SelectionDAG.cpp revision c885165e664f3b465403e1b6ce57ba63f57c5f0c
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/SetVector.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/StringExtras.h"
41#include <algorithm>
42#include <cmath>
43using namespace llvm;
44
45/// makeVTList - Return an instance of the SDVTList struct initialized with the
46/// specified members.
47static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
48  SDVTList Res = {VTs, NumVTs};
49  return Res;
50}
51
52static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
53  switch (VT.getSimpleVT()) {
54  default: assert(0 && "Unknown FP format");
55  case MVT::f32:     return &APFloat::IEEEsingle;
56  case MVT::f64:     return &APFloat::IEEEdouble;
57  case MVT::f80:     return &APFloat::x87DoubleExtended;
58  case MVT::f128:    return &APFloat::IEEEquad;
59  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
60  }
61}
62
63SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
64
65//===----------------------------------------------------------------------===//
66//                              ConstantFPSDNode Class
67//===----------------------------------------------------------------------===//
68
69/// isExactlyValue - We don't rely on operator== working on double values, as
70/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
71/// As such, this method can be used to do an exact bit-for-bit comparison of
72/// two floating point values.
73bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
74  return getValueAPF().bitwiseIsEqual(V);
75}
76
77bool ConstantFPSDNode::isValueValidForType(MVT VT,
78                                           const APFloat& Val) {
79  assert(VT.isFloatingPoint() && "Can only convert between FP types");
80
81  // PPC long double cannot be converted to any other type.
82  if (VT == MVT::ppcf128 ||
83      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
84    return false;
85
86  // convert modifies in place, so make a copy.
87  APFloat Val2 = APFloat(Val);
88  bool losesInfo;
89  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
90                      &losesInfo);
91  return !losesInfo;
92}
93
94//===----------------------------------------------------------------------===//
95//                              ISD Namespace
96//===----------------------------------------------------------------------===//
97
98/// isBuildVectorAllOnes - Return true if the specified node is a
99/// BUILD_VECTOR where all of the elements are ~0 or undef.
100bool ISD::isBuildVectorAllOnes(const SDNode *N) {
101  // Look through a bit convert.
102  if (N->getOpcode() == ISD::BIT_CONVERT)
103    N = N->getOperand(0).getNode();
104
105  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
106
107  unsigned i = 0, e = N->getNumOperands();
108
109  // Skip over all of the undef values.
110  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
111    ++i;
112
113  // Do not accept an all-undef vector.
114  if (i == e) return false;
115
116  // Do not accept build_vectors that aren't all constants or which have non-~0
117  // elements.
118  SDValue NotZero = N->getOperand(i);
119  if (isa<ConstantSDNode>(NotZero)) {
120    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
121      return false;
122  } else if (isa<ConstantFPSDNode>(NotZero)) {
123    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
124                bitcastToAPInt().isAllOnesValue())
125      return false;
126  } else
127    return false;
128
129  // Okay, we have at least one ~0 value, check to see if the rest match or are
130  // undefs.
131  for (++i; i != e; ++i)
132    if (N->getOperand(i) != NotZero &&
133        N->getOperand(i).getOpcode() != ISD::UNDEF)
134      return false;
135  return true;
136}
137
138
139/// isBuildVectorAllZeros - Return true if the specified node is a
140/// BUILD_VECTOR where all of the elements are 0 or undef.
141bool ISD::isBuildVectorAllZeros(const SDNode *N) {
142  // Look through a bit convert.
143  if (N->getOpcode() == ISD::BIT_CONVERT)
144    N = N->getOperand(0).getNode();
145
146  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
147
148  unsigned i = 0, e = N->getNumOperands();
149
150  // Skip over all of the undef values.
151  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
152    ++i;
153
154  // Do not accept an all-undef vector.
155  if (i == e) return false;
156
157  // Do not accept build_vectors that aren't all constants or which have non-~0
158  // elements.
159  SDValue Zero = N->getOperand(i);
160  if (isa<ConstantSDNode>(Zero)) {
161    if (!cast<ConstantSDNode>(Zero)->isNullValue())
162      return false;
163  } else if (isa<ConstantFPSDNode>(Zero)) {
164    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
165      return false;
166  } else
167    return false;
168
169  // Okay, we have at least one ~0 value, check to see if the rest match or are
170  // undefs.
171  for (++i; i != e; ++i)
172    if (N->getOperand(i) != Zero &&
173        N->getOperand(i).getOpcode() != ISD::UNDEF)
174      return false;
175  return true;
176}
177
178/// isScalarToVector - Return true if the specified node is a
179/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
180/// element is not an undef.
181bool ISD::isScalarToVector(const SDNode *N) {
182  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
183    return true;
184
185  if (N->getOpcode() != ISD::BUILD_VECTOR)
186    return false;
187  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
188    return false;
189  unsigned NumElems = N->getNumOperands();
190  for (unsigned i = 1; i < NumElems; ++i) {
191    SDValue V = N->getOperand(i);
192    if (V.getOpcode() != ISD::UNDEF)
193      return false;
194  }
195  return true;
196}
197
198
199/// isDebugLabel - Return true if the specified node represents a debug
200/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
201bool ISD::isDebugLabel(const SDNode *N) {
202  SDValue Zero;
203  if (N->getOpcode() == ISD::DBG_LABEL)
204    return true;
205  if (N->isMachineOpcode() &&
206      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
207    return true;
208  return false;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: assert(0 && "Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310const TargetMachine &SelectionDAG::getTarget() const {
311  return MF->getTarget();
312}
313
314//===----------------------------------------------------------------------===//
315//                           SDNode Profile Support
316//===----------------------------------------------------------------------===//
317
318/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
319///
320static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
321  ID.AddInteger(OpC);
322}
323
324/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
325/// solely with their pointer.
326static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
327  ID.AddPointer(VTList.VTs);
328}
329
330/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
331///
332static void AddNodeIDOperands(FoldingSetNodeID &ID,
333                              const SDValue *Ops, unsigned NumOps) {
334  for (; NumOps; --NumOps, ++Ops) {
335    ID.AddPointer(Ops->getNode());
336    ID.AddInteger(Ops->getResNo());
337  }
338}
339
340/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
341///
342static void AddNodeIDOperands(FoldingSetNodeID &ID,
343                              const SDUse *Ops, unsigned NumOps) {
344  for (; NumOps; --NumOps, ++Ops) {
345    ID.AddPointer(Ops->getNode());
346    ID.AddInteger(Ops->getResNo());
347  }
348}
349
350static void AddNodeIDNode(FoldingSetNodeID &ID,
351                          unsigned short OpC, SDVTList VTList,
352                          const SDValue *OpList, unsigned N) {
353  AddNodeIDOpcode(ID, OpC);
354  AddNodeIDValueTypes(ID, VTList);
355  AddNodeIDOperands(ID, OpList, N);
356}
357
358/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
359/// the NodeID data.
360static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
361  switch (N->getOpcode()) {
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::ARG_FLAGS:
364    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
365    break;
366  case ISD::TargetConstant:
367  case ISD::Constant:
368    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
369    break;
370  case ISD::TargetConstantFP:
371  case ISD::ConstantFP: {
372    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
373    break;
374  }
375  case ISD::TargetGlobalAddress:
376  case ISD::GlobalAddress:
377  case ISD::TargetGlobalTLSAddress:
378  case ISD::GlobalTLSAddress: {
379    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
380    ID.AddPointer(GA->getGlobal());
381    ID.AddInteger(GA->getOffset());
382    break;
383  }
384  case ISD::BasicBlock:
385    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
386    break;
387  case ISD::Register:
388    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
389    break;
390  case ISD::DBG_STOPPOINT: {
391    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
392    ID.AddInteger(DSP->getLine());
393    ID.AddInteger(DSP->getColumn());
394    ID.AddPointer(DSP->getCompileUnit());
395    break;
396  }
397  case ISD::SRCVALUE:
398    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
399    break;
400  case ISD::MEMOPERAND: {
401    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
402    MO.Profile(ID);
403    break;
404  }
405  case ISD::FrameIndex:
406  case ISD::TargetFrameIndex:
407    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
408    break;
409  case ISD::JumpTable:
410  case ISD::TargetJumpTable:
411    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
412    break;
413  case ISD::ConstantPool:
414  case ISD::TargetConstantPool: {
415    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
416    ID.AddInteger(CP->getAlignment());
417    ID.AddInteger(CP->getOffset());
418    if (CP->isMachineConstantPoolEntry())
419      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
420    else
421      ID.AddPointer(CP->getConstVal());
422    break;
423  }
424  case ISD::CALL: {
425    const CallSDNode *Call = cast<CallSDNode>(N);
426    ID.AddInteger(Call->getCallingConv());
427    ID.AddInteger(Call->isVarArg());
428    break;
429  }
430  case ISD::LOAD: {
431    const LoadSDNode *LD = cast<LoadSDNode>(N);
432    ID.AddInteger(LD->getMemoryVT().getRawBits());
433    ID.AddInteger(LD->getRawSubclassData());
434    break;
435  }
436  case ISD::STORE: {
437    const StoreSDNode *ST = cast<StoreSDNode>(N);
438    ID.AddInteger(ST->getMemoryVT().getRawBits());
439    ID.AddInteger(ST->getRawSubclassData());
440    break;
441  }
442  case ISD::ATOMIC_CMP_SWAP:
443  case ISD::ATOMIC_SWAP:
444  case ISD::ATOMIC_LOAD_ADD:
445  case ISD::ATOMIC_LOAD_SUB:
446  case ISD::ATOMIC_LOAD_AND:
447  case ISD::ATOMIC_LOAD_OR:
448  case ISD::ATOMIC_LOAD_XOR:
449  case ISD::ATOMIC_LOAD_NAND:
450  case ISD::ATOMIC_LOAD_MIN:
451  case ISD::ATOMIC_LOAD_MAX:
452  case ISD::ATOMIC_LOAD_UMIN:
453  case ISD::ATOMIC_LOAD_UMAX: {
454    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
455    ID.AddInteger(AT->getMemoryVT().getRawBits());
456    ID.AddInteger(AT->getRawSubclassData());
457    break;
458  }
459  } // end switch (N->getOpcode())
460}
461
462/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
463/// data.
464static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
465  AddNodeIDOpcode(ID, N->getOpcode());
466  // Add the return value info.
467  AddNodeIDValueTypes(ID, N->getVTList());
468  // Add the operand info.
469  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
470
471  // Handle SDNode leafs with special info.
472  AddNodeIDCustom(ID, N);
473}
474
475/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
476/// the CSE map that carries alignment, volatility, indexing mode, and
477/// extension/truncation information.
478///
479static inline unsigned
480encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM,
481                     bool isVolatile, unsigned Alignment) {
482  assert((ConvType & 3) == ConvType &&
483         "ConvType may not require more than 2 bits!");
484  assert((AM & 7) == AM &&
485         "AM may not require more than 3 bits!");
486  return ConvType |
487         (AM << 2) |
488         (isVolatile << 5) |
489         ((Log2_32(Alignment) + 1) << 6);
490}
491
492//===----------------------------------------------------------------------===//
493//                              SelectionDAG Class
494//===----------------------------------------------------------------------===//
495
496/// doNotCSE - Return true if CSE should not be performed for this node.
497static bool doNotCSE(SDNode *N) {
498  if (N->getValueType(0) == MVT::Flag)
499    return true; // Never CSE anything that produces a flag.
500
501  switch (N->getOpcode()) {
502  default: break;
503  case ISD::HANDLENODE:
504  case ISD::DBG_LABEL:
505  case ISD::DBG_STOPPOINT:
506  case ISD::EH_LABEL:
507  case ISD::DECLARE:
508    return true;   // Never CSE these nodes.
509  }
510
511  // Check that remaining values produced are not flags.
512  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
513    if (N->getValueType(i) == MVT::Flag)
514      return true; // Never CSE anything that produces a flag.
515
516  return false;
517}
518
519/// RemoveDeadNodes - This method deletes all unreachable nodes in the
520/// SelectionDAG.
521void SelectionDAG::RemoveDeadNodes() {
522  // Create a dummy node (which is not added to allnodes), that adds a reference
523  // to the root node, preventing it from being deleted.
524  HandleSDNode Dummy(getRoot());
525
526  SmallVector<SDNode*, 128> DeadNodes;
527
528  // Add all obviously-dead nodes to the DeadNodes worklist.
529  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
530    if (I->use_empty())
531      DeadNodes.push_back(I);
532
533  RemoveDeadNodes(DeadNodes);
534
535  // If the root changed (e.g. it was a dead load, update the root).
536  setRoot(Dummy.getValue());
537}
538
539/// RemoveDeadNodes - This method deletes the unreachable nodes in the
540/// given list, and any nodes that become unreachable as a result.
541void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
542                                   DAGUpdateListener *UpdateListener) {
543
544  // Process the worklist, deleting the nodes and adding their uses to the
545  // worklist.
546  while (!DeadNodes.empty()) {
547    SDNode *N = DeadNodes.pop_back_val();
548
549    if (UpdateListener)
550      UpdateListener->NodeDeleted(N, 0);
551
552    // Take the node out of the appropriate CSE map.
553    RemoveNodeFromCSEMaps(N);
554
555    // Next, brutally remove the operand list.  This is safe to do, as there are
556    // no cycles in the graph.
557    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
558      SDUse &Use = *I++;
559      SDNode *Operand = Use.getNode();
560      Use.set(SDValue());
561
562      // Now that we removed this operand, see if there are no uses of it left.
563      if (Operand->use_empty())
564        DeadNodes.push_back(Operand);
565    }
566
567    DeallocateNode(N);
568  }
569}
570
571void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
572  SmallVector<SDNode*, 16> DeadNodes(1, N);
573  RemoveDeadNodes(DeadNodes, UpdateListener);
574}
575
576void SelectionDAG::DeleteNode(SDNode *N) {
577  // First take this out of the appropriate CSE map.
578  RemoveNodeFromCSEMaps(N);
579
580  // Finally, remove uses due to operands of this node, remove from the
581  // AllNodes list, and delete the node.
582  DeleteNodeNotInCSEMaps(N);
583}
584
585void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
586  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
587  assert(N->use_empty() && "Cannot delete a node that is not dead!");
588
589  // Drop all of the operands and decrement used node's use counts.
590  N->DropOperands();
591
592  DeallocateNode(N);
593}
594
595void SelectionDAG::DeallocateNode(SDNode *N) {
596  if (N->OperandsNeedDelete)
597    delete[] N->OperandList;
598
599  // Set the opcode to DELETED_NODE to help catch bugs when node
600  // memory is reallocated.
601  N->NodeType = ISD::DELETED_NODE;
602
603  NodeAllocator.Deallocate(AllNodes.remove(N));
604}
605
606/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
607/// correspond to it.  This is useful when we're about to delete or repurpose
608/// the node.  We don't want future request for structurally identical nodes
609/// to return N anymore.
610bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
611  bool Erased = false;
612  switch (N->getOpcode()) {
613  case ISD::EntryToken:
614    assert(0 && "EntryToken should not be in CSEMaps!");
615    return false;
616  case ISD::HANDLENODE: return false;  // noop.
617  case ISD::CONDCODE:
618    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
619           "Cond code doesn't exist!");
620    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
621    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
622    break;
623  case ISD::ExternalSymbol:
624    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
625    break;
626  case ISD::TargetExternalSymbol:
627    Erased =
628      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
629    break;
630  case ISD::VALUETYPE: {
631    MVT VT = cast<VTSDNode>(N)->getVT();
632    if (VT.isExtended()) {
633      Erased = ExtendedValueTypeNodes.erase(VT);
634    } else {
635      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
636      ValueTypeNodes[VT.getSimpleVT()] = 0;
637    }
638    break;
639  }
640  default:
641    // Remove it from the CSE Map.
642    Erased = CSEMap.RemoveNode(N);
643    break;
644  }
645#ifndef NDEBUG
646  // Verify that the node was actually in one of the CSE maps, unless it has a
647  // flag result (which cannot be CSE'd) or is one of the special cases that are
648  // not subject to CSE.
649  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
650      !N->isMachineOpcode() && !doNotCSE(N)) {
651    N->dump(this);
652    cerr << "\n";
653    assert(0 && "Node is not in map!");
654  }
655#endif
656  return Erased;
657}
658
659/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
660/// maps and modified in place. Add it back to the CSE maps, unless an identical
661/// node already exists, in which case transfer all its users to the existing
662/// node. This transfer can potentially trigger recursive merging.
663///
664void
665SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
666                                       DAGUpdateListener *UpdateListener) {
667  // For node types that aren't CSE'd, just act as if no identical node
668  // already exists.
669  if (!doNotCSE(N)) {
670    SDNode *Existing = CSEMap.GetOrInsertNode(N);
671    if (Existing != N) {
672      // If there was already an existing matching node, use ReplaceAllUsesWith
673      // to replace the dead one with the existing one.  This can cause
674      // recursive merging of other unrelated nodes down the line.
675      ReplaceAllUsesWith(N, Existing, UpdateListener);
676
677      // N is now dead.  Inform the listener if it exists and delete it.
678      if (UpdateListener)
679        UpdateListener->NodeDeleted(N, Existing);
680      DeleteNodeNotInCSEMaps(N);
681      return;
682    }
683  }
684
685  // If the node doesn't already exist, we updated it.  Inform a listener if
686  // it exists.
687  if (UpdateListener)
688    UpdateListener->NodeUpdated(N);
689}
690
691/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
692/// were replaced with those specified.  If this node is never memoized,
693/// return null, otherwise return a pointer to the slot it would take.  If a
694/// node already exists with these operands, the slot will be non-null.
695SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
696                                           void *&InsertPos) {
697  if (doNotCSE(N))
698    return 0;
699
700  SDValue Ops[] = { Op };
701  FoldingSetNodeID ID;
702  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
703  AddNodeIDCustom(ID, N);
704  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
705}
706
707/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
708/// were replaced with those specified.  If this node is never memoized,
709/// return null, otherwise return a pointer to the slot it would take.  If a
710/// node already exists with these operands, the slot will be non-null.
711SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
712                                           SDValue Op1, SDValue Op2,
713                                           void *&InsertPos) {
714  if (doNotCSE(N))
715    return 0;
716
717  SDValue Ops[] = { Op1, Op2 };
718  FoldingSetNodeID ID;
719  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
720  AddNodeIDCustom(ID, N);
721  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
722}
723
724
725/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
726/// were replaced with those specified.  If this node is never memoized,
727/// return null, otherwise return a pointer to the slot it would take.  If a
728/// node already exists with these operands, the slot will be non-null.
729SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
730                                           const SDValue *Ops,unsigned NumOps,
731                                           void *&InsertPos) {
732  if (doNotCSE(N))
733    return 0;
734
735  FoldingSetNodeID ID;
736  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
737  AddNodeIDCustom(ID, N);
738  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
739}
740
741/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
742void SelectionDAG::VerifyNode(SDNode *N) {
743  switch (N->getOpcode()) {
744  default:
745    break;
746  case ISD::BUILD_PAIR: {
747    MVT VT = N->getValueType(0);
748    assert(N->getNumValues() == 1 && "Too many results!");
749    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
750           "Wrong return type!");
751    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
752    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
753           "Mismatched operand types!");
754    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
755           "Wrong operand type!");
756    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
757           "Wrong return type size");
758    break;
759  }
760  case ISD::BUILD_VECTOR: {
761    assert(N->getNumValues() == 1 && "Too many results!");
762    assert(N->getValueType(0).isVector() && "Wrong return type!");
763    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
764           "Wrong number of operands!");
765    MVT EltVT = N->getValueType(0).getVectorElementType();
766    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
767      assert((I->getValueType() == EltVT ||
768              (EltVT.isInteger() && I->getValueType().isInteger() &&
769               EltVT.bitsLE(I->getValueType()))) &&
770             "Wrong operand type!");
771    break;
772  }
773  }
774}
775
776/// getMVTAlignment - Compute the default alignment value for the
777/// given type.
778///
779unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
780  const Type *Ty = VT == MVT::iPTR ?
781                   PointerType::get(Type::Int8Ty, 0) :
782                   VT.getTypeForMVT();
783
784  return TLI.getTargetData()->getABITypeAlignment(Ty);
785}
786
787// EntryNode could meaningfully have debug info if we can find it...
788SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
789  : TLI(tli), FLI(fli), DW(0),
790    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
791    getVTList(MVT::Other)), Root(getEntryNode()) {
792  AllNodes.push_back(&EntryNode);
793}
794
795void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
796                        DwarfWriter *dw) {
797  MF = &mf;
798  MMI = mmi;
799  DW = dw;
800}
801
802SelectionDAG::~SelectionDAG() {
803  allnodes_clear();
804}
805
806void SelectionDAG::allnodes_clear() {
807  assert(&*AllNodes.begin() == &EntryNode);
808  AllNodes.remove(AllNodes.begin());
809  while (!AllNodes.empty())
810    DeallocateNode(AllNodes.begin());
811}
812
813void SelectionDAG::clear() {
814  allnodes_clear();
815  OperandAllocator.Reset();
816  CSEMap.clear();
817
818  ExtendedValueTypeNodes.clear();
819  ExternalSymbols.clear();
820  TargetExternalSymbols.clear();
821  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
822            static_cast<CondCodeSDNode*>(0));
823  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
824            static_cast<SDNode*>(0));
825
826  EntryNode.UseList = 0;
827  AllNodes.push_back(&EntryNode);
828  Root = getEntryNode();
829}
830
831SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, MVT VT) {
832  if (Op.getValueType() == VT) return Op;
833  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
834                                   VT.getSizeInBits());
835  return getNode(ISD::AND, DL, Op.getValueType(), Op,
836                 getConstant(Imm, Op.getValueType()));
837}
838
839/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
840///
841SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, MVT VT) {
842  SDValue NegOne;
843  if (VT.isVector()) {
844    MVT EltVT = VT.getVectorElementType();
845    SDValue NegOneElt =
846      getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), EltVT);
847    std::vector<SDValue> NegOnes(VT.getVectorNumElements(), NegOneElt);
848    NegOne = getNode(ISD::BUILD_VECTOR, DL, VT, &NegOnes[0], NegOnes.size());
849  } else {
850    NegOne = getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
851  }
852  return getNode(ISD::XOR, DL, VT, Val, NegOne);
853}
854
855SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
856  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
857  assert((EltVT.getSizeInBits() >= 64 ||
858         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
859         "getConstant with a uint64_t value that doesn't fit in the type!");
860  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
861}
862
863SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
864  return getConstant(*ConstantInt::get(Val), VT, isT);
865}
866
867SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
868  assert(VT.isInteger() && "Cannot create FP integer constant!");
869
870  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
871  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
872         "APInt size does not match type size!");
873
874  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
875  FoldingSetNodeID ID;
876  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
877  ID.AddPointer(&Val);
878  void *IP = 0;
879  SDNode *N = NULL;
880  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
881    if (!VT.isVector())
882      return SDValue(N, 0);
883  if (!N) {
884    N = NodeAllocator.Allocate<ConstantSDNode>();
885    new (N) ConstantSDNode(isT, &Val, EltVT);
886    CSEMap.InsertNode(N, IP);
887    AllNodes.push_back(N);
888  }
889
890  SDValue Result(N, 0);
891  if (VT.isVector()) {
892    SmallVector<SDValue, 8> Ops;
893    Ops.assign(VT.getVectorNumElements(), Result);
894    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
895                     VT, &Ops[0], Ops.size());
896  }
897  return Result;
898}
899
900SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
901  return getConstant(Val, TLI.getPointerTy(), isTarget);
902}
903
904
905SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
906  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
907}
908
909SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
910  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
911
912  MVT EltVT =
913    VT.isVector() ? VT.getVectorElementType() : VT;
914
915  // Do the map lookup using the actual bit pattern for the floating point
916  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
917  // we don't have issues with SNANs.
918  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
919  FoldingSetNodeID ID;
920  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
921  ID.AddPointer(&V);
922  void *IP = 0;
923  SDNode *N = NULL;
924  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
925    if (!VT.isVector())
926      return SDValue(N, 0);
927  if (!N) {
928    N = NodeAllocator.Allocate<ConstantFPSDNode>();
929    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
930    CSEMap.InsertNode(N, IP);
931    AllNodes.push_back(N);
932  }
933
934  SDValue Result(N, 0);
935  if (VT.isVector()) {
936    SmallVector<SDValue, 8> Ops;
937    Ops.assign(VT.getVectorNumElements(), Result);
938    // FIXME DebugLoc info might be appropriate here
939    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
940                     VT, &Ops[0], Ops.size());
941  }
942  return Result;
943}
944
945SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
946  MVT EltVT =
947    VT.isVector() ? VT.getVectorElementType() : VT;
948  if (EltVT==MVT::f32)
949    return getConstantFP(APFloat((float)Val), VT, isTarget);
950  else
951    return getConstantFP(APFloat(Val), VT, isTarget);
952}
953
954SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
955                                       MVT VT, int64_t Offset,
956                                       bool isTargetGA) {
957  unsigned Opc;
958
959  // Truncate (with sign-extension) the offset value to the pointer size.
960  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
961  if (BitWidth < 64)
962    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
963
964  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
965  if (!GVar) {
966    // If GV is an alias then use the aliasee for determining thread-localness.
967    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
968      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
969  }
970
971  if (GVar && GVar->isThreadLocal())
972    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
973  else
974    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
975
976  FoldingSetNodeID ID;
977  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
978  ID.AddPointer(GV);
979  ID.AddInteger(Offset);
980  void *IP = 0;
981  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
982    return SDValue(E, 0);
983  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
984  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
985  CSEMap.InsertNode(N, IP);
986  AllNodes.push_back(N);
987  return SDValue(N, 0);
988}
989
990SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
991  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
992  FoldingSetNodeID ID;
993  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
994  ID.AddInteger(FI);
995  void *IP = 0;
996  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
997    return SDValue(E, 0);
998  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
999  new (N) FrameIndexSDNode(FI, VT, isTarget);
1000  CSEMap.InsertNode(N, IP);
1001  AllNodes.push_back(N);
1002  return SDValue(N, 0);
1003}
1004
1005SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1006  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1007  FoldingSetNodeID ID;
1008  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1009  ID.AddInteger(JTI);
1010  void *IP = 0;
1011  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1012    return SDValue(E, 0);
1013  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1014  new (N) JumpTableSDNode(JTI, VT, isTarget);
1015  CSEMap.InsertNode(N, IP);
1016  AllNodes.push_back(N);
1017  return SDValue(N, 0);
1018}
1019
1020SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1021                                      unsigned Alignment, int Offset,
1022                                      bool isTarget) {
1023  if (Alignment == 0)
1024    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1025  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1026  FoldingSetNodeID ID;
1027  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1028  ID.AddInteger(Alignment);
1029  ID.AddInteger(Offset);
1030  ID.AddPointer(C);
1031  void *IP = 0;
1032  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1033    return SDValue(E, 0);
1034  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1035  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1036  CSEMap.InsertNode(N, IP);
1037  AllNodes.push_back(N);
1038  return SDValue(N, 0);
1039}
1040
1041
1042SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1043                                      unsigned Alignment, int Offset,
1044                                      bool isTarget) {
1045  if (Alignment == 0)
1046    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1047  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1048  FoldingSetNodeID ID;
1049  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1050  ID.AddInteger(Alignment);
1051  ID.AddInteger(Offset);
1052  C->AddSelectionDAGCSEId(ID);
1053  void *IP = 0;
1054  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1055    return SDValue(E, 0);
1056  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1057  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1058  CSEMap.InsertNode(N, IP);
1059  AllNodes.push_back(N);
1060  return SDValue(N, 0);
1061}
1062
1063SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1064  FoldingSetNodeID ID;
1065  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1066  ID.AddPointer(MBB);
1067  void *IP = 0;
1068  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1069    return SDValue(E, 0);
1070  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1071  new (N) BasicBlockSDNode(MBB);
1072  CSEMap.InsertNode(N, IP);
1073  AllNodes.push_back(N);
1074  return SDValue(N, 0);
1075}
1076
1077SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1078  FoldingSetNodeID ID;
1079  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1080  ID.AddInteger(Flags.getRawBits());
1081  void *IP = 0;
1082  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1083    return SDValue(E, 0);
1084  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1085  new (N) ARG_FLAGSSDNode(Flags);
1086  CSEMap.InsertNode(N, IP);
1087  AllNodes.push_back(N);
1088  return SDValue(N, 0);
1089}
1090
1091SDValue SelectionDAG::getValueType(MVT VT) {
1092  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1093    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1094
1095  SDNode *&N = VT.isExtended() ?
1096    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1097
1098  if (N) return SDValue(N, 0);
1099  N = NodeAllocator.Allocate<VTSDNode>();
1100  new (N) VTSDNode(VT);
1101  AllNodes.push_back(N);
1102  return SDValue(N, 0);
1103}
1104
1105SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1106  SDNode *&N = ExternalSymbols[Sym];
1107  if (N) return SDValue(N, 0);
1108  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1109  new (N) ExternalSymbolSDNode(false, Sym, VT);
1110  AllNodes.push_back(N);
1111  return SDValue(N, 0);
1112}
1113
1114SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1115  SDNode *&N = TargetExternalSymbols[Sym];
1116  if (N) return SDValue(N, 0);
1117  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1118  new (N) ExternalSymbolSDNode(true, Sym, VT);
1119  AllNodes.push_back(N);
1120  return SDValue(N, 0);
1121}
1122
1123SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1124  if ((unsigned)Cond >= CondCodeNodes.size())
1125    CondCodeNodes.resize(Cond+1);
1126
1127  if (CondCodeNodes[Cond] == 0) {
1128    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1129    new (N) CondCodeSDNode(Cond);
1130    CondCodeNodes[Cond] = N;
1131    AllNodes.push_back(N);
1132  }
1133  return SDValue(CondCodeNodes[Cond], 0);
1134}
1135
1136SDValue SelectionDAG::getConvertRndSat(MVT VT, DebugLoc dl,
1137                                       SDValue Val, SDValue DTy,
1138                                       SDValue STy, SDValue Rnd, SDValue Sat,
1139                                       ISD::CvtCode Code) {
1140  // If the src and dest types are the same and the conversion is between
1141  // integer types of the same sign or two floats, no conversion is necessary.
1142  if (DTy == STy &&
1143      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1144    return Val;
1145
1146  FoldingSetNodeID ID;
1147  void* IP = 0;
1148  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1149    return SDValue(E, 0);
1150  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1151  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1152  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1153  CSEMap.InsertNode(N, IP);
1154  AllNodes.push_back(N);
1155  return SDValue(N, 0);
1156}
1157
1158SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1159  FoldingSetNodeID ID;
1160  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1161  ID.AddInteger(RegNo);
1162  void *IP = 0;
1163  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1164    return SDValue(E, 0);
1165  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1166  new (N) RegisterSDNode(RegNo, VT);
1167  CSEMap.InsertNode(N, IP);
1168  AllNodes.push_back(N);
1169  return SDValue(N, 0);
1170}
1171
1172SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1173                                      unsigned Line, unsigned Col,
1174                                      Value *CU) {
1175  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1176  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1177  AllNodes.push_back(N);
1178  return SDValue(N, 0);
1179}
1180
1181SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1182                               SDValue Root,
1183                               unsigned LabelID) {
1184  FoldingSetNodeID ID;
1185  SDValue Ops[] = { Root };
1186  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1187  ID.AddInteger(LabelID);
1188  void *IP = 0;
1189  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1190    return SDValue(E, 0);
1191  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1192  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1193  CSEMap.InsertNode(N, IP);
1194  AllNodes.push_back(N);
1195  return SDValue(N, 0);
1196}
1197
1198SDValue SelectionDAG::getSrcValue(const Value *V) {
1199  assert((!V || isa<PointerType>(V->getType())) &&
1200         "SrcValue is not a pointer?");
1201
1202  FoldingSetNodeID ID;
1203  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1204  ID.AddPointer(V);
1205
1206  void *IP = 0;
1207  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1208    return SDValue(E, 0);
1209
1210  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1211  new (N) SrcValueSDNode(V);
1212  CSEMap.InsertNode(N, IP);
1213  AllNodes.push_back(N);
1214  return SDValue(N, 0);
1215}
1216
1217SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1218#ifndef NDEBUG
1219  const Value *v = MO.getValue();
1220  assert((!v || isa<PointerType>(v->getType())) &&
1221         "SrcValue is not a pointer?");
1222#endif
1223
1224  FoldingSetNodeID ID;
1225  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1226  MO.Profile(ID);
1227
1228  void *IP = 0;
1229  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1230    return SDValue(E, 0);
1231
1232  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1233  new (N) MemOperandSDNode(MO);
1234  CSEMap.InsertNode(N, IP);
1235  AllNodes.push_back(N);
1236  return SDValue(N, 0);
1237}
1238
1239/// getShiftAmountOperand - Return the specified value casted to
1240/// the target's desired shift amount type.
1241SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1242  MVT OpTy = Op.getValueType();
1243  MVT ShTy = TLI.getShiftAmountTy();
1244  if (OpTy == ShTy || OpTy.isVector()) return Op;
1245
1246  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1247  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1248}
1249
1250/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1251/// specified value type.
1252SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1253  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1254  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1255  const Type *Ty = VT.getTypeForMVT();
1256  unsigned StackAlign =
1257  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1258
1259  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1260  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1261}
1262
1263/// CreateStackTemporary - Create a stack temporary suitable for holding
1264/// either of the specified value types.
1265SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1266  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1267                            VT2.getStoreSizeInBits())/8;
1268  const Type *Ty1 = VT1.getTypeForMVT();
1269  const Type *Ty2 = VT2.getTypeForMVT();
1270  const TargetData *TD = TLI.getTargetData();
1271  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1272                            TD->getPrefTypeAlignment(Ty2));
1273
1274  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1275  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1276  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1277}
1278
1279SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1280                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1281  // These setcc operations always fold.
1282  switch (Cond) {
1283  default: break;
1284  case ISD::SETFALSE:
1285  case ISD::SETFALSE2: return getConstant(0, VT);
1286  case ISD::SETTRUE:
1287  case ISD::SETTRUE2:  return getConstant(1, VT);
1288
1289  case ISD::SETOEQ:
1290  case ISD::SETOGT:
1291  case ISD::SETOGE:
1292  case ISD::SETOLT:
1293  case ISD::SETOLE:
1294  case ISD::SETONE:
1295  case ISD::SETO:
1296  case ISD::SETUO:
1297  case ISD::SETUEQ:
1298  case ISD::SETUNE:
1299    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1300    break;
1301  }
1302
1303  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1304    const APInt &C2 = N2C->getAPIntValue();
1305    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1306      const APInt &C1 = N1C->getAPIntValue();
1307
1308      switch (Cond) {
1309      default: assert(0 && "Unknown integer setcc!");
1310      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1311      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1312      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1313      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1314      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1315      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1316      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1317      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1318      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1319      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1320      }
1321    }
1322  }
1323  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1324    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1325      // No compile time operations on this type yet.
1326      if (N1C->getValueType(0) == MVT::ppcf128)
1327        return SDValue();
1328
1329      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1330      switch (Cond) {
1331      default: break;
1332      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1333                          return getUNDEF(VT);
1334                        // fall through
1335      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1336      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1337                          return getUNDEF(VT);
1338                        // fall through
1339      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1340                                           R==APFloat::cmpLessThan, VT);
1341      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1342                          return getUNDEF(VT);
1343                        // fall through
1344      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1345      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1346                          return getUNDEF(VT);
1347                        // fall through
1348      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1349      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1350                          return getUNDEF(VT);
1351                        // fall through
1352      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1353                                           R==APFloat::cmpEqual, VT);
1354      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1355                          return getUNDEF(VT);
1356                        // fall through
1357      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1358                                           R==APFloat::cmpEqual, VT);
1359      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1360      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1361      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1362                                           R==APFloat::cmpEqual, VT);
1363      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1364      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1365                                           R==APFloat::cmpLessThan, VT);
1366      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1367                                           R==APFloat::cmpUnordered, VT);
1368      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1369      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1370      }
1371    } else {
1372      // Ensure that the constant occurs on the RHS.
1373      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1374    }
1375  }
1376
1377  // Could not fold it.
1378  return SDValue();
1379}
1380
1381/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1382/// use this predicate to simplify operations downstream.
1383bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1384  unsigned BitWidth = Op.getValueSizeInBits();
1385  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1386}
1387
1388/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1389/// this predicate to simplify operations downstream.  Mask is known to be zero
1390/// for bits that V cannot have.
1391bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1392                                     unsigned Depth) const {
1393  APInt KnownZero, KnownOne;
1394  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1395  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1396  return (KnownZero & Mask) == Mask;
1397}
1398
1399/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1400/// known to be either zero or one and return them in the KnownZero/KnownOne
1401/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1402/// processing.
1403void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1404                                     APInt &KnownZero, APInt &KnownOne,
1405                                     unsigned Depth) const {
1406  unsigned BitWidth = Mask.getBitWidth();
1407  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1408         "Mask size mismatches value type size!");
1409
1410  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1411  if (Depth == 6 || Mask == 0)
1412    return;  // Limit search depth.
1413
1414  APInt KnownZero2, KnownOne2;
1415
1416  switch (Op.getOpcode()) {
1417  case ISD::Constant:
1418    // We know all of the bits for a constant!
1419    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1420    KnownZero = ~KnownOne & Mask;
1421    return;
1422  case ISD::AND:
1423    // If either the LHS or the RHS are Zero, the result is zero.
1424    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1425    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1426                      KnownZero2, KnownOne2, Depth+1);
1427    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1428    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1429
1430    // Output known-1 bits are only known if set in both the LHS & RHS.
1431    KnownOne &= KnownOne2;
1432    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1433    KnownZero |= KnownZero2;
1434    return;
1435  case ISD::OR:
1436    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1437    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1438                      KnownZero2, KnownOne2, Depth+1);
1439    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1440    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1441
1442    // Output known-0 bits are only known if clear in both the LHS & RHS.
1443    KnownZero &= KnownZero2;
1444    // Output known-1 are known to be set if set in either the LHS | RHS.
1445    KnownOne |= KnownOne2;
1446    return;
1447  case ISD::XOR: {
1448    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1449    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1450    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1451    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1452
1453    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1454    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1455    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1456    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1457    KnownZero = KnownZeroOut;
1458    return;
1459  }
1460  case ISD::MUL: {
1461    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1462    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1463    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1464    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1465    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1466
1467    // If low bits are zero in either operand, output low known-0 bits.
1468    // Also compute a conserative estimate for high known-0 bits.
1469    // More trickiness is possible, but this is sufficient for the
1470    // interesting case of alignment computation.
1471    KnownOne.clear();
1472    unsigned TrailZ = KnownZero.countTrailingOnes() +
1473                      KnownZero2.countTrailingOnes();
1474    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1475                               KnownZero2.countLeadingOnes(),
1476                               BitWidth) - BitWidth;
1477
1478    TrailZ = std::min(TrailZ, BitWidth);
1479    LeadZ = std::min(LeadZ, BitWidth);
1480    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1481                APInt::getHighBitsSet(BitWidth, LeadZ);
1482    KnownZero &= Mask;
1483    return;
1484  }
1485  case ISD::UDIV: {
1486    // For the purposes of computing leading zeros we can conservatively
1487    // treat a udiv as a logical right shift by the power of 2 known to
1488    // be less than the denominator.
1489    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1490    ComputeMaskedBits(Op.getOperand(0),
1491                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1492    unsigned LeadZ = KnownZero2.countLeadingOnes();
1493
1494    KnownOne2.clear();
1495    KnownZero2.clear();
1496    ComputeMaskedBits(Op.getOperand(1),
1497                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1498    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1499    if (RHSUnknownLeadingOnes != BitWidth)
1500      LeadZ = std::min(BitWidth,
1501                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1502
1503    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1504    return;
1505  }
1506  case ISD::SELECT:
1507    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1508    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1509    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1510    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1511
1512    // Only known if known in both the LHS and RHS.
1513    KnownOne &= KnownOne2;
1514    KnownZero &= KnownZero2;
1515    return;
1516  case ISD::SELECT_CC:
1517    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1518    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1519    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1520    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1521
1522    // Only known if known in both the LHS and RHS.
1523    KnownOne &= KnownOne2;
1524    KnownZero &= KnownZero2;
1525    return;
1526  case ISD::SADDO:
1527  case ISD::UADDO:
1528  case ISD::SSUBO:
1529  case ISD::USUBO:
1530  case ISD::SMULO:
1531  case ISD::UMULO:
1532    if (Op.getResNo() != 1)
1533      return;
1534    // The boolean result conforms to getBooleanContents.  Fall through.
1535  case ISD::SETCC:
1536    // If we know the result of a setcc has the top bits zero, use this info.
1537    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1538        BitWidth > 1)
1539      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1540    return;
1541  case ISD::SHL:
1542    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1543    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1544      unsigned ShAmt = SA->getZExtValue();
1545
1546      // If the shift count is an invalid immediate, don't do anything.
1547      if (ShAmt >= BitWidth)
1548        return;
1549
1550      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1551                        KnownZero, KnownOne, Depth+1);
1552      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1553      KnownZero <<= ShAmt;
1554      KnownOne  <<= ShAmt;
1555      // low bits known zero.
1556      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1557    }
1558    return;
1559  case ISD::SRL:
1560    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1561    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1562      unsigned ShAmt = SA->getZExtValue();
1563
1564      // If the shift count is an invalid immediate, don't do anything.
1565      if (ShAmt >= BitWidth)
1566        return;
1567
1568      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1569                        KnownZero, KnownOne, Depth+1);
1570      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1571      KnownZero = KnownZero.lshr(ShAmt);
1572      KnownOne  = KnownOne.lshr(ShAmt);
1573
1574      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1575      KnownZero |= HighBits;  // High bits known zero.
1576    }
1577    return;
1578  case ISD::SRA:
1579    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1580      unsigned ShAmt = SA->getZExtValue();
1581
1582      // If the shift count is an invalid immediate, don't do anything.
1583      if (ShAmt >= BitWidth)
1584        return;
1585
1586      APInt InDemandedMask = (Mask << ShAmt);
1587      // If any of the demanded bits are produced by the sign extension, we also
1588      // demand the input sign bit.
1589      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1590      if (HighBits.getBoolValue())
1591        InDemandedMask |= APInt::getSignBit(BitWidth);
1592
1593      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1594                        Depth+1);
1595      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1596      KnownZero = KnownZero.lshr(ShAmt);
1597      KnownOne  = KnownOne.lshr(ShAmt);
1598
1599      // Handle the sign bits.
1600      APInt SignBit = APInt::getSignBit(BitWidth);
1601      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1602
1603      if (KnownZero.intersects(SignBit)) {
1604        KnownZero |= HighBits;  // New bits are known zero.
1605      } else if (KnownOne.intersects(SignBit)) {
1606        KnownOne  |= HighBits;  // New bits are known one.
1607      }
1608    }
1609    return;
1610  case ISD::SIGN_EXTEND_INREG: {
1611    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1612    unsigned EBits = EVT.getSizeInBits();
1613
1614    // Sign extension.  Compute the demanded bits in the result that are not
1615    // present in the input.
1616    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1617
1618    APInt InSignBit = APInt::getSignBit(EBits);
1619    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1620
1621    // If the sign extended bits are demanded, we know that the sign
1622    // bit is demanded.
1623    InSignBit.zext(BitWidth);
1624    if (NewBits.getBoolValue())
1625      InputDemandedBits |= InSignBit;
1626
1627    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1628                      KnownZero, KnownOne, Depth+1);
1629    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1630
1631    // If the sign bit of the input is known set or clear, then we know the
1632    // top bits of the result.
1633    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1634      KnownZero |= NewBits;
1635      KnownOne  &= ~NewBits;
1636    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1637      KnownOne  |= NewBits;
1638      KnownZero &= ~NewBits;
1639    } else {                              // Input sign bit unknown
1640      KnownZero &= ~NewBits;
1641      KnownOne  &= ~NewBits;
1642    }
1643    return;
1644  }
1645  case ISD::CTTZ:
1646  case ISD::CTLZ:
1647  case ISD::CTPOP: {
1648    unsigned LowBits = Log2_32(BitWidth)+1;
1649    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1650    KnownOne.clear();
1651    return;
1652  }
1653  case ISD::LOAD: {
1654    if (ISD::isZEXTLoad(Op.getNode())) {
1655      LoadSDNode *LD = cast<LoadSDNode>(Op);
1656      MVT VT = LD->getMemoryVT();
1657      unsigned MemBits = VT.getSizeInBits();
1658      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1659    }
1660    return;
1661  }
1662  case ISD::ZERO_EXTEND: {
1663    MVT InVT = Op.getOperand(0).getValueType();
1664    unsigned InBits = InVT.getSizeInBits();
1665    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1666    APInt InMask    = Mask;
1667    InMask.trunc(InBits);
1668    KnownZero.trunc(InBits);
1669    KnownOne.trunc(InBits);
1670    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1671    KnownZero.zext(BitWidth);
1672    KnownOne.zext(BitWidth);
1673    KnownZero |= NewBits;
1674    return;
1675  }
1676  case ISD::SIGN_EXTEND: {
1677    MVT InVT = Op.getOperand(0).getValueType();
1678    unsigned InBits = InVT.getSizeInBits();
1679    APInt InSignBit = APInt::getSignBit(InBits);
1680    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1681    APInt InMask = Mask;
1682    InMask.trunc(InBits);
1683
1684    // If any of the sign extended bits are demanded, we know that the sign
1685    // bit is demanded. Temporarily set this bit in the mask for our callee.
1686    if (NewBits.getBoolValue())
1687      InMask |= InSignBit;
1688
1689    KnownZero.trunc(InBits);
1690    KnownOne.trunc(InBits);
1691    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1692
1693    // Note if the sign bit is known to be zero or one.
1694    bool SignBitKnownZero = KnownZero.isNegative();
1695    bool SignBitKnownOne  = KnownOne.isNegative();
1696    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1697           "Sign bit can't be known to be both zero and one!");
1698
1699    // If the sign bit wasn't actually demanded by our caller, we don't
1700    // want it set in the KnownZero and KnownOne result values. Reset the
1701    // mask and reapply it to the result values.
1702    InMask = Mask;
1703    InMask.trunc(InBits);
1704    KnownZero &= InMask;
1705    KnownOne  &= InMask;
1706
1707    KnownZero.zext(BitWidth);
1708    KnownOne.zext(BitWidth);
1709
1710    // If the sign bit is known zero or one, the top bits match.
1711    if (SignBitKnownZero)
1712      KnownZero |= NewBits;
1713    else if (SignBitKnownOne)
1714      KnownOne  |= NewBits;
1715    return;
1716  }
1717  case ISD::ANY_EXTEND: {
1718    MVT InVT = Op.getOperand(0).getValueType();
1719    unsigned InBits = InVT.getSizeInBits();
1720    APInt InMask = Mask;
1721    InMask.trunc(InBits);
1722    KnownZero.trunc(InBits);
1723    KnownOne.trunc(InBits);
1724    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1725    KnownZero.zext(BitWidth);
1726    KnownOne.zext(BitWidth);
1727    return;
1728  }
1729  case ISD::TRUNCATE: {
1730    MVT InVT = Op.getOperand(0).getValueType();
1731    unsigned InBits = InVT.getSizeInBits();
1732    APInt InMask = Mask;
1733    InMask.zext(InBits);
1734    KnownZero.zext(InBits);
1735    KnownOne.zext(InBits);
1736    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1737    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1738    KnownZero.trunc(BitWidth);
1739    KnownOne.trunc(BitWidth);
1740    break;
1741  }
1742  case ISD::AssertZext: {
1743    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1744    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1745    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1746                      KnownOne, Depth+1);
1747    KnownZero |= (~InMask) & Mask;
1748    return;
1749  }
1750  case ISD::FGETSIGN:
1751    // All bits are zero except the low bit.
1752    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1753    return;
1754
1755  case ISD::SUB: {
1756    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1757      // We know that the top bits of C-X are clear if X contains less bits
1758      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1759      // positive if we can prove that X is >= 0 and < 16.
1760      if (CLHS->getAPIntValue().isNonNegative()) {
1761        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1762        // NLZ can't be BitWidth with no sign bit
1763        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1764        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1765                          Depth+1);
1766
1767        // If all of the MaskV bits are known to be zero, then we know the
1768        // output top bits are zero, because we now know that the output is
1769        // from [0-C].
1770        if ((KnownZero2 & MaskV) == MaskV) {
1771          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1772          // Top bits known zero.
1773          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1774        }
1775      }
1776    }
1777  }
1778  // fall through
1779  case ISD::ADD: {
1780    // Output known-0 bits are known if clear or set in both the low clear bits
1781    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1782    // low 3 bits clear.
1783    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1784    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1785    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1786    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1787
1788    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1789    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1790    KnownZeroOut = std::min(KnownZeroOut,
1791                            KnownZero2.countTrailingOnes());
1792
1793    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1794    return;
1795  }
1796  case ISD::SREM:
1797    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1798      const APInt &RA = Rem->getAPIntValue();
1799      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1800        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1801        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1802        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1803
1804        // If the sign bit of the first operand is zero, the sign bit of
1805        // the result is zero. If the first operand has no one bits below
1806        // the second operand's single 1 bit, its sign will be zero.
1807        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1808          KnownZero2 |= ~LowBits;
1809
1810        KnownZero |= KnownZero2 & Mask;
1811
1812        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1813      }
1814    }
1815    return;
1816  case ISD::UREM: {
1817    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1818      const APInt &RA = Rem->getAPIntValue();
1819      if (RA.isPowerOf2()) {
1820        APInt LowBits = (RA - 1);
1821        APInt Mask2 = LowBits & Mask;
1822        KnownZero |= ~LowBits & Mask;
1823        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1824        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1825        break;
1826      }
1827    }
1828
1829    // Since the result is less than or equal to either operand, any leading
1830    // zero bits in either operand must also exist in the result.
1831    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1832    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1833                      Depth+1);
1834    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1835                      Depth+1);
1836
1837    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1838                                KnownZero2.countLeadingOnes());
1839    KnownOne.clear();
1840    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1841    return;
1842  }
1843  default:
1844    // Allow the target to implement this method for its nodes.
1845    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1846  case ISD::INTRINSIC_WO_CHAIN:
1847  case ISD::INTRINSIC_W_CHAIN:
1848  case ISD::INTRINSIC_VOID:
1849      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1850    }
1851    return;
1852  }
1853}
1854
1855/// ComputeNumSignBits - Return the number of times the sign bit of the
1856/// register is replicated into the other bits.  We know that at least 1 bit
1857/// is always equal to the sign bit (itself), but other cases can give us
1858/// information.  For example, immediately after an "SRA X, 2", we know that
1859/// the top 3 bits are all equal to each other, so we return 3.
1860unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1861  MVT VT = Op.getValueType();
1862  assert(VT.isInteger() && "Invalid VT!");
1863  unsigned VTBits = VT.getSizeInBits();
1864  unsigned Tmp, Tmp2;
1865  unsigned FirstAnswer = 1;
1866
1867  if (Depth == 6)
1868    return 1;  // Limit search depth.
1869
1870  switch (Op.getOpcode()) {
1871  default: break;
1872  case ISD::AssertSext:
1873    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1874    return VTBits-Tmp+1;
1875  case ISD::AssertZext:
1876    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1877    return VTBits-Tmp;
1878
1879  case ISD::Constant: {
1880    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1881    // If negative, return # leading ones.
1882    if (Val.isNegative())
1883      return Val.countLeadingOnes();
1884
1885    // Return # leading zeros.
1886    return Val.countLeadingZeros();
1887  }
1888
1889  case ISD::SIGN_EXTEND:
1890    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1891    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1892
1893  case ISD::SIGN_EXTEND_INREG:
1894    // Max of the input and what this extends.
1895    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1896    Tmp = VTBits-Tmp+1;
1897
1898    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1899    return std::max(Tmp, Tmp2);
1900
1901  case ISD::SRA:
1902    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1903    // SRA X, C   -> adds C sign bits.
1904    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1905      Tmp += C->getZExtValue();
1906      if (Tmp > VTBits) Tmp = VTBits;
1907    }
1908    return Tmp;
1909  case ISD::SHL:
1910    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1911      // shl destroys sign bits.
1912      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1913      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1914          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1915      return Tmp - C->getZExtValue();
1916    }
1917    break;
1918  case ISD::AND:
1919  case ISD::OR:
1920  case ISD::XOR:    // NOT is handled here.
1921    // Logical binary ops preserve the number of sign bits at the worst.
1922    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1923    if (Tmp != 1) {
1924      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1925      FirstAnswer = std::min(Tmp, Tmp2);
1926      // We computed what we know about the sign bits as our first
1927      // answer. Now proceed to the generic code that uses
1928      // ComputeMaskedBits, and pick whichever answer is better.
1929    }
1930    break;
1931
1932  case ISD::SELECT:
1933    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1934    if (Tmp == 1) return 1;  // Early out.
1935    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1936    return std::min(Tmp, Tmp2);
1937
1938  case ISD::SADDO:
1939  case ISD::UADDO:
1940  case ISD::SSUBO:
1941  case ISD::USUBO:
1942  case ISD::SMULO:
1943  case ISD::UMULO:
1944    if (Op.getResNo() != 1)
1945      break;
1946    // The boolean result conforms to getBooleanContents.  Fall through.
1947  case ISD::SETCC:
1948    // If setcc returns 0/-1, all bits are sign bits.
1949    if (TLI.getBooleanContents() ==
1950        TargetLowering::ZeroOrNegativeOneBooleanContent)
1951      return VTBits;
1952    break;
1953  case ISD::ROTL:
1954  case ISD::ROTR:
1955    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1956      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1957
1958      // Handle rotate right by N like a rotate left by 32-N.
1959      if (Op.getOpcode() == ISD::ROTR)
1960        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1961
1962      // If we aren't rotating out all of the known-in sign bits, return the
1963      // number that are left.  This handles rotl(sext(x), 1) for example.
1964      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1965      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1966    }
1967    break;
1968  case ISD::ADD:
1969    // Add can have at most one carry bit.  Thus we know that the output
1970    // is, at worst, one more bit than the inputs.
1971    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1972    if (Tmp == 1) return 1;  // Early out.
1973
1974    // Special case decrementing a value (ADD X, -1):
1975    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1976      if (CRHS->isAllOnesValue()) {
1977        APInt KnownZero, KnownOne;
1978        APInt Mask = APInt::getAllOnesValue(VTBits);
1979        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1980
1981        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1982        // sign bits set.
1983        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1984          return VTBits;
1985
1986        // If we are subtracting one from a positive number, there is no carry
1987        // out of the result.
1988        if (KnownZero.isNegative())
1989          return Tmp;
1990      }
1991
1992    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1993    if (Tmp2 == 1) return 1;
1994      return std::min(Tmp, Tmp2)-1;
1995    break;
1996
1997  case ISD::SUB:
1998    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1999    if (Tmp2 == 1) return 1;
2000
2001    // Handle NEG.
2002    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2003      if (CLHS->isNullValue()) {
2004        APInt KnownZero, KnownOne;
2005        APInt Mask = APInt::getAllOnesValue(VTBits);
2006        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2007        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2008        // sign bits set.
2009        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2010          return VTBits;
2011
2012        // If the input is known to be positive (the sign bit is known clear),
2013        // the output of the NEG has the same number of sign bits as the input.
2014        if (KnownZero.isNegative())
2015          return Tmp2;
2016
2017        // Otherwise, we treat this like a SUB.
2018      }
2019
2020    // Sub can have at most one carry bit.  Thus we know that the output
2021    // is, at worst, one more bit than the inputs.
2022    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2023    if (Tmp == 1) return 1;  // Early out.
2024      return std::min(Tmp, Tmp2)-1;
2025    break;
2026  case ISD::TRUNCATE:
2027    // FIXME: it's tricky to do anything useful for this, but it is an important
2028    // case for targets like X86.
2029    break;
2030  }
2031
2032  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2033  if (Op.getOpcode() == ISD::LOAD) {
2034    LoadSDNode *LD = cast<LoadSDNode>(Op);
2035    unsigned ExtType = LD->getExtensionType();
2036    switch (ExtType) {
2037    default: break;
2038    case ISD::SEXTLOAD:    // '17' bits known
2039      Tmp = LD->getMemoryVT().getSizeInBits();
2040      return VTBits-Tmp+1;
2041    case ISD::ZEXTLOAD:    // '16' bits known
2042      Tmp = LD->getMemoryVT().getSizeInBits();
2043      return VTBits-Tmp;
2044    }
2045  }
2046
2047  // Allow the target to implement this method for its nodes.
2048  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2049      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2050      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2051      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2052    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2053    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2054  }
2055
2056  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2057  // use this information.
2058  APInt KnownZero, KnownOne;
2059  APInt Mask = APInt::getAllOnesValue(VTBits);
2060  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2061
2062  if (KnownZero.isNegative()) {        // sign bit is 0
2063    Mask = KnownZero;
2064  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2065    Mask = KnownOne;
2066  } else {
2067    // Nothing known.
2068    return FirstAnswer;
2069  }
2070
2071  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2072  // the number of identical bits in the top of the input value.
2073  Mask = ~Mask;
2074  Mask <<= Mask.getBitWidth()-VTBits;
2075  // Return # leading zeros.  We use 'min' here in case Val was zero before
2076  // shifting.  We don't want to return '64' as for an i32 "0".
2077  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2078}
2079
2080
2081bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2082  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2083  if (!GA) return false;
2084  if (GA->getOffset() != 0) return false;
2085  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2086  if (!GV) return false;
2087  MachineModuleInfo *MMI = getMachineModuleInfo();
2088  return MMI && MMI->hasDebugInfo();
2089}
2090
2091
2092/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2093/// element of the result of the vector shuffle.
2094SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2095  MVT VT = N->getValueType(0);
2096  DebugLoc dl = N->getDebugLoc();
2097  SDValue PermMask = N->getOperand(2);
2098  SDValue Idx = PermMask.getOperand(i);
2099  if (Idx.getOpcode() == ISD::UNDEF)
2100    return getUNDEF(VT.getVectorElementType());
2101  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2102  unsigned NumElems = PermMask.getNumOperands();
2103  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2104  Index %= NumElems;
2105
2106  if (V.getOpcode() == ISD::BIT_CONVERT) {
2107    V = V.getOperand(0);
2108    MVT VVT = V.getValueType();
2109    if (!VVT.isVector() || VVT.getVectorNumElements() != NumElems)
2110      return SDValue();
2111  }
2112  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2113    return (Index == 0) ? V.getOperand(0)
2114                      : getUNDEF(VT.getVectorElementType());
2115  if (V.getOpcode() == ISD::BUILD_VECTOR)
2116    return V.getOperand(Index);
2117  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2118    return getShuffleScalarElt(V.getNode(), Index);
2119  return SDValue();
2120}
2121
2122
2123/// getNode - Gets or creates the specified node.
2124///
2125SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT) {
2126  FoldingSetNodeID ID;
2127  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2128  void *IP = 0;
2129  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2130    return SDValue(E, 0);
2131  SDNode *N = NodeAllocator.Allocate<SDNode>();
2132  new (N) SDNode(Opcode, DL, getVTList(VT));
2133  CSEMap.InsertNode(N, IP);
2134
2135  AllNodes.push_back(N);
2136#ifndef NDEBUG
2137  VerifyNode(N);
2138#endif
2139  return SDValue(N, 0);
2140}
2141
2142SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2143                              MVT VT, SDValue Operand) {
2144  // Constant fold unary operations with an integer constant operand.
2145  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2146    const APInt &Val = C->getAPIntValue();
2147    unsigned BitWidth = VT.getSizeInBits();
2148    switch (Opcode) {
2149    default: break;
2150    case ISD::SIGN_EXTEND:
2151      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2152    case ISD::ANY_EXTEND:
2153    case ISD::ZERO_EXTEND:
2154    case ISD::TRUNCATE:
2155      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2156    case ISD::UINT_TO_FP:
2157    case ISD::SINT_TO_FP: {
2158      const uint64_t zero[] = {0, 0};
2159      // No compile time operations on this type.
2160      if (VT==MVT::ppcf128)
2161        break;
2162      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2163      (void)apf.convertFromAPInt(Val,
2164                                 Opcode==ISD::SINT_TO_FP,
2165                                 APFloat::rmNearestTiesToEven);
2166      return getConstantFP(apf, VT);
2167    }
2168    case ISD::BIT_CONVERT:
2169      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2170        return getConstantFP(Val.bitsToFloat(), VT);
2171      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2172        return getConstantFP(Val.bitsToDouble(), VT);
2173      break;
2174    case ISD::BSWAP:
2175      return getConstant(Val.byteSwap(), VT);
2176    case ISD::CTPOP:
2177      return getConstant(Val.countPopulation(), VT);
2178    case ISD::CTLZ:
2179      return getConstant(Val.countLeadingZeros(), VT);
2180    case ISD::CTTZ:
2181      return getConstant(Val.countTrailingZeros(), VT);
2182    }
2183  }
2184
2185  // Constant fold unary operations with a floating point constant operand.
2186  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2187    APFloat V = C->getValueAPF();    // make copy
2188    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2189      switch (Opcode) {
2190      case ISD::FNEG:
2191        V.changeSign();
2192        return getConstantFP(V, VT);
2193      case ISD::FABS:
2194        V.clearSign();
2195        return getConstantFP(V, VT);
2196      case ISD::FP_ROUND:
2197      case ISD::FP_EXTEND: {
2198        bool ignored;
2199        // This can return overflow, underflow, or inexact; we don't care.
2200        // FIXME need to be more flexible about rounding mode.
2201        (void)V.convert(*MVTToAPFloatSemantics(VT),
2202                        APFloat::rmNearestTiesToEven, &ignored);
2203        return getConstantFP(V, VT);
2204      }
2205      case ISD::FP_TO_SINT:
2206      case ISD::FP_TO_UINT: {
2207        integerPart x;
2208        bool ignored;
2209        assert(integerPartWidth >= 64);
2210        // FIXME need to be more flexible about rounding mode.
2211        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2212                              Opcode==ISD::FP_TO_SINT,
2213                              APFloat::rmTowardZero, &ignored);
2214        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2215          break;
2216        return getConstant(x, VT);
2217      }
2218      case ISD::BIT_CONVERT:
2219        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2220          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2221        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2222          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2223        break;
2224      }
2225    }
2226  }
2227
2228  unsigned OpOpcode = Operand.getNode()->getOpcode();
2229  switch (Opcode) {
2230  case ISD::TokenFactor:
2231  case ISD::MERGE_VALUES:
2232  case ISD::CONCAT_VECTORS:
2233    return Operand;         // Factor, merge or concat of one node?  No need.
2234  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2235  case ISD::FP_EXTEND:
2236    assert(VT.isFloatingPoint() &&
2237           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2238    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2239    if (Operand.getOpcode() == ISD::UNDEF)
2240      return getUNDEF(VT);
2241    break;
2242  case ISD::SIGN_EXTEND:
2243    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2244           "Invalid SIGN_EXTEND!");
2245    if (Operand.getValueType() == VT) return Operand;   // noop extension
2246    assert(Operand.getValueType().bitsLT(VT)
2247           && "Invalid sext node, dst < src!");
2248    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2249      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2250    break;
2251  case ISD::ZERO_EXTEND:
2252    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2253           "Invalid ZERO_EXTEND!");
2254    if (Operand.getValueType() == VT) return Operand;   // noop extension
2255    assert(Operand.getValueType().bitsLT(VT)
2256           && "Invalid zext node, dst < src!");
2257    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2258      return getNode(ISD::ZERO_EXTEND, DL, VT,
2259                     Operand.getNode()->getOperand(0));
2260    break;
2261  case ISD::ANY_EXTEND:
2262    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2263           "Invalid ANY_EXTEND!");
2264    if (Operand.getValueType() == VT) return Operand;   // noop extension
2265    assert(Operand.getValueType().bitsLT(VT)
2266           && "Invalid anyext node, dst < src!");
2267    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2268      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2269      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2270    break;
2271  case ISD::TRUNCATE:
2272    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2273           "Invalid TRUNCATE!");
2274    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2275    assert(Operand.getValueType().bitsGT(VT)
2276           && "Invalid truncate node, src < dst!");
2277    if (OpOpcode == ISD::TRUNCATE)
2278      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2279    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2280             OpOpcode == ISD::ANY_EXTEND) {
2281      // If the source is smaller than the dest, we still need an extend.
2282      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2283        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2284      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2285        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2286      else
2287        return Operand.getNode()->getOperand(0);
2288    }
2289    break;
2290  case ISD::BIT_CONVERT:
2291    // Basic sanity checking.
2292    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2293           && "Cannot BIT_CONVERT between types of different sizes!");
2294    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2295    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2296      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2297    if (OpOpcode == ISD::UNDEF)
2298      return getUNDEF(VT);
2299    break;
2300  case ISD::SCALAR_TO_VECTOR:
2301    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2302           (VT.getVectorElementType() == Operand.getValueType() ||
2303            (VT.getVectorElementType().isInteger() &&
2304             Operand.getValueType().isInteger() &&
2305             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2306           "Illegal SCALAR_TO_VECTOR node!");
2307    if (OpOpcode == ISD::UNDEF)
2308      return getUNDEF(VT);
2309    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2310    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2311        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2312        Operand.getConstantOperandVal(1) == 0 &&
2313        Operand.getOperand(0).getValueType() == VT)
2314      return Operand.getOperand(0);
2315    break;
2316  case ISD::FNEG:
2317    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2318    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2319      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2320                     Operand.getNode()->getOperand(0));
2321    if (OpOpcode == ISD::FNEG)  // --X -> X
2322      return Operand.getNode()->getOperand(0);
2323    break;
2324  case ISD::FABS:
2325    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2326      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2327    break;
2328  }
2329
2330  SDNode *N;
2331  SDVTList VTs = getVTList(VT);
2332  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2333    FoldingSetNodeID ID;
2334    SDValue Ops[1] = { Operand };
2335    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2336    void *IP = 0;
2337    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2338      return SDValue(E, 0);
2339    N = NodeAllocator.Allocate<UnarySDNode>();
2340    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2341    CSEMap.InsertNode(N, IP);
2342  } else {
2343    N = NodeAllocator.Allocate<UnarySDNode>();
2344    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2345  }
2346
2347  AllNodes.push_back(N);
2348#ifndef NDEBUG
2349  VerifyNode(N);
2350#endif
2351  return SDValue(N, 0);
2352}
2353
2354SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2355                                             MVT VT,
2356                                             ConstantSDNode *Cst1,
2357                                             ConstantSDNode *Cst2) {
2358  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2359
2360  switch (Opcode) {
2361  case ISD::ADD:  return getConstant(C1 + C2, VT);
2362  case ISD::SUB:  return getConstant(C1 - C2, VT);
2363  case ISD::MUL:  return getConstant(C1 * C2, VT);
2364  case ISD::UDIV:
2365    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2366    break;
2367  case ISD::UREM:
2368    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2369    break;
2370  case ISD::SDIV:
2371    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2372    break;
2373  case ISD::SREM:
2374    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2375    break;
2376  case ISD::AND:  return getConstant(C1 & C2, VT);
2377  case ISD::OR:   return getConstant(C1 | C2, VT);
2378  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2379  case ISD::SHL:  return getConstant(C1 << C2, VT);
2380  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2381  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2382  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2383  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2384  default: break;
2385  }
2386
2387  return SDValue();
2388}
2389
2390SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2391                              SDValue N1, SDValue N2) {
2392  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2393  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2394  switch (Opcode) {
2395  default: break;
2396  case ISD::TokenFactor:
2397    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2398           N2.getValueType() == MVT::Other && "Invalid token factor!");
2399    // Fold trivial token factors.
2400    if (N1.getOpcode() == ISD::EntryToken) return N2;
2401    if (N2.getOpcode() == ISD::EntryToken) return N1;
2402    if (N1 == N2) return N1;
2403    break;
2404  case ISD::CONCAT_VECTORS:
2405    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2406    // one big BUILD_VECTOR.
2407    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2408        N2.getOpcode() == ISD::BUILD_VECTOR) {
2409      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2410      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2411      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2412    }
2413    break;
2414  case ISD::AND:
2415    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2416           N1.getValueType() == VT && "Binary operator types must match!");
2417    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2418    // worth handling here.
2419    if (N2C && N2C->isNullValue())
2420      return N2;
2421    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2422      return N1;
2423    break;
2424  case ISD::OR:
2425  case ISD::XOR:
2426  case ISD::ADD:
2427  case ISD::SUB:
2428    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2429           N1.getValueType() == VT && "Binary operator types must match!");
2430    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2431    // it's worth handling here.
2432    if (N2C && N2C->isNullValue())
2433      return N1;
2434    break;
2435  case ISD::UDIV:
2436  case ISD::UREM:
2437  case ISD::MULHU:
2438  case ISD::MULHS:
2439  case ISD::MUL:
2440  case ISD::SDIV:
2441  case ISD::SREM:
2442    assert(VT.isInteger() && "This operator does not apply to FP types!");
2443    // fall through
2444  case ISD::FADD:
2445  case ISD::FSUB:
2446  case ISD::FMUL:
2447  case ISD::FDIV:
2448  case ISD::FREM:
2449    if (UnsafeFPMath) {
2450      if (Opcode == ISD::FADD) {
2451        // 0+x --> x
2452        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2453          if (CFP->getValueAPF().isZero())
2454            return N2;
2455        // x+0 --> x
2456        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2457          if (CFP->getValueAPF().isZero())
2458            return N1;
2459      } else if (Opcode == ISD::FSUB) {
2460        // x-0 --> x
2461        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2462          if (CFP->getValueAPF().isZero())
2463            return N1;
2464      }
2465    }
2466    assert(N1.getValueType() == N2.getValueType() &&
2467           N1.getValueType() == VT && "Binary operator types must match!");
2468    break;
2469  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2470    assert(N1.getValueType() == VT &&
2471           N1.getValueType().isFloatingPoint() &&
2472           N2.getValueType().isFloatingPoint() &&
2473           "Invalid FCOPYSIGN!");
2474    break;
2475  case ISD::SHL:
2476  case ISD::SRA:
2477  case ISD::SRL:
2478  case ISD::ROTL:
2479  case ISD::ROTR:
2480    assert(VT == N1.getValueType() &&
2481           "Shift operators return type must be the same as their first arg");
2482    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2483           "Shifts only work on integers");
2484
2485    // Always fold shifts of i1 values so the code generator doesn't need to
2486    // handle them.  Since we know the size of the shift has to be less than the
2487    // size of the value, the shift/rotate count is guaranteed to be zero.
2488    if (VT == MVT::i1)
2489      return N1;
2490    break;
2491  case ISD::FP_ROUND_INREG: {
2492    MVT EVT = cast<VTSDNode>(N2)->getVT();
2493    assert(VT == N1.getValueType() && "Not an inreg round!");
2494    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2495           "Cannot FP_ROUND_INREG integer types");
2496    assert(EVT.bitsLE(VT) && "Not rounding down!");
2497    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2498    break;
2499  }
2500  case ISD::FP_ROUND:
2501    assert(VT.isFloatingPoint() &&
2502           N1.getValueType().isFloatingPoint() &&
2503           VT.bitsLE(N1.getValueType()) &&
2504           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2505    if (N1.getValueType() == VT) return N1;  // noop conversion.
2506    break;
2507  case ISD::AssertSext:
2508  case ISD::AssertZext: {
2509    MVT EVT = cast<VTSDNode>(N2)->getVT();
2510    assert(VT == N1.getValueType() && "Not an inreg extend!");
2511    assert(VT.isInteger() && EVT.isInteger() &&
2512           "Cannot *_EXTEND_INREG FP types");
2513    assert(EVT.bitsLE(VT) && "Not extending!");
2514    if (VT == EVT) return N1; // noop assertion.
2515    break;
2516  }
2517  case ISD::SIGN_EXTEND_INREG: {
2518    MVT EVT = cast<VTSDNode>(N2)->getVT();
2519    assert(VT == N1.getValueType() && "Not an inreg extend!");
2520    assert(VT.isInteger() && EVT.isInteger() &&
2521           "Cannot *_EXTEND_INREG FP types");
2522    assert(EVT.bitsLE(VT) && "Not extending!");
2523    if (EVT == VT) return N1;  // Not actually extending
2524
2525    if (N1C) {
2526      APInt Val = N1C->getAPIntValue();
2527      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2528      Val <<= Val.getBitWidth()-FromBits;
2529      Val = Val.ashr(Val.getBitWidth()-FromBits);
2530      return getConstant(Val, VT);
2531    }
2532    break;
2533  }
2534  case ISD::EXTRACT_VECTOR_ELT:
2535    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2536    if (N1.getOpcode() == ISD::UNDEF)
2537      return getUNDEF(VT);
2538
2539    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2540    // expanding copies of large vectors from registers.
2541    if (N2C &&
2542        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2543        N1.getNumOperands() > 0) {
2544      unsigned Factor =
2545        N1.getOperand(0).getValueType().getVectorNumElements();
2546      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2547                     N1.getOperand(N2C->getZExtValue() / Factor),
2548                     getConstant(N2C->getZExtValue() % Factor,
2549                                 N2.getValueType()));
2550    }
2551
2552    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2553    // expanding large vector constants.
2554    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2555      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2556      if (Elt.getValueType() != VT) {
2557        // If the vector element type is not legal, the BUILD_VECTOR operands
2558        // are promoted and implicitly truncated.  Make that explicit here.
2559        assert(VT.isInteger() && Elt.getValueType().isInteger() &&
2560               VT.bitsLE(Elt.getValueType()) &&
2561               "Bad type for BUILD_VECTOR operand");
2562        Elt = getNode(ISD::TRUNCATE, DL, VT, Elt);
2563      }
2564      return Elt;
2565    }
2566
2567    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2568    // operations are lowered to scalars.
2569    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2570      // If the indices are the same, return the inserted element.
2571      if (N1.getOperand(2) == N2)
2572        return N1.getOperand(1);
2573      // If the indices are known different, extract the element from
2574      // the original vector.
2575      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2576               isa<ConstantSDNode>(N2))
2577        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2578    }
2579    break;
2580  case ISD::EXTRACT_ELEMENT:
2581    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2582    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2583           (N1.getValueType().isInteger() == VT.isInteger()) &&
2584           "Wrong types for EXTRACT_ELEMENT!");
2585
2586    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2587    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2588    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2589    if (N1.getOpcode() == ISD::BUILD_PAIR)
2590      return N1.getOperand(N2C->getZExtValue());
2591
2592    // EXTRACT_ELEMENT of a constant int is also very common.
2593    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2594      unsigned ElementSize = VT.getSizeInBits();
2595      unsigned Shift = ElementSize * N2C->getZExtValue();
2596      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2597      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2598    }
2599    break;
2600  case ISD::EXTRACT_SUBVECTOR:
2601    if (N1.getValueType() == VT) // Trivial extraction.
2602      return N1;
2603    break;
2604  }
2605
2606  if (N1C) {
2607    if (N2C) {
2608      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2609      if (SV.getNode()) return SV;
2610    } else {      // Cannonicalize constant to RHS if commutative
2611      if (isCommutativeBinOp(Opcode)) {
2612        std::swap(N1C, N2C);
2613        std::swap(N1, N2);
2614      }
2615    }
2616  }
2617
2618  // Constant fold FP operations.
2619  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2620  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2621  if (N1CFP) {
2622    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2623      // Cannonicalize constant to RHS if commutative
2624      std::swap(N1CFP, N2CFP);
2625      std::swap(N1, N2);
2626    } else if (N2CFP && VT != MVT::ppcf128) {
2627      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2628      APFloat::opStatus s;
2629      switch (Opcode) {
2630      case ISD::FADD:
2631        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2632        if (s != APFloat::opInvalidOp)
2633          return getConstantFP(V1, VT);
2634        break;
2635      case ISD::FSUB:
2636        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2637        if (s!=APFloat::opInvalidOp)
2638          return getConstantFP(V1, VT);
2639        break;
2640      case ISD::FMUL:
2641        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2642        if (s!=APFloat::opInvalidOp)
2643          return getConstantFP(V1, VT);
2644        break;
2645      case ISD::FDIV:
2646        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2647        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2648          return getConstantFP(V1, VT);
2649        break;
2650      case ISD::FREM :
2651        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2652        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2653          return getConstantFP(V1, VT);
2654        break;
2655      case ISD::FCOPYSIGN:
2656        V1.copySign(V2);
2657        return getConstantFP(V1, VT);
2658      default: break;
2659      }
2660    }
2661  }
2662
2663  // Canonicalize an UNDEF to the RHS, even over a constant.
2664  if (N1.getOpcode() == ISD::UNDEF) {
2665    if (isCommutativeBinOp(Opcode)) {
2666      std::swap(N1, N2);
2667    } else {
2668      switch (Opcode) {
2669      case ISD::FP_ROUND_INREG:
2670      case ISD::SIGN_EXTEND_INREG:
2671      case ISD::SUB:
2672      case ISD::FSUB:
2673      case ISD::FDIV:
2674      case ISD::FREM:
2675      case ISD::SRA:
2676        return N1;     // fold op(undef, arg2) -> undef
2677      case ISD::UDIV:
2678      case ISD::SDIV:
2679      case ISD::UREM:
2680      case ISD::SREM:
2681      case ISD::SRL:
2682      case ISD::SHL:
2683        if (!VT.isVector())
2684          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2685        // For vectors, we can't easily build an all zero vector, just return
2686        // the LHS.
2687        return N2;
2688      }
2689    }
2690  }
2691
2692  // Fold a bunch of operators when the RHS is undef.
2693  if (N2.getOpcode() == ISD::UNDEF) {
2694    switch (Opcode) {
2695    case ISD::XOR:
2696      if (N1.getOpcode() == ISD::UNDEF)
2697        // Handle undef ^ undef -> 0 special case. This is a common
2698        // idiom (misuse).
2699        return getConstant(0, VT);
2700      // fallthrough
2701    case ISD::ADD:
2702    case ISD::ADDC:
2703    case ISD::ADDE:
2704    case ISD::SUB:
2705    case ISD::FADD:
2706    case ISD::FSUB:
2707    case ISD::FMUL:
2708    case ISD::FDIV:
2709    case ISD::FREM:
2710    case ISD::UDIV:
2711    case ISD::SDIV:
2712    case ISD::UREM:
2713    case ISD::SREM:
2714      return N2;       // fold op(arg1, undef) -> undef
2715    case ISD::MUL:
2716    case ISD::AND:
2717    case ISD::SRL:
2718    case ISD::SHL:
2719      if (!VT.isVector())
2720        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2721      // For vectors, we can't easily build an all zero vector, just return
2722      // the LHS.
2723      return N1;
2724    case ISD::OR:
2725      if (!VT.isVector())
2726        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2727      // For vectors, we can't easily build an all one vector, just return
2728      // the LHS.
2729      return N1;
2730    case ISD::SRA:
2731      return N1;
2732    }
2733  }
2734
2735  // Memoize this node if possible.
2736  SDNode *N;
2737  SDVTList VTs = getVTList(VT);
2738  if (VT != MVT::Flag) {
2739    SDValue Ops[] = { N1, N2 };
2740    FoldingSetNodeID ID;
2741    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2742    void *IP = 0;
2743    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2744      return SDValue(E, 0);
2745    N = NodeAllocator.Allocate<BinarySDNode>();
2746    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2747    CSEMap.InsertNode(N, IP);
2748  } else {
2749    N = NodeAllocator.Allocate<BinarySDNode>();
2750    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2751  }
2752
2753  AllNodes.push_back(N);
2754#ifndef NDEBUG
2755  VerifyNode(N);
2756#endif
2757  return SDValue(N, 0);
2758}
2759
2760SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2761                              SDValue N1, SDValue N2, SDValue N3) {
2762  // Perform various simplifications.
2763  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2764  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2765  switch (Opcode) {
2766  case ISD::CONCAT_VECTORS:
2767    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2768    // one big BUILD_VECTOR.
2769    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2770        N2.getOpcode() == ISD::BUILD_VECTOR &&
2771        N3.getOpcode() == ISD::BUILD_VECTOR) {
2772      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2773      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2774      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2775      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2776    }
2777    break;
2778  case ISD::SETCC: {
2779    // Use FoldSetCC to simplify SETCC's.
2780    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2781    if (Simp.getNode()) return Simp;
2782    break;
2783  }
2784  case ISD::SELECT:
2785    if (N1C) {
2786     if (N1C->getZExtValue())
2787        return N2;             // select true, X, Y -> X
2788      else
2789        return N3;             // select false, X, Y -> Y
2790    }
2791
2792    if (N2 == N3) return N2;   // select C, X, X -> X
2793    break;
2794  case ISD::BRCOND:
2795    if (N2C) {
2796      if (N2C->getZExtValue()) // Unconditional branch
2797        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2798      else
2799        return N1;         // Never-taken branch
2800    }
2801    break;
2802  case ISD::VECTOR_SHUFFLE:
2803    assert(N1.getValueType() == N2.getValueType() &&
2804           N1.getValueType().isVector() &&
2805           VT.isVector() && N3.getValueType().isVector() &&
2806           N3.getOpcode() == ISD::BUILD_VECTOR &&
2807           VT.getVectorNumElements() == N3.getNumOperands() &&
2808           "Illegal VECTOR_SHUFFLE node!");
2809    break;
2810  case ISD::BIT_CONVERT:
2811    // Fold bit_convert nodes from a type to themselves.
2812    if (N1.getValueType() == VT)
2813      return N1;
2814    break;
2815  }
2816
2817  // Memoize node if it doesn't produce a flag.
2818  SDNode *N;
2819  SDVTList VTs = getVTList(VT);
2820  if (VT != MVT::Flag) {
2821    SDValue Ops[] = { N1, N2, N3 };
2822    FoldingSetNodeID ID;
2823    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2824    void *IP = 0;
2825    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2826      return SDValue(E, 0);
2827    N = NodeAllocator.Allocate<TernarySDNode>();
2828    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2829    CSEMap.InsertNode(N, IP);
2830  } else {
2831    N = NodeAllocator.Allocate<TernarySDNode>();
2832    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2833  }
2834  AllNodes.push_back(N);
2835#ifndef NDEBUG
2836  VerifyNode(N);
2837#endif
2838  return SDValue(N, 0);
2839}
2840
2841SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2842                              SDValue N1, SDValue N2, SDValue N3,
2843                              SDValue N4) {
2844  SDValue Ops[] = { N1, N2, N3, N4 };
2845  return getNode(Opcode, DL, VT, Ops, 4);
2846}
2847
2848SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
2849                              SDValue N1, SDValue N2, SDValue N3,
2850                              SDValue N4, SDValue N5) {
2851  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2852  return getNode(Opcode, DL, VT, Ops, 5);
2853}
2854
2855/// getMemsetValue - Vectorized representation of the memset value
2856/// operand.
2857static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG,
2858                              DebugLoc dl) {
2859  unsigned NumBits = VT.isVector() ?
2860    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2861  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2862    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2863    unsigned Shift = 8;
2864    for (unsigned i = NumBits; i > 8; i >>= 1) {
2865      Val = (Val << Shift) | Val;
2866      Shift <<= 1;
2867    }
2868    if (VT.isInteger())
2869      return DAG.getConstant(Val, VT);
2870    return DAG.getConstantFP(APFloat(Val), VT);
2871  }
2872
2873  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2874  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
2875  unsigned Shift = 8;
2876  for (unsigned i = NumBits; i > 8; i >>= 1) {
2877    Value = DAG.getNode(ISD::OR, dl, VT,
2878                        DAG.getNode(ISD::SHL, dl, VT, Value,
2879                                    DAG.getConstant(Shift,
2880                                                    TLI.getShiftAmountTy())),
2881                        Value);
2882    Shift <<= 1;
2883  }
2884
2885  return Value;
2886}
2887
2888/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2889/// used when a memcpy is turned into a memset when the source is a constant
2890/// string ptr.
2891static SDValue getMemsetStringVal(MVT VT, DebugLoc dl, SelectionDAG &DAG,
2892                                    const TargetLowering &TLI,
2893                                    std::string &Str, unsigned Offset) {
2894  // Handle vector with all elements zero.
2895  if (Str.empty()) {
2896    if (VT.isInteger())
2897      return DAG.getConstant(0, VT);
2898    unsigned NumElts = VT.getVectorNumElements();
2899    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2900    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
2901                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2902  }
2903
2904  assert(!VT.isVector() && "Can't handle vector type here!");
2905  unsigned NumBits = VT.getSizeInBits();
2906  unsigned MSB = NumBits / 8;
2907  uint64_t Val = 0;
2908  if (TLI.isLittleEndian())
2909    Offset = Offset + MSB - 1;
2910  for (unsigned i = 0; i != MSB; ++i) {
2911    Val = (Val << 8) | (unsigned char)Str[Offset];
2912    Offset += TLI.isLittleEndian() ? -1 : 1;
2913  }
2914  return DAG.getConstant(Val, VT);
2915}
2916
2917/// getMemBasePlusOffset - Returns base and offset node for the
2918///
2919static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2920                                      SelectionDAG &DAG) {
2921  MVT VT = Base.getValueType();
2922  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
2923                     VT, Base, DAG.getConstant(Offset, VT));
2924}
2925
2926/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2927///
2928static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2929  unsigned SrcDelta = 0;
2930  GlobalAddressSDNode *G = NULL;
2931  if (Src.getOpcode() == ISD::GlobalAddress)
2932    G = cast<GlobalAddressSDNode>(Src);
2933  else if (Src.getOpcode() == ISD::ADD &&
2934           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2935           Src.getOperand(1).getOpcode() == ISD::Constant) {
2936    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2937    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2938  }
2939  if (!G)
2940    return false;
2941
2942  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2943  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2944    return true;
2945
2946  return false;
2947}
2948
2949/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2950/// to replace the memset / memcpy is below the threshold. It also returns the
2951/// types of the sequence of memory ops to perform memset / memcpy.
2952static
2953bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2954                              SDValue Dst, SDValue Src,
2955                              unsigned Limit, uint64_t Size, unsigned &Align,
2956                              std::string &Str, bool &isSrcStr,
2957                              SelectionDAG &DAG,
2958                              const TargetLowering &TLI) {
2959  isSrcStr = isMemSrcFromString(Src, Str);
2960  bool isSrcConst = isa<ConstantSDNode>(Src);
2961  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2962  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2963  if (VT != MVT::iAny) {
2964    unsigned NewAlign = (unsigned)
2965      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2966    // If source is a string constant, this will require an unaligned load.
2967    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2968      if (Dst.getOpcode() != ISD::FrameIndex) {
2969        // Can't change destination alignment. It requires a unaligned store.
2970        if (AllowUnalign)
2971          VT = MVT::iAny;
2972      } else {
2973        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2974        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2975        if (MFI->isFixedObjectIndex(FI)) {
2976          // Can't change destination alignment. It requires a unaligned store.
2977          if (AllowUnalign)
2978            VT = MVT::iAny;
2979        } else {
2980          // Give the stack frame object a larger alignment if needed.
2981          if (MFI->getObjectAlignment(FI) < NewAlign)
2982            MFI->setObjectAlignment(FI, NewAlign);
2983          Align = NewAlign;
2984        }
2985      }
2986    }
2987  }
2988
2989  if (VT == MVT::iAny) {
2990    if (AllowUnalign) {
2991      VT = MVT::i64;
2992    } else {
2993      switch (Align & 7) {
2994      case 0:  VT = MVT::i64; break;
2995      case 4:  VT = MVT::i32; break;
2996      case 2:  VT = MVT::i16; break;
2997      default: VT = MVT::i8;  break;
2998      }
2999    }
3000
3001    MVT LVT = MVT::i64;
3002    while (!TLI.isTypeLegal(LVT))
3003      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
3004    assert(LVT.isInteger());
3005
3006    if (VT.bitsGT(LVT))
3007      VT = LVT;
3008  }
3009
3010  unsigned NumMemOps = 0;
3011  while (Size != 0) {
3012    unsigned VTSize = VT.getSizeInBits() / 8;
3013    while (VTSize > Size) {
3014      // For now, only use non-vector load / store's for the left-over pieces.
3015      if (VT.isVector()) {
3016        VT = MVT::i64;
3017        while (!TLI.isTypeLegal(VT))
3018          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3019        VTSize = VT.getSizeInBits() / 8;
3020      } else {
3021        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
3022        VTSize >>= 1;
3023      }
3024    }
3025
3026    if (++NumMemOps > Limit)
3027      return false;
3028    MemOps.push_back(VT);
3029    Size -= VTSize;
3030  }
3031
3032  return true;
3033}
3034
3035static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3036                                         SDValue Chain, SDValue Dst,
3037                                         SDValue Src, uint64_t Size,
3038                                         unsigned Align, bool AlwaysInline,
3039                                         const Value *DstSV, uint64_t DstSVOff,
3040                                         const Value *SrcSV, uint64_t SrcSVOff){
3041  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3042
3043  // Expand memcpy to a series of load and store ops if the size operand falls
3044  // below a certain threshold.
3045  std::vector<MVT> MemOps;
3046  uint64_t Limit = -1ULL;
3047  if (!AlwaysInline)
3048    Limit = TLI.getMaxStoresPerMemcpy();
3049  unsigned DstAlign = Align;  // Destination alignment can change.
3050  std::string Str;
3051  bool CopyFromStr;
3052  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3053                                Str, CopyFromStr, DAG, TLI))
3054    return SDValue();
3055
3056
3057  bool isZeroStr = CopyFromStr && Str.empty();
3058  SmallVector<SDValue, 8> OutChains;
3059  unsigned NumMemOps = MemOps.size();
3060  uint64_t SrcOff = 0, DstOff = 0;
3061  for (unsigned i = 0; i < NumMemOps; i++) {
3062    MVT VT = MemOps[i];
3063    unsigned VTSize = VT.getSizeInBits() / 8;
3064    SDValue Value, Store;
3065
3066    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3067      // It's unlikely a store of a vector immediate can be done in a single
3068      // instruction. It would require a load from a constantpool first.
3069      // We also handle store a vector with all zero's.
3070      // FIXME: Handle other cases where store of vector immediate is done in
3071      // a single instruction.
3072      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3073      Store = DAG.getStore(Chain, dl, Value,
3074                           getMemBasePlusOffset(Dst, DstOff, DAG),
3075                           DstSV, DstSVOff + DstOff, false, DstAlign);
3076    } else {
3077      Value = DAG.getLoad(VT, dl, Chain,
3078                          getMemBasePlusOffset(Src, SrcOff, DAG),
3079                          SrcSV, SrcSVOff + SrcOff, false, Align);
3080      Store = DAG.getStore(Chain, dl, Value,
3081                           getMemBasePlusOffset(Dst, DstOff, DAG),
3082                           DstSV, DstSVOff + DstOff, false, DstAlign);
3083    }
3084    OutChains.push_back(Store);
3085    SrcOff += VTSize;
3086    DstOff += VTSize;
3087  }
3088
3089  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3090                     &OutChains[0], OutChains.size());
3091}
3092
3093static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3094                                          SDValue Chain, SDValue Dst,
3095                                          SDValue Src, uint64_t Size,
3096                                          unsigned Align, bool AlwaysInline,
3097                                          const Value *DstSV, uint64_t DstSVOff,
3098                                          const Value *SrcSV, uint64_t SrcSVOff){
3099  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3100
3101  // Expand memmove to a series of load and store ops if the size operand falls
3102  // below a certain threshold.
3103  std::vector<MVT> MemOps;
3104  uint64_t Limit = -1ULL;
3105  if (!AlwaysInline)
3106    Limit = TLI.getMaxStoresPerMemmove();
3107  unsigned DstAlign = Align;  // Destination alignment can change.
3108  std::string Str;
3109  bool CopyFromStr;
3110  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3111                                Str, CopyFromStr, DAG, TLI))
3112    return SDValue();
3113
3114  uint64_t SrcOff = 0, DstOff = 0;
3115
3116  SmallVector<SDValue, 8> LoadValues;
3117  SmallVector<SDValue, 8> LoadChains;
3118  SmallVector<SDValue, 8> OutChains;
3119  unsigned NumMemOps = MemOps.size();
3120  for (unsigned i = 0; i < NumMemOps; i++) {
3121    MVT VT = MemOps[i];
3122    unsigned VTSize = VT.getSizeInBits() / 8;
3123    SDValue Value, Store;
3124
3125    Value = DAG.getLoad(VT, dl, Chain,
3126                        getMemBasePlusOffset(Src, SrcOff, DAG),
3127                        SrcSV, SrcSVOff + SrcOff, false, Align);
3128    LoadValues.push_back(Value);
3129    LoadChains.push_back(Value.getValue(1));
3130    SrcOff += VTSize;
3131  }
3132  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3133                      &LoadChains[0], LoadChains.size());
3134  OutChains.clear();
3135  for (unsigned i = 0; i < NumMemOps; i++) {
3136    MVT VT = MemOps[i];
3137    unsigned VTSize = VT.getSizeInBits() / 8;
3138    SDValue Value, Store;
3139
3140    Store = DAG.getStore(Chain, dl, LoadValues[i],
3141                         getMemBasePlusOffset(Dst, DstOff, DAG),
3142                         DstSV, DstSVOff + DstOff, false, DstAlign);
3143    OutChains.push_back(Store);
3144    DstOff += VTSize;
3145  }
3146
3147  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3148                     &OutChains[0], OutChains.size());
3149}
3150
3151static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3152                                 SDValue Chain, SDValue Dst,
3153                                 SDValue Src, uint64_t Size,
3154                                 unsigned Align,
3155                                 const Value *DstSV, uint64_t DstSVOff) {
3156  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3157
3158  // Expand memset to a series of load/store ops if the size operand
3159  // falls below a certain threshold.
3160  std::vector<MVT> MemOps;
3161  std::string Str;
3162  bool CopyFromStr;
3163  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3164                                Size, Align, Str, CopyFromStr, DAG, TLI))
3165    return SDValue();
3166
3167  SmallVector<SDValue, 8> OutChains;
3168  uint64_t DstOff = 0;
3169
3170  unsigned NumMemOps = MemOps.size();
3171  for (unsigned i = 0; i < NumMemOps; i++) {
3172    MVT VT = MemOps[i];
3173    unsigned VTSize = VT.getSizeInBits() / 8;
3174    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3175    SDValue Store = DAG.getStore(Chain, dl, Value,
3176                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3177                                 DstSV, DstSVOff + DstOff);
3178    OutChains.push_back(Store);
3179    DstOff += VTSize;
3180  }
3181
3182  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3183                     &OutChains[0], OutChains.size());
3184}
3185
3186SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3187                                SDValue Src, SDValue Size,
3188                                unsigned Align, bool AlwaysInline,
3189                                const Value *DstSV, uint64_t DstSVOff,
3190                                const Value *SrcSV, uint64_t SrcSVOff) {
3191
3192  // Check to see if we should lower the memcpy to loads and stores first.
3193  // For cases within the target-specified limits, this is the best choice.
3194  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3195  if (ConstantSize) {
3196    // Memcpy with size zero? Just return the original chain.
3197    if (ConstantSize->isNullValue())
3198      return Chain;
3199
3200    SDValue Result =
3201      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3202                              ConstantSize->getZExtValue(),
3203                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3204    if (Result.getNode())
3205      return Result;
3206  }
3207
3208  // Then check to see if we should lower the memcpy with target-specific
3209  // code. If the target chooses to do this, this is the next best.
3210  SDValue Result =
3211    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3212                                AlwaysInline,
3213                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3214  if (Result.getNode())
3215    return Result;
3216
3217  // If we really need inline code and the target declined to provide it,
3218  // use a (potentially long) sequence of loads and stores.
3219  if (AlwaysInline) {
3220    assert(ConstantSize && "AlwaysInline requires a constant size!");
3221    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3222                                   ConstantSize->getZExtValue(), Align, true,
3223                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3224  }
3225
3226  // Emit a library call.
3227  TargetLowering::ArgListTy Args;
3228  TargetLowering::ArgListEntry Entry;
3229  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3230  Entry.Node = Dst; Args.push_back(Entry);
3231  Entry.Node = Src; Args.push_back(Entry);
3232  Entry.Node = Size; Args.push_back(Entry);
3233  // FIXME: pass in DebugLoc
3234  std::pair<SDValue,SDValue> CallResult =
3235    TLI.LowerCallTo(Chain, Type::VoidTy,
3236                    false, false, false, false, CallingConv::C, false,
3237                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3238                    Args, *this, dl);
3239  return CallResult.second;
3240}
3241
3242SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3243                                 SDValue Src, SDValue Size,
3244                                 unsigned Align,
3245                                 const Value *DstSV, uint64_t DstSVOff,
3246                                 const Value *SrcSV, uint64_t SrcSVOff) {
3247
3248  // Check to see if we should lower the memmove to loads and stores first.
3249  // For cases within the target-specified limits, this is the best choice.
3250  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3251  if (ConstantSize) {
3252    // Memmove with size zero? Just return the original chain.
3253    if (ConstantSize->isNullValue())
3254      return Chain;
3255
3256    SDValue Result =
3257      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3258                               ConstantSize->getZExtValue(),
3259                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3260    if (Result.getNode())
3261      return Result;
3262  }
3263
3264  // Then check to see if we should lower the memmove with target-specific
3265  // code. If the target chooses to do this, this is the next best.
3266  SDValue Result =
3267    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3268                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3269  if (Result.getNode())
3270    return Result;
3271
3272  // Emit a library call.
3273  TargetLowering::ArgListTy Args;
3274  TargetLowering::ArgListEntry Entry;
3275  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3276  Entry.Node = Dst; Args.push_back(Entry);
3277  Entry.Node = Src; Args.push_back(Entry);
3278  Entry.Node = Size; Args.push_back(Entry);
3279  // FIXME:  pass in DebugLoc
3280  std::pair<SDValue,SDValue> CallResult =
3281    TLI.LowerCallTo(Chain, Type::VoidTy,
3282                    false, false, false, false, CallingConv::C, false,
3283                    getExternalSymbol("memmove", TLI.getPointerTy()),
3284                    Args, *this, dl);
3285  return CallResult.second;
3286}
3287
3288SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3289                                SDValue Src, SDValue Size,
3290                                unsigned Align,
3291                                const Value *DstSV, uint64_t DstSVOff) {
3292
3293  // Check to see if we should lower the memset to stores first.
3294  // For cases within the target-specified limits, this is the best choice.
3295  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3296  if (ConstantSize) {
3297    // Memset with size zero? Just return the original chain.
3298    if (ConstantSize->isNullValue())
3299      return Chain;
3300
3301    SDValue Result =
3302      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3303                      Align, DstSV, DstSVOff);
3304    if (Result.getNode())
3305      return Result;
3306  }
3307
3308  // Then check to see if we should lower the memset with target-specific
3309  // code. If the target chooses to do this, this is the next best.
3310  SDValue Result =
3311    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3312                                DstSV, DstSVOff);
3313  if (Result.getNode())
3314    return Result;
3315
3316  // Emit a library call.
3317  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3318  TargetLowering::ArgListTy Args;
3319  TargetLowering::ArgListEntry Entry;
3320  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3321  Args.push_back(Entry);
3322  // Extend or truncate the argument to be an i32 value for the call.
3323  if (Src.getValueType().bitsGT(MVT::i32))
3324    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3325  else
3326    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3327  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3328  Args.push_back(Entry);
3329  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3330  Args.push_back(Entry);
3331  // FIXME: pass in DebugLoc
3332  std::pair<SDValue,SDValue> CallResult =
3333    TLI.LowerCallTo(Chain, Type::VoidTy,
3334                    false, false, false, false, CallingConv::C, false,
3335                    getExternalSymbol("memset", TLI.getPointerTy()),
3336                    Args, *this, dl);
3337  return CallResult.second;
3338}
3339
3340SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3341                                SDValue Chain,
3342                                SDValue Ptr, SDValue Cmp,
3343                                SDValue Swp, const Value* PtrVal,
3344                                unsigned Alignment) {
3345  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3346  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3347
3348  MVT VT = Cmp.getValueType();
3349
3350  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3351    Alignment = getMVTAlignment(MemVT);
3352
3353  SDVTList VTs = getVTList(VT, MVT::Other);
3354  FoldingSetNodeID ID;
3355  ID.AddInteger(MemVT.getRawBits());
3356  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3357  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3358  void* IP = 0;
3359  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3360    return SDValue(E, 0);
3361  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3362  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3363                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3364  CSEMap.InsertNode(N, IP);
3365  AllNodes.push_back(N);
3366  return SDValue(N, 0);
3367}
3368
3369SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, MVT MemVT,
3370                                SDValue Chain,
3371                                SDValue Ptr, SDValue Val,
3372                                const Value* PtrVal,
3373                                unsigned Alignment) {
3374  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3375          Opcode == ISD::ATOMIC_LOAD_SUB ||
3376          Opcode == ISD::ATOMIC_LOAD_AND ||
3377          Opcode == ISD::ATOMIC_LOAD_OR ||
3378          Opcode == ISD::ATOMIC_LOAD_XOR ||
3379          Opcode == ISD::ATOMIC_LOAD_NAND ||
3380          Opcode == ISD::ATOMIC_LOAD_MIN ||
3381          Opcode == ISD::ATOMIC_LOAD_MAX ||
3382          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3383          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3384          Opcode == ISD::ATOMIC_SWAP) &&
3385         "Invalid Atomic Op");
3386
3387  MVT VT = Val.getValueType();
3388
3389  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3390    Alignment = getMVTAlignment(MemVT);
3391
3392  SDVTList VTs = getVTList(VT, MVT::Other);
3393  FoldingSetNodeID ID;
3394  ID.AddInteger(MemVT.getRawBits());
3395  SDValue Ops[] = {Chain, Ptr, Val};
3396  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3397  void* IP = 0;
3398  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3399    return SDValue(E, 0);
3400  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3401  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT,
3402                       Chain, Ptr, Val, PtrVal, Alignment);
3403  CSEMap.InsertNode(N, IP);
3404  AllNodes.push_back(N);
3405  return SDValue(N, 0);
3406}
3407
3408/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3409/// Allowed to return something different (and simpler) if Simplify is true.
3410SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3411                                     DebugLoc dl) {
3412  if (NumOps == 1)
3413    return Ops[0];
3414
3415  SmallVector<MVT, 4> VTs;
3416  VTs.reserve(NumOps);
3417  for (unsigned i = 0; i < NumOps; ++i)
3418    VTs.push_back(Ops[i].getValueType());
3419  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3420                 Ops, NumOps);
3421}
3422
3423SDValue
3424SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3425                                  const MVT *VTs, unsigned NumVTs,
3426                                  const SDValue *Ops, unsigned NumOps,
3427                                  MVT MemVT, const Value *srcValue, int SVOff,
3428                                  unsigned Align, bool Vol,
3429                                  bool ReadMem, bool WriteMem) {
3430  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3431                             MemVT, srcValue, SVOff, Align, Vol,
3432                             ReadMem, WriteMem);
3433}
3434
3435SDValue
3436SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3437                                  const SDValue *Ops, unsigned NumOps,
3438                                  MVT MemVT, const Value *srcValue, int SVOff,
3439                                  unsigned Align, bool Vol,
3440                                  bool ReadMem, bool WriteMem) {
3441  // Memoize the node unless it returns a flag.
3442  MemIntrinsicSDNode *N;
3443  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3444    FoldingSetNodeID ID;
3445    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3446    void *IP = 0;
3447    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3448      return SDValue(E, 0);
3449
3450    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3451    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3452                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3453    CSEMap.InsertNode(N, IP);
3454  } else {
3455    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3456    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT,
3457                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3458  }
3459  AllNodes.push_back(N);
3460  return SDValue(N, 0);
3461}
3462
3463SDValue
3464SelectionDAG::getCall(unsigned CallingConv, DebugLoc dl, bool IsVarArgs,
3465                      bool IsTailCall, bool IsInreg, SDVTList VTs,
3466                      const SDValue *Operands, unsigned NumOperands) {
3467  // Do not include isTailCall in the folding set profile.
3468  FoldingSetNodeID ID;
3469  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3470  ID.AddInteger(CallingConv);
3471  ID.AddInteger(IsVarArgs);
3472  void *IP = 0;
3473  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3474    // Instead of including isTailCall in the folding set, we just
3475    // set the flag of the existing node.
3476    if (!IsTailCall)
3477      cast<CallSDNode>(E)->setNotTailCall();
3478    return SDValue(E, 0);
3479  }
3480  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3481  new (N) CallSDNode(CallingConv, dl, IsVarArgs, IsTailCall, IsInreg,
3482                     VTs, Operands, NumOperands);
3483  CSEMap.InsertNode(N, IP);
3484  AllNodes.push_back(N);
3485  return SDValue(N, 0);
3486}
3487
3488SDValue
3489SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3490                      ISD::LoadExtType ExtType, MVT VT, SDValue Chain,
3491                      SDValue Ptr, SDValue Offset,
3492                      const Value *SV, int SVOffset, MVT EVT,
3493                      bool isVolatile, unsigned Alignment) {
3494  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3495    Alignment = getMVTAlignment(VT);
3496
3497  if (VT == EVT) {
3498    ExtType = ISD::NON_EXTLOAD;
3499  } else if (ExtType == ISD::NON_EXTLOAD) {
3500    assert(VT == EVT && "Non-extending load from different memory type!");
3501  } else {
3502    // Extending load.
3503    if (VT.isVector())
3504      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3505             "Invalid vector extload!");
3506    else
3507      assert(EVT.bitsLT(VT) &&
3508             "Should only be an extending load, not truncating!");
3509    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3510           "Cannot sign/zero extend a FP/Vector load!");
3511    assert(VT.isInteger() == EVT.isInteger() &&
3512           "Cannot convert from FP to Int or Int -> FP!");
3513  }
3514
3515  bool Indexed = AM != ISD::UNINDEXED;
3516  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3517         "Unindexed load with an offset!");
3518
3519  SDVTList VTs = Indexed ?
3520    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3521  SDValue Ops[] = { Chain, Ptr, Offset };
3522  FoldingSetNodeID ID;
3523  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3524  ID.AddInteger(EVT.getRawBits());
3525  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, isVolatile, Alignment));
3526  void *IP = 0;
3527  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3528    return SDValue(E, 0);
3529  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3530  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, EVT, SV, SVOffset,
3531                     Alignment, isVolatile);
3532  CSEMap.InsertNode(N, IP);
3533  AllNodes.push_back(N);
3534  return SDValue(N, 0);
3535}
3536
3537SDValue SelectionDAG::getLoad(MVT VT, DebugLoc dl,
3538                              SDValue Chain, SDValue Ptr,
3539                              const Value *SV, int SVOffset,
3540                              bool isVolatile, unsigned Alignment) {
3541  SDValue Undef = getUNDEF(Ptr.getValueType());
3542  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3543                 SV, SVOffset, VT, isVolatile, Alignment);
3544}
3545
3546SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, MVT VT,
3547                                 SDValue Chain, SDValue Ptr,
3548                                 const Value *SV,
3549                                 int SVOffset, MVT EVT,
3550                                 bool isVolatile, unsigned Alignment) {
3551  SDValue Undef = getUNDEF(Ptr.getValueType());
3552  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3553                 SV, SVOffset, EVT, isVolatile, Alignment);
3554}
3555
3556SDValue
3557SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3558                             SDValue Offset, ISD::MemIndexedMode AM) {
3559  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3560  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3561         "Load is already a indexed load!");
3562  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3563                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3564                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3565                 LD->isVolatile(), LD->getAlignment());
3566}
3567
3568SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3569                               SDValue Ptr, const Value *SV, int SVOffset,
3570                               bool isVolatile, unsigned Alignment) {
3571  MVT VT = Val.getValueType();
3572
3573  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3574    Alignment = getMVTAlignment(VT);
3575
3576  SDVTList VTs = getVTList(MVT::Other);
3577  SDValue Undef = getUNDEF(Ptr.getValueType());
3578  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3579  FoldingSetNodeID ID;
3580  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3581  ID.AddInteger(VT.getRawBits());
3582  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED,
3583                                     isVolatile, Alignment));
3584  void *IP = 0;
3585  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3586    return SDValue(E, 0);
3587  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3588  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false,
3589                      VT, SV, SVOffset, Alignment, isVolatile);
3590  CSEMap.InsertNode(N, IP);
3591  AllNodes.push_back(N);
3592  return SDValue(N, 0);
3593}
3594
3595SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3596                                    SDValue Ptr, const Value *SV,
3597                                    int SVOffset, MVT SVT,
3598                                    bool isVolatile, unsigned Alignment) {
3599  MVT VT = Val.getValueType();
3600
3601  if (VT == SVT)
3602    return getStore(Chain, dl, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3603
3604  assert(VT.bitsGT(SVT) && "Not a truncation?");
3605  assert(VT.isInteger() == SVT.isInteger() &&
3606         "Can't do FP-INT conversion!");
3607
3608  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3609    Alignment = getMVTAlignment(VT);
3610
3611  SDVTList VTs = getVTList(MVT::Other);
3612  SDValue Undef = getUNDEF(Ptr.getValueType());
3613  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3614  FoldingSetNodeID ID;
3615  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3616  ID.AddInteger(SVT.getRawBits());
3617  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED,
3618                                     isVolatile, Alignment));
3619  void *IP = 0;
3620  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3621    return SDValue(E, 0);
3622  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3623  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true,
3624                      SVT, SV, SVOffset, Alignment, isVolatile);
3625  CSEMap.InsertNode(N, IP);
3626  AllNodes.push_back(N);
3627  return SDValue(N, 0);
3628}
3629
3630SDValue
3631SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3632                              SDValue Offset, ISD::MemIndexedMode AM) {
3633  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3634  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3635         "Store is already a indexed store!");
3636  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3637  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3638  FoldingSetNodeID ID;
3639  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3640  ID.AddInteger(ST->getMemoryVT().getRawBits());
3641  ID.AddInteger(ST->getRawSubclassData());
3642  void *IP = 0;
3643  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3644    return SDValue(E, 0);
3645  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3646  new (N) StoreSDNode(Ops, dl, VTs, AM,
3647                      ST->isTruncatingStore(), ST->getMemoryVT(),
3648                      ST->getSrcValue(), ST->getSrcValueOffset(),
3649                      ST->getAlignment(), ST->isVolatile());
3650  CSEMap.InsertNode(N, IP);
3651  AllNodes.push_back(N);
3652  return SDValue(N, 0);
3653}
3654
3655SDValue SelectionDAG::getVAArg(MVT VT, DebugLoc dl,
3656                               SDValue Chain, SDValue Ptr,
3657                               SDValue SV) {
3658  SDValue Ops[] = { Chain, Ptr, SV };
3659  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
3660}
3661
3662SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3663                              const SDUse *Ops, unsigned NumOps) {
3664  switch (NumOps) {
3665  case 0: return getNode(Opcode, DL, VT);
3666  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3667  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3668  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3669  default: break;
3670  }
3671
3672  // Copy from an SDUse array into an SDValue array for use with
3673  // the regular getNode logic.
3674  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3675  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
3676}
3677
3678SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, MVT VT,
3679                              const SDValue *Ops, unsigned NumOps) {
3680  switch (NumOps) {
3681  case 0: return getNode(Opcode, DL, VT);
3682  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3683  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3684  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3685  default: break;
3686  }
3687
3688  switch (Opcode) {
3689  default: break;
3690  case ISD::SELECT_CC: {
3691    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3692    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3693           "LHS and RHS of condition must have same type!");
3694    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3695           "True and False arms of SelectCC must have same type!");
3696    assert(Ops[2].getValueType() == VT &&
3697           "select_cc node must be of same type as true and false value!");
3698    break;
3699  }
3700  case ISD::BR_CC: {
3701    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3702    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3703           "LHS/RHS of comparison should match types!");
3704    break;
3705  }
3706  }
3707
3708  // Memoize nodes.
3709  SDNode *N;
3710  SDVTList VTs = getVTList(VT);
3711
3712  if (VT != MVT::Flag) {
3713    FoldingSetNodeID ID;
3714    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3715    void *IP = 0;
3716
3717    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3718      return SDValue(E, 0);
3719
3720    N = NodeAllocator.Allocate<SDNode>();
3721    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3722    CSEMap.InsertNode(N, IP);
3723  } else {
3724    N = NodeAllocator.Allocate<SDNode>();
3725    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3726  }
3727
3728  AllNodes.push_back(N);
3729#ifndef NDEBUG
3730  VerifyNode(N);
3731#endif
3732  return SDValue(N, 0);
3733}
3734
3735SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3736                              const std::vector<MVT> &ResultTys,
3737                              const SDValue *Ops, unsigned NumOps) {
3738  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
3739                 Ops, NumOps);
3740}
3741
3742SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
3743                              const MVT *VTs, unsigned NumVTs,
3744                              const SDValue *Ops, unsigned NumOps) {
3745  if (NumVTs == 1)
3746    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
3747  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
3748}
3749
3750SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3751                              const SDValue *Ops, unsigned NumOps) {
3752  if (VTList.NumVTs == 1)
3753    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
3754
3755  switch (Opcode) {
3756  // FIXME: figure out how to safely handle things like
3757  // int foo(int x) { return 1 << (x & 255); }
3758  // int bar() { return foo(256); }
3759#if 0
3760  case ISD::SRA_PARTS:
3761  case ISD::SRL_PARTS:
3762  case ISD::SHL_PARTS:
3763    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3764        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3765      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3766    else if (N3.getOpcode() == ISD::AND)
3767      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3768        // If the and is only masking out bits that cannot effect the shift,
3769        // eliminate the and.
3770        unsigned NumBits = VT.getSizeInBits()*2;
3771        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3772          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
3773      }
3774    break;
3775#endif
3776  }
3777
3778  // Memoize the node unless it returns a flag.
3779  SDNode *N;
3780  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3781    FoldingSetNodeID ID;
3782    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3783    void *IP = 0;
3784    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3785      return SDValue(E, 0);
3786    if (NumOps == 1) {
3787      N = NodeAllocator.Allocate<UnarySDNode>();
3788      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3789    } else if (NumOps == 2) {
3790      N = NodeAllocator.Allocate<BinarySDNode>();
3791      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3792    } else if (NumOps == 3) {
3793      N = NodeAllocator.Allocate<TernarySDNode>();
3794      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3795    } else {
3796      N = NodeAllocator.Allocate<SDNode>();
3797      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3798    }
3799    CSEMap.InsertNode(N, IP);
3800  } else {
3801    if (NumOps == 1) {
3802      N = NodeAllocator.Allocate<UnarySDNode>();
3803      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
3804    } else if (NumOps == 2) {
3805      N = NodeAllocator.Allocate<BinarySDNode>();
3806      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
3807    } else if (NumOps == 3) {
3808      N = NodeAllocator.Allocate<TernarySDNode>();
3809      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
3810    } else {
3811      N = NodeAllocator.Allocate<SDNode>();
3812      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
3813    }
3814  }
3815  AllNodes.push_back(N);
3816#ifndef NDEBUG
3817  VerifyNode(N);
3818#endif
3819  return SDValue(N, 0);
3820}
3821
3822SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
3823  return getNode(Opcode, DL, VTList, 0, 0);
3824}
3825
3826SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3827                              SDValue N1) {
3828  SDValue Ops[] = { N1 };
3829  return getNode(Opcode, DL, VTList, Ops, 1);
3830}
3831
3832SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3833                              SDValue N1, SDValue N2) {
3834  SDValue Ops[] = { N1, N2 };
3835  return getNode(Opcode, DL, VTList, Ops, 2);
3836}
3837
3838SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3839                              SDValue N1, SDValue N2, SDValue N3) {
3840  SDValue Ops[] = { N1, N2, N3 };
3841  return getNode(Opcode, DL, VTList, Ops, 3);
3842}
3843
3844SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3845                              SDValue N1, SDValue N2, SDValue N3,
3846                              SDValue N4) {
3847  SDValue Ops[] = { N1, N2, N3, N4 };
3848  return getNode(Opcode, DL, VTList, Ops, 4);
3849}
3850
3851SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
3852                              SDValue N1, SDValue N2, SDValue N3,
3853                              SDValue N4, SDValue N5) {
3854  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3855  return getNode(Opcode, DL, VTList, Ops, 5);
3856}
3857
3858SDVTList SelectionDAG::getVTList(MVT VT) {
3859  return makeVTList(SDNode::getValueTypeList(VT), 1);
3860}
3861
3862SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3863  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3864       E = VTList.rend(); I != E; ++I)
3865    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3866      return *I;
3867
3868  MVT *Array = Allocator.Allocate<MVT>(2);
3869  Array[0] = VT1;
3870  Array[1] = VT2;
3871  SDVTList Result = makeVTList(Array, 2);
3872  VTList.push_back(Result);
3873  return Result;
3874}
3875
3876SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3877  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3878       E = VTList.rend(); I != E; ++I)
3879    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3880                          I->VTs[2] == VT3)
3881      return *I;
3882
3883  MVT *Array = Allocator.Allocate<MVT>(3);
3884  Array[0] = VT1;
3885  Array[1] = VT2;
3886  Array[2] = VT3;
3887  SDVTList Result = makeVTList(Array, 3);
3888  VTList.push_back(Result);
3889  return Result;
3890}
3891
3892SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
3893  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3894       E = VTList.rend(); I != E; ++I)
3895    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3896                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
3897      return *I;
3898
3899  MVT *Array = Allocator.Allocate<MVT>(3);
3900  Array[0] = VT1;
3901  Array[1] = VT2;
3902  Array[2] = VT3;
3903  Array[3] = VT4;
3904  SDVTList Result = makeVTList(Array, 4);
3905  VTList.push_back(Result);
3906  return Result;
3907}
3908
3909SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3910  switch (NumVTs) {
3911    case 0: assert(0 && "Cannot have nodes without results!");
3912    case 1: return getVTList(VTs[0]);
3913    case 2: return getVTList(VTs[0], VTs[1]);
3914    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3915    default: break;
3916  }
3917
3918  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3919       E = VTList.rend(); I != E; ++I) {
3920    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3921      continue;
3922
3923    bool NoMatch = false;
3924    for (unsigned i = 2; i != NumVTs; ++i)
3925      if (VTs[i] != I->VTs[i]) {
3926        NoMatch = true;
3927        break;
3928      }
3929    if (!NoMatch)
3930      return *I;
3931  }
3932
3933  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3934  std::copy(VTs, VTs+NumVTs, Array);
3935  SDVTList Result = makeVTList(Array, NumVTs);
3936  VTList.push_back(Result);
3937  return Result;
3938}
3939
3940
3941/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3942/// specified operands.  If the resultant node already exists in the DAG,
3943/// this does not modify the specified node, instead it returns the node that
3944/// already exists.  If the resultant node does not exist in the DAG, the
3945/// input node is returned.  As a degenerate case, if you specify the same
3946/// input operands as the node already has, the input node is returned.
3947SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3948  SDNode *N = InN.getNode();
3949  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3950
3951  // Check to see if there is no change.
3952  if (Op == N->getOperand(0)) return InN;
3953
3954  // See if the modified node already exists.
3955  void *InsertPos = 0;
3956  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3957    return SDValue(Existing, InN.getResNo());
3958
3959  // Nope it doesn't.  Remove the node from its current place in the maps.
3960  if (InsertPos)
3961    if (!RemoveNodeFromCSEMaps(N))
3962      InsertPos = 0;
3963
3964  // Now we update the operands.
3965  N->OperandList[0].set(Op);
3966
3967  // If this gets put into a CSE map, add it.
3968  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3969  return InN;
3970}
3971
3972SDValue SelectionDAG::
3973UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3974  SDNode *N = InN.getNode();
3975  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3976
3977  // Check to see if there is no change.
3978  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3979    return InN;   // No operands changed, just return the input node.
3980
3981  // See if the modified node already exists.
3982  void *InsertPos = 0;
3983  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3984    return SDValue(Existing, InN.getResNo());
3985
3986  // Nope it doesn't.  Remove the node from its current place in the maps.
3987  if (InsertPos)
3988    if (!RemoveNodeFromCSEMaps(N))
3989      InsertPos = 0;
3990
3991  // Now we update the operands.
3992  if (N->OperandList[0] != Op1)
3993    N->OperandList[0].set(Op1);
3994  if (N->OperandList[1] != Op2)
3995    N->OperandList[1].set(Op2);
3996
3997  // If this gets put into a CSE map, add it.
3998  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3999  return InN;
4000}
4001
4002SDValue SelectionDAG::
4003UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4004  SDValue Ops[] = { Op1, Op2, Op3 };
4005  return UpdateNodeOperands(N, Ops, 3);
4006}
4007
4008SDValue SelectionDAG::
4009UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4010                   SDValue Op3, SDValue Op4) {
4011  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4012  return UpdateNodeOperands(N, Ops, 4);
4013}
4014
4015SDValue SelectionDAG::
4016UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4017                   SDValue Op3, SDValue Op4, SDValue Op5) {
4018  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4019  return UpdateNodeOperands(N, Ops, 5);
4020}
4021
4022SDValue SelectionDAG::
4023UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4024  SDNode *N = InN.getNode();
4025  assert(N->getNumOperands() == NumOps &&
4026         "Update with wrong number of operands");
4027
4028  // Check to see if there is no change.
4029  bool AnyChange = false;
4030  for (unsigned i = 0; i != NumOps; ++i) {
4031    if (Ops[i] != N->getOperand(i)) {
4032      AnyChange = true;
4033      break;
4034    }
4035  }
4036
4037  // No operands changed, just return the input node.
4038  if (!AnyChange) return InN;
4039
4040  // See if the modified node already exists.
4041  void *InsertPos = 0;
4042  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4043    return SDValue(Existing, InN.getResNo());
4044
4045  // Nope it doesn't.  Remove the node from its current place in the maps.
4046  if (InsertPos)
4047    if (!RemoveNodeFromCSEMaps(N))
4048      InsertPos = 0;
4049
4050  // Now we update the operands.
4051  for (unsigned i = 0; i != NumOps; ++i)
4052    if (N->OperandList[i] != Ops[i])
4053      N->OperandList[i].set(Ops[i]);
4054
4055  // If this gets put into a CSE map, add it.
4056  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4057  return InN;
4058}
4059
4060/// DropOperands - Release the operands and set this node to have
4061/// zero operands.
4062void SDNode::DropOperands() {
4063  // Unlike the code in MorphNodeTo that does this, we don't need to
4064  // watch for dead nodes here.
4065  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4066    SDUse &Use = *I++;
4067    Use.set(SDValue());
4068  }
4069}
4070
4071/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4072/// machine opcode.
4073///
4074SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4075                                   MVT VT) {
4076  SDVTList VTs = getVTList(VT);
4077  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4078}
4079
4080SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4081                                   MVT VT, SDValue Op1) {
4082  SDVTList VTs = getVTList(VT);
4083  SDValue Ops[] = { Op1 };
4084  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4085}
4086
4087SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4088                                   MVT VT, SDValue Op1,
4089                                   SDValue Op2) {
4090  SDVTList VTs = getVTList(VT);
4091  SDValue Ops[] = { Op1, Op2 };
4092  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4093}
4094
4095SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4096                                   MVT VT, SDValue Op1,
4097                                   SDValue Op2, SDValue Op3) {
4098  SDVTList VTs = getVTList(VT);
4099  SDValue Ops[] = { Op1, Op2, Op3 };
4100  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4101}
4102
4103SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4104                                   MVT VT, const SDValue *Ops,
4105                                   unsigned NumOps) {
4106  SDVTList VTs = getVTList(VT);
4107  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4108}
4109
4110SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4111                                   MVT VT1, MVT VT2, const SDValue *Ops,
4112                                   unsigned NumOps) {
4113  SDVTList VTs = getVTList(VT1, VT2);
4114  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4115}
4116
4117SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4118                                   MVT VT1, MVT VT2) {
4119  SDVTList VTs = getVTList(VT1, VT2);
4120  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4121}
4122
4123SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4124                                   MVT VT1, MVT VT2, MVT VT3,
4125                                   const SDValue *Ops, unsigned NumOps) {
4126  SDVTList VTs = getVTList(VT1, VT2, VT3);
4127  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4128}
4129
4130SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4131                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4132                                   const SDValue *Ops, unsigned NumOps) {
4133  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4134  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4135}
4136
4137SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4138                                   MVT VT1, MVT VT2,
4139                                   SDValue Op1) {
4140  SDVTList VTs = getVTList(VT1, VT2);
4141  SDValue Ops[] = { Op1 };
4142  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4143}
4144
4145SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4146                                   MVT VT1, MVT VT2,
4147                                   SDValue Op1, SDValue Op2) {
4148  SDVTList VTs = getVTList(VT1, VT2);
4149  SDValue Ops[] = { Op1, Op2 };
4150  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4151}
4152
4153SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4154                                   MVT VT1, MVT VT2,
4155                                   SDValue Op1, SDValue Op2,
4156                                   SDValue Op3) {
4157  SDVTList VTs = getVTList(VT1, VT2);
4158  SDValue Ops[] = { Op1, Op2, Op3 };
4159  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4160}
4161
4162SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4163                                   MVT VT1, MVT VT2, MVT VT3,
4164                                   SDValue Op1, SDValue Op2,
4165                                   SDValue Op3) {
4166  SDVTList VTs = getVTList(VT1, VT2, VT3);
4167  SDValue Ops[] = { Op1, Op2, Op3 };
4168  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4169}
4170
4171SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4172                                   SDVTList VTs, const SDValue *Ops,
4173                                   unsigned NumOps) {
4174  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4175}
4176
4177SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4178                                  MVT VT) {
4179  SDVTList VTs = getVTList(VT);
4180  return MorphNodeTo(N, Opc, VTs, 0, 0);
4181}
4182
4183SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4184                                  MVT VT, SDValue Op1) {
4185  SDVTList VTs = getVTList(VT);
4186  SDValue Ops[] = { Op1 };
4187  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4188}
4189
4190SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4191                                  MVT VT, SDValue Op1,
4192                                  SDValue Op2) {
4193  SDVTList VTs = getVTList(VT);
4194  SDValue Ops[] = { Op1, Op2 };
4195  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4196}
4197
4198SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4199                                  MVT VT, SDValue Op1,
4200                                  SDValue Op2, SDValue Op3) {
4201  SDVTList VTs = getVTList(VT);
4202  SDValue Ops[] = { Op1, Op2, Op3 };
4203  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4204}
4205
4206SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4207                                  MVT VT, const SDValue *Ops,
4208                                  unsigned NumOps) {
4209  SDVTList VTs = getVTList(VT);
4210  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4211}
4212
4213SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4214                                  MVT VT1, MVT VT2, const SDValue *Ops,
4215                                  unsigned NumOps) {
4216  SDVTList VTs = getVTList(VT1, VT2);
4217  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4218}
4219
4220SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4221                                  MVT VT1, MVT VT2) {
4222  SDVTList VTs = getVTList(VT1, VT2);
4223  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4224}
4225
4226SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4227                                  MVT VT1, MVT VT2, MVT VT3,
4228                                  const SDValue *Ops, unsigned NumOps) {
4229  SDVTList VTs = getVTList(VT1, VT2, VT3);
4230  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4231}
4232
4233SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4234                                  MVT VT1, MVT VT2,
4235                                  SDValue Op1) {
4236  SDVTList VTs = getVTList(VT1, VT2);
4237  SDValue Ops[] = { Op1 };
4238  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4239}
4240
4241SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4242                                  MVT VT1, MVT VT2,
4243                                  SDValue Op1, SDValue Op2) {
4244  SDVTList VTs = getVTList(VT1, VT2);
4245  SDValue Ops[] = { Op1, Op2 };
4246  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4247}
4248
4249SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4250                                  MVT VT1, MVT VT2,
4251                                  SDValue Op1, SDValue Op2,
4252                                  SDValue Op3) {
4253  SDVTList VTs = getVTList(VT1, VT2);
4254  SDValue Ops[] = { Op1, Op2, Op3 };
4255  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4256}
4257
4258/// MorphNodeTo - These *mutate* the specified node to have the specified
4259/// return type, opcode, and operands.
4260///
4261/// Note that MorphNodeTo returns the resultant node.  If there is already a
4262/// node of the specified opcode and operands, it returns that node instead of
4263/// the current one.  Note that the DebugLoc need not be the same.
4264///
4265/// Using MorphNodeTo is faster than creating a new node and swapping it in
4266/// with ReplaceAllUsesWith both because it often avoids allocating a new
4267/// node, and because it doesn't require CSE recalculation for any of
4268/// the node's users.
4269///
4270SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4271                                  SDVTList VTs, const SDValue *Ops,
4272                                  unsigned NumOps) {
4273  // If an identical node already exists, use it.
4274  void *IP = 0;
4275  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4276    FoldingSetNodeID ID;
4277    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4278    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4279      return ON;
4280  }
4281
4282  if (!RemoveNodeFromCSEMaps(N))
4283    IP = 0;
4284
4285  // Start the morphing.
4286  N->NodeType = Opc;
4287  N->ValueList = VTs.VTs;
4288  N->NumValues = VTs.NumVTs;
4289
4290  // Clear the operands list, updating used nodes to remove this from their
4291  // use list.  Keep track of any operands that become dead as a result.
4292  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4293  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4294    SDUse &Use = *I++;
4295    SDNode *Used = Use.getNode();
4296    Use.set(SDValue());
4297    if (Used->use_empty())
4298      DeadNodeSet.insert(Used);
4299  }
4300
4301  // If NumOps is larger than the # of operands we currently have, reallocate
4302  // the operand list.
4303  if (NumOps > N->NumOperands) {
4304    if (N->OperandsNeedDelete)
4305      delete[] N->OperandList;
4306
4307    if (N->isMachineOpcode()) {
4308      // We're creating a final node that will live unmorphed for the
4309      // remainder of the current SelectionDAG iteration, so we can allocate
4310      // the operands directly out of a pool with no recycling metadata.
4311      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4312      N->OperandsNeedDelete = false;
4313    } else {
4314      N->OperandList = new SDUse[NumOps];
4315      N->OperandsNeedDelete = true;
4316    }
4317  }
4318
4319  // Assign the new operands.
4320  N->NumOperands = NumOps;
4321  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4322    N->OperandList[i].setUser(N);
4323    N->OperandList[i].setInitial(Ops[i]);
4324  }
4325
4326  // Delete any nodes that are still dead after adding the uses for the
4327  // new operands.
4328  SmallVector<SDNode *, 16> DeadNodes;
4329  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4330       E = DeadNodeSet.end(); I != E; ++I)
4331    if ((*I)->use_empty())
4332      DeadNodes.push_back(*I);
4333  RemoveDeadNodes(DeadNodes);
4334
4335  if (IP)
4336    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4337  return N;
4338}
4339
4340
4341/// getTargetNode - These are used for target selectors to create a new node
4342/// with specified return type(s), target opcode, and operands.
4343///
4344/// Note that getTargetNode returns the resultant node.  If there is already a
4345/// node of the specified opcode and operands, it returns that node instead of
4346/// the current one.
4347SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT) {
4348  return getNode(~Opcode, dl, VT).getNode();
4349}
4350
4351SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4352                                    SDValue Op1) {
4353  return getNode(~Opcode, dl, VT, Op1).getNode();
4354}
4355
4356SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4357                                    SDValue Op1, SDValue Op2) {
4358  return getNode(~Opcode, dl, VT, Op1, Op2).getNode();
4359}
4360
4361SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4362                                    SDValue Op1, SDValue Op2,
4363                                    SDValue Op3) {
4364  return getNode(~Opcode, dl, VT, Op1, Op2, Op3).getNode();
4365}
4366
4367SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT,
4368                                    const SDValue *Ops, unsigned NumOps) {
4369  return getNode(~Opcode, dl, VT, Ops, NumOps).getNode();
4370}
4371
4372SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4373                                    MVT VT1, MVT VT2) {
4374  SDVTList VTs = getVTList(VT1, VT2);
4375  SDValue Op;
4376  return getNode(~Opcode, dl, VTs, &Op, 0).getNode();
4377}
4378
4379SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4380                                    MVT VT2, SDValue Op1) {
4381  SDVTList VTs = getVTList(VT1, VT2);
4382  return getNode(~Opcode, dl, VTs, &Op1, 1).getNode();
4383}
4384
4385SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4386                                    MVT VT2, SDValue Op1,
4387                                    SDValue Op2) {
4388  SDVTList VTs = getVTList(VT1, VT2);
4389  SDValue Ops[] = { Op1, Op2 };
4390  return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4391}
4392
4393SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4394                                    MVT VT2, SDValue Op1,
4395                                    SDValue Op2, SDValue Op3) {
4396  SDVTList VTs = getVTList(VT1, VT2);
4397  SDValue Ops[] = { Op1, Op2, Op3 };
4398  return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4399}
4400
4401SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4402                                    MVT VT1, MVT VT2,
4403                                    const SDValue *Ops, unsigned NumOps) {
4404  SDVTList VTs = getVTList(VT1, VT2);
4405  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4406}
4407
4408SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4409                                    MVT VT1, MVT VT2, MVT VT3,
4410                                    SDValue Op1, SDValue Op2) {
4411  SDVTList VTs = getVTList(VT1, VT2, VT3);
4412  SDValue Ops[] = { Op1, Op2 };
4413  return getNode(~Opcode, dl, VTs, Ops, 2).getNode();
4414}
4415
4416SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4417                                    MVT VT1, MVT VT2, MVT VT3,
4418                                    SDValue Op1, SDValue Op2,
4419                                    SDValue Op3) {
4420  SDVTList VTs = getVTList(VT1, VT2, VT3);
4421  SDValue Ops[] = { Op1, Op2, Op3 };
4422  return getNode(~Opcode, dl, VTs, Ops, 3).getNode();
4423}
4424
4425SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4426                                    MVT VT1, MVT VT2, MVT VT3,
4427                                    const SDValue *Ops, unsigned NumOps) {
4428  SDVTList VTs = getVTList(VT1, VT2, VT3);
4429  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4430}
4431
4432SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl, MVT VT1,
4433                                    MVT VT2, MVT VT3, MVT VT4,
4434                                    const SDValue *Ops, unsigned NumOps) {
4435  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4436  return getNode(~Opcode, dl, VTs, Ops, NumOps).getNode();
4437}
4438
4439SDNode *SelectionDAG::getTargetNode(unsigned Opcode, DebugLoc dl,
4440                                    const std::vector<MVT> &ResultTys,
4441                                    const SDValue *Ops, unsigned NumOps) {
4442  return getNode(~Opcode, dl, ResultTys, Ops, NumOps).getNode();
4443}
4444
4445/// getNodeIfExists - Get the specified node if it's already available, or
4446/// else return NULL.
4447SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4448                                      const SDValue *Ops, unsigned NumOps) {
4449  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4450    FoldingSetNodeID ID;
4451    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4452    void *IP = 0;
4453    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4454      return E;
4455  }
4456  return NULL;
4457}
4458
4459/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4460/// This can cause recursive merging of nodes in the DAG.
4461///
4462/// This version assumes From has a single result value.
4463///
4464void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4465                                      DAGUpdateListener *UpdateListener) {
4466  SDNode *From = FromN.getNode();
4467  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4468         "Cannot replace with this method!");
4469  assert(From != To.getNode() && "Cannot replace uses of with self");
4470
4471  // Iterate over all the existing uses of From. New uses will be added
4472  // to the beginning of the use list, which we avoid visiting.
4473  // This specifically avoids visiting uses of From that arise while the
4474  // replacement is happening, because any such uses would be the result
4475  // of CSE: If an existing node looks like From after one of its operands
4476  // is replaced by To, we don't want to replace of all its users with To
4477  // too. See PR3018 for more info.
4478  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4479  while (UI != UE) {
4480    SDNode *User = *UI;
4481
4482    // This node is about to morph, remove its old self from the CSE maps.
4483    RemoveNodeFromCSEMaps(User);
4484
4485    // A user can appear in a use list multiple times, and when this
4486    // happens the uses are usually next to each other in the list.
4487    // To help reduce the number of CSE recomputations, process all
4488    // the uses of this user that we can find this way.
4489    do {
4490      SDUse &Use = UI.getUse();
4491      ++UI;
4492      Use.set(To);
4493    } while (UI != UE && *UI == User);
4494
4495    // Now that we have modified User, add it back to the CSE maps.  If it
4496    // already exists there, recursively merge the results together.
4497    AddModifiedNodeToCSEMaps(User, UpdateListener);
4498  }
4499}
4500
4501/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4502/// This can cause recursive merging of nodes in the DAG.
4503///
4504/// This version assumes that for each value of From, there is a
4505/// corresponding value in To in the same position with the same type.
4506///
4507void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4508                                      DAGUpdateListener *UpdateListener) {
4509#ifndef NDEBUG
4510  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4511    assert((!From->hasAnyUseOfValue(i) ||
4512            From->getValueType(i) == To->getValueType(i)) &&
4513           "Cannot use this version of ReplaceAllUsesWith!");
4514#endif
4515
4516  // Handle the trivial case.
4517  if (From == To)
4518    return;
4519
4520  // Iterate over just the existing users of From. See the comments in
4521  // the ReplaceAllUsesWith above.
4522  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4523  while (UI != UE) {
4524    SDNode *User = *UI;
4525
4526    // This node is about to morph, remove its old self from the CSE maps.
4527    RemoveNodeFromCSEMaps(User);
4528
4529    // A user can appear in a use list multiple times, and when this
4530    // happens the uses are usually next to each other in the list.
4531    // To help reduce the number of CSE recomputations, process all
4532    // the uses of this user that we can find this way.
4533    do {
4534      SDUse &Use = UI.getUse();
4535      ++UI;
4536      Use.setNode(To);
4537    } while (UI != UE && *UI == User);
4538
4539    // Now that we have modified User, add it back to the CSE maps.  If it
4540    // already exists there, recursively merge the results together.
4541    AddModifiedNodeToCSEMaps(User, UpdateListener);
4542  }
4543}
4544
4545/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4546/// This can cause recursive merging of nodes in the DAG.
4547///
4548/// This version can replace From with any result values.  To must match the
4549/// number and types of values returned by From.
4550void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4551                                      const SDValue *To,
4552                                      DAGUpdateListener *UpdateListener) {
4553  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4554    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4555
4556  // Iterate over just the existing users of From. See the comments in
4557  // the ReplaceAllUsesWith above.
4558  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4559  while (UI != UE) {
4560    SDNode *User = *UI;
4561
4562    // This node is about to morph, remove its old self from the CSE maps.
4563    RemoveNodeFromCSEMaps(User);
4564
4565    // A user can appear in a use list multiple times, and when this
4566    // happens the uses are usually next to each other in the list.
4567    // To help reduce the number of CSE recomputations, process all
4568    // the uses of this user that we can find this way.
4569    do {
4570      SDUse &Use = UI.getUse();
4571      const SDValue &ToOp = To[Use.getResNo()];
4572      ++UI;
4573      Use.set(ToOp);
4574    } while (UI != UE && *UI == User);
4575
4576    // Now that we have modified User, add it back to the CSE maps.  If it
4577    // already exists there, recursively merge the results together.
4578    AddModifiedNodeToCSEMaps(User, UpdateListener);
4579  }
4580}
4581
4582/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4583/// uses of other values produced by From.getNode() alone.  The Deleted
4584/// vector is handled the same way as for ReplaceAllUsesWith.
4585void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4586                                             DAGUpdateListener *UpdateListener){
4587  // Handle the really simple, really trivial case efficiently.
4588  if (From == To) return;
4589
4590  // Handle the simple, trivial, case efficiently.
4591  if (From.getNode()->getNumValues() == 1) {
4592    ReplaceAllUsesWith(From, To, UpdateListener);
4593    return;
4594  }
4595
4596  // Iterate over just the existing users of From. See the comments in
4597  // the ReplaceAllUsesWith above.
4598  SDNode::use_iterator UI = From.getNode()->use_begin(),
4599                       UE = From.getNode()->use_end();
4600  while (UI != UE) {
4601    SDNode *User = *UI;
4602    bool UserRemovedFromCSEMaps = false;
4603
4604    // A user can appear in a use list multiple times, and when this
4605    // happens the uses are usually next to each other in the list.
4606    // To help reduce the number of CSE recomputations, process all
4607    // the uses of this user that we can find this way.
4608    do {
4609      SDUse &Use = UI.getUse();
4610
4611      // Skip uses of different values from the same node.
4612      if (Use.getResNo() != From.getResNo()) {
4613        ++UI;
4614        continue;
4615      }
4616
4617      // If this node hasn't been modified yet, it's still in the CSE maps,
4618      // so remove its old self from the CSE maps.
4619      if (!UserRemovedFromCSEMaps) {
4620        RemoveNodeFromCSEMaps(User);
4621        UserRemovedFromCSEMaps = true;
4622      }
4623
4624      ++UI;
4625      Use.set(To);
4626    } while (UI != UE && *UI == User);
4627
4628    // We are iterating over all uses of the From node, so if a use
4629    // doesn't use the specific value, no changes are made.
4630    if (!UserRemovedFromCSEMaps)
4631      continue;
4632
4633    // Now that we have modified User, add it back to the CSE maps.  If it
4634    // already exists there, recursively merge the results together.
4635    AddModifiedNodeToCSEMaps(User, UpdateListener);
4636  }
4637}
4638
4639namespace {
4640  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
4641  /// to record information about a use.
4642  struct UseMemo {
4643    SDNode *User;
4644    unsigned Index;
4645    SDUse *Use;
4646  };
4647
4648  /// operator< - Sort Memos by User.
4649  bool operator<(const UseMemo &L, const UseMemo &R) {
4650    return (intptr_t)L.User < (intptr_t)R.User;
4651  }
4652}
4653
4654/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4655/// uses of other values produced by From.getNode() alone.  The same value
4656/// may appear in both the From and To list.  The Deleted vector is
4657/// handled the same way as for ReplaceAllUsesWith.
4658void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4659                                              const SDValue *To,
4660                                              unsigned Num,
4661                                              DAGUpdateListener *UpdateListener){
4662  // Handle the simple, trivial case efficiently.
4663  if (Num == 1)
4664    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4665
4666  // Read up all the uses and make records of them. This helps
4667  // processing new uses that are introduced during the
4668  // replacement process.
4669  SmallVector<UseMemo, 4> Uses;
4670  for (unsigned i = 0; i != Num; ++i) {
4671    unsigned FromResNo = From[i].getResNo();
4672    SDNode *FromNode = From[i].getNode();
4673    for (SDNode::use_iterator UI = FromNode->use_begin(),
4674         E = FromNode->use_end(); UI != E; ++UI) {
4675      SDUse &Use = UI.getUse();
4676      if (Use.getResNo() == FromResNo) {
4677        UseMemo Memo = { *UI, i, &Use };
4678        Uses.push_back(Memo);
4679      }
4680    }
4681  }
4682
4683  // Sort the uses, so that all the uses from a given User are together.
4684  std::sort(Uses.begin(), Uses.end());
4685
4686  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
4687       UseIndex != UseIndexEnd; ) {
4688    // We know that this user uses some value of From.  If it is the right
4689    // value, update it.
4690    SDNode *User = Uses[UseIndex].User;
4691
4692    // This node is about to morph, remove its old self from the CSE maps.
4693    RemoveNodeFromCSEMaps(User);
4694
4695    // The Uses array is sorted, so all the uses for a given User
4696    // are next to each other in the list.
4697    // To help reduce the number of CSE recomputations, process all
4698    // the uses of this user that we can find this way.
4699    do {
4700      unsigned i = Uses[UseIndex].Index;
4701      SDUse &Use = *Uses[UseIndex].Use;
4702      ++UseIndex;
4703
4704      Use.set(To[i]);
4705    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
4706
4707    // Now that we have modified User, add it back to the CSE maps.  If it
4708    // already exists there, recursively merge the results together.
4709    AddModifiedNodeToCSEMaps(User, UpdateListener);
4710  }
4711}
4712
4713/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4714/// based on their topological order. It returns the maximum id and a vector
4715/// of the SDNodes* in assigned order by reference.
4716unsigned SelectionDAG::AssignTopologicalOrder() {
4717
4718  unsigned DAGSize = 0;
4719
4720  // SortedPos tracks the progress of the algorithm. Nodes before it are
4721  // sorted, nodes after it are unsorted. When the algorithm completes
4722  // it is at the end of the list.
4723  allnodes_iterator SortedPos = allnodes_begin();
4724
4725  // Visit all the nodes. Move nodes with no operands to the front of
4726  // the list immediately. Annotate nodes that do have operands with their
4727  // operand count. Before we do this, the Node Id fields of the nodes
4728  // may contain arbitrary values. After, the Node Id fields for nodes
4729  // before SortedPos will contain the topological sort index, and the
4730  // Node Id fields for nodes At SortedPos and after will contain the
4731  // count of outstanding operands.
4732  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4733    SDNode *N = I++;
4734    unsigned Degree = N->getNumOperands();
4735    if (Degree == 0) {
4736      // A node with no uses, add it to the result array immediately.
4737      N->setNodeId(DAGSize++);
4738      allnodes_iterator Q = N;
4739      if (Q != SortedPos)
4740        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4741      ++SortedPos;
4742    } else {
4743      // Temporarily use the Node Id as scratch space for the degree count.
4744      N->setNodeId(Degree);
4745    }
4746  }
4747
4748  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4749  // such that by the time the end is reached all nodes will be sorted.
4750  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4751    SDNode *N = I;
4752    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4753         UI != UE; ++UI) {
4754      SDNode *P = *UI;
4755      unsigned Degree = P->getNodeId();
4756      --Degree;
4757      if (Degree == 0) {
4758        // All of P's operands are sorted, so P may sorted now.
4759        P->setNodeId(DAGSize++);
4760        if (P != SortedPos)
4761          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4762        ++SortedPos;
4763      } else {
4764        // Update P's outstanding operand count.
4765        P->setNodeId(Degree);
4766      }
4767    }
4768  }
4769
4770  assert(SortedPos == AllNodes.end() &&
4771         "Topological sort incomplete!");
4772  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4773         "First node in topological sort is not the entry token!");
4774  assert(AllNodes.front().getNodeId() == 0 &&
4775         "First node in topological sort has non-zero id!");
4776  assert(AllNodes.front().getNumOperands() == 0 &&
4777         "First node in topological sort has operands!");
4778  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4779         "Last node in topologic sort has unexpected id!");
4780  assert(AllNodes.back().use_empty() &&
4781         "Last node in topologic sort has users!");
4782  assert(DAGSize == allnodes_size() && "Node count mismatch!");
4783  return DAGSize;
4784}
4785
4786
4787
4788//===----------------------------------------------------------------------===//
4789//                              SDNode Class
4790//===----------------------------------------------------------------------===//
4791
4792HandleSDNode::~HandleSDNode() {
4793  DropOperands();
4794}
4795
4796GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4797                                         MVT VT, int64_t o)
4798  : SDNode(isa<GlobalVariable>(GA) &&
4799           cast<GlobalVariable>(GA)->isThreadLocal() ?
4800           // Thread Local
4801           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4802           // Non Thread Local
4803           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4804           DebugLoc::getUnknownLoc(), getSDVTList(VT)), Offset(o) {
4805  TheGlobal = const_cast<GlobalValue*>(GA);
4806}
4807
4808MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, MVT memvt,
4809                     const Value *srcValue, int SVO,
4810                     unsigned alignment, bool vol)
4811 : SDNode(Opc, dl, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4812  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4813  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4814  assert(getAlignment() == alignment && "Alignment representation error!");
4815  assert(isVolatile() == vol && "Volatile representation error!");
4816}
4817
4818MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
4819                     const SDValue *Ops,
4820                     unsigned NumOps, MVT memvt, const Value *srcValue,
4821                     int SVO, unsigned alignment, bool vol)
4822   : SDNode(Opc, dl, VTs, Ops, NumOps),
4823     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO) {
4824  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, vol, alignment);
4825  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4826  assert(getAlignment() == alignment && "Alignment representation error!");
4827  assert(isVolatile() == vol && "Volatile representation error!");
4828}
4829
4830/// getMemOperand - Return a MachineMemOperand object describing the memory
4831/// reference performed by this memory reference.
4832MachineMemOperand MemSDNode::getMemOperand() const {
4833  int Flags = 0;
4834  if (isa<LoadSDNode>(this))
4835    Flags = MachineMemOperand::MOLoad;
4836  else if (isa<StoreSDNode>(this))
4837    Flags = MachineMemOperand::MOStore;
4838  else if (isa<AtomicSDNode>(this)) {
4839    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4840  }
4841  else {
4842    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4843    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4844    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4845    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4846  }
4847
4848  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4849  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4850
4851  // Check if the memory reference references a frame index
4852  const FrameIndexSDNode *FI =
4853  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4854  if (!getSrcValue() && FI)
4855    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4856                             Flags, 0, Size, getAlignment());
4857  else
4858    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4859                             Size, getAlignment());
4860}
4861
4862/// Profile - Gather unique data for the node.
4863///
4864void SDNode::Profile(FoldingSetNodeID &ID) const {
4865  AddNodeIDNode(ID, this);
4866}
4867
4868/// getValueTypeList - Return a pointer to the specified value type.
4869///
4870const MVT *SDNode::getValueTypeList(MVT VT) {
4871  if (VT.isExtended()) {
4872    static std::set<MVT, MVT::compareRawBits> EVTs;
4873    return &(*EVTs.insert(VT).first);
4874  } else {
4875    static MVT VTs[MVT::LAST_VALUETYPE];
4876    VTs[VT.getSimpleVT()] = VT;
4877    return &VTs[VT.getSimpleVT()];
4878  }
4879}
4880
4881/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4882/// indicated value.  This method ignores uses of other values defined by this
4883/// operation.
4884bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4885  assert(Value < getNumValues() && "Bad value!");
4886
4887  // TODO: Only iterate over uses of a given value of the node
4888  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4889    if (UI.getUse().getResNo() == Value) {
4890      if (NUses == 0)
4891        return false;
4892      --NUses;
4893    }
4894  }
4895
4896  // Found exactly the right number of uses?
4897  return NUses == 0;
4898}
4899
4900
4901/// hasAnyUseOfValue - Return true if there are any use of the indicated
4902/// value. This method ignores uses of other values defined by this operation.
4903bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4904  assert(Value < getNumValues() && "Bad value!");
4905
4906  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4907    if (UI.getUse().getResNo() == Value)
4908      return true;
4909
4910  return false;
4911}
4912
4913
4914/// isOnlyUserOf - Return true if this node is the only use of N.
4915///
4916bool SDNode::isOnlyUserOf(SDNode *N) const {
4917  bool Seen = false;
4918  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4919    SDNode *User = *I;
4920    if (User == this)
4921      Seen = true;
4922    else
4923      return false;
4924  }
4925
4926  return Seen;
4927}
4928
4929/// isOperand - Return true if this node is an operand of N.
4930///
4931bool SDValue::isOperandOf(SDNode *N) const {
4932  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4933    if (*this == N->getOperand(i))
4934      return true;
4935  return false;
4936}
4937
4938bool SDNode::isOperandOf(SDNode *N) const {
4939  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4940    if (this == N->OperandList[i].getNode())
4941      return true;
4942  return false;
4943}
4944
4945/// reachesChainWithoutSideEffects - Return true if this operand (which must
4946/// be a chain) reaches the specified operand without crossing any
4947/// side-effecting instructions.  In practice, this looks through token
4948/// factors and non-volatile loads.  In order to remain efficient, this only
4949/// looks a couple of nodes in, it does not do an exhaustive search.
4950bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4951                                               unsigned Depth) const {
4952  if (*this == Dest) return true;
4953
4954  // Don't search too deeply, we just want to be able to see through
4955  // TokenFactor's etc.
4956  if (Depth == 0) return false;
4957
4958  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4959  // of the operands of the TF reach dest, then we can do the xform.
4960  if (getOpcode() == ISD::TokenFactor) {
4961    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4962      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4963        return true;
4964    return false;
4965  }
4966
4967  // Loads don't have side effects, look through them.
4968  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4969    if (!Ld->isVolatile())
4970      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4971  }
4972  return false;
4973}
4974
4975
4976static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4977                            SmallPtrSet<SDNode *, 32> &Visited) {
4978  if (found || !Visited.insert(N))
4979    return;
4980
4981  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4982    SDNode *Op = N->getOperand(i).getNode();
4983    if (Op == P) {
4984      found = true;
4985      return;
4986    }
4987    findPredecessor(Op, P, found, Visited);
4988  }
4989}
4990
4991/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4992/// is either an operand of N or it can be reached by recursively traversing
4993/// up the operands.
4994/// NOTE: this is an expensive method. Use it carefully.
4995bool SDNode::isPredecessorOf(SDNode *N) const {
4996  SmallPtrSet<SDNode *, 32> Visited;
4997  bool found = false;
4998  findPredecessor(N, this, found, Visited);
4999  return found;
5000}
5001
5002uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5003  assert(Num < NumOperands && "Invalid child # of SDNode!");
5004  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5005}
5006
5007std::string SDNode::getOperationName(const SelectionDAG *G) const {
5008  switch (getOpcode()) {
5009  default:
5010    if (getOpcode() < ISD::BUILTIN_OP_END)
5011      return "<<Unknown DAG Node>>";
5012    if (isMachineOpcode()) {
5013      if (G)
5014        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5015          if (getMachineOpcode() < TII->getNumOpcodes())
5016            return TII->get(getMachineOpcode()).getName();
5017      return "<<Unknown Machine Node>>";
5018    }
5019    if (G) {
5020      const TargetLowering &TLI = G->getTargetLoweringInfo();
5021      const char *Name = TLI.getTargetNodeName(getOpcode());
5022      if (Name) return Name;
5023      return "<<Unknown Target Node>>";
5024    }
5025    return "<<Unknown Node>>";
5026
5027#ifndef NDEBUG
5028  case ISD::DELETED_NODE:
5029    return "<<Deleted Node!>>";
5030#endif
5031  case ISD::PREFETCH:      return "Prefetch";
5032  case ISD::MEMBARRIER:    return "MemBarrier";
5033  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5034  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5035  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5036  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5037  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5038  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5039  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5040  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5041  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5042  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5043  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5044  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5045  case ISD::PCMARKER:      return "PCMarker";
5046  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5047  case ISD::SRCVALUE:      return "SrcValue";
5048  case ISD::MEMOPERAND:    return "MemOperand";
5049  case ISD::EntryToken:    return "EntryToken";
5050  case ISD::TokenFactor:   return "TokenFactor";
5051  case ISD::AssertSext:    return "AssertSext";
5052  case ISD::AssertZext:    return "AssertZext";
5053
5054  case ISD::BasicBlock:    return "BasicBlock";
5055  case ISD::ARG_FLAGS:     return "ArgFlags";
5056  case ISD::VALUETYPE:     return "ValueType";
5057  case ISD::Register:      return "Register";
5058
5059  case ISD::Constant:      return "Constant";
5060  case ISD::ConstantFP:    return "ConstantFP";
5061  case ISD::GlobalAddress: return "GlobalAddress";
5062  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5063  case ISD::FrameIndex:    return "FrameIndex";
5064  case ISD::JumpTable:     return "JumpTable";
5065  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5066  case ISD::RETURNADDR: return "RETURNADDR";
5067  case ISD::FRAMEADDR: return "FRAMEADDR";
5068  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5069  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5070  case ISD::EHSELECTION: return "EHSELECTION";
5071  case ISD::EH_RETURN: return "EH_RETURN";
5072  case ISD::ConstantPool:  return "ConstantPool";
5073  case ISD::ExternalSymbol: return "ExternalSymbol";
5074  case ISD::INTRINSIC_WO_CHAIN: {
5075    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5076    return Intrinsic::getName((Intrinsic::ID)IID);
5077  }
5078  case ISD::INTRINSIC_VOID:
5079  case ISD::INTRINSIC_W_CHAIN: {
5080    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5081    return Intrinsic::getName((Intrinsic::ID)IID);
5082  }
5083
5084  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5085  case ISD::TargetConstant: return "TargetConstant";
5086  case ISD::TargetConstantFP:return "TargetConstantFP";
5087  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5088  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5089  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5090  case ISD::TargetJumpTable:  return "TargetJumpTable";
5091  case ISD::TargetConstantPool:  return "TargetConstantPool";
5092  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5093
5094  case ISD::CopyToReg:     return "CopyToReg";
5095  case ISD::CopyFromReg:   return "CopyFromReg";
5096  case ISD::UNDEF:         return "undef";
5097  case ISD::MERGE_VALUES:  return "merge_values";
5098  case ISD::INLINEASM:     return "inlineasm";
5099  case ISD::DBG_LABEL:     return "dbg_label";
5100  case ISD::EH_LABEL:      return "eh_label";
5101  case ISD::DECLARE:       return "declare";
5102  case ISD::HANDLENODE:    return "handlenode";
5103  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5104  case ISD::CALL:          return "call";
5105
5106  // Unary operators
5107  case ISD::FABS:   return "fabs";
5108  case ISD::FNEG:   return "fneg";
5109  case ISD::FSQRT:  return "fsqrt";
5110  case ISD::FSIN:   return "fsin";
5111  case ISD::FCOS:   return "fcos";
5112  case ISD::FPOWI:  return "fpowi";
5113  case ISD::FPOW:   return "fpow";
5114  case ISD::FTRUNC: return "ftrunc";
5115  case ISD::FFLOOR: return "ffloor";
5116  case ISD::FCEIL:  return "fceil";
5117  case ISD::FRINT:  return "frint";
5118  case ISD::FNEARBYINT: return "fnearbyint";
5119
5120  // Binary operators
5121  case ISD::ADD:    return "add";
5122  case ISD::SUB:    return "sub";
5123  case ISD::MUL:    return "mul";
5124  case ISD::MULHU:  return "mulhu";
5125  case ISD::MULHS:  return "mulhs";
5126  case ISD::SDIV:   return "sdiv";
5127  case ISD::UDIV:   return "udiv";
5128  case ISD::SREM:   return "srem";
5129  case ISD::UREM:   return "urem";
5130  case ISD::SMUL_LOHI:  return "smul_lohi";
5131  case ISD::UMUL_LOHI:  return "umul_lohi";
5132  case ISD::SDIVREM:    return "sdivrem";
5133  case ISD::UDIVREM:    return "udivrem";
5134  case ISD::AND:    return "and";
5135  case ISD::OR:     return "or";
5136  case ISD::XOR:    return "xor";
5137  case ISD::SHL:    return "shl";
5138  case ISD::SRA:    return "sra";
5139  case ISD::SRL:    return "srl";
5140  case ISD::ROTL:   return "rotl";
5141  case ISD::ROTR:   return "rotr";
5142  case ISD::FADD:   return "fadd";
5143  case ISD::FSUB:   return "fsub";
5144  case ISD::FMUL:   return "fmul";
5145  case ISD::FDIV:   return "fdiv";
5146  case ISD::FREM:   return "frem";
5147  case ISD::FCOPYSIGN: return "fcopysign";
5148  case ISD::FGETSIGN:  return "fgetsign";
5149
5150  case ISD::SETCC:       return "setcc";
5151  case ISD::VSETCC:      return "vsetcc";
5152  case ISD::SELECT:      return "select";
5153  case ISD::SELECT_CC:   return "select_cc";
5154  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5155  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5156  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5157  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5158  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5159  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5160  case ISD::CARRY_FALSE:         return "carry_false";
5161  case ISD::ADDC:        return "addc";
5162  case ISD::ADDE:        return "adde";
5163  case ISD::SADDO:       return "saddo";
5164  case ISD::UADDO:       return "uaddo";
5165  case ISD::SSUBO:       return "ssubo";
5166  case ISD::USUBO:       return "usubo";
5167  case ISD::SMULO:       return "smulo";
5168  case ISD::UMULO:       return "umulo";
5169  case ISD::SUBC:        return "subc";
5170  case ISD::SUBE:        return "sube";
5171  case ISD::SHL_PARTS:   return "shl_parts";
5172  case ISD::SRA_PARTS:   return "sra_parts";
5173  case ISD::SRL_PARTS:   return "srl_parts";
5174
5175  // Conversion operators.
5176  case ISD::SIGN_EXTEND: return "sign_extend";
5177  case ISD::ZERO_EXTEND: return "zero_extend";
5178  case ISD::ANY_EXTEND:  return "any_extend";
5179  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5180  case ISD::TRUNCATE:    return "truncate";
5181  case ISD::FP_ROUND:    return "fp_round";
5182  case ISD::FLT_ROUNDS_: return "flt_rounds";
5183  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5184  case ISD::FP_EXTEND:   return "fp_extend";
5185
5186  case ISD::SINT_TO_FP:  return "sint_to_fp";
5187  case ISD::UINT_TO_FP:  return "uint_to_fp";
5188  case ISD::FP_TO_SINT:  return "fp_to_sint";
5189  case ISD::FP_TO_UINT:  return "fp_to_uint";
5190  case ISD::BIT_CONVERT: return "bit_convert";
5191
5192  case ISD::CONVERT_RNDSAT: {
5193    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5194    default: assert(0 && "Unknown cvt code!");
5195    case ISD::CVT_FF:  return "cvt_ff";
5196    case ISD::CVT_FS:  return "cvt_fs";
5197    case ISD::CVT_FU:  return "cvt_fu";
5198    case ISD::CVT_SF:  return "cvt_sf";
5199    case ISD::CVT_UF:  return "cvt_uf";
5200    case ISD::CVT_SS:  return "cvt_ss";
5201    case ISD::CVT_SU:  return "cvt_su";
5202    case ISD::CVT_US:  return "cvt_us";
5203    case ISD::CVT_UU:  return "cvt_uu";
5204    }
5205  }
5206
5207    // Control flow instructions
5208  case ISD::BR:      return "br";
5209  case ISD::BRIND:   return "brind";
5210  case ISD::BR_JT:   return "br_jt";
5211  case ISD::BRCOND:  return "brcond";
5212  case ISD::BR_CC:   return "br_cc";
5213  case ISD::RET:     return "ret";
5214  case ISD::CALLSEQ_START:  return "callseq_start";
5215  case ISD::CALLSEQ_END:    return "callseq_end";
5216
5217    // Other operators
5218  case ISD::LOAD:               return "load";
5219  case ISD::STORE:              return "store";
5220  case ISD::VAARG:              return "vaarg";
5221  case ISD::VACOPY:             return "vacopy";
5222  case ISD::VAEND:              return "vaend";
5223  case ISD::VASTART:            return "vastart";
5224  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5225  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5226  case ISD::BUILD_PAIR:         return "build_pair";
5227  case ISD::STACKSAVE:          return "stacksave";
5228  case ISD::STACKRESTORE:       return "stackrestore";
5229  case ISD::TRAP:               return "trap";
5230
5231  // Bit manipulation
5232  case ISD::BSWAP:   return "bswap";
5233  case ISD::CTPOP:   return "ctpop";
5234  case ISD::CTTZ:    return "cttz";
5235  case ISD::CTLZ:    return "ctlz";
5236
5237  // Debug info
5238  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5239  case ISD::DEBUG_LOC: return "debug_loc";
5240
5241  // Trampolines
5242  case ISD::TRAMPOLINE: return "trampoline";
5243
5244  case ISD::CONDCODE:
5245    switch (cast<CondCodeSDNode>(this)->get()) {
5246    default: assert(0 && "Unknown setcc condition!");
5247    case ISD::SETOEQ:  return "setoeq";
5248    case ISD::SETOGT:  return "setogt";
5249    case ISD::SETOGE:  return "setoge";
5250    case ISD::SETOLT:  return "setolt";
5251    case ISD::SETOLE:  return "setole";
5252    case ISD::SETONE:  return "setone";
5253
5254    case ISD::SETO:    return "seto";
5255    case ISD::SETUO:   return "setuo";
5256    case ISD::SETUEQ:  return "setue";
5257    case ISD::SETUGT:  return "setugt";
5258    case ISD::SETUGE:  return "setuge";
5259    case ISD::SETULT:  return "setult";
5260    case ISD::SETULE:  return "setule";
5261    case ISD::SETUNE:  return "setune";
5262
5263    case ISD::SETEQ:   return "seteq";
5264    case ISD::SETGT:   return "setgt";
5265    case ISD::SETGE:   return "setge";
5266    case ISD::SETLT:   return "setlt";
5267    case ISD::SETLE:   return "setle";
5268    case ISD::SETNE:   return "setne";
5269    }
5270  }
5271}
5272
5273const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5274  switch (AM) {
5275  default:
5276    return "";
5277  case ISD::PRE_INC:
5278    return "<pre-inc>";
5279  case ISD::PRE_DEC:
5280    return "<pre-dec>";
5281  case ISD::POST_INC:
5282    return "<post-inc>";
5283  case ISD::POST_DEC:
5284    return "<post-dec>";
5285  }
5286}
5287
5288std::string ISD::ArgFlagsTy::getArgFlagsString() {
5289  std::string S = "< ";
5290
5291  if (isZExt())
5292    S += "zext ";
5293  if (isSExt())
5294    S += "sext ";
5295  if (isInReg())
5296    S += "inreg ";
5297  if (isSRet())
5298    S += "sret ";
5299  if (isByVal())
5300    S += "byval ";
5301  if (isNest())
5302    S += "nest ";
5303  if (getByValAlign())
5304    S += "byval-align:" + utostr(getByValAlign()) + " ";
5305  if (getOrigAlign())
5306    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5307  if (getByValSize())
5308    S += "byval-size:" + utostr(getByValSize()) + " ";
5309  return S + ">";
5310}
5311
5312void SDNode::dump() const { dump(0); }
5313void SDNode::dump(const SelectionDAG *G) const {
5314  print(errs(), G);
5315}
5316
5317void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5318  OS << (void*)this << ": ";
5319
5320  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5321    if (i) OS << ",";
5322    if (getValueType(i) == MVT::Other)
5323      OS << "ch";
5324    else
5325      OS << getValueType(i).getMVTString();
5326  }
5327  OS << " = " << getOperationName(G);
5328}
5329
5330void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5331  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5332    SDNode *Mask = getOperand(2).getNode();
5333    OS << "<";
5334    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5335      if (i) OS << ",";
5336      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5337        OS << "u";
5338      else
5339        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5340    }
5341    OS << ">";
5342  }
5343
5344  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5345    OS << '<' << CSDN->getAPIntValue() << '>';
5346  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5347    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5348      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5349    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5350      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5351    else {
5352      OS << "<APFloat(";
5353      CSDN->getValueAPF().bitcastToAPInt().dump();
5354      OS << ")>";
5355    }
5356  } else if (const GlobalAddressSDNode *GADN =
5357             dyn_cast<GlobalAddressSDNode>(this)) {
5358    int64_t offset = GADN->getOffset();
5359    OS << '<';
5360    WriteAsOperand(OS, GADN->getGlobal());
5361    OS << '>';
5362    if (offset > 0)
5363      OS << " + " << offset;
5364    else
5365      OS << " " << offset;
5366  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5367    OS << "<" << FIDN->getIndex() << ">";
5368  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5369    OS << "<" << JTDN->getIndex() << ">";
5370  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5371    int offset = CP->getOffset();
5372    if (CP->isMachineConstantPoolEntry())
5373      OS << "<" << *CP->getMachineCPVal() << ">";
5374    else
5375      OS << "<" << *CP->getConstVal() << ">";
5376    if (offset > 0)
5377      OS << " + " << offset;
5378    else
5379      OS << " " << offset;
5380  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5381    OS << "<";
5382    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5383    if (LBB)
5384      OS << LBB->getName() << " ";
5385    OS << (const void*)BBDN->getBasicBlock() << ">";
5386  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5387    if (G && R->getReg() &&
5388        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5389      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5390    } else {
5391      OS << " #" << R->getReg();
5392    }
5393  } else if (const ExternalSymbolSDNode *ES =
5394             dyn_cast<ExternalSymbolSDNode>(this)) {
5395    OS << "'" << ES->getSymbol() << "'";
5396  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5397    if (M->getValue())
5398      OS << "<" << M->getValue() << ">";
5399    else
5400      OS << "<null>";
5401  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5402    if (M->MO.getValue())
5403      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5404    else
5405      OS << "<null:" << M->MO.getOffset() << ">";
5406  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5407    OS << N->getArgFlags().getArgFlagsString();
5408  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5409    OS << ":" << N->getVT().getMVTString();
5410  }
5411  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5412    const Value *SrcValue = LD->getSrcValue();
5413    int SrcOffset = LD->getSrcValueOffset();
5414    OS << " <";
5415    if (SrcValue)
5416      OS << SrcValue;
5417    else
5418      OS << "null";
5419    OS << ":" << SrcOffset << ">";
5420
5421    bool doExt = true;
5422    switch (LD->getExtensionType()) {
5423    default: doExt = false; break;
5424    case ISD::EXTLOAD: OS << " <anyext "; break;
5425    case ISD::SEXTLOAD: OS << " <sext "; break;
5426    case ISD::ZEXTLOAD: OS << " <zext "; break;
5427    }
5428    if (doExt)
5429      OS << LD->getMemoryVT().getMVTString() << ">";
5430
5431    const char *AM = getIndexedModeName(LD->getAddressingMode());
5432    if (*AM)
5433      OS << " " << AM;
5434    if (LD->isVolatile())
5435      OS << " <volatile>";
5436    OS << " alignment=" << LD->getAlignment();
5437  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5438    const Value *SrcValue = ST->getSrcValue();
5439    int SrcOffset = ST->getSrcValueOffset();
5440    OS << " <";
5441    if (SrcValue)
5442      OS << SrcValue;
5443    else
5444      OS << "null";
5445    OS << ":" << SrcOffset << ">";
5446
5447    if (ST->isTruncatingStore())
5448      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5449
5450    const char *AM = getIndexedModeName(ST->getAddressingMode());
5451    if (*AM)
5452      OS << " " << AM;
5453    if (ST->isVolatile())
5454      OS << " <volatile>";
5455    OS << " alignment=" << ST->getAlignment();
5456  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5457    const Value *SrcValue = AT->getSrcValue();
5458    int SrcOffset = AT->getSrcValueOffset();
5459    OS << " <";
5460    if (SrcValue)
5461      OS << SrcValue;
5462    else
5463      OS << "null";
5464    OS << ":" << SrcOffset << ">";
5465    if (AT->isVolatile())
5466      OS << " <volatile>";
5467    OS << " alignment=" << AT->getAlignment();
5468  }
5469}
5470
5471void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5472  print_types(OS, G);
5473  OS << " ";
5474  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5475    if (i) OS << ", ";
5476    OS << (void*)getOperand(i).getNode();
5477    if (unsigned RN = getOperand(i).getResNo())
5478      OS << ":" << RN;
5479  }
5480  print_details(OS, G);
5481}
5482
5483static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5484  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5485    if (N->getOperand(i).getNode()->hasOneUse())
5486      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5487    else
5488      cerr << "\n" << std::string(indent+2, ' ')
5489           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5490
5491
5492  cerr << "\n" << std::string(indent, ' ');
5493  N->dump(G);
5494}
5495
5496void SelectionDAG::dump() const {
5497  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5498
5499  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5500       I != E; ++I) {
5501    const SDNode *N = I;
5502    if (!N->hasOneUse() && N != getRoot().getNode())
5503      DumpNodes(N, 2, this);
5504  }
5505
5506  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5507
5508  cerr << "\n\n";
5509}
5510
5511void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
5512  print_types(OS, G);
5513  print_details(OS, G);
5514}
5515
5516typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
5517static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
5518		       const SelectionDAG *G, VisitedSDNodeSet &once) {
5519  if (!once.insert(N))	// If we've been here before, return now.
5520    return;
5521  // Dump the current SDNode, but don't end the line yet.
5522  OS << std::string(indent, ' ');
5523  N->printr(OS, G);
5524  // Having printed this SDNode, walk the children:
5525  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5526    const SDNode *child = N->getOperand(i).getNode();
5527    if (i) OS << ",";
5528    OS << " ";
5529    if (child->getNumOperands() == 0) {
5530      // This child has no grandchildren; print it inline right here.
5531      child->printr(OS, G);
5532      once.insert(child);
5533    } else {	// Just the address.  FIXME: also print the child's opcode
5534      OS << (void*)child;
5535      if (unsigned RN = N->getOperand(i).getResNo())
5536	OS << ":" << RN;
5537    }
5538  }
5539  OS << "\n";
5540  // Dump children that have grandchildren on their own line(s).
5541  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5542    const SDNode *child = N->getOperand(i).getNode();
5543    DumpNodesr(OS, child, indent+2, G, once);
5544  }
5545}
5546
5547void SDNode::dumpr() const {
5548  VisitedSDNodeSet once;
5549  DumpNodesr(errs(), this, 0, 0, once);
5550}
5551
5552const Type *ConstantPoolSDNode::getType() const {
5553  if (isMachineConstantPoolEntry())
5554    return Val.MachineCPVal->getType();
5555  return Val.ConstVal->getType();
5556}
5557
5558bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
5559                                        APInt &SplatUndef,
5560                                        unsigned &SplatBitSize,
5561                                        bool &HasAnyUndefs,
5562                                        unsigned MinSplatBits) {
5563  MVT VT = getValueType(0);
5564  assert(VT.isVector() && "Expected a vector type");
5565  unsigned sz = VT.getSizeInBits();
5566  if (MinSplatBits > sz)
5567    return false;
5568
5569  SplatValue = APInt(sz, 0);
5570  SplatUndef = APInt(sz, 0);
5571
5572  // Get the bits.  Bits with undefined values (when the corresponding element
5573  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
5574  // in SplatValue.  If any of the values are not constant, give up and return
5575  // false.
5576  unsigned int nOps = getNumOperands();
5577  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
5578  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
5579  for (unsigned i = 0; i < nOps; ++i) {
5580    SDValue OpVal = getOperand(i);
5581    unsigned BitPos = i * EltBitSize;
5582
5583    if (OpVal.getOpcode() == ISD::UNDEF)
5584      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos +EltBitSize);
5585    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
5586      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
5587                     zextOrTrunc(sz) << BitPos);
5588    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
5589      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
5590     else
5591      return false;
5592  }
5593
5594  // The build_vector is all constants or undefs.  Find the smallest element
5595  // size that splats the vector.
5596
5597  HasAnyUndefs = (SplatUndef != 0);
5598  while (sz > 8) {
5599
5600    unsigned HalfSize = sz / 2;
5601    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
5602    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
5603    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
5604    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
5605
5606    // If the two halves do not match (ignoring undef bits), stop here.
5607    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
5608        MinSplatBits > HalfSize)
5609      break;
5610
5611    SplatValue = HighValue | LowValue;
5612    SplatUndef = HighUndef & LowUndef;
5613
5614    sz = HalfSize;
5615  }
5616
5617  SplatBitSize = sz;
5618  return true;
5619}
5620