
2307  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2308  CSEMap.InsertNode(N, IP);
2309
2310  AllNodes.push_back(N);
2311#ifndef NDEBUG
2312  VerifyNode(N);
2313#endif
2314  return SDValue(N, 0);
2315}
2316
2317SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2318                              EVT VT, SDValue Operand) {
2319  // Constant fold unary operations with an integer constant operand.
2320  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2321    const APInt &Val = C->getAPIntValue();
2322    switch (Opcode) {
2323    default: break;
2324    case ISD::SIGN_EXTEND:
2325      return getConstant(APInt(Val).sextOrTrunc(VT.getSizeInBits()), VT);
2326    case ISD::ANY_EXTEND:
2327    case ISD::ZERO_EXTEND:
2328    case ISD::TRUNCATE:
2329      return getConstant(APInt(Val).zextOrTrunc(VT.getSizeInBits()), VT);
2330    case ISD::UINT_TO_FP:
2331    case ISD::SINT_TO_FP: {
2332      const uint64_t zero[] = {0, 0};
2333      // No compile time operations on ppcf128.
2334      if (VT == MVT::ppcf128) break;
2335      APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2336      (void)apf.convertFromAPInt(Val,
2337                                 Opcode==ISD::SINT_TO_FP,
2338                                 APFloat::rmNearestTiesToEven);
2339      return getConstantFP(apf, VT);
2340    }
2341    case ISD::BIT_CONVERT:
2342      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2343        return getConstantFP(Val.bitsToFloat(), VT);
2344      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2345        return getConstantFP(Val.bitsToDouble(), VT);
2346      break;
2347    case ISD::BSWAP:
2348      return getConstant(Val.byteSwap(), VT);
2349    case ISD::CTPOP:
2350      return getConstant(Val.countPopulation(), VT);
2351    case ISD::CTLZ:
2352      return getConstant(Val.countLeadingZeros(), VT);
2353    case ISD::CTTZ:
2354      return getConstant(Val.countTrailingZeros(), VT);
2355    }
2356  }
2357
2358  // Constant fold unary operations with a floating point constant operand.
2359  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2360    APFloat V = C->getValueAPF();    // make copy
2361    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2362      switch (Opcode) {
2363      case ISD::FNEG:
2364        V.changeSign();
2365        return getConstantFP(V, VT);
2366      case ISD::FABS:
2367        V.clearSign();
2368        return getConstantFP(V, VT);
2369      case ISD::FP_ROUND:
2370      case ISD::FP_EXTEND: {
2371        bool ignored;
2372        // This can return overflow, underflow, or inexact; we don't care.
2373        // FIXME need to be more flexible about rounding mode.
2374        (void)V.convert(*EVTToAPFloatSemantics(VT),
2375                        APFloat::rmNearestTiesToEven, &ignored);
2376        return getConstantFP(V, VT);
2377      }
2378      case ISD::FP_TO_SINT:
2379      case ISD::FP_TO_UINT: {
2380        integerPart x[2];
2381        bool ignored;
2382        assert(integerPartWidth >= 64);
2383        // FIXME need to be more flexible about rounding mode.
2384        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2385                              Opcode==ISD::FP_TO_SINT,
2386                              APFloat::rmTowardZero, &ignored);
2387        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2388          break;
2389        APInt api(VT.getSizeInBits(), 2, x);
2390        return getConstant(api, VT);
2391      }
2392      case ISD::BIT_CONVERT:
2393        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2394          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2395        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2396          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2397        break;
2398      }
2399    }
2400  }
2401
2402  unsigned OpOpcode = Operand.getNode()->getOpcode();
2403  switch (Opcode) {
2404  case ISD::TokenFactor:
2405  case ISD::MERGE_VALUES:
2406  case ISD::CONCAT_VECTORS:
2407    return Operand;         // Factor, merge or concat of one node?  No need.
2408  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2409  case ISD::FP_EXTEND:
2410    assert(VT.isFloatingPoint() &&
2411           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2412    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2413    assert((!VT.isVector() ||
2414            VT.getVectorNumElements() ==
2415            Operand.getValueType().getVectorNumElements()) &&
2416           "Vector element count mismatch!");
2417    if (Operand.getOpcode() == ISD::UNDEF)
2418      return getUNDEF(VT);
2419    break;
2420  case ISD::SIGN_EXTEND:
2421    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2422           "Invalid SIGN_EXTEND!");
2423    if (Operand.getValueType() == VT) return Operand;   // noop extension
2424    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2425           "Invalid sext node, dst < src!");
2426    assert((!VT.isVector() ||
2427            VT.getVectorNumElements() ==
2428            Operand.getValueType().getVectorNumElements()) &&
2429           "Vector element count mismatch!");
2430    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2431      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2432    break;
2433  case ISD::ZERO_EXTEND:
2434    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2435           "Invalid ZERO_EXTEND!");
2436    if (Operand.getValueType() == VT) return Operand;   // noop extension
2437    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2438           "Invalid zext node, dst < src!");
2439    assert((!VT.isVector() ||
2440            VT.getVectorNumElements() ==
2441            Operand.getValueType().getVectorNumElements()) &&
2442           "Vector element count mismatch!");
2443    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2444      return getNode(ISD::ZERO_EXTEND, DL, VT,
2445                     Operand.getNode()->getOperand(0));
2446    break;
2447  case ISD::ANY_EXTEND:
2448    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2449           "Invalid ANY_EXTEND!");
2450    if (Operand.getValueType() == VT) return Operand;   // noop extension
2451    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2452           "Invalid anyext node, dst < src!");
2453    assert((!VT.isVector() ||
2454            VT.getVectorNumElements() ==
2455            Operand.getValueType().getVectorNumElements()) &&
2456           "Vector element count mismatch!");
2457    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2458      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2459      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2460    break;
2461  case ISD::TRUNCATE:
2462    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2463           "Invalid TRUNCATE!");
2464    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2465    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2466           "Invalid truncate node, src < dst!");
2467    assert((!VT.isVector() ||
2468            VT.getVectorNumElements() ==
2469            Operand.getValueType().getVectorNumElements()) &&
2470           "Vector element count mismatch!");
2471    if (OpOpcode == ISD::TRUNCATE)
2472      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2473    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2474             OpOpcode == ISD::ANY_EXTEND) {
2475      // If the source is smaller than the dest, we still need an extend.
2476      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2477            .bitsLT(VT.getScalarType()))
2478        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2479      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2480        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2481      else
2482        return Operand.getNode()->getOperand(0);
2483    }
2484    break;
2485  case ISD::BIT_CONVERT:
2486    // Basic sanity checking.
2487    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2488           && "Cannot BIT_CONVERT between types of different sizes!");
2489    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2490    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2491      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2492    if (OpOpcode == ISD::UNDEF)
2493      return getUNDEF(VT);
2494    break;
2495  case ISD::SCALAR_TO_VECTOR:
2496    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2497           (VT.getVectorElementType() == Operand.getValueType() ||
2498            (VT.getVectorElementType().isInteger() &&
2499             Operand.getValueType().isInteger() &&
2500             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2501           "Illegal SCALAR_TO_VECTOR node!");
2502    if (OpOpcode == ISD::UNDEF)
2503      return getUNDEF(VT);
2504    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2505    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2506        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2507        Operand.getConstantOperandVal(1) == 0 &&
2508        Operand.getOperand(0).getValueType() == VT)
2509      return Operand.getOperand(0);
2510    break;
2511  case ISD::FNEG:
2512    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2513    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2514      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2515                     Operand.getNode()->getOperand(0));
2516    if (OpOpcode == ISD::FNEG)  // --X -> X
2517      return Operand.getNode()->getOperand(0);
2518    break;
2519  case ISD::FABS:
2520    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2521      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2522    break;
2523  }
2524
2525  SDNode *N;
2526  SDVTList VTs = getVTList(VT);
2527  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2528    FoldingSetNodeID ID;
2529    SDValue Ops[1] = { Operand };
2530    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2531    void *IP = 0;
2532    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2533      return SDValue(E, 0);
2534
2535    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2536    CSEMap.InsertNode(N, IP);
2537  } else {
2538    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2539  }
2540
2541  AllNodes.push_back(N);
2542#ifndef NDEBUG
2543  VerifyNode(N);
2544#endif
2545  return SDValue(N, 0);
2546}
2547
2548SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2549                                             EVT VT,
2550                                             ConstantSDNode *Cst1,
2551                                             ConstantSDNode *Cst2) {
2552  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2553
2554  switch (Opcode) {
2555  case ISD::ADD:  return getConstant(C1 + C2, VT);
2556  case ISD::SUB:  return getConstant(C1 - C2, VT);
2557  case ISD::MUL:  return getConstant(C1 * C2, VT);
2558  case ISD::UDIV:
2559    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2560    break;
2561  case ISD::UREM:
2562    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2563    break;
2564  case ISD::SDIV:
2565    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2566    break;
2567  case ISD::SREM:
2568    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2569    break;
2570  case ISD::AND:  return getConstant(C1 & C2, VT);
2571  case ISD::OR:   return getConstant(C1 | C2, VT);
2572  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2573  case ISD::SHL:  return getConstant(C1 << C2, VT);
2574  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2575  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2576  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2577  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2578  default: break;
2579  }
2580
2581  return SDValue();
2582}
2583
2584SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2585                              SDValue N1, SDValue N2) {
2586  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2587  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2588  switch (Opcode) {
2589  default: break;
2590  case ISD::TokenFactor:
2591    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2592           N2.getValueType() == MVT::Other && "Invalid token factor!");
2593    // Fold trivial token factors.
2594    if (N1.getOpcode() == ISD::EntryToken) return N2;
2595    if (N2.getOpcode() == ISD::EntryToken) return N1;
2596    if (N1 == N2) return N1;
2597    break;
2598  case ISD::CONCAT_VECTORS:
2599    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2600    // one big BUILD_VECTOR.
2601    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2602        N2.getOpcode() == ISD::BUILD_VECTOR) {
2603      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2604      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2605      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2606    }
2607    break;
2608  case ISD::AND:
2609    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2610           N1.getValueType() == VT && "Binary operator types must match!");
2611    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2612    // worth handling here.
2613    if (N2C && N2C->isNullValue())
2614      return N2;
2615    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2616      return N1;
2617    break;
2618  case ISD::OR:
2619  case ISD::XOR:
2620  case ISD::ADD:
2621  case ISD::SUB:
2622    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2623           N1.getValueType() == VT && "Binary operator types must match!");
2624    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2625    // it's worth handling here.
2626    if (N2C && N2C->isNullValue())
2627      return N1;
2628    break;
2629  case ISD::UDIV:
2630  case ISD::UREM:
2631  case ISD::MULHU:
2632  case ISD::MULHS:
2633  case ISD::MUL:
2634  case ISD::SDIV:
2635  case ISD::SREM:
2636    assert(VT.isInteger() && "This operator does not apply to FP types!");
2637    // fall through
2638  case ISD::FADD:
2639  case ISD::FSUB:
2640  case ISD::FMUL:
2641  case ISD::FDIV:
2642  case ISD::FREM:
2643    if (UnsafeFPMath) {
2644      if (Opcode == ISD::FADD) {
2645        // 0+x --> x
2646        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2647          if (CFP->getValueAPF().isZero())
2648            return N2;
2649        // x+0 --> x
2650        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2651          if (CFP->getValueAPF().isZero())
2652            return N1;
2653      } else if (Opcode == ISD::FSUB) {
2654        // x-0 --> x
2655        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2656          if (CFP->getValueAPF().isZero())
2657            return N1;
2658      }
2659    }
2660    assert(N1.getValueType() == N2.getValueType() &&
2661           N1.getValueType() == VT && "Binary operator types must match!");
2662    break;
2663  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2664    assert(N1.getValueType() == VT &&
2665           N1.getValueType().isFloatingPoint() &&
2666           N2.getValueType().isFloatingPoint() &&
2667           "Invalid FCOPYSIGN!");
2668    break;
2669  case ISD::SHL:
2670  case ISD::SRA:
2671  case ISD::SRL:
2672  case ISD::ROTL:
2673  case ISD::ROTR:
2674    assert(VT == N1.getValueType() &&
2675           "Shift operators return type must be the same as their first arg");
2676    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2677           "Shifts only work on integers");
2678
2679    // Always fold shifts of i1 values so the code generator doesn't need to
2680    // handle them.  Since we know the size of the shift has to be less than the
2681    // size of the value, the shift/rotate count is guaranteed to be zero.
2682    if (VT == MVT::i1)
2683      return N1;
2684    if (N2C && N2C->isNullValue())
2685      return N1;
2686    break;
2687  case ISD::FP_ROUND_INREG: {
2688    EVT EVT = cast<VTSDNode>(N2)->getVT();
2689    assert(VT == N1.getValueType() && "Not an inreg round!");
2690    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2691           "Cannot FP_ROUND_INREG integer types");
2692    assert(EVT.isVector() == VT.isVector() &&
2693           "FP_ROUND_INREG type should be vector iff the operand "
2694           "type is vector!");
2695    assert((!EVT.isVector() ||
2696            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2697           "Vector element counts must match in FP_ROUND_INREG");
2698    assert(EVT.bitsLE(VT) && "Not rounding down!");
2699    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2700    break;
2701  }
2702  case ISD::FP_ROUND:
2703    assert(VT.isFloatingPoint() &&
2704           N1.getValueType().isFloatingPoint() &&
2705           VT.bitsLE(N1.getValueType()) &&
2706           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2707    if (N1.getValueType() == VT) return N1;  // noop conversion.
2708    break;
2709  case ISD::AssertSext:
2710  case ISD::AssertZext: {
2711    EVT EVT = cast<VTSDNode>(N2)->getVT();
2712    assert(VT == N1.getValueType() && "Not an inreg extend!");
2713    assert(VT.isInteger() && EVT.isInteger() &&
2714           "Cannot *_EXTEND_INREG FP types");
2715    assert(!EVT.isVector() &&
2716           "AssertSExt/AssertZExt type should be the vector element type "
2717           "rather than the vector type!");
2718    assert(EVT.bitsLE(VT) && "Not extending!");
2719    if (VT == EVT) return N1; // noop assertion.
2720    break;
2721  }
2722  case ISD::SIGN_EXTEND_INREG: {
2723    EVT EVT = cast<VTSDNode>(N2)->getVT();
2724    assert(VT == N1.getValueType() && "Not an inreg extend!");
2725    assert(VT.isInteger() && EVT.isInteger() &&
2726           "Cannot *_EXTEND_INREG FP types");
2727    assert(EVT.isVector() == VT.isVector() &&
2728           "SIGN_EXTEND_INREG type should be vector iff the operand "
2729           "type is vector!");
2730    assert((!EVT.isVector() ||
2731            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2732           "Vector element counts must match in SIGN_EXTEND_INREG");
2733    assert(EVT.bitsLE(VT) && "Not extending!");
2734    if (EVT == VT) return N1;  // Not actually extending
2735
2736    if (N1C) {
2737      APInt Val = N1C->getAPIntValue();
2738      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2739      Val <<= Val.getBitWidth()-FromBits;
2740      Val = Val.ashr(Val.getBitWidth()-FromBits);
2741      return getConstant(Val, VT);
2742    }
2743    break;
2744  }
2745  case ISD::EXTRACT_VECTOR_ELT:
2746    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2747    if (N1.getOpcode() == ISD::UNDEF)
2748      return getUNDEF(VT);
2749
2750    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2751    // expanding copies of large vectors from registers.
2752    if (N2C &&
2753        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2754        N1.getNumOperands() > 0) {
2755      unsigned Factor =
2756        N1.getOperand(0).getValueType().getVectorNumElements();
2757      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2758                     N1.getOperand(N2C->getZExtValue() / Factor),
2759                     getConstant(N2C->getZExtValue() % Factor,
2760                                 N2.getValueType()));
2761    }
2762
2763    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2764    // expanding large vector constants.
2765    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2766      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2767      EVT VEltTy = N1.getValueType().getVectorElementType();
2768      if (Elt.getValueType() != VEltTy) {
2769        // If the vector element type is not legal, the BUILD_VECTOR operands
2770        // are promoted and implicitly truncated.  Make that explicit here.
2771        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2772      }
2773      if (VT != VEltTy) {
2774        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2775        // result is implicitly extended.
2776        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2777      }
2778      return Elt;
2779    }
2780
2781    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2782    // operations are lowered to scalars.
2783    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2784      // If the indices are the same, return the inserted element else
2785      // if the indices are known different, extract the element from
2786      // the original vector.
2787      if (N1.getOperand(2) == N2) {
2788        if (VT == N1.getOperand(1).getValueType())
2789          return N1.getOperand(1);
2790        else
2791          return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2792      } else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2793                 isa<ConstantSDNode>(N2))
2794        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2795    }
2796    break;
2797  case ISD::EXTRACT_ELEMENT:
2798    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2799    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2800           (N1.getValueType().isInteger() == VT.isInteger()) &&
2801           "Wrong types for EXTRACT_ELEMENT!");
2802
2803    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2804    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2805    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2806    if (N1.getOpcode() == ISD::BUILD_PAIR)
2807      return N1.getOperand(N2C->getZExtValue());
2808
2809    // EXTRACT_ELEMENT of a constant int is also very common.
2810    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2811      unsigned ElementSize = VT.getSizeInBits();
2812      unsigned Shift = ElementSize * N2C->getZExtValue();
2813      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2814      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2815    }
2816    break;
2817  case ISD::EXTRACT_SUBVECTOR:
2818    if (N1.getValueType() == VT) // Trivial extraction.
2819      return N1;
2820    break;
2821  }
2822
2823  if (N1C) {
2824    if (N2C) {
2825      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2826      if (SV.getNode()) return SV;
2827    } else {      // Cannonicalize constant to RHS if commutative
2828      if (isCommutativeBinOp(Opcode)) {
2829        std::swap(N1C, N2C);
2830        std::swap(N1, N2);
2831      }
2832    }
2833  }
2834
2835  // Constant fold FP operations.
2836  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2837  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2838  if (N1CFP) {
2839    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2840      // Cannonicalize constant to RHS if commutative
2841      std::swap(N1CFP, N2CFP);
2842      std::swap(N1, N2);
2843    } else if (N2CFP && VT != MVT::ppcf128) {
2844      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2845      APFloat::opStatus s;
2846      switch (Opcode) {
2847      case ISD::FADD:
2848        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2849        if (s != APFloat::opInvalidOp)
2850          return getConstantFP(V1, VT);
2851        break;
2852      case ISD::FSUB:
2853        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2854        if (s!=APFloat::opInvalidOp)
2855          return getConstantFP(V1, VT);
2856        break;
2857      case ISD::FMUL:
2858        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2859        if (s!=APFloat::opInvalidOp)
2860          return getConstantFP(V1, VT);
2861        break;
2862      case ISD::FDIV:
2863        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2864        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2865          return getConstantFP(V1, VT);
2866        break;
2867      case ISD::FREM :
2868        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2869        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2870          return getConstantFP(V1, VT);
2871        break;
2872      case ISD::FCOPYSIGN:
2873        V1.copySign(V2);
2874        return getConstantFP(V1, VT);
2875      default: break;
2876      }
2877    }
2878  }
2879
2880  // Canonicalize an UNDEF to the RHS, even over a constant.
2881  if (N1.getOpcode() == ISD::UNDEF) {
2882    if (isCommutativeBinOp(Opcode)) {
2883      std::swap(N1, N2);
2884    } else {
2885      switch (Opcode) {
2886      case ISD::FP_ROUND_INREG:
2887      case ISD::SIGN_EXTEND_INREG:
2888      case ISD::SUB:
2889      case ISD::FSUB:
2890      case ISD::FDIV:
2891      case ISD::FREM:
2892      case ISD::SRA:
2893        return N1;     // fold op(undef, arg2) -> undef
2894      case ISD::UDIV:
2895      case ISD::SDIV:
2896      case ISD::UREM:
2897      case ISD::SREM:
2898      case ISD::SRL:
2899      case ISD::SHL:
2900        if (!VT.isVector())
2901          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2902        // For vectors, we can't easily build an all zero vector, just return
2903        // the LHS.
2904        return N2;
2905      }
2906    }
2907  }
2908
2909  // Fold a bunch of operators when the RHS is undef.
2910  if (N2.getOpcode() == ISD::UNDEF) {
2911    switch (Opcode) {
2912    case ISD::XOR:
2913      if (N1.getOpcode() == ISD::UNDEF)
2914        // Handle undef ^ undef -> 0 special case. This is a common
2915        // idiom (misuse).
2916        return getConstant(0, VT);
2917      // fallthrough
2918    case ISD::ADD:
2919    case ISD::ADDC:
2920    case ISD::ADDE:
2921    case ISD::SUB:
2922    case ISD::UDIV:
2923    case ISD::SDIV:
2924    case ISD::UREM:
2925    case ISD::SREM:
2926      return N2;       // fold op(arg1, undef) -> undef
2927    case ISD::FADD:
2928    case ISD::FSUB:
2929    case ISD::FMUL:
2930    case ISD::FDIV:
2931    case ISD::FREM:
2932      if (UnsafeFPMath)
2933        return N2;
2934      break;
2935    case ISD::MUL:
2936    case ISD::AND:
2937    case ISD::SRL:
2938    case ISD::SHL:
2939      if (!VT.isVector())
2940        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2941      // For vectors, we can't easily build an all zero vector, just return
2942      // the LHS.
2943      return N1;
2944    case ISD::OR:
2945      if (!VT.isVector())
2946        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2947      // For vectors, we can't easily build an all one vector, just return
2948      // the LHS.
2949      return N1;
2950    case ISD::SRA:
2951      return N1;
2952    }
2953  }
2954
2955  // Memoize this node if possible.
2956  SDNode *N;
2957  SDVTList VTs = getVTList(VT);
2958  if (VT != MVT::Flag) {
2959    SDValue Ops[] = { N1, N2 };
2960    FoldingSetNodeID ID;
2961    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2962    void *IP = 0;
2963    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2964      return SDValue(E, 0);
2965
2966    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2967    CSEMap.InsertNode(N, IP);
2968  } else {
2969    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2970  }
2971
2972  AllNodes.push_back(N);
2973#ifndef NDEBUG
2974  VerifyNode(N);
2975#endif
2976  return SDValue(N, 0);
2977}
2978
2979SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2980                              SDValue N1, SDValue N2, SDValue N3) {
2981  // Perform various simplifications.
2982  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2983  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2984  switch (Opcode) {
2985  case ISD::CONCAT_VECTORS:
2986    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2987    // one big BUILD_VECTOR.
2988    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2989        N2.getOpcode() == ISD::BUILD_VECTOR &&
2990        N3.getOpcode() == ISD::BUILD_VECTOR) {
2991      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2992      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2993      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2994      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2995    }
2996    break;
2997  case ISD::SETCC: {
2998    // Use FoldSetCC to simplify SETCC's.
2999    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3000    if (Simp.getNode()) return Simp;
3001    break;
3002  }
3003  case ISD::SELECT:
3004    if (N1C) {
3005     if (N1C->getZExtValue())
3006        return N2;             // select true, X, Y -> X
3007      else
3008        return N3;             // select false, X, Y -> Y
3009    }
3010
3011    if (N2 == N3) return N2;   // select C, X, X -> X
3012    break;
3013  case ISD::BRCOND:
3014    if (N2C) {
3015      if (N2C->getZExtValue()) // Unconditional branch
3016        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
3017      else
3018        return N1;         // Never-taken branch
3019    }
3020    break;
3021  case ISD::VECTOR_SHUFFLE:
3022    llvm_unreachable("should use getVectorShuffle constructor!");
3023    break;
3024  case ISD::BIT_CONVERT:
3025    // Fold bit_convert nodes from a type to themselves.
3026    if (N1.getValueType() == VT)
3027      return N1;
3028    break;
3029  }
3030
3031  // Memoize node if it doesn't produce a flag.
3032  SDNode *N;
3033  SDVTList VTs = getVTList(VT);
3034  if (VT != MVT::Flag) {
3035    SDValue Ops[] = { N1, N2, N3 };
3036    FoldingSetNodeID ID;
3037    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3038    void *IP = 0;
3039    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3040      return SDValue(E, 0);
3041
3042    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3043    CSEMap.InsertNode(N, IP);
3044  } else {
3045    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3046  }
3047
3048  AllNodes.push_back(N);
3049#ifndef NDEBUG
3050  VerifyNode(N);
3051#endif
3052  return SDValue(N, 0);
3053}
3054
3055SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3056                              SDValue N1, SDValue N2, SDValue N3,
3057                              SDValue N4) {
3058  SDValue Ops[] = { N1, N2, N3, N4 };
3059  return getNode(Opcode, DL, VT, Ops, 4);
3060}
3061
3062SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3063                              SDValue N1, SDValue N2, SDValue N3,
3064                              SDValue N4, SDValue N5) {
3065  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3066  return getNode(Opcode, DL, VT, Ops, 5);
3067}
3068
3069/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3070/// the incoming stack arguments to be loaded from the stack.
3071SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3072  SmallVector<SDValue, 8> ArgChains;
3073
3074  // Include the original chain at the beginning of the list. When this is
3075  // used by target LowerCall hooks, this helps legalize find the
3076  // CALLSEQ_BEGIN node.
3077  ArgChains.push_back(Chain);
3078
3079  // Add a chain value for each stack argument.
3080  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3081       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3082    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3083      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3084        if (FI->getIndex() < 0)
3085          ArgChains.push_back(SDValue(L, 1));
3086
3087  // Build a tokenfactor for all the chains.
3088  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3089                 &ArgChains[0], ArgChains.size());
3090}
3091
3092/// getMemsetValue - Vectorized representation of the memset value
3093/// operand.
3094static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3095                              DebugLoc dl) {
3096  unsigned NumBits = VT.getScalarType().getSizeInBits();
3097  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3098    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3099    unsigned Shift = 8;
3100    for (unsigned i = NumBits; i > 8; i >>= 1) {
3101      Val = (Val << Shift) | Val;
3102      Shift <<= 1;
3103    }
3104    if (VT.isInteger())
3105      return DAG.getConstant(Val, VT);
3106    return DAG.getConstantFP(APFloat(Val), VT);
3107  }
3108
3109  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3110  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3111  unsigned Shift = 8;
3112  for (unsigned i = NumBits; i > 8; i >>= 1) {
3113    Value = DAG.getNode(ISD::OR, dl, VT,
3114                        DAG.getNode(ISD::SHL, dl, VT, Value,
3115                                    DAG.getConstant(Shift,
3116                                                    TLI.getShiftAmountTy())),
3117                        Value);
3118    Shift <<= 1;
3119  }
3120
3121  return Value;
3122}
3123
3124/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3125/// used when a memcpy is turned into a memset when the source is a constant
3126/// string ptr.
3127static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3128                                  const TargetLowering &TLI,
3129                                  std::string &Str, unsigned Offset) {
3130  // Handle vector with all elements zero.
3131  if (Str.empty()) {
3132    if (VT.isInteger())
3133      return DAG.getConstant(0, VT);
3134    unsigned NumElts = VT.getVectorNumElements();
3135    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3136    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3137                       DAG.getConstant(0,
3138                       EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts)));
3139  }
3140
3141  assert(!VT.isVector() && "Can't handle vector type here!");
3142  unsigned NumBits = VT.getSizeInBits();
3143  unsigned MSB = NumBits / 8;
3144  uint64_t Val = 0;
3145  if (TLI.isLittleEndian())
3146    Offset = Offset + MSB - 1;
3147  for (unsigned i = 0; i != MSB; ++i) {
3148    Val = (Val << 8) | (unsigned char)Str[Offset];
3149    Offset += TLI.isLittleEndian() ? -1 : 1;
3150  }
3151  return DAG.getConstant(Val, VT);
3152}
3153
3154/// getMemBasePlusOffset - Returns base and offset node for the
3155///
3156static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3157                                      SelectionDAG &DAG) {
3158  EVT VT = Base.getValueType();
3159  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3160                     VT, Base, DAG.getConstant(Offset, VT));
3161}
3162
3163/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3164///
3165static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3166  unsigned SrcDelta = 0;
3167  GlobalAddressSDNode *G = NULL;
3168  if (Src.getOpcode() == ISD::GlobalAddress)
3169    G = cast<GlobalAddressSDNode>(Src);
3170  else if (Src.getOpcode() == ISD::ADD &&
3171           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3172           Src.getOperand(1).getOpcode() == ISD::Constant) {
3173    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3174    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3175  }
3176  if (!G)
3177    return false;
3178
3179  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3180  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3181    return true;
3182
3183  return false;
3184}
3185
3186/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3187/// to replace the memset / memcpy is below the threshold. It also returns the
3188/// types of the sequence of memory ops to perform memset / memcpy.
3189static
3190bool MeetsMaxMemopRequirement(std::vector<EVT> &MemOps,
3191                              SDValue Dst, SDValue Src,
3192                              unsigned Limit, uint64_t Size, unsigned &Align,
3193                              std::string &Str, bool &isSrcStr,
3194                              SelectionDAG &DAG,
3195                              const TargetLowering &TLI) {
3196  isSrcStr = isMemSrcFromString(Src, Str);
3197  bool isSrcConst = isa<ConstantSDNode>(Src);
3198  EVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
3199  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses(VT);
3200  if (VT != MVT::Other) {
3201    const Type *Ty = VT.getTypeForEVT(*DAG.getContext());
3202    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3203    // If source is a string constant, this will require an unaligned load.
3204    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3205      if (Dst.getOpcode() != ISD::FrameIndex) {
3206        // Can't change destination alignment. It requires a unaligned store.
3207        if (AllowUnalign)
3208          VT = MVT::Other;
3209      } else {
3210        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3211        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3212        if (MFI->isFixedObjectIndex(FI)) {
3213          // Can't change destination alignment. It requires a unaligned store.
3214          if (AllowUnalign)
3215            VT = MVT::Other;
3216        } else {
3217          // Give the stack frame object a larger alignment if needed.
3218          if (MFI->getObjectAlignment(FI) < NewAlign)
3219            MFI->setObjectAlignment(FI, NewAlign);
3220          Align = NewAlign;
3221        }
3222      }
3223    }
3224  }
3225
3226  if (VT == MVT::Other) {
3227    if (TLI.allowsUnalignedMemoryAccesses(MVT::i64)) {
3228      VT = MVT::i64;
3229    } else {
3230      switch (Align & 7) {
3231      case 0:  VT = MVT::i64; break;
3232      case 4:  VT = MVT::i32; break;
3233      case 2:  VT = MVT::i16; break;
3234      default: VT = MVT::i8;  break;
3235      }
3236    }
3237
3238    MVT LVT = MVT::i64;
3239    while (!TLI.isTypeLegal(LVT))
3240      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3241    assert(LVT.isInteger());
3242
3243    if (VT.bitsGT(LVT))
3244      VT = LVT;
3245  }
3246
3247  unsigned NumMemOps = 0;
3248  while (Size != 0) {
3249    unsigned VTSize = VT.getSizeInBits() / 8;
3250    while (VTSize > Size) {
3251      // For now, only use non-vector load / store's for the left-over pieces.
3252      if (VT.isVector()) {
3253        VT = MVT::i64;
3254        while (!TLI.isTypeLegal(VT))
3255          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3256        VTSize = VT.getSizeInBits() / 8;
3257      } else {
3258        // This can result in a type that is not legal on the target, e.g.
3259        // 1 or 2 bytes on PPC.
3260        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3261        VTSize >>= 1;
3262      }
3263    }
3264
3265    if (++NumMemOps > Limit)
3266      return false;
3267    MemOps.push_back(VT);
3268    Size -= VTSize;
3269  }
3270
3271  return true;
3272}
3273
3274static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3275                                         SDValue Chain, SDValue Dst,
3276                                         SDValue Src, uint64_t Size,
3277                                         unsigned Align, bool AlwaysInline,
3278                                         const Value *DstSV, uint64_t DstSVOff,
3279                                         const Value *SrcSV, uint64_t SrcSVOff){
3280  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3281
3282  // Expand memcpy to a series of load and store ops if the size operand falls
3283  // below a certain threshold.
3284  std::vector<EVT> MemOps;
3285  uint64_t Limit = -1ULL;
3286  if (!AlwaysInline)
3287    Limit = TLI.getMaxStoresPerMemcpy();
3288  unsigned DstAlign = Align;  // Destination alignment can change.
3289  std::string Str;
3290  bool CopyFromStr;
3291  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3292                                Str, CopyFromStr, DAG, TLI))
3293    return SDValue();
3294
3295
3296  bool isZeroStr = CopyFromStr && Str.empty();
3297  SmallVector<SDValue, 8> OutChains;
3298  unsigned NumMemOps = MemOps.size();
3299  uint64_t SrcOff = 0, DstOff = 0;
3300  for (unsigned i = 0; i != NumMemOps; ++i) {
3301    EVT VT = MemOps[i];
3302    unsigned VTSize = VT.getSizeInBits() / 8;
3303    SDValue Value, Store;
3304
3305    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3306      // It's unlikely a store of a vector immediate can be done in a single
3307      // instruction. It would require a load from a constantpool first.
3308      // We also handle store a vector with all zero's.
3309      // FIXME: Handle other cases where store of vector immediate is done in
3310      // a single instruction.
3311      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3312      Store = DAG.getStore(Chain, dl, Value,
3313                           getMemBasePlusOffset(Dst, DstOff, DAG),
3314                           DstSV, DstSVOff + DstOff, false, false, DstAlign);
3315    } else {
3316      // The type might not be legal for the target.  This should only happen
3317      // if the type is smaller than a legal type, as on PPC, so the right
3318      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3319      // to Load/Store if NVT==VT.
3320      // FIXME does the case above also need this?
3321      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3322      assert(NVT.bitsGE(VT));
3323      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3324                             getMemBasePlusOffset(Src, SrcOff, DAG),
3325                             SrcSV, SrcSVOff + SrcOff, VT, false, false, Align);
3326      Store = DAG.getTruncStore(Chain, dl, Value,
3327                                getMemBasePlusOffset(Dst, DstOff, DAG),
3328                                DstSV, DstSVOff + DstOff, VT, false, false,
3329                                DstAlign);
3330    }
3331    OutChains.push_back(Store);
3332    SrcOff += VTSize;
3333    DstOff += VTSize;
3334  }
3335
3336  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3337                     &OutChains[0], OutChains.size());
3338}
3339
3340static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3341                                          SDValue Chain, SDValue Dst,
3342                                          SDValue Src, uint64_t Size,
3343                                          unsigned Align, bool AlwaysInline,
3344                                          const Value *DstSV, uint64_t DstSVOff,
3345                                          const Value *SrcSV, uint64_t SrcSVOff){
3346  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3347
3348  // Expand memmove to a series of load and store ops if the size operand falls
3349  // below a certain threshold.
3350  std::vector<EVT> MemOps;
3351  uint64_t Limit = -1ULL;
3352  if (!AlwaysInline)
3353    Limit = TLI.getMaxStoresPerMemmove();
3354  unsigned DstAlign = Align;  // Destination alignment can change.
3355  std::string Str;
3356  bool CopyFromStr;
3357  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3358                                Str, CopyFromStr, DAG, TLI))
3359    return SDValue();
3360
3361  uint64_t SrcOff = 0, DstOff = 0;
3362
3363  SmallVector<SDValue, 8> LoadValues;
3364  SmallVector<SDValue, 8> LoadChains;
3365  SmallVector<SDValue, 8> OutChains;
3366  unsigned NumMemOps = MemOps.size();
3367  for (unsigned i = 0; i < NumMemOps; i++) {
3368    EVT VT = MemOps[i];
3369    unsigned VTSize = VT.getSizeInBits() / 8;
3370    SDValue Value, Store;
3371
3372    Value = DAG.getLoad(VT, dl, Chain,
3373                        getMemBasePlusOffset(Src, SrcOff, DAG),
3374                        SrcSV, SrcSVOff + SrcOff, false, false, Align);
3375    LoadValues.push_back(Value);
3376    LoadChains.push_back(Value.getValue(1));
3377    SrcOff += VTSize;
3378  }
3379  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3380                      &LoadChains[0], LoadChains.size());
3381  OutChains.clear();
3382  for (unsigned i = 0; i < NumMemOps; i++) {
3383    EVT VT = MemOps[i];
3384    unsigned VTSize = VT.getSizeInBits() / 8;
3385    SDValue Value, Store;
3386
3387    Store = DAG.getStore(Chain, dl, LoadValues[i],
3388                         getMemBasePlusOffset(Dst, DstOff, DAG),
3389                         DstSV, DstSVOff + DstOff, false, false, DstAlign);
3390    OutChains.push_back(Store);
3391    DstOff += VTSize;
3392  }
3393
3394  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3395                     &OutChains[0], OutChains.size());
3396}
3397
3398static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3399                                 SDValue Chain, SDValue Dst,
3400                                 SDValue Src, uint64_t Size,
3401                                 unsigned Align,
3402                                 const Value *DstSV, uint64_t DstSVOff) {
3403  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3404
3405  // Expand memset to a series of load/store ops if the size operand
3406  // falls below a certain threshold.
3407  std::vector<EVT> MemOps;
3408  std::string Str;
3409  bool CopyFromStr;
3410  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3411                                Size, Align, Str, CopyFromStr, DAG, TLI))
3412    return SDValue();
3413
3414  SmallVector<SDValue, 8> OutChains;
3415  uint64_t DstOff = 0;
3416
3417  unsigned NumMemOps = MemOps.size();
3418  for (unsigned i = 0; i < NumMemOps; i++) {
3419    EVT VT = MemOps[i];
3420    unsigned VTSize = VT.getSizeInBits() / 8;
3421    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3422    SDValue Store = DAG.getStore(Chain, dl, Value,
3423                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3424                                 DstSV, DstSVOff + DstOff, false, false, 0);
3425    OutChains.push_back(Store);
3426    DstOff += VTSize;
3427  }
3428
3429  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3430                     &OutChains[0], OutChains.size());
3431}
3432
3433SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3434                                SDValue Src, SDValue Size,
3435                                unsigned Align, bool AlwaysInline,
3436                                const Value *DstSV, uint64_t DstSVOff,
3437                                const Value *SrcSV, uint64_t SrcSVOff) {
3438
3439  // Check to see if we should lower the memcpy to loads and stores first.
3440  // For cases within the target-specified limits, this is the best choice.
3441  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3442  if (ConstantSize) {
3443    // Memcpy with size zero? Just return the original chain.
3444    if (ConstantSize->isNullValue())
3445      return Chain;
3446
3447    SDValue Result =
3448      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3449                              ConstantSize->getZExtValue(),
3450                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3451    if (Result.getNode())
3452      return Result;
3453  }
3454
3455  // Then check to see if we should lower the memcpy with target-specific
3456  // code. If the target chooses to do this, this is the next best.
3457  SDValue Result =
3458    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3459                                AlwaysInline,
3460                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3461  if (Result.getNode())
3462    return Result;
3463
3464  // If we really need inline code and the target declined to provide it,
3465  // use a (potentially long) sequence of loads and stores.
3466  if (AlwaysInline) {
3467    assert(ConstantSize && "AlwaysInline requires a constant size!");
3468    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3469                                   ConstantSize->getZExtValue(), Align, true,
3470                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3471  }
3472
3473  // Emit a library call.
3474  TargetLowering::ArgListTy Args;
3475  TargetLowering::ArgListEntry Entry;
3476  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3477  Entry.Node = Dst; Args.push_back(Entry);
3478  Entry.Node = Src; Args.push_back(Entry);
3479  Entry.Node = Size; Args.push_back(Entry);
3480  // FIXME: pass in DebugLoc
3481  std::pair<SDValue,SDValue> CallResult =
3482    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3483                    false, false, false, false, 0,
3484                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3485                    /*isReturnValueUsed=*/false,
3486                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3487                                      TLI.getPointerTy()),
3488                    Args, *this, dl);
3489  return CallResult.second;
3490}
3491
3492SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3493                                 SDValue Src, SDValue Size,
3494                                 unsigned Align,
3495                                 const Value *DstSV, uint64_t DstSVOff,
3496                                 const Value *SrcSV, uint64_t SrcSVOff) {
3497
3498  // Check to see if we should lower the memmove to loads and stores first.
3499  // For cases within the target-specified limits, this is the best choice.
3500  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3501  if (ConstantSize) {
3502    // Memmove with size zero? Just return the original chain.
3503    if (ConstantSize->isNullValue())
3504      return Chain;
3505
3506    SDValue Result =
3507      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3508                               ConstantSize->getZExtValue(),
3509                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3510    if (Result.getNode())
3511      return Result;
3512  }
3513
3514  // Then check to see if we should lower the memmove with target-specific
3515  // code. If the target chooses to do this, this is the next best.
3516  SDValue Result =
3517    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3518                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3519  if (Result.getNode())
3520    return Result;
3521
3522  // Emit a library call.
3523  TargetLowering::ArgListTy Args;
3524  TargetLowering::ArgListEntry Entry;
3525  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3526  Entry.Node = Dst; Args.push_back(Entry);
3527  Entry.Node = Src; Args.push_back(Entry);
3528  Entry.Node = Size; Args.push_back(Entry);
3529  // FIXME:  pass in DebugLoc
3530  std::pair<SDValue,SDValue> CallResult =
3531    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3532                    false, false, false, false, 0,
3533                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3534                    /*isReturnValueUsed=*/false,
3535                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3536                                      TLI.getPointerTy()),
3537                    Args, *this, dl);
3538  return CallResult.second;
3539}
3540
3541SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3542                                SDValue Src, SDValue Size,
3543                                unsigned Align,
3544                                const Value *DstSV, uint64_t DstSVOff) {
3545
3546  // Check to see if we should lower the memset to stores first.
3547  // For cases within the target-specified limits, this is the best choice.
3548  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3549  if (ConstantSize) {
3550    // Memset with size zero? Just return the original chain.
3551    if (ConstantSize->isNullValue())
3552      return Chain;
3553
3554    SDValue Result =
3555      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3556                      Align, DstSV, DstSVOff);
3557    if (Result.getNode())
3558      return Result;
3559  }
3560
3561  // Then check to see if we should lower the memset with target-specific
3562  // code. If the target chooses to do this, this is the next best.
3563  SDValue Result =
3564    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3565                                DstSV, DstSVOff);
3566  if (Result.getNode())
3567    return Result;
3568
3569  // Emit a library call.
3570  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3571  TargetLowering::ArgListTy Args;
3572  TargetLowering::ArgListEntry Entry;
3573  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3574  Args.push_back(Entry);
3575  // Extend or truncate the argument to be an i32 value for the call.
3576  if (Src.getValueType().bitsGT(MVT::i32))
3577    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3578  else
3579    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3580  Entry.Node = Src;
3581  Entry.Ty = Type::getInt32Ty(*getContext());
3582  Entry.isSExt = true;
3583  Args.push_back(Entry);
3584  Entry.Node = Size;
3585  Entry.Ty = IntPtrTy;
3586  Entry.isSExt = false;
3587  Args.push_back(Entry);
3588  // FIXME: pass in DebugLoc
3589  std::pair<SDValue,SDValue> CallResult =
3590    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3591                    false, false, false, false, 0,
3592                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3593                    /*isReturnValueUsed=*/false,
3594                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3595                                      TLI.getPointerTy()),
3596                    Args, *this, dl);
3597  return CallResult.second;
3598}
3599
3600SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3601                                SDValue Chain,
3602                                SDValue Ptr, SDValue Cmp,
3603                                SDValue Swp, const Value* PtrVal,
3604                                unsigned Alignment) {
3605  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3606    Alignment = getEVTAlignment(MemVT);
3607
3608  // Check if the memory reference references a frame index
3609  if (!PtrVal)
3610    if (const FrameIndexSDNode *FI =
3611          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3612      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3613
3614  MachineFunction &MF = getMachineFunction();
3615  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3616
3617  // For now, atomics are considered to be volatile always.
3618  Flags |= MachineMemOperand::MOVolatile;
3619
3620  MachineMemOperand *MMO =
3621    MF.getMachineMemOperand(PtrVal, Flags, 0,
3622                            MemVT.getStoreSize(), Alignment);
3623
3624  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3625}
3626
3627SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3628                                SDValue Chain,
3629                                SDValue Ptr, SDValue Cmp,
3630                                SDValue Swp, MachineMemOperand *MMO) {
3631  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3632  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3633
3634  EVT VT = Cmp.getValueType();
3635
3636  SDVTList VTs = getVTList(VT, MVT::Other);
3637  FoldingSetNodeID ID;
3638  ID.AddInteger(MemVT.getRawBits());
3639  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3640  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3641  void* IP = 0;
3642  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3643    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3644    return SDValue(E, 0);
3645  }
3646  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3647                                               Ptr, Cmp, Swp, MMO);
3648  CSEMap.InsertNode(N, IP);
3649  AllNodes.push_back(N);
3650  return SDValue(N, 0);
3651}
3652
3653SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3654                                SDValue Chain,
3655                                SDValue Ptr, SDValue Val,
3656                                const Value* PtrVal,
3657                                unsigned Alignment) {
3658  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3659    Alignment = getEVTAlignment(MemVT);
3660
3661  // Check if the memory reference references a frame index
3662  if (!PtrVal)
3663    if (const FrameIndexSDNode *FI =
3664          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3665      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3666
3667  MachineFunction &MF = getMachineFunction();
3668  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3669
3670  // For now, atomics are considered to be volatile always.
3671  Flags |= MachineMemOperand::MOVolatile;
3672
3673  MachineMemOperand *MMO =
3674    MF.getMachineMemOperand(PtrVal, Flags, 0,
3675                            MemVT.getStoreSize(), Alignment);
3676
3677  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3678}
3679
3680SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3681                                SDValue Chain,
3682                                SDValue Ptr, SDValue Val,
3683                                MachineMemOperand *MMO) {
3684  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3685          Opcode == ISD::ATOMIC_LOAD_SUB ||
3686          Opcode == ISD::ATOMIC_LOAD_AND ||
3687          Opcode == ISD::ATOMIC_LOAD_OR ||
3688          Opcode == ISD::ATOMIC_LOAD_XOR ||
3689          Opcode == ISD::ATOMIC_LOAD_NAND ||
3690          Opcode == ISD::ATOMIC_LOAD_MIN ||
3691          Opcode == ISD::ATOMIC_LOAD_MAX ||
3692          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3693          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3694          Opcode == ISD::ATOMIC_SWAP) &&
3695         "Invalid Atomic Op");
3696
3697  EVT VT = Val.getValueType();
3698
3699  SDVTList VTs = getVTList(VT, MVT::Other);
3700  FoldingSetNodeID ID;
3701  ID.AddInteger(MemVT.getRawBits());
3702  SDValue Ops[] = {Chain, Ptr, Val};
3703  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3704  void* IP = 0;
3705  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3706    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3707    return SDValue(E, 0);
3708  }
3709  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3710                                               Ptr, Val, MMO);
3711  CSEMap.InsertNode(N, IP);
3712  AllNodes.push_back(N);
3713  return SDValue(N, 0);
3714}
3715
3716/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3717/// Allowed to return something different (and simpler) if Simplify is true.
3718SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3719                                     DebugLoc dl) {
3720  if (NumOps == 1)
3721    return Ops[0];
3722
3723  SmallVector<EVT, 4> VTs;
3724  VTs.reserve(NumOps);
3725  for (unsigned i = 0; i < NumOps; ++i)
3726    VTs.push_back(Ops[i].getValueType());
3727  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3728                 Ops, NumOps);
3729}
3730
3731SDValue
3732SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3733                                  const EVT *VTs, unsigned NumVTs,
3734                                  const SDValue *Ops, unsigned NumOps,
3735                                  EVT MemVT, const Value *srcValue, int SVOff,
3736                                  unsigned Align, bool Vol,
3737                                  bool ReadMem, bool WriteMem) {
3738  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3739                             MemVT, srcValue, SVOff, Align, Vol,
3740                             ReadMem, WriteMem);
3741}
3742
3743SDValue
3744SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3745                                  const SDValue *Ops, unsigned NumOps,
3746                                  EVT MemVT, const Value *srcValue, int SVOff,
3747                                  unsigned Align, bool Vol,
3748                                  bool ReadMem, bool WriteMem) {
3749  if (Align == 0)  // Ensure that codegen never sees alignment 0
3750    Align = getEVTAlignment(MemVT);
3751
3752  MachineFunction &MF = getMachineFunction();
3753  unsigned Flags = 0;
3754  if (WriteMem)
3755    Flags |= MachineMemOperand::MOStore;
3756  if (ReadMem)
3757    Flags |= MachineMemOperand::MOLoad;
3758  if (Vol)
3759    Flags |= MachineMemOperand::MOVolatile;
3760  MachineMemOperand *MMO =
3761    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3762                            MemVT.getStoreSize(), Align);
3763
3764  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3765}
3766
3767SDValue
3768SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3769                                  const SDValue *Ops, unsigned NumOps,
3770                                  EVT MemVT, MachineMemOperand *MMO) {
3771  assert((Opcode == ISD::INTRINSIC_VOID ||
3772          Opcode == ISD::INTRINSIC_W_CHAIN ||
3773          (Opcode <= INT_MAX &&
3774           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3775         "Opcode is not a memory-accessing opcode!");
3776
3777  // Memoize the node unless it returns a flag.
3778  MemIntrinsicSDNode *N;
3779  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3780    FoldingSetNodeID ID;
3781    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3782    void *IP = 0;
3783    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3784      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3785      return SDValue(E, 0);
3786    }
3787
3788    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3789                                               MemVT, MMO);
3790    CSEMap.InsertNode(N, IP);
3791  } else {
3792    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3793                                               MemVT, MMO);
3794  }
3795  AllNodes.push_back(N);
3796  return SDValue(N, 0);
3797}
3798
3799SDValue
3800SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3801                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3802                      SDValue Ptr, SDValue Offset,
3803                      const Value *SV, int SVOffset, EVT MemVT,
3804                      bool isVolatile, bool isNonTemporal,
3805                      unsigned Alignment) {
3806  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3807    Alignment = getEVTAlignment(VT);
3808
3809  // Check if the memory reference references a frame index
3810  if (!SV)
3811    if (const FrameIndexSDNode *FI =
3812          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3813      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3814
3815  MachineFunction &MF = getMachineFunction();
3816  unsigned Flags = MachineMemOperand::MOLoad;
3817  if (isVolatile)
3818    Flags |= MachineMemOperand::MOVolatile;
3819  if (isNonTemporal)
3820    Flags |= MachineMemOperand::MONonTemporal;
3821  MachineMemOperand *MMO =
3822    MF.getMachineMemOperand(SV, Flags, SVOffset,
3823                            MemVT.getStoreSize(), Alignment);
3824  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3825}
3826
3827SDValue
3828SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3829                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3830                      SDValue Ptr, SDValue Offset, EVT MemVT,
3831                      MachineMemOperand *MMO) {
3832  if (VT == MemVT) {
3833    ExtType = ISD::NON_EXTLOAD;
3834  } else if (ExtType == ISD::NON_EXTLOAD) {
3835    assert(VT == MemVT && "Non-extending load from different memory type!");
3836  } else {
3837    // Extending load.
3838    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3839           "Should only be an extending load, not truncating!");
3840    assert(VT.isInteger() == MemVT.isInteger() &&
3841           "Cannot convert from FP to Int or Int -> FP!");
3842    assert(VT.isVector() == MemVT.isVector() &&
3843           "Cannot use trunc store to convert to or from a vector!");
3844    assert((!VT.isVector() ||
3845            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3846           "Cannot use trunc store to change the number of vector elements!");
3847  }
3848
3849  bool Indexed = AM != ISD::UNINDEXED;
3850  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3851         "Unindexed load with an offset!");
3852
3853  SDVTList VTs = Indexed ?
3854    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3855  SDValue Ops[] = { Chain, Ptr, Offset };
3856  FoldingSetNodeID ID;
3857  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3858  ID.AddInteger(MemVT.getRawBits());
3859  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3860                                     MMO->isNonTemporal()));
3861  void *IP = 0;
3862  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3863    cast<LoadSDNode>(E)->refineAlignment(MMO);
3864    return SDValue(E, 0);
3865  }
3866  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
3867                                             MemVT, MMO);
3868  CSEMap.InsertNode(N, IP);
3869  AllNodes.push_back(N);
3870  return SDValue(N, 0);
3871}
3872
3873SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3874                              SDValue Chain, SDValue Ptr,
3875                              const Value *SV, int SVOffset,
3876                              bool isVolatile, bool isNonTemporal,
3877                              unsigned Alignment) {
3878  SDValue Undef = getUNDEF(Ptr.getValueType());
3879  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3880                 SV, SVOffset, VT, isVolatile, isNonTemporal, Alignment);
3881}
3882
3883SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3884                                 SDValue Chain, SDValue Ptr,
3885                                 const Value *SV,
3886                                 int SVOffset, EVT MemVT,
3887                                 bool isVolatile, bool isNonTemporal,
3888                                 unsigned Alignment) {
3889  SDValue Undef = getUNDEF(Ptr.getValueType());
3890  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3891                 SV, SVOffset, MemVT, isVolatile, isNonTemporal, Alignment);
3892}
3893
3894SDValue
3895SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3896                             SDValue Offset, ISD::MemIndexedMode AM) {
3897  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3898  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3899         "Load is already a indexed load!");
3900  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3901                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3902                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3903                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
3904}
3905
3906SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3907                               SDValue Ptr, const Value *SV, int SVOffset,
3908                               bool isVolatile, bool isNonTemporal,
3909                               unsigned Alignment) {
3910  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3911    Alignment = getEVTAlignment(Val.getValueType());
3912
3913  // Check if the memory reference references a frame index
3914  if (!SV)
3915    if (const FrameIndexSDNode *FI =
3916          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3917      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3918
3919  MachineFunction &MF = getMachineFunction();
3920  unsigned Flags = MachineMemOperand::MOStore;
3921  if (isVolatile)
3922    Flags |= MachineMemOperand::MOVolatile;
3923  if (isNonTemporal)
3924    Flags |= MachineMemOperand::MONonTemporal;
3925  MachineMemOperand *MMO =
3926    MF.getMachineMemOperand(SV, Flags, SVOffset,
3927                            Val.getValueType().getStoreSize(), Alignment);
3928
3929  return getStore(Chain, dl, Val, Ptr, MMO);
3930}
3931
3932SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3933                               SDValue Ptr, MachineMemOperand *MMO) {
3934  EVT VT = Val.getValueType();
3935  SDVTList VTs = getVTList(MVT::Other);
3936  SDValue Undef = getUNDEF(Ptr.getValueType());
3937  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3938  FoldingSetNodeID ID;
3939  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3940  ID.AddInteger(VT.getRawBits());
3941  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
3942                                     MMO->isNonTemporal()));
3943  void *IP = 0;
3944  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3945    cast<StoreSDNode>(E)->refineAlignment(MMO);
3946    return SDValue(E, 0);
3947  }
3948  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
3949                                              false, VT, MMO);
3950  CSEMap.InsertNode(N, IP);
3951  AllNodes.push_back(N);
3952  return SDValue(N, 0);
3953}
3954
3955SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3956                                    SDValue Ptr, const Value *SV,
3957                                    int SVOffset, EVT SVT,
3958                                    bool isVolatile, bool isNonTemporal,
3959                                    unsigned Alignment) {
3960  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3961    Alignment = getEVTAlignment(SVT);
3962
3963  // Check if the memory reference references a frame index
3964  if (!SV)
3965    if (const FrameIndexSDNode *FI =
3966          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3967      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3968
3969  MachineFunction &MF = getMachineFunction();
3970  unsigned Flags = MachineMemOperand::MOStore;
3971  if (isVolatile)
3972    Flags |= MachineMemOperand::MOVolatile;
3973  if (isNonTemporal)
3974    Flags |= MachineMemOperand::MONonTemporal;
3975  MachineMemOperand *MMO =
3976    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
3977
3978  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
3979}
3980
3981SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3982                                    SDValue Ptr, EVT SVT,
3983                                    MachineMemOperand *MMO) {
3984  EVT VT = Val.getValueType();
3985
3986  if (VT == SVT)
3987    return getStore(Chain, dl, Val, Ptr, MMO);
3988
3989  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
3990         "Should only be a truncating store, not extending!");
3991  assert(VT.isInteger() == SVT.isInteger() &&
3992         "Can't do FP-INT conversion!");
3993  assert(VT.isVector() == SVT.isVector() &&
3994         "Cannot use trunc store to convert to or from a vector!");
3995  assert((!VT.isVector() ||
3996          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
3997         "Cannot use trunc store to change the number of vector elements!");
3998
3999  SDVTList VTs = getVTList(MVT::Other);
4000  SDValue Undef = getUNDEF(Ptr.getValueType());
4001  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4002  FoldingSetNodeID ID;
4003  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4004  ID.AddInteger(SVT.getRawBits());
4005  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4006                                     MMO->isNonTemporal()));
4007  void *IP = 0;
4008  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4009    cast<StoreSDNode>(E)->refineAlignment(MMO);
4010    return SDValue(E, 0);
4011  }
4012  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4013                                              true, SVT, MMO);
4014  CSEMap.InsertNode(N, IP);
4015  AllNodes.push_back(N);
4016  return SDValue(N, 0);
4017}
4018
4019SDValue
4020SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4021                              SDValue Offset, ISD::MemIndexedMode AM) {
4022  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4023  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4024         "Store is already a indexed store!");
4025  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4026  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4027  FoldingSetNodeID ID;
4028  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4029  ID.AddInteger(ST->getMemoryVT().getRawBits());
4030  ID.AddInteger(ST->getRawSubclassData());
4031  void *IP = 0;
4032  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4033    return SDValue(E, 0);
4034
4035  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4036                                              ST->isTruncatingStore(),
4037                                              ST->getMemoryVT(),
4038                                              ST->getMemOperand());
4039  CSEMap.InsertNode(N, IP);
4040  AllNodes.push_back(N);
4041  return SDValue(N, 0);
4042}
4043
4044SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4045                               SDValue Chain, SDValue Ptr,
4046                               SDValue SV) {
4047  SDValue Ops[] = { Chain, Ptr, SV };
4048  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4049}
4050
4051SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4052                              const SDUse *Ops, unsigned NumOps) {
4053  switch (NumOps) {
4054  case 0: return getNode(Opcode, DL, VT);
4055  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4056  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4057  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4058  default: break;
4059  }
4060
4061  // Copy from an SDUse array into an SDValue array for use with
4062  // the regular getNode logic.
4063  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4064  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4065}
4066
4067SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4068                              const SDValue *Ops, unsigned NumOps) {
4069  switch (NumOps) {
4070  case 0: return getNode(Opcode, DL, VT);
4071  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4072  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4073  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4074  default: break;
4075  }
4076
4077  switch (Opcode) {
4078  default: break;
4079  case ISD::SELECT_CC: {
4080    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4081    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4082           "LHS and RHS of condition must have same type!");
4083    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4084           "True and False arms of SelectCC must have same type!");
4085    assert(Ops[2].getValueType() == VT &&
4086           "select_cc node must be of same type as true and false value!");
4087    break;
4088  }
4089  case ISD::BR_CC: {
4090    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4091    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4092           "LHS/RHS of comparison should match types!");
4093    break;
4094  }
4095  }
4096
4097  // Memoize nodes.
4098  SDNode *N;
4099  SDVTList VTs = getVTList(VT);
4100
4101  if (VT != MVT::Flag) {
4102    FoldingSetNodeID ID;
4103    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4104    void *IP = 0;
4105
4106    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4107      return SDValue(E, 0);
4108
4109    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4110    CSEMap.InsertNode(N, IP);
4111  } else {
4112    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4113  }
4114
4115  AllNodes.push_back(N);
4116#ifndef NDEBUG
4117  VerifyNode(N);
4118#endif
4119  return SDValue(N, 0);
4120}
4121
4122SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4123                              const std::vector<EVT> &ResultTys,
4124                              const SDValue *Ops, unsigned NumOps) {
4125  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4126                 Ops, NumOps);
4127}
4128
4129SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4130                              const EVT *VTs, unsigned NumVTs,
4131                              const SDValue *Ops, unsigned NumOps) {
4132  if (NumVTs == 1)
4133    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4134  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4135}
4136
4137SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4138                              const SDValue *Ops, unsigned NumOps) {
4139  if (VTList.NumVTs == 1)
4140    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4141
4142#if 0
4143  switch (Opcode) {
4144  // FIXME: figure out how to safely handle things like
4145  // int foo(int x) { return 1 << (x & 255); }
4146  // int bar() { return foo(256); }
4147  case ISD::SRA_PARTS:
4148  case ISD::SRL_PARTS:
4149  case ISD::SHL_PARTS:
4150    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4151        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4152      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4153    else if (N3.getOpcode() == ISD::AND)
4154      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4155        // If the and is only masking out bits that cannot effect the shift,
4156        // eliminate the and.
4157        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4158        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4159          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4160      }
4161    break;
4162  }
4163#endif
4164
4165  // Memoize the node unless it returns a flag.
4166  SDNode *N;
4167  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4168    FoldingSetNodeID ID;
4169    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4170    void *IP = 0;
4171    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4172      return SDValue(E, 0);
4173
4174    if (NumOps == 1) {
4175      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4176    } else if (NumOps == 2) {
4177      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4178    } else if (NumOps == 3) {
4179      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4180                                            Ops[2]);
4181    } else {
4182      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4183    }
4184    CSEMap.InsertNode(N, IP);
4185  } else {
4186    if (NumOps == 1) {
4187      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4188    } else if (NumOps == 2) {
4189      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4190    } else if (NumOps == 3) {
4191      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4192                                            Ops[2]);
4193    } else {
4194      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4195    }
4196  }
4197  AllNodes.push_back(N);
4198#ifndef NDEBUG
4199  VerifyNode(N);
4200#endif
4201  return SDValue(N, 0);
4202}
4203
4204SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4205  return getNode(Opcode, DL, VTList, 0, 0);
4206}
4207
4208SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4209                              SDValue N1) {
4210  SDValue Ops[] = { N1 };
4211  return getNode(Opcode, DL, VTList, Ops, 1);
4212}
4213
4214SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4215                              SDValue N1, SDValue N2) {
4216  SDValue Ops[] = { N1, N2 };
4217  return getNode(Opcode, DL, VTList, Ops, 2);
4218}
4219
4220SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4221                              SDValue N1, SDValue N2, SDValue N3) {
4222  SDValue Ops[] = { N1, N2, N3 };
4223  return getNode(Opcode, DL, VTList, Ops, 3);
4224}
4225
4226SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4227                              SDValue N1, SDValue N2, SDValue N3,
4228                              SDValue N4) {
4229  SDValue Ops[] = { N1, N2, N3, N4 };
4230  return getNode(Opcode, DL, VTList, Ops, 4);
4231}
4232
4233SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4234                              SDValue N1, SDValue N2, SDValue N3,
4235                              SDValue N4, SDValue N5) {
4236  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4237  return getNode(Opcode, DL, VTList, Ops, 5);
4238}
4239
4240SDVTList SelectionDAG::getVTList(EVT VT) {
4241  return makeVTList(SDNode::getValueTypeList(VT), 1);
4242}
4243
4244SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4245  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4246       E = VTList.rend(); I != E; ++I)
4247    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4248      return *I;
4249
4250  EVT *Array = Allocator.Allocate<EVT>(2);
4251  Array[0] = VT1;
4252  Array[1] = VT2;
4253  SDVTList Result = makeVTList(Array, 2);
4254  VTList.push_back(Result);
4255  return Result;
4256}
4257
4258SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4259  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4260       E = VTList.rend(); I != E; ++I)
4261    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4262                          I->VTs[2] == VT3)
4263      return *I;
4264
4265  EVT *Array = Allocator.Allocate<EVT>(3);
4266  Array[0] = VT1;
4267  Array[1] = VT2;
4268  Array[2] = VT3;
4269  SDVTList Result = makeVTList(Array, 3);
4270  VTList.push_back(Result);
4271  return Result;
4272}
4273
4274SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4275  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4276       E = VTList.rend(); I != E; ++I)
4277    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4278                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4279      return *I;
4280
4281  EVT *Array = Allocator.Allocate<EVT>(4);
4282  Array[0] = VT1;
4283  Array[1] = VT2;
4284  Array[2] = VT3;
4285  Array[3] = VT4;
4286  SDVTList Result = makeVTList(Array, 4);
4287  VTList.push_back(Result);
4288  return Result;
4289}
4290
4291SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4292  switch (NumVTs) {
4293    case 0: llvm_unreachable("Cannot have nodes without results!");
4294    case 1: return getVTList(VTs[0]);
4295    case 2: return getVTList(VTs[0], VTs[1]);
4296    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4297    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4298    default: break;
4299  }
4300
4301  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4302       E = VTList.rend(); I != E; ++I) {
4303    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4304      continue;
4305
4306    bool NoMatch = false;
4307    for (unsigned i = 2; i != NumVTs; ++i)
4308      if (VTs[i] != I->VTs[i]) {
4309        NoMatch = true;
4310        break;
4311      }
4312    if (!NoMatch)
4313      return *I;
4314  }
4315
4316  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4317  std::copy(VTs, VTs+NumVTs, Array);
4318  SDVTList Result = makeVTList(Array, NumVTs);
4319  VTList.push_back(Result);
4320  return Result;
4321}
4322
4323
4324/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4325/// specified operands.  If the resultant node already exists in the DAG,
4326/// this does not modify the specified node, instead it returns the node that
4327/// already exists.  If the resultant node does not exist in the DAG, the
4328/// input node is returned.  As a degenerate case, if you specify the same
4329/// input operands as the node already has, the input node is returned.
4330SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4331  SDNode *N = InN.getNode();
4332  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4333
4334  // Check to see if there is no change.
4335  if (Op == N->getOperand(0)) return InN;
4336
4337  // See if the modified node already exists.
4338  void *InsertPos = 0;
4339  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4340    return SDValue(Existing, InN.getResNo());
4341
4342  // Nope it doesn't.  Remove the node from its current place in the maps.
4343  if (InsertPos)
4344    if (!RemoveNodeFromCSEMaps(N))
4345      InsertPos = 0;
4346
4347  // Now we update the operands.
4348  N->OperandList[0].set(Op);
4349
4350  // If this gets put into a CSE map, add it.
4351  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4352  return InN;
4353}
4354
4355SDValue SelectionDAG::
4356UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4357  SDNode *N = InN.getNode();
4358  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4359
4360  // Check to see if there is no change.
4361  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4362    return InN;   // No operands changed, just return the input node.
4363
4364  // See if the modified node already exists.
4365  void *InsertPos = 0;
4366  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4367    return SDValue(Existing, InN.getResNo());
4368
4369  // Nope it doesn't.  Remove the node from its current place in the maps.
4370  if (InsertPos)
4371    if (!RemoveNodeFromCSEMaps(N))
4372      InsertPos = 0;
4373
4374  // Now we update the operands.
4375  if (N->OperandList[0] != Op1)
4376    N->OperandList[0].set(Op1);
4377  if (N->OperandList[1] != Op2)
4378    N->OperandList[1].set(Op2);
4379
4380  // If this gets put into a CSE map, add it.
4381  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4382  return InN;
4383}
4384
4385SDValue SelectionDAG::
4386UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4387  SDValue Ops[] = { Op1, Op2, Op3 };
4388  return UpdateNodeOperands(N, Ops, 3);
4389}
4390
4391SDValue SelectionDAG::
4392UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4393                   SDValue Op3, SDValue Op4) {
4394  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4395  return UpdateNodeOperands(N, Ops, 4);
4396}
4397
4398SDValue SelectionDAG::
4399UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4400                   SDValue Op3, SDValue Op4, SDValue Op5) {
4401  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4402  return UpdateNodeOperands(N, Ops, 5);
4403}
4404
4405SDValue SelectionDAG::
4406UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4407  SDNode *N = InN.getNode();
4408  assert(N->getNumOperands() == NumOps &&
4409         "Update with wrong number of operands");
4410
4411  // Check to see if there is no change.
4412  bool AnyChange = false;
4413  for (unsigned i = 0; i != NumOps; ++i) {
4414    if (Ops[i] != N->getOperand(i)) {
4415      AnyChange = true;
4416      break;
4417    }
4418  }
4419
4420  // No operands changed, just return the input node.
4421  if (!AnyChange) return InN;
4422
4423  // See if the modified node already exists.
4424  void *InsertPos = 0;
4425  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4426    return SDValue(Existing, InN.getResNo());
4427
4428  // Nope it doesn't.  Remove the node from its current place in the maps.
4429  if (InsertPos)
4430    if (!RemoveNodeFromCSEMaps(N))
4431      InsertPos = 0;
4432
4433  // Now we update the operands.
4434  for (unsigned i = 0; i != NumOps; ++i)
4435    if (N->OperandList[i] != Ops[i])
4436      N->OperandList[i].set(Ops[i]);
4437
4438  // If this gets put into a CSE map, add it.
4439  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4440  return InN;
4441}
4442
4443/// DropOperands - Release the operands and set this node to have
4444/// zero operands.
4445void SDNode::DropOperands() {
4446  // Unlike the code in MorphNodeTo that does this, we don't need to
4447  // watch for dead nodes here.
4448  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4449    SDUse &Use = *I++;
4450    Use.set(SDValue());
4451  }
4452}
4453
4454/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4455/// machine opcode.
4456///
4457SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4458                                   EVT VT) {
4459  SDVTList VTs = getVTList(VT);
4460  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4461}
4462
4463SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4464                                   EVT VT, SDValue Op1) {
4465  SDVTList VTs = getVTList(VT);
4466  SDValue Ops[] = { Op1 };
4467  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4468}
4469
4470SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4471                                   EVT VT, SDValue Op1,
4472                                   SDValue Op2) {
4473  SDVTList VTs = getVTList(VT);
4474  SDValue Ops[] = { Op1, Op2 };
4475  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4476}
4477
4478SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4479                                   EVT VT, SDValue Op1,
4480                                   SDValue Op2, SDValue Op3) {
4481  SDVTList VTs = getVTList(VT);
4482  SDValue Ops[] = { Op1, Op2, Op3 };
4483  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4484}
4485
4486SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4487                                   EVT VT, const SDValue *Ops,
4488                                   unsigned NumOps) {
4489  SDVTList VTs = getVTList(VT);
4490  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4491}
4492
4493SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4494                                   EVT VT1, EVT VT2, const SDValue *Ops,
4495                                   unsigned NumOps) {
4496  SDVTList VTs = getVTList(VT1, VT2);
4497  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4498}
4499
4500SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4501                                   EVT VT1, EVT VT2) {
4502  SDVTList VTs = getVTList(VT1, VT2);
4503  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4504}
4505
4506SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4507                                   EVT VT1, EVT VT2, EVT VT3,
4508                                   const SDValue *Ops, unsigned NumOps) {
4509  SDVTList VTs = getVTList(VT1, VT2, VT3);
4510  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4511}
4512
4513SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4514                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4515                                   const SDValue *Ops, unsigned NumOps) {
4516  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4517  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4518}
4519
4520SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4521                                   EVT VT1, EVT VT2,
4522                                   SDValue Op1) {
4523  SDVTList VTs = getVTList(VT1, VT2);
4524  SDValue Ops[] = { Op1 };
4525  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4526}
4527
4528SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4529                                   EVT VT1, EVT VT2,
4530                                   SDValue Op1, SDValue Op2) {
4531  SDVTList VTs = getVTList(VT1, VT2);
4532  SDValue Ops[] = { Op1, Op2 };
4533  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4534}
4535
4536SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4537                                   EVT VT1, EVT VT2,
4538                                   SDValue Op1, SDValue Op2,
4539                                   SDValue Op3) {
4540  SDVTList VTs = getVTList(VT1, VT2);
4541  SDValue Ops[] = { Op1, Op2, Op3 };
4542  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4543}
4544
4545SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4546                                   EVT VT1, EVT VT2, EVT VT3,
4547                                   SDValue Op1, SDValue Op2,
4548                                   SDValue Op3) {
4549  SDVTList VTs = getVTList(VT1, VT2, VT3);
4550  SDValue Ops[] = { Op1, Op2, Op3 };
4551  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4552}
4553
4554SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4555                                   SDVTList VTs, const SDValue *Ops,
4556                                   unsigned NumOps) {
4557  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4558  // Reset the NodeID to -1.
4559  N->setNodeId(-1);
4560  return N;
4561}
4562
4563/// MorphNodeTo - This *mutates* the specified node to have the specified
4564/// return type, opcode, and operands.
4565///
4566/// Note that MorphNodeTo returns the resultant node.  If there is already a
4567/// node of the specified opcode and operands, it returns that node instead of
4568/// the current one.  Note that the DebugLoc need not be the same.
4569///
4570/// Using MorphNodeTo is faster than creating a new node and swapping it in
4571/// with ReplaceAllUsesWith both because it often avoids allocating a new
4572/// node, and because it doesn't require CSE recalculation for any of
4573/// the node's users.
4574///
4575SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4576                                  SDVTList VTs, const SDValue *Ops,
4577                                  unsigned NumOps) {
4578  // If an identical node already exists, use it.
4579  void *IP = 0;
4580  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4581    FoldingSetNodeID ID;
4582    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4583    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4584      return ON;
4585  }
4586
4587  if (!RemoveNodeFromCSEMaps(N))
4588    IP = 0;
4589
4590  // Start the morphing.
4591  N->NodeType = Opc;
4592  N->ValueList = VTs.VTs;
4593  N->NumValues = VTs.NumVTs;
4594
4595  // Clear the operands list, updating used nodes to remove this from their
4596  // use list.  Keep track of any operands that become dead as a result.
4597  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4598  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4599    SDUse &Use = *I++;
4600    SDNode *Used = Use.getNode();
4601    Use.set(SDValue());
4602    if (Used->use_empty())
4603      DeadNodeSet.insert(Used);
4604  }
4605
4606  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4607    // Initialize the memory references information.
4608    MN->setMemRefs(0, 0);
4609    // If NumOps is larger than the # of operands we can have in a
4610    // MachineSDNode, reallocate the operand list.
4611    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4612      if (MN->OperandsNeedDelete)
4613        delete[] MN->OperandList;
4614      if (NumOps > array_lengthof(MN->LocalOperands))
4615        // We're creating a final node that will live unmorphed for the
4616        // remainder of the current SelectionDAG iteration, so we can allocate
4617        // the operands directly out of a pool with no recycling metadata.
4618        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4619                         Ops, NumOps);
4620      else
4621        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4622      MN->OperandsNeedDelete = false;
4623    } else
4624      MN->InitOperands(MN->OperandList, Ops, NumOps);
4625  } else {
4626    // If NumOps is larger than the # of operands we currently have, reallocate
4627    // the operand list.
4628    if (NumOps > N->NumOperands) {
4629      if (N->OperandsNeedDelete)
4630        delete[] N->OperandList;
4631      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4632      N->OperandsNeedDelete = true;
4633    } else
4634      N->InitOperands(N->OperandList, Ops, NumOps);
4635  }
4636
4637  // Delete any nodes that are still dead after adding the uses for the
4638  // new operands.
4639  if (!DeadNodeSet.empty()) {
4640    SmallVector<SDNode *, 16> DeadNodes;
4641    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4642         E = DeadNodeSet.end(); I != E; ++I)
4643      if ((*I)->use_empty())
4644        DeadNodes.push_back(*I);
4645    RemoveDeadNodes(DeadNodes);
4646  }
4647
4648  if (IP)
4649    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4650  return N;
4651}
4652
4653
4654/// getMachineNode - These are used for target selectors to create a new node
4655/// with specified return type(s), MachineInstr opcode, and operands.
4656///
4657/// Note that getMachineNode returns the resultant node.  If there is already a
4658/// node of the specified opcode and operands, it returns that node instead of
4659/// the current one.
4660MachineSDNode *
4661SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4662  SDVTList VTs = getVTList(VT);
4663  return getMachineNode(Opcode, dl, VTs, 0, 0);
4664}
4665
4666MachineSDNode *
4667SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4668  SDVTList VTs = getVTList(VT);
4669  SDValue Ops[] = { Op1 };
4670  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4671}
4672
4673MachineSDNode *
4674SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4675                             SDValue Op1, SDValue Op2) {
4676  SDVTList VTs = getVTList(VT);
4677  SDValue Ops[] = { Op1, Op2 };
4678  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4679}
4680
4681MachineSDNode *
4682SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4683                             SDValue Op1, SDValue Op2, SDValue Op3) {
4684  SDVTList VTs = getVTList(VT);
4685  SDValue Ops[] = { Op1, Op2, Op3 };
4686  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4687}
4688
4689MachineSDNode *
4690SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4691                             const SDValue *Ops, unsigned NumOps) {
4692  SDVTList VTs = getVTList(VT);
4693  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4694}
4695
4696MachineSDNode *
4697SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4698  SDVTList VTs = getVTList(VT1, VT2);
4699  return getMachineNode(Opcode, dl, VTs, 0, 0);
4700}
4701
4702MachineSDNode *
4703SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4704                             EVT VT1, EVT VT2, SDValue Op1) {
4705  SDVTList VTs = getVTList(VT1, VT2);
4706  SDValue Ops[] = { Op1 };
4707  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4708}
4709
4710MachineSDNode *
4711SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4712                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4713  SDVTList VTs = getVTList(VT1, VT2);
4714  SDValue Ops[] = { Op1, Op2 };
4715  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4716}
4717
4718MachineSDNode *
4719SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4720                             EVT VT1, EVT VT2, SDValue Op1,
4721                             SDValue Op2, SDValue Op3) {
4722  SDVTList VTs = getVTList(VT1, VT2);
4723  SDValue Ops[] = { Op1, Op2, Op3 };
4724  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4725}
4726
4727MachineSDNode *
4728SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4729                             EVT VT1, EVT VT2,
4730                             const SDValue *Ops, unsigned NumOps) {
4731  SDVTList VTs = getVTList(VT1, VT2);
4732  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4733}
4734
4735MachineSDNode *
4736SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4737                             EVT VT1, EVT VT2, EVT VT3,
4738                             SDValue Op1, SDValue Op2) {
4739  SDVTList VTs = getVTList(VT1, VT2, VT3);
4740  SDValue Ops[] = { Op1, Op2 };
4741  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4742}
4743
4744MachineSDNode *
4745SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4746                             EVT VT1, EVT VT2, EVT VT3,
4747                             SDValue Op1, SDValue Op2, SDValue Op3) {
4748  SDVTList VTs = getVTList(VT1, VT2, VT3);
4749  SDValue Ops[] = { Op1, Op2, Op3 };
4750  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4751}
4752
4753MachineSDNode *
4754SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4755                             EVT VT1, EVT VT2, EVT VT3,
4756                             const SDValue *Ops, unsigned NumOps) {
4757  SDVTList VTs = getVTList(VT1, VT2, VT3);
4758  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4759}
4760
4761MachineSDNode *
4762SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4763                             EVT VT2, EVT VT3, EVT VT4,
4764                             const SDValue *Ops, unsigned NumOps) {
4765  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4766  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4767}
4768
4769MachineSDNode *
4770SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4771                             const std::vector<EVT> &ResultTys,
4772                             const SDValue *Ops, unsigned NumOps) {
4773  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4774  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4775}
4776
4777MachineSDNode *
4778SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4779                             const SDValue *Ops, unsigned NumOps) {
4780  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4781  MachineSDNode *N;
4782  void *IP;
4783
4784  if (DoCSE) {
4785    FoldingSetNodeID ID;
4786    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4787    IP = 0;
4788    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4789      return cast<MachineSDNode>(E);
4790  }
4791
4792  // Allocate a new MachineSDNode.
4793  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
4794
4795  // Initialize the operands list.
4796  if (NumOps > array_lengthof(N->LocalOperands))
4797    // We're creating a final node that will live unmorphed for the
4798    // remainder of the current SelectionDAG iteration, so we can allocate
4799    // the operands directly out of a pool with no recycling metadata.
4800    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4801                    Ops, NumOps);
4802  else
4803    N->InitOperands(N->LocalOperands, Ops, NumOps);
4804  N->OperandsNeedDelete = false;
4805
4806  if (DoCSE)
4807    CSEMap.InsertNode(N, IP);
4808
4809  AllNodes.push_back(N);
4810#ifndef NDEBUG
4811  VerifyNode(N);
4812#endif
4813  return N;
4814}
4815
4816/// getTargetExtractSubreg - A convenience function for creating
4817/// TargetOpcode::EXTRACT_SUBREG nodes.
4818SDValue
4819SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4820                                     SDValue Operand) {
4821  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4822  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4823                                  VT, Operand, SRIdxVal);
4824  return SDValue(Subreg, 0);
4825}
4826
4827/// getTargetInsertSubreg - A convenience function for creating
4828/// TargetOpcode::INSERT_SUBREG nodes.
4829SDValue
4830SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4831                                    SDValue Operand, SDValue Subreg) {
4832  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4833  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4834                                  VT, Operand, Subreg, SRIdxVal);
4835  return SDValue(Result, 0);
4836}
4837
4838/// getNodeIfExists - Get the specified node if it's already available, or
4839/// else return NULL.
4840SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4841                                      const SDValue *Ops, unsigned NumOps) {
4842  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4843    FoldingSetNodeID ID;
4844    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4845    void *IP = 0;
4846    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4847      return E;
4848  }
4849  return NULL;
4850}
4851
4852namespace {
4853
4854/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
4855/// pointed to by a use iterator is deleted, increment the use iterator
4856/// so that it doesn't dangle.
4857///
4858/// This class also manages a "downlink" DAGUpdateListener, to forward
4859/// messages to ReplaceAllUsesWith's callers.
4860///
4861class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
4862  SelectionDAG::DAGUpdateListener *DownLink;
4863  SDNode::use_iterator &UI;
4864  SDNode::use_iterator &UE;
4865
4866  virtual void NodeDeleted(SDNode *N, SDNode *E) {
4867    // Increment the iterator as needed.
4868    while (UI != UE && N == *UI)
4869      ++UI;
4870
4871    // Then forward the message.
4872    if (DownLink) DownLink->NodeDeleted(N, E);
4873  }
4874
4875  virtual void NodeUpdated(SDNode *N) {
4876    // Just forward the message.
4877    if (DownLink) DownLink->NodeUpdated(N);
4878  }
4879
4880public:
4881  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
4882                     SDNode::use_iterator &ui,
4883                     SDNode::use_iterator &ue)
4884    : DownLink(dl), UI(ui), UE(ue) {}
4885};
4886
4887}
4888
4889/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4890/// This can cause recursive merging of nodes in the DAG.
4891///
4892/// This version assumes From has a single result value.
4893///
4894void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4895                                      DAGUpdateListener *UpdateListener) {
4896  SDNode *From = FromN.getNode();
4897  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4898         "Cannot replace with this method!");
4899  assert(From != To.getNode() && "Cannot replace uses of with self");
4900
4901  // Iterate over all the existing uses of From. New uses will be added
4902  // to the beginning of the use list, which we avoid visiting.
4903  // This specifically avoids visiting uses of From that arise while the
4904  // replacement is happening, because any such uses would be the result
4905  // of CSE: If an existing node looks like From after one of its operands
4906  // is replaced by To, we don't want to replace of all its users with To
4907  // too. See PR3018 for more info.
4908  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4909  RAUWUpdateListener Listener(UpdateListener, UI, UE);
4910  while (UI != UE) {
4911    SDNode *User = *UI;
4912
4913    // This node is about to morph, remove its old self from the CSE maps.
4914    RemoveNodeFromCSEMaps(User);
4915
4916    // A user can appear in a use list multiple times, and when this
4917    // happens the uses are usually next to each other in the list.
4918    // To help reduce the number of CSE recomputations, process all
4919    // the uses of this user that we can find this way.
4920    do {
4921      SDUse &Use = UI.getUse();
4922      ++UI;
4923      Use.set(To);
4924    } while (UI != UE && *UI == User);
4925
4926    // Now that we have modified User, add it back to the CSE maps.  If it
4927    // already exists there, recursively merge the results together.
4928    AddModifiedNodeToCSEMaps(User, &Listener);
4929  }
4930}
4931
4932/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4933/// This can cause recursive merging of nodes in the DAG.
4934///
4935/// This version assumes that for each value of From, there is a
4936/// corresponding value in To in the same position with the same type.
4937///
4938void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4939                                      DAGUpdateListener *UpdateListener) {
4940#ifndef NDEBUG
4941  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4942    assert((!From->hasAnyUseOfValue(i) ||
4943            From->getValueType(i) == To->getValueType(i)) &&
4944           "Cannot use this version of ReplaceAllUsesWith!");
4945#endif
4946
4947  // Handle the trivial case.
4948  if (From == To)
4949    return;
4950
4951  // Iterate over just the existing users of From. See the comments in
4952  // the ReplaceAllUsesWith above.
4953  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4954  RAUWUpdateListener Listener(UpdateListener, UI, UE);
4955  while (UI != UE) {
4956    SDNode *User = *UI;
4957
4958    // This node is about to morph, remove its old self from the CSE maps.
4959    RemoveNodeFromCSEMaps(User);
4960
4961    // A user can appear in a use list multiple times, and when this
4962    // happens the uses are usually next to each other in the list.
4963    // To help reduce the number of CSE recomputations, process all
4964    // the uses of this user that we can find this way.
4965    do {
4966      SDUse &Use = UI.getUse();
4967      ++UI;
4968      Use.setNode(To);
4969    } while (UI != UE && *UI == User);
4970
4971    // Now that we have modified User, add it back to the CSE maps.  If it
4972    // already exists there, recursively merge the results together.
4973    AddModifiedNodeToCSEMaps(User, &Listener);
4974  }
4975}
4976
4977/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4978/// This can cause recursive merging of nodes in the DAG.
4979///
4980/// This version can replace From with any result values.  To must match the
4981/// number and types of values returned by From.
4982void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4983                                      const SDValue *To,
4984                                      DAGUpdateListener *UpdateListener) {
4985  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4986    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4987
4988  // Iterate over just the existing users of From. See the comments in
4989  // the ReplaceAllUsesWith above.
4990  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4991  RAUWUpdateListener Listener(UpdateListener, UI, UE);
4992  while (UI != UE) {
4993    SDNode *User = *UI;
4994
4995    // This node is about to morph, remove its old self from the CSE maps.
4996    RemoveNodeFromCSEMaps(User);
4997
4998    // A user can appear in a use list multiple times, and when this
4999    // happens the uses are usually next to each other in the list.
5000    // To help reduce the number of CSE recomputations, process all
5001    // the uses of this user that we can find this way.
5002    do {
5003      SDUse &Use = UI.getUse();
5004      const SDValue &ToOp = To[Use.getResNo()];
5005      ++UI;
5006      Use.set(ToOp);
5007    } while (UI != UE && *UI == User);
5008
5009    // Now that we have modified User, add it back to the CSE maps.  If it
5010    // already exists there, recursively merge the results together.
5011    AddModifiedNodeToCSEMaps(User, &Listener);
5012  }
5013}
5014
5015/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5016/// uses of other values produced by From.getNode() alone.  The Deleted
5017/// vector is handled the same way as for ReplaceAllUsesWith.
5018void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5019                                             DAGUpdateListener *UpdateListener){
5020  // Handle the really simple, really trivial case efficiently.
5021  if (From == To) return;
5022
5023  // Handle the simple, trivial, case efficiently.
5024  if (From.getNode()->getNumValues() == 1) {
5025    ReplaceAllUsesWith(From, To, UpdateListener);
5026    return;
5027  }
5028
5029  // Iterate over just the existing users of From. See the comments in
5030  // the ReplaceAllUsesWith above.
5031  SDNode::use_iterator UI = From.getNode()->use_begin(),
5032                       UE = From.getNode()->use_end();
5033  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5034  while (UI != UE) {
5035    SDNode *User = *UI;
5036    bool UserRemovedFromCSEMaps = false;
5037
5038    // A user can appear in a use list multiple times, and when this
5039    // happens the uses are usually next to each other in the list.
5040    // To help reduce the number of CSE recomputations, process all
5041    // the uses of this user that we can find this way.
5042    do {
5043      SDUse &Use = UI.getUse();
5044
5045      // Skip uses of different values from the same node.
5046      if (Use.getResNo() != From.getResNo()) {
5047        ++UI;
5048        continue;
5049      }
5050
5051      // If this node hasn't been modified yet, it's still in the CSE maps,
5052      // so remove its old self from the CSE maps.
5053      if (!UserRemovedFromCSEMaps) {
5054        RemoveNodeFromCSEMaps(User);
5055        UserRemovedFromCSEMaps = true;
5056      }
5057
5058      ++UI;
5059      Use.set(To);
5060    } while (UI != UE && *UI == User);
5061
5062    // We are iterating over all uses of the From node, so if a use
5063    // doesn't use the specific value, no changes are made.
5064    if (!UserRemovedFromCSEMaps)
5065      continue;
5066
5067    // Now that we have modified User, add it back to the CSE maps.  If it
5068    // already exists there, recursively merge the results together.
5069    AddModifiedNodeToCSEMaps(User, &Listener);
5070  }
5071}
5072
5073namespace {
5074  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5075  /// to record information about a use.
5076  struct UseMemo {
5077    SDNode *User;
5078    unsigned Index;
5079    SDUse *Use;
5080  };
5081
5082  /// operator< - Sort Memos by User.
5083  bool operator<(const UseMemo &L, const UseMemo &R) {
5084    return (intptr_t)L.User < (intptr_t)R.User;
5085  }
5086}
5087
5088/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5089/// uses of other values produced by From.getNode() alone.  The same value
5090/// may appear in both the From and To list.  The Deleted vector is
5091/// handled the same way as for ReplaceAllUsesWith.
5092void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5093                                              const SDValue *To,
5094                                              unsigned Num,
5095                                              DAGUpdateListener *UpdateListener){
5096  // Handle the simple, trivial case efficiently.
5097  if (Num == 1)
5098    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5099
5100  // Read up all the uses and make records of them. This helps
5101  // processing new uses that are introduced during the
5102  // replacement process.
5103  SmallVector<UseMemo, 4> Uses;
5104  for (unsigned i = 0; i != Num; ++i) {
5105    unsigned FromResNo = From[i].getResNo();
5106    SDNode *FromNode = From[i].getNode();
5107    for (SDNode::use_iterator UI = FromNode->use_begin(),
5108         E = FromNode->use_end(); UI != E; ++UI) {
5109      SDUse &Use = UI.getUse();
5110      if (Use.getResNo() == FromResNo) {
5111        UseMemo Memo = { *UI, i, &Use };
5112        Uses.push_back(Memo);
5113      }
5114    }
5115  }
5116
5117  // Sort the uses, so that all the uses from a given User are together.
5118  std::sort(Uses.begin(), Uses.end());
5119
5120  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5121       UseIndex != UseIndexEnd; ) {
5122    // We know that this user uses some value of From.  If it is the right
5123    // value, update it.
5124    SDNode *User = Uses[UseIndex].User;
5125
5126    // This node is about to morph, remove its old self from the CSE maps.
5127    RemoveNodeFromCSEMaps(User);
5128
5129    // The Uses array is sorted, so all the uses for a given User
5130    // are next to each other in the list.
5131    // To help reduce the number of CSE recomputations, process all
5132    // the uses of this user that we can find this way.
5133    do {
5134      unsigned i = Uses[UseIndex].Index;
5135      SDUse &Use = *Uses[UseIndex].Use;
5136      ++UseIndex;
5137
5138      Use.set(To[i]);
5139    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5140
5141    // Now that we have modified User, add it back to the CSE maps.  If it
5142    // already exists there, recursively merge the results together.
5143    AddModifiedNodeToCSEMaps(User, UpdateListener);
5144  }
5145}
5146
5147/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5148/// based on their topological order. It returns the maximum id and a vector
5149/// of the SDNodes* in assigned order by reference.
5150unsigned SelectionDAG::AssignTopologicalOrder() {
5151
5152  unsigned DAGSize = 0;
5153
5154  // SortedPos tracks the progress of the algorithm. Nodes before it are
5155  // sorted, nodes after it are unsorted. When the algorithm completes
5156  // it is at the end of the list.
5157  allnodes_iterator SortedPos = allnodes_begin();
5158
5159  // Visit all the nodes. Move nodes with no operands to the front of
5160  // the list immediately. Annotate nodes that do have operands with their
5161  // operand count. Before we do this, the Node Id fields of the nodes
5162  // may contain arbitrary values. After, the Node Id fields for nodes
5163  // before SortedPos will contain the topological sort index, and the
5164  // Node Id fields for nodes At SortedPos and after will contain the
5165  // count of outstanding operands.
5166  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5167    SDNode *N = I++;
5168    checkForCycles(N);
5169    unsigned Degree = N->getNumOperands();
5170    if (Degree == 0) {
5171      // A node with no uses, add it to the result array immediately.
5172      N->setNodeId(DAGSize++);
5173      allnodes_iterator Q = N;
5174      if (Q != SortedPos)
5175        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5176      assert(SortedPos != AllNodes.end() && "Overran node list");
5177      ++SortedPos;
5178    } else {
5179      // Temporarily use the Node Id as scratch space for the degree count.
5180      N->setNodeId(Degree);
5181    }
5182  }
5183
5184  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5185  // such that by the time the end is reached all nodes will be sorted.
5186  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5187    SDNode *N = I;
5188    checkForCycles(N);
5189    // N is in sorted position, so all its uses have one less operand
5190    // that needs to be sorted.
5191    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5192         UI != UE; ++UI) {
5193      SDNode *P = *UI;
5194      unsigned Degree = P->getNodeId();
5195      assert(Degree != 0 && "Invalid node degree");
5196      --Degree;
5197      if (Degree == 0) {
5198        // All of P's operands are sorted, so P may sorted now.
5199        P->setNodeId(DAGSize++);
5200        if (P != SortedPos)
5201          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5202        assert(SortedPos != AllNodes.end() && "Overran node list");
5203        ++SortedPos;
5204      } else {
5205        // Update P's outstanding operand count.
5206        P->setNodeId(Degree);
5207      }
5208    }
5209    if (I == SortedPos) {
5210#ifndef NDEBUG
5211      SDNode *S = ++I;
5212      dbgs() << "Overran sorted position:\n";
5213      S->dumprFull();
5214#endif
5215      llvm_unreachable(0);
5216    }
5217  }
5218
5219  assert(SortedPos == AllNodes.end() &&
5220         "Topological sort incomplete!");
5221  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5222         "First node in topological sort is not the entry token!");
5223  assert(AllNodes.front().getNodeId() == 0 &&
5224         "First node in topological sort has non-zero id!");
5225  assert(AllNodes.front().getNumOperands() == 0 &&
5226         "First node in topological sort has operands!");
5227  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5228         "Last node in topologic sort has unexpected id!");
5229  assert(AllNodes.back().use_empty() &&
5230         "Last node in topologic sort has users!");
5231  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5232  return DAGSize;
5233}
5234
5235/// AssignOrdering - Assign an order to the SDNode.
5236void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5237  assert(SD && "Trying to assign an order to a null node!");
5238  Ordering->add(SD, Order);
5239}
5240
5241/// GetOrdering - Get the order for the SDNode.
5242unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5243  assert(SD && "Trying to get the order of a null node!");
5244  return Ordering->getOrder(SD);
5245}
5246
5247/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5248/// value is produced by SD.
5249void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD) {
5250  DbgInfo->add(DB, SD);
5251  if (SD)
5252    SD->setHasDebugValue(true);
5253}
5254
5255//===----------------------------------------------------------------------===//
5256//                              SDNode Class
5257//===----------------------------------------------------------------------===//
5258
5259HandleSDNode::~HandleSDNode() {
5260  DropOperands();
5261}
5262
5263GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5264                                         EVT VT, int64_t o, unsigned char TF)
5265  : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
5266    Offset(o), TargetFlags(TF) {
5267  TheGlobal = const_cast<GlobalValue*>(GA);
5268}
5269
5270MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5271                     MachineMemOperand *mmo)
5272 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5273  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5274                                      MMO->isNonTemporal());
5275  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5276  assert(isNonTemporal() == MMO->isNonTemporal() &&
5277         "Non-temporal encoding error!");
5278  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5279}
5280
5281MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5282                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5283                     MachineMemOperand *mmo)
5284   : SDNode(Opc, dl, VTs, Ops, NumOps),
5285     MemoryVT(memvt), MMO(mmo) {
5286  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5287                                      MMO->isNonTemporal());
5288  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5289  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5290}
5291
5292/// Profile - Gather unique data for the node.
5293///
5294void SDNode::Profile(FoldingSetNodeID &ID) const {
5295  AddNodeIDNode(ID, this);
5296}
5297
5298namespace {
5299  struct EVTArray {
5300    std::vector<EVT> VTs;
5301
5302    EVTArray() {
5303      VTs.reserve(MVT::LAST_VALUETYPE);
5304      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5305        VTs.push_back(MVT((MVT::SimpleValueType)i));
5306    }
5307  };
5308}
5309
5310static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5311static ManagedStatic<EVTArray> SimpleVTArray;
5312static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5313
5314/// getValueTypeList - Return a pointer to the specified value type.
5315///
5316const EVT *SDNode::getValueTypeList(EVT VT) {
5317  if (VT.isExtended()) {
5318    sys::SmartScopedLock<true> Lock(*VTMutex);
5319    return &(*EVTs->insert(VT).first);
5320  } else {
5321    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5322  }
5323}
5324
5325/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5326/// indicated value.  This method ignores uses of other values defined by this
5327/// operation.
5328bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5329  assert(Value < getNumValues() && "Bad value!");
5330
5331  // TODO: Only iterate over uses of a given value of the node
5332  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5333    if (UI.getUse().getResNo() == Value) {
5334      if (NUses == 0)
5335        return false;
5336      --NUses;
5337    }
5338  }
5339
5340  // Found exactly the right number of uses?
5341  return NUses == 0;
5342}
5343
5344
5345/// hasAnyUseOfValue - Return true if there are any use of the indicated
5346/// value. This method ignores uses of other values defined by this operation.
5347bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5348  assert(Value < getNumValues() && "Bad value!");
5349
5350  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5351    if (UI.getUse().getResNo() == Value)
5352      return true;
5353
5354  return false;
5355}
5356
5357
5358/// isOnlyUserOf - Return true if this node is the only use of N.
5359///
5360bool SDNode::isOnlyUserOf(SDNode *N) const {
5361  bool Seen = false;
5362  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5363    SDNode *User = *I;
5364    if (User == this)
5365      Seen = true;
5366    else
5367      return false;
5368  }
5369
5370  return Seen;
5371}
5372
5373/// isOperand - Return true if this node is an operand of N.
5374///
5375bool SDValue::isOperandOf(SDNode *N) const {
5376  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5377    if (*this == N->getOperand(i))
5378      return true;
5379  return false;
5380}
5381
5382bool SDNode::isOperandOf(SDNode *N) const {
5383  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5384    if (this == N->OperandList[i].getNode())
5385      return true;
5386  return false;
5387}
5388
5389/// reachesChainWithoutSideEffects - Return true if this operand (which must
5390/// be a chain) reaches the specified operand without crossing any
5391/// side-effecting instructions.  In practice, this looks through token
5392/// factors and non-volatile loads.  In order to remain efficient, this only
5393/// looks a couple of nodes in, it does not do an exhaustive search.
5394bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5395                                               unsigned Depth) const {
5396  if (*this == Dest) return true;
5397
5398  // Don't search too deeply, we just want to be able to see through
5399  // TokenFactor's etc.
5400  if (Depth == 0) return false;
5401
5402  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5403  // of the operands of the TF reach dest, then we can do the xform.
5404  if (getOpcode() == ISD::TokenFactor) {
5405    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5406      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5407        return true;
5408    return false;
5409  }
5410
5411  // Loads don't have side effects, look through them.
5412  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5413    if (!Ld->isVolatile())
5414      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5415  }
5416  return false;
5417}
5418
5419/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5420/// is either an operand of N or it can be reached by traversing up the operands.
5421/// NOTE: this is an expensive method. Use it carefully.
5422bool SDNode::isPredecessorOf(SDNode *N) const {
5423  SmallPtrSet<SDNode *, 32> Visited;
5424  SmallVector<SDNode *, 16> Worklist;
5425  Worklist.push_back(N);
5426
5427  do {
5428    N = Worklist.pop_back_val();
5429    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5430      SDNode *Op = N->getOperand(i).getNode();
5431      if (Op == this)
5432        return true;
5433      if (Visited.insert(Op))
5434        Worklist.push_back(Op);
5435    }
5436  } while (!Worklist.empty());
5437
5438  return false;
5439}
5440
5441uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5442  assert(Num < NumOperands && "Invalid child # of SDNode!");
5443  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5444}
5445
5446std::string SDNode::getOperationName(const SelectionDAG *G) const {
5447  switch (getOpcode()) {
5448  default:
5449    if (getOpcode() < ISD::BUILTIN_OP_END)
5450      return "<<Unknown DAG Node>>";
5451    if (isMachineOpcode()) {
5452      if (G)
5453        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5454          if (getMachineOpcode() < TII->getNumOpcodes())
5455            return TII->get(getMachineOpcode()).getName();
5456      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5457    }
5458    if (G) {
5459      const TargetLowering &TLI = G->getTargetLoweringInfo();
5460      const char *Name = TLI.getTargetNodeName(getOpcode());
5461      if (Name) return Name;
5462      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5463    }
5464    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5465
5466#ifndef NDEBUG
5467  case ISD::DELETED_NODE:
5468    return "<<Deleted Node!>>";
5469#endif
5470  case ISD::PREFETCH:      return "Prefetch";
5471  case ISD::MEMBARRIER:    return "MemBarrier";
5472  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5473  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5474  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5475  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5476  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5477  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5478  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5479  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5480  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5481  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5482  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5483  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5484  case ISD::PCMARKER:      return "PCMarker";
5485  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5486  case ISD::SRCVALUE:      return "SrcValue";
5487  case ISD::EntryToken:    return "EntryToken";
5488  case ISD::TokenFactor:   return "TokenFactor";
5489  case ISD::AssertSext:    return "AssertSext";
5490  case ISD::AssertZext:    return "AssertZext";
5491
5492  case ISD::BasicBlock:    return "BasicBlock";
5493  case ISD::VALUETYPE:     return "ValueType";
5494  case ISD::Register:      return "Register";
5495
5496  case ISD::Constant:      return "Constant";
5497  case ISD::ConstantFP:    return "ConstantFP";
5498  case ISD::GlobalAddress: return "GlobalAddress";
5499  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5500  case ISD::FrameIndex:    return "FrameIndex";
5501  case ISD::JumpTable:     return "JumpTable";
5502  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5503  case ISD::RETURNADDR: return "RETURNADDR";
5504  case ISD::FRAMEADDR: return "FRAMEADDR";
5505  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5506  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5507  case ISD::LSDAADDR: return "LSDAADDR";
5508  case ISD::EHSELECTION: return "EHSELECTION";
5509  case ISD::EH_RETURN: return "EH_RETURN";
5510  case ISD::ConstantPool:  return "ConstantPool";
5511  case ISD::ExternalSymbol: return "ExternalSymbol";
5512  case ISD::BlockAddress:  return "BlockAddress";
5513  case ISD::INTRINSIC_WO_CHAIN:
5514  case ISD::INTRINSIC_VOID:
5515  case ISD::INTRINSIC_W_CHAIN: {
5516    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5517    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5518    if (IID < Intrinsic::num_intrinsics)
5519      return Intrinsic::getName((Intrinsic::ID)IID);
5520    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5521      return TII->getName(IID);
5522    llvm_unreachable("Invalid intrinsic ID");
5523  }
5524
5525  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5526  case ISD::TargetConstant: return "TargetConstant";
5527  case ISD::TargetConstantFP:return "TargetConstantFP";
5528  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5529  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5530  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5531  case ISD::TargetJumpTable:  return "TargetJumpTable";
5532  case ISD::TargetConstantPool:  return "TargetConstantPool";
5533  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5534  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5535
5536  case ISD::CopyToReg:     return "CopyToReg";
5537  case ISD::CopyFromReg:   return "CopyFromReg";
5538  case ISD::UNDEF:         return "undef";
5539  case ISD::MERGE_VALUES:  return "merge_values";
5540  case ISD::INLINEASM:     return "inlineasm";
5541  case ISD::EH_LABEL:      return "eh_label";
5542  case ISD::HANDLENODE:    return "handlenode";
5543
5544  // Unary operators
5545  case ISD::FABS:   return "fabs";
5546  case ISD::FNEG:   return "fneg";
5547  case ISD::FSQRT:  return "fsqrt";
5548  case ISD::FSIN:   return "fsin";
5549  case ISD::FCOS:   return "fcos";
5550  case ISD::FPOWI:  return "fpowi";
5551  case ISD::FPOW:   return "fpow";
5552  case ISD::FTRUNC: return "ftrunc";
5553  case ISD::FFLOOR: return "ffloor";
5554  case ISD::FCEIL:  return "fceil";
5555  case ISD::FRINT:  return "frint";
5556  case ISD::FNEARBYINT: return "fnearbyint";
5557
5558  // Binary operators
5559  case ISD::ADD:    return "add";
5560  case ISD::SUB:    return "sub";
5561  case ISD::MUL:    return "mul";
5562  case ISD::MULHU:  return "mulhu";
5563  case ISD::MULHS:  return "mulhs";
5564  case ISD::SDIV:   return "sdiv";
5565  case ISD::UDIV:   return "udiv";
5566  case ISD::SREM:   return "srem";
5567  case ISD::UREM:   return "urem";
5568  case ISD::SMUL_LOHI:  return "smul_lohi";
5569  case ISD::UMUL_LOHI:  return "umul_lohi";
5570  case ISD::SDIVREM:    return "sdivrem";
5571  case ISD::UDIVREM:    return "udivrem";
5572  case ISD::AND:    return "and";
5573  case ISD::OR:     return "or";
5574  case ISD::XOR:    return "xor";
5575  case ISD::SHL:    return "shl";
5576  case ISD::SRA:    return "sra";
5577  case ISD::SRL:    return "srl";
5578  case ISD::ROTL:   return "rotl";
5579  case ISD::ROTR:   return "rotr";
5580  case ISD::FADD:   return "fadd";
5581  case ISD::FSUB:   return "fsub";
5582  case ISD::FMUL:   return "fmul";
5583  case ISD::FDIV:   return "fdiv";
5584  case ISD::FREM:   return "frem";
5585  case ISD::FCOPYSIGN: return "fcopysign";
5586  case ISD::FGETSIGN:  return "fgetsign";
5587
5588  case ISD::SETCC:       return "setcc";
5589  case ISD::VSETCC:      return "vsetcc";
5590  case ISD::SELECT:      return "select";
5591  case ISD::SELECT_CC:   return "select_cc";
5592  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5593  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5594  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5595  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5596  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5597  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5598  case ISD::CARRY_FALSE:         return "carry_false";
5599  case ISD::ADDC:        return "addc";
5600  case ISD::ADDE:        return "adde";
5601  case ISD::SADDO:       return "saddo";
5602  case ISD::UADDO:       return "uaddo";
5603  case ISD::SSUBO:       return "ssubo";
5604  case ISD::USUBO:       return "usubo";
5605  case ISD::SMULO:       return "smulo";
5606  case ISD::UMULO:       return "umulo";
5607  case ISD::SUBC:        return "subc";
5608  case ISD::SUBE:        return "sube";
5609  case ISD::SHL_PARTS:   return "shl_parts";
5610  case ISD::SRA_PARTS:   return "sra_parts";
5611  case ISD::SRL_PARTS:   return "srl_parts";
5612
5613  // Conversion operators.
5614  case ISD::SIGN_EXTEND: return "sign_extend";
5615  case ISD::ZERO_EXTEND: return "zero_extend";
5616  case ISD::ANY_EXTEND:  return "any_extend";
5617  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5618  case ISD::TRUNCATE:    return "truncate";
5619  case ISD::FP_ROUND:    return "fp_round";
5620  case ISD::FLT_ROUNDS_: return "flt_rounds";
5621  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5622  case ISD::FP_EXTEND:   return "fp_extend";
5623
5624  case ISD::SINT_TO_FP:  return "sint_to_fp";
5625  case ISD::UINT_TO_FP:  return "uint_to_fp";
5626  case ISD::FP_TO_SINT:  return "fp_to_sint";
5627  case ISD::FP_TO_UINT:  return "fp_to_uint";
5628  case ISD::BIT_CONVERT: return "bit_convert";
5629  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5630  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5631
5632  case ISD::CONVERT_RNDSAT: {
5633    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5634    default: llvm_unreachable("Unknown cvt code!");
5635    case ISD::CVT_FF:  return "cvt_ff";
5636    case ISD::CVT_FS:  return "cvt_fs";
5637    case ISD::CVT_FU:  return "cvt_fu";
5638    case ISD::CVT_SF:  return "cvt_sf";
5639    case ISD::CVT_UF:  return "cvt_uf";
5640    case ISD::CVT_SS:  return "cvt_ss";
5641    case ISD::CVT_SU:  return "cvt_su";
5642    case ISD::CVT_US:  return "cvt_us";
5643    case ISD::CVT_UU:  return "cvt_uu";
5644    }
5645  }
5646
5647    // Control flow instructions
5648  case ISD::BR:      return "br";
5649  case ISD::BRIND:   return "brind";
5650  case ISD::BR_JT:   return "br_jt";
5651  case ISD::BRCOND:  return "brcond";
5652  case ISD::BR_CC:   return "br_cc";
5653  case ISD::CALLSEQ_START:  return "callseq_start";
5654  case ISD::CALLSEQ_END:    return "callseq_end";
5655
5656    // Other operators
5657  case ISD::LOAD:               return "load";
5658  case ISD::STORE:              return "store";
5659  case ISD::VAARG:              return "vaarg";
5660  case ISD::VACOPY:             return "vacopy";
5661  case ISD::VAEND:              return "vaend";
5662  case ISD::VASTART:            return "vastart";
5663  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5664  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5665  case ISD::BUILD_PAIR:         return "build_pair";
5666  case ISD::STACKSAVE:          return "stacksave";
5667  case ISD::STACKRESTORE:       return "stackrestore";
5668  case ISD::TRAP:               return "trap";
5669
5670  // Bit manipulation
5671  case ISD::BSWAP:   return "bswap";
5672  case ISD::CTPOP:   return "ctpop";
5673  case ISD::CTTZ:    return "cttz";
5674  case ISD::CTLZ:    return "ctlz";
5675
5676  // Trampolines
5677  case ISD::TRAMPOLINE: return "trampoline";
5678
5679  case ISD::CONDCODE:
5680    switch (cast<CondCodeSDNode>(this)->get()) {
5681    default: llvm_unreachable("Unknown setcc condition!");
5682    case ISD::SETOEQ:  return "setoeq";
5683    case ISD::SETOGT:  return "setogt";
5684    case ISD::SETOGE:  return "setoge";
5685    case ISD::SETOLT:  return "setolt";
5686    case ISD::SETOLE:  return "setole";
5687    case ISD::SETONE:  return "setone";
5688
5689    case ISD::SETO:    return "seto";
5690    case ISD::SETUO:   return "setuo";
5691    case ISD::SETUEQ:  return "setue";
5692    case ISD::SETUGT:  return "setugt";
5693    case ISD::SETUGE:  return "setuge";
5694    case ISD::SETULT:  return "setult";
5695    case ISD::SETULE:  return "setule";
5696    case ISD::SETUNE:  return "setune";
5697
5698    case ISD::SETEQ:   return "seteq";
5699    case ISD::SETGT:   return "setgt";
5700    case ISD::SETGE:   return "setge";
5701    case ISD::SETLT:   return "setlt";
5702    case ISD::SETLE:   return "setle";
5703    case ISD::SETNE:   return "setne";
5704    }
5705  }
5706}
5707
5708const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5709  switch (AM) {
5710  default:
5711    return "";
5712  case ISD::PRE_INC:
5713    return "<pre-inc>";
5714  case ISD::PRE_DEC:
5715    return "<pre-dec>";
5716  case ISD::POST_INC:
5717    return "<post-inc>";
5718  case ISD::POST_DEC:
5719    return "<post-dec>";
5720  }
5721}
5722
5723std::string ISD::ArgFlagsTy::getArgFlagsString() {
5724  std::string S = "< ";
5725
5726  if (isZExt())
5727    S += "zext ";
5728  if (isSExt())
5729    S += "sext ";
5730  if (isInReg())
5731    S += "inreg ";
5732  if (isSRet())
5733    S += "sret ";
5734  if (isByVal())
5735    S += "byval ";
5736  if (isNest())
5737    S += "nest ";
5738  if (getByValAlign())
5739    S += "byval-align:" + utostr(getByValAlign()) + " ";
5740  if (getOrigAlign())
5741    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5742  if (getByValSize())
5743    S += "byval-size:" + utostr(getByValSize()) + " ";
5744  return S + ">";
5745}
5746
5747void SDNode::dump() const { dump(0); }
5748void SDNode::dump(const SelectionDAG *G) const {
5749  print(dbgs(), G);
5750}
5751
5752void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5753  OS << (void*)this << ": ";
5754
5755  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5756    if (i) OS << ",";
5757    if (getValueType(i) == MVT::Other)
5758      OS << "ch";
5759    else
5760      OS << getValueType(i).getEVTString();
5761  }
5762  OS << " = " << getOperationName(G);
5763}
5764
5765void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5766  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5767    if (!MN->memoperands_empty()) {
5768      OS << "<";
5769      OS << "Mem:";
5770      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5771           e = MN->memoperands_end(); i != e; ++i) {
5772        OS << **i;
5773        if (next(i) != e)
5774          OS << " ";
5775      }
5776      OS << ">";
5777    }
5778  } else if (const ShuffleVectorSDNode *SVN =
5779               dyn_cast<ShuffleVectorSDNode>(this)) {
5780    OS << "<";
5781    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5782      int Idx = SVN->getMaskElt(i);
5783      if (i) OS << ",";
5784      if (Idx < 0)
5785        OS << "u";
5786      else
5787        OS << Idx;
5788    }
5789    OS << ">";
5790  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5791    OS << '<' << CSDN->getAPIntValue() << '>';
5792  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5793    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5794      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5795    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5796      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5797    else {
5798      OS << "<APFloat(";
5799      CSDN->getValueAPF().bitcastToAPInt().dump();
5800      OS << ")>";
5801    }
5802  } else if (const GlobalAddressSDNode *GADN =
5803             dyn_cast<GlobalAddressSDNode>(this)) {
5804    int64_t offset = GADN->getOffset();
5805    OS << '<';
5806    WriteAsOperand(OS, GADN->getGlobal());
5807    OS << '>';
5808    if (offset > 0)
5809      OS << " + " << offset;
5810    else
5811      OS << " " << offset;
5812    if (unsigned int TF = GADN->getTargetFlags())
5813      OS << " [TF=" << TF << ']';
5814  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5815    OS << "<" << FIDN->getIndex() << ">";
5816  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5817    OS << "<" << JTDN->getIndex() << ">";
5818    if (unsigned int TF = JTDN->getTargetFlags())
5819      OS << " [TF=" << TF << ']';
5820  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5821    int offset = CP->getOffset();
5822    if (CP->isMachineConstantPoolEntry())
5823      OS << "<" << *CP->getMachineCPVal() << ">";
5824    else
5825      OS << "<" << *CP->getConstVal() << ">";
5826    if (offset > 0)
5827      OS << " + " << offset;
5828    else
5829      OS << " " << offset;
5830    if (unsigned int TF = CP->getTargetFlags())
5831      OS << " [TF=" << TF << ']';
5832  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5833    OS << "<";
5834    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5835    if (LBB)
5836      OS << LBB->getName() << " ";
5837    OS << (const void*)BBDN->getBasicBlock() << ">";
5838  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5839    if (G && R->getReg() &&
5840        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5841      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5842    } else {
5843      OS << " %reg" << R->getReg();
5844    }
5845  } else if (const ExternalSymbolSDNode *ES =
5846             dyn_cast<ExternalSymbolSDNode>(this)) {
5847    OS << "'" << ES->getSymbol() << "'";
5848    if (unsigned int TF = ES->getTargetFlags())
5849      OS << " [TF=" << TF << ']';
5850  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5851    if (M->getValue())
5852      OS << "<" << M->getValue() << ">";
5853    else
5854      OS << "<null>";
5855  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5856    OS << ":" << N->getVT().getEVTString();
5857  }
5858  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5859    OS << "<" << *LD->getMemOperand();
5860
5861    bool doExt = true;
5862    switch (LD->getExtensionType()) {
5863    default: doExt = false; break;
5864    case ISD::EXTLOAD: OS << ", anyext"; break;
5865    case ISD::SEXTLOAD: OS << ", sext"; break;
5866    case ISD::ZEXTLOAD: OS << ", zext"; break;
5867    }
5868    if (doExt)
5869      OS << " from " << LD->getMemoryVT().getEVTString();
5870
5871    const char *AM = getIndexedModeName(LD->getAddressingMode());
5872    if (*AM)
5873      OS << ", " << AM;
5874
5875    OS << ">";
5876  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5877    OS << "<" << *ST->getMemOperand();
5878
5879    if (ST->isTruncatingStore())
5880      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5881
5882    const char *AM = getIndexedModeName(ST->getAddressingMode());
5883    if (*AM)
5884      OS << ", " << AM;
5885
5886    OS << ">";
5887  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5888    OS << "<" << *M->getMemOperand() << ">";
5889  } else if (const BlockAddressSDNode *BA =
5890               dyn_cast<BlockAddressSDNode>(this)) {
5891    OS << "<";
5892    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5893    OS << ", ";
5894    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
5895    OS << ">";
5896    if (unsigned int TF = BA->getTargetFlags())
5897      OS << " [TF=" << TF << ']';
5898  }
5899
5900  if (G)
5901    if (unsigned Order = G->GetOrdering(this))
5902      OS << " [ORD=" << Order << ']';
5903
5904  if (getNodeId() != -1)
5905    OS << " [ID=" << getNodeId() << ']';
5906}
5907
5908void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5909  print_types(OS, G);
5910  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5911    if (i) OS << ", "; else OS << " ";
5912    OS << (void*)getOperand(i).getNode();
5913    if (unsigned RN = getOperand(i).getResNo())
5914      OS << ":" << RN;
5915  }
5916  print_details(OS, G);
5917}
5918
5919static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
5920                                  const SelectionDAG *G, unsigned depth,
5921                                  unsigned indent)
5922{
5923  if (depth == 0)
5924    return;
5925
5926  OS.indent(indent);
5927
5928  N->print(OS, G);
5929
5930  if (depth < 1)
5931    return;
5932
5933  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5934    OS << '\n';
5935    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
5936  }
5937}
5938
5939void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
5940                            unsigned depth) const {
5941  printrWithDepthHelper(OS, this, G, depth, 0);
5942}
5943
5944void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
5945  // Don't print impossibly deep things.
5946  printrWithDepth(OS, G, 100);
5947}
5948
5949void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
5950  printrWithDepth(dbgs(), G, depth);
5951}
5952
5953void SDNode::dumprFull(const SelectionDAG *G) const {
5954  // Don't print impossibly deep things.
5955  dumprWithDepth(G, 100);
5956}
5957
5958static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5959  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5960    if (N->getOperand(i).getNode()->hasOneUse())
5961      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5962    else
5963      dbgs() << "\n" << std::string(indent+2, ' ')
5964           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5965
5966
5967  dbgs() << "\n";
5968  dbgs().indent(indent);
5969  N->dump(G);
5970}
5971
5972SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
5973  assert(N->getNumValues() == 1 &&
5974         "Can't unroll a vector with multiple results!");
5975
5976  EVT VT = N->getValueType(0);
5977  unsigned NE = VT.getVectorNumElements();
5978  EVT EltVT = VT.getVectorElementType();
5979  DebugLoc dl = N->getDebugLoc();
5980
5981  SmallVector<SDValue, 8> Scalars;
5982  SmallVector<SDValue, 4> Operands(N->getNumOperands());
5983
5984  // If ResNE is 0, fully unroll the vector op.
5985  if (ResNE == 0)
5986    ResNE = NE;
5987  else if (NE > ResNE)
5988    NE = ResNE;
5989
5990  unsigned i;
5991  for (i= 0; i != NE; ++i) {
5992    for (unsigned j = 0; j != N->getNumOperands(); ++j) {
5993      SDValue Operand = N->getOperand(j);
5994      EVT OperandVT = Operand.getValueType();
5995      if (OperandVT.isVector()) {
5996        // A vector operand; extract a single element.
5997        EVT OperandEltVT = OperandVT.getVectorElementType();
5998        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
5999                              OperandEltVT,
6000                              Operand,
6001                              getConstant(i, MVT::i32));
6002      } else {
6003        // A scalar operand; just use it as is.
6004        Operands[j] = Operand;
6005      }
6006    }
6007
6008    switch (N->getOpcode()) {
6009    default:
6010      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6011                                &Operands[0], Operands.size()));
6012      break;
6013    case ISD::SHL:
6014    case ISD::SRA:
6015    case ISD::SRL:
6016    case ISD::ROTL:
6017    case ISD::ROTR:
6018      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6019                                getShiftAmountOperand(Operands[1])));
6020      break;
6021    case ISD::SIGN_EXTEND_INREG:
6022    case ISD::FP_ROUND_INREG: {
6023      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6024      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6025                                Operands[0],
6026                                getValueType(ExtVT)));
6027    }
6028    }
6029  }
6030
6031  for (; i < ResNE; ++i)
6032    Scalars.push_back(getUNDEF(EltVT));
6033
6034  return getNode(ISD::BUILD_VECTOR, dl,
6035                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6036                 &Scalars[0], Scalars.size());
6037}
6038
6039
6040/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6041/// location that is 'Dist' units away from the location that the 'Base' load
6042/// is loading from.
6043bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6044                                     unsigned Bytes, int Dist) const {
6045  if (LD->getChain() != Base->getChain())
6046    return false;
6047  EVT VT = LD->getValueType(0);
6048  if (VT.getSizeInBits() / 8 != Bytes)
6049    return false;
6050
6051  SDValue Loc = LD->getOperand(1);
6052  SDValue BaseLoc = Base->getOperand(1);
6053  if (Loc.getOpcode() == ISD::FrameIndex) {
6054    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6055      return false;
6056    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6057    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6058    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6059    int FS  = MFI->getObjectSize(FI);
6060    int BFS = MFI->getObjectSize(BFI);
6061    if (FS != BFS || FS != (int)Bytes) return false;
6062    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6063  }
6064  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6065    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6066    if (V && (V->getSExtValue() == Dist*Bytes))
6067      return true;
6068  }
6069
6070  GlobalValue *GV1 = NULL;
6071  GlobalValue *GV2 = NULL;
6072  int64_t Offset1 = 0;
6073  int64_t Offset2 = 0;
6074  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6075  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6076  if (isGA1 && isGA2 && GV1 == GV2)
6077    return Offset1 == (Offset2 + Dist*Bytes);
6078  return false;
6079}
6080
6081
6082/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6083/// it cannot be inferred.
6084unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6085  // If this is a GlobalAddress + cst, return the alignment.
6086  GlobalValue *GV;
6087  int64_t GVOffset = 0;
6088  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset))
6089    return MinAlign(GV->getAlignment(), GVOffset);
6090
6091  // If this is a direct reference to a stack slot, use information about the
6092  // stack slot's alignment.
6093  int FrameIdx = 1 << 31;
6094  int64_t FrameOffset = 0;
6095  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6096    FrameIdx = FI->getIndex();
6097  } else if (Ptr.getOpcode() == ISD::ADD &&
6098             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6099             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6100    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6101    FrameOffset = Ptr.getConstantOperandVal(1);
6102  }
6103
6104  if (FrameIdx != (1 << 31)) {
6105    // FIXME: Handle FI+CST.
6106    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6107    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6108                                    FrameOffset);
6109    if (MFI.isFixedObjectIndex(FrameIdx)) {
6110      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6111
6112      // The alignment of the frame index can be determined from its offset from
6113      // the incoming frame position.  If the frame object is at offset 32 and
6114      // the stack is guaranteed to be 16-byte aligned, then we know that the
6115      // object is 16-byte aligned.
6116      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6117      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6118
6119      // Finally, the frame object itself may have a known alignment.  Factor
6120      // the alignment + offset into a new alignment.  For example, if we know
6121      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6122      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6123      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6124      return std::max(Align, FIInfoAlign);
6125    }
6126    return FIInfoAlign;
6127  }
6128
6129  return 0;
6130}
6131
6132void SelectionDAG::dump() const {
6133  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6134
6135  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6136       I != E; ++I) {
6137    const SDNode *N = I;
6138    if (!N->hasOneUse() && N != getRoot().getNode())
6139      DumpNodes(N, 2, this);
6140  }
6141
6142  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6143
6144  dbgs() << "\n\n";
6145}
6146
6147void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6148  print_types(OS, G);
6149  print_details(OS, G);
6150}
6151
6152typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6153static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6154                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6155  if (!once.insert(N))          // If we've been here before, return now.
6156    return;
6157
6158  // Dump the current SDNode, but don't end the line yet.
6159  OS << std::string(indent, ' ');
6160  N->printr(OS, G);
6161
6162  // Having printed this SDNode, walk the children:
6163  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6164    const SDNode *child = N->getOperand(i).getNode();
6165
6166    if (i) OS << ",";
6167    OS << " ";
6168
6169    if (child->getNumOperands() == 0) {
6170      // This child has no grandchildren; print it inline right here.
6171      child->printr(OS, G);
6172      once.insert(child);
6173    } else {         // Just the address. FIXME: also print the child's opcode.
6174      OS << (void*)child;
6175      if (unsigned RN = N->getOperand(i).getResNo())
6176        OS << ":" << RN;
6177    }
6178  }
6179
6180  OS << "\n";
6181
6182  // Dump children that have grandchildren on their own line(s).
6183  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6184    const SDNode *child = N->getOperand(i).getNode();
6185    DumpNodesr(OS, child, indent+2, G, once);
6186  }
6187}
6188
6189void SDNode::dumpr() const {
6190  VisitedSDNodeSet once;
6191  DumpNodesr(dbgs(), this, 0, 0, once);
6192}
6193
6194void SDNode::dumpr(const SelectionDAG *G) const {
6195  VisitedSDNodeSet once;
6196  DumpNodesr(dbgs(), this, 0, G, once);
6197}
6198
6199
6200// getAddressSpace - Return the address space this GlobalAddress belongs to.
6201unsigned GlobalAddressSDNode::getAddressSpace() const {
6202  return getGlobal()->getType()->getAddressSpace();
6203}
6204
6205
6206const Type *ConstantPoolSDNode::getType() const {
6207  if (isMachineConstantPoolEntry())
6208    return Val.MachineCPVal->getType();
6209  return Val.ConstVal->getType();
6210}
6211
6212bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6213                                        APInt &SplatUndef,
6214                                        unsigned &SplatBitSize,
6215                                        bool &HasAnyUndefs,
6216                                        unsigned MinSplatBits,
6217                                        bool isBigEndian) {
6218  EVT VT = getValueType(0);
6219  assert(VT.isVector() && "Expected a vector type");
6220  unsigned sz = VT.getSizeInBits();
6221  if (MinSplatBits > sz)
6222    return false;
6223
6224  SplatValue = APInt(sz, 0);
6225  SplatUndef = APInt(sz, 0);
6226
6227  // Get the bits.  Bits with undefined values (when the corresponding element
6228  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6229  // in SplatValue.  If any of the values are not constant, give up and return
6230  // false.
6231  unsigned int nOps = getNumOperands();
6232  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6233  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6234
6235  for (unsigned j = 0; j < nOps; ++j) {
6236    unsigned i = isBigEndian ? nOps-1-j : j;
6237    SDValue OpVal = getOperand(i);
6238    unsigned BitPos = j * EltBitSize;
6239
6240    if (OpVal.getOpcode() == ISD::UNDEF)
6241      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6242    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6243      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6244                     zextOrTrunc(sz) << BitPos);
6245    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6246      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6247     else
6248      return false;
6249  }
6250
6251  // The build_vector is all constants or undefs.  Find the smallest element
6252  // size that splats the vector.
6253
6254  HasAnyUndefs = (SplatUndef != 0);
6255  while (sz > 8) {
6256
6257    unsigned HalfSize = sz / 2;
6258    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6259    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6260    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6261    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6262
6263    // If the two halves do not match (ignoring undef bits), stop here.
6264    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6265        MinSplatBits > HalfSize)
6266      break;
6267
6268    SplatValue = HighValue | LowValue;
6269    SplatUndef = HighUndef & LowUndef;
6270
6271    sz = HalfSize;
6272  }
6273
6274  SplatBitSize = sz;
6275  return true;
6276}
6277
6278bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6279  // Find the first non-undef value in the shuffle mask.
6280  unsigned i, e;
6281  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6282    /* search */;
6283
6284  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6285
6286  // Make sure all remaining elements are either undef or the same as the first
6287  // non-undef value.
6288  for (int Idx = Mask[i]; i != e; ++i)
6289    if (Mask[i] >= 0 && Mask[i] != Idx)
6290      return false;
6291  return true;
6292}
6293
6294#ifdef XDEBUG
6295static void checkForCyclesHelper(const SDNode *N,
6296                                 SmallPtrSet<const SDNode*, 32> &Visited,
6297                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6298  // If this node has already been checked, don't check it again.
6299  if (Checked.count(N))
6300    return;
6301
6302  // If a node has already been visited on this depth-first walk, reject it as
6303  // a cycle.
6304  if (!Visited.insert(N)) {
6305    dbgs() << "Offending node:\n";
6306    N->dumprFull();
6307    errs() << "Detected cycle in SelectionDAG\n";
6308    abort();
6309  }
6310
6311  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6312    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6313
6314  Checked.insert(N);
6315  Visited.erase(N);
6316}
6317#endif
6318
6319void llvm::checkForCycles(const llvm::SDNode *N) {
6320#ifdef XDEBUG
6321  assert(N && "Checking nonexistant SDNode");
6322  SmallPtrSet<const SDNode*, 32> visited;
6323  SmallPtrSet<const SDNode*, 32> checked;
6324  checkForCyclesHelper(N, visited, checked);
6325#endif
6326}
6327
6328void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6329  checkForCycles(DAG->getRoot().getNode());
6330}
6331