SelectionDAG.cpp revision c7a09ab3110b9462ad9646cb60c22c8527491ad9
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/SetVector.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/StringExtras.h"
41#include <algorithm>
42#include <cmath>
43using namespace llvm;
44
45/// makeVTList - Return an instance of the SDVTList struct initialized with the
46/// specified members.
47static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
48  SDVTList Res = {VTs, NumVTs};
49  return Res;
50}
51
52static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
53  switch (VT.getSimpleVT()) {
54  default: assert(0 && "Unknown FP format");
55  case MVT::f32:     return &APFloat::IEEEsingle;
56  case MVT::f64:     return &APFloat::IEEEdouble;
57  case MVT::f80:     return &APFloat::x87DoubleExtended;
58  case MVT::f128:    return &APFloat::IEEEquad;
59  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
60  }
61}
62
63SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
64
65//===----------------------------------------------------------------------===//
66//                              ConstantFPSDNode Class
67//===----------------------------------------------------------------------===//
68
69/// isExactlyValue - We don't rely on operator== working on double values, as
70/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
71/// As such, this method can be used to do an exact bit-for-bit comparison of
72/// two floating point values.
73bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
74  return getValueAPF().bitwiseIsEqual(V);
75}
76
77bool ConstantFPSDNode::isValueValidForType(MVT VT,
78                                           const APFloat& Val) {
79  assert(VT.isFloatingPoint() && "Can only convert between FP types");
80
81  // PPC long double cannot be converted to any other type.
82  if (VT == MVT::ppcf128 ||
83      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
84    return false;
85
86  // convert modifies in place, so make a copy.
87  APFloat Val2 = APFloat(Val);
88  bool losesInfo;
89  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
90                      &losesInfo);
91  return !losesInfo;
92}
93
94//===----------------------------------------------------------------------===//
95//                              ISD Namespace
96//===----------------------------------------------------------------------===//
97
98/// isBuildVectorAllOnes - Return true if the specified node is a
99/// BUILD_VECTOR where all of the elements are ~0 or undef.
100bool ISD::isBuildVectorAllOnes(const SDNode *N) {
101  // Look through a bit convert.
102  if (N->getOpcode() == ISD::BIT_CONVERT)
103    N = N->getOperand(0).getNode();
104
105  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
106
107  unsigned i = 0, e = N->getNumOperands();
108
109  // Skip over all of the undef values.
110  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
111    ++i;
112
113  // Do not accept an all-undef vector.
114  if (i == e) return false;
115
116  // Do not accept build_vectors that aren't all constants or which have non-~0
117  // elements.
118  SDValue NotZero = N->getOperand(i);
119  if (isa<ConstantSDNode>(NotZero)) {
120    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
121      return false;
122  } else if (isa<ConstantFPSDNode>(NotZero)) {
123    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
124                bitcastToAPInt().isAllOnesValue())
125      return false;
126  } else
127    return false;
128
129  // Okay, we have at least one ~0 value, check to see if the rest match or are
130  // undefs.
131  for (++i; i != e; ++i)
132    if (N->getOperand(i) != NotZero &&
133        N->getOperand(i).getOpcode() != ISD::UNDEF)
134      return false;
135  return true;
136}
137
138
139/// isBuildVectorAllZeros - Return true if the specified node is a
140/// BUILD_VECTOR where all of the elements are 0 or undef.
141bool ISD::isBuildVectorAllZeros(const SDNode *N) {
142  // Look through a bit convert.
143  if (N->getOpcode() == ISD::BIT_CONVERT)
144    N = N->getOperand(0).getNode();
145
146  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
147
148  unsigned i = 0, e = N->getNumOperands();
149
150  // Skip over all of the undef values.
151  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
152    ++i;
153
154  // Do not accept an all-undef vector.
155  if (i == e) return false;
156
157  // Do not accept build_vectors that aren't all constants or which have non-~0
158  // elements.
159  SDValue Zero = N->getOperand(i);
160  if (isa<ConstantSDNode>(Zero)) {
161    if (!cast<ConstantSDNode>(Zero)->isNullValue())
162      return false;
163  } else if (isa<ConstantFPSDNode>(Zero)) {
164    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
165      return false;
166  } else
167    return false;
168
169  // Okay, we have at least one ~0 value, check to see if the rest match or are
170  // undefs.
171  for (++i; i != e; ++i)
172    if (N->getOperand(i) != Zero &&
173        N->getOperand(i).getOpcode() != ISD::UNDEF)
174      return false;
175  return true;
176}
177
178/// isScalarToVector - Return true if the specified node is a
179/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
180/// element is not an undef.
181bool ISD::isScalarToVector(const SDNode *N) {
182  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
183    return true;
184
185  if (N->getOpcode() != ISD::BUILD_VECTOR)
186    return false;
187  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
188    return false;
189  unsigned NumElems = N->getNumOperands();
190  for (unsigned i = 1; i < NumElems; ++i) {
191    SDValue V = N->getOperand(i);
192    if (V.getOpcode() != ISD::UNDEF)
193      return false;
194  }
195  return true;
196}
197
198
199/// isDebugLabel - Return true if the specified node represents a debug
200/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
201bool ISD::isDebugLabel(const SDNode *N) {
202  SDValue Zero;
203  if (N->getOpcode() == ISD::DBG_LABEL)
204    return true;
205  if (N->isMachineOpcode() &&
206      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
207    return true;
208  return false;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: assert(0 && "Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310const TargetMachine &SelectionDAG::getTarget() const {
311  return MF->getTarget();
312}
313
314//===----------------------------------------------------------------------===//
315//                           SDNode Profile Support
316//===----------------------------------------------------------------------===//
317
318/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
319///
320static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
321  ID.AddInteger(OpC);
322}
323
324/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
325/// solely with their pointer.
326static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
327  ID.AddPointer(VTList.VTs);
328}
329
330/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
331///
332static void AddNodeIDOperands(FoldingSetNodeID &ID,
333                              const SDValue *Ops, unsigned NumOps) {
334  for (; NumOps; --NumOps, ++Ops) {
335    ID.AddPointer(Ops->getNode());
336    ID.AddInteger(Ops->getResNo());
337  }
338}
339
340/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
341///
342static void AddNodeIDOperands(FoldingSetNodeID &ID,
343                              const SDUse *Ops, unsigned NumOps) {
344  for (; NumOps; --NumOps, ++Ops) {
345    ID.AddPointer(Ops->getNode());
346    ID.AddInteger(Ops->getResNo());
347  }
348}
349
350static void AddNodeIDNode(FoldingSetNodeID &ID,
351                          unsigned short OpC, SDVTList VTList,
352                          const SDValue *OpList, unsigned N) {
353  AddNodeIDOpcode(ID, OpC);
354  AddNodeIDValueTypes(ID, VTList);
355  AddNodeIDOperands(ID, OpList, N);
356}
357
358/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
359/// the NodeID data.
360static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
361  switch (N->getOpcode()) {
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::ARG_FLAGS:
364    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
365    break;
366  case ISD::TargetConstant:
367  case ISD::Constant:
368    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
369    break;
370  case ISD::TargetConstantFP:
371  case ISD::ConstantFP: {
372    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
373    break;
374  }
375  case ISD::TargetGlobalAddress:
376  case ISD::GlobalAddress:
377  case ISD::TargetGlobalTLSAddress:
378  case ISD::GlobalTLSAddress: {
379    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
380    ID.AddPointer(GA->getGlobal());
381    ID.AddInteger(GA->getOffset());
382    break;
383  }
384  case ISD::BasicBlock:
385    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
386    break;
387  case ISD::Register:
388    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
389    break;
390  case ISD::DBG_STOPPOINT: {
391    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
392    ID.AddInteger(DSP->getLine());
393    ID.AddInteger(DSP->getColumn());
394    ID.AddPointer(DSP->getCompileUnit());
395    break;
396  }
397  case ISD::SRCVALUE:
398    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
399    break;
400  case ISD::MEMOPERAND: {
401    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
402    MO.Profile(ID);
403    break;
404  }
405  case ISD::FrameIndex:
406  case ISD::TargetFrameIndex:
407    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
408    break;
409  case ISD::JumpTable:
410  case ISD::TargetJumpTable:
411    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
412    break;
413  case ISD::ConstantPool:
414  case ISD::TargetConstantPool: {
415    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
416    ID.AddInteger(CP->getAlignment());
417    ID.AddInteger(CP->getOffset());
418    if (CP->isMachineConstantPoolEntry())
419      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
420    else
421      ID.AddPointer(CP->getConstVal());
422    break;
423  }
424  case ISD::CALL: {
425    const CallSDNode *Call = cast<CallSDNode>(N);
426    ID.AddInteger(Call->getCallingConv());
427    ID.AddInteger(Call->isVarArg());
428    break;
429  }
430  case ISD::LOAD: {
431    const LoadSDNode *LD = cast<LoadSDNode>(N);
432    ID.AddInteger(LD->getMemoryVT().getRawBits());
433    ID.AddInteger(LD->getRawSubclassData());
434    break;
435  }
436  case ISD::STORE: {
437    const StoreSDNode *ST = cast<StoreSDNode>(N);
438    ID.AddInteger(ST->getMemoryVT().getRawBits());
439    ID.AddInteger(ST->getRawSubclassData());
440    break;
441  }
442  case ISD::ATOMIC_CMP_SWAP:
443  case ISD::ATOMIC_SWAP:
444  case ISD::ATOMIC_LOAD_ADD:
445  case ISD::ATOMIC_LOAD_SUB:
446  case ISD::ATOMIC_LOAD_AND:
447  case ISD::ATOMIC_LOAD_OR:
448  case ISD::ATOMIC_LOAD_XOR:
449  case ISD::ATOMIC_LOAD_NAND:
450  case ISD::ATOMIC_LOAD_MIN:
451  case ISD::ATOMIC_LOAD_MAX:
452  case ISD::ATOMIC_LOAD_UMIN:
453  case ISD::ATOMIC_LOAD_UMAX: {
454    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
455    ID.AddInteger(AT->getMemoryVT().getRawBits());
456    ID.AddInteger(AT->getRawSubclassData());
457    break;
458  }
459  } // end switch (N->getOpcode())
460}
461
462/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
463/// data.
464static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
465  AddNodeIDOpcode(ID, N->getOpcode());
466  // Add the return value info.
467  AddNodeIDValueTypes(ID, N->getVTList());
468  // Add the operand info.
469  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
470
471  // Handle SDNode leafs with special info.
472  AddNodeIDCustom(ID, N);
473}
474
475/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
476/// the CSE map that carries alignment, volatility, indexing mode, and
477/// extension/truncation information.
478///
479static inline unsigned
480encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM,
481                     bool isVolatile, unsigned Alignment) {
482  assert((ConvType & 3) == ConvType &&
483         "ConvType may not require more than 2 bits!");
484  assert((AM & 7) == AM &&
485         "AM may not require more than 3 bits!");
486  return ConvType |
487         (AM << 2) |
488         (isVolatile << 5) |
489         ((Log2_32(Alignment) + 1) << 6);
490}
491
492//===----------------------------------------------------------------------===//
493//                              SelectionDAG Class
494//===----------------------------------------------------------------------===//
495
496/// doNotCSE - Return true if CSE should not be performed for this node.
497static bool doNotCSE(SDNode *N) {
498  if (N->getValueType(0) == MVT::Flag)
499    return true; // Never CSE anything that produces a flag.
500
501  switch (N->getOpcode()) {
502  default: break;
503  case ISD::HANDLENODE:
504  case ISD::DBG_LABEL:
505  case ISD::DBG_STOPPOINT:
506  case ISD::EH_LABEL:
507  case ISD::DECLARE:
508    return true;   // Never CSE these nodes.
509  }
510
511  // Check that remaining values produced are not flags.
512  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
513    if (N->getValueType(i) == MVT::Flag)
514      return true; // Never CSE anything that produces a flag.
515
516  return false;
517}
518
519/// RemoveDeadNodes - This method deletes all unreachable nodes in the
520/// SelectionDAG.
521void SelectionDAG::RemoveDeadNodes() {
522  // Create a dummy node (which is not added to allnodes), that adds a reference
523  // to the root node, preventing it from being deleted.
524  HandleSDNode Dummy(getRoot());
525
526  SmallVector<SDNode*, 128> DeadNodes;
527
528  // Add all obviously-dead nodes to the DeadNodes worklist.
529  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
530    if (I->use_empty())
531      DeadNodes.push_back(I);
532
533  RemoveDeadNodes(DeadNodes);
534
535  // If the root changed (e.g. it was a dead load, update the root).
536  setRoot(Dummy.getValue());
537}
538
539/// RemoveDeadNodes - This method deletes the unreachable nodes in the
540/// given list, and any nodes that become unreachable as a result.
541void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
542                                   DAGUpdateListener *UpdateListener) {
543
544  // Process the worklist, deleting the nodes and adding their uses to the
545  // worklist.
546  while (!DeadNodes.empty()) {
547    SDNode *N = DeadNodes.pop_back_val();
548
549    if (UpdateListener)
550      UpdateListener->NodeDeleted(N, 0);
551
552    // Take the node out of the appropriate CSE map.
553    RemoveNodeFromCSEMaps(N);
554
555    // Next, brutally remove the operand list.  This is safe to do, as there are
556    // no cycles in the graph.
557    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
558      SDUse &Use = *I++;
559      SDNode *Operand = Use.getNode();
560      Use.set(SDValue());
561
562      // Now that we removed this operand, see if there are no uses of it left.
563      if (Operand->use_empty())
564        DeadNodes.push_back(Operand);
565    }
566
567    DeallocateNode(N);
568  }
569}
570
571void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
572  SmallVector<SDNode*, 16> DeadNodes(1, N);
573  RemoveDeadNodes(DeadNodes, UpdateListener);
574}
575
576void SelectionDAG::DeleteNode(SDNode *N) {
577  // First take this out of the appropriate CSE map.
578  RemoveNodeFromCSEMaps(N);
579
580  // Finally, remove uses due to operands of this node, remove from the
581  // AllNodes list, and delete the node.
582  DeleteNodeNotInCSEMaps(N);
583}
584
585void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
586  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
587  assert(N->use_empty() && "Cannot delete a node that is not dead!");
588
589  // Drop all of the operands and decrement used node's use counts.
590  N->DropOperands();
591
592  DeallocateNode(N);
593}
594
595void SelectionDAG::DeallocateNode(SDNode *N) {
596  if (N->OperandsNeedDelete)
597    delete[] N->OperandList;
598
599  // Set the opcode to DELETED_NODE to help catch bugs when node
600  // memory is reallocated.
601  N->NodeType = ISD::DELETED_NODE;
602
603  NodeAllocator.Deallocate(AllNodes.remove(N));
604}
605
606/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
607/// correspond to it.  This is useful when we're about to delete or repurpose
608/// the node.  We don't want future request for structurally identical nodes
609/// to return N anymore.
610bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
611  bool Erased = false;
612  switch (N->getOpcode()) {
613  case ISD::EntryToken:
614    assert(0 && "EntryToken should not be in CSEMaps!");
615    return false;
616  case ISD::HANDLENODE: return false;  // noop.
617  case ISD::CONDCODE:
618    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
619           "Cond code doesn't exist!");
620    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
621    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
622    break;
623  case ISD::ExternalSymbol:
624    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
625    break;
626  case ISD::TargetExternalSymbol:
627    Erased =
628      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
629    break;
630  case ISD::VALUETYPE: {
631    MVT VT = cast<VTSDNode>(N)->getVT();
632    if (VT.isExtended()) {
633      Erased = ExtendedValueTypeNodes.erase(VT);
634    } else {
635      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
636      ValueTypeNodes[VT.getSimpleVT()] = 0;
637    }
638    break;
639  }
640  default:
641    // Remove it from the CSE Map.
642    Erased = CSEMap.RemoveNode(N);
643    break;
644  }
645#ifndef NDEBUG
646  // Verify that the node was actually in one of the CSE maps, unless it has a
647  // flag result (which cannot be CSE'd) or is one of the special cases that are
648  // not subject to CSE.
649  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
650      !N->isMachineOpcode() && !doNotCSE(N)) {
651    N->dump(this);
652    cerr << "\n";
653    assert(0 && "Node is not in map!");
654  }
655#endif
656  return Erased;
657}
658
659/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
660/// maps and modified in place. Add it back to the CSE maps, unless an identical
661/// node already exists, in which case transfer all its users to the existing
662/// node. This transfer can potentially trigger recursive merging.
663///
664void
665SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
666                                       DAGUpdateListener *UpdateListener) {
667  // For node types that aren't CSE'd, just act as if no identical node
668  // already exists.
669  if (!doNotCSE(N)) {
670    SDNode *Existing = CSEMap.GetOrInsertNode(N);
671    if (Existing != N) {
672      // If there was already an existing matching node, use ReplaceAllUsesWith
673      // to replace the dead one with the existing one.  This can cause
674      // recursive merging of other unrelated nodes down the line.
675      ReplaceAllUsesWith(N, Existing, UpdateListener);
676
677      // N is now dead.  Inform the listener if it exists and delete it.
678      if (UpdateListener)
679        UpdateListener->NodeDeleted(N, Existing);
680      DeleteNodeNotInCSEMaps(N);
681      return;
682    }
683  }
684
685  // If the node doesn't already exist, we updated it.  Inform a listener if
686  // it exists.
687  if (UpdateListener)
688    UpdateListener->NodeUpdated(N);
689}
690
691/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
692/// were replaced with those specified.  If this node is never memoized,
693/// return null, otherwise return a pointer to the slot it would take.  If a
694/// node already exists with these operands, the slot will be non-null.
695SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
696                                           void *&InsertPos) {
697  if (doNotCSE(N))
698    return 0;
699
700  SDValue Ops[] = { Op };
701  FoldingSetNodeID ID;
702  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
703  AddNodeIDCustom(ID, N);
704  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
705}
706
707/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
708/// were replaced with those specified.  If this node is never memoized,
709/// return null, otherwise return a pointer to the slot it would take.  If a
710/// node already exists with these operands, the slot will be non-null.
711SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
712                                           SDValue Op1, SDValue Op2,
713                                           void *&InsertPos) {
714  if (doNotCSE(N))
715    return 0;
716
717  SDValue Ops[] = { Op1, Op2 };
718  FoldingSetNodeID ID;
719  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
720  AddNodeIDCustom(ID, N);
721  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
722}
723
724
725/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
726/// were replaced with those specified.  If this node is never memoized,
727/// return null, otherwise return a pointer to the slot it would take.  If a
728/// node already exists with these operands, the slot will be non-null.
729SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
730                                           const SDValue *Ops,unsigned NumOps,
731                                           void *&InsertPos) {
732  if (doNotCSE(N))
733    return 0;
734
735  FoldingSetNodeID ID;
736  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
737  AddNodeIDCustom(ID, N);
738  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
739}
740
741/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
742void SelectionDAG::VerifyNode(SDNode *N) {
743  switch (N->getOpcode()) {
744  default:
745    break;
746  case ISD::BUILD_PAIR: {
747    MVT VT = N->getValueType(0);
748    assert(N->getNumValues() == 1 && "Too many results!");
749    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
750           "Wrong return type!");
751    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
752    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
753           "Mismatched operand types!");
754    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
755           "Wrong operand type!");
756    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
757           "Wrong return type size");
758    break;
759  }
760  case ISD::BUILD_VECTOR: {
761    assert(N->getNumValues() == 1 && "Too many results!");
762    assert(N->getValueType(0).isVector() && "Wrong return type!");
763    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
764           "Wrong number of operands!");
765    // FIXME: Change vector_shuffle to a variadic node with mask elements being
766    // operands of the node.  Currently the mask is a BUILD_VECTOR passed as an
767    // operand, and it is not always possible to legalize it.  Turning off the
768    // following checks at least makes it possible to legalize most of the time.
769//    MVT EltVT = N->getValueType(0).getVectorElementType();
770//    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
771//      assert(I->getValueType() == EltVT &&
772//             "Wrong operand type!");
773    break;
774  }
775  }
776}
777
778/// getMVTAlignment - Compute the default alignment value for the
779/// given type.
780///
781unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
782  const Type *Ty = VT == MVT::iPTR ?
783                   PointerType::get(Type::Int8Ty, 0) :
784                   VT.getTypeForMVT();
785
786  return TLI.getTargetData()->getABITypeAlignment(Ty);
787}
788
789// EntryNode could meaningfully have debug info if we can find it...
790SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
791  : TLI(tli), FLI(fli), DW(0),
792    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
793    getVTList(MVT::Other)), Root(getEntryNode()) {
794  AllNodes.push_back(&EntryNode);
795}
796
797void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
798                        DwarfWriter *dw) {
799  MF = &mf;
800  MMI = mmi;
801  DW = dw;
802}
803
804SelectionDAG::~SelectionDAG() {
805  allnodes_clear();
806}
807
808void SelectionDAG::allnodes_clear() {
809  assert(&*AllNodes.begin() == &EntryNode);
810  AllNodes.remove(AllNodes.begin());
811  while (!AllNodes.empty())
812    DeallocateNode(AllNodes.begin());
813}
814
815void SelectionDAG::clear() {
816  allnodes_clear();
817  OperandAllocator.Reset();
818  CSEMap.clear();
819
820  ExtendedValueTypeNodes.clear();
821  ExternalSymbols.clear();
822  TargetExternalSymbols.clear();
823  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
824            static_cast<CondCodeSDNode*>(0));
825  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
826            static_cast<SDNode*>(0));
827
828  EntryNode.UseList = 0;
829  AllNodes.push_back(&EntryNode);
830  Root = getEntryNode();
831}
832
833SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, MVT VT) {
834  if (Op.getValueType() == VT) return Op;
835  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
836                                   VT.getSizeInBits());
837  return getNode(ISD::AND, DL, Op.getValueType(), Op,
838                 getConstant(Imm, Op.getValueType()));
839}
840
841/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
842///
843SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, MVT VT) {
844  SDValue NegOne;
845  if (VT.isVector()) {
846    MVT EltVT = VT.getVectorElementType();
847    SDValue NegOneElt =
848      getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), EltVT);
849    std::vector<SDValue> NegOnes(VT.getVectorNumElements(), NegOneElt);
850    NegOne = getNode(ISD::BUILD_VECTOR, DL, VT, &NegOnes[0], NegOnes.size());
851  } else {
852    NegOne = getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
853  }
854  return getNode(ISD::XOR, DL, VT, Val, NegOne);
855}
856
857SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
858  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
859  assert((EltVT.getSizeInBits() >= 64 ||
860         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
861         "getConstant with a uint64_t value that doesn't fit in the type!");
862  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
863}
864
865SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
866  return getConstant(*ConstantInt::get(Val), VT, isT);
867}
868
869SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
870  assert(VT.isInteger() && "Cannot create FP integer constant!");
871
872  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
873  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
874         "APInt size does not match type size!");
875
876  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
877  FoldingSetNodeID ID;
878  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
879  ID.AddPointer(&Val);
880  void *IP = 0;
881  SDNode *N = NULL;
882  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
883    if (!VT.isVector())
884      return SDValue(N, 0);
885  if (!N) {
886    N = NodeAllocator.Allocate<ConstantSDNode>();
887    new (N) ConstantSDNode(isT, &Val, EltVT);
888    CSEMap.InsertNode(N, IP);
889    AllNodes.push_back(N);
890  }
891
892  SDValue Result(N, 0);
893  if (VT.isVector()) {
894    SmallVector<SDValue, 8> Ops;
895    Ops.assign(VT.getVectorNumElements(), Result);
896    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
897                     VT, &Ops[0], Ops.size());
898  }
899  return Result;
900}
901
902SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
903  return getConstant(Val, TLI.getPointerTy(), isTarget);
904}
905
906
907SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
908  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
909}
910
911SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
912  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
913
914  MVT EltVT =
915    VT.isVector() ? VT.getVectorElementType() : VT;
916
917  // Do the map lookup using the actual bit pattern for the floating point
918  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
919  // we don't have issues with SNANs.
920  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
921  FoldingSetNodeID ID;
922  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
923  ID.AddPointer(&V);
924  void *IP = 0;
925  SDNode *N = NULL;
926  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
927    if (!VT.isVector())
928      return SDValue(N, 0);
929  if (!N) {
930    N = NodeAllocator.Allocate<ConstantFPSDNode>();
931    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
932    CSEMap.InsertNode(N, IP);
933    AllNodes.push_back(N);
934  }
935
936  SDValue Result(N, 0);
937  if (VT.isVector()) {
938    SmallVector<SDValue, 8> Ops;
939    Ops.assign(VT.getVectorNumElements(), Result);
940    // FIXME DebugLoc info might be appropriate here
941    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
942                     VT, &Ops[0], Ops.size());
943  }
944  return Result;
945}
946
947SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
948  MVT EltVT =
949    VT.isVector() ? VT.getVectorElementType() : VT;
950  if (EltVT==MVT::f32)
951    return getConstantFP(APFloat((float)Val), VT, isTarget);
952  else
953    return getConstantFP(APFloat(Val), VT, isTarget);
954}
955
956SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
957                                       MVT VT, int64_t Offset,
958                                       bool isTargetGA) {
959  unsigned Opc;
960
961  // Truncate (with sign-extension) the offset value to the pointer size.
962  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
963  if (BitWidth < 64)
964    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
965
966  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
967  if (!GVar) {
968    // If GV is an alias then use the aliasee for determining thread-localness.
969    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
970      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
971  }
972
973  if (GVar && GVar->isThreadLocal())
974    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
975  else
976    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
977
978  FoldingSetNodeID ID;
979  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
980  ID.AddPointer(GV);
981  ID.AddInteger(Offset);
982  void *IP = 0;
983  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
984    return SDValue(E, 0);
985  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
986  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
987  CSEMap.InsertNode(N, IP);
988  AllNodes.push_back(N);
989  return SDValue(N, 0);
990}
991
992SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
993  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
994  FoldingSetNodeID ID;
995  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
996  ID.AddInteger(FI);
997  void *IP = 0;
998  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
999    return SDValue(E, 0);
1000  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1001  new (N) FrameIndexSDNode(FI, VT, isTarget);
1002  CSEMap.InsertNode(N, IP);
1003  AllNodes.push_back(N);
1004  return SDValue(N, 0);
1005}
1006
1007SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1008  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1009  FoldingSetNodeID ID;
1010  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1011  ID.AddInteger(JTI);
1012  void *IP = 0;
1013  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1014    return SDValue(E, 0);
1015  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1016  new (N) JumpTableSDNode(JTI, VT, isTarget);
1017  CSEMap.InsertNode(N, IP);
1018  AllNodes.push_back(N);
1019  return SDValue(N, 0);
1020}
1021
1022SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1023                                      unsigned Alignment, int Offset,
1024                                      bool isTarget) {
1025  if (Alignment == 0)
1026    Alignment =
1027      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1028  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1029  FoldingSetNodeID ID;
1030  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1031  ID.AddInteger(Alignment);
1032  ID.AddInteger(Offset);
1033  ID.AddPointer(C);
1034  void *IP = 0;
1035  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1036    return SDValue(E, 0);
1037  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1038  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1039  CSEMap.InsertNode(N, IP);
1040  AllNodes.push_back(N);
1041  return SDValue(N, 0);
1042}
1043
1044
1045SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1046                                      unsigned Alignment, int Offset,
1047                                      bool isTarget) {
1048  if (Alignment == 0)
1049    Alignment =
1050      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1051  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1052  FoldingSetNodeID ID;
1053  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1054  ID.AddInteger(Alignment);
1055  ID.AddInteger(Offset);
1056  C->AddSelectionDAGCSEId(ID);
1057  void *IP = 0;
1058  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1059    return SDValue(E, 0);
1060  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1061  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1062  CSEMap.InsertNode(N, IP);
1063  AllNodes.push_back(N);
1064  return SDValue(N, 0);
1065}
1066
1067SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1068  FoldingSetNodeID ID;
1069  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1070  ID.AddPointer(MBB);
1071  void *IP = 0;
1072  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1073    return SDValue(E, 0);
1074  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1075  new (N) BasicBlockSDNode(MBB);
1076  CSEMap.InsertNode(N, IP);
1077  AllNodes.push_back(N);
1078  return SDValue(N, 0);
1079}
1080
1081SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1082  FoldingSetNodeID ID;
1083  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1084  ID.AddInteger(Flags.getRawBits());
1085  void *IP = 0;
1086  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1087    return SDValue(E, 0);
1088  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1089  new (N) ARG_FLAGSSDNode(Flags);
1090  CSEMap.InsertNode(N, IP);
1091  AllNodes.push_back(N);
1092  return SDValue(N, 0);
1093}
1094
1095SDValue SelectionDAG::getValueType(MVT VT) {
1096  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1097    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1098
1099  SDNode *&N = VT.isExtended() ?
1100    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1101
1102  if (N) return SDValue(N, 0);
1103  N = NodeAllocator.Allocate<VTSDNode>();
1104  new (N) VTSDNode(VT);
1105  AllNodes.push_back(N);
1106  return SDValue(N, 0);
1107}
1108
1109SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1110  SDNode *&N = ExternalSymbols[Sym];
1111  if (N) return SDValue(N, 0);
1112  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1113  new (N) ExternalSymbolSDNode(false, Sym, VT);
1114  AllNodes.push_back(N);
1115  return SDValue(N, 0);
1116}
1117
1118SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1119  SDNode *&N = TargetExternalSymbols[Sym];
1120  if (N) return SDValue(N, 0);
1121  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1122  new (N) ExternalSymbolSDNode(true, Sym, VT);
1123  AllNodes.push_back(N);
1124  return SDValue(N, 0);
1125}
1126
1127SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1128  if ((unsigned)Cond >= CondCodeNodes.size())
1129    CondCodeNodes.resize(Cond+1);
1130
1131  if (CondCodeNodes[Cond] == 0) {
1132    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1133    new (N) CondCodeSDNode(Cond);
1134    CondCodeNodes[Cond] = N;
1135    AllNodes.push_back(N);
1136  }
1137  return SDValue(CondCodeNodes[Cond], 0);
1138}
1139
1140SDValue SelectionDAG::getConvertRndSat(MVT VT, DebugLoc dl,
1141                                       SDValue Val, SDValue DTy,
1142                                       SDValue STy, SDValue Rnd, SDValue Sat,
1143                                       ISD::CvtCode Code) {
1144  // If the src and dest types are the same and the conversion is between
1145  // integer types of the same sign or two floats, no conversion is necessary.
1146  if (DTy == STy &&
1147      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1148    return Val;
1149
1150  FoldingSetNodeID ID;
1151  void* IP = 0;
1152  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1153    return SDValue(E, 0);
1154  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1155  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1156  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1157  CSEMap.InsertNode(N, IP);
1158  AllNodes.push_back(N);
1159  return SDValue(N, 0);
1160}
1161
1162SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1163  FoldingSetNodeID ID;
1164  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1165  ID.AddInteger(RegNo);
1166  void *IP = 0;
1167  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1168    return SDValue(E, 0);
1169  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1170  new (N) RegisterSDNode(RegNo, VT);
1171  CSEMap.InsertNode(N, IP);
1172  AllNodes.push_back(N);
1173  return SDValue(N, 0);
1174}
1175
1176SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1177                                      unsigned Line, unsigned Col,
1178                                      Value *CU) {
1179  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1180  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1181  AllNodes.push_back(N);
1182  return SDValue(N, 0);
1183}
1184
1185SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1186                               SDValue Root,
1187                               unsigned LabelID) {
1188  FoldingSetNodeID ID;
1189  SDValue Ops[] = { Root };
1190  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1191  ID.AddInteger(LabelID);
1192  void *IP = 0;
1193  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1194    return SDValue(E, 0);
1195  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1196  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1197  CSEMap.InsertNode(N, IP);
1198  AllNodes.push_back(N);
1199  return SDValue(N, 0);
1200}
1201
1202SDValue SelectionDAG::getSrcValue(const Value *V) {
1203  assert((!V || isa<PointerType>(V->getType())) &&
1204         "SrcValue is not a pointer?");
1205
1206  FoldingSetNodeID ID;
1207  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1208  ID.AddPointer(V);
1209
1210  void *IP = 0;
1211  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1212    return SDValue(E, 0);
1213
1214  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1215  new (N) SrcValueSDNode(V);
1216  CSEMap.InsertNode(N, IP);
1217  AllNodes.push_back(N);
1218  return SDValue(N, 0);
1219}
1220
1221SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1222#ifndef NDEBUG
1223  const Value *v = MO.getValue();
1224  assert((!v || isa<PointerType>(v->getType())) &&
1225         "SrcValue is not a pointer?");
1226#endif
1227
1228  FoldingSetNodeID ID;
1229  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1230  MO.Profile(ID);
1231
1232  void *IP = 0;
1233  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1234    return SDValue(E, 0);
1235
1236  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1237  new (N) MemOperandSDNode(MO);
1238  CSEMap.InsertNode(N, IP);
1239  AllNodes.push_back(N);
1240  return SDValue(N, 0);
1241}
1242
1243/// getShiftAmountOperand - Return the specified value casted to
1244/// the target's desired shift amount type.
1245SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1246  MVT OpTy = Op.getValueType();
1247  MVT ShTy = TLI.getShiftAmountTy();
1248  if (OpTy == ShTy || OpTy.isVector()) return Op;
1249
1250  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1251  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1252}
1253
1254/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1255/// specified value type.
1256SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1257  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1258  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1259  const Type *Ty = VT.getTypeForMVT();
1260  unsigned StackAlign =
1261  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1262
1263  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1264  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1265}
1266
1267/// CreateStackTemporary - Create a stack temporary suitable for holding
1268/// either of the specified value types.
1269SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1270  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1271                            VT2.getStoreSizeInBits())/8;
1272  const Type *Ty1 = VT1.getTypeForMVT();
1273  const Type *Ty2 = VT2.getTypeForMVT();
1274  const TargetData *TD = TLI.getTargetData();
1275  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1276                            TD->getPrefTypeAlignment(Ty2));
1277
1278  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1279  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1280  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1281}
1282
1283SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1284                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1285  // These setcc operations always fold.
1286  switch (Cond) {
1287  default: break;
1288  case ISD::SETFALSE:
1289  case ISD::SETFALSE2: return getConstant(0, VT);
1290  case ISD::SETTRUE:
1291  case ISD::SETTRUE2:  return getConstant(1, VT);
1292
1293  case ISD::SETOEQ:
1294  case ISD::SETOGT:
1295  case ISD::SETOGE:
1296  case ISD::SETOLT:
1297  case ISD::SETOLE:
1298  case ISD::SETONE:
1299  case ISD::SETO:
1300  case ISD::SETUO:
1301  case ISD::SETUEQ:
1302  case ISD::SETUNE:
1303    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1304    break;
1305  }
1306
1307  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1308    const APInt &C2 = N2C->getAPIntValue();
1309    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1310      const APInt &C1 = N1C->getAPIntValue();
1311
1312      switch (Cond) {
1313      default: assert(0 && "Unknown integer setcc!");
1314      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1315      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1316      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1317      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1318      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1319      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1320      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1321      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1322      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1323      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1324      }
1325    }
1326  }
1327  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1328    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1329      // No compile time operations on this type yet.
1330      if (N1C->getValueType(0) == MVT::ppcf128)
1331        return SDValue();
1332
1333      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1334      switch (Cond) {
1335      default: break;
1336      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1337                          return getUNDEF(VT);
1338                        // fall through
1339      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1340      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1341                          return getUNDEF(VT);
1342                        // fall through
1343      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1344                                           R==APFloat::cmpLessThan, VT);
1345      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1346                          return getUNDEF(VT);
1347                        // fall through
1348      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1349      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1350                          return getUNDEF(VT);
1351                        // fall through
1352      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1353      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1354                          return getUNDEF(VT);
1355                        // fall through
1356      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1357                                           R==APFloat::cmpEqual, VT);
1358      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1359                          return getUNDEF(VT);
1360                        // fall through
1361      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1362                                           R==APFloat::cmpEqual, VT);
1363      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1364      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1365      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1366                                           R==APFloat::cmpEqual, VT);
1367      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1368      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1369                                           R==APFloat::cmpLessThan, VT);
1370      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1371                                           R==APFloat::cmpUnordered, VT);
1372      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1373      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1374      }
1375    } else {
1376      // Ensure that the constant occurs on the RHS.
1377      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1378    }
1379  }
1380
1381  // Could not fold it.
1382  return SDValue();
1383}
1384
1385/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1386/// use this predicate to simplify operations downstream.
1387bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1388  unsigned BitWidth = Op.getValueSizeInBits();
1389  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1390}
1391
1392/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1393/// this predicate to simplify operations downstream.  Mask is known to be zero
1394/// for bits that V cannot have.
1395bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1396                                     unsigned Depth) const {
1397  APInt KnownZero, KnownOne;
1398  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1399  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1400  return (KnownZero & Mask) == Mask;
1401}
1402
1403/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1404/// known to be either zero or one and return them in the KnownZero/KnownOne
1405/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1406/// processing.
1407void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1408                                     APInt &KnownZero, APInt &KnownOne,
1409                                     unsigned Depth) const {
1410  unsigned BitWidth = Mask.getBitWidth();
1411  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1412         "Mask size mismatches value type size!");
1413
1414  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1415  if (Depth == 6 || Mask == 0)
1416    return;  // Limit search depth.
1417
1418  APInt KnownZero2, KnownOne2;
1419
1420  switch (Op.getOpcode()) {
1421  case ISD::Constant:
1422    // We know all of the bits for a constant!
1423    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1424    KnownZero = ~KnownOne & Mask;
1425    return;
1426  case ISD::AND:
1427    // If either the LHS or the RHS are Zero, the result is zero.
1428    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1429    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1430                      KnownZero2, KnownOne2, Depth+1);
1431    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1432    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1433
1434    // Output known-1 bits are only known if set in both the LHS & RHS.
1435    KnownOne &= KnownOne2;
1436    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1437    KnownZero |= KnownZero2;
1438    return;
1439  case ISD::OR:
1440    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1441    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1442                      KnownZero2, KnownOne2, Depth+1);
1443    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1444    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1445
1446    // Output known-0 bits are only known if clear in both the LHS & RHS.
1447    KnownZero &= KnownZero2;
1448    // Output known-1 are known to be set if set in either the LHS | RHS.
1449    KnownOne |= KnownOne2;
1450    return;
1451  case ISD::XOR: {
1452    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1453    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1454    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1455    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1456
1457    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1458    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1459    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1460    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1461    KnownZero = KnownZeroOut;
1462    return;
1463  }
1464  case ISD::MUL: {
1465    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1466    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1467    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1468    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1469    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1470
1471    // If low bits are zero in either operand, output low known-0 bits.
1472    // Also compute a conserative estimate for high known-0 bits.
1473    // More trickiness is possible, but this is sufficient for the
1474    // interesting case of alignment computation.
1475    KnownOne.clear();
1476    unsigned TrailZ = KnownZero.countTrailingOnes() +
1477                      KnownZero2.countTrailingOnes();
1478    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1479                               KnownZero2.countLeadingOnes(),
1480                               BitWidth) - BitWidth;
1481
1482    TrailZ = std::min(TrailZ, BitWidth);
1483    LeadZ = std::min(LeadZ, BitWidth);
1484    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1485                APInt::getHighBitsSet(BitWidth, LeadZ);
1486    KnownZero &= Mask;
1487    return;
1488  }
1489  case ISD::UDIV: {
1490    // For the purposes of computing leading zeros we can conservatively
1491    // treat a udiv as a logical right shift by the power of 2 known to
1492    // be less than the denominator.
1493    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1494    ComputeMaskedBits(Op.getOperand(0),
1495                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1496    unsigned LeadZ = KnownZero2.countLeadingOnes();
1497
1498    KnownOne2.clear();
1499    KnownZero2.clear();
1500    ComputeMaskedBits(Op.getOperand(1),
1501                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1502    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1503    if (RHSUnknownLeadingOnes != BitWidth)
1504      LeadZ = std::min(BitWidth,
1505                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1506
1507    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1508    return;
1509  }
1510  case ISD::SELECT:
1511    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1512    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1513    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1514    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1515
1516    // Only known if known in both the LHS and RHS.
1517    KnownOne &= KnownOne2;
1518    KnownZero &= KnownZero2;
1519    return;
1520  case ISD::SELECT_CC:
1521    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1522    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1523    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1524    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1525
1526    // Only known if known in both the LHS and RHS.
1527    KnownOne &= KnownOne2;
1528    KnownZero &= KnownZero2;
1529    return;
1530  case ISD::SADDO:
1531  case ISD::UADDO:
1532  case ISD::SSUBO:
1533  case ISD::USUBO:
1534  case ISD::SMULO:
1535  case ISD::UMULO:
1536    if (Op.getResNo() != 1)
1537      return;
1538    // The boolean result conforms to getBooleanContents.  Fall through.
1539  case ISD::SETCC:
1540    // If we know the result of a setcc has the top bits zero, use this info.
1541    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1542        BitWidth > 1)
1543      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1544    return;
1545  case ISD::SHL:
1546    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1547    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1548      unsigned ShAmt = SA->getZExtValue();
1549
1550      // If the shift count is an invalid immediate, don't do anything.
1551      if (ShAmt >= BitWidth)
1552        return;
1553
1554      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1555                        KnownZero, KnownOne, Depth+1);
1556      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1557      KnownZero <<= ShAmt;
1558      KnownOne  <<= ShAmt;
1559      // low bits known zero.
1560      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1561    }
1562    return;
1563  case ISD::SRL:
1564    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1565    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1566      unsigned ShAmt = SA->getZExtValue();
1567
1568      // If the shift count is an invalid immediate, don't do anything.
1569      if (ShAmt >= BitWidth)
1570        return;
1571
1572      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1573                        KnownZero, KnownOne, Depth+1);
1574      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1575      KnownZero = KnownZero.lshr(ShAmt);
1576      KnownOne  = KnownOne.lshr(ShAmt);
1577
1578      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1579      KnownZero |= HighBits;  // High bits known zero.
1580    }
1581    return;
1582  case ISD::SRA:
1583    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1584      unsigned ShAmt = SA->getZExtValue();
1585
1586      // If the shift count is an invalid immediate, don't do anything.
1587      if (ShAmt >= BitWidth)
1588        return;
1589
1590      APInt InDemandedMask = (Mask << ShAmt);
1591      // If any of the demanded bits are produced by the sign extension, we also
1592      // demand the input sign bit.
1593      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1594      if (HighBits.getBoolValue())
1595        InDemandedMask |= APInt::getSignBit(BitWidth);
1596
1597      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1598                        Depth+1);
1599      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1600      KnownZero = KnownZero.lshr(ShAmt);
1601      KnownOne  = KnownOne.lshr(ShAmt);
1602
1603      // Handle the sign bits.
1604      APInt SignBit = APInt::getSignBit(BitWidth);
1605      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1606
1607      if (KnownZero.intersects(SignBit)) {
1608        KnownZero |= HighBits;  // New bits are known zero.
1609      } else if (KnownOne.intersects(SignBit)) {
1610        KnownOne  |= HighBits;  // New bits are known one.
1611      }
1612    }
1613    return;
1614  case ISD::SIGN_EXTEND_INREG: {
1615    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1616    unsigned EBits = EVT.getSizeInBits();
1617
1618    // Sign extension.  Compute the demanded bits in the result that are not
1619    // present in the input.
1620    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1621
1622    APInt InSignBit = APInt::getSignBit(EBits);
1623    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1624
1625    // If the sign extended bits are demanded, we know that the sign
1626    // bit is demanded.
1627    InSignBit.zext(BitWidth);
1628    if (NewBits.getBoolValue())
1629      InputDemandedBits |= InSignBit;
1630
1631    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1632                      KnownZero, KnownOne, Depth+1);
1633    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1634
1635    // If the sign bit of the input is known set or clear, then we know the
1636    // top bits of the result.
1637    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1638      KnownZero |= NewBits;
1639      KnownOne  &= ~NewBits;
1640    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1641      KnownOne  |= NewBits;
1642      KnownZero &= ~NewBits;
1643    } else {                              // Input sign bit unknown
1644      KnownZero &= ~NewBits;
1645      KnownOne  &= ~NewBits;
1646    }
1647    return;
1648  }
1649  case ISD::CTTZ:
1650  case ISD::CTLZ:
1651  case ISD::CTPOP: {
1652    unsigned LowBits = Log2_32(BitWidth)+1;
1653    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1654    KnownOne.clear();
1655    return;
1656  }
1657  case ISD::LOAD: {
1658    if (ISD::isZEXTLoad(Op.getNode())) {
1659      LoadSDNode *LD = cast<LoadSDNode>(Op);
1660      MVT VT = LD->getMemoryVT();
1661      unsigned MemBits = VT.getSizeInBits();
1662      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1663    }
1664    return;
1665  }
1666  case ISD::ZERO_EXTEND: {
1667    MVT InVT = Op.getOperand(0).getValueType();
1668    unsigned InBits = InVT.getSizeInBits();
1669    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1670    APInt InMask    = Mask;
1671    InMask.trunc(InBits);
1672    KnownZero.trunc(InBits);
1673    KnownOne.trunc(InBits);
1674    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1675    KnownZero.zext(BitWidth);
1676    KnownOne.zext(BitWidth);
1677    KnownZero |= NewBits;
1678    return;
1679  }
1680  case ISD::SIGN_EXTEND: {
1681    MVT InVT = Op.getOperand(0).getValueType();
1682    unsigned InBits = InVT.getSizeInBits();
1683    APInt InSignBit = APInt::getSignBit(InBits);
1684    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1685    APInt InMask = Mask;
1686    InMask.trunc(InBits);
1687
1688    // If any of the sign extended bits are demanded, we know that the sign
1689    // bit is demanded. Temporarily set this bit in the mask for our callee.
1690    if (NewBits.getBoolValue())
1691      InMask |= InSignBit;
1692
1693    KnownZero.trunc(InBits);
1694    KnownOne.trunc(InBits);
1695    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1696
1697    // Note if the sign bit is known to be zero or one.
1698    bool SignBitKnownZero = KnownZero.isNegative();
1699    bool SignBitKnownOne  = KnownOne.isNegative();
1700    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1701           "Sign bit can't be known to be both zero and one!");
1702
1703    // If the sign bit wasn't actually demanded by our caller, we don't
1704    // want it set in the KnownZero and KnownOne result values. Reset the
1705    // mask and reapply it to the result values.
1706    InMask = Mask;
1707    InMask.trunc(InBits);
1708    KnownZero &= InMask;
1709    KnownOne  &= InMask;
1710
1711    KnownZero.zext(BitWidth);
1712    KnownOne.zext(BitWidth);
1713
1714    // If the sign bit is known zero or one, the top bits match.
1715    if (SignBitKnownZero)
1716      KnownZero |= NewBits;
1717    else if (SignBitKnownOne)
1718      KnownOne  |= NewBits;
1719    return;
1720  }
1721  case ISD::ANY_EXTEND: {
1722    MVT InVT = Op.getOperand(0).getValueType();
1723    unsigned InBits = InVT.getSizeInBits();
1724    APInt InMask = Mask;
1725    InMask.trunc(InBits);
1726    KnownZero.trunc(InBits);
1727    KnownOne.trunc(InBits);
1728    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1729    KnownZero.zext(BitWidth);
1730    KnownOne.zext(BitWidth);
1731    return;
1732  }
1733  case ISD::TRUNCATE: {
1734    MVT InVT = Op.getOperand(0).getValueType();
1735    unsigned InBits = InVT.getSizeInBits();
1736    APInt InMask = Mask;
1737    InMask.zext(InBits);
1738    KnownZero.zext(InBits);
1739    KnownOne.zext(InBits);
1740    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1741    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1742    KnownZero.trunc(BitWidth);
1743    KnownOne.trunc(BitWidth);
1744    break;
1745  }
1746  case ISD::AssertZext: {
1747    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1748    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1749    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1750                      KnownOne, Depth+1);
1751    KnownZero |= (~InMask) & Mask;
1752    return;
1753  }
1754  case ISD::FGETSIGN:
1755    // All bits are zero except the low bit.
1756    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1757    return;
1758
1759  case ISD::SUB: {
1760    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1761      // We know that the top bits of C-X are clear if X contains less bits
1762      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1763      // positive if we can prove that X is >= 0 and < 16.
1764      if (CLHS->getAPIntValue().isNonNegative()) {
1765        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1766        // NLZ can't be BitWidth with no sign bit
1767        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1768        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1769                          Depth+1);
1770
1771        // If all of the MaskV bits are known to be zero, then we know the
1772        // output top bits are zero, because we now know that the output is
1773        // from [0-C].
1774        if ((KnownZero2 & MaskV) == MaskV) {
1775          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1776          // Top bits known zero.
1777          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1778        }
1779      }
1780    }
1781  }
1782  // fall through
1783  case ISD::ADD: {
1784    // Output known-0 bits are known if clear or set in both the low clear bits
1785    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1786    // low 3 bits clear.
1787    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1788    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1789    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1790    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1791
1792    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1793    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1794    KnownZeroOut = std::min(KnownZeroOut,
1795                            KnownZero2.countTrailingOnes());
1796
1797    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1798    return;
1799  }
1800  case ISD::SREM:
1801    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1802      const APInt &RA = Rem->getAPIntValue();
1803      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1804        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1805        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1806        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1807
1808        // If the sign bit of the first operand is zero, the sign bit of
1809        // the result is zero. If the first operand has no one bits below
1810        // the second operand's single 1 bit, its sign will be zero.
1811        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1812          KnownZero2 |= ~LowBits;
1813
1814        KnownZero |= KnownZero2 & Mask;
1815
1816        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1817      }
1818    }
1819    return;
1820  case ISD::UREM: {
1821    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1822      const APInt &RA = Rem->getAPIntValue();
1823      if (RA.isPowerOf2()) {
1824        APInt LowBits = (RA - 1);
1825        APInt Mask2 = LowBits & Mask;
1826        KnownZero |= ~LowBits & Mask;
1827        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1828        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1829        break;
1830      }
1831    }
1832
1833    // Since the result is less than or equal to either operand, any leading
1834    // zero bits in either operand must also exist in the result.
1835    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1836    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1837                      Depth+1);
1838    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1839                      Depth+1);
1840
1841    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1842                                KnownZero2.countLeadingOnes());
1843    KnownOne.clear();
1844    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1845    return;
1846  }
1847  default:
1848    // Allow the target to implement this method for its nodes.
1849    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1850  case ISD::INTRINSIC_WO_CHAIN:
1851  case ISD::INTRINSIC_W_CHAIN:
1852  case ISD::INTRINSIC_VOID:
1853      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1854    }
1855    return;
1856  }
1857}
1858
1859/// ComputeNumSignBits - Return the number of times the sign bit of the
1860/// register is replicated into the other bits.  We know that at least 1 bit
1861/// is always equal to the sign bit (itself), but other cases can give us
1862/// information.  For example, immediately after an "SRA X, 2", we know that
1863/// the top 3 bits are all equal to each other, so we return 3.
1864unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1865  MVT VT = Op.getValueType();
1866  assert(VT.isInteger() && "Invalid VT!");
1867  unsigned VTBits = VT.getSizeInBits();
1868  unsigned Tmp, Tmp2;
1869  unsigned FirstAnswer = 1;
1870
1871  if (Depth == 6)
1872    return 1;  // Limit search depth.
1873
1874  switch (Op.getOpcode()) {
1875  default: break;
1876  case ISD::AssertSext:
1877    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1878    return VTBits-Tmp+1;
1879  case ISD::AssertZext:
1880    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1881    return VTBits-Tmp;
1882
1883  case ISD::Constant: {
1884    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1885    // If negative, return # leading ones.
1886    if (Val.isNegative())
1887      return Val.countLeadingOnes();
1888
1889    // Return # leading zeros.
1890    return Val.countLeadingZeros();
1891  }
1892
1893  case ISD::SIGN_EXTEND:
1894    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1895    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1896
1897  case ISD::SIGN_EXTEND_INREG:
1898    // Max of the input and what this extends.
1899    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1900    Tmp = VTBits-Tmp+1;
1901
1902    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1903    return std::max(Tmp, Tmp2);
1904
1905  case ISD::SRA:
1906    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1907    // SRA X, C   -> adds C sign bits.
1908    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1909      Tmp += C->getZExtValue();
1910      if (Tmp > VTBits) Tmp = VTBits;
1911    }
1912    return Tmp;
1913  case ISD::SHL:
1914    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1915      // shl destroys sign bits.
1916      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1917      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1918          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1919      return Tmp - C->getZExtValue();
1920    }
1921    break;
1922  case ISD::AND:
1923  case ISD::OR:
1924  case ISD::XOR:    // NOT is handled here.
1925    // Logical binary ops preserve the number of sign bits at the worst.
1926    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1927    if (Tmp != 1) {
1928      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1929      FirstAnswer = std::min(Tmp, Tmp2);
1930      // We computed what we know about the sign bits as our first
1931      // answer. Now proceed to the generic code that uses
1932      // ComputeMaskedBits, and pick whichever answer is better.
1933    }
1934    break;
1935
1936  case ISD::SELECT:
1937    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1938    if (Tmp == 1) return 1;  // Early out.
1939    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1940    return std::min(Tmp, Tmp2);
1941
1942  case ISD::SADDO:
1943  case ISD::UADDO:
1944  case ISD::SSUBO:
1945  case ISD::USUBO:
1946  case ISD::SMULO:
1947  case ISD::UMULO:
1948    if (Op.getResNo() != 1)
1949      break;
1950    // The boolean result conforms to getBooleanContents.  Fall through.
1951  case ISD::SETCC:
1952    // If setcc returns 0/-1, all bits are sign bits.
1953    if (TLI.getBooleanContents() ==
1954        TargetLowering::ZeroOrNegativeOneBooleanContent)
1955      return VTBits;
1956    break;
1957  case ISD::ROTL:
1958  case ISD::ROTR:
1959    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1960      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1961
1962      // Handle rotate right by N like a rotate left by 32-N.
1963      if (Op.getOpcode() == ISD::ROTR)
1964        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1965
1966      // If we aren't rotating out all of the known-in sign bits, return the
1967      // number that are left.  This handles rotl(sext(x), 1) for example.
1968      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1969      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1970    }
1971    break;
1972  case ISD::ADD:
1973    // Add can have at most one carry bit.  Thus we know that the output
1974    // is, at worst, one more bit than the inputs.
1975    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1976    if (Tmp == 1) return 1;  // Early out.
1977
1978    // Special case decrementing a value (ADD X, -1):
1979    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1980      if (CRHS->isAllOnesValue()) {
1981        APInt KnownZero, KnownOne;
1982        APInt Mask = APInt::getAllOnesValue(VTBits);
1983        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1984
1985        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1986        // sign bits set.
1987        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1988          return VTBits;
1989
1990        // If we are subtracting one from a positive number, there is no carry
1991        // out of the result.
1992        if (KnownZero.isNegative())
1993          return Tmp;
1994      }
1995
1996    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1997    if (Tmp2 == 1) return 1;
1998      return std::min(Tmp, Tmp2)-1;
1999    break;
2000
2001  case ISD::SUB:
2002    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2003    if (Tmp2 == 1) return 1;
2004
2005    // Handle NEG.
2006    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2007      if (CLHS->isNullValue()) {
2008        APInt KnownZero, KnownOne;
2009        APInt Mask = APInt::getAllOnesValue(VTBits);
2010        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2011        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2012        // sign bits set.
2013        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2014          return VTBits;
2015
2016        // If the input is known to be positive (the sign bit is known clear),
2017        // the output of the NEG has the same number of sign bits as the input.
2018        if (KnownZero.isNegative())
2019          return Tmp2;
2020
2021        // Otherwise, we treat this like a SUB.
2022      }
2023
2024    // Sub can have at most one carry bit.  Thus we know that the output
2025    // is, at worst, one more bit than the inputs.
2026    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2027    if (Tmp == 1) return 1;  // Early out.
2028      return std::min(Tmp, Tmp2)-1;
2029    break;
2030  case ISD::TRUNCATE:
2031    // FIXME: it's tricky to do anything useful for this, but it is an important
2032    // case for targets like X86.
2033    break;
2034  }
2035
2036  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2037  if (Op.getOpcode() == ISD::LOAD) {
2038    LoadSDNode *LD = cast<LoadSDNode>(Op);
2039    unsigned ExtType = LD->getExtensionType();
2040    switch (ExtType) {
2041    default: break;
2042    case ISD::SEXTLOAD:    // '17' bits known
2043      Tmp = LD->getMemoryVT().getSizeInBits();
2044      return VTBits-Tmp+1;
2045    case ISD::ZEXTLOAD:    // '16' bits known
2046      Tmp = LD->getMemoryVT().getSizeInBits();
2047      return VTBits-Tmp;
2048    }
2049  }
2050
2051  // Allow the target to implement this method for its nodes.
2052  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2053      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2054      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2055      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2056    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2057    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2058  }
2059
2060  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2061  // use this information.
2062  APInt KnownZero, KnownOne;
2063  APInt Mask = APInt::getAllOnesValue(VTBits);
2064  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2065
2066  if (KnownZero.isNegative()) {        // sign bit is 0
2067    Mask = KnownZero;
2068  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2069    Mask = KnownOne;
2070  } else {
2071    // Nothing known.
2072    return FirstAnswer;
2073  }
2074
2075  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2076  // the number of identical bits in the top of the input value.
2077  Mask = ~Mask;
2078  Mask <<= Mask.getBitWidth()-VTBits;
2079  // Return # leading zeros.  We use 'min' here in case Val was zero before
2080  // shifting.  We don't want to return '64' as for an i32 "0".
2081  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2082}
2083
2084
2085bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2086  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2087  if (!GA) return false;
2088  if (GA->getOffset() != 0) return false;
2089  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2090  if (!GV) return false;
2091  MachineModuleInfo *MMI = getMachineModuleInfo();
2092  return MMI && MMI->hasDebugInfo();
2093}
2094
2095
2096/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2097/// element of the result of the vector shuffle.
2098SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2099  MVT VT = N->getValueType(0);
2100  DebugLoc dl = N->getDebugLoc();
2101  SDValue PermMask = N->getOperand(2);
2102  SDValue Idx = PermMask.getOperand(i);
2103  if (Idx.getOpcode() == ISD::UNDEF)
2104    return getUNDEF(VT.getVectorElementType());
2105  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2106  unsigned NumElems = PermMask.getNumOperands();
2107  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2108  Index %= NumElems;
2109
2110  if (V.getOpcode() == ISD::BIT_CONVERT) {
2111    V = V.getOperand(0);
2112    MVT VVT = V.getValueType();
2113    if (!VVT.isVector() || VVT.getVectorNumElements() != NumElems)
2114      return SDValue();
2115  }
2116  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2117    return (Index == 0) ? V.getOperand(0)
2118                      : getUNDEF(VT.getVectorElementType());
2119  if (V.getOpcode() == ISD::BUILD_VECTOR)
2120    return V.getOperand(Index);
2121  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2122    return getShuffleScalarElt(V.getNode(), Index);
2123  return SDValue();
2124}
2125
2126
2127/// getNode - Gets or creates the specified node.
2128///
2129SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT) {
2130  FoldingSetNodeID ID;
2131  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2132  void *IP = 0;
2133  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2134    return SDValue(E, 0);
2135  SDNode *N = NodeAllocator.Allocate<SDNode>();
2136  new (N) SDNode(Opcode, DL, SDNode::getSDVTList(VT));
2137  CSEMap.InsertNode(N, IP);
2138
2139  AllNodes.push_back(N);
2140#ifndef NDEBUG
2141  VerifyNode(N);
2142#endif
2143  return SDValue(N, 0);
2144}
2145
2146SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2147                              MVT VT, SDValue Operand) {
2148  // Constant fold unary operations with an integer constant operand.
2149  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2150    const APInt &Val = C->getAPIntValue();
2151    unsigned BitWidth = VT.getSizeInBits();
2152    switch (Opcode) {
2153    default: break;
2154    case ISD::SIGN_EXTEND:
2155      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2156    case ISD::ANY_EXTEND:
2157    case ISD::ZERO_EXTEND:
2158    case ISD::TRUNCATE:
2159      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2160    case ISD::UINT_TO_FP:
2161    case ISD::SINT_TO_FP: {
2162      const uint64_t zero[] = {0, 0};
2163      // No compile time operations on this type.
2164      if (VT==MVT::ppcf128)
2165        break;
2166      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2167      (void)apf.convertFromAPInt(Val,
2168                                 Opcode==ISD::SINT_TO_FP,
2169                                 APFloat::rmNearestTiesToEven);
2170      return getConstantFP(apf, VT);
2171    }
2172    case ISD::BIT_CONVERT:
2173      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2174        return getConstantFP(Val.bitsToFloat(), VT);
2175      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2176        return getConstantFP(Val.bitsToDouble(), VT);
2177      break;
2178    case ISD::BSWAP:
2179      return getConstant(Val.byteSwap(), VT);
2180    case ISD::CTPOP:
2181      return getConstant(Val.countPopulation(), VT);
2182    case ISD::CTLZ:
2183      return getConstant(Val.countLeadingZeros(), VT);
2184    case ISD::CTTZ:
2185      return getConstant(Val.countTrailingZeros(), VT);
2186    }
2187  }
2188
2189  // Constant fold unary operations with a floating point constant operand.
2190  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2191    APFloat V = C->getValueAPF();    // make copy
2192    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2193      switch (Opcode) {
2194      case ISD::FNEG:
2195        V.changeSign();
2196        return getConstantFP(V, VT);
2197      case ISD::FABS:
2198        V.clearSign();
2199        return getConstantFP(V, VT);
2200      case ISD::FP_ROUND:
2201      case ISD::FP_EXTEND: {
2202        bool ignored;
2203        // This can return overflow, underflow, or inexact; we don't care.
2204        // FIXME need to be more flexible about rounding mode.
2205        (void)V.convert(*MVTToAPFloatSemantics(VT),
2206                        APFloat::rmNearestTiesToEven, &ignored);
2207        return getConstantFP(V, VT);
2208      }
2209      case ISD::FP_TO_SINT:
2210      case ISD::FP_TO_UINT: {
2211        integerPart x;
2212        bool ignored;
2213        assert(integerPartWidth >= 64);
2214        // FIXME need to be more flexible about rounding mode.
2215        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2216                              Opcode==ISD::FP_TO_SINT,
2217                              APFloat::rmTowardZero, &ignored);
2218        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2219          break;
2220        return getConstant(x, VT);
2221      }
2222      case ISD::BIT_CONVERT:
2223        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2224          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2225        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2226          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2227        break;
2228      }
2229    }
2230  }
2231
2232  unsigned OpOpcode = Operand.getNode()->getOpcode();
2233  switch (Opcode) {
2234  case ISD::TokenFactor:
2235  case ISD::MERGE_VALUES:
2236  case ISD::CONCAT_VECTORS:
2237    return Operand;         // Factor, merge or concat of one node?  No need.
2238  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2239  case ISD::FP_EXTEND:
2240    assert(VT.isFloatingPoint() &&
2241           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2242    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2243    if (Operand.getOpcode() == ISD::UNDEF)
2244      return getUNDEF(VT);
2245    break;
2246  case ISD::SIGN_EXTEND:
2247    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2248           "Invalid SIGN_EXTEND!");
2249    if (Operand.getValueType() == VT) return Operand;   // noop extension
2250    assert(Operand.getValueType().bitsLT(VT)
2251           && "Invalid sext node, dst < src!");
2252    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2253      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2254    break;
2255  case ISD::ZERO_EXTEND:
2256    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2257           "Invalid ZERO_EXTEND!");
2258    if (Operand.getValueType() == VT) return Operand;   // noop extension
2259    assert(Operand.getValueType().bitsLT(VT)
2260           && "Invalid zext node, dst < src!");
2261    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2262      return getNode(ISD::ZERO_EXTEND, DL, VT,
2263                     Operand.getNode()->getOperand(0));
2264    break;
2265  case ISD::ANY_EXTEND:
2266    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2267           "Invalid ANY_EXTEND!");
2268    if (Operand.getValueType() == VT) return Operand;   // noop extension
2269    assert(Operand.getValueType().bitsLT(VT)
2270           && "Invalid anyext node, dst < src!");
2271    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2272      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2273      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2274    break;
2275  case ISD::TRUNCATE:
2276    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2277           "Invalid TRUNCATE!");
2278    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2279    assert(Operand.getValueType().bitsGT(VT)
2280           && "Invalid truncate node, src < dst!");
2281    if (OpOpcode == ISD::TRUNCATE)
2282      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2283    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2284             OpOpcode == ISD::ANY_EXTEND) {
2285      // If the source is smaller than the dest, we still need an extend.
2286      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2287        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2288      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2289        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2290      else
2291        return Operand.getNode()->getOperand(0);
2292    }
2293    break;
2294  case ISD::BIT_CONVERT:
2295    // Basic sanity checking.
2296    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2297           && "Cannot BIT_CONVERT between types of different sizes!");
2298    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2299    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2300      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2301    if (OpOpcode == ISD::UNDEF)
2302      return getUNDEF(VT);
2303    break;
2304  case ISD::SCALAR_TO_VECTOR:
2305    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2306           VT.getVectorElementType() == Operand.getValueType() &&
2307           "Illegal SCALAR_TO_VECTOR node!");
2308    if (OpOpcode == ISD::UNDEF)
2309      return getUNDEF(VT);
2310    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2311    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2312        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2313        Operand.getConstantOperandVal(1) == 0 &&
2314        Operand.getOperand(0).getValueType() == VT)
2315      return Operand.getOperand(0);
2316    break;
2317  case ISD::FNEG:
2318    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2319    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2320      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2321                     Operand.getNode()->getOperand(0));
2322    if (OpOpcode == ISD::FNEG)  // --X -> X
2323      return Operand.getNode()->getOperand(0);
2324    break;
2325  case ISD::FABS:
2326    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2327      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2328    break;
2329  }
2330
2331  SDNode *N;
2332  SDVTList VTs = getVTList(VT);
2333  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2334    FoldingSetNodeID ID;
2335    SDValue Ops[1] = { Operand };
2336    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2337    void *IP = 0;
2338    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2339      return SDValue(E, 0);
2340    N = NodeAllocator.Allocate<UnarySDNode>();
2341    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2342    CSEMap.InsertNode(N, IP);
2343  } else {
2344    N = NodeAllocator.Allocate<UnarySDNode>();
2345    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2346  }
2347
2348  AllNodes.push_back(N);
2349#ifndef NDEBUG
2350  VerifyNode(N);
2351#endif
2352  return SDValue(N, 0);
2353}
2354
2355SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2356                                             MVT VT,
2357                                             ConstantSDNode *Cst1,
2358                                             ConstantSDNode *Cst2) {
2359  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2360
2361  switch (Opcode) {
2362  case ISD::ADD:  return getConstant(C1 + C2, VT);
2363  case ISD::SUB:  return getConstant(C1 - C2, VT);
2364  case ISD::MUL:  return getConstant(C1 * C2, VT);
2365  case ISD::UDIV:
2366    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2367    break;
2368  case ISD::UREM:
2369    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2370    break;
2371  case ISD::SDIV:
2372    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2373    break;
2374  case ISD::SREM:
2375    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2376    break;
2377  case ISD::AND:  return getConstant(C1 & C2, VT);
2378  case ISD::OR:   return getConstant(C1 | C2, VT);
2379  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2380  case ISD::SHL:  return getConstant(C1 << C2, VT);
2381  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2382  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2383  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2384  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2385  default: break;
2386  }
2387
2388  return SDValue();
2389}
2390
2391SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2392                              SDValue N1, SDValue N2) {
2393  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2394  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2395  switch (Opcode) {
2396  default: break;
2397  case ISD::TokenFactor:
2398    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2399           N2.getValueType() == MVT::Other && "Invalid token factor!");
2400    // Fold trivial token factors.
2401    if (N1.getOpcode() == ISD::EntryToken) return N2;
2402    if (N2.getOpcode() == ISD::EntryToken) return N1;
2403    if (N1 == N2) return N1;
2404    break;
2405  case ISD::CONCAT_VECTORS:
2406    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2407    // one big BUILD_VECTOR.
2408    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2409        N2.getOpcode() == ISD::BUILD_VECTOR) {
2410      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2411      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2412      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2413    }
2414    break;
2415  case ISD::AND:
2416    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2417           N1.getValueType() == VT && "Binary operator types must match!");
2418    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2419    // worth handling here.
2420    if (N2C && N2C->isNullValue())
2421      return N2;
2422    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2423      return N1;
2424    break;
2425  case ISD::OR:
2426  case ISD::XOR:
2427  case ISD::ADD:
2428  case ISD::SUB:
2429    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2430           N1.getValueType() == VT && "Binary operator types must match!");
2431    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2432    // it's worth handling here.
2433    if (N2C && N2C->isNullValue())
2434      return N1;
2435    break;
2436  case ISD::UDIV:
2437  case ISD::UREM:
2438  case ISD::MULHU:
2439  case ISD::MULHS:
2440  case ISD::MUL:
2441  case ISD::SDIV:
2442  case ISD::SREM:
2443    assert(VT.isInteger() && "This operator does not apply to FP types!");
2444    // fall through
2445  case ISD::FADD:
2446  case ISD::FSUB:
2447  case ISD::FMUL:
2448  case ISD::FDIV:
2449  case ISD::FREM:
2450    if (UnsafeFPMath) {
2451      if (Opcode == ISD::FADD) {
2452        // 0+x --> x
2453        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2454          if (CFP->getValueAPF().isZero())
2455            return N2;
2456        // x+0 --> x
2457        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2458          if (CFP->getValueAPF().isZero())
2459            return N1;
2460      } else if (Opcode == ISD::FSUB) {
2461        // x-0 --> x
2462        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2463          if (CFP->getValueAPF().isZero())
2464            return N1;
2465      }
2466    }
2467    assert(N1.getValueType() == N2.getValueType() &&
2468           N1.getValueType() == VT && "Binary operator types must match!");
2469    break;
2470  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2471    assert(N1.getValueType() == VT &&
2472           N1.getValueType().isFloatingPoint() &&
2473           N2.getValueType().isFloatingPoint() &&
2474           "Invalid FCOPYSIGN!");
2475    break;
2476  case ISD::SHL:
2477  case ISD::SRA:
2478  case ISD::SRL:
2479  case ISD::ROTL:
2480  case ISD::ROTR:
2481    assert(VT == N1.getValueType() &&
2482           "Shift operators return type must be the same as their first arg");
2483    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2484           "Shifts only work on integers");
2485
2486    // Always fold shifts of i1 values so the code generator doesn't need to
2487    // handle them.  Since we know the size of the shift has to be less than the
2488    // size of the value, the shift/rotate count is guaranteed to be zero.
2489    if (VT == MVT::i1)
2490      return N1;
2491    break;
2492  case ISD::FP_ROUND_INREG: {
2493    MVT EVT = cast<VTSDNode>(N2)->getVT();
2494    assert(VT == N1.getValueType() && "Not an inreg round!");
2495    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2496           "Cannot FP_ROUND_INREG integer types");
2497    assert(EVT.bitsLE(VT) && "Not rounding down!");
2498    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2499    break;
2500  }
2501  case ISD::FP_ROUND:
2502    assert(VT.isFloatingPoint() &&
2503           N1.getValueType().isFloatingPoint() &&
2504           VT.bitsLE(N1.getValueType()) &&
2505           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2506    if (N1.getValueType() == VT) return N1;  // noop conversion.
2507    break;
2508  case ISD::AssertSext:
2509  case ISD::AssertZext: {
2510    MVT EVT = cast<VTSDNode>(N2)->getVT();
2511    assert(VT == N1.getValueType() && "Not an inreg extend!");
2512    assert(VT.isInteger() && EVT.isInteger() &&
2513           "Cannot *_EXTEND_INREG FP types");
2514    assert(EVT.bitsLE(VT) && "Not extending!");
2515    if (VT == EVT) return N1; // noop assertion.
2516    break;
2517  }
2518  case ISD::SIGN_EXTEND_INREG: {
2519    MVT EVT = cast<VTSDNode>(N2)->getVT();
2520    assert(VT == N1.getValueType() && "Not an inreg extend!");
2521    assert(VT.isInteger() && EVT.isInteger() &&
2522           "Cannot *_EXTEND_INREG FP types");
2523    assert(EVT.bitsLE(VT) && "Not extending!");
2524    if (EVT == VT) return N1;  // Not actually extending
2525
2526    if (N1C) {
2527      APInt Val = N1C->getAPIntValue();
2528      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2529      Val <<= Val.getBitWidth()-FromBits;
2530      Val = Val.ashr(Val.getBitWidth()-FromBits);
2531      return getConstant(Val, VT);
2532    }
2533    break;
2534  }
2535  case ISD::EXTRACT_VECTOR_ELT:
2536    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2537    if (N1.getOpcode() == ISD::UNDEF)
2538      return getUNDEF(VT);
2539
2540    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2541    // expanding copies of large vectors from registers.
2542    if (N2C &&
2543        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2544        N1.getNumOperands() > 0) {
2545      unsigned Factor =
2546        N1.getOperand(0).getValueType().getVectorNumElements();
2547      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2548                     N1.getOperand(N2C->getZExtValue() / Factor),
2549                     getConstant(N2C->getZExtValue() % Factor,
2550                                 N2.getValueType()));
2551    }
2552
2553    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2554    // expanding large vector constants.
2555    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2556      return N1.getOperand(N2C->getZExtValue());
2557
2558    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2559    // operations are lowered to scalars.
2560    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2561      // If the indices are the same, return the inserted element.
2562      if (N1.getOperand(2) == N2)
2563        return N1.getOperand(1);
2564      // If the indices are known different, extract the element from
2565      // the original vector.
2566      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2567               isa<ConstantSDNode>(N2))
2568        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2569    }
2570    break;
2571  case ISD::EXTRACT_ELEMENT:
2572    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2573    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2574           (N1.getValueType().isInteger() == VT.isInteger()) &&
2575           "Wrong types for EXTRACT_ELEMENT!");
2576
2577    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2578    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2579    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2580    if (N1.getOpcode() == ISD::BUILD_PAIR)
2581      return N1.getOperand(N2C->getZExtValue());
2582
2583    // EXTRACT_ELEMENT of a constant int is also very common.
2584    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2585      unsigned ElementSize = VT.getSizeInBits();
2586      unsigned Shift = ElementSize * N2C->getZExtValue();
2587      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2588      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2589    }
2590    break;
2591  case ISD::EXTRACT_SUBVECTOR:
2592    if (N1.getValueType() == VT) // Trivial extraction.
2593      return N1;
2594    break;
2595  }
2596
2597  if (N1C) {
2598    if (N2C) {
2599      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2600      if (SV.getNode()) return SV;
2601    } else {      // Cannonicalize constant to RHS if commutative
2602      if (isCommutativeBinOp(Opcode)) {
2603        std::swap(N1C, N2C);
2604        std::swap(N1, N2);
2605      }
2606    }
2607  }
2608
2609  // Constant fold FP operations.
2610  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2611  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2612  if (N1CFP) {
2613    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2614      // Cannonicalize constant to RHS if commutative
2615      std::swap(N1CFP, N2CFP);
2616      std::swap(N1, N2);
2617    } else if (N2CFP && VT != MVT::ppcf128) {
2618      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2619      APFloat::opStatus s;
2620      switch (Opcode) {
2621      case ISD::FADD:
2622        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2623        if (s != APFloat::opInvalidOp)
2624          return getConstantFP(V1, VT);
2625        break;
2626      case ISD::FSUB:
2627        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2628        if (s!=APFloat::opInvalidOp)
2629          return getConstantFP(V1, VT);
2630        break;
2631      case ISD::FMUL:
2632        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2633        if (s!=APFloat::opInvalidOp)
2634          return getConstantFP(V1, VT);
2635        break;
2636      case ISD::FDIV:
2637        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2638        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2639          return getConstantFP(V1, VT);
2640        break;
2641      case ISD::FREM :
2642        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2643        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2644          return getConstantFP(V1, VT);
2645        break;
2646      case ISD::FCOPYSIGN:
2647        V1.copySign(V2);
2648        return getConstantFP(V1, VT);
2649      default: break;
2650      }
2651    }
2652  }
2653
2654  // Canonicalize an UNDEF to the RHS, even over a constant.
2655  if (N1.getOpcode() == ISD::UNDEF) {
2656    if (isCommutativeBinOp(Opcode)) {
2657      std::swap(N1, N2);
2658    } else {
2659      switch (Opcode) {
2660      case ISD::FP_ROUND_INREG:
2661      case ISD::SIGN_EXTEND_INREG:
2662      case ISD::SUB:
2663      case ISD::FSUB:
2664      case ISD::FDIV:
2665      case ISD::FREM:
2666      case ISD::SRA:
2667        return N1;     // fold op(undef, arg2) -> undef
2668      case ISD::UDIV:
2669      case ISD::SDIV:
2670      case ISD::UREM:
2671      case ISD::SREM:
2672      case ISD::SRL:
2673      case ISD::SHL:
2674        if (!VT.isVector())
2675          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2676        // For vectors, we can't easily build an all zero vector, just return
2677        // the LHS.
2678        return N2;
2679      }
2680    }
2681  }
2682
2683  // Fold a bunch of operators when the RHS is undef.
2684  if (N2.getOpcode() == ISD::UNDEF) {
2685    switch (Opcode) {
2686    case ISD::XOR:
2687      if (N1.getOpcode() == ISD::UNDEF)
2688        // Handle undef ^ undef -> 0 special case. This is a common
2689        // idiom (misuse).
2690        return getConstant(0, VT);
2691      // fallthrough
2692    case ISD::ADD:
2693    case ISD::ADDC:
2694    case ISD::ADDE:
2695    case ISD::SUB:
2696    case ISD::FADD:
2697    case ISD::FSUB:
2698    case ISD::FMUL:
2699    case ISD::FDIV:
2700    case ISD::FREM:
2701    case ISD::UDIV:
2702    case ISD::SDIV:
2703    case ISD::UREM:
2704    case ISD::SREM:
2705      return N2;       // fold op(arg1, undef) -> undef
2706    case ISD::MUL:
2707    case ISD::AND:
2708    case ISD::SRL:
2709    case ISD::SHL:
2710      if (!VT.isVector())
2711        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2712      // For vectors, we can't easily build an all zero vector, just return
2713      // the LHS.
2714      return N1;
2715    case ISD::OR:
2716      if (!VT.isVector())
2717        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2718      // For vectors, we can't easily build an all one vector, just return
2719      // the LHS.
2720      return N1;
2721    case ISD::SRA:
2722      return N1;
2723    }
2724  }
2725
2726  // Memoize this node if possible.
2727  SDNode *N;
2728  SDVTList VTs = getVTList(VT);
2729  if (VT != MVT::Flag) {
2730    SDValue Ops[] = { N1, N2 };
2731    FoldingSetNodeID ID;
2732    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2733    void *IP = 0;
2734    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2735      return SDValue(E, 0);
2736    N = NodeAllocator.Allocate<BinarySDNode>();
2737    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2738    CSEMap.InsertNode(N, IP);
2739  } else {
2740    N = NodeAllocator.Allocate<BinarySDNode>();
2741    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2742  }
2743
2744  AllNodes.push_back(N);
2745#ifndef NDEBUG
2746  VerifyNode(N);
2747#endif
2748  return SDValue(N, 0);
2749}
2750
2751SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2752                              SDValue N1, SDValue N2, SDValue N3) {
2753  // Perform various simplifications.
2754  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2755  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2756  switch (Opcode) {
2757  case ISD::CONCAT_VECTORS:
2758    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2759    // one big BUILD_VECTOR.
2760    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2761        N2.getOpcode() == ISD::BUILD_VECTOR &&
2762        N3.getOpcode() == ISD::BUILD_VECTOR) {
2763      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2764      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2765      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2766      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2767    }
2768    break;
2769  case ISD::SETCC: {
2770    // Use FoldSetCC to simplify SETCC's.
2771    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2772    if (Simp.getNode()) return Simp;
2773    break;
2774  }
2775  case ISD::SELECT:
2776    if (N1C) {
2777     if (N1C->getZExtValue())
2778        return N2;             // select true, X, Y -> X
2779      else
2780        return N3;             // select false, X, Y -> Y
2781    }
2782
2783    if (N2 == N3) return N2;   // select C, X, X -> X
2784    break;
2785  case ISD::BRCOND:
2786    if (N2C) {
2787      if (N2C->getZExtValue()) // Unconditional branch
2788        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2789      else
2790        return N1;         // Never-taken branch
2791    }
2792    break;
2793  case ISD::VECTOR_SHUFFLE:
2794    assert(N1.getValueType() == N2.getValueType() &&
2795           N1.getValueType().isVector() &&
2796           VT.isVector() && N3.getValueType().isVector() &&
2797           N3.getOpcode() == ISD::BUILD_VECTOR &&
2798           VT.getVectorNumElements() == N3.getNumOperands() &&
2799           "Illegal VECTOR_SHUFFLE node!");
2800    break;
2801  case ISD::BIT_CONVERT:
2802    // Fold bit_convert nodes from a type to themselves.
2803    if (N1.getValueType() == VT)
2804      return N1;
2805    break;
2806  }
2807
2808  // Memoize node if it doesn't produce a flag.
2809  SDNode *N;
2810  SDVTList VTs = getVTList(VT);
2811  if (VT != MVT::Flag) {
2812    SDValue Ops[] = { N1, N2, N3 };
2813    FoldingSetNodeID ID;
2814    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2815    void *IP = 0;
2816    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2817      return SDValue(E, 0);
2818    N = NodeAllocator.Allocate<TernarySDNode>();
2819    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2820    CSEMap.InsertNode(N, IP);
2821  } else {
2822    N = NodeAllocator.Allocate<TernarySDNode>();
2823    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2824  }
2825  AllNodes.push_back(N);
2826#ifndef NDEBUG
2827  VerifyNode(N);
2828#endif
2829  return SDValue(N, 0);
2830}
2831
2832SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2833                              SDValue N1, SDValue N2, SDValue N3,
2834                              SDValue N4) {
2835  SDValue Ops[] = { N1, N2, N3, N4 };
2836  return getNode(Opcode, DL, VT, Ops, 4);
2837}
2838
2839SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2840                              SDValue N1, SDValue N2, SDValue N3,
2841                              SDValue N4, SDValue N5) {
2842  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2843  return getNode(Opcode, DL, VT, Ops, 5);
2844}
2845
2846/// getMemsetValue - Vectorized representation of the memset value
2847/// operand.
2848static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG,
2849                              DebugLoc dl) {
2850  unsigned NumBits = VT.isVector() ?
2851    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2852  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2853    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2854    unsigned Shift = 8;
2855    for (unsigned i = NumBits; i > 8; i >>= 1) {
2856      Val = (Val << Shift) | Val;
2857      Shift <<= 1;
2858    }
2859    if (VT.isInteger())
2860      return DAG.getConstant(Val, VT);
2861    return DAG.getConstantFP(APFloat(Val), VT);
2862  }
2863
2864  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2865  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
2866  unsigned Shift = 8;
2867  for (unsigned i = NumBits; i > 8; i >>= 1) {
2868    Value = DAG.getNode(ISD::OR, dl, VT,
2869                        DAG.getNode(ISD::SHL, dl, VT, Value,
2870                                    DAG.getConstant(Shift,
2871                                                    TLI.getShiftAmountTy())),
2872                        Value);
2873    Shift <<= 1;
2874  }
2875
2876  return Value;
2877}
2878
2879/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2880/// used when a memcpy is turned into a memset when the source is a constant
2881/// string ptr.
2882static SDValue getMemsetStringVal(MVT VT, DebugLoc dl, SelectionDAG &DAG,
2883                                    const TargetLowering &TLI,
2884                                    std::string &Str, unsigned Offset) {
2885  // Handle vector with all elements zero.
2886  if (Str.empty()) {
2887    if (VT.isInteger())
2888      return DAG.getConstant(0, VT);
2889    unsigned NumElts = VT.getVectorNumElements();
2890    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2891    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
2892                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2893  }
2894
2895  assert(!VT.isVector() && "Can't handle vector type here!");
2896  unsigned NumBits = VT.getSizeInBits();
2897  unsigned MSB = NumBits / 8;
2898  uint64_t Val = 0;
2899  if (TLI.isLittleEndian())
2900    Offset = Offset + MSB - 1;
2901  for (unsigned i = 0; i != MSB; ++i) {
2902    Val = (Val << 8) | (unsigned char)Str[Offset];
2903    Offset += TLI.isLittleEndian() ? -1 : 1;
2904  }
2905  return DAG.getConstant(Val, VT);
2906}
2907
2908/// getMemBasePlusOffset - Returns base and offset node for the
2909///
2910static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2911                                      SelectionDAG &DAG) {
2912  MVT VT = Base.getValueType();
2913  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
2914                     VT, Base, DAG.getConstant(Offset, VT));
2915}
2916
2917/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2918///
2919static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2920  unsigned SrcDelta = 0;
2921  GlobalAddressSDNode *G = NULL;
2922  if (Src.getOpcode() == ISD::GlobalAddress)
2923    G = cast<GlobalAddressSDNode>(Src);
2924  else if (Src.getOpcode() == ISD::ADD &&
2925           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2926           Src.getOperand(1).getOpcode() == ISD::Constant) {
2927    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2928    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2929  }
2930  if (!G)
2931    return false;
2932
2933  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2934  if (GV) {
2935    const char *SI = GetConstantStringInfo(GV, SrcDelta, false);
2936    Str = (SI ? SI : "");
2937    if (!Str.empty()) return true;
2938  }
2939
2940  return false;
2941}
2942
2943/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2944/// to replace the memset / memcpy is below the threshold. It also returns the
2945/// types of the sequence of memory ops to perform memset / memcpy.
2946static
2947bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2948                              SDValue Dst, SDValue Src,
2949                              unsigned Limit, uint64_t Size, unsigned &Align,
2950                              std::string &Str, bool &isSrcStr,
2951                              SelectionDAG &DAG,
2952                              const TargetLowering &TLI) {
2953  isSrcStr = isMemSrcFromString(Src, Str);
2954  bool isSrcConst = isa<ConstantSDNode>(Src);
2955  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2956  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2957  if (VT != MVT::iAny) {
2958    unsigned NewAlign = (unsigned)
2959      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2960    // If source is a string constant, this will require an unaligned load.
2961    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2962      if (Dst.getOpcode() != ISD::FrameIndex) {
2963        // Can't change destination alignment. It requires a unaligned store.
2964        if (AllowUnalign)
2965          VT = MVT::iAny;
2966      } else {
2967        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2968        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2969        if (MFI->isFixedObjectIndex(FI)) {
2970          // Can't change destination alignment. It requires a unaligned store.
2971          if (AllowUnalign)
2972            VT = MVT::iAny;
2973        } else {
2974          // Give the stack frame object a larger alignment if needed.
2975          if (MFI->getObjectAlignment(FI) < NewAlign)
2976            MFI->setObjectAlignment(FI, NewAlign);
2977          Align = NewAlign;
2978        }
2979      }
2980    }
2981  }
2982
2983  if (VT == MVT::iAny) {
2984    if (AllowUnalign) {
2985      VT = MVT::i64;
2986    } else {
2987      switch (Align & 7) {
2988      case 0:  VT = MVT::i64; break;
2989      case 4:  VT = MVT::i32; break;
2990      case 2:  VT = MVT::i16; break;
2991      default: VT = MVT::i8;  break;
2992      }
2993    }
2994
2995    MVT LVT = MVT::i64;
2996    while (!TLI.isTypeLegal(LVT))
2997      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2998    assert(LVT.isInteger());
2999
3000    if (VT.bitsGT(LVT))
3001      VT = LVT;
3002  }
3003
3004  unsigned NumMemOps = 0;
3005  while (Size != 0) {
3006    unsigned VTSize = VT.getSizeInBits() / 8;
3007    while (VTSize > Size) {
3008      // For now, only use non-vector load / store's for the left-over pieces.
3009      if (VT.isVector()) {
3010        VT = MVT::i64;
3011        while (!TLI.isTypeLegal(VT))
3012          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3013        VTSize = VT.getSizeInBits() / 8;
3014      } else {
3015        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3016        VTSize >>= 1;
3017      }
3018    }
3019
3020    if (++NumMemOps > Limit)
3021      return false;
3022    MemOps.push_back(VT);
3023    Size -= VTSize;
3024  }
3025
3026  return true;
3027}
3028
3029static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3030                                         SDValue Chain, SDValue Dst,
3031                                         SDValue Src, uint64_t Size,
3032                                         unsigned Align, bool AlwaysInline,
3033                                         const Value *DstSV, uint64_t DstSVOff,
3034                                         const Value *SrcSV, uint64_t SrcSVOff){
3035  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3036
3037  // Expand memcpy to a series of load and store ops if the size operand falls
3038  // below a certain threshold.
3039  std::vector<MVT> MemOps;
3040  uint64_t Limit = -1ULL;
3041  if (!AlwaysInline)
3042    Limit = TLI.getMaxStoresPerMemcpy();
3043  unsigned DstAlign = Align;  // Destination alignment can change.
3044  std::string Str;
3045  bool CopyFromStr;
3046  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3047                                Str, CopyFromStr, DAG, TLI))
3048    return SDValue();
3049
3050
3051  bool isZeroStr = CopyFromStr && Str.empty();
3052  SmallVector<SDValue, 8> OutChains;
3053  unsigned NumMemOps = MemOps.size();
3054  uint64_t SrcOff = 0, DstOff = 0;
3055  for (unsigned i = 0; i < NumMemOps; i++) {
3056    MVT VT = MemOps[i];
3057    unsigned VTSize = VT.getSizeInBits() / 8;
3058    SDValue Value, Store;
3059
3060    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3061      // It's unlikely a store of a vector immediate can be done in a single
3062      // instruction. It would require a load from a constantpool first.
3063      // We also handle store a vector with all zero's.
3064      // FIXME: Handle other cases where store of vector immediate is done in
3065      // a single instruction.
3066      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3067      Store = DAG.getStore(Chain, dl, Value,
3068                           getMemBasePlusOffset(Dst, DstOff, DAG),
3069                           DstSV, DstSVOff + DstOff, false, DstAlign);
3070    } else {
3071      Value = DAG.getLoad(VT, dl, Chain,
3072                          getMemBasePlusOffset(Src, SrcOff, DAG),
3073                          SrcSV, SrcSVOff + SrcOff, false, Align);
3074      Store = DAG.getStore(Chain, dl, Value,
3075                           getMemBasePlusOffset(Dst, DstOff, DAG),
3076                           DstSV, DstSVOff + DstOff, false, DstAlign);
3077    }
3078    OutChains.push_back(Store);
3079    SrcOff += VTSize;
3080    DstOff += VTSize;
3081  }
3082
3083  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3084                     &OutChains[0], OutChains.size());
3085}
3086
3087static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3088                                          SDValue Chain, SDValue Dst,
3089                                          SDValue Src, uint64_t Size,
3090                                          unsigned Align, bool AlwaysInline,
3091                                          const Value *DstSV, uint64_t DstSVOff,
3092                                          const Value *SrcSV, uint64_t SrcSVOff){
3093  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3094
3095  // Expand memmove to a series of load and store ops if the size operand falls
3096  // below a certain threshold.
3097  std::vector<MVT> MemOps;
3098  uint64_t Limit = -1ULL;
3099  if (!AlwaysInline)
3100    Limit = TLI.getMaxStoresPerMemmove();
3101  unsigned DstAlign = Align;  // Destination alignment can change.
3102  std::string Str;
3103  bool CopyFromStr;
3104  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3105                                Str, CopyFromStr, DAG, TLI))
3106    return SDValue();
3107
3108  uint64_t SrcOff = 0, DstOff = 0;
3109
3110  SmallVector<SDValue, 8> LoadValues;
3111  SmallVector<SDValue, 8> LoadChains;
3112  SmallVector<SDValue, 8> OutChains;
3113  unsigned NumMemOps = MemOps.size();
3114  for (unsigned i = 0; i < NumMemOps; i++) {
3115    MVT VT = MemOps[i];
3116    unsigned VTSize = VT.getSizeInBits() / 8;
3117    SDValue Value, Store;
3118
3119    Value = DAG.getLoad(VT, dl, Chain,
3120                        getMemBasePlusOffset(Src, SrcOff, DAG),
3121                        SrcSV, SrcSVOff + SrcOff, false, Align);
3122    LoadValues.push_back(Value);
3123    LoadChains.push_back(Value.getValue(1));
3124    SrcOff += VTSize;
3125  }
3126  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3127                      &LoadChains[0], LoadChains.size());
3128  OutChains.clear();
3129  for (unsigned i = 0; i < NumMemOps; i++) {
3130    MVT VT = MemOps[i];
3131    unsigned VTSize = VT.getSizeInBits() / 8;
3132    SDValue Value, Store;
3133
3134    Store = DAG.getStore(Chain, dl, LoadValues[i],
3135                         getMemBasePlusOffset(Dst, DstOff, DAG),
3136                         DstSV, DstSVOff + DstOff, false, DstAlign);
3137    OutChains.push_back(Store);
3138    DstOff += VTSize;
3139  }
3140
3141  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3142                     &OutChains[0], OutChains.size());
3143}
3144
3145static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3146                                 SDValue Chain, SDValue Dst,
3147                                 SDValue Src, uint64_t Size,
3148                                 unsigned Align,
3149                                 const Value *DstSV, uint64_t DstSVOff) {
3150  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3151
3152  // Expand memset to a series of load/store ops if the size operand
3153  // falls below a certain threshold.
3154  std::vector<MVT> MemOps;
3155  std::string Str;
3156  bool CopyFromStr;
3157  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3158                                Size, Align, Str, CopyFromStr, DAG, TLI))
3159    return SDValue();
3160
3161  SmallVector<SDValue, 8> OutChains;
3162  uint64_t DstOff = 0;
3163
3164  unsigned NumMemOps = MemOps.size();
3165  for (unsigned i = 0; i < NumMemOps; i++) {
3166    MVT VT = MemOps[i];
3167    unsigned VTSize = VT.getSizeInBits() / 8;
3168    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3169    SDValue Store = DAG.getStore(Chain, dl, Value,
3170                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3171                                 DstSV, DstSVOff + DstOff);
3172    OutChains.push_back(Store);
3173    DstOff += VTSize;
3174  }
3175
3176  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3177                     &OutChains[0], OutChains.size());
3178}
3179
3180SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3181                                SDValue Src, SDValue Size,
3182                                unsigned Align, bool AlwaysInline,
3183                                const Value *DstSV, uint64_t DstSVOff,
3184                                const Value *SrcSV, uint64_t SrcSVOff) {
3185
3186  // Check to see if we should lower the memcpy to loads and stores first.
3187  // For cases within the target-specified limits, this is the best choice.
3188  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3189  if (ConstantSize) {
3190    // Memcpy with size zero? Just return the original chain.
3191    if (ConstantSize->isNullValue())
3192      return Chain;
3193
3194    SDValue Result =
3195      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3196                              ConstantSize->getZExtValue(),
3197                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3198    if (Result.getNode())
3199      return Result;
3200  }
3201
3202  // Then check to see if we should lower the memcpy with target-specific
3203  // code. If the target chooses to do this, this is the next best.
3204  SDValue Result =
3205    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3206                                AlwaysInline,
3207                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3208  if (Result.getNode())
3209    return Result;
3210
3211  // If we really need inline code and the target declined to provide it,
3212  // use a (potentially long) sequence of loads and stores.
3213  if (AlwaysInline) {
3214    assert(ConstantSize && "AlwaysInline requires a constant size!");
3215    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3216                                   ConstantSize->getZExtValue(), Align, true,
3217                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3218  }
3219
3220  // Emit a library call.
3221  TargetLowering::ArgListTy Args;
3222  TargetLowering::ArgListEntry Entry;
3223  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3224  Entry.Node = Dst; Args.push_back(Entry);
3225  Entry.Node = Src; Args.push_back(Entry);
3226  Entry.Node = Size; Args.push_back(Entry);
3227  // FIXME: pass in DebugLoc
3228  std::pair<SDValue,SDValue> CallResult =
3229    TLI.LowerCallTo(Chain, Type::VoidTy,
3230                    false, false, false, false, CallingConv::C, false,
3231                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3232                    Args, *this, dl);
3233  return CallResult.second;
3234}
3235
3236SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3237                                 SDValue Src, SDValue Size,
3238                                 unsigned Align,
3239                                 const Value *DstSV, uint64_t DstSVOff,
3240                                 const Value *SrcSV, uint64_t SrcSVOff) {
3241
3242  // Check to see if we should lower the memmove to loads and stores first.
3243  // For cases within the target-specified limits, this is the best choice.
3244  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3245  if (ConstantSize) {
3246    // Memmove with size zero? Just return the original chain.
3247    if (ConstantSize->isNullValue())
3248      return Chain;
3249
3250    SDValue Result =
3251      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3252                               ConstantSize->getZExtValue(),
3253                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3254    if (Result.getNode())
3255      return Result;
3256  }
3257
3258  // Then check to see if we should lower the memmove with target-specific
3259  // code. If the target chooses to do this, this is the next best.
3260  SDValue Result =
3261    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3262                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3263  if (Result.getNode())
3264    return Result;
3265
3266  // Emit a library call.
3267  TargetLowering::ArgListTy Args;
3268  TargetLowering::ArgListEntry Entry;
3269  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3270  Entry.Node = Dst; Args.push_back(Entry);
3271  Entry.Node = Src; Args.push_back(Entry);
3272  Entry.Node = Size; Args.push_back(Entry);
3273  // FIXME:  pass in DebugLoc
3274  std::pair<SDValue,SDValue> CallResult =
3275    TLI.LowerCallTo(Chain, Type::VoidTy,
3276                    false, false, false, false, CallingConv::C, false,
3277                    getExternalSymbol("memmove", TLI.getPointerTy()),
3278                    Args, *this, dl);
3279  return CallResult.second;
3280}
3281
3282SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3283                                SDValue Src, SDValue Size,
3284                                unsigned Align,
3285                                const Value *DstSV, uint64_t DstSVOff) {
3286
3287  // Check to see if we should lower the memset to stores first.
3288  // For cases within the target-specified limits, this is the best choice.
3289  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3290  if (ConstantSize) {
3291    // Memset with size zero? Just return the original chain.
3292    if (ConstantSize->isNullValue())
3293      return Chain;
3294
3295    SDValue Result =
3296      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3297                      Align, DstSV, DstSVOff);
3298    if (Result.getNode())
3299      return Result;
3300  }
3301
3302  // Then check to see if we should lower the memset with target-specific
3303  // code. If the target chooses to do this, this is the next best.
3304  SDValue Result =
3305    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3306                                DstSV, DstSVOff);
3307  if (Result.getNode())
3308    return Result;
3309
3310  // Emit a library call.
3311  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3312  TargetLowering::ArgListTy Args;
3313  TargetLowering::ArgListEntry Entry;
3314  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3315  Args.push_back(Entry);
3316  // Extend or truncate the argument to be an i32 value for the call.
3317  if (Src.getValueType().bitsGT(MVT::i32))
3318    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3319  else
3320    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3321  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3322  Args.push_back(Entry);
3323  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3324  Args.push_back(Entry);
3325  // FIXME: pass in DebugLoc
3326  std::pair<SDValue,SDValue> CallResult =
3327    TLI.LowerCallTo(Chain, Type::VoidTy,
3328                    false, false, false, false, CallingConv::C, false,
3329                    getExternalSymbol("memset", TLI.getPointerTy()),
3330                    Args, *this, dl);
3331  return CallResult.second;
3332}
3333
3334SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3335                                SDValue Chain,
3336                                SDValue Ptr, SDValue Cmp,
3337                                SDValue Swp, const Value* PtrVal,
3338                                unsigned Alignment) {
3339  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3340  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3341
3342  MVT VT = Cmp.getValueType();
3343
3344  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3345    Alignment = getMVTAlignment(MemVT);
3346
3347  SDVTList VTs = getVTList(VT, MVT::Other);
3348  FoldingSetNodeID ID;
3349  ID.AddInteger(MemVT.getRawBits());
3350  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3351  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3352  void* IP = 0;
3353  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3354    return SDValue(E, 0);
3355  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3356  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3357                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3358  CSEMap.InsertNode(N, IP);
3359  AllNodes.push_back(N);
3360  return SDValue(N, 0);
3361}
3362
3363SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3364                                SDValue Chain,
3365                                SDValue Ptr, SDValue Val,
3366                                const Value* PtrVal,
3367                                unsigned Alignment) {
3368  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3369          Opcode == ISD::ATOMIC_LOAD_SUB ||
3370          Opcode == ISD::ATOMIC_LOAD_AND ||
3371          Opcode == ISD::ATOMIC_LOAD_OR ||
3372          Opcode == ISD::ATOMIC_LOAD_XOR ||
3373          Opcode == ISD::ATOMIC_LOAD_NAND ||
3374          Opcode == ISD::ATOMIC_LOAD_MIN ||
3375          Opcode == ISD::ATOMIC_LOAD_MAX ||
3376          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3377          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3378          Opcode == ISD::ATOMIC_SWAP) &&
3379         "Invalid Atomic Op");
3380
3381  MVT VT = Val.getValueType();
3382
3383  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3384    Alignment = getMVTAlignment(MemVT);
3385
3386  SDVTList VTs = getVTList(VT, MVT::Other);
3387  FoldingSetNodeID ID;
3388  ID.AddInteger(MemVT.getRawBits());
3389  SDValue Ops[] = {Chain, Ptr, Val};
3390  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3391  void* IP = 0;
3392  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3393    return SDValue(E, 0);
3394  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3395  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3396                       Chain, Ptr, Val, PtrVal, Alignment);
3397  CSEMap.InsertNode(N, IP);
3398  AllNodes.push_back(N);
3399  return SDValue(N, 0);
3400}
3401
3402/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3403/// Allowed to return something different (and simpler) if Simplify is true.
3404SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3405                                     DebugLoc dl) {
3406  if (NumOps == 1)
3407    return Ops[0];
3408
3409  SmallVector<MVT, 4> VTs;
3410  VTs.reserve(NumOps);
3411  for (unsigned i = 0; i < NumOps; ++i)
3412    VTs.push_back(Ops[i].getValueType());
3413  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3414                 Ops, NumOps);
3415}
3416
3417SDValue
3418SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3419                                  const MVT *VTs, unsigned NumVTs,
3420                                  const SDValue *Ops, unsigned NumOps,
3421                                  MVT MemVT, const Value *srcValue, int SVOff,
3422                                  unsigned Align, bool Vol,
3423                                  bool ReadMem, bool WriteMem) {
3424  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3425                             MemVT, srcValue, SVOff, Align, Vol,
3426                             ReadMem, WriteMem);
3427}
3428
3429SDValue
3430SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3431                                  const SDValue *Ops, unsigned NumOps,
3432                                  MVT MemVT, const Value *srcValue, int SVOff,
3433                                  unsigned Align, bool Vol,
3434                                  bool ReadMem, bool WriteMem) {
3435  // Memoize the node unless it returns a flag.
3436  MemIntrinsicSDNode *N;
3437  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3438    FoldingSetNodeID ID;
3439    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3440    void *IP = 0;
3441    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3442      return SDValue(E, 0);
3443
3444    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3445    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3446                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3447    CSEMap.InsertNode(N, IP);
3448  } else {
3449    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3450    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3451                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3452  }
3453  AllNodes.push_back(N);
3454  return SDValue(N, 0);
3455}
3456
3457SDValue
3458SelectionDAG::getCall(unsigned CallingConv, DebugLoc dl, bool IsVarArgs,
3459                      bool IsTailCall, bool IsInreg, SDVTList VTs,
3460                      const SDValue *Operands, unsigned NumOperands) {
3461  // Do not include isTailCall in the folding set profile.
3462  FoldingSetNodeID ID;
3463  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3464  ID.AddInteger(CallingConv);
3465  ID.AddInteger(IsVarArgs);
3466  void *IP = 0;
3467  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3468    // Instead of including isTailCall in the folding set, we just
3469    // set the flag of the existing node.
3470    if (!IsTailCall)
3471      cast<CallSDNode>(E)->setNotTailCall();
3472    return SDValue(E, 0);
3473  }
3474  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3475  new (N) CallSDNode(CallingConv, dl, IsVarArgs, IsTailCall, IsInreg,
3476                     VTs, Operands, NumOperands);
3477  CSEMap.InsertNode(N, IP);
3478  AllNodes.push_back(N);
3479  return SDValue(N, 0);
3480}
3481
3482SDValue
3483SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3484                      ISD::LoadExtType ExtType, MVT VT, SDValue Chain,
3485                      SDValue Ptr, SDValue Offset,
3486                      const Value *SV, int SVOffset, MVT EVT,
3487                      bool isVolatile, unsigned Alignment) {
3488  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3489    Alignment = getMVTAlignment(VT);
3490
3491  if (VT == EVT) {
3492    ExtType = ISD::NON_EXTLOAD;
3493  } else if (ExtType == ISD::NON_EXTLOAD) {
3494    assert(VT == EVT && "Non-extending load from different memory type!");
3495  } else {
3496    // Extending load.
3497    if (VT.isVector())
3498      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3499             "Invalid vector extload!");
3500    else
3501      assert(EVT.bitsLT(VT) &&
3502             "Should only be an extending load, not truncating!");
3503    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3504           "Cannot sign/zero extend a FP/Vector load!");
3505    assert(VT.isInteger() == EVT.isInteger() &&
3506           "Cannot convert from FP to Int or Int -> FP!");
3507  }
3508
3509  bool Indexed = AM != ISD::UNINDEXED;
3510  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3511         "Unindexed load with an offset!");
3512
3513  SDVTList VTs = Indexed ?
3514    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3515  SDValue Ops[] = { Chain, Ptr, Offset };
3516  FoldingSetNodeID ID;
3517  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3518  ID.AddInteger(EVT.getRawBits());
3519  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, isVolatile, Alignment));
3520  void *IP = 0;
3521  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3522    return SDValue(E, 0);
3523  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3524  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, EVT, SV, SVOffset,
3525                     Alignment, isVolatile);
3526  CSEMap.InsertNode(N, IP);
3527  AllNodes.push_back(N);
3528  return SDValue(N, 0);
3529}
3530
3531SDValue SelectionDAG::getLoad(MVT VT, DebugLoc dl,
3532                              SDValue Chain, SDValue Ptr,
3533                              const Value *SV, int SVOffset,
3534                              bool isVolatile, unsigned Alignment) {
3535  SDValue Undef = getUNDEF(Ptr.getValueType());
3536  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3537                 SV, SVOffset, VT, isVolatile, Alignment);
3538}
3539
3540SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, MVT VT,
3541                                 SDValue Chain, SDValue Ptr,
3542                                 const Value *SV,
3543                                 int SVOffset, MVT EVT,
3544                                 bool isVolatile, unsigned Alignment) {
3545  SDValue Undef = getUNDEF(Ptr.getValueType());
3546  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3547                 SV, SVOffset, EVT, isVolatile, Alignment);
3548}
3549
3550SDValue
3551SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3552                             SDValue Offset, ISD::MemIndexedMode AM) {
3553  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3554  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3555         "Load is already a indexed load!");
3556  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3557                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3558                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3559                 LD->isVolatile(), LD->getAlignment());
3560}
3561
3562SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3563                               SDValue Ptr, const Value *SV, int SVOffset,
3564                               bool isVolatile, unsigned Alignment) {
3565  MVT VT = Val.getValueType();
3566
3567  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3568    Alignment = getMVTAlignment(VT);
3569
3570  SDVTList VTs = getVTList(MVT::Other);
3571  SDValue Undef = getUNDEF(Ptr.getValueType());
3572  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3573  FoldingSetNodeID ID;
3574  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3575  ID.AddInteger(VT.getRawBits());
3576  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED,
3577                                     isVolatile, Alignment));
3578  void *IP = 0;
3579  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3580    return SDValue(E, 0);
3581  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3582  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false,
3583                      VT, SV, SVOffset, Alignment, isVolatile);
3584  CSEMap.InsertNode(N, IP);
3585  AllNodes.push_back(N);
3586  return SDValue(N, 0);
3587}
3588
3589SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3590                                    SDValue Ptr, const Value *SV,
3591                                    int SVOffset, MVT SVT,
3592                                    bool isVolatile, unsigned Alignment) {
3593  MVT VT = Val.getValueType();
3594
3595  if (VT == SVT)
3596    return getStore(Chain, dl, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3597
3598  assert(VT.bitsGT(SVT) && "Not a truncation?");
3599  assert(VT.isInteger() == SVT.isInteger() &&
3600         "Can't do FP-INT conversion!");
3601
3602  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3603    Alignment = getMVTAlignment(VT);
3604
3605  SDVTList VTs = getVTList(MVT::Other);
3606  SDValue Undef = getUNDEF(Ptr.getValueType());
3607  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3608  FoldingSetNodeID ID;
3609  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3610  ID.AddInteger(SVT.getRawBits());
3611  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED,
3612                                     isVolatile, Alignment));
3613  void *IP = 0;
3614  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3615    return SDValue(E, 0);
3616  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3617  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true,
3618                      SVT, SV, SVOffset, Alignment, isVolatile);
3619  CSEMap.InsertNode(N, IP);
3620  AllNodes.push_back(N);
3621  return SDValue(N, 0);
3622}
3623
3624SDValue
3625SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3626                              SDValue Offset, ISD::MemIndexedMode AM) {
3627  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3628  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3629         "Store is already a indexed store!");
3630  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3631  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3632  FoldingSetNodeID ID;
3633  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3634  ID.AddInteger(ST->getMemoryVT().getRawBits());
3635  ID.AddInteger(ST->getRawSubclassData());
3636  void *IP = 0;
3637  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3638    return SDValue(E, 0);
3639  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3640  new (N) StoreSDNode(Ops, dl, VTs, AM,
3641                      ST->isTruncatingStore(), ST->getMemoryVT(),
3642                      ST->getSrcValue(), ST->getSrcValueOffset(),
3643                      ST->getAlignment(), ST->isVolatile());
3644  CSEMap.InsertNode(N, IP);
3645  AllNodes.push_back(N);
3646  return SDValue(N, 0);
3647}
3648
3649SDValue SelectionDAG::getVAArg(MVT VT, DebugLoc dl,
3650                               SDValue Chain, SDValue Ptr,
3651                               SDValue SV) {
3652  SDValue Ops[] = { Chain, Ptr, SV };
3653  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
3654}
3655
3656SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3657                              const SDUse *Ops, unsigned NumOps) {
3658  switch (NumOps) {
3659  case 0: return getNode(Opcode, DL, VT);
3660  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3661  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3662  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3663  default: break;
3664  }
3665
3666  // Copy from an SDUse array into an SDValue array for use with
3667  // the regular getNode logic.
3668  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3669  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
3670}
3671
3672SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3673                              const SDValue *Ops, unsigned NumOps) {
3674  switch (NumOps) {
3675  case 0: return getNode(Opcode, DL, VT);
3676  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3677  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3678  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3679  default: break;
3680  }
3681
3682  switch (Opcode) {
3683  default: break;
3684  case ISD::SELECT_CC: {
3685    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3686    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3687           "LHS and RHS of condition must have same type!");
3688    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3689           "True and False arms of SelectCC must have same type!");
3690    assert(Ops[2].getValueType() == VT &&
3691           "select_cc node must be of same type as true and false value!");
3692    break;
3693  }
3694  case ISD::BR_CC: {
3695    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3696    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3697           "LHS/RHS of comparison should match types!");
3698    break;
3699  }
3700  }
3701
3702  // Memoize nodes.
3703  SDNode *N;
3704  SDVTList VTs = getVTList(VT);
3705
3706  if (VT != MVT::Flag) {
3707    FoldingSetNodeID ID;
3708    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3709    void *IP = 0;
3710
3711    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3712      return SDValue(E, 0);
3713
3714    N = NodeAllocator.Allocate<SDNode>();
3715    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3716    CSEMap.InsertNode(N, IP);
3717  } else {
3718    N = NodeAllocator.Allocate<SDNode>();
3719    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3720  }
3721
3722  AllNodes.push_back(N);
3723#ifndef NDEBUG
3724  VerifyNode(N);
3725#endif
3726  return SDValue(N, 0);
3727}
3728
3729SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3730                              const std::vector<MVT> &ResultTys,
3731                              const SDValue *Ops, unsigned NumOps) {
3732  return getNode(Opcode, DL, getNodeValueTypes(ResultTys), ResultTys.size(),
3733                 Ops, NumOps);
3734}
3735
3736SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3737                              const MVT *VTs, unsigned NumVTs,
3738                              const SDValue *Ops, unsigned NumOps) {
3739  if (NumVTs == 1)
3740    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
3741  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
3742}
3743
3744SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3745                              const SDValue *Ops, unsigned NumOps) {
3746  if (VTList.NumVTs == 1)
3747    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
3748
3749  switch (Opcode) {
3750  // FIXME: figure out how to safely handle things like
3751  // int foo(int x) { return 1 << (x & 255); }
3752  // int bar() { return foo(256); }
3753#if 0
3754  case ISD::SRA_PARTS:
3755  case ISD::SRL_PARTS:
3756  case ISD::SHL_PARTS:
3757    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3758        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3759      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3760    else if (N3.getOpcode() == ISD::AND)
3761      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3762        // If the and is only masking out bits that cannot effect the shift,
3763        // eliminate the and.
3764        unsigned NumBits = VT.getSizeInBits()*2;
3765        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3766          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3767      }
3768    break;
3769#endif
3770  }
3771
3772  // Memoize the node unless it returns a flag.
3773  SDNode *N;
3774  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3775    FoldingSetNodeID ID;
3776    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3777    void *IP = 0;
3778    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3779      return SDValue(E, 0);
3780    if (NumOps == 1) {
3781      N = NodeAllocator.Allocate<UnarySDNode>();
3782      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3783    } else if (NumOps == 2) {
3784      N = NodeAllocator.Allocate<BinarySDNode>();
3785      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3786    } else if (NumOps == 3) {
3787      N = NodeAllocator.Allocate<TernarySDNode>();
3788      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3789    } else {
3790      N = NodeAllocator.Allocate<SDNode>();
3791      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3792    }
3793    CSEMap.InsertNode(N, IP);
3794  } else {
3795    if (NumOps == 1) {
3796      N = NodeAllocator.Allocate<UnarySDNode>();
3797      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3798    } else if (NumOps == 2) {
3799      N = NodeAllocator.Allocate<BinarySDNode>();
3800      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3801    } else if (NumOps == 3) {
3802      N = NodeAllocator.Allocate<TernarySDNode>();
3803      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3804    } else {
3805      N = NodeAllocator.Allocate<SDNode>();
3806      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3807    }
3808  }
3809  AllNodes.push_back(N);
3810#ifndef NDEBUG
3811  VerifyNode(N);
3812#endif
3813  return SDValue(N, 0);
3814}
3815
3816SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
3817  return getNode(Opcode, DL, VTList, 0, 0);
3818}
3819
3820SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3821                              SDValue N1) {
3822  SDValue Ops[] = { N1 };
3823  return getNode(Opcode, DL, VTList, Ops, 1);
3824}
3825
3826SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3827                              SDValue N1, SDValue N2) {
3828  SDValue Ops[] = { N1, N2 };
3829  return getNode(Opcode, DL, VTList, Ops, 2);
3830}
3831
3832SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3833                              SDValue N1, SDValue N2, SDValue N3) {
3834  SDValue Ops[] = { N1, N2, N3 };
3835  return getNode(Opcode, DL, VTList, Ops, 3);
3836}
3837
3838SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3839                              SDValue N1, SDValue N2, SDValue N3,
3840                              SDValue N4) {
3841  SDValue Ops[] = { N1, N2, N3, N4 };
3842  return getNode(Opcode, DL, VTList, Ops, 4);
3843}
3844
3845SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3846                              SDValue N1, SDValue N2, SDValue N3,
3847                              SDValue N4, SDValue N5) {
3848  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3849  return getNode(Opcode, DL, VTList, Ops, 5);
3850}
3851
3852SDVTList SelectionDAG::getVTList(MVT VT) {
3853  return makeVTList(SDNode::getValueTypeList(VT), 1);
3854}
3855
3856SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3857  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3858       E = VTList.rend(); I != E; ++I)
3859    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3860      return *I;
3861
3862  MVT *Array = Allocator.Allocate<MVT>(2);
3863  Array[0] = VT1;
3864  Array[1] = VT2;
3865  SDVTList Result = makeVTList(Array, 2);
3866  VTList.push_back(Result);
3867  return Result;
3868}
3869
3870SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3871  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3872       E = VTList.rend(); I != E; ++I)
3873    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3874                          I->VTs[2] == VT3)
3875      return *I;
3876
3877  MVT *Array = Allocator.Allocate<MVT>(3);
3878  Array[0] = VT1;
3879  Array[1] = VT2;
3880  Array[2] = VT3;
3881  SDVTList Result = makeVTList(Array, 3);
3882  VTList.push_back(Result);
3883  return Result;
3884}
3885
3886SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
3887  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3888       E = VTList.rend(); I != E; ++I)
3889    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3890                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
3891      return *I;
3892
3893  MVT *Array = Allocator.Allocate<MVT>(3);
3894  Array[0] = VT1;
3895  Array[1] = VT2;
3896  Array[2] = VT3;
3897  Array[3] = VT4;
3898  SDVTList Result = makeVTList(Array, 4);
3899  VTList.push_back(Result);
3900  return Result;
3901}
3902
3903SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3904  switch (NumVTs) {
3905    case 0: assert(0 && "Cannot have nodes without results!");
3906    case 1: return getVTList(VTs[0]);
3907    case 2: return getVTList(VTs[0], VTs[1]);
3908    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3909    default: break;
3910  }
3911
3912  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3913       E = VTList.rend(); I != E; ++I) {
3914    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3915      continue;
3916
3917    bool NoMatch = false;
3918    for (unsigned i = 2; i != NumVTs; ++i)
3919      if (VTs[i] != I->VTs[i]) {
3920        NoMatch = true;
3921        break;
3922      }
3923    if (!NoMatch)
3924      return *I;
3925  }
3926
3927  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3928  std::copy(VTs, VTs+NumVTs, Array);
3929  SDVTList Result = makeVTList(Array, NumVTs);
3930  VTList.push_back(Result);
3931  return Result;
3932}
3933
3934
3935/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3936/// specified operands.  If the resultant node already exists in the DAG,
3937/// this does not modify the specified node, instead it returns the node that
3938/// already exists.  If the resultant node does not exist in the DAG, the
3939/// input node is returned.  As a degenerate case, if you specify the same
3940/// input operands as the node already has, the input node is returned.
3941SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3942  SDNode *N = InN.getNode();
3943  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3944
3945  // Check to see if there is no change.
3946  if (Op == N->getOperand(0)) return InN;
3947
3948  // See if the modified node already exists.
3949  void *InsertPos = 0;
3950  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3951    return SDValue(Existing, InN.getResNo());
3952
3953  // Nope it doesn't.  Remove the node from its current place in the maps.
3954  if (InsertPos)
3955    if (!RemoveNodeFromCSEMaps(N))
3956      InsertPos = 0;
3957
3958  // Now we update the operands.
3959  N->OperandList[0].set(Op);
3960
3961  // If this gets put into a CSE map, add it.
3962  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3963  return InN;
3964}
3965
3966SDValue SelectionDAG::
3967UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3968  SDNode *N = InN.getNode();
3969  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3970
3971  // Check to see if there is no change.
3972  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3973    return InN;   // No operands changed, just return the input node.
3974
3975  // See if the modified node already exists.
3976  void *InsertPos = 0;
3977  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3978    return SDValue(Existing, InN.getResNo());
3979
3980  // Nope it doesn't.  Remove the node from its current place in the maps.
3981  if (InsertPos)
3982    if (!RemoveNodeFromCSEMaps(N))
3983      InsertPos = 0;
3984
3985  // Now we update the operands.
3986  if (N->OperandList[0] != Op1)
3987    N->OperandList[0].set(Op1);
3988  if (N->OperandList[1] != Op2)
3989    N->OperandList[1].set(Op2);
3990
3991  // If this gets put into a CSE map, add it.
3992  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3993  return InN;
3994}
3995
3996SDValue SelectionDAG::
3997UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3998  SDValue Ops[] = { Op1, Op2, Op3 };
3999  return UpdateNodeOperands(N, Ops, 3);
4000}
4001
4002SDValue SelectionDAG::
4003UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4004                   SDValue Op3, SDValue Op4) {
4005  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4006  return UpdateNodeOperands(N, Ops, 4);
4007}
4008
4009SDValue SelectionDAG::
4010UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4011                   SDValue Op3, SDValue Op4, SDValue Op5) {
4012  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4013  return UpdateNodeOperands(N, Ops, 5);
4014}
4015
4016SDValue SelectionDAG::
4017UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4018  SDNode *N = InN.getNode();
4019  assert(N->getNumOperands() == NumOps &&
4020         "Update with wrong number of operands");
4021
4022  // Check to see if there is no change.
4023  bool AnyChange = false;
4024  for (unsigned i = 0; i != NumOps; ++i) {
4025    if (Ops[i] != N->getOperand(i)) {
4026      AnyChange = true;
4027      break;
4028    }
4029  }
4030
4031  // No operands changed, just return the input node.
4032  if (!AnyChange) return InN;
4033
4034  // See if the modified node already exists.
4035  void *InsertPos = 0;
4036  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4037    return SDValue(Existing, InN.getResNo());
4038
4039  // Nope it doesn't.  Remove the node from its current place in the maps.
4040  if (InsertPos)
4041    if (!RemoveNodeFromCSEMaps(N))
4042      InsertPos = 0;
4043
4044  // Now we update the operands.
4045  for (unsigned i = 0; i != NumOps; ++i)
4046    if (N->OperandList[i] != Ops[i])
4047      N->OperandList[i].set(Ops[i]);
4048
4049  // If this gets put into a CSE map, add it.
4050  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4051  return InN;
4052}
4053
4054/// DropOperands - Release the operands and set this node to have
4055/// zero operands.
4056void SDNode::DropOperands() {
4057  // Unlike the code in MorphNodeTo that does this, we don't need to
4058  // watch for dead nodes here.
4059  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4060    SDUse &Use = *I++;
4061    Use.set(SDValue());
4062  }
4063}
4064
4065/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4066/// machine opcode.
4067///
4068SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4069                                   MVT VT) {
4070  SDVTList VTs = getVTList(VT);
4071  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4072}
4073
4074SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4075                                   MVT VT, SDValue Op1) {
4076  SDVTList VTs = getVTList(VT);
4077  SDValue Ops[] = { Op1 };
4078  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4079}
4080
4081SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4082                                   MVT VT, SDValue Op1,
4083                                   SDValue Op2) {
4084  SDVTList VTs = getVTList(VT);
4085  SDValue Ops[] = { Op1, Op2 };
4086  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4087}
4088
4089SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4090                                   MVT VT, SDValue Op1,
4091                                   SDValue Op2, SDValue Op3) {
4092  SDVTList VTs = getVTList(VT);
4093  SDValue Ops[] = { Op1, Op2, Op3 };
4094  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4095}
4096
4097SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4098                                   MVT VT, const SDValue *Ops,
4099                                   unsigned NumOps) {
4100  SDVTList VTs = getVTList(VT);
4101  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4102}
4103
4104SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4105                                   MVT VT1, MVT VT2, const SDValue *Ops,
4106                                   unsigned NumOps) {
4107  SDVTList VTs = getVTList(VT1, VT2);
4108  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4109}
4110
4111SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4112                                   MVT VT1, MVT VT2) {
4113  SDVTList VTs = getVTList(VT1, VT2);
4114  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4115}
4116
4117SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4118                                   MVT VT1, MVT VT2, MVT VT3,
4119                                   const SDValue *Ops, unsigned NumOps) {
4120  SDVTList VTs = getVTList(VT1, VT2, VT3);
4121  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4122}
4123
4124SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4125                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4126                                   const SDValue *Ops, unsigned NumOps) {
4127  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4128  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4129}
4130
4131SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4132                                   MVT VT1, MVT VT2,
4133                                   SDValue Op1) {
4134  SDVTList VTs = getVTList(VT1, VT2);
4135  SDValue Ops[] = { Op1 };
4136  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4137}
4138
4139SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4140                                   MVT VT1, MVT VT2,
4141                                   SDValue Op1, SDValue Op2) {
4142  SDVTList VTs = getVTList(VT1, VT2);
4143  SDValue Ops[] = { Op1, Op2 };
4144  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4145}
4146
4147SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4148                                   MVT VT1, MVT VT2,
4149                                   SDValue Op1, SDValue Op2,
4150                                   SDValue Op3) {
4151  SDVTList VTs = getVTList(VT1, VT2);
4152  SDValue Ops[] = { Op1, Op2, Op3 };
4153  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4154}
4155
4156SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4157                                   MVT VT1, MVT VT2, MVT VT3,
4158                                   SDValue Op1, SDValue Op2,
4159                                   SDValue Op3) {
4160  SDVTList VTs = getVTList(VT1, VT2, VT3);
4161  SDValue Ops[] = { Op1, Op2, Op3 };
4162  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4163}
4164
4165SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4166                                   SDVTList VTs, const SDValue *Ops,
4167                                   unsigned NumOps) {
4168  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4169}
4170
4171SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4172                                  MVT VT) {
4173  SDVTList VTs = getVTList(VT);
4174  return MorphNodeTo(N, Opc, VTs, 0, 0);
4175}
4176
4177SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4178                                  MVT VT, SDValue Op1) {
4179  SDVTList VTs = getVTList(VT);
4180  SDValue Ops[] = { Op1 };
4181  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4182}
4183
4184SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4185                                  MVT VT, SDValue Op1,
4186                                  SDValue Op2) {
4187  SDVTList VTs = getVTList(VT);
4188  SDValue Ops[] = { Op1, Op2 };
4189  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4190}
4191
4192SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4193                                  MVT VT, SDValue Op1,
4194                                  SDValue Op2, SDValue Op3) {
4195  SDVTList VTs = getVTList(VT);
4196  SDValue Ops[] = { Op1, Op2, Op3 };
4197  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4198}
4199
4200SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4201                                  MVT VT, const SDValue *Ops,
4202                                  unsigned NumOps) {
4203  SDVTList VTs = getVTList(VT);
4204  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4205}
4206
4207SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4208                                  MVT VT1, MVT VT2, const SDValue *Ops,
4209                                  unsigned NumOps) {
4210  SDVTList VTs = getVTList(VT1, VT2);
4211  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4212}
4213
4214SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4215                                  MVT VT1, MVT VT2) {
4216  SDVTList VTs = getVTList(VT1, VT2);
4217  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4218}
4219
4220SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4221                                  MVT VT1, MVT VT2, MVT VT3,
4222                                  const SDValue *Ops, unsigned NumOps) {
4223  SDVTList VTs = getVTList(VT1, VT2, VT3);
4224  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4225}
4226
4227SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4228                                  MVT VT1, MVT VT2,
4229                                  SDValue Op1) {
4230  SDVTList VTs = getVTList(VT1, VT2);
4231  SDValue Ops[] = { Op1 };
4232  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4233}
4234
4235SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4236                                  MVT VT1, MVT VT2,
4237                                  SDValue Op1, SDValue Op2) {
4238  SDVTList VTs = getVTList(VT1, VT2);
4239  SDValue Ops[] = { Op1, Op2 };
4240  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4241}
4242
4243SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4244                                  MVT VT1, MVT VT2,
4245                                  SDValue Op1, SDValue Op2,
4246                                  SDValue Op3) {
4247  SDVTList VTs = getVTList(VT1, VT2);
4248  SDValue Ops[] = { Op1, Op2, Op3 };
4249  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4250}
4251
4252/// MorphNodeTo - These *mutate* the specified node to have the specified
4253/// return type, opcode, and operands.
4254///
4255/// Note that MorphNodeTo returns the resultant node.  If there is already a
4256/// node of the specified opcode and operands, it returns that node instead of
4257/// the current one.  Note that the DebugLoc need not be the same.
4258///
4259/// Using MorphNodeTo is faster than creating a new node and swapping it in
4260/// with ReplaceAllUsesWith both because it often avoids allocating a new
4261/// node, and because it doesn't require CSE recalculation for any of
4262/// the node's users.
4263///
4264SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4265                                  SDVTList VTs, const SDValue *Ops,
4266                                  unsigned NumOps) {
4267  // If an identical node already exists, use it.
4268  void *IP = 0;
4269  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4270    FoldingSetNodeID ID;
4271    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4272    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4273      return ON;
4274  }
4275
4276  if (!RemoveNodeFromCSEMaps(N))
4277    IP = 0;
4278
4279  // Start the morphing.
4280  N->NodeType = Opc;
4281  N->ValueList = VTs.VTs;
4282  N->NumValues = VTs.NumVTs;
4283
4284  // Clear the operands list, updating used nodes to remove this from their
4285  // use list.  Keep track of any operands that become dead as a result.
4286  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4287  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4288    SDUse &Use = *I++;
4289    SDNode *Used = Use.getNode();
4290    Use.set(SDValue());
4291    if (Used->use_empty())
4292      DeadNodeSet.insert(Used);
4293  }
4294
4295  // If NumOps is larger than the # of operands we currently have, reallocate
4296  // the operand list.
4297  if (NumOps > N->NumOperands) {
4298    if (N->OperandsNeedDelete)
4299      delete[] N->OperandList;
4300
4301    if (N->isMachineOpcode()) {
4302      // We're creating a final node that will live unmorphed for the
4303      // remainder of the current SelectionDAG iteration, so we can allocate
4304      // the operands directly out of a pool with no recycling metadata.
4305      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4306      N->OperandsNeedDelete = false;
4307    } else {
4308      N->OperandList = new SDUse[NumOps];
4309      N->OperandsNeedDelete = true;
4310    }
4311  }
4312
4313  // Assign the new operands.
4314  N->NumOperands = NumOps;
4315  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4316    N->OperandList[i].setUser(N);
4317    N->OperandList[i].setInitial(Ops[i]);
4318  }
4319
4320  // Delete any nodes that are still dead after adding the uses for the
4321  // new operands.
4322  SmallVector<SDNode *, 16> DeadNodes;
4323  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4324       E = DeadNodeSet.end(); I != E; ++I)
4325    if ((*I)->use_empty())
4326      DeadNodes.push_back(*I);
4327  RemoveDeadNodes(DeadNodes);
4328
4329  if (IP)
4330    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4331  return N;
4332}
4333
4334
4335/// getTargetNode - These are used for target selectors to create a new node
4336/// with specified return type(s), target opcode, and operands.
4337///
4338/// Note that getTargetNode returns the resultant node.  If there is already a
4339/// node of the specified opcode and operands, it returns that node instead of
4340/// the current one.
4341SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT) {
4342  return getNode(~Opcode, dl, VT).getNode();
4343}
4344
4345SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4346                                    SDValue Op1) {
4347  return getNode(~Opcode, dl, VT, Op1).getNode();
4348}
4349
4350SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4351                                    SDValue Op1, SDValue Op2) {
4352  return getNode(~Opcode, dl, VT, Op1, Op2).getNode();
4353}
4354
4355SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4356                                    SDValue Op1, SDValue Op2,
4357                                    SDValue Op3) {
4358  return getNode(~Opcode, dl, VT, Op1, Op2, Op3).getNode();
4359}
4360
4361SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4362                                    const SDValue *Ops, unsigned NumOps) {
4363  return getNode(~Opcode, dl, VT, Ops, NumOps).getNode();
4364}
4365
4366SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4367                                    MVT VT1, MVT VT2) {
4368  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4369  SDValue Op;
4370  return getNode(~Opcode, dl, VTs, 2, &Op, 0).getNode();
4371}
4372
4373SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4374                                    MVT VT2, SDValue Op1) {
4375  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4376  return getNode(~Opcode, dl, VTs, 2, &Op1, 1).getNode();
4377}
4378
4379SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4380                                    MVT VT2, SDValue Op1,
4381                                    SDValue Op2) {
4382  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4383  SDValue Ops[] = { Op1, Op2 };
4384  return getNode(~Opcode, dl, VTs, 2, Ops, 2).getNode();
4385}
4386
4387SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4388                                    MVT VT2, SDValue Op1,
4389                                    SDValue Op2, SDValue Op3) {
4390  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4391  SDValue Ops[] = { Op1, Op2, Op3 };
4392  return getNode(~Opcode, dl, VTs, 2, Ops, 3).getNode();
4393}
4394
4395SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4396                                    MVT VT1, MVT VT2,
4397                                    const SDValue *Ops, unsigned NumOps) {
4398  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4399  return getNode(~Opcode, dl, VTs, 2, Ops, NumOps).getNode();
4400}
4401
4402SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4403                                    MVT VT1, MVT VT2, MVT VT3,
4404                                    SDValue Op1, SDValue Op2) {
4405  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4406  SDValue Ops[] = { Op1, Op2 };
4407  return getNode(~Opcode, dl, VTs, 3, Ops, 2).getNode();
4408}
4409
4410SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4411                                    MVT VT1, MVT VT2, MVT VT3,
4412                                    SDValue Op1, SDValue Op2,
4413                                    SDValue Op3) {
4414  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4415  SDValue Ops[] = { Op1, Op2, Op3 };
4416  return getNode(~Opcode, dl, VTs, 3, Ops, 3).getNode();
4417}
4418
4419SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4420                                    MVT VT1, MVT VT2, MVT VT3,
4421                                    const SDValue *Ops, unsigned NumOps) {
4422  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4423  return getNode(~Opcode, dl, VTs, 3, Ops, NumOps).getNode();
4424}
4425
4426SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4427                                    MVT VT2, MVT VT3, MVT VT4,
4428                                    const SDValue *Ops, unsigned NumOps) {
4429  std::vector<MVT> VTList;
4430  VTList.push_back(VT1);
4431  VTList.push_back(VT2);
4432  VTList.push_back(VT3);
4433  VTList.push_back(VT4);
4434  const MVT *VTs = getNodeValueTypes(VTList);
4435  return getNode(~Opcode, dl, VTs, 4, Ops, NumOps).getNode();
4436}
4437
4438SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4439                                    const std::vector<MVT> &ResultTys,
4440                                    const SDValue *Ops, unsigned NumOps) {
4441  const MVT *VTs = getNodeValueTypes(ResultTys);
4442  return getNode(~Opcode, dl, VTs, ResultTys.size(),
4443                 Ops, NumOps).getNode();
4444}
4445
4446/// getNodeIfExists - Get the specified node if it's already available, or
4447/// else return NULL.
4448SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4449                                      const SDValue *Ops, unsigned NumOps) {
4450  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4451    FoldingSetNodeID ID;
4452    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4453    void *IP = 0;
4454    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4455      return E;
4456  }
4457  return NULL;
4458}
4459
4460/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4461/// This can cause recursive merging of nodes in the DAG.
4462///
4463/// This version assumes From has a single result value.
4464///
4465void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4466                                      DAGUpdateListener *UpdateListener) {
4467  SDNode *From = FromN.getNode();
4468  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4469         "Cannot replace with this method!");
4470  assert(From != To.getNode() && "Cannot replace uses of with self");
4471
4472  // Iterate over all the existing uses of From. New uses will be added
4473  // to the beginning of the use list, which we avoid visiting.
4474  // This specifically avoids visiting uses of From that arise while the
4475  // replacement is happening, because any such uses would be the result
4476  // of CSE: If an existing node looks like From after one of its operands
4477  // is replaced by To, we don't want to replace of all its users with To
4478  // too. See PR3018 for more info.
4479  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4480  while (UI != UE) {
4481    SDNode *User = *UI;
4482
4483    // This node is about to morph, remove its old self from the CSE maps.
4484    RemoveNodeFromCSEMaps(User);
4485
4486    // A user can appear in a use list multiple times, and when this
4487    // happens the uses are usually next to each other in the list.
4488    // To help reduce the number of CSE recomputations, process all
4489    // the uses of this user that we can find this way.
4490    do {
4491      SDUse &Use = UI.getUse();
4492      ++UI;
4493      Use.set(To);
4494    } while (UI != UE && *UI == User);
4495
4496    // Now that we have modified User, add it back to the CSE maps.  If it
4497    // already exists there, recursively merge the results together.
4498    AddModifiedNodeToCSEMaps(User, UpdateListener);
4499  }
4500}
4501
4502/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4503/// This can cause recursive merging of nodes in the DAG.
4504///
4505/// This version assumes From/To have matching types and numbers of result
4506/// values.
4507///
4508void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4509                                      DAGUpdateListener *UpdateListener) {
4510  assert(From->getVTList().VTs == To->getVTList().VTs &&
4511         From->getNumValues() == To->getNumValues() &&
4512         "Cannot use this version of ReplaceAllUsesWith!");
4513
4514  // Handle the trivial case.
4515  if (From == To)
4516    return;
4517
4518  // Iterate over just the existing users of From. See the comments in
4519  // the ReplaceAllUsesWith above.
4520  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4521  while (UI != UE) {
4522    SDNode *User = *UI;
4523
4524    // This node is about to morph, remove its old self from the CSE maps.
4525    RemoveNodeFromCSEMaps(User);
4526
4527    // A user can appear in a use list multiple times, and when this
4528    // happens the uses are usually next to each other in the list.
4529    // To help reduce the number of CSE recomputations, process all
4530    // the uses of this user that we can find this way.
4531    do {
4532      SDUse &Use = UI.getUse();
4533      ++UI;
4534      Use.setNode(To);
4535    } while (UI != UE && *UI == User);
4536
4537    // Now that we have modified User, add it back to the CSE maps.  If it
4538    // already exists there, recursively merge the results together.
4539    AddModifiedNodeToCSEMaps(User, UpdateListener);
4540  }
4541}
4542
4543/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4544/// This can cause recursive merging of nodes in the DAG.
4545///
4546/// This version can replace From with any result values.  To must match the
4547/// number and types of values returned by From.
4548void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4549                                      const SDValue *To,
4550                                      DAGUpdateListener *UpdateListener) {
4551  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4552    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4553
4554  // Iterate over just the existing users of From. See the comments in
4555  // the ReplaceAllUsesWith above.
4556  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4557  while (UI != UE) {
4558    SDNode *User = *UI;
4559
4560    // This node is about to morph, remove its old self from the CSE maps.
4561    RemoveNodeFromCSEMaps(User);
4562
4563    // A user can appear in a use list multiple times, and when this
4564    // happens the uses are usually next to each other in the list.
4565    // To help reduce the number of CSE recomputations, process all
4566    // the uses of this user that we can find this way.
4567    do {
4568      SDUse &Use = UI.getUse();
4569      const SDValue &ToOp = To[Use.getResNo()];
4570      ++UI;
4571      Use.set(ToOp);
4572    } while (UI != UE && *UI == User);
4573
4574    // Now that we have modified User, add it back to the CSE maps.  If it
4575    // already exists there, recursively merge the results together.
4576    AddModifiedNodeToCSEMaps(User, UpdateListener);
4577  }
4578}
4579
4580/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4581/// uses of other values produced by From.getNode() alone.  The Deleted
4582/// vector is handled the same way as for ReplaceAllUsesWith.
4583void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4584                                             DAGUpdateListener *UpdateListener){
4585  // Handle the really simple, really trivial case efficiently.
4586  if (From == To) return;
4587
4588  // Handle the simple, trivial, case efficiently.
4589  if (From.getNode()->getNumValues() == 1) {
4590    ReplaceAllUsesWith(From, To, UpdateListener);
4591    return;
4592  }
4593
4594  // Iterate over just the existing users of From. See the comments in
4595  // the ReplaceAllUsesWith above.
4596  SDNode::use_iterator UI = From.getNode()->use_begin(),
4597                       UE = From.getNode()->use_end();
4598  while (UI != UE) {
4599    SDNode *User = *UI;
4600    bool UserRemovedFromCSEMaps = false;
4601
4602    // A user can appear in a use list multiple times, and when this
4603    // happens the uses are usually next to each other in the list.
4604    // To help reduce the number of CSE recomputations, process all
4605    // the uses of this user that we can find this way.
4606    do {
4607      SDUse &Use = UI.getUse();
4608
4609      // Skip uses of different values from the same node.
4610      if (Use.getResNo() != From.getResNo()) {
4611        ++UI;
4612        continue;
4613      }
4614
4615      // If this node hasn't been modified yet, it's still in the CSE maps,
4616      // so remove its old self from the CSE maps.
4617      if (!UserRemovedFromCSEMaps) {
4618        RemoveNodeFromCSEMaps(User);
4619        UserRemovedFromCSEMaps = true;
4620      }
4621
4622      ++UI;
4623      Use.set(To);
4624    } while (UI != UE && *UI == User);
4625
4626    // We are iterating over all uses of the From node, so if a use
4627    // doesn't use the specific value, no changes are made.
4628    if (!UserRemovedFromCSEMaps)
4629      continue;
4630
4631    // Now that we have modified User, add it back to the CSE maps.  If it
4632    // already exists there, recursively merge the results together.
4633    AddModifiedNodeToCSEMaps(User, UpdateListener);
4634  }
4635}
4636
4637namespace {
4638  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
4639  /// to record information about a use.
4640  struct UseMemo {
4641    SDNode *User;
4642    unsigned Index;
4643    SDUse *Use;
4644  };
4645
4646  /// operator< - Sort Memos by User.
4647  bool operator<(const UseMemo &L, const UseMemo &R) {
4648    return (intptr_t)L.User < (intptr_t)R.User;
4649  }
4650}
4651
4652/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4653/// uses of other values produced by From.getNode() alone.  The same value
4654/// may appear in both the From and To list.  The Deleted vector is
4655/// handled the same way as for ReplaceAllUsesWith.
4656void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4657                                              const SDValue *To,
4658                                              unsigned Num,
4659                                              DAGUpdateListener *UpdateListener){
4660  // Handle the simple, trivial case efficiently.
4661  if (Num == 1)
4662    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4663
4664  // Read up all the uses and make records of them. This helps
4665  // processing new uses that are introduced during the
4666  // replacement process.
4667  SmallVector<UseMemo, 4> Uses;
4668  for (unsigned i = 0; i != Num; ++i) {
4669    unsigned FromResNo = From[i].getResNo();
4670    SDNode *FromNode = From[i].getNode();
4671    for (SDNode::use_iterator UI = FromNode->use_begin(),
4672         E = FromNode->use_end(); UI != E; ++UI) {
4673      SDUse &Use = UI.getUse();
4674      if (Use.getResNo() == FromResNo) {
4675        UseMemo Memo = { *UI, i, &Use };
4676        Uses.push_back(Memo);
4677      }
4678    }
4679  }
4680
4681  // Sort the uses, so that all the uses from a given User are together.
4682  std::sort(Uses.begin(), Uses.end());
4683
4684  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
4685       UseIndex != UseIndexEnd; ) {
4686    // We know that this user uses some value of From.  If it is the right
4687    // value, update it.
4688    SDNode *User = Uses[UseIndex].User;
4689
4690    // This node is about to morph, remove its old self from the CSE maps.
4691    RemoveNodeFromCSEMaps(User);
4692
4693    // The Uses array is sorted, so all the uses for a given User
4694    // are next to each other in the list.
4695    // To help reduce the number of CSE recomputations, process all
4696    // the uses of this user that we can find this way.
4697    do {
4698      unsigned i = Uses[UseIndex].Index;
4699      SDUse &Use = *Uses[UseIndex].Use;
4700      ++UseIndex;
4701
4702      Use.set(To[i]);
4703    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
4704
4705    // Now that we have modified User, add it back to the CSE maps.  If it
4706    // already exists there, recursively merge the results together.
4707    AddModifiedNodeToCSEMaps(User, UpdateListener);
4708  }
4709}
4710
4711/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4712/// based on their topological order. It returns the maximum id and a vector
4713/// of the SDNodes* in assigned order by reference.
4714unsigned SelectionDAG::AssignTopologicalOrder() {
4715
4716  unsigned DAGSize = 0;
4717
4718  // SortedPos tracks the progress of the algorithm. Nodes before it are
4719  // sorted, nodes after it are unsorted. When the algorithm completes
4720  // it is at the end of the list.
4721  allnodes_iterator SortedPos = allnodes_begin();
4722
4723  // Visit all the nodes. Move nodes with no operands to the front of
4724  // the list immediately. Annotate nodes that do have operands with their
4725  // operand count. Before we do this, the Node Id fields of the nodes
4726  // may contain arbitrary values. After, the Node Id fields for nodes
4727  // before SortedPos will contain the topological sort index, and the
4728  // Node Id fields for nodes At SortedPos and after will contain the
4729  // count of outstanding operands.
4730  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4731    SDNode *N = I++;
4732    unsigned Degree = N->getNumOperands();
4733    if (Degree == 0) {
4734      // A node with no uses, add it to the result array immediately.
4735      N->setNodeId(DAGSize++);
4736      allnodes_iterator Q = N;
4737      if (Q != SortedPos)
4738        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4739      ++SortedPos;
4740    } else {
4741      // Temporarily use the Node Id as scratch space for the degree count.
4742      N->setNodeId(Degree);
4743    }
4744  }
4745
4746  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4747  // such that by the time the end is reached all nodes will be sorted.
4748  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4749    SDNode *N = I;
4750    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4751         UI != UE; ++UI) {
4752      SDNode *P = *UI;
4753      unsigned Degree = P->getNodeId();
4754      --Degree;
4755      if (Degree == 0) {
4756        // All of P's operands are sorted, so P may sorted now.
4757        P->setNodeId(DAGSize++);
4758        if (P != SortedPos)
4759          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4760        ++SortedPos;
4761      } else {
4762        // Update P's outstanding operand count.
4763        P->setNodeId(Degree);
4764      }
4765    }
4766  }
4767
4768  assert(SortedPos == AllNodes.end() &&
4769         "Topological sort incomplete!");
4770  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4771         "First node in topological sort is not the entry token!");
4772  assert(AllNodes.front().getNodeId() == 0 &&
4773         "First node in topological sort has non-zero id!");
4774  assert(AllNodes.front().getNumOperands() == 0 &&
4775         "First node in topological sort has operands!");
4776  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4777         "Last node in topologic sort has unexpected id!");
4778  assert(AllNodes.back().use_empty() &&
4779         "Last node in topologic sort has users!");
4780  assert(DAGSize == allnodes_size() && "Node count mismatch!");
4781  return DAGSize;
4782}
4783
4784
4785
4786//===----------------------------------------------------------------------===//
4787//                              SDNode Class
4788//===----------------------------------------------------------------------===//
4789
4790HandleSDNode::~HandleSDNode() {
4791  DropOperands();
4792}
4793
4794GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4795                                         MVT VT, int64_t o)
4796  : SDNode(isa<GlobalVariable>(GA) &&
4797           cast<GlobalVariable>(GA)->isThreadLocal() ?
4798           // Thread Local
4799           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4800           // Non Thread Local
4801           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4802           DebugLoc::getUnknownLoc(), getSDVTList(VT)), Offset(o) {
4803  TheGlobal = const_cast<GlobalValue*>(GA);
4804}
4805
4806MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT memvt,
4807                     const Value *srcValue, int SVO,
4808                     unsigned alignment, bool vol)
4809 : SDNode(Opc, dl, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4810  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4811  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4812  assert(getAlignment() == alignment && "Alignment representation error!");
4813  assert(isVolatile() == vol && "Volatile representation error!");
4814}
4815
4816MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
4817                     const SDValue *Ops,
4818                     unsigned NumOps, MVT memvt, const Value *srcValue,
4819                     int SVO, unsigned alignment, bool vol)
4820   : SDNode(Opc, dl, VTs, Ops, NumOps),
4821     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4822  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4823  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4824  assert(getAlignment() == alignment && "Alignment representation error!");
4825  assert(isVolatile() == vol && "Volatile representation error!");
4826}
4827
4828/// getMemOperand - Return a MachineMemOperand object describing the memory
4829/// reference performed by this memory reference.
4830MachineMemOperand MemSDNode::getMemOperand() const {
4831  int Flags = 0;
4832  if (isa<LoadSDNode>(this))
4833    Flags = MachineMemOperand::MOLoad;
4834  else if (isa<StoreSDNode>(this))
4835    Flags = MachineMemOperand::MOStore;
4836  else if (isa<AtomicSDNode>(this)) {
4837    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4838  }
4839  else {
4840    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4841    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4842    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4843    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4844  }
4845
4846  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4847  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4848
4849  // Check if the memory reference references a frame index
4850  const FrameIndexSDNode *FI =
4851  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4852  if (!getSrcValue() && FI)
4853    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4854                             Flags, 0, Size, getAlignment());
4855  else
4856    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4857                             Size, getAlignment());
4858}
4859
4860/// Profile - Gather unique data for the node.
4861///
4862void SDNode::Profile(FoldingSetNodeID &ID) const {
4863  AddNodeIDNode(ID, this);
4864}
4865
4866/// getValueTypeList - Return a pointer to the specified value type.
4867///
4868const MVT *SDNode::getValueTypeList(MVT VT) {
4869  if (VT.isExtended()) {
4870    static std::set<MVT, MVT::compareRawBits> EVTs;
4871    return &(*EVTs.insert(VT).first);
4872  } else {
4873    static MVT VTs[MVT::LAST_VALUETYPE];
4874    VTs[VT.getSimpleVT()] = VT;
4875    return &VTs[VT.getSimpleVT()];
4876  }
4877}
4878
4879/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4880/// indicated value.  This method ignores uses of other values defined by this
4881/// operation.
4882bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4883  assert(Value < getNumValues() && "Bad value!");
4884
4885  // TODO: Only iterate over uses of a given value of the node
4886  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4887    if (UI.getUse().getResNo() == Value) {
4888      if (NUses == 0)
4889        return false;
4890      --NUses;
4891    }
4892  }
4893
4894  // Found exactly the right number of uses?
4895  return NUses == 0;
4896}
4897
4898
4899/// hasAnyUseOfValue - Return true if there are any use of the indicated
4900/// value. This method ignores uses of other values defined by this operation.
4901bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4902  assert(Value < getNumValues() && "Bad value!");
4903
4904  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4905    if (UI.getUse().getResNo() == Value)
4906      return true;
4907
4908  return false;
4909}
4910
4911
4912/// isOnlyUserOf - Return true if this node is the only use of N.
4913///
4914bool SDNode::isOnlyUserOf(SDNode *N) const {
4915  bool Seen = false;
4916  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4917    SDNode *User = *I;
4918    if (User == this)
4919      Seen = true;
4920    else
4921      return false;
4922  }
4923
4924  return Seen;
4925}
4926
4927/// isOperand - Return true if this node is an operand of N.
4928///
4929bool SDValue::isOperandOf(SDNode *N) const {
4930  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4931    if (*this == N->getOperand(i))
4932      return true;
4933  return false;
4934}
4935
4936bool SDNode::isOperandOf(SDNode *N) const {
4937  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4938    if (this == N->OperandList[i].getNode())
4939      return true;
4940  return false;
4941}
4942
4943/// reachesChainWithoutSideEffects - Return true if this operand (which must
4944/// be a chain) reaches the specified operand without crossing any
4945/// side-effecting instructions.  In practice, this looks through token
4946/// factors and non-volatile loads.  In order to remain efficient, this only
4947/// looks a couple of nodes in, it does not do an exhaustive search.
4948bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4949                                               unsigned Depth) const {
4950  if (*this == Dest) return true;
4951
4952  // Don't search too deeply, we just want to be able to see through
4953  // TokenFactor's etc.
4954  if (Depth == 0) return false;
4955
4956  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4957  // of the operands of the TF reach dest, then we can do the xform.
4958  if (getOpcode() == ISD::TokenFactor) {
4959    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4960      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4961        return true;
4962    return false;
4963  }
4964
4965  // Loads don't have side effects, look through them.
4966  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4967    if (!Ld->isVolatile())
4968      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4969  }
4970  return false;
4971}
4972
4973
4974static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4975                            SmallPtrSet<SDNode *, 32> &Visited) {
4976  if (found || !Visited.insert(N))
4977    return;
4978
4979  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4980    SDNode *Op = N->getOperand(i).getNode();
4981    if (Op == P) {
4982      found = true;
4983      return;
4984    }
4985    findPredecessor(Op, P, found, Visited);
4986  }
4987}
4988
4989/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4990/// is either an operand of N or it can be reached by recursively traversing
4991/// up the operands.
4992/// NOTE: this is an expensive method. Use it carefully.
4993bool SDNode::isPredecessorOf(SDNode *N) const {
4994  SmallPtrSet<SDNode *, 32> Visited;
4995  bool found = false;
4996  findPredecessor(N, this, found, Visited);
4997  return found;
4998}
4999
5000uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5001  assert(Num < NumOperands && "Invalid child # of SDNode!");
5002  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5003}
5004
5005std::string SDNode::getOperationName(const SelectionDAG *G) const {
5006  switch (getOpcode()) {
5007  default:
5008    if (getOpcode() < ISD::BUILTIN_OP_END)
5009      return "<<Unknown DAG Node>>";
5010    if (isMachineOpcode()) {
5011      if (G)
5012        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5013          if (getMachineOpcode() < TII->getNumOpcodes())
5014            return TII->get(getMachineOpcode()).getName();
5015      return "<<Unknown Machine Node>>";
5016    }
5017    if (G) {
5018      const TargetLowering &TLI = G->getTargetLoweringInfo();
5019      const char *Name = TLI.getTargetNodeName(getOpcode());
5020      if (Name) return Name;
5021      return "<<Unknown Target Node>>";
5022    }
5023    return "<<Unknown Node>>";
5024
5025#ifndef NDEBUG
5026  case ISD::DELETED_NODE:
5027    return "<<Deleted Node!>>";
5028#endif
5029  case ISD::PREFETCH:      return "Prefetch";
5030  case ISD::MEMBARRIER:    return "MemBarrier";
5031  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5032  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5033  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5034  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5035  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5036  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5037  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5038  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5039  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5040  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5041  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5042  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5043  case ISD::PCMARKER:      return "PCMarker";
5044  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5045  case ISD::SRCVALUE:      return "SrcValue";
5046  case ISD::MEMOPERAND:    return "MemOperand";
5047  case ISD::EntryToken:    return "EntryToken";
5048  case ISD::TokenFactor:   return "TokenFactor";
5049  case ISD::AssertSext:    return "AssertSext";
5050  case ISD::AssertZext:    return "AssertZext";
5051
5052  case ISD::BasicBlock:    return "BasicBlock";
5053  case ISD::ARG_FLAGS:     return "ArgFlags";
5054  case ISD::VALUETYPE:     return "ValueType";
5055  case ISD::Register:      return "Register";
5056
5057  case ISD::Constant:      return "Constant";
5058  case ISD::ConstantFP:    return "ConstantFP";
5059  case ISD::GlobalAddress: return "GlobalAddress";
5060  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5061  case ISD::FrameIndex:    return "FrameIndex";
5062  case ISD::JumpTable:     return "JumpTable";
5063  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5064  case ISD::RETURNADDR: return "RETURNADDR";
5065  case ISD::FRAMEADDR: return "FRAMEADDR";
5066  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5067  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5068  case ISD::EHSELECTION: return "EHSELECTION";
5069  case ISD::EH_RETURN: return "EH_RETURN";
5070  case ISD::ConstantPool:  return "ConstantPool";
5071  case ISD::ExternalSymbol: return "ExternalSymbol";
5072  case ISD::INTRINSIC_WO_CHAIN: {
5073    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5074    return Intrinsic::getName((Intrinsic::ID)IID);
5075  }
5076  case ISD::INTRINSIC_VOID:
5077  case ISD::INTRINSIC_W_CHAIN: {
5078    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5079    return Intrinsic::getName((Intrinsic::ID)IID);
5080  }
5081
5082  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5083  case ISD::TargetConstant: return "TargetConstant";
5084  case ISD::TargetConstantFP:return "TargetConstantFP";
5085  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5086  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5087  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5088  case ISD::TargetJumpTable:  return "TargetJumpTable";
5089  case ISD::TargetConstantPool:  return "TargetConstantPool";
5090  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5091
5092  case ISD::CopyToReg:     return "CopyToReg";
5093  case ISD::CopyFromReg:   return "CopyFromReg";
5094  case ISD::UNDEF:         return "undef";
5095  case ISD::MERGE_VALUES:  return "merge_values";
5096  case ISD::INLINEASM:     return "inlineasm";
5097  case ISD::DBG_LABEL:     return "dbg_label";
5098  case ISD::EH_LABEL:      return "eh_label";
5099  case ISD::DECLARE:       return "declare";
5100  case ISD::HANDLENODE:    return "handlenode";
5101  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5102  case ISD::CALL:          return "call";
5103
5104  // Unary operators
5105  case ISD::FABS:   return "fabs";
5106  case ISD::FNEG:   return "fneg";
5107  case ISD::FSQRT:  return "fsqrt";
5108  case ISD::FSIN:   return "fsin";
5109  case ISD::FCOS:   return "fcos";
5110  case ISD::FPOWI:  return "fpowi";
5111  case ISD::FPOW:   return "fpow";
5112  case ISD::FTRUNC: return "ftrunc";
5113  case ISD::FFLOOR: return "ffloor";
5114  case ISD::FCEIL:  return "fceil";
5115  case ISD::FRINT:  return "frint";
5116  case ISD::FNEARBYINT: return "fnearbyint";
5117
5118  // Binary operators
5119  case ISD::ADD:    return "add";
5120  case ISD::SUB:    return "sub";
5121  case ISD::MUL:    return "mul";
5122  case ISD::MULHU:  return "mulhu";
5123  case ISD::MULHS:  return "mulhs";
5124  case ISD::SDIV:   return "sdiv";
5125  case ISD::UDIV:   return "udiv";
5126  case ISD::SREM:   return "srem";
5127  case ISD::UREM:   return "urem";
5128  case ISD::SMUL_LOHI:  return "smul_lohi";
5129  case ISD::UMUL_LOHI:  return "umul_lohi";
5130  case ISD::SDIVREM:    return "sdivrem";
5131  case ISD::UDIVREM:    return "udivrem";
5132  case ISD::AND:    return "and";
5133  case ISD::OR:     return "or";
5134  case ISD::XOR:    return "xor";
5135  case ISD::SHL:    return "shl";
5136  case ISD::SRA:    return "sra";
5137  case ISD::SRL:    return "srl";
5138  case ISD::ROTL:   return "rotl";
5139  case ISD::ROTR:   return "rotr";
5140  case ISD::FADD:   return "fadd";
5141  case ISD::FSUB:   return "fsub";
5142  case ISD::FMUL:   return "fmul";
5143  case ISD::FDIV:   return "fdiv";
5144  case ISD::FREM:   return "frem";
5145  case ISD::FCOPYSIGN: return "fcopysign";
5146  case ISD::FGETSIGN:  return "fgetsign";
5147
5148  case ISD::SETCC:       return "setcc";
5149  case ISD::VSETCC:      return "vsetcc";
5150  case ISD::SELECT:      return "select";
5151  case ISD::SELECT_CC:   return "select_cc";
5152  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5153  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5154  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5155  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5156  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5157  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5158  case ISD::CARRY_FALSE:         return "carry_false";
5159  case ISD::ADDC:        return "addc";
5160  case ISD::ADDE:        return "adde";
5161  case ISD::SADDO:       return "saddo";
5162  case ISD::UADDO:       return "uaddo";
5163  case ISD::SSUBO:       return "ssubo";
5164  case ISD::USUBO:       return "usubo";
5165  case ISD::SMULO:       return "smulo";
5166  case ISD::UMULO:       return "umulo";
5167  case ISD::SUBC:        return "subc";
5168  case ISD::SUBE:        return "sube";
5169  case ISD::SHL_PARTS:   return "shl_parts";
5170  case ISD::SRA_PARTS:   return "sra_parts";
5171  case ISD::SRL_PARTS:   return "srl_parts";
5172
5173  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5174  case ISD::INSERT_SUBREG:      return "insert_subreg";
5175
5176  // Conversion operators.
5177  case ISD::SIGN_EXTEND: return "sign_extend";
5178  case ISD::ZERO_EXTEND: return "zero_extend";
5179  case ISD::ANY_EXTEND:  return "any_extend";
5180  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5181  case ISD::TRUNCATE:    return "truncate";
5182  case ISD::FP_ROUND:    return "fp_round";
5183  case ISD::FLT_ROUNDS_: return "flt_rounds";
5184  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5185  case ISD::FP_EXTEND:   return "fp_extend";
5186
5187  case ISD::SINT_TO_FP:  return "sint_to_fp";
5188  case ISD::UINT_TO_FP:  return "uint_to_fp";
5189  case ISD::FP_TO_SINT:  return "fp_to_sint";
5190  case ISD::FP_TO_UINT:  return "fp_to_uint";
5191  case ISD::BIT_CONVERT: return "bit_convert";
5192
5193  case ISD::CONVERT_RNDSAT: {
5194    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5195    default: assert(0 && "Unknown cvt code!");
5196    case ISD::CVT_FF:  return "cvt_ff";
5197    case ISD::CVT_FS:  return "cvt_fs";
5198    case ISD::CVT_FU:  return "cvt_fu";
5199    case ISD::CVT_SF:  return "cvt_sf";
5200    case ISD::CVT_UF:  return "cvt_uf";
5201    case ISD::CVT_SS:  return "cvt_ss";
5202    case ISD::CVT_SU:  return "cvt_su";
5203    case ISD::CVT_US:  return "cvt_us";
5204    case ISD::CVT_UU:  return "cvt_uu";
5205    }
5206  }
5207
5208    // Control flow instructions
5209  case ISD::BR:      return "br";
5210  case ISD::BRIND:   return "brind";
5211  case ISD::BR_JT:   return "br_jt";
5212  case ISD::BRCOND:  return "brcond";
5213  case ISD::BR_CC:   return "br_cc";
5214  case ISD::RET:     return "ret";
5215  case ISD::CALLSEQ_START:  return "callseq_start";
5216  case ISD::CALLSEQ_END:    return "callseq_end";
5217
5218    // Other operators
5219  case ISD::LOAD:               return "load";
5220  case ISD::STORE:              return "store";
5221  case ISD::VAARG:              return "vaarg";
5222  case ISD::VACOPY:             return "vacopy";
5223  case ISD::VAEND:              return "vaend";
5224  case ISD::VASTART:            return "vastart";
5225  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5226  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5227  case ISD::BUILD_PAIR:         return "build_pair";
5228  case ISD::STACKSAVE:          return "stacksave";
5229  case ISD::STACKRESTORE:       return "stackrestore";
5230  case ISD::TRAP:               return "trap";
5231
5232  // Bit manipulation
5233  case ISD::BSWAP:   return "bswap";
5234  case ISD::CTPOP:   return "ctpop";
5235  case ISD::CTTZ:    return "cttz";
5236  case ISD::CTLZ:    return "ctlz";
5237
5238  // Debug info
5239  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5240  case ISD::DEBUG_LOC: return "debug_loc";
5241
5242  // Trampolines
5243  case ISD::TRAMPOLINE: return "trampoline";
5244
5245  case ISD::CONDCODE:
5246    switch (cast<CondCodeSDNode>(this)->get()) {
5247    default: assert(0 && "Unknown setcc condition!");
5248    case ISD::SETOEQ:  return "setoeq";
5249    case ISD::SETOGT:  return "setogt";
5250    case ISD::SETOGE:  return "setoge";
5251    case ISD::SETOLT:  return "setolt";
5252    case ISD::SETOLE:  return "setole";
5253    case ISD::SETONE:  return "setone";
5254
5255    case ISD::SETO:    return "seto";
5256    case ISD::SETUO:   return "setuo";
5257    case ISD::SETUEQ:  return "setue";
5258    case ISD::SETUGT:  return "setugt";
5259    case ISD::SETUGE:  return "setuge";
5260    case ISD::SETULT:  return "setult";
5261    case ISD::SETULE:  return "setule";
5262    case ISD::SETUNE:  return "setune";
5263
5264    case ISD::SETEQ:   return "seteq";
5265    case ISD::SETGT:   return "setgt";
5266    case ISD::SETGE:   return "setge";
5267    case ISD::SETLT:   return "setlt";
5268    case ISD::SETLE:   return "setle";
5269    case ISD::SETNE:   return "setne";
5270    }
5271  }
5272}
5273
5274const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5275  switch (AM) {
5276  default:
5277    return "";
5278  case ISD::PRE_INC:
5279    return "<pre-inc>";
5280  case ISD::PRE_DEC:
5281    return "<pre-dec>";
5282  case ISD::POST_INC:
5283    return "<post-inc>";
5284  case ISD::POST_DEC:
5285    return "<post-dec>";
5286  }
5287}
5288
5289std::string ISD::ArgFlagsTy::getArgFlagsString() {
5290  std::string S = "< ";
5291
5292  if (isZExt())
5293    S += "zext ";
5294  if (isSExt())
5295    S += "sext ";
5296  if (isInReg())
5297    S += "inreg ";
5298  if (isSRet())
5299    S += "sret ";
5300  if (isByVal())
5301    S += "byval ";
5302  if (isNest())
5303    S += "nest ";
5304  if (getByValAlign())
5305    S += "byval-align:" + utostr(getByValAlign()) + " ";
5306  if (getOrigAlign())
5307    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5308  if (getByValSize())
5309    S += "byval-size:" + utostr(getByValSize()) + " ";
5310  return S + ">";
5311}
5312
5313void SDNode::dump() const { dump(0); }
5314void SDNode::dump(const SelectionDAG *G) const {
5315  print(errs(), G);
5316  errs().flush();
5317}
5318
5319void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5320  OS << (void*)this << ": ";
5321
5322  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5323    if (i) OS << ",";
5324    if (getValueType(i) == MVT::Other)
5325      OS << "ch";
5326    else
5327      OS << getValueType(i).getMVTString();
5328  }
5329  OS << " = " << getOperationName(G);
5330}
5331
5332void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5333  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5334    SDNode *Mask = getOperand(2).getNode();
5335    OS << "<";
5336    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5337      if (i) OS << ",";
5338      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5339        OS << "u";
5340      else
5341        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5342    }
5343    OS << ">";
5344  }
5345
5346  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5347    OS << '<' << CSDN->getAPIntValue() << '>';
5348  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5349    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5350      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5351    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5352      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5353    else {
5354      OS << "<APFloat(";
5355      CSDN->getValueAPF().bitcastToAPInt().dump();
5356      OS << ")>";
5357    }
5358  } else if (const GlobalAddressSDNode *GADN =
5359             dyn_cast<GlobalAddressSDNode>(this)) {
5360    int64_t offset = GADN->getOffset();
5361    OS << '<';
5362    WriteAsOperand(OS, GADN->getGlobal());
5363    OS << '>';
5364    if (offset > 0)
5365      OS << " + " << offset;
5366    else
5367      OS << " " << offset;
5368  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5369    OS << "<" << FIDN->getIndex() << ">";
5370  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5371    OS << "<" << JTDN->getIndex() << ">";
5372  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5373    int offset = CP->getOffset();
5374    if (CP->isMachineConstantPoolEntry())
5375      OS << "<" << *CP->getMachineCPVal() << ">";
5376    else
5377      OS << "<" << *CP->getConstVal() << ">";
5378    if (offset > 0)
5379      OS << " + " << offset;
5380    else
5381      OS << " " << offset;
5382  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5383    OS << "<";
5384    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5385    if (LBB)
5386      OS << LBB->getName() << " ";
5387    OS << (const void*)BBDN->getBasicBlock() << ">";
5388  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5389    if (G && R->getReg() &&
5390        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5391      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5392    } else {
5393      OS << " #" << R->getReg();
5394    }
5395  } else if (const ExternalSymbolSDNode *ES =
5396             dyn_cast<ExternalSymbolSDNode>(this)) {
5397    OS << "'" << ES->getSymbol() << "'";
5398  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5399    if (M->getValue())
5400      OS << "<" << M->getValue() << ">";
5401    else
5402      OS << "<null>";
5403  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5404    if (M->MO.getValue())
5405      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5406    else
5407      OS << "<null:" << M->MO.getOffset() << ">";
5408  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5409    OS << N->getArgFlags().getArgFlagsString();
5410  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5411    OS << ":" << N->getVT().getMVTString();
5412  }
5413  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5414    const Value *SrcValue = LD->getSrcValue();
5415    int SrcOffset = LD->getSrcValueOffset();
5416    OS << " <";
5417    if (SrcValue)
5418      OS << SrcValue;
5419    else
5420      OS << "null";
5421    OS << ":" << SrcOffset << ">";
5422
5423    bool doExt = true;
5424    switch (LD->getExtensionType()) {
5425    default: doExt = false; break;
5426    case ISD::EXTLOAD: OS << " <anyext "; break;
5427    case ISD::SEXTLOAD: OS << " <sext "; break;
5428    case ISD::ZEXTLOAD: OS << " <zext "; break;
5429    }
5430    if (doExt)
5431      OS << LD->getMemoryVT().getMVTString() << ">";
5432
5433    const char *AM = getIndexedModeName(LD->getAddressingMode());
5434    if (*AM)
5435      OS << " " << AM;
5436    if (LD->isVolatile())
5437      OS << " <volatile>";
5438    OS << " alignment=" << LD->getAlignment();
5439  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5440    const Value *SrcValue = ST->getSrcValue();
5441    int SrcOffset = ST->getSrcValueOffset();
5442    OS << " <";
5443    if (SrcValue)
5444      OS << SrcValue;
5445    else
5446      OS << "null";
5447    OS << ":" << SrcOffset << ">";
5448
5449    if (ST->isTruncatingStore())
5450      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5451
5452    const char *AM = getIndexedModeName(ST->getAddressingMode());
5453    if (*AM)
5454      OS << " " << AM;
5455    if (ST->isVolatile())
5456      OS << " <volatile>";
5457    OS << " alignment=" << ST->getAlignment();
5458  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5459    const Value *SrcValue = AT->getSrcValue();
5460    int SrcOffset = AT->getSrcValueOffset();
5461    OS << " <";
5462    if (SrcValue)
5463      OS << SrcValue;
5464    else
5465      OS << "null";
5466    OS << ":" << SrcOffset << ">";
5467    if (AT->isVolatile())
5468      OS << " <volatile>";
5469    OS << " alignment=" << AT->getAlignment();
5470  }
5471}
5472
5473void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5474  print_types(OS, G);
5475  OS << " ";
5476  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5477    if (i) OS << ", ";
5478    OS << (void*)getOperand(i).getNode();
5479    if (unsigned RN = getOperand(i).getResNo())
5480      OS << ":" << RN;
5481  }
5482  print_details(OS, G);
5483}
5484
5485static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5486  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5487    if (N->getOperand(i).getNode()->hasOneUse())
5488      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5489    else
5490      cerr << "\n" << std::string(indent+2, ' ')
5491           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5492
5493
5494  cerr << "\n" << std::string(indent, ' ');
5495  N->dump(G);
5496}
5497
5498void SelectionDAG::dump() const {
5499  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5500
5501  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5502       I != E; ++I) {
5503    const SDNode *N = I;
5504    if (!N->hasOneUse() && N != getRoot().getNode())
5505      DumpNodes(N, 2, this);
5506  }
5507
5508  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5509
5510  cerr << "\n\n";
5511}
5512
5513void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
5514  print_types(OS, G);
5515  print_details(OS, G);
5516}
5517
5518typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
5519static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
5520		       const SelectionDAG *G, VisitedSDNodeSet &once) {
5521  if (!once.insert(N))	// If we've been here before, return now.
5522    return;
5523  // Dump the current SDNode, but don't end the line yet.
5524  OS << std::string(indent, ' ');
5525  N->printr(OS, G);
5526  // Having printed this SDNode, walk the children:
5527  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5528    const SDNode *child = N->getOperand(i).getNode();
5529    if (i) OS << ",";
5530    OS << " ";
5531    if (child->getNumOperands() == 0) {
5532      // This child has no grandchildren; print it inline right here.
5533      child->printr(OS, G);
5534      once.insert(child);
5535    } else {	// Just the address.  FIXME: also print the child's opcode
5536      OS << (void*)child;
5537      if (unsigned RN = N->getOperand(i).getResNo())
5538	OS << ":" << RN;
5539    }
5540  }
5541  OS << "\n";
5542  // Dump children that have grandchildren on their own line(s).
5543  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5544    const SDNode *child = N->getOperand(i).getNode();
5545    DumpNodesr(OS, child, indent+2, G, once);
5546  }
5547}
5548
5549void SDNode::dumpr() const {
5550  VisitedSDNodeSet once;
5551  DumpNodesr(errs(), this, 0, 0, once);
5552  errs().flush();
5553}
5554
5555const Type *ConstantPoolSDNode::getType() const {
5556  if (isMachineConstantPoolEntry())
5557    return Val.MachineCPVal->getType();
5558  return Val.ConstVal->getType();
5559}
5560
5561bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
5562                                        APInt &SplatUndef,
5563                                        unsigned &SplatBitSize,
5564                                        bool &HasAnyUndefs,
5565                                        unsigned MinSplatBits) {
5566  MVT VT = getValueType(0);
5567  assert(VT.isVector() && "Expected a vector type");
5568  unsigned sz = VT.getSizeInBits();
5569  if (MinSplatBits > sz)
5570    return false;
5571
5572  SplatValue = APInt(sz, 0);
5573  SplatUndef = APInt(sz, 0);
5574
5575  // Get the bits.  Bits with undefined values (when the corresponding element
5576  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
5577  // in SplatValue.  If any of the values are not constant, give up and return
5578  // false.
5579  unsigned int nOps = getNumOperands();
5580  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
5581  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
5582  for (unsigned i = 0; i < nOps; ++i) {
5583    SDValue OpVal = getOperand(i);
5584    unsigned BitPos = i * EltBitSize;
5585
5586    if (OpVal.getOpcode() == ISD::UNDEF)
5587      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos +EltBitSize);
5588    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
5589      SplatValue |= APInt(CN->getAPIntValue()).zextOrTrunc(sz) << BitPos;
5590    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
5591      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
5592     else
5593      return false;
5594  }
5595
5596  // The build_vector is all constants or undefs.  Find the smallest element
5597  // size that splats the vector.
5598
5599  HasAnyUndefs = (SplatUndef != 0);
5600  while (sz > 8) {
5601
5602    unsigned HalfSize = sz / 2;
5603    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
5604    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
5605    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
5606    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
5607
5608    // If the two halves do not match (ignoring undef bits), stop here.
5609    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
5610        MinSplatBits > HalfSize)
5611      break;
5612
5613    SplatValue = HighValue | LowValue;
5614    SplatUndef = HighUndef & LowUndef;
5615
5616    sz = HalfSize;
5617  }
5618
5619  SplatBitSize = sz;
5620  return true;
5621}
5622