SelectionDAG.cpp revision cc751bb99ca868467bb9676af351bbdc29873fff
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/DebugInfo.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalAlias.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Assembly/Writer.h"
26#include "llvm/CallingConv.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/PseudoSourceValue.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetFrameInfo.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetOptions.h"
37#include "llvm/Target/TargetInstrInfo.h"
38#include "llvm/Target/TargetIntrinsicInfo.h"
39#include "llvm/Target/TargetMachine.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/ManagedStatic.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/System/Mutex.h"
47#include "llvm/ADT/SetVector.h"
48#include "llvm/ADT/SmallPtrSet.h"
49#include "llvm/ADT/SmallSet.h"
50#include "llvm/ADT/SmallVector.h"
51#include "llvm/ADT/StringExtras.h"
52#include <algorithm>
53#include <cmath>
54using namespace llvm;
55
56/// makeVTList - Return an instance of the SDVTList struct initialized with the
57/// specified members.
58static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
59  SDVTList Res = {VTs, NumVTs};
60  return Res;
61}
62
63static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
64  switch (VT.getSimpleVT().SimpleTy) {
65  default: llvm_unreachable("Unknown FP format");
66  case MVT::f32:     return &APFloat::IEEEsingle;
67  case MVT::f64:     return &APFloat::IEEEdouble;
68  case MVT::f80:     return &APFloat::x87DoubleExtended;
69  case MVT::f128:    return &APFloat::IEEEquad;
70  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
71  }
72}
73
74SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
75
76//===----------------------------------------------------------------------===//
77//                              ConstantFPSDNode Class
78//===----------------------------------------------------------------------===//
79
80/// isExactlyValue - We don't rely on operator== working on double values, as
81/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
82/// As such, this method can be used to do an exact bit-for-bit comparison of
83/// two floating point values.
84bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
85  return getValueAPF().bitwiseIsEqual(V);
86}
87
88bool ConstantFPSDNode::isValueValidForType(EVT VT,
89                                           const APFloat& Val) {
90  assert(VT.isFloatingPoint() && "Can only convert between FP types");
91
92  // PPC long double cannot be converted to any other type.
93  if (VT == MVT::ppcf128 ||
94      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
95    return false;
96
97  // convert modifies in place, so make a copy.
98  APFloat Val2 = APFloat(Val);
99  bool losesInfo;
100  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
101                      &losesInfo);
102  return !losesInfo;
103}
104
105//===----------------------------------------------------------------------===//
106//                              ISD Namespace
107//===----------------------------------------------------------------------===//
108
109/// isBuildVectorAllOnes - Return true if the specified node is a
110/// BUILD_VECTOR where all of the elements are ~0 or undef.
111bool ISD::isBuildVectorAllOnes(const SDNode *N) {
112  // Look through a bit convert.
113  if (N->getOpcode() == ISD::BIT_CONVERT)
114    N = N->getOperand(0).getNode();
115
116  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
117
118  unsigned i = 0, e = N->getNumOperands();
119
120  // Skip over all of the undef values.
121  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
122    ++i;
123
124  // Do not accept an all-undef vector.
125  if (i == e) return false;
126
127  // Do not accept build_vectors that aren't all constants or which have non-~0
128  // elements.
129  SDValue NotZero = N->getOperand(i);
130  if (isa<ConstantSDNode>(NotZero)) {
131    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
132      return false;
133  } else if (isa<ConstantFPSDNode>(NotZero)) {
134    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
135                bitcastToAPInt().isAllOnesValue())
136      return false;
137  } else
138    return false;
139
140  // Okay, we have at least one ~0 value, check to see if the rest match or are
141  // undefs.
142  for (++i; i != e; ++i)
143    if (N->getOperand(i) != NotZero &&
144        N->getOperand(i).getOpcode() != ISD::UNDEF)
145      return false;
146  return true;
147}
148
149
150/// isBuildVectorAllZeros - Return true if the specified node is a
151/// BUILD_VECTOR where all of the elements are 0 or undef.
152bool ISD::isBuildVectorAllZeros(const SDNode *N) {
153  // Look through a bit convert.
154  if (N->getOpcode() == ISD::BIT_CONVERT)
155    N = N->getOperand(0).getNode();
156
157  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
158
159  unsigned i = 0, e = N->getNumOperands();
160
161  // Skip over all of the undef values.
162  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
163    ++i;
164
165  // Do not accept an all-undef vector.
166  if (i == e) return false;
167
168  // Do not accept build_vectors that aren't all constants or which have non-0
169  // elements.
170  SDValue Zero = N->getOperand(i);
171  if (isa<ConstantSDNode>(Zero)) {
172    if (!cast<ConstantSDNode>(Zero)->isNullValue())
173      return false;
174  } else if (isa<ConstantFPSDNode>(Zero)) {
175    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
176      return false;
177  } else
178    return false;
179
180  // Okay, we have at least one 0 value, check to see if the rest match or are
181  // undefs.
182  for (++i; i != e; ++i)
183    if (N->getOperand(i) != Zero &&
184        N->getOperand(i).getOpcode() != ISD::UNDEF)
185      return false;
186  return true;
187}
188
189/// isScalarToVector - Return true if the specified node is a
190/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
191/// element is not an undef.
192bool ISD::isScalarToVector(const SDNode *N) {
193  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
194    return true;
195
196  if (N->getOpcode() != ISD::BUILD_VECTOR)
197    return false;
198  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
199    return false;
200  unsigned NumElems = N->getNumOperands();
201  for (unsigned i = 1; i < NumElems; ++i) {
202    SDValue V = N->getOperand(i);
203    if (V.getOpcode() != ISD::UNDEF)
204      return false;
205  }
206  return true;
207}
208
209/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
210/// when given the operation for (X op Y).
211ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
212  // To perform this operation, we just need to swap the L and G bits of the
213  // operation.
214  unsigned OldL = (Operation >> 2) & 1;
215  unsigned OldG = (Operation >> 1) & 1;
216  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
217                       (OldL << 1) |       // New G bit
218                       (OldG << 2));       // New L bit.
219}
220
221/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
222/// 'op' is a valid SetCC operation.
223ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
224  unsigned Operation = Op;
225  if (isInteger)
226    Operation ^= 7;   // Flip L, G, E bits, but not U.
227  else
228    Operation ^= 15;  // Flip all of the condition bits.
229
230  if (Operation > ISD::SETTRUE2)
231    Operation &= ~8;  // Don't let N and U bits get set.
232
233  return ISD::CondCode(Operation);
234}
235
236
237/// isSignedOp - For an integer comparison, return 1 if the comparison is a
238/// signed operation and 2 if the result is an unsigned comparison.  Return zero
239/// if the operation does not depend on the sign of the input (setne and seteq).
240static int isSignedOp(ISD::CondCode Opcode) {
241  switch (Opcode) {
242  default: llvm_unreachable("Illegal integer setcc operation!");
243  case ISD::SETEQ:
244  case ISD::SETNE: return 0;
245  case ISD::SETLT:
246  case ISD::SETLE:
247  case ISD::SETGT:
248  case ISD::SETGE: return 1;
249  case ISD::SETULT:
250  case ISD::SETULE:
251  case ISD::SETUGT:
252  case ISD::SETUGE: return 2;
253  }
254}
255
256/// getSetCCOrOperation - Return the result of a logical OR between different
257/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
258/// returns SETCC_INVALID if it is not possible to represent the resultant
259/// comparison.
260ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
261                                       bool isInteger) {
262  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
263    // Cannot fold a signed integer setcc with an unsigned integer setcc.
264    return ISD::SETCC_INVALID;
265
266  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
267
268  // If the N and U bits get set then the resultant comparison DOES suddenly
269  // care about orderedness, and is true when ordered.
270  if (Op > ISD::SETTRUE2)
271    Op &= ~16;     // Clear the U bit if the N bit is set.
272
273  // Canonicalize illegal integer setcc's.
274  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
275    Op = ISD::SETNE;
276
277  return ISD::CondCode(Op);
278}
279
280/// getSetCCAndOperation - Return the result of a logical AND between different
281/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
282/// function returns zero if it is not possible to represent the resultant
283/// comparison.
284ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
285                                        bool isInteger) {
286  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
287    // Cannot fold a signed setcc with an unsigned setcc.
288    return ISD::SETCC_INVALID;
289
290  // Combine all of the condition bits.
291  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
292
293  // Canonicalize illegal integer setcc's.
294  if (isInteger) {
295    switch (Result) {
296    default: break;
297    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
298    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
299    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
300    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
301    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
302    }
303  }
304
305  return Result;
306}
307
308//===----------------------------------------------------------------------===//
309//                           SDNode Profile Support
310//===----------------------------------------------------------------------===//
311
312/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
313///
314static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
315  ID.AddInteger(OpC);
316}
317
318/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
319/// solely with their pointer.
320static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
321  ID.AddPointer(VTList.VTs);
322}
323
324/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
325///
326static void AddNodeIDOperands(FoldingSetNodeID &ID,
327                              const SDValue *Ops, unsigned NumOps) {
328  for (; NumOps; --NumOps, ++Ops) {
329    ID.AddPointer(Ops->getNode());
330    ID.AddInteger(Ops->getResNo());
331  }
332}
333
334/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
335///
336static void AddNodeIDOperands(FoldingSetNodeID &ID,
337                              const SDUse *Ops, unsigned NumOps) {
338  for (; NumOps; --NumOps, ++Ops) {
339    ID.AddPointer(Ops->getNode());
340    ID.AddInteger(Ops->getResNo());
341  }
342}
343
344static void AddNodeIDNode(FoldingSetNodeID &ID,
345                          unsigned short OpC, SDVTList VTList,
346                          const SDValue *OpList, unsigned N) {
347  AddNodeIDOpcode(ID, OpC);
348  AddNodeIDValueTypes(ID, VTList);
349  AddNodeIDOperands(ID, OpList, N);
350}
351
352/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
353/// the NodeID data.
354static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
355  switch (N->getOpcode()) {
356  case ISD::TargetExternalSymbol:
357  case ISD::ExternalSymbol:
358    llvm_unreachable("Should only be used on nodes with operands");
359  default: break;  // Normal nodes don't need extra info.
360  case ISD::TargetConstant:
361  case ISD::Constant:
362    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
363    break;
364  case ISD::TargetConstantFP:
365  case ISD::ConstantFP: {
366    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
367    break;
368  }
369  case ISD::TargetGlobalAddress:
370  case ISD::GlobalAddress:
371  case ISD::TargetGlobalTLSAddress:
372  case ISD::GlobalTLSAddress: {
373    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
374    ID.AddPointer(GA->getGlobal());
375    ID.AddInteger(GA->getOffset());
376    ID.AddInteger(GA->getTargetFlags());
377    break;
378  }
379  case ISD::BasicBlock:
380    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
381    break;
382  case ISD::Register:
383    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
384    break;
385
386  case ISD::SRCVALUE:
387    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
388    break;
389  case ISD::FrameIndex:
390  case ISD::TargetFrameIndex:
391    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
392    break;
393  case ISD::JumpTable:
394  case ISD::TargetJumpTable:
395    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
396    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
397    break;
398  case ISD::ConstantPool:
399  case ISD::TargetConstantPool: {
400    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
401    ID.AddInteger(CP->getAlignment());
402    ID.AddInteger(CP->getOffset());
403    if (CP->isMachineConstantPoolEntry())
404      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
405    else
406      ID.AddPointer(CP->getConstVal());
407    ID.AddInteger(CP->getTargetFlags());
408    break;
409  }
410  case ISD::LOAD: {
411    const LoadSDNode *LD = cast<LoadSDNode>(N);
412    ID.AddInteger(LD->getMemoryVT().getRawBits());
413    ID.AddInteger(LD->getRawSubclassData());
414    break;
415  }
416  case ISD::STORE: {
417    const StoreSDNode *ST = cast<StoreSDNode>(N);
418    ID.AddInteger(ST->getMemoryVT().getRawBits());
419    ID.AddInteger(ST->getRawSubclassData());
420    break;
421  }
422  case ISD::ATOMIC_CMP_SWAP:
423  case ISD::ATOMIC_SWAP:
424  case ISD::ATOMIC_LOAD_ADD:
425  case ISD::ATOMIC_LOAD_SUB:
426  case ISD::ATOMIC_LOAD_AND:
427  case ISD::ATOMIC_LOAD_OR:
428  case ISD::ATOMIC_LOAD_XOR:
429  case ISD::ATOMIC_LOAD_NAND:
430  case ISD::ATOMIC_LOAD_MIN:
431  case ISD::ATOMIC_LOAD_MAX:
432  case ISD::ATOMIC_LOAD_UMIN:
433  case ISD::ATOMIC_LOAD_UMAX: {
434    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
435    ID.AddInteger(AT->getMemoryVT().getRawBits());
436    ID.AddInteger(AT->getRawSubclassData());
437    break;
438  }
439  case ISD::VECTOR_SHUFFLE: {
440    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
441    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
442         i != e; ++i)
443      ID.AddInteger(SVN->getMaskElt(i));
444    break;
445  }
446  case ISD::TargetBlockAddress:
447  case ISD::BlockAddress: {
448    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
449    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
450    break;
451  }
452  } // end switch (N->getOpcode())
453}
454
455/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
456/// data.
457static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
458  AddNodeIDOpcode(ID, N->getOpcode());
459  // Add the return value info.
460  AddNodeIDValueTypes(ID, N->getVTList());
461  // Add the operand info.
462  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
463
464  // Handle SDNode leafs with special info.
465  AddNodeIDCustom(ID, N);
466}
467
468/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
469/// the CSE map that carries volatility, temporalness, indexing mode, and
470/// extension/truncation information.
471///
472static inline unsigned
473encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
474                     bool isNonTemporal) {
475  assert((ConvType & 3) == ConvType &&
476         "ConvType may not require more than 2 bits!");
477  assert((AM & 7) == AM &&
478         "AM may not require more than 3 bits!");
479  return ConvType |
480         (AM << 2) |
481         (isVolatile << 5) |
482         (isNonTemporal << 6);
483}
484
485//===----------------------------------------------------------------------===//
486//                              SelectionDAG Class
487//===----------------------------------------------------------------------===//
488
489/// doNotCSE - Return true if CSE should not be performed for this node.
490static bool doNotCSE(SDNode *N) {
491  if (N->getValueType(0) == MVT::Flag)
492    return true; // Never CSE anything that produces a flag.
493
494  switch (N->getOpcode()) {
495  default: break;
496  case ISD::HANDLENODE:
497  case ISD::EH_LABEL:
498    return true;   // Never CSE these nodes.
499  }
500
501  // Check that remaining values produced are not flags.
502  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
503    if (N->getValueType(i) == MVT::Flag)
504      return true; // Never CSE anything that produces a flag.
505
506  return false;
507}
508
509/// RemoveDeadNodes - This method deletes all unreachable nodes in the
510/// SelectionDAG.
511void SelectionDAG::RemoveDeadNodes() {
512  // Create a dummy node (which is not added to allnodes), that adds a reference
513  // to the root node, preventing it from being deleted.
514  HandleSDNode Dummy(getRoot());
515
516  SmallVector<SDNode*, 128> DeadNodes;
517
518  // Add all obviously-dead nodes to the DeadNodes worklist.
519  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
520    if (I->use_empty())
521      DeadNodes.push_back(I);
522
523  RemoveDeadNodes(DeadNodes);
524
525  // If the root changed (e.g. it was a dead load, update the root).
526  setRoot(Dummy.getValue());
527}
528
529/// RemoveDeadNodes - This method deletes the unreachable nodes in the
530/// given list, and any nodes that become unreachable as a result.
531void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
532                                   DAGUpdateListener *UpdateListener) {
533
534  // Process the worklist, deleting the nodes and adding their uses to the
535  // worklist.
536  while (!DeadNodes.empty()) {
537    SDNode *N = DeadNodes.pop_back_val();
538
539    if (UpdateListener)
540      UpdateListener->NodeDeleted(N, 0);
541
542    // Take the node out of the appropriate CSE map.
543    RemoveNodeFromCSEMaps(N);
544
545    // Next, brutally remove the operand list.  This is safe to do, as there are
546    // no cycles in the graph.
547    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
548      SDUse &Use = *I++;
549      SDNode *Operand = Use.getNode();
550      Use.set(SDValue());
551
552      // Now that we removed this operand, see if there are no uses of it left.
553      if (Operand->use_empty())
554        DeadNodes.push_back(Operand);
555    }
556
557    DeallocateNode(N);
558  }
559}
560
561void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
562  SmallVector<SDNode*, 16> DeadNodes(1, N);
563  RemoveDeadNodes(DeadNodes, UpdateListener);
564}
565
566void SelectionDAG::DeleteNode(SDNode *N) {
567  // First take this out of the appropriate CSE map.
568  RemoveNodeFromCSEMaps(N);
569
570  // Finally, remove uses due to operands of this node, remove from the
571  // AllNodes list, and delete the node.
572  DeleteNodeNotInCSEMaps(N);
573}
574
575void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
576  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
577  assert(N->use_empty() && "Cannot delete a node that is not dead!");
578
579  // Drop all of the operands and decrement used node's use counts.
580  N->DropOperands();
581
582  DeallocateNode(N);
583}
584
585void SelectionDAG::DeallocateNode(SDNode *N) {
586  if (N->OperandsNeedDelete)
587    delete[] N->OperandList;
588
589  // Set the opcode to DELETED_NODE to help catch bugs when node
590  // memory is reallocated.
591  N->NodeType = ISD::DELETED_NODE;
592
593  NodeAllocator.Deallocate(AllNodes.remove(N));
594
595  // Remove the ordering of this node.
596  Ordering->remove(N);
597
598  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
599  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
600  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
601    DbgVals[i]->setIsInvalidated();
602}
603
604/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
605/// correspond to it.  This is useful when we're about to delete or repurpose
606/// the node.  We don't want future request for structurally identical nodes
607/// to return N anymore.
608bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
609  bool Erased = false;
610  switch (N->getOpcode()) {
611  case ISD::EntryToken:
612    llvm_unreachable("EntryToken should not be in CSEMaps!");
613    return false;
614  case ISD::HANDLENODE: return false;  // noop.
615  case ISD::CONDCODE:
616    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
617           "Cond code doesn't exist!");
618    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
619    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
620    break;
621  case ISD::ExternalSymbol:
622    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
623    break;
624  case ISD::TargetExternalSymbol: {
625    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
626    Erased = TargetExternalSymbols.erase(
627               std::pair<std::string,unsigned char>(ESN->getSymbol(),
628                                                    ESN->getTargetFlags()));
629    break;
630  }
631  case ISD::VALUETYPE: {
632    EVT VT = cast<VTSDNode>(N)->getVT();
633    if (VT.isExtended()) {
634      Erased = ExtendedValueTypeNodes.erase(VT);
635    } else {
636      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
637      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
638    }
639    break;
640  }
641  default:
642    // Remove it from the CSE Map.
643    Erased = CSEMap.RemoveNode(N);
644    break;
645  }
646#ifndef NDEBUG
647  // Verify that the node was actually in one of the CSE maps, unless it has a
648  // flag result (which cannot be CSE'd) or is one of the special cases that are
649  // not subject to CSE.
650  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
651      !N->isMachineOpcode() && !doNotCSE(N)) {
652    N->dump(this);
653    dbgs() << "\n";
654    llvm_unreachable("Node is not in map!");
655  }
656#endif
657  return Erased;
658}
659
660/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
661/// maps and modified in place. Add it back to the CSE maps, unless an identical
662/// node already exists, in which case transfer all its users to the existing
663/// node. This transfer can potentially trigger recursive merging.
664///
665void
666SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
667                                       DAGUpdateListener *UpdateListener) {
668  // For node types that aren't CSE'd, just act as if no identical node
669  // already exists.
670  if (!doNotCSE(N)) {
671    SDNode *Existing = CSEMap.GetOrInsertNode(N);
672    if (Existing != N) {
673      // If there was already an existing matching node, use ReplaceAllUsesWith
674      // to replace the dead one with the existing one.  This can cause
675      // recursive merging of other unrelated nodes down the line.
676      ReplaceAllUsesWith(N, Existing, UpdateListener);
677
678      // N is now dead.  Inform the listener if it exists and delete it.
679      if (UpdateListener)
680        UpdateListener->NodeDeleted(N, Existing);
681      DeleteNodeNotInCSEMaps(N);
682      return;
683    }
684  }
685
686  // If the node doesn't already exist, we updated it.  Inform a listener if
687  // it exists.
688  if (UpdateListener)
689    UpdateListener->NodeUpdated(N);
690}
691
692/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
693/// were replaced with those specified.  If this node is never memoized,
694/// return null, otherwise return a pointer to the slot it would take.  If a
695/// node already exists with these operands, the slot will be non-null.
696SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
697                                           void *&InsertPos) {
698  if (doNotCSE(N))
699    return 0;
700
701  SDValue Ops[] = { Op };
702  FoldingSetNodeID ID;
703  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
704  AddNodeIDCustom(ID, N);
705  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
706  return Node;
707}
708
709/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
710/// were replaced with those specified.  If this node is never memoized,
711/// return null, otherwise return a pointer to the slot it would take.  If a
712/// node already exists with these operands, the slot will be non-null.
713SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
714                                           SDValue Op1, SDValue Op2,
715                                           void *&InsertPos) {
716  if (doNotCSE(N))
717    return 0;
718
719  SDValue Ops[] = { Op1, Op2 };
720  FoldingSetNodeID ID;
721  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
722  AddNodeIDCustom(ID, N);
723  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
724  return Node;
725}
726
727
728/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
729/// were replaced with those specified.  If this node is never memoized,
730/// return null, otherwise return a pointer to the slot it would take.  If a
731/// node already exists with these operands, the slot will be non-null.
732SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
733                                           const SDValue *Ops,unsigned NumOps,
734                                           void *&InsertPos) {
735  if (doNotCSE(N))
736    return 0;
737
738  FoldingSetNodeID ID;
739  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
740  AddNodeIDCustom(ID, N);
741  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
742  return Node;
743}
744
745/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
746void SelectionDAG::VerifyNode(SDNode *N) {
747  switch (N->getOpcode()) {
748  default:
749    break;
750  case ISD::BUILD_PAIR: {
751    EVT VT = N->getValueType(0);
752    assert(N->getNumValues() == 1 && "Too many results!");
753    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
754           "Wrong return type!");
755    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
756    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
757           "Mismatched operand types!");
758    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
759           "Wrong operand type!");
760    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
761           "Wrong return type size");
762    break;
763  }
764  case ISD::BUILD_VECTOR: {
765    assert(N->getNumValues() == 1 && "Too many results!");
766    assert(N->getValueType(0).isVector() && "Wrong return type!");
767    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
768           "Wrong number of operands!");
769    EVT EltVT = N->getValueType(0).getVectorElementType();
770    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
771      assert((I->getValueType() == EltVT ||
772             (EltVT.isInteger() && I->getValueType().isInteger() &&
773              EltVT.bitsLE(I->getValueType()))) &&
774            "Wrong operand type!");
775    break;
776  }
777  }
778}
779
780/// getEVTAlignment - Compute the default alignment value for the
781/// given type.
782///
783unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
784  const Type *Ty = VT == MVT::iPTR ?
785                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
786                   VT.getTypeForEVT(*getContext());
787
788  return TLI.getTargetData()->getABITypeAlignment(Ty);
789}
790
791// EntryNode could meaningfully have debug info if we can find it...
792SelectionDAG::SelectionDAG(const TargetMachine &tm, FunctionLoweringInfo &fli)
793  : TM(tm), TLI(*tm.getTargetLowering()), FLI(fli),
794    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
795    Root(getEntryNode()), Ordering(0) {
796  AllNodes.push_back(&EntryNode);
797  Ordering = new SDNodeOrdering();
798  DbgInfo = new SDDbgInfo();
799}
800
801void SelectionDAG::init(MachineFunction &mf) {
802  MF = &mf;
803  Context = &mf.getFunction()->getContext();
804}
805
806SelectionDAG::~SelectionDAG() {
807  allnodes_clear();
808  delete Ordering;
809  DbgInfo->clear();
810  delete DbgInfo;
811}
812
813void SelectionDAG::allnodes_clear() {
814  assert(&*AllNodes.begin() == &EntryNode);
815  AllNodes.remove(AllNodes.begin());
816  while (!AllNodes.empty())
817    DeallocateNode(AllNodes.begin());
818}
819
820void SelectionDAG::clear() {
821  allnodes_clear();
822  OperandAllocator.Reset();
823  CSEMap.clear();
824
825  ExtendedValueTypeNodes.clear();
826  ExternalSymbols.clear();
827  TargetExternalSymbols.clear();
828  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
829            static_cast<CondCodeSDNode*>(0));
830  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
831            static_cast<SDNode*>(0));
832
833  EntryNode.UseList = 0;
834  AllNodes.push_back(&EntryNode);
835  Root = getEntryNode();
836  delete Ordering;
837  Ordering = new SDNodeOrdering();
838  DbgInfo->clear();
839  delete DbgInfo;
840  DbgInfo = new SDDbgInfo();
841}
842
843SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
844  return VT.bitsGT(Op.getValueType()) ?
845    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
846    getNode(ISD::TRUNCATE, DL, VT, Op);
847}
848
849SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
850  return VT.bitsGT(Op.getValueType()) ?
851    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
852    getNode(ISD::TRUNCATE, DL, VT, Op);
853}
854
855SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
856  assert(!VT.isVector() &&
857         "getZeroExtendInReg should use the vector element type instead of "
858         "the vector type!");
859  if (Op.getValueType() == VT) return Op;
860  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
861  APInt Imm = APInt::getLowBitsSet(BitWidth,
862                                   VT.getSizeInBits());
863  return getNode(ISD::AND, DL, Op.getValueType(), Op,
864                 getConstant(Imm, Op.getValueType()));
865}
866
867/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
868///
869SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
870  EVT EltVT = VT.getScalarType();
871  SDValue NegOne =
872    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
873  return getNode(ISD::XOR, DL, VT, Val, NegOne);
874}
875
876SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
877  EVT EltVT = VT.getScalarType();
878  assert((EltVT.getSizeInBits() >= 64 ||
879         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
880         "getConstant with a uint64_t value that doesn't fit in the type!");
881  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
882}
883
884SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
885  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
886}
887
888SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
889  assert(VT.isInteger() && "Cannot create FP integer constant!");
890
891  EVT EltVT = VT.getScalarType();
892  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
893         "APInt size does not match type size!");
894
895  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
896  FoldingSetNodeID ID;
897  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
898  ID.AddPointer(&Val);
899  void *IP = 0;
900  SDNode *N = NULL;
901  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
902    if (!VT.isVector())
903      return SDValue(N, 0);
904
905  if (!N) {
906    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
907    CSEMap.InsertNode(N, IP);
908    AllNodes.push_back(N);
909  }
910
911  SDValue Result(N, 0);
912  if (VT.isVector()) {
913    SmallVector<SDValue, 8> Ops;
914    Ops.assign(VT.getVectorNumElements(), Result);
915    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
916  }
917  return Result;
918}
919
920SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
921  return getConstant(Val, TLI.getPointerTy(), isTarget);
922}
923
924
925SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
926  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
927}
928
929SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
930  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
931
932  EVT EltVT = VT.getScalarType();
933
934  // Do the map lookup using the actual bit pattern for the floating point
935  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
936  // we don't have issues with SNANs.
937  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
938  FoldingSetNodeID ID;
939  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
940  ID.AddPointer(&V);
941  void *IP = 0;
942  SDNode *N = NULL;
943  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
944    if (!VT.isVector())
945      return SDValue(N, 0);
946
947  if (!N) {
948    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
949    CSEMap.InsertNode(N, IP);
950    AllNodes.push_back(N);
951  }
952
953  SDValue Result(N, 0);
954  if (VT.isVector()) {
955    SmallVector<SDValue, 8> Ops;
956    Ops.assign(VT.getVectorNumElements(), Result);
957    // FIXME DebugLoc info might be appropriate here
958    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
959  }
960  return Result;
961}
962
963SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
964  EVT EltVT = VT.getScalarType();
965  if (EltVT==MVT::f32)
966    return getConstantFP(APFloat((float)Val), VT, isTarget);
967  else
968    return getConstantFP(APFloat(Val), VT, isTarget);
969}
970
971SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
972                                       EVT VT, int64_t Offset,
973                                       bool isTargetGA,
974                                       unsigned char TargetFlags) {
975  assert((TargetFlags == 0 || isTargetGA) &&
976         "Cannot set target flags on target-independent globals");
977
978  // Truncate (with sign-extension) the offset value to the pointer size.
979  EVT PTy = TLI.getPointerTy();
980  unsigned BitWidth = PTy.getSizeInBits();
981  if (BitWidth < 64)
982    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
983
984  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
985  if (!GVar) {
986    // If GV is an alias then use the aliasee for determining thread-localness.
987    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
988      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
989  }
990
991  unsigned Opc;
992  if (GVar && GVar->isThreadLocal())
993    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
994  else
995    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
996
997  FoldingSetNodeID ID;
998  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
999  ID.AddPointer(GV);
1000  ID.AddInteger(Offset);
1001  ID.AddInteger(TargetFlags);
1002  void *IP = 0;
1003  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1004    return SDValue(E, 0);
1005
1006  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, GV, VT,
1007                                                      Offset, TargetFlags);
1008  CSEMap.InsertNode(N, IP);
1009  AllNodes.push_back(N);
1010  return SDValue(N, 0);
1011}
1012
1013SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1014  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1015  FoldingSetNodeID ID;
1016  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1017  ID.AddInteger(FI);
1018  void *IP = 0;
1019  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1020    return SDValue(E, 0);
1021
1022  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1023  CSEMap.InsertNode(N, IP);
1024  AllNodes.push_back(N);
1025  return SDValue(N, 0);
1026}
1027
1028SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1029                                   unsigned char TargetFlags) {
1030  assert((TargetFlags == 0 || isTarget) &&
1031         "Cannot set target flags on target-independent jump tables");
1032  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1033  FoldingSetNodeID ID;
1034  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1035  ID.AddInteger(JTI);
1036  ID.AddInteger(TargetFlags);
1037  void *IP = 0;
1038  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1039    return SDValue(E, 0);
1040
1041  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1042                                                  TargetFlags);
1043  CSEMap.InsertNode(N, IP);
1044  AllNodes.push_back(N);
1045  return SDValue(N, 0);
1046}
1047
1048SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1049                                      unsigned Alignment, int Offset,
1050                                      bool isTarget,
1051                                      unsigned char TargetFlags) {
1052  assert((TargetFlags == 0 || isTarget) &&
1053         "Cannot set target flags on target-independent globals");
1054  if (Alignment == 0)
1055    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1056  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1057  FoldingSetNodeID ID;
1058  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1059  ID.AddInteger(Alignment);
1060  ID.AddInteger(Offset);
1061  ID.AddPointer(C);
1062  ID.AddInteger(TargetFlags);
1063  void *IP = 0;
1064  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1065    return SDValue(E, 0);
1066
1067  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1068                                                     Alignment, TargetFlags);
1069  CSEMap.InsertNode(N, IP);
1070  AllNodes.push_back(N);
1071  return SDValue(N, 0);
1072}
1073
1074
1075SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1076                                      unsigned Alignment, int Offset,
1077                                      bool isTarget,
1078                                      unsigned char TargetFlags) {
1079  assert((TargetFlags == 0 || isTarget) &&
1080         "Cannot set target flags on target-independent globals");
1081  if (Alignment == 0)
1082    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1083  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1084  FoldingSetNodeID ID;
1085  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1086  ID.AddInteger(Alignment);
1087  ID.AddInteger(Offset);
1088  C->AddSelectionDAGCSEId(ID);
1089  ID.AddInteger(TargetFlags);
1090  void *IP = 0;
1091  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1092    return SDValue(E, 0);
1093
1094  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1095                                                     Alignment, TargetFlags);
1096  CSEMap.InsertNode(N, IP);
1097  AllNodes.push_back(N);
1098  return SDValue(N, 0);
1099}
1100
1101SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1102  FoldingSetNodeID ID;
1103  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1104  ID.AddPointer(MBB);
1105  void *IP = 0;
1106  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1107    return SDValue(E, 0);
1108
1109  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1110  CSEMap.InsertNode(N, IP);
1111  AllNodes.push_back(N);
1112  return SDValue(N, 0);
1113}
1114
1115SDValue SelectionDAG::getValueType(EVT VT) {
1116  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1117      ValueTypeNodes.size())
1118    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1119
1120  SDNode *&N = VT.isExtended() ?
1121    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1122
1123  if (N) return SDValue(N, 0);
1124  N = new (NodeAllocator) VTSDNode(VT);
1125  AllNodes.push_back(N);
1126  return SDValue(N, 0);
1127}
1128
1129SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1130  SDNode *&N = ExternalSymbols[Sym];
1131  if (N) return SDValue(N, 0);
1132  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1133  AllNodes.push_back(N);
1134  return SDValue(N, 0);
1135}
1136
1137SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1138                                              unsigned char TargetFlags) {
1139  SDNode *&N =
1140    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1141                                                               TargetFlags)];
1142  if (N) return SDValue(N, 0);
1143  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1144  AllNodes.push_back(N);
1145  return SDValue(N, 0);
1146}
1147
1148SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1149  if ((unsigned)Cond >= CondCodeNodes.size())
1150    CondCodeNodes.resize(Cond+1);
1151
1152  if (CondCodeNodes[Cond] == 0) {
1153    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1154    CondCodeNodes[Cond] = N;
1155    AllNodes.push_back(N);
1156  }
1157
1158  return SDValue(CondCodeNodes[Cond], 0);
1159}
1160
1161// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1162// the shuffle mask M that point at N1 to point at N2, and indices that point
1163// N2 to point at N1.
1164static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1165  std::swap(N1, N2);
1166  int NElts = M.size();
1167  for (int i = 0; i != NElts; ++i) {
1168    if (M[i] >= NElts)
1169      M[i] -= NElts;
1170    else if (M[i] >= 0)
1171      M[i] += NElts;
1172  }
1173}
1174
1175SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1176                                       SDValue N2, const int *Mask) {
1177  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1178  assert(VT.isVector() && N1.getValueType().isVector() &&
1179         "Vector Shuffle VTs must be a vectors");
1180  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1181         && "Vector Shuffle VTs must have same element type");
1182
1183  // Canonicalize shuffle undef, undef -> undef
1184  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1185    return getUNDEF(VT);
1186
1187  // Validate that all indices in Mask are within the range of the elements
1188  // input to the shuffle.
1189  unsigned NElts = VT.getVectorNumElements();
1190  SmallVector<int, 8> MaskVec;
1191  for (unsigned i = 0; i != NElts; ++i) {
1192    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1193    MaskVec.push_back(Mask[i]);
1194  }
1195
1196  // Canonicalize shuffle v, v -> v, undef
1197  if (N1 == N2) {
1198    N2 = getUNDEF(VT);
1199    for (unsigned i = 0; i != NElts; ++i)
1200      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1201  }
1202
1203  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1204  if (N1.getOpcode() == ISD::UNDEF)
1205    commuteShuffle(N1, N2, MaskVec);
1206
1207  // Canonicalize all index into lhs, -> shuffle lhs, undef
1208  // Canonicalize all index into rhs, -> shuffle rhs, undef
1209  bool AllLHS = true, AllRHS = true;
1210  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1211  for (unsigned i = 0; i != NElts; ++i) {
1212    if (MaskVec[i] >= (int)NElts) {
1213      if (N2Undef)
1214        MaskVec[i] = -1;
1215      else
1216        AllLHS = false;
1217    } else if (MaskVec[i] >= 0) {
1218      AllRHS = false;
1219    }
1220  }
1221  if (AllLHS && AllRHS)
1222    return getUNDEF(VT);
1223  if (AllLHS && !N2Undef)
1224    N2 = getUNDEF(VT);
1225  if (AllRHS) {
1226    N1 = getUNDEF(VT);
1227    commuteShuffle(N1, N2, MaskVec);
1228  }
1229
1230  // If Identity shuffle, or all shuffle in to undef, return that node.
1231  bool AllUndef = true;
1232  bool Identity = true;
1233  for (unsigned i = 0; i != NElts; ++i) {
1234    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1235    if (MaskVec[i] >= 0) AllUndef = false;
1236  }
1237  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1238    return N1;
1239  if (AllUndef)
1240    return getUNDEF(VT);
1241
1242  FoldingSetNodeID ID;
1243  SDValue Ops[2] = { N1, N2 };
1244  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1245  for (unsigned i = 0; i != NElts; ++i)
1246    ID.AddInteger(MaskVec[i]);
1247
1248  void* IP = 0;
1249  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1250    return SDValue(E, 0);
1251
1252  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1253  // SDNode doesn't have access to it.  This memory will be "leaked" when
1254  // the node is deallocated, but recovered when the NodeAllocator is released.
1255  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1256  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1257
1258  ShuffleVectorSDNode *N =
1259    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1260  CSEMap.InsertNode(N, IP);
1261  AllNodes.push_back(N);
1262  return SDValue(N, 0);
1263}
1264
1265SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1266                                       SDValue Val, SDValue DTy,
1267                                       SDValue STy, SDValue Rnd, SDValue Sat,
1268                                       ISD::CvtCode Code) {
1269  // If the src and dest types are the same and the conversion is between
1270  // integer types of the same sign or two floats, no conversion is necessary.
1271  if (DTy == STy &&
1272      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1273    return Val;
1274
1275  FoldingSetNodeID ID;
1276  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1277  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1278  void* IP = 0;
1279  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1280    return SDValue(E, 0);
1281
1282  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1283                                                           Code);
1284  CSEMap.InsertNode(N, IP);
1285  AllNodes.push_back(N);
1286  return SDValue(N, 0);
1287}
1288
1289SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1290  FoldingSetNodeID ID;
1291  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1292  ID.AddInteger(RegNo);
1293  void *IP = 0;
1294  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1295    return SDValue(E, 0);
1296
1297  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1298  CSEMap.InsertNode(N, IP);
1299  AllNodes.push_back(N);
1300  return SDValue(N, 0);
1301}
1302
1303SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1304  FoldingSetNodeID ID;
1305  SDValue Ops[] = { Root };
1306  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1307  ID.AddPointer(Label);
1308  void *IP = 0;
1309  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1310    return SDValue(E, 0);
1311
1312  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1313  CSEMap.InsertNode(N, IP);
1314  AllNodes.push_back(N);
1315  return SDValue(N, 0);
1316}
1317
1318
1319SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1320                                      bool isTarget,
1321                                      unsigned char TargetFlags) {
1322  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1323
1324  FoldingSetNodeID ID;
1325  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1326  ID.AddPointer(BA);
1327  ID.AddInteger(TargetFlags);
1328  void *IP = 0;
1329  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1330    return SDValue(E, 0);
1331
1332  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1333  CSEMap.InsertNode(N, IP);
1334  AllNodes.push_back(N);
1335  return SDValue(N, 0);
1336}
1337
1338SDValue SelectionDAG::getSrcValue(const Value *V) {
1339  assert((!V || V->getType()->isPointerTy()) &&
1340         "SrcValue is not a pointer?");
1341
1342  FoldingSetNodeID ID;
1343  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1344  ID.AddPointer(V);
1345
1346  void *IP = 0;
1347  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1348    return SDValue(E, 0);
1349
1350  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1351  CSEMap.InsertNode(N, IP);
1352  AllNodes.push_back(N);
1353  return SDValue(N, 0);
1354}
1355
1356/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1357SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1358  FoldingSetNodeID ID;
1359  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1360  ID.AddPointer(MD);
1361
1362  void *IP = 0;
1363  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1364    return SDValue(E, 0);
1365
1366  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1367  CSEMap.InsertNode(N, IP);
1368  AllNodes.push_back(N);
1369  return SDValue(N, 0);
1370}
1371
1372
1373/// getShiftAmountOperand - Return the specified value casted to
1374/// the target's desired shift amount type.
1375SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1376  EVT OpTy = Op.getValueType();
1377  MVT ShTy = TLI.getShiftAmountTy();
1378  if (OpTy == ShTy || OpTy.isVector()) return Op;
1379
1380  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1381  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1382}
1383
1384/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1385/// specified value type.
1386SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1387  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1388  unsigned ByteSize = VT.getStoreSize();
1389  const Type *Ty = VT.getTypeForEVT(*getContext());
1390  unsigned StackAlign =
1391  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1392
1393  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1394  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1395}
1396
1397/// CreateStackTemporary - Create a stack temporary suitable for holding
1398/// either of the specified value types.
1399SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1400  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1401                            VT2.getStoreSizeInBits())/8;
1402  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1403  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1404  const TargetData *TD = TLI.getTargetData();
1405  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1406                            TD->getPrefTypeAlignment(Ty2));
1407
1408  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1409  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1410  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1411}
1412
1413SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1414                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1415  // These setcc operations always fold.
1416  switch (Cond) {
1417  default: break;
1418  case ISD::SETFALSE:
1419  case ISD::SETFALSE2: return getConstant(0, VT);
1420  case ISD::SETTRUE:
1421  case ISD::SETTRUE2:  return getConstant(1, VT);
1422
1423  case ISD::SETOEQ:
1424  case ISD::SETOGT:
1425  case ISD::SETOGE:
1426  case ISD::SETOLT:
1427  case ISD::SETOLE:
1428  case ISD::SETONE:
1429  case ISD::SETO:
1430  case ISD::SETUO:
1431  case ISD::SETUEQ:
1432  case ISD::SETUNE:
1433    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1434    break;
1435  }
1436
1437  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1438    const APInt &C2 = N2C->getAPIntValue();
1439    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1440      const APInt &C1 = N1C->getAPIntValue();
1441
1442      switch (Cond) {
1443      default: llvm_unreachable("Unknown integer setcc!");
1444      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1445      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1446      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1447      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1448      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1449      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1450      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1451      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1452      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1453      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1454      }
1455    }
1456  }
1457  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1458    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1459      // No compile time operations on this type yet.
1460      if (N1C->getValueType(0) == MVT::ppcf128)
1461        return SDValue();
1462
1463      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1464      switch (Cond) {
1465      default: break;
1466      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1467                          return getUNDEF(VT);
1468                        // fall through
1469      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1470      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1471                          return getUNDEF(VT);
1472                        // fall through
1473      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1474                                           R==APFloat::cmpLessThan, VT);
1475      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1476                          return getUNDEF(VT);
1477                        // fall through
1478      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1479      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1480                          return getUNDEF(VT);
1481                        // fall through
1482      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1483      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1484                          return getUNDEF(VT);
1485                        // fall through
1486      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1487                                           R==APFloat::cmpEqual, VT);
1488      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1489                          return getUNDEF(VT);
1490                        // fall through
1491      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1492                                           R==APFloat::cmpEqual, VT);
1493      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1494      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1495      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1496                                           R==APFloat::cmpEqual, VT);
1497      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1498      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1499                                           R==APFloat::cmpLessThan, VT);
1500      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1501                                           R==APFloat::cmpUnordered, VT);
1502      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1503      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1504      }
1505    } else {
1506      // Ensure that the constant occurs on the RHS.
1507      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1508    }
1509  }
1510
1511  // Could not fold it.
1512  return SDValue();
1513}
1514
1515/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1516/// use this predicate to simplify operations downstream.
1517bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1518  // This predicate is not safe for vector operations.
1519  if (Op.getValueType().isVector())
1520    return false;
1521
1522  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1523  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1524}
1525
1526/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1527/// this predicate to simplify operations downstream.  Mask is known to be zero
1528/// for bits that V cannot have.
1529bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1530                                     unsigned Depth) const {
1531  APInt KnownZero, KnownOne;
1532  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1533  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1534  return (KnownZero & Mask) == Mask;
1535}
1536
1537/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1538/// known to be either zero or one and return them in the KnownZero/KnownOne
1539/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1540/// processing.
1541void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1542                                     APInt &KnownZero, APInt &KnownOne,
1543                                     unsigned Depth) const {
1544  unsigned BitWidth = Mask.getBitWidth();
1545  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1546         "Mask size mismatches value type size!");
1547
1548  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1549  if (Depth == 6 || Mask == 0)
1550    return;  // Limit search depth.
1551
1552  APInt KnownZero2, KnownOne2;
1553
1554  switch (Op.getOpcode()) {
1555  case ISD::Constant:
1556    // We know all of the bits for a constant!
1557    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1558    KnownZero = ~KnownOne & Mask;
1559    return;
1560  case ISD::AND:
1561    // If either the LHS or the RHS are Zero, the result is zero.
1562    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1563    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1564                      KnownZero2, KnownOne2, Depth+1);
1565    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1566    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1567
1568    // Output known-1 bits are only known if set in both the LHS & RHS.
1569    KnownOne &= KnownOne2;
1570    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1571    KnownZero |= KnownZero2;
1572    return;
1573  case ISD::OR:
1574    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1575    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1576                      KnownZero2, KnownOne2, Depth+1);
1577    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1578    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1579
1580    // Output known-0 bits are only known if clear in both the LHS & RHS.
1581    KnownZero &= KnownZero2;
1582    // Output known-1 are known to be set if set in either the LHS | RHS.
1583    KnownOne |= KnownOne2;
1584    return;
1585  case ISD::XOR: {
1586    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1587    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1588    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1589    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1590
1591    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1592    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1593    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1594    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1595    KnownZero = KnownZeroOut;
1596    return;
1597  }
1598  case ISD::MUL: {
1599    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1600    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1601    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1602    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1603    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1604
1605    // If low bits are zero in either operand, output low known-0 bits.
1606    // Also compute a conserative estimate for high known-0 bits.
1607    // More trickiness is possible, but this is sufficient for the
1608    // interesting case of alignment computation.
1609    KnownOne.clear();
1610    unsigned TrailZ = KnownZero.countTrailingOnes() +
1611                      KnownZero2.countTrailingOnes();
1612    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1613                               KnownZero2.countLeadingOnes(),
1614                               BitWidth) - BitWidth;
1615
1616    TrailZ = std::min(TrailZ, BitWidth);
1617    LeadZ = std::min(LeadZ, BitWidth);
1618    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1619                APInt::getHighBitsSet(BitWidth, LeadZ);
1620    KnownZero &= Mask;
1621    return;
1622  }
1623  case ISD::UDIV: {
1624    // For the purposes of computing leading zeros we can conservatively
1625    // treat a udiv as a logical right shift by the power of 2 known to
1626    // be less than the denominator.
1627    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1628    ComputeMaskedBits(Op.getOperand(0),
1629                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1630    unsigned LeadZ = KnownZero2.countLeadingOnes();
1631
1632    KnownOne2.clear();
1633    KnownZero2.clear();
1634    ComputeMaskedBits(Op.getOperand(1),
1635                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1636    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1637    if (RHSUnknownLeadingOnes != BitWidth)
1638      LeadZ = std::min(BitWidth,
1639                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1640
1641    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1642    return;
1643  }
1644  case ISD::SELECT:
1645    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1646    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1647    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1648    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1649
1650    // Only known if known in both the LHS and RHS.
1651    KnownOne &= KnownOne2;
1652    KnownZero &= KnownZero2;
1653    return;
1654  case ISD::SELECT_CC:
1655    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1656    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1657    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1658    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1659
1660    // Only known if known in both the LHS and RHS.
1661    KnownOne &= KnownOne2;
1662    KnownZero &= KnownZero2;
1663    return;
1664  case ISD::SADDO:
1665  case ISD::UADDO:
1666  case ISD::SSUBO:
1667  case ISD::USUBO:
1668  case ISD::SMULO:
1669  case ISD::UMULO:
1670    if (Op.getResNo() != 1)
1671      return;
1672    // The boolean result conforms to getBooleanContents.  Fall through.
1673  case ISD::SETCC:
1674    // If we know the result of a setcc has the top bits zero, use this info.
1675    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1676        BitWidth > 1)
1677      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1678    return;
1679  case ISD::SHL:
1680    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1681    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1682      unsigned ShAmt = SA->getZExtValue();
1683
1684      // If the shift count is an invalid immediate, don't do anything.
1685      if (ShAmt >= BitWidth)
1686        return;
1687
1688      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1689                        KnownZero, KnownOne, Depth+1);
1690      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1691      KnownZero <<= ShAmt;
1692      KnownOne  <<= ShAmt;
1693      // low bits known zero.
1694      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1695    }
1696    return;
1697  case ISD::SRL:
1698    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1699    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1700      unsigned ShAmt = SA->getZExtValue();
1701
1702      // If the shift count is an invalid immediate, don't do anything.
1703      if (ShAmt >= BitWidth)
1704        return;
1705
1706      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1707                        KnownZero, KnownOne, Depth+1);
1708      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1709      KnownZero = KnownZero.lshr(ShAmt);
1710      KnownOne  = KnownOne.lshr(ShAmt);
1711
1712      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1713      KnownZero |= HighBits;  // High bits known zero.
1714    }
1715    return;
1716  case ISD::SRA:
1717    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1718      unsigned ShAmt = SA->getZExtValue();
1719
1720      // If the shift count is an invalid immediate, don't do anything.
1721      if (ShAmt >= BitWidth)
1722        return;
1723
1724      APInt InDemandedMask = (Mask << ShAmt);
1725      // If any of the demanded bits are produced by the sign extension, we also
1726      // demand the input sign bit.
1727      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1728      if (HighBits.getBoolValue())
1729        InDemandedMask |= APInt::getSignBit(BitWidth);
1730
1731      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1732                        Depth+1);
1733      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1734      KnownZero = KnownZero.lshr(ShAmt);
1735      KnownOne  = KnownOne.lshr(ShAmt);
1736
1737      // Handle the sign bits.
1738      APInt SignBit = APInt::getSignBit(BitWidth);
1739      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1740
1741      if (KnownZero.intersects(SignBit)) {
1742        KnownZero |= HighBits;  // New bits are known zero.
1743      } else if (KnownOne.intersects(SignBit)) {
1744        KnownOne  |= HighBits;  // New bits are known one.
1745      }
1746    }
1747    return;
1748  case ISD::SIGN_EXTEND_INREG: {
1749    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1750    unsigned EBits = EVT.getScalarType().getSizeInBits();
1751
1752    // Sign extension.  Compute the demanded bits in the result that are not
1753    // present in the input.
1754    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1755
1756    APInt InSignBit = APInt::getSignBit(EBits);
1757    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1758
1759    // If the sign extended bits are demanded, we know that the sign
1760    // bit is demanded.
1761    InSignBit.zext(BitWidth);
1762    if (NewBits.getBoolValue())
1763      InputDemandedBits |= InSignBit;
1764
1765    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1766                      KnownZero, KnownOne, Depth+1);
1767    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1768
1769    // If the sign bit of the input is known set or clear, then we know the
1770    // top bits of the result.
1771    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1772      KnownZero |= NewBits;
1773      KnownOne  &= ~NewBits;
1774    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1775      KnownOne  |= NewBits;
1776      KnownZero &= ~NewBits;
1777    } else {                              // Input sign bit unknown
1778      KnownZero &= ~NewBits;
1779      KnownOne  &= ~NewBits;
1780    }
1781    return;
1782  }
1783  case ISD::CTTZ:
1784  case ISD::CTLZ:
1785  case ISD::CTPOP: {
1786    unsigned LowBits = Log2_32(BitWidth)+1;
1787    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1788    KnownOne.clear();
1789    return;
1790  }
1791  case ISD::LOAD: {
1792    if (ISD::isZEXTLoad(Op.getNode())) {
1793      LoadSDNode *LD = cast<LoadSDNode>(Op);
1794      EVT VT = LD->getMemoryVT();
1795      unsigned MemBits = VT.getScalarType().getSizeInBits();
1796      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1797    }
1798    return;
1799  }
1800  case ISD::ZERO_EXTEND: {
1801    EVT InVT = Op.getOperand(0).getValueType();
1802    unsigned InBits = InVT.getScalarType().getSizeInBits();
1803    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1804    APInt InMask    = Mask;
1805    InMask.trunc(InBits);
1806    KnownZero.trunc(InBits);
1807    KnownOne.trunc(InBits);
1808    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1809    KnownZero.zext(BitWidth);
1810    KnownOne.zext(BitWidth);
1811    KnownZero |= NewBits;
1812    return;
1813  }
1814  case ISD::SIGN_EXTEND: {
1815    EVT InVT = Op.getOperand(0).getValueType();
1816    unsigned InBits = InVT.getScalarType().getSizeInBits();
1817    APInt InSignBit = APInt::getSignBit(InBits);
1818    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1819    APInt InMask = Mask;
1820    InMask.trunc(InBits);
1821
1822    // If any of the sign extended bits are demanded, we know that the sign
1823    // bit is demanded. Temporarily set this bit in the mask for our callee.
1824    if (NewBits.getBoolValue())
1825      InMask |= InSignBit;
1826
1827    KnownZero.trunc(InBits);
1828    KnownOne.trunc(InBits);
1829    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1830
1831    // Note if the sign bit is known to be zero or one.
1832    bool SignBitKnownZero = KnownZero.isNegative();
1833    bool SignBitKnownOne  = KnownOne.isNegative();
1834    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1835           "Sign bit can't be known to be both zero and one!");
1836
1837    // If the sign bit wasn't actually demanded by our caller, we don't
1838    // want it set in the KnownZero and KnownOne result values. Reset the
1839    // mask and reapply it to the result values.
1840    InMask = Mask;
1841    InMask.trunc(InBits);
1842    KnownZero &= InMask;
1843    KnownOne  &= InMask;
1844
1845    KnownZero.zext(BitWidth);
1846    KnownOne.zext(BitWidth);
1847
1848    // If the sign bit is known zero or one, the top bits match.
1849    if (SignBitKnownZero)
1850      KnownZero |= NewBits;
1851    else if (SignBitKnownOne)
1852      KnownOne  |= NewBits;
1853    return;
1854  }
1855  case ISD::ANY_EXTEND: {
1856    EVT InVT = Op.getOperand(0).getValueType();
1857    unsigned InBits = InVT.getScalarType().getSizeInBits();
1858    APInt InMask = Mask;
1859    InMask.trunc(InBits);
1860    KnownZero.trunc(InBits);
1861    KnownOne.trunc(InBits);
1862    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1863    KnownZero.zext(BitWidth);
1864    KnownOne.zext(BitWidth);
1865    return;
1866  }
1867  case ISD::TRUNCATE: {
1868    EVT InVT = Op.getOperand(0).getValueType();
1869    unsigned InBits = InVT.getScalarType().getSizeInBits();
1870    APInt InMask = Mask;
1871    InMask.zext(InBits);
1872    KnownZero.zext(InBits);
1873    KnownOne.zext(InBits);
1874    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1875    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1876    KnownZero.trunc(BitWidth);
1877    KnownOne.trunc(BitWidth);
1878    break;
1879  }
1880  case ISD::AssertZext: {
1881    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1882    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1883    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1884                      KnownOne, Depth+1);
1885    KnownZero |= (~InMask) & Mask;
1886    return;
1887  }
1888  case ISD::FGETSIGN:
1889    // All bits are zero except the low bit.
1890    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1891    return;
1892
1893  case ISD::SUB: {
1894    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1895      // We know that the top bits of C-X are clear if X contains less bits
1896      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1897      // positive if we can prove that X is >= 0 and < 16.
1898      if (CLHS->getAPIntValue().isNonNegative()) {
1899        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1900        // NLZ can't be BitWidth with no sign bit
1901        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1902        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1903                          Depth+1);
1904
1905        // If all of the MaskV bits are known to be zero, then we know the
1906        // output top bits are zero, because we now know that the output is
1907        // from [0-C].
1908        if ((KnownZero2 & MaskV) == MaskV) {
1909          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1910          // Top bits known zero.
1911          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1912        }
1913      }
1914    }
1915  }
1916  // fall through
1917  case ISD::ADD: {
1918    // Output known-0 bits are known if clear or set in both the low clear bits
1919    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1920    // low 3 bits clear.
1921    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1922                                       BitWidth - Mask.countLeadingZeros());
1923    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1924    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1925    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1926
1927    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1928    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1929    KnownZeroOut = std::min(KnownZeroOut,
1930                            KnownZero2.countTrailingOnes());
1931
1932    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1933    return;
1934  }
1935  case ISD::SREM:
1936    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1937      const APInt &RA = Rem->getAPIntValue().abs();
1938      if (RA.isPowerOf2()) {
1939        APInt LowBits = RA - 1;
1940        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1941        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1942
1943        // The low bits of the first operand are unchanged by the srem.
1944        KnownZero = KnownZero2 & LowBits;
1945        KnownOne = KnownOne2 & LowBits;
1946
1947        // If the first operand is non-negative or has all low bits zero, then
1948        // the upper bits are all zero.
1949        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1950          KnownZero |= ~LowBits;
1951
1952        // If the first operand is negative and not all low bits are zero, then
1953        // the upper bits are all one.
1954        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1955          KnownOne |= ~LowBits;
1956
1957        KnownZero &= Mask;
1958        KnownOne &= Mask;
1959
1960        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1961      }
1962    }
1963    return;
1964  case ISD::UREM: {
1965    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1966      const APInt &RA = Rem->getAPIntValue();
1967      if (RA.isPowerOf2()) {
1968        APInt LowBits = (RA - 1);
1969        APInt Mask2 = LowBits & Mask;
1970        KnownZero |= ~LowBits & Mask;
1971        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1972        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1973        break;
1974      }
1975    }
1976
1977    // Since the result is less than or equal to either operand, any leading
1978    // zero bits in either operand must also exist in the result.
1979    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1980    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1981                      Depth+1);
1982    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1983                      Depth+1);
1984
1985    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1986                                KnownZero2.countLeadingOnes());
1987    KnownOne.clear();
1988    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1989    return;
1990  }
1991  default:
1992    // Allow the target to implement this method for its nodes.
1993    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1994  case ISD::INTRINSIC_WO_CHAIN:
1995  case ISD::INTRINSIC_W_CHAIN:
1996  case ISD::INTRINSIC_VOID:
1997      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1998                                         Depth);
1999    }
2000    return;
2001  }
2002}
2003
2004/// ComputeNumSignBits - Return the number of times the sign bit of the
2005/// register is replicated into the other bits.  We know that at least 1 bit
2006/// is always equal to the sign bit (itself), but other cases can give us
2007/// information.  For example, immediately after an "SRA X, 2", we know that
2008/// the top 3 bits are all equal to each other, so we return 3.
2009unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2010  EVT VT = Op.getValueType();
2011  assert(VT.isInteger() && "Invalid VT!");
2012  unsigned VTBits = VT.getScalarType().getSizeInBits();
2013  unsigned Tmp, Tmp2;
2014  unsigned FirstAnswer = 1;
2015
2016  if (Depth == 6)
2017    return 1;  // Limit search depth.
2018
2019  switch (Op.getOpcode()) {
2020  default: break;
2021  case ISD::AssertSext:
2022    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2023    return VTBits-Tmp+1;
2024  case ISD::AssertZext:
2025    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2026    return VTBits-Tmp;
2027
2028  case ISD::Constant: {
2029    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2030    // If negative, return # leading ones.
2031    if (Val.isNegative())
2032      return Val.countLeadingOnes();
2033
2034    // Return # leading zeros.
2035    return Val.countLeadingZeros();
2036  }
2037
2038  case ISD::SIGN_EXTEND:
2039    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2040    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2041
2042  case ISD::SIGN_EXTEND_INREG:
2043    // Max of the input and what this extends.
2044    Tmp =
2045      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2046    Tmp = VTBits-Tmp+1;
2047
2048    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2049    return std::max(Tmp, Tmp2);
2050
2051  case ISD::SRA:
2052    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2053    // SRA X, C   -> adds C sign bits.
2054    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2055      Tmp += C->getZExtValue();
2056      if (Tmp > VTBits) Tmp = VTBits;
2057    }
2058    return Tmp;
2059  case ISD::SHL:
2060    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2061      // shl destroys sign bits.
2062      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2063      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2064          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2065      return Tmp - C->getZExtValue();
2066    }
2067    break;
2068  case ISD::AND:
2069  case ISD::OR:
2070  case ISD::XOR:    // NOT is handled here.
2071    // Logical binary ops preserve the number of sign bits at the worst.
2072    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2073    if (Tmp != 1) {
2074      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2075      FirstAnswer = std::min(Tmp, Tmp2);
2076      // We computed what we know about the sign bits as our first
2077      // answer. Now proceed to the generic code that uses
2078      // ComputeMaskedBits, and pick whichever answer is better.
2079    }
2080    break;
2081
2082  case ISD::SELECT:
2083    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2084    if (Tmp == 1) return 1;  // Early out.
2085    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2086    return std::min(Tmp, Tmp2);
2087
2088  case ISD::SADDO:
2089  case ISD::UADDO:
2090  case ISD::SSUBO:
2091  case ISD::USUBO:
2092  case ISD::SMULO:
2093  case ISD::UMULO:
2094    if (Op.getResNo() != 1)
2095      break;
2096    // The boolean result conforms to getBooleanContents.  Fall through.
2097  case ISD::SETCC:
2098    // If setcc returns 0/-1, all bits are sign bits.
2099    if (TLI.getBooleanContents() ==
2100        TargetLowering::ZeroOrNegativeOneBooleanContent)
2101      return VTBits;
2102    break;
2103  case ISD::ROTL:
2104  case ISD::ROTR:
2105    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2106      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2107
2108      // Handle rotate right by N like a rotate left by 32-N.
2109      if (Op.getOpcode() == ISD::ROTR)
2110        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2111
2112      // If we aren't rotating out all of the known-in sign bits, return the
2113      // number that are left.  This handles rotl(sext(x), 1) for example.
2114      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2115      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2116    }
2117    break;
2118  case ISD::ADD:
2119    // Add can have at most one carry bit.  Thus we know that the output
2120    // is, at worst, one more bit than the inputs.
2121    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2122    if (Tmp == 1) return 1;  // Early out.
2123
2124    // Special case decrementing a value (ADD X, -1):
2125    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2126      if (CRHS->isAllOnesValue()) {
2127        APInt KnownZero, KnownOne;
2128        APInt Mask = APInt::getAllOnesValue(VTBits);
2129        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2130
2131        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2132        // sign bits set.
2133        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2134          return VTBits;
2135
2136        // If we are subtracting one from a positive number, there is no carry
2137        // out of the result.
2138        if (KnownZero.isNegative())
2139          return Tmp;
2140      }
2141
2142    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2143    if (Tmp2 == 1) return 1;
2144      return std::min(Tmp, Tmp2)-1;
2145    break;
2146
2147  case ISD::SUB:
2148    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2149    if (Tmp2 == 1) return 1;
2150
2151    // Handle NEG.
2152    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2153      if (CLHS->isNullValue()) {
2154        APInt KnownZero, KnownOne;
2155        APInt Mask = APInt::getAllOnesValue(VTBits);
2156        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2157        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2158        // sign bits set.
2159        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2160          return VTBits;
2161
2162        // If the input is known to be positive (the sign bit is known clear),
2163        // the output of the NEG has the same number of sign bits as the input.
2164        if (KnownZero.isNegative())
2165          return Tmp2;
2166
2167        // Otherwise, we treat this like a SUB.
2168      }
2169
2170    // Sub can have at most one carry bit.  Thus we know that the output
2171    // is, at worst, one more bit than the inputs.
2172    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2173    if (Tmp == 1) return 1;  // Early out.
2174      return std::min(Tmp, Tmp2)-1;
2175    break;
2176  case ISD::TRUNCATE:
2177    // FIXME: it's tricky to do anything useful for this, but it is an important
2178    // case for targets like X86.
2179    break;
2180  }
2181
2182  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2183  if (Op.getOpcode() == ISD::LOAD) {
2184    LoadSDNode *LD = cast<LoadSDNode>(Op);
2185    unsigned ExtType = LD->getExtensionType();
2186    switch (ExtType) {
2187    default: break;
2188    case ISD::SEXTLOAD:    // '17' bits known
2189      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2190      return VTBits-Tmp+1;
2191    case ISD::ZEXTLOAD:    // '16' bits known
2192      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2193      return VTBits-Tmp;
2194    }
2195  }
2196
2197  // Allow the target to implement this method for its nodes.
2198  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2199      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2200      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2201      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2202    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2203    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2204  }
2205
2206  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2207  // use this information.
2208  APInt KnownZero, KnownOne;
2209  APInt Mask = APInt::getAllOnesValue(VTBits);
2210  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2211
2212  if (KnownZero.isNegative()) {        // sign bit is 0
2213    Mask = KnownZero;
2214  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2215    Mask = KnownOne;
2216  } else {
2217    // Nothing known.
2218    return FirstAnswer;
2219  }
2220
2221  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2222  // the number of identical bits in the top of the input value.
2223  Mask = ~Mask;
2224  Mask <<= Mask.getBitWidth()-VTBits;
2225  // Return # leading zeros.  We use 'min' here in case Val was zero before
2226  // shifting.  We don't want to return '64' as for an i32 "0".
2227  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2228}
2229
2230bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2231  // If we're told that NaNs won't happen, assume they won't.
2232  if (FiniteOnlyFPMath())
2233    return true;
2234
2235  // If the value is a constant, we can obviously see if it is a NaN or not.
2236  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2237    return !C->getValueAPF().isNaN();
2238
2239  // TODO: Recognize more cases here.
2240
2241  return false;
2242}
2243
2244bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2245  // If the value is a constant, we can obviously see if it is a zero or not.
2246  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2247    return !C->isZero();
2248
2249  // TODO: Recognize more cases here.
2250
2251  return false;
2252}
2253
2254bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2255  // Check the obvious case.
2256  if (A == B) return true;
2257
2258  // For for negative and positive zero.
2259  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2260    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2261      if (CA->isZero() && CB->isZero()) return true;
2262
2263  // Otherwise they may not be equal.
2264  return false;
2265}
2266
2267bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2268  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2269  if (!GA) return false;
2270  if (GA->getOffset() != 0) return false;
2271  const GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2272  if (!GV) return false;
2273  return MF->getMMI().hasDebugInfo();
2274}
2275
2276
2277/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2278/// element of the result of the vector shuffle.
2279SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2280                                          unsigned i) {
2281  EVT VT = N->getValueType(0);
2282  DebugLoc dl = N->getDebugLoc();
2283  if (N->getMaskElt(i) < 0)
2284    return getUNDEF(VT.getVectorElementType());
2285  unsigned Index = N->getMaskElt(i);
2286  unsigned NumElems = VT.getVectorNumElements();
2287  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2288  Index %= NumElems;
2289
2290  if (V.getOpcode() == ISD::BIT_CONVERT) {
2291    V = V.getOperand(0);
2292    EVT VVT = V.getValueType();
2293    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2294      return SDValue();
2295  }
2296  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2297    return (Index == 0) ? V.getOperand(0)
2298                      : getUNDEF(VT.getVectorElementType());
2299  if (V.getOpcode() == ISD::BUILD_VECTOR)
2300    return V.getOperand(Index);
2301  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2302    return getShuffleScalarElt(SVN, Index);
2303  return SDValue();
2304}
2305
2306
2307/// getNode - Gets or creates the specified node.
2308///
2309SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2310  FoldingSetNodeID ID;
2311  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2312  void *IP = 0;
2313  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2314    return SDValue(E, 0);
2315
2316  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2317  CSEMap.InsertNode(N, IP);
2318
2319  AllNodes.push_back(N);
2320#ifndef NDEBUG
2321  VerifyNode(N);
2322#endif
2323  return SDValue(N, 0);
2324}
2325
2326SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2327                              EVT VT, SDValue Operand) {
2328  // Constant fold unary operations with an integer constant operand.
2329  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2330    const APInt &Val = C->getAPIntValue();
2331    switch (Opcode) {
2332    default: break;
2333    case ISD::SIGN_EXTEND:
2334      return getConstant(APInt(Val).sextOrTrunc(VT.getSizeInBits()), VT);
2335    case ISD::ANY_EXTEND:
2336    case ISD::ZERO_EXTEND:
2337    case ISD::TRUNCATE:
2338      return getConstant(APInt(Val).zextOrTrunc(VT.getSizeInBits()), VT);
2339    case ISD::UINT_TO_FP:
2340    case ISD::SINT_TO_FP: {
2341      const uint64_t zero[] = {0, 0};
2342      // No compile time operations on ppcf128.
2343      if (VT == MVT::ppcf128) break;
2344      APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2345      (void)apf.convertFromAPInt(Val,
2346                                 Opcode==ISD::SINT_TO_FP,
2347                                 APFloat::rmNearestTiesToEven);
2348      return getConstantFP(apf, VT);
2349    }
2350    case ISD::BIT_CONVERT:
2351      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2352        return getConstantFP(Val.bitsToFloat(), VT);
2353      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2354        return getConstantFP(Val.bitsToDouble(), VT);
2355      break;
2356    case ISD::BSWAP:
2357      return getConstant(Val.byteSwap(), VT);
2358    case ISD::CTPOP:
2359      return getConstant(Val.countPopulation(), VT);
2360    case ISD::CTLZ:
2361      return getConstant(Val.countLeadingZeros(), VT);
2362    case ISD::CTTZ:
2363      return getConstant(Val.countTrailingZeros(), VT);
2364    }
2365  }
2366
2367  // Constant fold unary operations with a floating point constant operand.
2368  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2369    APFloat V = C->getValueAPF();    // make copy
2370    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2371      switch (Opcode) {
2372      case ISD::FNEG:
2373        V.changeSign();
2374        return getConstantFP(V, VT);
2375      case ISD::FABS:
2376        V.clearSign();
2377        return getConstantFP(V, VT);
2378      case ISD::FP_ROUND:
2379      case ISD::FP_EXTEND: {
2380        bool ignored;
2381        // This can return overflow, underflow, or inexact; we don't care.
2382        // FIXME need to be more flexible about rounding mode.
2383        (void)V.convert(*EVTToAPFloatSemantics(VT),
2384                        APFloat::rmNearestTiesToEven, &ignored);
2385        return getConstantFP(V, VT);
2386      }
2387      case ISD::FP_TO_SINT:
2388      case ISD::FP_TO_UINT: {
2389        integerPart x[2];
2390        bool ignored;
2391        assert(integerPartWidth >= 64);
2392        // FIXME need to be more flexible about rounding mode.
2393        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2394                              Opcode==ISD::FP_TO_SINT,
2395                              APFloat::rmTowardZero, &ignored);
2396        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2397          break;
2398        APInt api(VT.getSizeInBits(), 2, x);
2399        return getConstant(api, VT);
2400      }
2401      case ISD::BIT_CONVERT:
2402        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2403          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2404        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2405          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2406        break;
2407      }
2408    }
2409  }
2410
2411  unsigned OpOpcode = Operand.getNode()->getOpcode();
2412  switch (Opcode) {
2413  case ISD::TokenFactor:
2414  case ISD::MERGE_VALUES:
2415  case ISD::CONCAT_VECTORS:
2416    return Operand;         // Factor, merge or concat of one node?  No need.
2417  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2418  case ISD::FP_EXTEND:
2419    assert(VT.isFloatingPoint() &&
2420           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2421    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2422    assert((!VT.isVector() ||
2423            VT.getVectorNumElements() ==
2424            Operand.getValueType().getVectorNumElements()) &&
2425           "Vector element count mismatch!");
2426    if (Operand.getOpcode() == ISD::UNDEF)
2427      return getUNDEF(VT);
2428    break;
2429  case ISD::SIGN_EXTEND:
2430    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2431           "Invalid SIGN_EXTEND!");
2432    if (Operand.getValueType() == VT) return Operand;   // noop extension
2433    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2434           "Invalid sext node, dst < src!");
2435    assert((!VT.isVector() ||
2436            VT.getVectorNumElements() ==
2437            Operand.getValueType().getVectorNumElements()) &&
2438           "Vector element count mismatch!");
2439    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2440      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2441    break;
2442  case ISD::ZERO_EXTEND:
2443    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2444           "Invalid ZERO_EXTEND!");
2445    if (Operand.getValueType() == VT) return Operand;   // noop extension
2446    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2447           "Invalid zext node, dst < src!");
2448    assert((!VT.isVector() ||
2449            VT.getVectorNumElements() ==
2450            Operand.getValueType().getVectorNumElements()) &&
2451           "Vector element count mismatch!");
2452    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2453      return getNode(ISD::ZERO_EXTEND, DL, VT,
2454                     Operand.getNode()->getOperand(0));
2455    break;
2456  case ISD::ANY_EXTEND:
2457    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2458           "Invalid ANY_EXTEND!");
2459    if (Operand.getValueType() == VT) return Operand;   // noop extension
2460    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2461           "Invalid anyext node, dst < src!");
2462    assert((!VT.isVector() ||
2463            VT.getVectorNumElements() ==
2464            Operand.getValueType().getVectorNumElements()) &&
2465           "Vector element count mismatch!");
2466    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2467      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2468      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2469    break;
2470  case ISD::TRUNCATE:
2471    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2472           "Invalid TRUNCATE!");
2473    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2474    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2475           "Invalid truncate node, src < dst!");
2476    assert((!VT.isVector() ||
2477            VT.getVectorNumElements() ==
2478            Operand.getValueType().getVectorNumElements()) &&
2479           "Vector element count mismatch!");
2480    if (OpOpcode == ISD::TRUNCATE)
2481      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2482    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2483             OpOpcode == ISD::ANY_EXTEND) {
2484      // If the source is smaller than the dest, we still need an extend.
2485      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2486            .bitsLT(VT.getScalarType()))
2487        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2488      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2489        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2490      else
2491        return Operand.getNode()->getOperand(0);
2492    }
2493    break;
2494  case ISD::BIT_CONVERT:
2495    // Basic sanity checking.
2496    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2497           && "Cannot BIT_CONVERT between types of different sizes!");
2498    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2499    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2500      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2501    if (OpOpcode == ISD::UNDEF)
2502      return getUNDEF(VT);
2503    break;
2504  case ISD::SCALAR_TO_VECTOR:
2505    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2506           (VT.getVectorElementType() == Operand.getValueType() ||
2507            (VT.getVectorElementType().isInteger() &&
2508             Operand.getValueType().isInteger() &&
2509             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2510           "Illegal SCALAR_TO_VECTOR node!");
2511    if (OpOpcode == ISD::UNDEF)
2512      return getUNDEF(VT);
2513    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2514    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2515        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2516        Operand.getConstantOperandVal(1) == 0 &&
2517        Operand.getOperand(0).getValueType() == VT)
2518      return Operand.getOperand(0);
2519    break;
2520  case ISD::FNEG:
2521    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2522    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2523      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2524                     Operand.getNode()->getOperand(0));
2525    if (OpOpcode == ISD::FNEG)  // --X -> X
2526      return Operand.getNode()->getOperand(0);
2527    break;
2528  case ISD::FABS:
2529    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2530      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2531    break;
2532  }
2533
2534  SDNode *N;
2535  SDVTList VTs = getVTList(VT);
2536  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2537    FoldingSetNodeID ID;
2538    SDValue Ops[1] = { Operand };
2539    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2540    void *IP = 0;
2541    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2542      return SDValue(E, 0);
2543
2544    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2545    CSEMap.InsertNode(N, IP);
2546  } else {
2547    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2548  }
2549
2550  AllNodes.push_back(N);
2551#ifndef NDEBUG
2552  VerifyNode(N);
2553#endif
2554  return SDValue(N, 0);
2555}
2556
2557SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2558                                             EVT VT,
2559                                             ConstantSDNode *Cst1,
2560                                             ConstantSDNode *Cst2) {
2561  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2562
2563  switch (Opcode) {
2564  case ISD::ADD:  return getConstant(C1 + C2, VT);
2565  case ISD::SUB:  return getConstant(C1 - C2, VT);
2566  case ISD::MUL:  return getConstant(C1 * C2, VT);
2567  case ISD::UDIV:
2568    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2569    break;
2570  case ISD::UREM:
2571    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2572    break;
2573  case ISD::SDIV:
2574    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2575    break;
2576  case ISD::SREM:
2577    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2578    break;
2579  case ISD::AND:  return getConstant(C1 & C2, VT);
2580  case ISD::OR:   return getConstant(C1 | C2, VT);
2581  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2582  case ISD::SHL:  return getConstant(C1 << C2, VT);
2583  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2584  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2585  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2586  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2587  default: break;
2588  }
2589
2590  return SDValue();
2591}
2592
2593SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2594                              SDValue N1, SDValue N2) {
2595  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2596  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2597  switch (Opcode) {
2598  default: break;
2599  case ISD::TokenFactor:
2600    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2601           N2.getValueType() == MVT::Other && "Invalid token factor!");
2602    // Fold trivial token factors.
2603    if (N1.getOpcode() == ISD::EntryToken) return N2;
2604    if (N2.getOpcode() == ISD::EntryToken) return N1;
2605    if (N1 == N2) return N1;
2606    break;
2607  case ISD::CONCAT_VECTORS:
2608    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2609    // one big BUILD_VECTOR.
2610    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2611        N2.getOpcode() == ISD::BUILD_VECTOR) {
2612      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2613      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2614      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2615    }
2616    break;
2617  case ISD::AND:
2618    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2619           N1.getValueType() == VT && "Binary operator types must match!");
2620    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2621    // worth handling here.
2622    if (N2C && N2C->isNullValue())
2623      return N2;
2624    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2625      return N1;
2626    break;
2627  case ISD::OR:
2628  case ISD::XOR:
2629  case ISD::ADD:
2630  case ISD::SUB:
2631    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2632           N1.getValueType() == VT && "Binary operator types must match!");
2633    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2634    // it's worth handling here.
2635    if (N2C && N2C->isNullValue())
2636      return N1;
2637    break;
2638  case ISD::UDIV:
2639  case ISD::UREM:
2640  case ISD::MULHU:
2641  case ISD::MULHS:
2642  case ISD::MUL:
2643  case ISD::SDIV:
2644  case ISD::SREM:
2645    assert(VT.isInteger() && "This operator does not apply to FP types!");
2646    // fall through
2647  case ISD::FADD:
2648  case ISD::FSUB:
2649  case ISD::FMUL:
2650  case ISD::FDIV:
2651  case ISD::FREM:
2652    if (UnsafeFPMath) {
2653      if (Opcode == ISD::FADD) {
2654        // 0+x --> x
2655        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2656          if (CFP->getValueAPF().isZero())
2657            return N2;
2658        // x+0 --> x
2659        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2660          if (CFP->getValueAPF().isZero())
2661            return N1;
2662      } else if (Opcode == ISD::FSUB) {
2663        // x-0 --> x
2664        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2665          if (CFP->getValueAPF().isZero())
2666            return N1;
2667      }
2668    }
2669    assert(N1.getValueType() == N2.getValueType() &&
2670           N1.getValueType() == VT && "Binary operator types must match!");
2671    break;
2672  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2673    assert(N1.getValueType() == VT &&
2674           N1.getValueType().isFloatingPoint() &&
2675           N2.getValueType().isFloatingPoint() &&
2676           "Invalid FCOPYSIGN!");
2677    break;
2678  case ISD::SHL:
2679  case ISD::SRA:
2680  case ISD::SRL:
2681  case ISD::ROTL:
2682  case ISD::ROTR:
2683    assert(VT == N1.getValueType() &&
2684           "Shift operators return type must be the same as their first arg");
2685    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2686           "Shifts only work on integers");
2687
2688    // Always fold shifts of i1 values so the code generator doesn't need to
2689    // handle them.  Since we know the size of the shift has to be less than the
2690    // size of the value, the shift/rotate count is guaranteed to be zero.
2691    if (VT == MVT::i1)
2692      return N1;
2693    if (N2C && N2C->isNullValue())
2694      return N1;
2695    break;
2696  case ISD::FP_ROUND_INREG: {
2697    EVT EVT = cast<VTSDNode>(N2)->getVT();
2698    assert(VT == N1.getValueType() && "Not an inreg round!");
2699    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2700           "Cannot FP_ROUND_INREG integer types");
2701    assert(EVT.isVector() == VT.isVector() &&
2702           "FP_ROUND_INREG type should be vector iff the operand "
2703           "type is vector!");
2704    assert((!EVT.isVector() ||
2705            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2706           "Vector element counts must match in FP_ROUND_INREG");
2707    assert(EVT.bitsLE(VT) && "Not rounding down!");
2708    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2709    break;
2710  }
2711  case ISD::FP_ROUND:
2712    assert(VT.isFloatingPoint() &&
2713           N1.getValueType().isFloatingPoint() &&
2714           VT.bitsLE(N1.getValueType()) &&
2715           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2716    if (N1.getValueType() == VT) return N1;  // noop conversion.
2717    break;
2718  case ISD::AssertSext:
2719  case ISD::AssertZext: {
2720    EVT EVT = cast<VTSDNode>(N2)->getVT();
2721    assert(VT == N1.getValueType() && "Not an inreg extend!");
2722    assert(VT.isInteger() && EVT.isInteger() &&
2723           "Cannot *_EXTEND_INREG FP types");
2724    assert(!EVT.isVector() &&
2725           "AssertSExt/AssertZExt type should be the vector element type "
2726           "rather than the vector type!");
2727    assert(EVT.bitsLE(VT) && "Not extending!");
2728    if (VT == EVT) return N1; // noop assertion.
2729    break;
2730  }
2731  case ISD::SIGN_EXTEND_INREG: {
2732    EVT EVT = cast<VTSDNode>(N2)->getVT();
2733    assert(VT == N1.getValueType() && "Not an inreg extend!");
2734    assert(VT.isInteger() && EVT.isInteger() &&
2735           "Cannot *_EXTEND_INREG FP types");
2736    assert(EVT.isVector() == VT.isVector() &&
2737           "SIGN_EXTEND_INREG type should be vector iff the operand "
2738           "type is vector!");
2739    assert((!EVT.isVector() ||
2740            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2741           "Vector element counts must match in SIGN_EXTEND_INREG");
2742    assert(EVT.bitsLE(VT) && "Not extending!");
2743    if (EVT == VT) return N1;  // Not actually extending
2744
2745    if (N1C) {
2746      APInt Val = N1C->getAPIntValue();
2747      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2748      Val <<= Val.getBitWidth()-FromBits;
2749      Val = Val.ashr(Val.getBitWidth()-FromBits);
2750      return getConstant(Val, VT);
2751    }
2752    break;
2753  }
2754  case ISD::EXTRACT_VECTOR_ELT:
2755    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2756    if (N1.getOpcode() == ISD::UNDEF)
2757      return getUNDEF(VT);
2758
2759    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2760    // expanding copies of large vectors from registers.
2761    if (N2C &&
2762        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2763        N1.getNumOperands() > 0) {
2764      unsigned Factor =
2765        N1.getOperand(0).getValueType().getVectorNumElements();
2766      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2767                     N1.getOperand(N2C->getZExtValue() / Factor),
2768                     getConstant(N2C->getZExtValue() % Factor,
2769                                 N2.getValueType()));
2770    }
2771
2772    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2773    // expanding large vector constants.
2774    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2775      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2776      EVT VEltTy = N1.getValueType().getVectorElementType();
2777      if (Elt.getValueType() != VEltTy) {
2778        // If the vector element type is not legal, the BUILD_VECTOR operands
2779        // are promoted and implicitly truncated.  Make that explicit here.
2780        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2781      }
2782      if (VT != VEltTy) {
2783        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2784        // result is implicitly extended.
2785        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2786      }
2787      return Elt;
2788    }
2789
2790    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2791    // operations are lowered to scalars.
2792    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2793      // If the indices are the same, return the inserted element else
2794      // if the indices are known different, extract the element from
2795      // the original vector.
2796      SDValue N1Op2 = N1.getOperand(2);
2797      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2798
2799      if (N1Op2C && N2C) {
2800        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2801          if (VT == N1.getOperand(1).getValueType())
2802            return N1.getOperand(1);
2803          else
2804            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2805        }
2806
2807        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2808      }
2809    }
2810    break;
2811  case ISD::EXTRACT_ELEMENT:
2812    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2813    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2814           (N1.getValueType().isInteger() == VT.isInteger()) &&
2815           "Wrong types for EXTRACT_ELEMENT!");
2816
2817    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2818    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2819    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2820    if (N1.getOpcode() == ISD::BUILD_PAIR)
2821      return N1.getOperand(N2C->getZExtValue());
2822
2823    // EXTRACT_ELEMENT of a constant int is also very common.
2824    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2825      unsigned ElementSize = VT.getSizeInBits();
2826      unsigned Shift = ElementSize * N2C->getZExtValue();
2827      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2828      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2829    }
2830    break;
2831  case ISD::EXTRACT_SUBVECTOR:
2832    if (N1.getValueType() == VT) // Trivial extraction.
2833      return N1;
2834    break;
2835  }
2836
2837  if (N1C) {
2838    if (N2C) {
2839      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2840      if (SV.getNode()) return SV;
2841    } else {      // Cannonicalize constant to RHS if commutative
2842      if (isCommutativeBinOp(Opcode)) {
2843        std::swap(N1C, N2C);
2844        std::swap(N1, N2);
2845      }
2846    }
2847  }
2848
2849  // Constant fold FP operations.
2850  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2851  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2852  if (N1CFP) {
2853    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2854      // Cannonicalize constant to RHS if commutative
2855      std::swap(N1CFP, N2CFP);
2856      std::swap(N1, N2);
2857    } else if (N2CFP && VT != MVT::ppcf128) {
2858      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2859      APFloat::opStatus s;
2860      switch (Opcode) {
2861      case ISD::FADD:
2862        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2863        if (s != APFloat::opInvalidOp)
2864          return getConstantFP(V1, VT);
2865        break;
2866      case ISD::FSUB:
2867        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2868        if (s!=APFloat::opInvalidOp)
2869          return getConstantFP(V1, VT);
2870        break;
2871      case ISD::FMUL:
2872        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2873        if (s!=APFloat::opInvalidOp)
2874          return getConstantFP(V1, VT);
2875        break;
2876      case ISD::FDIV:
2877        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2878        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2879          return getConstantFP(V1, VT);
2880        break;
2881      case ISD::FREM :
2882        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2883        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2884          return getConstantFP(V1, VT);
2885        break;
2886      case ISD::FCOPYSIGN:
2887        V1.copySign(V2);
2888        return getConstantFP(V1, VT);
2889      default: break;
2890      }
2891    }
2892  }
2893
2894  // Canonicalize an UNDEF to the RHS, even over a constant.
2895  if (N1.getOpcode() == ISD::UNDEF) {
2896    if (isCommutativeBinOp(Opcode)) {
2897      std::swap(N1, N2);
2898    } else {
2899      switch (Opcode) {
2900      case ISD::FP_ROUND_INREG:
2901      case ISD::SIGN_EXTEND_INREG:
2902      case ISD::SUB:
2903      case ISD::FSUB:
2904      case ISD::FDIV:
2905      case ISD::FREM:
2906      case ISD::SRA:
2907        return N1;     // fold op(undef, arg2) -> undef
2908      case ISD::UDIV:
2909      case ISD::SDIV:
2910      case ISD::UREM:
2911      case ISD::SREM:
2912      case ISD::SRL:
2913      case ISD::SHL:
2914        if (!VT.isVector())
2915          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2916        // For vectors, we can't easily build an all zero vector, just return
2917        // the LHS.
2918        return N2;
2919      }
2920    }
2921  }
2922
2923  // Fold a bunch of operators when the RHS is undef.
2924  if (N2.getOpcode() == ISD::UNDEF) {
2925    switch (Opcode) {
2926    case ISD::XOR:
2927      if (N1.getOpcode() == ISD::UNDEF)
2928        // Handle undef ^ undef -> 0 special case. This is a common
2929        // idiom (misuse).
2930        return getConstant(0, VT);
2931      // fallthrough
2932    case ISD::ADD:
2933    case ISD::ADDC:
2934    case ISD::ADDE:
2935    case ISD::SUB:
2936    case ISD::UDIV:
2937    case ISD::SDIV:
2938    case ISD::UREM:
2939    case ISD::SREM:
2940      return N2;       // fold op(arg1, undef) -> undef
2941    case ISD::FADD:
2942    case ISD::FSUB:
2943    case ISD::FMUL:
2944    case ISD::FDIV:
2945    case ISD::FREM:
2946      if (UnsafeFPMath)
2947        return N2;
2948      break;
2949    case ISD::MUL:
2950    case ISD::AND:
2951    case ISD::SRL:
2952    case ISD::SHL:
2953      if (!VT.isVector())
2954        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2955      // For vectors, we can't easily build an all zero vector, just return
2956      // the LHS.
2957      return N1;
2958    case ISD::OR:
2959      if (!VT.isVector())
2960        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2961      // For vectors, we can't easily build an all one vector, just return
2962      // the LHS.
2963      return N1;
2964    case ISD::SRA:
2965      return N1;
2966    }
2967  }
2968
2969  // Memoize this node if possible.
2970  SDNode *N;
2971  SDVTList VTs = getVTList(VT);
2972  if (VT != MVT::Flag) {
2973    SDValue Ops[] = { N1, N2 };
2974    FoldingSetNodeID ID;
2975    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2976    void *IP = 0;
2977    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2978      return SDValue(E, 0);
2979
2980    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2981    CSEMap.InsertNode(N, IP);
2982  } else {
2983    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2984  }
2985
2986  AllNodes.push_back(N);
2987#ifndef NDEBUG
2988  VerifyNode(N);
2989#endif
2990  return SDValue(N, 0);
2991}
2992
2993SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2994                              SDValue N1, SDValue N2, SDValue N3) {
2995  // Perform various simplifications.
2996  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2997  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2998  switch (Opcode) {
2999  case ISD::CONCAT_VECTORS:
3000    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3001    // one big BUILD_VECTOR.
3002    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3003        N2.getOpcode() == ISD::BUILD_VECTOR &&
3004        N3.getOpcode() == ISD::BUILD_VECTOR) {
3005      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
3006      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
3007      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
3008      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3009    }
3010    break;
3011  case ISD::SETCC: {
3012    // Use FoldSetCC to simplify SETCC's.
3013    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3014    if (Simp.getNode()) return Simp;
3015    break;
3016  }
3017  case ISD::SELECT:
3018    if (N1C) {
3019     if (N1C->getZExtValue())
3020        return N2;             // select true, X, Y -> X
3021      else
3022        return N3;             // select false, X, Y -> Y
3023    }
3024
3025    if (N2 == N3) return N2;   // select C, X, X -> X
3026    break;
3027  case ISD::BRCOND:
3028    if (N2C) {
3029      if (N2C->getZExtValue()) // Unconditional branch
3030        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
3031      else
3032        return N1;         // Never-taken branch
3033    }
3034    break;
3035  case ISD::VECTOR_SHUFFLE:
3036    llvm_unreachable("should use getVectorShuffle constructor!");
3037    break;
3038  case ISD::BIT_CONVERT:
3039    // Fold bit_convert nodes from a type to themselves.
3040    if (N1.getValueType() == VT)
3041      return N1;
3042    break;
3043  }
3044
3045  // Memoize node if it doesn't produce a flag.
3046  SDNode *N;
3047  SDVTList VTs = getVTList(VT);
3048  if (VT != MVT::Flag) {
3049    SDValue Ops[] = { N1, N2, N3 };
3050    FoldingSetNodeID ID;
3051    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3052    void *IP = 0;
3053    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3054      return SDValue(E, 0);
3055
3056    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3057    CSEMap.InsertNode(N, IP);
3058  } else {
3059    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3060  }
3061
3062  AllNodes.push_back(N);
3063#ifndef NDEBUG
3064  VerifyNode(N);
3065#endif
3066  return SDValue(N, 0);
3067}
3068
3069SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3070                              SDValue N1, SDValue N2, SDValue N3,
3071                              SDValue N4) {
3072  SDValue Ops[] = { N1, N2, N3, N4 };
3073  return getNode(Opcode, DL, VT, Ops, 4);
3074}
3075
3076SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3077                              SDValue N1, SDValue N2, SDValue N3,
3078                              SDValue N4, SDValue N5) {
3079  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3080  return getNode(Opcode, DL, VT, Ops, 5);
3081}
3082
3083/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3084/// the incoming stack arguments to be loaded from the stack.
3085SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3086  SmallVector<SDValue, 8> ArgChains;
3087
3088  // Include the original chain at the beginning of the list. When this is
3089  // used by target LowerCall hooks, this helps legalize find the
3090  // CALLSEQ_BEGIN node.
3091  ArgChains.push_back(Chain);
3092
3093  // Add a chain value for each stack argument.
3094  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3095       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3096    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3097      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3098        if (FI->getIndex() < 0)
3099          ArgChains.push_back(SDValue(L, 1));
3100
3101  // Build a tokenfactor for all the chains.
3102  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3103                 &ArgChains[0], ArgChains.size());
3104}
3105
3106/// getMemsetValue - Vectorized representation of the memset value
3107/// operand.
3108static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3109                              DebugLoc dl) {
3110  assert(Value.getOpcode() != ISD::UNDEF);
3111
3112  unsigned NumBits = VT.getScalarType().getSizeInBits();
3113  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3114    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3115    unsigned Shift = 8;
3116    for (unsigned i = NumBits; i > 8; i >>= 1) {
3117      Val = (Val << Shift) | Val;
3118      Shift <<= 1;
3119    }
3120    if (VT.isInteger())
3121      return DAG.getConstant(Val, VT);
3122    return DAG.getConstantFP(APFloat(Val), VT);
3123  }
3124
3125  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3126  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3127  unsigned Shift = 8;
3128  for (unsigned i = NumBits; i > 8; i >>= 1) {
3129    Value = DAG.getNode(ISD::OR, dl, VT,
3130                        DAG.getNode(ISD::SHL, dl, VT, Value,
3131                                    DAG.getConstant(Shift,
3132                                                    TLI.getShiftAmountTy())),
3133                        Value);
3134    Shift <<= 1;
3135  }
3136
3137  return Value;
3138}
3139
3140/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3141/// used when a memcpy is turned into a memset when the source is a constant
3142/// string ptr.
3143static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3144                                  const TargetLowering &TLI,
3145                                  std::string &Str, unsigned Offset) {
3146  // Handle vector with all elements zero.
3147  if (Str.empty()) {
3148    if (VT.isInteger())
3149      return DAG.getConstant(0, VT);
3150    else if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
3151             VT.getSimpleVT().SimpleTy == MVT::f64)
3152      return DAG.getConstantFP(0.0, VT);
3153    else if (VT.isVector()) {
3154      unsigned NumElts = VT.getVectorNumElements();
3155      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3156      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3157                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3158                                                             EltVT, NumElts)));
3159    } else
3160      llvm_unreachable("Expected type!");
3161  }
3162
3163  assert(!VT.isVector() && "Can't handle vector type here!");
3164  unsigned NumBits = VT.getSizeInBits();
3165  unsigned MSB = NumBits / 8;
3166  uint64_t Val = 0;
3167  if (TLI.isLittleEndian())
3168    Offset = Offset + MSB - 1;
3169  for (unsigned i = 0; i != MSB; ++i) {
3170    Val = (Val << 8) | (unsigned char)Str[Offset];
3171    Offset += TLI.isLittleEndian() ? -1 : 1;
3172  }
3173  return DAG.getConstant(Val, VT);
3174}
3175
3176/// getMemBasePlusOffset - Returns base and offset node for the
3177///
3178static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3179                                      SelectionDAG &DAG) {
3180  EVT VT = Base.getValueType();
3181  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3182                     VT, Base, DAG.getConstant(Offset, VT));
3183}
3184
3185/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3186///
3187static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3188  unsigned SrcDelta = 0;
3189  GlobalAddressSDNode *G = NULL;
3190  if (Src.getOpcode() == ISD::GlobalAddress)
3191    G = cast<GlobalAddressSDNode>(Src);
3192  else if (Src.getOpcode() == ISD::ADD &&
3193           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3194           Src.getOperand(1).getOpcode() == ISD::Constant) {
3195    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3196    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3197  }
3198  if (!G)
3199    return false;
3200
3201  const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3202  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3203    return true;
3204
3205  return false;
3206}
3207
3208/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3209/// to replace the memset / memcpy. Return true if the number of memory ops
3210/// is below the threshold. It returns the types of the sequence of
3211/// memory ops to perform memset / memcpy by reference.
3212static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3213                                     unsigned Limit, uint64_t Size,
3214                                     unsigned DstAlign, unsigned SrcAlign,
3215                                     bool NonScalarIntSafe,
3216                                     bool MemcpyStrSrc,
3217                                     SelectionDAG &DAG,
3218                                     const TargetLowering &TLI) {
3219  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3220         "Expecting memcpy / memset source to meet alignment requirement!");
3221  // If 'SrcAlign' is zero, that means the memory operation does not need load
3222  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3223  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3224  // specified alignment of the memory operation. If it is zero, that means
3225  // it's possible to change the alignment of the destination. 'MemcpyStrSrc'
3226  // indicates whether the memcpy source is constant so it does not need to be
3227  // loaded.
3228  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3229                                   NonScalarIntSafe, MemcpyStrSrc,
3230                                   DAG.getMachineFunction());
3231
3232  if (VT == MVT::Other) {
3233    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3234        TLI.allowsUnalignedMemoryAccesses(VT)) {
3235      VT = TLI.getPointerTy();
3236    } else {
3237      switch (DstAlign & 7) {
3238      case 0:  VT = MVT::i64; break;
3239      case 4:  VT = MVT::i32; break;
3240      case 2:  VT = MVT::i16; break;
3241      default: VT = MVT::i8;  break;
3242      }
3243    }
3244
3245    MVT LVT = MVT::i64;
3246    while (!TLI.isTypeLegal(LVT))
3247      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3248    assert(LVT.isInteger());
3249
3250    if (VT.bitsGT(LVT))
3251      VT = LVT;
3252  }
3253
3254  unsigned NumMemOps = 0;
3255  while (Size != 0) {
3256    unsigned VTSize = VT.getSizeInBits() / 8;
3257    while (VTSize > Size) {
3258      // For now, only use non-vector load / store's for the left-over pieces.
3259      if (VT.isVector() || VT.isFloatingPoint()) {
3260        VT = MVT::i64;
3261        while (!TLI.isTypeLegal(VT))
3262          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3263        VTSize = VT.getSizeInBits() / 8;
3264      } else {
3265        // This can result in a type that is not legal on the target, e.g.
3266        // 1 or 2 bytes on PPC.
3267        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3268        VTSize >>= 1;
3269      }
3270    }
3271
3272    if (++NumMemOps > Limit)
3273      return false;
3274    MemOps.push_back(VT);
3275    Size -= VTSize;
3276  }
3277
3278  return true;
3279}
3280
3281static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3282                                       SDValue Chain, SDValue Dst,
3283                                       SDValue Src, uint64_t Size,
3284                                       unsigned Align, bool isVol,
3285                                       bool AlwaysInline,
3286                                       const Value *DstSV, uint64_t DstSVOff,
3287                                       const Value *SrcSV, uint64_t SrcSVOff) {
3288  // Turn a memcpy of undef to nop.
3289  if (Src.getOpcode() == ISD::UNDEF)
3290    return Chain;
3291
3292  // Expand memcpy to a series of load and store ops if the size operand falls
3293  // below a certain threshold.
3294  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3295  std::vector<EVT> MemOps;
3296  bool DstAlignCanChange = false;
3297  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3298  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3299  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3300    DstAlignCanChange = true;
3301  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3302  if (Align > SrcAlign)
3303    SrcAlign = Align;
3304  std::string Str;
3305  bool CopyFromStr = isMemSrcFromString(Src, Str);
3306  bool isZeroStr = CopyFromStr && Str.empty();
3307  uint64_t Limit = -1ULL;
3308  if (!AlwaysInline)
3309    Limit = TLI.getMaxStoresPerMemcpy();
3310  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3311                                (DstAlignCanChange ? 0 : Align),
3312                                (isZeroStr ? 0 : SrcAlign),
3313                                true, CopyFromStr, DAG, TLI))
3314    return SDValue();
3315
3316  if (DstAlignCanChange) {
3317    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3318    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3319    if (NewAlign > Align) {
3320      // Give the stack frame object a larger alignment if needed.
3321      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3322        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3323      Align = NewAlign;
3324    }
3325  }
3326
3327  SmallVector<SDValue, 8> OutChains;
3328  unsigned NumMemOps = MemOps.size();
3329  uint64_t SrcOff = 0, DstOff = 0;
3330  for (unsigned i = 0; i != NumMemOps; ++i) {
3331    EVT VT = MemOps[i];
3332    unsigned VTSize = VT.getSizeInBits() / 8;
3333    SDValue Value, Store;
3334
3335    if (CopyFromStr &&
3336        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3337      // It's unlikely a store of a vector immediate can be done in a single
3338      // instruction. It would require a load from a constantpool first.
3339      // We only handle zero vectors here.
3340      // FIXME: Handle other cases where store of vector immediate is done in
3341      // a single instruction.
3342      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3343      Store = DAG.getStore(Chain, dl, Value,
3344                           getMemBasePlusOffset(Dst, DstOff, DAG),
3345                           DstSV, DstSVOff + DstOff, isVol, false, Align);
3346    } else {
3347      // The type might not be legal for the target.  This should only happen
3348      // if the type is smaller than a legal type, as on PPC, so the right
3349      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3350      // to Load/Store if NVT==VT.
3351      // FIXME does the case above also need this?
3352      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3353      assert(NVT.bitsGE(VT));
3354      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3355                             getMemBasePlusOffset(Src, SrcOff, DAG),
3356                             SrcSV, SrcSVOff + SrcOff, VT, isVol, false,
3357                             MinAlign(SrcAlign, SrcOff));
3358      Store = DAG.getTruncStore(Chain, dl, Value,
3359                                getMemBasePlusOffset(Dst, DstOff, DAG),
3360                                DstSV, DstSVOff + DstOff, VT, isVol, false,
3361                                Align);
3362    }
3363    OutChains.push_back(Store);
3364    SrcOff += VTSize;
3365    DstOff += VTSize;
3366  }
3367
3368  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3369                     &OutChains[0], OutChains.size());
3370}
3371
3372static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3373                                        SDValue Chain, SDValue Dst,
3374                                        SDValue Src, uint64_t Size,
3375                                        unsigned Align,  bool isVol,
3376                                        bool AlwaysInline,
3377                                        const Value *DstSV, uint64_t DstSVOff,
3378                                        const Value *SrcSV, uint64_t SrcSVOff) {
3379  // Turn a memmove of undef to nop.
3380  if (Src.getOpcode() == ISD::UNDEF)
3381    return Chain;
3382
3383  // Expand memmove to a series of load and store ops if the size operand falls
3384  // below a certain threshold.
3385  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3386  std::vector<EVT> MemOps;
3387  uint64_t Limit = -1ULL;
3388  if (!AlwaysInline)
3389    Limit = TLI.getMaxStoresPerMemmove();
3390  bool DstAlignCanChange = false;
3391  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3392  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3393  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3394    DstAlignCanChange = true;
3395  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3396  if (Align > SrcAlign)
3397    SrcAlign = Align;
3398
3399  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3400                                (DstAlignCanChange ? 0 : Align),
3401                                SrcAlign, true, false, DAG, TLI))
3402    return SDValue();
3403
3404  if (DstAlignCanChange) {
3405    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3406    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3407    if (NewAlign > Align) {
3408      // Give the stack frame object a larger alignment if needed.
3409      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3410        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3411      Align = NewAlign;
3412    }
3413  }
3414
3415  uint64_t SrcOff = 0, DstOff = 0;
3416  SmallVector<SDValue, 8> LoadValues;
3417  SmallVector<SDValue, 8> LoadChains;
3418  SmallVector<SDValue, 8> OutChains;
3419  unsigned NumMemOps = MemOps.size();
3420  for (unsigned i = 0; i < NumMemOps; i++) {
3421    EVT VT = MemOps[i];
3422    unsigned VTSize = VT.getSizeInBits() / 8;
3423    SDValue Value, Store;
3424
3425    Value = DAG.getLoad(VT, dl, Chain,
3426                        getMemBasePlusOffset(Src, SrcOff, DAG),
3427                        SrcSV, SrcSVOff + SrcOff, isVol, false, SrcAlign);
3428    LoadValues.push_back(Value);
3429    LoadChains.push_back(Value.getValue(1));
3430    SrcOff += VTSize;
3431  }
3432  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3433                      &LoadChains[0], LoadChains.size());
3434  OutChains.clear();
3435  for (unsigned i = 0; i < NumMemOps; i++) {
3436    EVT VT = MemOps[i];
3437    unsigned VTSize = VT.getSizeInBits() / 8;
3438    SDValue Value, Store;
3439
3440    Store = DAG.getStore(Chain, dl, LoadValues[i],
3441                         getMemBasePlusOffset(Dst, DstOff, DAG),
3442                         DstSV, DstSVOff + DstOff, isVol, false, Align);
3443    OutChains.push_back(Store);
3444    DstOff += VTSize;
3445  }
3446
3447  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3448                     &OutChains[0], OutChains.size());
3449}
3450
3451static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3452                               SDValue Chain, SDValue Dst,
3453                               SDValue Src, uint64_t Size,
3454                               unsigned Align, bool isVol,
3455                               const Value *DstSV, uint64_t DstSVOff) {
3456  // Turn a memset of undef to nop.
3457  if (Src.getOpcode() == ISD::UNDEF)
3458    return Chain;
3459
3460  // Expand memset to a series of load/store ops if the size operand
3461  // falls below a certain threshold.
3462  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3463  std::vector<EVT> MemOps;
3464  bool DstAlignCanChange = false;
3465  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3466  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3467  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3468    DstAlignCanChange = true;
3469  bool NonScalarIntSafe =
3470    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3471  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(),
3472                                Size, (DstAlignCanChange ? 0 : Align), 0,
3473                                NonScalarIntSafe, false, DAG, TLI))
3474    return SDValue();
3475
3476  if (DstAlignCanChange) {
3477    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3478    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3479    if (NewAlign > Align) {
3480      // Give the stack frame object a larger alignment if needed.
3481      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3482        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3483      Align = NewAlign;
3484    }
3485  }
3486
3487  SmallVector<SDValue, 8> OutChains;
3488  uint64_t DstOff = 0;
3489  unsigned NumMemOps = MemOps.size();
3490  for (unsigned i = 0; i < NumMemOps; i++) {
3491    EVT VT = MemOps[i];
3492    unsigned VTSize = VT.getSizeInBits() / 8;
3493    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3494    SDValue Store = DAG.getStore(Chain, dl, Value,
3495                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3496                                 DstSV, DstSVOff + DstOff, isVol, false, 0);
3497    OutChains.push_back(Store);
3498    DstOff += VTSize;
3499  }
3500
3501  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3502                     &OutChains[0], OutChains.size());
3503}
3504
3505SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3506                                SDValue Src, SDValue Size,
3507                                unsigned Align, bool isVol, bool AlwaysInline,
3508                                const Value *DstSV, uint64_t DstSVOff,
3509                                const Value *SrcSV, uint64_t SrcSVOff) {
3510
3511  // Check to see if we should lower the memcpy to loads and stores first.
3512  // For cases within the target-specified limits, this is the best choice.
3513  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3514  if (ConstantSize) {
3515    // Memcpy with size zero? Just return the original chain.
3516    if (ConstantSize->isNullValue())
3517      return Chain;
3518
3519    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3520                                             ConstantSize->getZExtValue(),Align,
3521                                isVol, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3522    if (Result.getNode())
3523      return Result;
3524  }
3525
3526  // Then check to see if we should lower the memcpy with target-specific
3527  // code. If the target chooses to do this, this is the next best.
3528  SDValue Result =
3529    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3530                                isVol, AlwaysInline,
3531                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3532  if (Result.getNode())
3533    return Result;
3534
3535  // If we really need inline code and the target declined to provide it,
3536  // use a (potentially long) sequence of loads and stores.
3537  if (AlwaysInline) {
3538    assert(ConstantSize && "AlwaysInline requires a constant size!");
3539    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3540                                   ConstantSize->getZExtValue(), Align, isVol,
3541                                   true, DstSV, DstSVOff, SrcSV, SrcSVOff);
3542  }
3543
3544  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3545  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3546  // respect volatile, so they may do things like read or write memory
3547  // beyond the given memory regions. But fixing this isn't easy, and most
3548  // people don't care.
3549
3550  // Emit a library call.
3551  TargetLowering::ArgListTy Args;
3552  TargetLowering::ArgListEntry Entry;
3553  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3554  Entry.Node = Dst; Args.push_back(Entry);
3555  Entry.Node = Src; Args.push_back(Entry);
3556  Entry.Node = Size; Args.push_back(Entry);
3557  // FIXME: pass in DebugLoc
3558  std::pair<SDValue,SDValue> CallResult =
3559    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3560                    false, false, false, false, 0,
3561                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3562                    /*isReturnValueUsed=*/false,
3563                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3564                                      TLI.getPointerTy()),
3565                    Args, *this, dl);
3566  return CallResult.second;
3567}
3568
3569SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3570                                 SDValue Src, SDValue Size,
3571                                 unsigned Align, bool isVol,
3572                                 const Value *DstSV, uint64_t DstSVOff,
3573                                 const Value *SrcSV, uint64_t SrcSVOff) {
3574
3575  // Check to see if we should lower the memmove to loads and stores first.
3576  // For cases within the target-specified limits, this is the best choice.
3577  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3578  if (ConstantSize) {
3579    // Memmove with size zero? Just return the original chain.
3580    if (ConstantSize->isNullValue())
3581      return Chain;
3582
3583    SDValue Result =
3584      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3585                               ConstantSize->getZExtValue(), Align, isVol,
3586                               false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3587    if (Result.getNode())
3588      return Result;
3589  }
3590
3591  // Then check to see if we should lower the memmove with target-specific
3592  // code. If the target chooses to do this, this is the next best.
3593  SDValue Result =
3594    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3595                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3596  if (Result.getNode())
3597    return Result;
3598
3599  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3600  // not be safe.  See memcpy above for more details.
3601
3602  // Emit a library call.
3603  TargetLowering::ArgListTy Args;
3604  TargetLowering::ArgListEntry Entry;
3605  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3606  Entry.Node = Dst; Args.push_back(Entry);
3607  Entry.Node = Src; Args.push_back(Entry);
3608  Entry.Node = Size; Args.push_back(Entry);
3609  // FIXME:  pass in DebugLoc
3610  std::pair<SDValue,SDValue> CallResult =
3611    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3612                    false, false, false, false, 0,
3613                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3614                    /*isReturnValueUsed=*/false,
3615                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3616                                      TLI.getPointerTy()),
3617                    Args, *this, dl);
3618  return CallResult.second;
3619}
3620
3621SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3622                                SDValue Src, SDValue Size,
3623                                unsigned Align, bool isVol,
3624                                const Value *DstSV, uint64_t DstSVOff) {
3625
3626  // Check to see if we should lower the memset to stores first.
3627  // For cases within the target-specified limits, this is the best choice.
3628  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3629  if (ConstantSize) {
3630    // Memset with size zero? Just return the original chain.
3631    if (ConstantSize->isNullValue())
3632      return Chain;
3633
3634    SDValue Result =
3635      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3636                      Align, isVol, DstSV, DstSVOff);
3637
3638    if (Result.getNode())
3639      return Result;
3640  }
3641
3642  // Then check to see if we should lower the memset with target-specific
3643  // code. If the target chooses to do this, this is the next best.
3644  SDValue Result =
3645    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3646                                DstSV, DstSVOff);
3647  if (Result.getNode())
3648    return Result;
3649
3650  // Emit a library call.
3651  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3652  TargetLowering::ArgListTy Args;
3653  TargetLowering::ArgListEntry Entry;
3654  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3655  Args.push_back(Entry);
3656  // Extend or truncate the argument to be an i32 value for the call.
3657  if (Src.getValueType().bitsGT(MVT::i32))
3658    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3659  else
3660    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3661  Entry.Node = Src;
3662  Entry.Ty = Type::getInt32Ty(*getContext());
3663  Entry.isSExt = true;
3664  Args.push_back(Entry);
3665  Entry.Node = Size;
3666  Entry.Ty = IntPtrTy;
3667  Entry.isSExt = false;
3668  Args.push_back(Entry);
3669  // FIXME: pass in DebugLoc
3670  std::pair<SDValue,SDValue> CallResult =
3671    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3672                    false, false, false, false, 0,
3673                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3674                    /*isReturnValueUsed=*/false,
3675                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3676                                      TLI.getPointerTy()),
3677                    Args, *this, dl);
3678  return CallResult.second;
3679}
3680
3681SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3682                                SDValue Chain,
3683                                SDValue Ptr, SDValue Cmp,
3684                                SDValue Swp, const Value* PtrVal,
3685                                unsigned Alignment) {
3686  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3687    Alignment = getEVTAlignment(MemVT);
3688
3689  // Check if the memory reference references a frame index
3690  if (!PtrVal)
3691    if (const FrameIndexSDNode *FI =
3692          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3693      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3694
3695  MachineFunction &MF = getMachineFunction();
3696  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3697
3698  // For now, atomics are considered to be volatile always.
3699  Flags |= MachineMemOperand::MOVolatile;
3700
3701  MachineMemOperand *MMO =
3702    MF.getMachineMemOperand(PtrVal, Flags, 0,
3703                            MemVT.getStoreSize(), Alignment);
3704
3705  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3706}
3707
3708SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3709                                SDValue Chain,
3710                                SDValue Ptr, SDValue Cmp,
3711                                SDValue Swp, MachineMemOperand *MMO) {
3712  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3713  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3714
3715  EVT VT = Cmp.getValueType();
3716
3717  SDVTList VTs = getVTList(VT, MVT::Other);
3718  FoldingSetNodeID ID;
3719  ID.AddInteger(MemVT.getRawBits());
3720  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3721  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3722  void* IP = 0;
3723  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3724    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3725    return SDValue(E, 0);
3726  }
3727  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3728                                               Ptr, Cmp, Swp, MMO);
3729  CSEMap.InsertNode(N, IP);
3730  AllNodes.push_back(N);
3731  return SDValue(N, 0);
3732}
3733
3734SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3735                                SDValue Chain,
3736                                SDValue Ptr, SDValue Val,
3737                                const Value* PtrVal,
3738                                unsigned Alignment) {
3739  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3740    Alignment = getEVTAlignment(MemVT);
3741
3742  // Check if the memory reference references a frame index
3743  if (!PtrVal)
3744    if (const FrameIndexSDNode *FI =
3745          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3746      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3747
3748  MachineFunction &MF = getMachineFunction();
3749  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3750
3751  // For now, atomics are considered to be volatile always.
3752  Flags |= MachineMemOperand::MOVolatile;
3753
3754  MachineMemOperand *MMO =
3755    MF.getMachineMemOperand(PtrVal, Flags, 0,
3756                            MemVT.getStoreSize(), Alignment);
3757
3758  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3759}
3760
3761SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3762                                SDValue Chain,
3763                                SDValue Ptr, SDValue Val,
3764                                MachineMemOperand *MMO) {
3765  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3766          Opcode == ISD::ATOMIC_LOAD_SUB ||
3767          Opcode == ISD::ATOMIC_LOAD_AND ||
3768          Opcode == ISD::ATOMIC_LOAD_OR ||
3769          Opcode == ISD::ATOMIC_LOAD_XOR ||
3770          Opcode == ISD::ATOMIC_LOAD_NAND ||
3771          Opcode == ISD::ATOMIC_LOAD_MIN ||
3772          Opcode == ISD::ATOMIC_LOAD_MAX ||
3773          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3774          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3775          Opcode == ISD::ATOMIC_SWAP) &&
3776         "Invalid Atomic Op");
3777
3778  EVT VT = Val.getValueType();
3779
3780  SDVTList VTs = getVTList(VT, MVT::Other);
3781  FoldingSetNodeID ID;
3782  ID.AddInteger(MemVT.getRawBits());
3783  SDValue Ops[] = {Chain, Ptr, Val};
3784  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3785  void* IP = 0;
3786  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3787    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3788    return SDValue(E, 0);
3789  }
3790  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3791                                               Ptr, Val, MMO);
3792  CSEMap.InsertNode(N, IP);
3793  AllNodes.push_back(N);
3794  return SDValue(N, 0);
3795}
3796
3797/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3798/// Allowed to return something different (and simpler) if Simplify is true.
3799SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3800                                     DebugLoc dl) {
3801  if (NumOps == 1)
3802    return Ops[0];
3803
3804  SmallVector<EVT, 4> VTs;
3805  VTs.reserve(NumOps);
3806  for (unsigned i = 0; i < NumOps; ++i)
3807    VTs.push_back(Ops[i].getValueType());
3808  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3809                 Ops, NumOps);
3810}
3811
3812SDValue
3813SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3814                                  const EVT *VTs, unsigned NumVTs,
3815                                  const SDValue *Ops, unsigned NumOps,
3816                                  EVT MemVT, const Value *srcValue, int SVOff,
3817                                  unsigned Align, bool Vol,
3818                                  bool ReadMem, bool WriteMem) {
3819  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3820                             MemVT, srcValue, SVOff, Align, Vol,
3821                             ReadMem, WriteMem);
3822}
3823
3824SDValue
3825SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3826                                  const SDValue *Ops, unsigned NumOps,
3827                                  EVT MemVT, const Value *srcValue, int SVOff,
3828                                  unsigned Align, bool Vol,
3829                                  bool ReadMem, bool WriteMem) {
3830  if (Align == 0)  // Ensure that codegen never sees alignment 0
3831    Align = getEVTAlignment(MemVT);
3832
3833  MachineFunction &MF = getMachineFunction();
3834  unsigned Flags = 0;
3835  if (WriteMem)
3836    Flags |= MachineMemOperand::MOStore;
3837  if (ReadMem)
3838    Flags |= MachineMemOperand::MOLoad;
3839  if (Vol)
3840    Flags |= MachineMemOperand::MOVolatile;
3841  MachineMemOperand *MMO =
3842    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3843                            MemVT.getStoreSize(), Align);
3844
3845  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3846}
3847
3848SDValue
3849SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3850                                  const SDValue *Ops, unsigned NumOps,
3851                                  EVT MemVT, MachineMemOperand *MMO) {
3852  assert((Opcode == ISD::INTRINSIC_VOID ||
3853          Opcode == ISD::INTRINSIC_W_CHAIN ||
3854          (Opcode <= INT_MAX &&
3855           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3856         "Opcode is not a memory-accessing opcode!");
3857
3858  // Memoize the node unless it returns a flag.
3859  MemIntrinsicSDNode *N;
3860  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3861    FoldingSetNodeID ID;
3862    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3863    void *IP = 0;
3864    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3865      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3866      return SDValue(E, 0);
3867    }
3868
3869    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3870                                               MemVT, MMO);
3871    CSEMap.InsertNode(N, IP);
3872  } else {
3873    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3874                                               MemVT, MMO);
3875  }
3876  AllNodes.push_back(N);
3877  return SDValue(N, 0);
3878}
3879
3880SDValue
3881SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3882                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3883                      SDValue Ptr, SDValue Offset,
3884                      const Value *SV, int SVOffset, EVT MemVT,
3885                      bool isVolatile, bool isNonTemporal,
3886                      unsigned Alignment) {
3887  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3888    Alignment = getEVTAlignment(VT);
3889
3890  // Check if the memory reference references a frame index
3891  if (!SV)
3892    if (const FrameIndexSDNode *FI =
3893          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3894      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3895
3896  MachineFunction &MF = getMachineFunction();
3897  unsigned Flags = MachineMemOperand::MOLoad;
3898  if (isVolatile)
3899    Flags |= MachineMemOperand::MOVolatile;
3900  if (isNonTemporal)
3901    Flags |= MachineMemOperand::MONonTemporal;
3902  MachineMemOperand *MMO =
3903    MF.getMachineMemOperand(SV, Flags, SVOffset,
3904                            MemVT.getStoreSize(), Alignment);
3905  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3906}
3907
3908SDValue
3909SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3910                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3911                      SDValue Ptr, SDValue Offset, EVT MemVT,
3912                      MachineMemOperand *MMO) {
3913  if (VT == MemVT) {
3914    ExtType = ISD::NON_EXTLOAD;
3915  } else if (ExtType == ISD::NON_EXTLOAD) {
3916    assert(VT == MemVT && "Non-extending load from different memory type!");
3917  } else {
3918    // Extending load.
3919    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3920           "Should only be an extending load, not truncating!");
3921    assert(VT.isInteger() == MemVT.isInteger() &&
3922           "Cannot convert from FP to Int or Int -> FP!");
3923    assert(VT.isVector() == MemVT.isVector() &&
3924           "Cannot use trunc store to convert to or from a vector!");
3925    assert((!VT.isVector() ||
3926            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3927           "Cannot use trunc store to change the number of vector elements!");
3928  }
3929
3930  bool Indexed = AM != ISD::UNINDEXED;
3931  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3932         "Unindexed load with an offset!");
3933
3934  SDVTList VTs = Indexed ?
3935    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3936  SDValue Ops[] = { Chain, Ptr, Offset };
3937  FoldingSetNodeID ID;
3938  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3939  ID.AddInteger(MemVT.getRawBits());
3940  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3941                                     MMO->isNonTemporal()));
3942  void *IP = 0;
3943  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3944    cast<LoadSDNode>(E)->refineAlignment(MMO);
3945    return SDValue(E, 0);
3946  }
3947  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
3948                                             MemVT, MMO);
3949  CSEMap.InsertNode(N, IP);
3950  AllNodes.push_back(N);
3951  return SDValue(N, 0);
3952}
3953
3954SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3955                              SDValue Chain, SDValue Ptr,
3956                              const Value *SV, int SVOffset,
3957                              bool isVolatile, bool isNonTemporal,
3958                              unsigned Alignment) {
3959  SDValue Undef = getUNDEF(Ptr.getValueType());
3960  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3961                 SV, SVOffset, VT, isVolatile, isNonTemporal, Alignment);
3962}
3963
3964SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3965                                 SDValue Chain, SDValue Ptr,
3966                                 const Value *SV,
3967                                 int SVOffset, EVT MemVT,
3968                                 bool isVolatile, bool isNonTemporal,
3969                                 unsigned Alignment) {
3970  SDValue Undef = getUNDEF(Ptr.getValueType());
3971  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3972                 SV, SVOffset, MemVT, isVolatile, isNonTemporal, Alignment);
3973}
3974
3975SDValue
3976SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3977                             SDValue Offset, ISD::MemIndexedMode AM) {
3978  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3979  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3980         "Load is already a indexed load!");
3981  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3982                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3983                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3984                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
3985}
3986
3987SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3988                               SDValue Ptr, const Value *SV, int SVOffset,
3989                               bool isVolatile, bool isNonTemporal,
3990                               unsigned Alignment) {
3991  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3992    Alignment = getEVTAlignment(Val.getValueType());
3993
3994  // Check if the memory reference references a frame index
3995  if (!SV)
3996    if (const FrameIndexSDNode *FI =
3997          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3998      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3999
4000  MachineFunction &MF = getMachineFunction();
4001  unsigned Flags = MachineMemOperand::MOStore;
4002  if (isVolatile)
4003    Flags |= MachineMemOperand::MOVolatile;
4004  if (isNonTemporal)
4005    Flags |= MachineMemOperand::MONonTemporal;
4006  MachineMemOperand *MMO =
4007    MF.getMachineMemOperand(SV, Flags, SVOffset,
4008                            Val.getValueType().getStoreSize(), Alignment);
4009
4010  return getStore(Chain, dl, Val, Ptr, MMO);
4011}
4012
4013SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4014                               SDValue Ptr, MachineMemOperand *MMO) {
4015  EVT VT = Val.getValueType();
4016  SDVTList VTs = getVTList(MVT::Other);
4017  SDValue Undef = getUNDEF(Ptr.getValueType());
4018  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4019  FoldingSetNodeID ID;
4020  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4021  ID.AddInteger(VT.getRawBits());
4022  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4023                                     MMO->isNonTemporal()));
4024  void *IP = 0;
4025  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4026    cast<StoreSDNode>(E)->refineAlignment(MMO);
4027    return SDValue(E, 0);
4028  }
4029  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4030                                              false, VT, MMO);
4031  CSEMap.InsertNode(N, IP);
4032  AllNodes.push_back(N);
4033  return SDValue(N, 0);
4034}
4035
4036SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4037                                    SDValue Ptr, const Value *SV,
4038                                    int SVOffset, EVT SVT,
4039                                    bool isVolatile, bool isNonTemporal,
4040                                    unsigned Alignment) {
4041  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4042    Alignment = getEVTAlignment(SVT);
4043
4044  // Check if the memory reference references a frame index
4045  if (!SV)
4046    if (const FrameIndexSDNode *FI =
4047          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
4048      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
4049
4050  MachineFunction &MF = getMachineFunction();
4051  unsigned Flags = MachineMemOperand::MOStore;
4052  if (isVolatile)
4053    Flags |= MachineMemOperand::MOVolatile;
4054  if (isNonTemporal)
4055    Flags |= MachineMemOperand::MONonTemporal;
4056  MachineMemOperand *MMO =
4057    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
4058
4059  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4060}
4061
4062SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4063                                    SDValue Ptr, EVT SVT,
4064                                    MachineMemOperand *MMO) {
4065  EVT VT = Val.getValueType();
4066
4067  if (VT == SVT)
4068    return getStore(Chain, dl, Val, Ptr, MMO);
4069
4070  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4071         "Should only be a truncating store, not extending!");
4072  assert(VT.isInteger() == SVT.isInteger() &&
4073         "Can't do FP-INT conversion!");
4074  assert(VT.isVector() == SVT.isVector() &&
4075         "Cannot use trunc store to convert to or from a vector!");
4076  assert((!VT.isVector() ||
4077          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4078         "Cannot use trunc store to change the number of vector elements!");
4079
4080  SDVTList VTs = getVTList(MVT::Other);
4081  SDValue Undef = getUNDEF(Ptr.getValueType());
4082  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4083  FoldingSetNodeID ID;
4084  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4085  ID.AddInteger(SVT.getRawBits());
4086  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4087                                     MMO->isNonTemporal()));
4088  void *IP = 0;
4089  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4090    cast<StoreSDNode>(E)->refineAlignment(MMO);
4091    return SDValue(E, 0);
4092  }
4093  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4094                                              true, SVT, MMO);
4095  CSEMap.InsertNode(N, IP);
4096  AllNodes.push_back(N);
4097  return SDValue(N, 0);
4098}
4099
4100SDValue
4101SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4102                              SDValue Offset, ISD::MemIndexedMode AM) {
4103  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4104  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4105         "Store is already a indexed store!");
4106  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4107  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4108  FoldingSetNodeID ID;
4109  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4110  ID.AddInteger(ST->getMemoryVT().getRawBits());
4111  ID.AddInteger(ST->getRawSubclassData());
4112  void *IP = 0;
4113  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4114    return SDValue(E, 0);
4115
4116  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4117                                              ST->isTruncatingStore(),
4118                                              ST->getMemoryVT(),
4119                                              ST->getMemOperand());
4120  CSEMap.InsertNode(N, IP);
4121  AllNodes.push_back(N);
4122  return SDValue(N, 0);
4123}
4124
4125SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4126                               SDValue Chain, SDValue Ptr,
4127                               SDValue SV) {
4128  SDValue Ops[] = { Chain, Ptr, SV };
4129  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4130}
4131
4132SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4133                              const SDUse *Ops, unsigned NumOps) {
4134  switch (NumOps) {
4135  case 0: return getNode(Opcode, DL, VT);
4136  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4137  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4138  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4139  default: break;
4140  }
4141
4142  // Copy from an SDUse array into an SDValue array for use with
4143  // the regular getNode logic.
4144  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4145  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4146}
4147
4148SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4149                              const SDValue *Ops, unsigned NumOps) {
4150  switch (NumOps) {
4151  case 0: return getNode(Opcode, DL, VT);
4152  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4153  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4154  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4155  default: break;
4156  }
4157
4158  switch (Opcode) {
4159  default: break;
4160  case ISD::SELECT_CC: {
4161    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4162    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4163           "LHS and RHS of condition must have same type!");
4164    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4165           "True and False arms of SelectCC must have same type!");
4166    assert(Ops[2].getValueType() == VT &&
4167           "select_cc node must be of same type as true and false value!");
4168    break;
4169  }
4170  case ISD::BR_CC: {
4171    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4172    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4173           "LHS/RHS of comparison should match types!");
4174    break;
4175  }
4176  }
4177
4178  // Memoize nodes.
4179  SDNode *N;
4180  SDVTList VTs = getVTList(VT);
4181
4182  if (VT != MVT::Flag) {
4183    FoldingSetNodeID ID;
4184    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4185    void *IP = 0;
4186
4187    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4188      return SDValue(E, 0);
4189
4190    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4191    CSEMap.InsertNode(N, IP);
4192  } else {
4193    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4194  }
4195
4196  AllNodes.push_back(N);
4197#ifndef NDEBUG
4198  VerifyNode(N);
4199#endif
4200  return SDValue(N, 0);
4201}
4202
4203SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4204                              const std::vector<EVT> &ResultTys,
4205                              const SDValue *Ops, unsigned NumOps) {
4206  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4207                 Ops, NumOps);
4208}
4209
4210SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4211                              const EVT *VTs, unsigned NumVTs,
4212                              const SDValue *Ops, unsigned NumOps) {
4213  if (NumVTs == 1)
4214    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4215  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4216}
4217
4218SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4219                              const SDValue *Ops, unsigned NumOps) {
4220  if (VTList.NumVTs == 1)
4221    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4222
4223#if 0
4224  switch (Opcode) {
4225  // FIXME: figure out how to safely handle things like
4226  // int foo(int x) { return 1 << (x & 255); }
4227  // int bar() { return foo(256); }
4228  case ISD::SRA_PARTS:
4229  case ISD::SRL_PARTS:
4230  case ISD::SHL_PARTS:
4231    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4232        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4233      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4234    else if (N3.getOpcode() == ISD::AND)
4235      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4236        // If the and is only masking out bits that cannot effect the shift,
4237        // eliminate the and.
4238        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4239        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4240          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4241      }
4242    break;
4243  }
4244#endif
4245
4246  // Memoize the node unless it returns a flag.
4247  SDNode *N;
4248  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4249    FoldingSetNodeID ID;
4250    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4251    void *IP = 0;
4252    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4253      return SDValue(E, 0);
4254
4255    if (NumOps == 1) {
4256      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4257    } else if (NumOps == 2) {
4258      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4259    } else if (NumOps == 3) {
4260      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4261                                            Ops[2]);
4262    } else {
4263      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4264    }
4265    CSEMap.InsertNode(N, IP);
4266  } else {
4267    if (NumOps == 1) {
4268      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4269    } else if (NumOps == 2) {
4270      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4271    } else if (NumOps == 3) {
4272      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4273                                            Ops[2]);
4274    } else {
4275      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4276    }
4277  }
4278  AllNodes.push_back(N);
4279#ifndef NDEBUG
4280  VerifyNode(N);
4281#endif
4282  return SDValue(N, 0);
4283}
4284
4285SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4286  return getNode(Opcode, DL, VTList, 0, 0);
4287}
4288
4289SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4290                              SDValue N1) {
4291  SDValue Ops[] = { N1 };
4292  return getNode(Opcode, DL, VTList, Ops, 1);
4293}
4294
4295SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4296                              SDValue N1, SDValue N2) {
4297  SDValue Ops[] = { N1, N2 };
4298  return getNode(Opcode, DL, VTList, Ops, 2);
4299}
4300
4301SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4302                              SDValue N1, SDValue N2, SDValue N3) {
4303  SDValue Ops[] = { N1, N2, N3 };
4304  return getNode(Opcode, DL, VTList, Ops, 3);
4305}
4306
4307SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4308                              SDValue N1, SDValue N2, SDValue N3,
4309                              SDValue N4) {
4310  SDValue Ops[] = { N1, N2, N3, N4 };
4311  return getNode(Opcode, DL, VTList, Ops, 4);
4312}
4313
4314SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4315                              SDValue N1, SDValue N2, SDValue N3,
4316                              SDValue N4, SDValue N5) {
4317  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4318  return getNode(Opcode, DL, VTList, Ops, 5);
4319}
4320
4321SDVTList SelectionDAG::getVTList(EVT VT) {
4322  return makeVTList(SDNode::getValueTypeList(VT), 1);
4323}
4324
4325SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4326  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4327       E = VTList.rend(); I != E; ++I)
4328    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4329      return *I;
4330
4331  EVT *Array = Allocator.Allocate<EVT>(2);
4332  Array[0] = VT1;
4333  Array[1] = VT2;
4334  SDVTList Result = makeVTList(Array, 2);
4335  VTList.push_back(Result);
4336  return Result;
4337}
4338
4339SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4340  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4341       E = VTList.rend(); I != E; ++I)
4342    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4343                          I->VTs[2] == VT3)
4344      return *I;
4345
4346  EVT *Array = Allocator.Allocate<EVT>(3);
4347  Array[0] = VT1;
4348  Array[1] = VT2;
4349  Array[2] = VT3;
4350  SDVTList Result = makeVTList(Array, 3);
4351  VTList.push_back(Result);
4352  return Result;
4353}
4354
4355SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4356  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4357       E = VTList.rend(); I != E; ++I)
4358    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4359                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4360      return *I;
4361
4362  EVT *Array = Allocator.Allocate<EVT>(4);
4363  Array[0] = VT1;
4364  Array[1] = VT2;
4365  Array[2] = VT3;
4366  Array[3] = VT4;
4367  SDVTList Result = makeVTList(Array, 4);
4368  VTList.push_back(Result);
4369  return Result;
4370}
4371
4372SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4373  switch (NumVTs) {
4374    case 0: llvm_unreachable("Cannot have nodes without results!");
4375    case 1: return getVTList(VTs[0]);
4376    case 2: return getVTList(VTs[0], VTs[1]);
4377    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4378    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4379    default: break;
4380  }
4381
4382  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4383       E = VTList.rend(); I != E; ++I) {
4384    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4385      continue;
4386
4387    bool NoMatch = false;
4388    for (unsigned i = 2; i != NumVTs; ++i)
4389      if (VTs[i] != I->VTs[i]) {
4390        NoMatch = true;
4391        break;
4392      }
4393    if (!NoMatch)
4394      return *I;
4395  }
4396
4397  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4398  std::copy(VTs, VTs+NumVTs, Array);
4399  SDVTList Result = makeVTList(Array, NumVTs);
4400  VTList.push_back(Result);
4401  return Result;
4402}
4403
4404
4405/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4406/// specified operands.  If the resultant node already exists in the DAG,
4407/// this does not modify the specified node, instead it returns the node that
4408/// already exists.  If the resultant node does not exist in the DAG, the
4409/// input node is returned.  As a degenerate case, if you specify the same
4410/// input operands as the node already has, the input node is returned.
4411SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4412  SDNode *N = InN.getNode();
4413  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4414
4415  // Check to see if there is no change.
4416  if (Op == N->getOperand(0)) return InN;
4417
4418  // See if the modified node already exists.
4419  void *InsertPos = 0;
4420  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4421    return SDValue(Existing, InN.getResNo());
4422
4423  // Nope it doesn't.  Remove the node from its current place in the maps.
4424  if (InsertPos)
4425    if (!RemoveNodeFromCSEMaps(N))
4426      InsertPos = 0;
4427
4428  // Now we update the operands.
4429  N->OperandList[0].set(Op);
4430
4431  // If this gets put into a CSE map, add it.
4432  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4433  return InN;
4434}
4435
4436SDValue SelectionDAG::
4437UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4438  SDNode *N = InN.getNode();
4439  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4440
4441  // Check to see if there is no change.
4442  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4443    return InN;   // No operands changed, just return the input node.
4444
4445  // See if the modified node already exists.
4446  void *InsertPos = 0;
4447  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4448    return SDValue(Existing, InN.getResNo());
4449
4450  // Nope it doesn't.  Remove the node from its current place in the maps.
4451  if (InsertPos)
4452    if (!RemoveNodeFromCSEMaps(N))
4453      InsertPos = 0;
4454
4455  // Now we update the operands.
4456  if (N->OperandList[0] != Op1)
4457    N->OperandList[0].set(Op1);
4458  if (N->OperandList[1] != Op2)
4459    N->OperandList[1].set(Op2);
4460
4461  // If this gets put into a CSE map, add it.
4462  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4463  return InN;
4464}
4465
4466SDValue SelectionDAG::
4467UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4468  SDValue Ops[] = { Op1, Op2, Op3 };
4469  return UpdateNodeOperands(N, Ops, 3);
4470}
4471
4472SDValue SelectionDAG::
4473UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4474                   SDValue Op3, SDValue Op4) {
4475  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4476  return UpdateNodeOperands(N, Ops, 4);
4477}
4478
4479SDValue SelectionDAG::
4480UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4481                   SDValue Op3, SDValue Op4, SDValue Op5) {
4482  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4483  return UpdateNodeOperands(N, Ops, 5);
4484}
4485
4486SDValue SelectionDAG::
4487UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4488  SDNode *N = InN.getNode();
4489  assert(N->getNumOperands() == NumOps &&
4490         "Update with wrong number of operands");
4491
4492  // Check to see if there is no change.
4493  bool AnyChange = false;
4494  for (unsigned i = 0; i != NumOps; ++i) {
4495    if (Ops[i] != N->getOperand(i)) {
4496      AnyChange = true;
4497      break;
4498    }
4499  }
4500
4501  // No operands changed, just return the input node.
4502  if (!AnyChange) return InN;
4503
4504  // See if the modified node already exists.
4505  void *InsertPos = 0;
4506  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4507    return SDValue(Existing, InN.getResNo());
4508
4509  // Nope it doesn't.  Remove the node from its current place in the maps.
4510  if (InsertPos)
4511    if (!RemoveNodeFromCSEMaps(N))
4512      InsertPos = 0;
4513
4514  // Now we update the operands.
4515  for (unsigned i = 0; i != NumOps; ++i)
4516    if (N->OperandList[i] != Ops[i])
4517      N->OperandList[i].set(Ops[i]);
4518
4519  // If this gets put into a CSE map, add it.
4520  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4521  return InN;
4522}
4523
4524/// DropOperands - Release the operands and set this node to have
4525/// zero operands.
4526void SDNode::DropOperands() {
4527  // Unlike the code in MorphNodeTo that does this, we don't need to
4528  // watch for dead nodes here.
4529  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4530    SDUse &Use = *I++;
4531    Use.set(SDValue());
4532  }
4533}
4534
4535/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4536/// machine opcode.
4537///
4538SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4539                                   EVT VT) {
4540  SDVTList VTs = getVTList(VT);
4541  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4542}
4543
4544SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4545                                   EVT VT, SDValue Op1) {
4546  SDVTList VTs = getVTList(VT);
4547  SDValue Ops[] = { Op1 };
4548  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4549}
4550
4551SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4552                                   EVT VT, SDValue Op1,
4553                                   SDValue Op2) {
4554  SDVTList VTs = getVTList(VT);
4555  SDValue Ops[] = { Op1, Op2 };
4556  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4557}
4558
4559SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4560                                   EVT VT, SDValue Op1,
4561                                   SDValue Op2, SDValue Op3) {
4562  SDVTList VTs = getVTList(VT);
4563  SDValue Ops[] = { Op1, Op2, Op3 };
4564  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4565}
4566
4567SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4568                                   EVT VT, const SDValue *Ops,
4569                                   unsigned NumOps) {
4570  SDVTList VTs = getVTList(VT);
4571  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4572}
4573
4574SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4575                                   EVT VT1, EVT VT2, const SDValue *Ops,
4576                                   unsigned NumOps) {
4577  SDVTList VTs = getVTList(VT1, VT2);
4578  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4579}
4580
4581SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4582                                   EVT VT1, EVT VT2) {
4583  SDVTList VTs = getVTList(VT1, VT2);
4584  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4585}
4586
4587SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4588                                   EVT VT1, EVT VT2, EVT VT3,
4589                                   const SDValue *Ops, unsigned NumOps) {
4590  SDVTList VTs = getVTList(VT1, VT2, VT3);
4591  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4592}
4593
4594SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4595                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4596                                   const SDValue *Ops, unsigned NumOps) {
4597  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4598  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4599}
4600
4601SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4602                                   EVT VT1, EVT VT2,
4603                                   SDValue Op1) {
4604  SDVTList VTs = getVTList(VT1, VT2);
4605  SDValue Ops[] = { Op1 };
4606  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4607}
4608
4609SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4610                                   EVT VT1, EVT VT2,
4611                                   SDValue Op1, SDValue Op2) {
4612  SDVTList VTs = getVTList(VT1, VT2);
4613  SDValue Ops[] = { Op1, Op2 };
4614  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4615}
4616
4617SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4618                                   EVT VT1, EVT VT2,
4619                                   SDValue Op1, SDValue Op2,
4620                                   SDValue Op3) {
4621  SDVTList VTs = getVTList(VT1, VT2);
4622  SDValue Ops[] = { Op1, Op2, Op3 };
4623  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4624}
4625
4626SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4627                                   EVT VT1, EVT VT2, EVT VT3,
4628                                   SDValue Op1, SDValue Op2,
4629                                   SDValue Op3) {
4630  SDVTList VTs = getVTList(VT1, VT2, VT3);
4631  SDValue Ops[] = { Op1, Op2, Op3 };
4632  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4633}
4634
4635SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4636                                   SDVTList VTs, const SDValue *Ops,
4637                                   unsigned NumOps) {
4638  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4639  // Reset the NodeID to -1.
4640  N->setNodeId(-1);
4641  return N;
4642}
4643
4644/// MorphNodeTo - This *mutates* the specified node to have the specified
4645/// return type, opcode, and operands.
4646///
4647/// Note that MorphNodeTo returns the resultant node.  If there is already a
4648/// node of the specified opcode and operands, it returns that node instead of
4649/// the current one.  Note that the DebugLoc need not be the same.
4650///
4651/// Using MorphNodeTo is faster than creating a new node and swapping it in
4652/// with ReplaceAllUsesWith both because it often avoids allocating a new
4653/// node, and because it doesn't require CSE recalculation for any of
4654/// the node's users.
4655///
4656SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4657                                  SDVTList VTs, const SDValue *Ops,
4658                                  unsigned NumOps) {
4659  // If an identical node already exists, use it.
4660  void *IP = 0;
4661  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4662    FoldingSetNodeID ID;
4663    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4664    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4665      return ON;
4666  }
4667
4668  if (!RemoveNodeFromCSEMaps(N))
4669    IP = 0;
4670
4671  // Start the morphing.
4672  N->NodeType = Opc;
4673  N->ValueList = VTs.VTs;
4674  N->NumValues = VTs.NumVTs;
4675
4676  // Clear the operands list, updating used nodes to remove this from their
4677  // use list.  Keep track of any operands that become dead as a result.
4678  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4679  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4680    SDUse &Use = *I++;
4681    SDNode *Used = Use.getNode();
4682    Use.set(SDValue());
4683    if (Used->use_empty())
4684      DeadNodeSet.insert(Used);
4685  }
4686
4687  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4688    // Initialize the memory references information.
4689    MN->setMemRefs(0, 0);
4690    // If NumOps is larger than the # of operands we can have in a
4691    // MachineSDNode, reallocate the operand list.
4692    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4693      if (MN->OperandsNeedDelete)
4694        delete[] MN->OperandList;
4695      if (NumOps > array_lengthof(MN->LocalOperands))
4696        // We're creating a final node that will live unmorphed for the
4697        // remainder of the current SelectionDAG iteration, so we can allocate
4698        // the operands directly out of a pool with no recycling metadata.
4699        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4700                         Ops, NumOps);
4701      else
4702        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4703      MN->OperandsNeedDelete = false;
4704    } else
4705      MN->InitOperands(MN->OperandList, Ops, NumOps);
4706  } else {
4707    // If NumOps is larger than the # of operands we currently have, reallocate
4708    // the operand list.
4709    if (NumOps > N->NumOperands) {
4710      if (N->OperandsNeedDelete)
4711        delete[] N->OperandList;
4712      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4713      N->OperandsNeedDelete = true;
4714    } else
4715      N->InitOperands(N->OperandList, Ops, NumOps);
4716  }
4717
4718  // Delete any nodes that are still dead after adding the uses for the
4719  // new operands.
4720  if (!DeadNodeSet.empty()) {
4721    SmallVector<SDNode *, 16> DeadNodes;
4722    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4723         E = DeadNodeSet.end(); I != E; ++I)
4724      if ((*I)->use_empty())
4725        DeadNodes.push_back(*I);
4726    RemoveDeadNodes(DeadNodes);
4727  }
4728
4729  if (IP)
4730    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4731  return N;
4732}
4733
4734
4735/// getMachineNode - These are used for target selectors to create a new node
4736/// with specified return type(s), MachineInstr opcode, and operands.
4737///
4738/// Note that getMachineNode returns the resultant node.  If there is already a
4739/// node of the specified opcode and operands, it returns that node instead of
4740/// the current one.
4741MachineSDNode *
4742SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4743  SDVTList VTs = getVTList(VT);
4744  return getMachineNode(Opcode, dl, VTs, 0, 0);
4745}
4746
4747MachineSDNode *
4748SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4749  SDVTList VTs = getVTList(VT);
4750  SDValue Ops[] = { Op1 };
4751  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4752}
4753
4754MachineSDNode *
4755SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4756                             SDValue Op1, SDValue Op2) {
4757  SDVTList VTs = getVTList(VT);
4758  SDValue Ops[] = { Op1, Op2 };
4759  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4760}
4761
4762MachineSDNode *
4763SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4764                             SDValue Op1, SDValue Op2, SDValue Op3) {
4765  SDVTList VTs = getVTList(VT);
4766  SDValue Ops[] = { Op1, Op2, Op3 };
4767  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4768}
4769
4770MachineSDNode *
4771SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4772                             const SDValue *Ops, unsigned NumOps) {
4773  SDVTList VTs = getVTList(VT);
4774  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4775}
4776
4777MachineSDNode *
4778SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4779  SDVTList VTs = getVTList(VT1, VT2);
4780  return getMachineNode(Opcode, dl, VTs, 0, 0);
4781}
4782
4783MachineSDNode *
4784SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4785                             EVT VT1, EVT VT2, SDValue Op1) {
4786  SDVTList VTs = getVTList(VT1, VT2);
4787  SDValue Ops[] = { Op1 };
4788  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4789}
4790
4791MachineSDNode *
4792SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4793                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4794  SDVTList VTs = getVTList(VT1, VT2);
4795  SDValue Ops[] = { Op1, Op2 };
4796  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4797}
4798
4799MachineSDNode *
4800SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4801                             EVT VT1, EVT VT2, SDValue Op1,
4802                             SDValue Op2, SDValue Op3) {
4803  SDVTList VTs = getVTList(VT1, VT2);
4804  SDValue Ops[] = { Op1, Op2, Op3 };
4805  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4806}
4807
4808MachineSDNode *
4809SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4810                             EVT VT1, EVT VT2,
4811                             const SDValue *Ops, unsigned NumOps) {
4812  SDVTList VTs = getVTList(VT1, VT2);
4813  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4814}
4815
4816MachineSDNode *
4817SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4818                             EVT VT1, EVT VT2, EVT VT3,
4819                             SDValue Op1, SDValue Op2) {
4820  SDVTList VTs = getVTList(VT1, VT2, VT3);
4821  SDValue Ops[] = { Op1, Op2 };
4822  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4823}
4824
4825MachineSDNode *
4826SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4827                             EVT VT1, EVT VT2, EVT VT3,
4828                             SDValue Op1, SDValue Op2, SDValue Op3) {
4829  SDVTList VTs = getVTList(VT1, VT2, VT3);
4830  SDValue Ops[] = { Op1, Op2, Op3 };
4831  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4832}
4833
4834MachineSDNode *
4835SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4836                             EVT VT1, EVT VT2, EVT VT3,
4837                             const SDValue *Ops, unsigned NumOps) {
4838  SDVTList VTs = getVTList(VT1, VT2, VT3);
4839  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4840}
4841
4842MachineSDNode *
4843SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4844                             EVT VT2, EVT VT3, EVT VT4,
4845                             const SDValue *Ops, unsigned NumOps) {
4846  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4847  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4848}
4849
4850MachineSDNode *
4851SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4852                             const std::vector<EVT> &ResultTys,
4853                             const SDValue *Ops, unsigned NumOps) {
4854  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4855  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4856}
4857
4858MachineSDNode *
4859SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4860                             const SDValue *Ops, unsigned NumOps) {
4861  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4862  MachineSDNode *N;
4863  void *IP;
4864
4865  if (DoCSE) {
4866    FoldingSetNodeID ID;
4867    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4868    IP = 0;
4869    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4870      return cast<MachineSDNode>(E);
4871  }
4872
4873  // Allocate a new MachineSDNode.
4874  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
4875
4876  // Initialize the operands list.
4877  if (NumOps > array_lengthof(N->LocalOperands))
4878    // We're creating a final node that will live unmorphed for the
4879    // remainder of the current SelectionDAG iteration, so we can allocate
4880    // the operands directly out of a pool with no recycling metadata.
4881    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4882                    Ops, NumOps);
4883  else
4884    N->InitOperands(N->LocalOperands, Ops, NumOps);
4885  N->OperandsNeedDelete = false;
4886
4887  if (DoCSE)
4888    CSEMap.InsertNode(N, IP);
4889
4890  AllNodes.push_back(N);
4891#ifndef NDEBUG
4892  VerifyNode(N);
4893#endif
4894  return N;
4895}
4896
4897/// getTargetExtractSubreg - A convenience function for creating
4898/// TargetOpcode::EXTRACT_SUBREG nodes.
4899SDValue
4900SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4901                                     SDValue Operand) {
4902  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4903  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4904                                  VT, Operand, SRIdxVal);
4905  return SDValue(Subreg, 0);
4906}
4907
4908/// getTargetInsertSubreg - A convenience function for creating
4909/// TargetOpcode::INSERT_SUBREG nodes.
4910SDValue
4911SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4912                                    SDValue Operand, SDValue Subreg) {
4913  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4914  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4915                                  VT, Operand, Subreg, SRIdxVal);
4916  return SDValue(Result, 0);
4917}
4918
4919/// getNodeIfExists - Get the specified node if it's already available, or
4920/// else return NULL.
4921SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4922                                      const SDValue *Ops, unsigned NumOps) {
4923  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4924    FoldingSetNodeID ID;
4925    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4926    void *IP = 0;
4927    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4928      return E;
4929  }
4930  return NULL;
4931}
4932
4933/// getDbgValue - Creates a SDDbgValue node.
4934///
4935SDDbgValue *
4936SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
4937                          DebugLoc DL, unsigned O) {
4938  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
4939}
4940
4941SDDbgValue *
4942SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
4943                          DebugLoc DL, unsigned O) {
4944  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
4945}
4946
4947SDDbgValue *
4948SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
4949                          DebugLoc DL, unsigned O) {
4950  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
4951}
4952
4953namespace {
4954
4955/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
4956/// pointed to by a use iterator is deleted, increment the use iterator
4957/// so that it doesn't dangle.
4958///
4959/// This class also manages a "downlink" DAGUpdateListener, to forward
4960/// messages to ReplaceAllUsesWith's callers.
4961///
4962class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
4963  SelectionDAG::DAGUpdateListener *DownLink;
4964  SDNode::use_iterator &UI;
4965  SDNode::use_iterator &UE;
4966
4967  virtual void NodeDeleted(SDNode *N, SDNode *E) {
4968    // Increment the iterator as needed.
4969    while (UI != UE && N == *UI)
4970      ++UI;
4971
4972    // Then forward the message.
4973    if (DownLink) DownLink->NodeDeleted(N, E);
4974  }
4975
4976  virtual void NodeUpdated(SDNode *N) {
4977    // Just forward the message.
4978    if (DownLink) DownLink->NodeUpdated(N);
4979  }
4980
4981public:
4982  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
4983                     SDNode::use_iterator &ui,
4984                     SDNode::use_iterator &ue)
4985    : DownLink(dl), UI(ui), UE(ue) {}
4986};
4987
4988}
4989
4990/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4991/// This can cause recursive merging of nodes in the DAG.
4992///
4993/// This version assumes From has a single result value.
4994///
4995void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4996                                      DAGUpdateListener *UpdateListener) {
4997  SDNode *From = FromN.getNode();
4998  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4999         "Cannot replace with this method!");
5000  assert(From != To.getNode() && "Cannot replace uses of with self");
5001
5002  // Iterate over all the existing uses of From. New uses will be added
5003  // to the beginning of the use list, which we avoid visiting.
5004  // This specifically avoids visiting uses of From that arise while the
5005  // replacement is happening, because any such uses would be the result
5006  // of CSE: If an existing node looks like From after one of its operands
5007  // is replaced by To, we don't want to replace of all its users with To
5008  // too. See PR3018 for more info.
5009  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5010  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5011  while (UI != UE) {
5012    SDNode *User = *UI;
5013
5014    // This node is about to morph, remove its old self from the CSE maps.
5015    RemoveNodeFromCSEMaps(User);
5016
5017    // A user can appear in a use list multiple times, and when this
5018    // happens the uses are usually next to each other in the list.
5019    // To help reduce the number of CSE recomputations, process all
5020    // the uses of this user that we can find this way.
5021    do {
5022      SDUse &Use = UI.getUse();
5023      ++UI;
5024      Use.set(To);
5025    } while (UI != UE && *UI == User);
5026
5027    // Now that we have modified User, add it back to the CSE maps.  If it
5028    // already exists there, recursively merge the results together.
5029    AddModifiedNodeToCSEMaps(User, &Listener);
5030  }
5031}
5032
5033/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5034/// This can cause recursive merging of nodes in the DAG.
5035///
5036/// This version assumes that for each value of From, there is a
5037/// corresponding value in To in the same position with the same type.
5038///
5039void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5040                                      DAGUpdateListener *UpdateListener) {
5041#ifndef NDEBUG
5042  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5043    assert((!From->hasAnyUseOfValue(i) ||
5044            From->getValueType(i) == To->getValueType(i)) &&
5045           "Cannot use this version of ReplaceAllUsesWith!");
5046#endif
5047
5048  // Handle the trivial case.
5049  if (From == To)
5050    return;
5051
5052  // Iterate over just the existing users of From. See the comments in
5053  // the ReplaceAllUsesWith above.
5054  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5055  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5056  while (UI != UE) {
5057    SDNode *User = *UI;
5058
5059    // This node is about to morph, remove its old self from the CSE maps.
5060    RemoveNodeFromCSEMaps(User);
5061
5062    // A user can appear in a use list multiple times, and when this
5063    // happens the uses are usually next to each other in the list.
5064    // To help reduce the number of CSE recomputations, process all
5065    // the uses of this user that we can find this way.
5066    do {
5067      SDUse &Use = UI.getUse();
5068      ++UI;
5069      Use.setNode(To);
5070    } while (UI != UE && *UI == User);
5071
5072    // Now that we have modified User, add it back to the CSE maps.  If it
5073    // already exists there, recursively merge the results together.
5074    AddModifiedNodeToCSEMaps(User, &Listener);
5075  }
5076}
5077
5078/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5079/// This can cause recursive merging of nodes in the DAG.
5080///
5081/// This version can replace From with any result values.  To must match the
5082/// number and types of values returned by From.
5083void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5084                                      const SDValue *To,
5085                                      DAGUpdateListener *UpdateListener) {
5086  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5087    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5088
5089  // Iterate over just the existing users of From. See the comments in
5090  // the ReplaceAllUsesWith above.
5091  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5092  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5093  while (UI != UE) {
5094    SDNode *User = *UI;
5095
5096    // This node is about to morph, remove its old self from the CSE maps.
5097    RemoveNodeFromCSEMaps(User);
5098
5099    // A user can appear in a use list multiple times, and when this
5100    // happens the uses are usually next to each other in the list.
5101    // To help reduce the number of CSE recomputations, process all
5102    // the uses of this user that we can find this way.
5103    do {
5104      SDUse &Use = UI.getUse();
5105      const SDValue &ToOp = To[Use.getResNo()];
5106      ++UI;
5107      Use.set(ToOp);
5108    } while (UI != UE && *UI == User);
5109
5110    // Now that we have modified User, add it back to the CSE maps.  If it
5111    // already exists there, recursively merge the results together.
5112    AddModifiedNodeToCSEMaps(User, &Listener);
5113  }
5114}
5115
5116/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5117/// uses of other values produced by From.getNode() alone.  The Deleted
5118/// vector is handled the same way as for ReplaceAllUsesWith.
5119void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5120                                             DAGUpdateListener *UpdateListener){
5121  // Handle the really simple, really trivial case efficiently.
5122  if (From == To) return;
5123
5124  // Handle the simple, trivial, case efficiently.
5125  if (From.getNode()->getNumValues() == 1) {
5126    ReplaceAllUsesWith(From, To, UpdateListener);
5127    return;
5128  }
5129
5130  // Iterate over just the existing users of From. See the comments in
5131  // the ReplaceAllUsesWith above.
5132  SDNode::use_iterator UI = From.getNode()->use_begin(),
5133                       UE = From.getNode()->use_end();
5134  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5135  while (UI != UE) {
5136    SDNode *User = *UI;
5137    bool UserRemovedFromCSEMaps = false;
5138
5139    // A user can appear in a use list multiple times, and when this
5140    // happens the uses are usually next to each other in the list.
5141    // To help reduce the number of CSE recomputations, process all
5142    // the uses of this user that we can find this way.
5143    do {
5144      SDUse &Use = UI.getUse();
5145
5146      // Skip uses of different values from the same node.
5147      if (Use.getResNo() != From.getResNo()) {
5148        ++UI;
5149        continue;
5150      }
5151
5152      // If this node hasn't been modified yet, it's still in the CSE maps,
5153      // so remove its old self from the CSE maps.
5154      if (!UserRemovedFromCSEMaps) {
5155        RemoveNodeFromCSEMaps(User);
5156        UserRemovedFromCSEMaps = true;
5157      }
5158
5159      ++UI;
5160      Use.set(To);
5161    } while (UI != UE && *UI == User);
5162
5163    // We are iterating over all uses of the From node, so if a use
5164    // doesn't use the specific value, no changes are made.
5165    if (!UserRemovedFromCSEMaps)
5166      continue;
5167
5168    // Now that we have modified User, add it back to the CSE maps.  If it
5169    // already exists there, recursively merge the results together.
5170    AddModifiedNodeToCSEMaps(User, &Listener);
5171  }
5172}
5173
5174namespace {
5175  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5176  /// to record information about a use.
5177  struct UseMemo {
5178    SDNode *User;
5179    unsigned Index;
5180    SDUse *Use;
5181  };
5182
5183  /// operator< - Sort Memos by User.
5184  bool operator<(const UseMemo &L, const UseMemo &R) {
5185    return (intptr_t)L.User < (intptr_t)R.User;
5186  }
5187}
5188
5189/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5190/// uses of other values produced by From.getNode() alone.  The same value
5191/// may appear in both the From and To list.  The Deleted vector is
5192/// handled the same way as for ReplaceAllUsesWith.
5193void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5194                                              const SDValue *To,
5195                                              unsigned Num,
5196                                              DAGUpdateListener *UpdateListener){
5197  // Handle the simple, trivial case efficiently.
5198  if (Num == 1)
5199    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5200
5201  // Read up all the uses and make records of them. This helps
5202  // processing new uses that are introduced during the
5203  // replacement process.
5204  SmallVector<UseMemo, 4> Uses;
5205  for (unsigned i = 0; i != Num; ++i) {
5206    unsigned FromResNo = From[i].getResNo();
5207    SDNode *FromNode = From[i].getNode();
5208    for (SDNode::use_iterator UI = FromNode->use_begin(),
5209         E = FromNode->use_end(); UI != E; ++UI) {
5210      SDUse &Use = UI.getUse();
5211      if (Use.getResNo() == FromResNo) {
5212        UseMemo Memo = { *UI, i, &Use };
5213        Uses.push_back(Memo);
5214      }
5215    }
5216  }
5217
5218  // Sort the uses, so that all the uses from a given User are together.
5219  std::sort(Uses.begin(), Uses.end());
5220
5221  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5222       UseIndex != UseIndexEnd; ) {
5223    // We know that this user uses some value of From.  If it is the right
5224    // value, update it.
5225    SDNode *User = Uses[UseIndex].User;
5226
5227    // This node is about to morph, remove its old self from the CSE maps.
5228    RemoveNodeFromCSEMaps(User);
5229
5230    // The Uses array is sorted, so all the uses for a given User
5231    // are next to each other in the list.
5232    // To help reduce the number of CSE recomputations, process all
5233    // the uses of this user that we can find this way.
5234    do {
5235      unsigned i = Uses[UseIndex].Index;
5236      SDUse &Use = *Uses[UseIndex].Use;
5237      ++UseIndex;
5238
5239      Use.set(To[i]);
5240    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5241
5242    // Now that we have modified User, add it back to the CSE maps.  If it
5243    // already exists there, recursively merge the results together.
5244    AddModifiedNodeToCSEMaps(User, UpdateListener);
5245  }
5246}
5247
5248/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5249/// based on their topological order. It returns the maximum id and a vector
5250/// of the SDNodes* in assigned order by reference.
5251unsigned SelectionDAG::AssignTopologicalOrder() {
5252
5253  unsigned DAGSize = 0;
5254
5255  // SortedPos tracks the progress of the algorithm. Nodes before it are
5256  // sorted, nodes after it are unsorted. When the algorithm completes
5257  // it is at the end of the list.
5258  allnodes_iterator SortedPos = allnodes_begin();
5259
5260  // Visit all the nodes. Move nodes with no operands to the front of
5261  // the list immediately. Annotate nodes that do have operands with their
5262  // operand count. Before we do this, the Node Id fields of the nodes
5263  // may contain arbitrary values. After, the Node Id fields for nodes
5264  // before SortedPos will contain the topological sort index, and the
5265  // Node Id fields for nodes At SortedPos and after will contain the
5266  // count of outstanding operands.
5267  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5268    SDNode *N = I++;
5269    checkForCycles(N);
5270    unsigned Degree = N->getNumOperands();
5271    if (Degree == 0) {
5272      // A node with no uses, add it to the result array immediately.
5273      N->setNodeId(DAGSize++);
5274      allnodes_iterator Q = N;
5275      if (Q != SortedPos)
5276        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5277      assert(SortedPos != AllNodes.end() && "Overran node list");
5278      ++SortedPos;
5279    } else {
5280      // Temporarily use the Node Id as scratch space for the degree count.
5281      N->setNodeId(Degree);
5282    }
5283  }
5284
5285  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5286  // such that by the time the end is reached all nodes will be sorted.
5287  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5288    SDNode *N = I;
5289    checkForCycles(N);
5290    // N is in sorted position, so all its uses have one less operand
5291    // that needs to be sorted.
5292    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5293         UI != UE; ++UI) {
5294      SDNode *P = *UI;
5295      unsigned Degree = P->getNodeId();
5296      assert(Degree != 0 && "Invalid node degree");
5297      --Degree;
5298      if (Degree == 0) {
5299        // All of P's operands are sorted, so P may sorted now.
5300        P->setNodeId(DAGSize++);
5301        if (P != SortedPos)
5302          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5303        assert(SortedPos != AllNodes.end() && "Overran node list");
5304        ++SortedPos;
5305      } else {
5306        // Update P's outstanding operand count.
5307        P->setNodeId(Degree);
5308      }
5309    }
5310    if (I == SortedPos) {
5311#ifndef NDEBUG
5312      SDNode *S = ++I;
5313      dbgs() << "Overran sorted position:\n";
5314      S->dumprFull();
5315#endif
5316      llvm_unreachable(0);
5317    }
5318  }
5319
5320  assert(SortedPos == AllNodes.end() &&
5321         "Topological sort incomplete!");
5322  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5323         "First node in topological sort is not the entry token!");
5324  assert(AllNodes.front().getNodeId() == 0 &&
5325         "First node in topological sort has non-zero id!");
5326  assert(AllNodes.front().getNumOperands() == 0 &&
5327         "First node in topological sort has operands!");
5328  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5329         "Last node in topologic sort has unexpected id!");
5330  assert(AllNodes.back().use_empty() &&
5331         "Last node in topologic sort has users!");
5332  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5333  return DAGSize;
5334}
5335
5336/// AssignOrdering - Assign an order to the SDNode.
5337void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5338  assert(SD && "Trying to assign an order to a null node!");
5339  Ordering->add(SD, Order);
5340}
5341
5342/// GetOrdering - Get the order for the SDNode.
5343unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5344  assert(SD && "Trying to get the order of a null node!");
5345  return Ordering->getOrder(SD);
5346}
5347
5348/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5349/// value is produced by SD.
5350void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5351  DbgInfo->add(DB, SD, isParameter);
5352  if (SD)
5353    SD->setHasDebugValue(true);
5354}
5355
5356//===----------------------------------------------------------------------===//
5357//                              SDNode Class
5358//===----------------------------------------------------------------------===//
5359
5360HandleSDNode::~HandleSDNode() {
5361  DropOperands();
5362}
5363
5364GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5365                                         EVT VT, int64_t o, unsigned char TF)
5366  : SDNode(Opc, DebugLoc(), getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5367  TheGlobal = GA;
5368}
5369
5370MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5371                     MachineMemOperand *mmo)
5372 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5373  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5374                                      MMO->isNonTemporal());
5375  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5376  assert(isNonTemporal() == MMO->isNonTemporal() &&
5377         "Non-temporal encoding error!");
5378  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5379}
5380
5381MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5382                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5383                     MachineMemOperand *mmo)
5384   : SDNode(Opc, dl, VTs, Ops, NumOps),
5385     MemoryVT(memvt), MMO(mmo) {
5386  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5387                                      MMO->isNonTemporal());
5388  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5389  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5390}
5391
5392/// Profile - Gather unique data for the node.
5393///
5394void SDNode::Profile(FoldingSetNodeID &ID) const {
5395  AddNodeIDNode(ID, this);
5396}
5397
5398namespace {
5399  struct EVTArray {
5400    std::vector<EVT> VTs;
5401
5402    EVTArray() {
5403      VTs.reserve(MVT::LAST_VALUETYPE);
5404      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5405        VTs.push_back(MVT((MVT::SimpleValueType)i));
5406    }
5407  };
5408}
5409
5410static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5411static ManagedStatic<EVTArray> SimpleVTArray;
5412static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5413
5414/// getValueTypeList - Return a pointer to the specified value type.
5415///
5416const EVT *SDNode::getValueTypeList(EVT VT) {
5417  if (VT.isExtended()) {
5418    sys::SmartScopedLock<true> Lock(*VTMutex);
5419    return &(*EVTs->insert(VT).first);
5420  } else {
5421    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5422  }
5423}
5424
5425/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5426/// indicated value.  This method ignores uses of other values defined by this
5427/// operation.
5428bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5429  assert(Value < getNumValues() && "Bad value!");
5430
5431  // TODO: Only iterate over uses of a given value of the node
5432  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5433    if (UI.getUse().getResNo() == Value) {
5434      if (NUses == 0)
5435        return false;
5436      --NUses;
5437    }
5438  }
5439
5440  // Found exactly the right number of uses?
5441  return NUses == 0;
5442}
5443
5444
5445/// hasAnyUseOfValue - Return true if there are any use of the indicated
5446/// value. This method ignores uses of other values defined by this operation.
5447bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5448  assert(Value < getNumValues() && "Bad value!");
5449
5450  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5451    if (UI.getUse().getResNo() == Value)
5452      return true;
5453
5454  return false;
5455}
5456
5457
5458/// isOnlyUserOf - Return true if this node is the only use of N.
5459///
5460bool SDNode::isOnlyUserOf(SDNode *N) const {
5461  bool Seen = false;
5462  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5463    SDNode *User = *I;
5464    if (User == this)
5465      Seen = true;
5466    else
5467      return false;
5468  }
5469
5470  return Seen;
5471}
5472
5473/// isOperand - Return true if this node is an operand of N.
5474///
5475bool SDValue::isOperandOf(SDNode *N) const {
5476  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5477    if (*this == N->getOperand(i))
5478      return true;
5479  return false;
5480}
5481
5482bool SDNode::isOperandOf(SDNode *N) const {
5483  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5484    if (this == N->OperandList[i].getNode())
5485      return true;
5486  return false;
5487}
5488
5489/// reachesChainWithoutSideEffects - Return true if this operand (which must
5490/// be a chain) reaches the specified operand without crossing any
5491/// side-effecting instructions.  In practice, this looks through token
5492/// factors and non-volatile loads.  In order to remain efficient, this only
5493/// looks a couple of nodes in, it does not do an exhaustive search.
5494bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5495                                               unsigned Depth) const {
5496  if (*this == Dest) return true;
5497
5498  // Don't search too deeply, we just want to be able to see through
5499  // TokenFactor's etc.
5500  if (Depth == 0) return false;
5501
5502  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5503  // of the operands of the TF reach dest, then we can do the xform.
5504  if (getOpcode() == ISD::TokenFactor) {
5505    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5506      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5507        return true;
5508    return false;
5509  }
5510
5511  // Loads don't have side effects, look through them.
5512  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5513    if (!Ld->isVolatile())
5514      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5515  }
5516  return false;
5517}
5518
5519/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5520/// is either an operand of N or it can be reached by traversing up the operands.
5521/// NOTE: this is an expensive method. Use it carefully.
5522bool SDNode::isPredecessorOf(SDNode *N) const {
5523  SmallPtrSet<SDNode *, 32> Visited;
5524  SmallVector<SDNode *, 16> Worklist;
5525  Worklist.push_back(N);
5526
5527  do {
5528    N = Worklist.pop_back_val();
5529    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5530      SDNode *Op = N->getOperand(i).getNode();
5531      if (Op == this)
5532        return true;
5533      if (Visited.insert(Op))
5534        Worklist.push_back(Op);
5535    }
5536  } while (!Worklist.empty());
5537
5538  return false;
5539}
5540
5541uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5542  assert(Num < NumOperands && "Invalid child # of SDNode!");
5543  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5544}
5545
5546std::string SDNode::getOperationName(const SelectionDAG *G) const {
5547  switch (getOpcode()) {
5548  default:
5549    if (getOpcode() < ISD::BUILTIN_OP_END)
5550      return "<<Unknown DAG Node>>";
5551    if (isMachineOpcode()) {
5552      if (G)
5553        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5554          if (getMachineOpcode() < TII->getNumOpcodes())
5555            return TII->get(getMachineOpcode()).getName();
5556      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5557    }
5558    if (G) {
5559      const TargetLowering &TLI = G->getTargetLoweringInfo();
5560      const char *Name = TLI.getTargetNodeName(getOpcode());
5561      if (Name) return Name;
5562      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5563    }
5564    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5565
5566#ifndef NDEBUG
5567  case ISD::DELETED_NODE:
5568    return "<<Deleted Node!>>";
5569#endif
5570  case ISD::PREFETCH:      return "Prefetch";
5571  case ISD::MEMBARRIER:    return "MemBarrier";
5572  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5573  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5574  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5575  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5576  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5577  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5578  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5579  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5580  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5581  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5582  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5583  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5584  case ISD::PCMARKER:      return "PCMarker";
5585  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5586  case ISD::SRCVALUE:      return "SrcValue";
5587  case ISD::MDNODE_SDNODE: return "MDNode";
5588  case ISD::EntryToken:    return "EntryToken";
5589  case ISD::TokenFactor:   return "TokenFactor";
5590  case ISD::AssertSext:    return "AssertSext";
5591  case ISD::AssertZext:    return "AssertZext";
5592
5593  case ISD::BasicBlock:    return "BasicBlock";
5594  case ISD::VALUETYPE:     return "ValueType";
5595  case ISD::Register:      return "Register";
5596
5597  case ISD::Constant:      return "Constant";
5598  case ISD::ConstantFP:    return "ConstantFP";
5599  case ISD::GlobalAddress: return "GlobalAddress";
5600  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5601  case ISD::FrameIndex:    return "FrameIndex";
5602  case ISD::JumpTable:     return "JumpTable";
5603  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5604  case ISD::RETURNADDR: return "RETURNADDR";
5605  case ISD::FRAMEADDR: return "FRAMEADDR";
5606  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5607  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5608  case ISD::LSDAADDR: return "LSDAADDR";
5609  case ISD::EHSELECTION: return "EHSELECTION";
5610  case ISD::EH_RETURN: return "EH_RETURN";
5611  case ISD::ConstantPool:  return "ConstantPool";
5612  case ISD::ExternalSymbol: return "ExternalSymbol";
5613  case ISD::BlockAddress:  return "BlockAddress";
5614  case ISD::INTRINSIC_WO_CHAIN:
5615  case ISD::INTRINSIC_VOID:
5616  case ISD::INTRINSIC_W_CHAIN: {
5617    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5618    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5619    if (IID < Intrinsic::num_intrinsics)
5620      return Intrinsic::getName((Intrinsic::ID)IID);
5621    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5622      return TII->getName(IID);
5623    llvm_unreachable("Invalid intrinsic ID");
5624  }
5625
5626  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5627  case ISD::TargetConstant: return "TargetConstant";
5628  case ISD::TargetConstantFP:return "TargetConstantFP";
5629  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5630  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5631  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5632  case ISD::TargetJumpTable:  return "TargetJumpTable";
5633  case ISD::TargetConstantPool:  return "TargetConstantPool";
5634  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5635  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5636
5637  case ISD::CopyToReg:     return "CopyToReg";
5638  case ISD::CopyFromReg:   return "CopyFromReg";
5639  case ISD::UNDEF:         return "undef";
5640  case ISD::MERGE_VALUES:  return "merge_values";
5641  case ISD::INLINEASM:     return "inlineasm";
5642  case ISD::EH_LABEL:      return "eh_label";
5643  case ISD::HANDLENODE:    return "handlenode";
5644
5645  // Unary operators
5646  case ISD::FABS:   return "fabs";
5647  case ISD::FNEG:   return "fneg";
5648  case ISD::FSQRT:  return "fsqrt";
5649  case ISD::FSIN:   return "fsin";
5650  case ISD::FCOS:   return "fcos";
5651  case ISD::FPOWI:  return "fpowi";
5652  case ISD::FPOW:   return "fpow";
5653  case ISD::FTRUNC: return "ftrunc";
5654  case ISD::FFLOOR: return "ffloor";
5655  case ISD::FCEIL:  return "fceil";
5656  case ISD::FRINT:  return "frint";
5657  case ISD::FNEARBYINT: return "fnearbyint";
5658
5659  // Binary operators
5660  case ISD::ADD:    return "add";
5661  case ISD::SUB:    return "sub";
5662  case ISD::MUL:    return "mul";
5663  case ISD::MULHU:  return "mulhu";
5664  case ISD::MULHS:  return "mulhs";
5665  case ISD::SDIV:   return "sdiv";
5666  case ISD::UDIV:   return "udiv";
5667  case ISD::SREM:   return "srem";
5668  case ISD::UREM:   return "urem";
5669  case ISD::SMUL_LOHI:  return "smul_lohi";
5670  case ISD::UMUL_LOHI:  return "umul_lohi";
5671  case ISD::SDIVREM:    return "sdivrem";
5672  case ISD::UDIVREM:    return "udivrem";
5673  case ISD::AND:    return "and";
5674  case ISD::OR:     return "or";
5675  case ISD::XOR:    return "xor";
5676  case ISD::SHL:    return "shl";
5677  case ISD::SRA:    return "sra";
5678  case ISD::SRL:    return "srl";
5679  case ISD::ROTL:   return "rotl";
5680  case ISD::ROTR:   return "rotr";
5681  case ISD::FADD:   return "fadd";
5682  case ISD::FSUB:   return "fsub";
5683  case ISD::FMUL:   return "fmul";
5684  case ISD::FDIV:   return "fdiv";
5685  case ISD::FREM:   return "frem";
5686  case ISD::FCOPYSIGN: return "fcopysign";
5687  case ISD::FGETSIGN:  return "fgetsign";
5688
5689  case ISD::SETCC:       return "setcc";
5690  case ISD::VSETCC:      return "vsetcc";
5691  case ISD::SELECT:      return "select";
5692  case ISD::SELECT_CC:   return "select_cc";
5693  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5694  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5695  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5696  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5697  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5698  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5699  case ISD::CARRY_FALSE:         return "carry_false";
5700  case ISD::ADDC:        return "addc";
5701  case ISD::ADDE:        return "adde";
5702  case ISD::SADDO:       return "saddo";
5703  case ISD::UADDO:       return "uaddo";
5704  case ISD::SSUBO:       return "ssubo";
5705  case ISD::USUBO:       return "usubo";
5706  case ISD::SMULO:       return "smulo";
5707  case ISD::UMULO:       return "umulo";
5708  case ISD::SUBC:        return "subc";
5709  case ISD::SUBE:        return "sube";
5710  case ISD::SHL_PARTS:   return "shl_parts";
5711  case ISD::SRA_PARTS:   return "sra_parts";
5712  case ISD::SRL_PARTS:   return "srl_parts";
5713
5714  // Conversion operators.
5715  case ISD::SIGN_EXTEND: return "sign_extend";
5716  case ISD::ZERO_EXTEND: return "zero_extend";
5717  case ISD::ANY_EXTEND:  return "any_extend";
5718  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5719  case ISD::TRUNCATE:    return "truncate";
5720  case ISD::FP_ROUND:    return "fp_round";
5721  case ISD::FLT_ROUNDS_: return "flt_rounds";
5722  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5723  case ISD::FP_EXTEND:   return "fp_extend";
5724
5725  case ISD::SINT_TO_FP:  return "sint_to_fp";
5726  case ISD::UINT_TO_FP:  return "uint_to_fp";
5727  case ISD::FP_TO_SINT:  return "fp_to_sint";
5728  case ISD::FP_TO_UINT:  return "fp_to_uint";
5729  case ISD::BIT_CONVERT: return "bit_convert";
5730  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5731  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5732
5733  case ISD::CONVERT_RNDSAT: {
5734    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5735    default: llvm_unreachable("Unknown cvt code!");
5736    case ISD::CVT_FF:  return "cvt_ff";
5737    case ISD::CVT_FS:  return "cvt_fs";
5738    case ISD::CVT_FU:  return "cvt_fu";
5739    case ISD::CVT_SF:  return "cvt_sf";
5740    case ISD::CVT_UF:  return "cvt_uf";
5741    case ISD::CVT_SS:  return "cvt_ss";
5742    case ISD::CVT_SU:  return "cvt_su";
5743    case ISD::CVT_US:  return "cvt_us";
5744    case ISD::CVT_UU:  return "cvt_uu";
5745    }
5746  }
5747
5748    // Control flow instructions
5749  case ISD::BR:      return "br";
5750  case ISD::BRIND:   return "brind";
5751  case ISD::BR_JT:   return "br_jt";
5752  case ISD::BRCOND:  return "brcond";
5753  case ISD::BR_CC:   return "br_cc";
5754  case ISD::CALLSEQ_START:  return "callseq_start";
5755  case ISD::CALLSEQ_END:    return "callseq_end";
5756
5757    // Other operators
5758  case ISD::LOAD:               return "load";
5759  case ISD::STORE:              return "store";
5760  case ISD::VAARG:              return "vaarg";
5761  case ISD::VACOPY:             return "vacopy";
5762  case ISD::VAEND:              return "vaend";
5763  case ISD::VASTART:            return "vastart";
5764  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5765  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5766  case ISD::BUILD_PAIR:         return "build_pair";
5767  case ISD::STACKSAVE:          return "stacksave";
5768  case ISD::STACKRESTORE:       return "stackrestore";
5769  case ISD::TRAP:               return "trap";
5770
5771  // Bit manipulation
5772  case ISD::BSWAP:   return "bswap";
5773  case ISD::CTPOP:   return "ctpop";
5774  case ISD::CTTZ:    return "cttz";
5775  case ISD::CTLZ:    return "ctlz";
5776
5777  // Trampolines
5778  case ISD::TRAMPOLINE: return "trampoline";
5779
5780  case ISD::CONDCODE:
5781    switch (cast<CondCodeSDNode>(this)->get()) {
5782    default: llvm_unreachable("Unknown setcc condition!");
5783    case ISD::SETOEQ:  return "setoeq";
5784    case ISD::SETOGT:  return "setogt";
5785    case ISD::SETOGE:  return "setoge";
5786    case ISD::SETOLT:  return "setolt";
5787    case ISD::SETOLE:  return "setole";
5788    case ISD::SETONE:  return "setone";
5789
5790    case ISD::SETO:    return "seto";
5791    case ISD::SETUO:   return "setuo";
5792    case ISD::SETUEQ:  return "setue";
5793    case ISD::SETUGT:  return "setugt";
5794    case ISD::SETUGE:  return "setuge";
5795    case ISD::SETULT:  return "setult";
5796    case ISD::SETULE:  return "setule";
5797    case ISD::SETUNE:  return "setune";
5798
5799    case ISD::SETEQ:   return "seteq";
5800    case ISD::SETGT:   return "setgt";
5801    case ISD::SETGE:   return "setge";
5802    case ISD::SETLT:   return "setlt";
5803    case ISD::SETLE:   return "setle";
5804    case ISD::SETNE:   return "setne";
5805    }
5806  }
5807}
5808
5809const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5810  switch (AM) {
5811  default:
5812    return "";
5813  case ISD::PRE_INC:
5814    return "<pre-inc>";
5815  case ISD::PRE_DEC:
5816    return "<pre-dec>";
5817  case ISD::POST_INC:
5818    return "<post-inc>";
5819  case ISD::POST_DEC:
5820    return "<post-dec>";
5821  }
5822}
5823
5824std::string ISD::ArgFlagsTy::getArgFlagsString() {
5825  std::string S = "< ";
5826
5827  if (isZExt())
5828    S += "zext ";
5829  if (isSExt())
5830    S += "sext ";
5831  if (isInReg())
5832    S += "inreg ";
5833  if (isSRet())
5834    S += "sret ";
5835  if (isByVal())
5836    S += "byval ";
5837  if (isNest())
5838    S += "nest ";
5839  if (getByValAlign())
5840    S += "byval-align:" + utostr(getByValAlign()) + " ";
5841  if (getOrigAlign())
5842    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5843  if (getByValSize())
5844    S += "byval-size:" + utostr(getByValSize()) + " ";
5845  return S + ">";
5846}
5847
5848void SDNode::dump() const { dump(0); }
5849void SDNode::dump(const SelectionDAG *G) const {
5850  print(dbgs(), G);
5851}
5852
5853void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5854  OS << (void*)this << ": ";
5855
5856  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5857    if (i) OS << ",";
5858    if (getValueType(i) == MVT::Other)
5859      OS << "ch";
5860    else
5861      OS << getValueType(i).getEVTString();
5862  }
5863  OS << " = " << getOperationName(G);
5864}
5865
5866void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5867  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5868    if (!MN->memoperands_empty()) {
5869      OS << "<";
5870      OS << "Mem:";
5871      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5872           e = MN->memoperands_end(); i != e; ++i) {
5873        OS << **i;
5874        if (next(i) != e)
5875          OS << " ";
5876      }
5877      OS << ">";
5878    }
5879  } else if (const ShuffleVectorSDNode *SVN =
5880               dyn_cast<ShuffleVectorSDNode>(this)) {
5881    OS << "<";
5882    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5883      int Idx = SVN->getMaskElt(i);
5884      if (i) OS << ",";
5885      if (Idx < 0)
5886        OS << "u";
5887      else
5888        OS << Idx;
5889    }
5890    OS << ">";
5891  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5892    OS << '<' << CSDN->getAPIntValue() << '>';
5893  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5894    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5895      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5896    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5897      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5898    else {
5899      OS << "<APFloat(";
5900      CSDN->getValueAPF().bitcastToAPInt().dump();
5901      OS << ")>";
5902    }
5903  } else if (const GlobalAddressSDNode *GADN =
5904             dyn_cast<GlobalAddressSDNode>(this)) {
5905    int64_t offset = GADN->getOffset();
5906    OS << '<';
5907    WriteAsOperand(OS, GADN->getGlobal());
5908    OS << '>';
5909    if (offset > 0)
5910      OS << " + " << offset;
5911    else
5912      OS << " " << offset;
5913    if (unsigned int TF = GADN->getTargetFlags())
5914      OS << " [TF=" << TF << ']';
5915  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5916    OS << "<" << FIDN->getIndex() << ">";
5917  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5918    OS << "<" << JTDN->getIndex() << ">";
5919    if (unsigned int TF = JTDN->getTargetFlags())
5920      OS << " [TF=" << TF << ']';
5921  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5922    int offset = CP->getOffset();
5923    if (CP->isMachineConstantPoolEntry())
5924      OS << "<" << *CP->getMachineCPVal() << ">";
5925    else
5926      OS << "<" << *CP->getConstVal() << ">";
5927    if (offset > 0)
5928      OS << " + " << offset;
5929    else
5930      OS << " " << offset;
5931    if (unsigned int TF = CP->getTargetFlags())
5932      OS << " [TF=" << TF << ']';
5933  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5934    OS << "<";
5935    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5936    if (LBB)
5937      OS << LBB->getName() << " ";
5938    OS << (const void*)BBDN->getBasicBlock() << ">";
5939  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5940    if (G && R->getReg() &&
5941        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5942      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5943    } else {
5944      OS << " %reg" << R->getReg();
5945    }
5946  } else if (const ExternalSymbolSDNode *ES =
5947             dyn_cast<ExternalSymbolSDNode>(this)) {
5948    OS << "'" << ES->getSymbol() << "'";
5949    if (unsigned int TF = ES->getTargetFlags())
5950      OS << " [TF=" << TF << ']';
5951  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5952    if (M->getValue())
5953      OS << "<" << M->getValue() << ">";
5954    else
5955      OS << "<null>";
5956  } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
5957    if (MD->getMD())
5958      OS << "<" << MD->getMD() << ">";
5959    else
5960      OS << "<null>";
5961  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5962    OS << ":" << N->getVT().getEVTString();
5963  }
5964  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5965    OS << "<" << *LD->getMemOperand();
5966
5967    bool doExt = true;
5968    switch (LD->getExtensionType()) {
5969    default: doExt = false; break;
5970    case ISD::EXTLOAD: OS << ", anyext"; break;
5971    case ISD::SEXTLOAD: OS << ", sext"; break;
5972    case ISD::ZEXTLOAD: OS << ", zext"; break;
5973    }
5974    if (doExt)
5975      OS << " from " << LD->getMemoryVT().getEVTString();
5976
5977    const char *AM = getIndexedModeName(LD->getAddressingMode());
5978    if (*AM)
5979      OS << ", " << AM;
5980
5981    OS << ">";
5982  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5983    OS << "<" << *ST->getMemOperand();
5984
5985    if (ST->isTruncatingStore())
5986      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5987
5988    const char *AM = getIndexedModeName(ST->getAddressingMode());
5989    if (*AM)
5990      OS << ", " << AM;
5991
5992    OS << ">";
5993  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5994    OS << "<" << *M->getMemOperand() << ">";
5995  } else if (const BlockAddressSDNode *BA =
5996               dyn_cast<BlockAddressSDNode>(this)) {
5997    OS << "<";
5998    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5999    OS << ", ";
6000    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
6001    OS << ">";
6002    if (unsigned int TF = BA->getTargetFlags())
6003      OS << " [TF=" << TF << ']';
6004  }
6005
6006  if (G)
6007    if (unsigned Order = G->GetOrdering(this))
6008      OS << " [ORD=" << Order << ']';
6009
6010  if (getNodeId() != -1)
6011    OS << " [ID=" << getNodeId() << ']';
6012
6013  DebugLoc dl = getDebugLoc();
6014  if (G && !dl.isUnknown()) {
6015    DIScope
6016      Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
6017    OS << " dbg:";
6018    // Omit the directory, since it's usually long and uninteresting.
6019    if (Scope.Verify())
6020      OS << Scope.getFilename();
6021    else
6022      OS << "<unknown>";
6023    OS << ':' << dl.getLine();
6024    if (dl.getCol() != 0)
6025      OS << ':' << dl.getCol();
6026  }
6027}
6028
6029void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6030  print_types(OS, G);
6031  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6032    if (i) OS << ", "; else OS << " ";
6033    OS << (void*)getOperand(i).getNode();
6034    if (unsigned RN = getOperand(i).getResNo())
6035      OS << ":" << RN;
6036  }
6037  print_details(OS, G);
6038}
6039
6040static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6041                                  const SelectionDAG *G, unsigned depth,
6042                                  unsigned indent)
6043{
6044  if (depth == 0)
6045    return;
6046
6047  OS.indent(indent);
6048
6049  N->print(OS, G);
6050
6051  if (depth < 1)
6052    return;
6053
6054  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6055    OS << '\n';
6056    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6057  }
6058}
6059
6060void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6061                            unsigned depth) const {
6062  printrWithDepthHelper(OS, this, G, depth, 0);
6063}
6064
6065void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6066  // Don't print impossibly deep things.
6067  printrWithDepth(OS, G, 100);
6068}
6069
6070void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6071  printrWithDepth(dbgs(), G, depth);
6072}
6073
6074void SDNode::dumprFull(const SelectionDAG *G) const {
6075  // Don't print impossibly deep things.
6076  dumprWithDepth(G, 100);
6077}
6078
6079static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6080  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6081    if (N->getOperand(i).getNode()->hasOneUse())
6082      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6083    else
6084      dbgs() << "\n" << std::string(indent+2, ' ')
6085           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6086
6087
6088  dbgs() << "\n";
6089  dbgs().indent(indent);
6090  N->dump(G);
6091}
6092
6093SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6094  assert(N->getNumValues() == 1 &&
6095         "Can't unroll a vector with multiple results!");
6096
6097  EVT VT = N->getValueType(0);
6098  unsigned NE = VT.getVectorNumElements();
6099  EVT EltVT = VT.getVectorElementType();
6100  DebugLoc dl = N->getDebugLoc();
6101
6102  SmallVector<SDValue, 8> Scalars;
6103  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6104
6105  // If ResNE is 0, fully unroll the vector op.
6106  if (ResNE == 0)
6107    ResNE = NE;
6108  else if (NE > ResNE)
6109    NE = ResNE;
6110
6111  unsigned i;
6112  for (i= 0; i != NE; ++i) {
6113    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6114      SDValue Operand = N->getOperand(j);
6115      EVT OperandVT = Operand.getValueType();
6116      if (OperandVT.isVector()) {
6117        // A vector operand; extract a single element.
6118        EVT OperandEltVT = OperandVT.getVectorElementType();
6119        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6120                              OperandEltVT,
6121                              Operand,
6122                              getConstant(i, MVT::i32));
6123      } else {
6124        // A scalar operand; just use it as is.
6125        Operands[j] = Operand;
6126      }
6127    }
6128
6129    switch (N->getOpcode()) {
6130    default:
6131      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6132                                &Operands[0], Operands.size()));
6133      break;
6134    case ISD::SHL:
6135    case ISD::SRA:
6136    case ISD::SRL:
6137    case ISD::ROTL:
6138    case ISD::ROTR:
6139      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6140                                getShiftAmountOperand(Operands[1])));
6141      break;
6142    case ISD::SIGN_EXTEND_INREG:
6143    case ISD::FP_ROUND_INREG: {
6144      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6145      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6146                                Operands[0],
6147                                getValueType(ExtVT)));
6148    }
6149    }
6150  }
6151
6152  for (; i < ResNE; ++i)
6153    Scalars.push_back(getUNDEF(EltVT));
6154
6155  return getNode(ISD::BUILD_VECTOR, dl,
6156                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6157                 &Scalars[0], Scalars.size());
6158}
6159
6160
6161/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6162/// location that is 'Dist' units away from the location that the 'Base' load
6163/// is loading from.
6164bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6165                                     unsigned Bytes, int Dist) const {
6166  if (LD->getChain() != Base->getChain())
6167    return false;
6168  EVT VT = LD->getValueType(0);
6169  if (VT.getSizeInBits() / 8 != Bytes)
6170    return false;
6171
6172  SDValue Loc = LD->getOperand(1);
6173  SDValue BaseLoc = Base->getOperand(1);
6174  if (Loc.getOpcode() == ISD::FrameIndex) {
6175    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6176      return false;
6177    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6178    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6179    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6180    int FS  = MFI->getObjectSize(FI);
6181    int BFS = MFI->getObjectSize(BFI);
6182    if (FS != BFS || FS != (int)Bytes) return false;
6183    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6184  }
6185  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6186    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6187    if (V && (V->getSExtValue() == Dist*Bytes))
6188      return true;
6189  }
6190
6191  const GlobalValue *GV1 = NULL;
6192  const GlobalValue *GV2 = NULL;
6193  int64_t Offset1 = 0;
6194  int64_t Offset2 = 0;
6195  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6196  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6197  if (isGA1 && isGA2 && GV1 == GV2)
6198    return Offset1 == (Offset2 + Dist*Bytes);
6199  return false;
6200}
6201
6202
6203/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6204/// it cannot be inferred.
6205unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6206  // If this is a GlobalAddress + cst, return the alignment.
6207  const GlobalValue *GV;
6208  int64_t GVOffset = 0;
6209  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6210    // If GV has specified alignment, then use it. Otherwise, use the preferred
6211    // alignment.
6212    unsigned Align = GV->getAlignment();
6213    if (!Align) {
6214      if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6215        if (GVar->hasInitializer()) {
6216          const TargetData *TD = TLI.getTargetData();
6217          Align = TD->getPreferredAlignment(GVar);
6218        }
6219      }
6220    }
6221    return MinAlign(Align, GVOffset);
6222  }
6223
6224  // If this is a direct reference to a stack slot, use information about the
6225  // stack slot's alignment.
6226  int FrameIdx = 1 << 31;
6227  int64_t FrameOffset = 0;
6228  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6229    FrameIdx = FI->getIndex();
6230  } else if (Ptr.getOpcode() == ISD::ADD &&
6231             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6232             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6233    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6234    FrameOffset = Ptr.getConstantOperandVal(1);
6235  }
6236
6237  if (FrameIdx != (1 << 31)) {
6238    // FIXME: Handle FI+CST.
6239    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6240    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6241                                    FrameOffset);
6242    if (MFI.isFixedObjectIndex(FrameIdx)) {
6243      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6244
6245      // The alignment of the frame index can be determined from its offset from
6246      // the incoming frame position.  If the frame object is at offset 32 and
6247      // the stack is guaranteed to be 16-byte aligned, then we know that the
6248      // object is 16-byte aligned.
6249      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6250      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6251
6252      // Finally, the frame object itself may have a known alignment.  Factor
6253      // the alignment + offset into a new alignment.  For example, if we know
6254      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6255      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6256      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6257      return std::max(Align, FIInfoAlign);
6258    }
6259    return FIInfoAlign;
6260  }
6261
6262  return 0;
6263}
6264
6265void SelectionDAG::dump() const {
6266  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6267
6268  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6269       I != E; ++I) {
6270    const SDNode *N = I;
6271    if (!N->hasOneUse() && N != getRoot().getNode())
6272      DumpNodes(N, 2, this);
6273  }
6274
6275  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6276
6277  dbgs() << "\n\n";
6278}
6279
6280void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6281  print_types(OS, G);
6282  print_details(OS, G);
6283}
6284
6285typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6286static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6287                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6288  if (!once.insert(N))          // If we've been here before, return now.
6289    return;
6290
6291  // Dump the current SDNode, but don't end the line yet.
6292  OS << std::string(indent, ' ');
6293  N->printr(OS, G);
6294
6295  // Having printed this SDNode, walk the children:
6296  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6297    const SDNode *child = N->getOperand(i).getNode();
6298
6299    if (i) OS << ",";
6300    OS << " ";
6301
6302    if (child->getNumOperands() == 0) {
6303      // This child has no grandchildren; print it inline right here.
6304      child->printr(OS, G);
6305      once.insert(child);
6306    } else {         // Just the address. FIXME: also print the child's opcode.
6307      OS << (void*)child;
6308      if (unsigned RN = N->getOperand(i).getResNo())
6309        OS << ":" << RN;
6310    }
6311  }
6312
6313  OS << "\n";
6314
6315  // Dump children that have grandchildren on their own line(s).
6316  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6317    const SDNode *child = N->getOperand(i).getNode();
6318    DumpNodesr(OS, child, indent+2, G, once);
6319  }
6320}
6321
6322void SDNode::dumpr() const {
6323  VisitedSDNodeSet once;
6324  DumpNodesr(dbgs(), this, 0, 0, once);
6325}
6326
6327void SDNode::dumpr(const SelectionDAG *G) const {
6328  VisitedSDNodeSet once;
6329  DumpNodesr(dbgs(), this, 0, G, once);
6330}
6331
6332
6333// getAddressSpace - Return the address space this GlobalAddress belongs to.
6334unsigned GlobalAddressSDNode::getAddressSpace() const {
6335  return getGlobal()->getType()->getAddressSpace();
6336}
6337
6338
6339const Type *ConstantPoolSDNode::getType() const {
6340  if (isMachineConstantPoolEntry())
6341    return Val.MachineCPVal->getType();
6342  return Val.ConstVal->getType();
6343}
6344
6345bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6346                                        APInt &SplatUndef,
6347                                        unsigned &SplatBitSize,
6348                                        bool &HasAnyUndefs,
6349                                        unsigned MinSplatBits,
6350                                        bool isBigEndian) {
6351  EVT VT = getValueType(0);
6352  assert(VT.isVector() && "Expected a vector type");
6353  unsigned sz = VT.getSizeInBits();
6354  if (MinSplatBits > sz)
6355    return false;
6356
6357  SplatValue = APInt(sz, 0);
6358  SplatUndef = APInt(sz, 0);
6359
6360  // Get the bits.  Bits with undefined values (when the corresponding element
6361  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6362  // in SplatValue.  If any of the values are not constant, give up and return
6363  // false.
6364  unsigned int nOps = getNumOperands();
6365  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6366  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6367
6368  for (unsigned j = 0; j < nOps; ++j) {
6369    unsigned i = isBigEndian ? nOps-1-j : j;
6370    SDValue OpVal = getOperand(i);
6371    unsigned BitPos = j * EltBitSize;
6372
6373    if (OpVal.getOpcode() == ISD::UNDEF)
6374      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6375    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6376      SplatValue |= APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6377                    zextOrTrunc(sz) << BitPos;
6378    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6379      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6380     else
6381      return false;
6382  }
6383
6384  // The build_vector is all constants or undefs.  Find the smallest element
6385  // size that splats the vector.
6386
6387  HasAnyUndefs = (SplatUndef != 0);
6388  while (sz > 8) {
6389
6390    unsigned HalfSize = sz / 2;
6391    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6392    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6393    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6394    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6395
6396    // If the two halves do not match (ignoring undef bits), stop here.
6397    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6398        MinSplatBits > HalfSize)
6399      break;
6400
6401    SplatValue = HighValue | LowValue;
6402    SplatUndef = HighUndef & LowUndef;
6403
6404    sz = HalfSize;
6405  }
6406
6407  SplatBitSize = sz;
6408  return true;
6409}
6410
6411bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6412  // Find the first non-undef value in the shuffle mask.
6413  unsigned i, e;
6414  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6415    /* search */;
6416
6417  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6418
6419  // Make sure all remaining elements are either undef or the same as the first
6420  // non-undef value.
6421  for (int Idx = Mask[i]; i != e; ++i)
6422    if (Mask[i] >= 0 && Mask[i] != Idx)
6423      return false;
6424  return true;
6425}
6426
6427#ifdef XDEBUG
6428static void checkForCyclesHelper(const SDNode *N,
6429                                 SmallPtrSet<const SDNode*, 32> &Visited,
6430                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6431  // If this node has already been checked, don't check it again.
6432  if (Checked.count(N))
6433    return;
6434
6435  // If a node has already been visited on this depth-first walk, reject it as
6436  // a cycle.
6437  if (!Visited.insert(N)) {
6438    dbgs() << "Offending node:\n";
6439    N->dumprFull();
6440    errs() << "Detected cycle in SelectionDAG\n";
6441    abort();
6442  }
6443
6444  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6445    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6446
6447  Checked.insert(N);
6448  Visited.erase(N);
6449}
6450#endif
6451
6452void llvm::checkForCycles(const llvm::SDNode *N) {
6453#ifdef XDEBUG
6454  assert(N && "Checking nonexistant SDNode");
6455  SmallPtrSet<const SDNode*, 32> visited;
6456  SmallPtrSet<const SDNode*, 32> checked;
6457  checkForCyclesHelper(N, visited, checked);
6458#endif
6459}
6460
6461void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6462  checkForCycles(DAG->getRoot().getNode());
6463}
6464