SelectionDAG.cpp revision ce9bc12c6f3c3544f7518c0c60203f2f9dff342f
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetOptions.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/raw_ostream.h"
36#include "llvm/ADT/SetVector.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/StringExtras.h"
41#include <algorithm>
42#include <cmath>
43using namespace llvm;
44
45/// makeVTList - Return an instance of the SDVTList struct initialized with the
46/// specified members.
47static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
48  SDVTList Res = {VTs, NumVTs};
49  return Res;
50}
51
52static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
53  switch (VT.getSimpleVT()) {
54  default: assert(0 && "Unknown FP format");
55  case MVT::f32:     return &APFloat::IEEEsingle;
56  case MVT::f64:     return &APFloat::IEEEdouble;
57  case MVT::f80:     return &APFloat::x87DoubleExtended;
58  case MVT::f128:    return &APFloat::IEEEquad;
59  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
60  }
61}
62
63SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
64
65//===----------------------------------------------------------------------===//
66//                              ConstantFPSDNode Class
67//===----------------------------------------------------------------------===//
68
69/// isExactlyValue - We don't rely on operator== working on double values, as
70/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
71/// As such, this method can be used to do an exact bit-for-bit comparison of
72/// two floating point values.
73bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
74  return getValueAPF().bitwiseIsEqual(V);
75}
76
77bool ConstantFPSDNode::isValueValidForType(MVT VT,
78                                           const APFloat& Val) {
79  assert(VT.isFloatingPoint() && "Can only convert between FP types");
80
81  // PPC long double cannot be converted to any other type.
82  if (VT == MVT::ppcf128 ||
83      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
84    return false;
85
86  // convert modifies in place, so make a copy.
87  APFloat Val2 = APFloat(Val);
88  bool losesInfo;
89  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
90                      &losesInfo);
91  return !losesInfo;
92}
93
94//===----------------------------------------------------------------------===//
95//                              ISD Namespace
96//===----------------------------------------------------------------------===//
97
98/// isBuildVectorAllOnes - Return true if the specified node is a
99/// BUILD_VECTOR where all of the elements are ~0 or undef.
100bool ISD::isBuildVectorAllOnes(const SDNode *N) {
101  // Look through a bit convert.
102  if (N->getOpcode() == ISD::BIT_CONVERT)
103    N = N->getOperand(0).getNode();
104
105  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
106
107  unsigned i = 0, e = N->getNumOperands();
108
109  // Skip over all of the undef values.
110  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
111    ++i;
112
113  // Do not accept an all-undef vector.
114  if (i == e) return false;
115
116  // Do not accept build_vectors that aren't all constants or which have non-~0
117  // elements.
118  SDValue NotZero = N->getOperand(i);
119  if (isa<ConstantSDNode>(NotZero)) {
120    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
121      return false;
122  } else if (isa<ConstantFPSDNode>(NotZero)) {
123    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
124                bitcastToAPInt().isAllOnesValue())
125      return false;
126  } else
127    return false;
128
129  // Okay, we have at least one ~0 value, check to see if the rest match or are
130  // undefs.
131  for (++i; i != e; ++i)
132    if (N->getOperand(i) != NotZero &&
133        N->getOperand(i).getOpcode() != ISD::UNDEF)
134      return false;
135  return true;
136}
137
138
139/// isBuildVectorAllZeros - Return true if the specified node is a
140/// BUILD_VECTOR where all of the elements are 0 or undef.
141bool ISD::isBuildVectorAllZeros(const SDNode *N) {
142  // Look through a bit convert.
143  if (N->getOpcode() == ISD::BIT_CONVERT)
144    N = N->getOperand(0).getNode();
145
146  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
147
148  unsigned i = 0, e = N->getNumOperands();
149
150  // Skip over all of the undef values.
151  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
152    ++i;
153
154  // Do not accept an all-undef vector.
155  if (i == e) return false;
156
157  // Do not accept build_vectors that aren't all constants or which have non-~0
158  // elements.
159  SDValue Zero = N->getOperand(i);
160  if (isa<ConstantSDNode>(Zero)) {
161    if (!cast<ConstantSDNode>(Zero)->isNullValue())
162      return false;
163  } else if (isa<ConstantFPSDNode>(Zero)) {
164    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
165      return false;
166  } else
167    return false;
168
169  // Okay, we have at least one ~0 value, check to see if the rest match or are
170  // undefs.
171  for (++i; i != e; ++i)
172    if (N->getOperand(i) != Zero &&
173        N->getOperand(i).getOpcode() != ISD::UNDEF)
174      return false;
175  return true;
176}
177
178/// isScalarToVector - Return true if the specified node is a
179/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
180/// element is not an undef.
181bool ISD::isScalarToVector(const SDNode *N) {
182  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
183    return true;
184
185  if (N->getOpcode() != ISD::BUILD_VECTOR)
186    return false;
187  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
188    return false;
189  unsigned NumElems = N->getNumOperands();
190  for (unsigned i = 1; i < NumElems; ++i) {
191    SDValue V = N->getOperand(i);
192    if (V.getOpcode() != ISD::UNDEF)
193      return false;
194  }
195  return true;
196}
197
198
199/// isDebugLabel - Return true if the specified node represents a debug
200/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
201bool ISD::isDebugLabel(const SDNode *N) {
202  SDValue Zero;
203  if (N->getOpcode() == ISD::DBG_LABEL)
204    return true;
205  if (N->isMachineOpcode() &&
206      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
207    return true;
208  return false;
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));       // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231
232  if (Operation > ISD::SETTRUE2)
233    Operation &= ~8;  // Don't let N and U bits get set.
234
235  return ISD::CondCode(Operation);
236}
237
238
239/// isSignedOp - For an integer comparison, return 1 if the comparison is a
240/// signed operation and 2 if the result is an unsigned comparison.  Return zero
241/// if the operation does not depend on the sign of the input (setne and seteq).
242static int isSignedOp(ISD::CondCode Opcode) {
243  switch (Opcode) {
244  default: assert(0 && "Illegal integer setcc operation!");
245  case ISD::SETEQ:
246  case ISD::SETNE: return 0;
247  case ISD::SETLT:
248  case ISD::SETLE:
249  case ISD::SETGT:
250  case ISD::SETGE: return 1;
251  case ISD::SETULT:
252  case ISD::SETULE:
253  case ISD::SETUGT:
254  case ISD::SETUGE: return 2;
255  }
256}
257
258/// getSetCCOrOperation - Return the result of a logical OR between different
259/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
260/// returns SETCC_INVALID if it is not possible to represent the resultant
261/// comparison.
262ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
263                                       bool isInteger) {
264  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
265    // Cannot fold a signed integer setcc with an unsigned integer setcc.
266    return ISD::SETCC_INVALID;
267
268  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
269
270  // If the N and U bits get set then the resultant comparison DOES suddenly
271  // care about orderedness, and is true when ordered.
272  if (Op > ISD::SETTRUE2)
273    Op &= ~16;     // Clear the U bit if the N bit is set.
274
275  // Canonicalize illegal integer setcc's.
276  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
277    Op = ISD::SETNE;
278
279  return ISD::CondCode(Op);
280}
281
282/// getSetCCAndOperation - Return the result of a logical AND between different
283/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
284/// function returns zero if it is not possible to represent the resultant
285/// comparison.
286ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
287                                        bool isInteger) {
288  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
289    // Cannot fold a signed setcc with an unsigned setcc.
290    return ISD::SETCC_INVALID;
291
292  // Combine all of the condition bits.
293  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
294
295  // Canonicalize illegal integer setcc's.
296  if (isInteger) {
297    switch (Result) {
298    default: break;
299    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
300    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
301    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
302    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
303    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
304    }
305  }
306
307  return Result;
308}
309
310const TargetMachine &SelectionDAG::getTarget() const {
311  return MF->getTarget();
312}
313
314//===----------------------------------------------------------------------===//
315//                           SDNode Profile Support
316//===----------------------------------------------------------------------===//
317
318/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
319///
320static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
321  ID.AddInteger(OpC);
322}
323
324/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
325/// solely with their pointer.
326static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
327  ID.AddPointer(VTList.VTs);
328}
329
330/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
331///
332static void AddNodeIDOperands(FoldingSetNodeID &ID,
333                              const SDValue *Ops, unsigned NumOps) {
334  for (; NumOps; --NumOps, ++Ops) {
335    ID.AddPointer(Ops->getNode());
336    ID.AddInteger(Ops->getResNo());
337  }
338}
339
340/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
341///
342static void AddNodeIDOperands(FoldingSetNodeID &ID,
343                              const SDUse *Ops, unsigned NumOps) {
344  for (; NumOps; --NumOps, ++Ops) {
345    ID.AddPointer(Ops->getNode());
346    ID.AddInteger(Ops->getResNo());
347  }
348}
349
350static void AddNodeIDNode(FoldingSetNodeID &ID,
351                          unsigned short OpC, SDVTList VTList,
352                          const SDValue *OpList, unsigned N) {
353  AddNodeIDOpcode(ID, OpC);
354  AddNodeIDValueTypes(ID, VTList);
355  AddNodeIDOperands(ID, OpList, N);
356}
357
358/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
359/// the NodeID data.
360static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
361  switch (N->getOpcode()) {
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::ARG_FLAGS:
364    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
365    break;
366  case ISD::TargetConstant:
367  case ISD::Constant:
368    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
369    break;
370  case ISD::TargetConstantFP:
371  case ISD::ConstantFP: {
372    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
373    break;
374  }
375  case ISD::TargetGlobalAddress:
376  case ISD::GlobalAddress:
377  case ISD::TargetGlobalTLSAddress:
378  case ISD::GlobalTLSAddress: {
379    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
380    ID.AddPointer(GA->getGlobal());
381    ID.AddInteger(GA->getOffset());
382    break;
383  }
384  case ISD::BasicBlock:
385    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
386    break;
387  case ISD::Register:
388    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
389    break;
390  case ISD::DBG_STOPPOINT: {
391    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
392    ID.AddInteger(DSP->getLine());
393    ID.AddInteger(DSP->getColumn());
394    ID.AddPointer(DSP->getCompileUnit());
395    break;
396  }
397  case ISD::SRCVALUE:
398    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
399    break;
400  case ISD::MEMOPERAND: {
401    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
402    MO.Profile(ID);
403    break;
404  }
405  case ISD::FrameIndex:
406  case ISD::TargetFrameIndex:
407    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
408    break;
409  case ISD::JumpTable:
410  case ISD::TargetJumpTable:
411    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
412    break;
413  case ISD::ConstantPool:
414  case ISD::TargetConstantPool: {
415    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
416    ID.AddInteger(CP->getAlignment());
417    ID.AddInteger(CP->getOffset());
418    if (CP->isMachineConstantPoolEntry())
419      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
420    else
421      ID.AddPointer(CP->getConstVal());
422    break;
423  }
424  case ISD::CALL: {
425    const CallSDNode *Call = cast<CallSDNode>(N);
426    ID.AddInteger(Call->getCallingConv());
427    ID.AddInteger(Call->isVarArg());
428    break;
429  }
430  case ISD::LOAD: {
431    const LoadSDNode *LD = cast<LoadSDNode>(N);
432    ID.AddInteger(LD->getAddressingMode());
433    ID.AddInteger(LD->getExtensionType());
434    ID.AddInteger(LD->getMemoryVT().getRawBits());
435    ID.AddInteger(LD->getRawFlags());
436    break;
437  }
438  case ISD::STORE: {
439    const StoreSDNode *ST = cast<StoreSDNode>(N);
440    ID.AddInteger(ST->getAddressingMode());
441    ID.AddInteger(ST->isTruncatingStore());
442    ID.AddInteger(ST->getMemoryVT().getRawBits());
443    ID.AddInteger(ST->getRawFlags());
444    break;
445  }
446  case ISD::ATOMIC_CMP_SWAP:
447  case ISD::ATOMIC_SWAP:
448  case ISD::ATOMIC_LOAD_ADD:
449  case ISD::ATOMIC_LOAD_SUB:
450  case ISD::ATOMIC_LOAD_AND:
451  case ISD::ATOMIC_LOAD_OR:
452  case ISD::ATOMIC_LOAD_XOR:
453  case ISD::ATOMIC_LOAD_NAND:
454  case ISD::ATOMIC_LOAD_MIN:
455  case ISD::ATOMIC_LOAD_MAX:
456  case ISD::ATOMIC_LOAD_UMIN:
457  case ISD::ATOMIC_LOAD_UMAX: {
458    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
459    ID.AddInteger(AT->getRawFlags());
460    break;
461  }
462  } // end switch (N->getOpcode())
463}
464
465/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
466/// data.
467static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
468  AddNodeIDOpcode(ID, N->getOpcode());
469  // Add the return value info.
470  AddNodeIDValueTypes(ID, N->getVTList());
471  // Add the operand info.
472  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
473
474  // Handle SDNode leafs with special info.
475  AddNodeIDCustom(ID, N);
476}
477
478/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
479/// the CSE map that carries both alignment and volatility information.
480///
481static inline unsigned
482encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) {
483  return isVolatile | ((Log2_32(Alignment) + 1) << 1);
484}
485
486//===----------------------------------------------------------------------===//
487//                              SelectionDAG Class
488//===----------------------------------------------------------------------===//
489
490/// doNotCSE - Return true if CSE should not be performed for this node.
491static bool doNotCSE(SDNode *N) {
492  if (N->getValueType(0) == MVT::Flag)
493    return true; // Never CSE anything that produces a flag.
494
495  switch (N->getOpcode()) {
496  default: break;
497  case ISD::HANDLENODE:
498  case ISD::DBG_LABEL:
499  case ISD::DBG_STOPPOINT:
500  case ISD::EH_LABEL:
501  case ISD::DECLARE:
502    return true;   // Never CSE these nodes.
503  }
504
505  // Check that remaining values produced are not flags.
506  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
507    if (N->getValueType(i) == MVT::Flag)
508      return true; // Never CSE anything that produces a flag.
509
510  return false;
511}
512
513/// RemoveDeadNodes - This method deletes all unreachable nodes in the
514/// SelectionDAG.
515void SelectionDAG::RemoveDeadNodes() {
516  // Create a dummy node (which is not added to allnodes), that adds a reference
517  // to the root node, preventing it from being deleted.
518  HandleSDNode Dummy(getRoot());
519
520  SmallVector<SDNode*, 128> DeadNodes;
521
522  // Add all obviously-dead nodes to the DeadNodes worklist.
523  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
524    if (I->use_empty())
525      DeadNodes.push_back(I);
526
527  RemoveDeadNodes(DeadNodes);
528
529  // If the root changed (e.g. it was a dead load, update the root).
530  setRoot(Dummy.getValue());
531}
532
533/// RemoveDeadNodes - This method deletes the unreachable nodes in the
534/// given list, and any nodes that become unreachable as a result.
535void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
536                                   DAGUpdateListener *UpdateListener) {
537
538  // Process the worklist, deleting the nodes and adding their uses to the
539  // worklist.
540  while (!DeadNodes.empty()) {
541    SDNode *N = DeadNodes.pop_back_val();
542
543    if (UpdateListener)
544      UpdateListener->NodeDeleted(N, 0);
545
546    // Take the node out of the appropriate CSE map.
547    RemoveNodeFromCSEMaps(N);
548
549    // Next, brutally remove the operand list.  This is safe to do, as there are
550    // no cycles in the graph.
551    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
552      SDUse &Use = *I++;
553      SDNode *Operand = Use.getNode();
554      Use.set(SDValue());
555
556      // Now that we removed this operand, see if there are no uses of it left.
557      if (Operand->use_empty())
558        DeadNodes.push_back(Operand);
559    }
560
561    DeallocateNode(N);
562  }
563}
564
565void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
566  SmallVector<SDNode*, 16> DeadNodes(1, N);
567  RemoveDeadNodes(DeadNodes, UpdateListener);
568}
569
570void SelectionDAG::DeleteNode(SDNode *N) {
571  // First take this out of the appropriate CSE map.
572  RemoveNodeFromCSEMaps(N);
573
574  // Finally, remove uses due to operands of this node, remove from the
575  // AllNodes list, and delete the node.
576  DeleteNodeNotInCSEMaps(N);
577}
578
579void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
580  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
581  assert(N->use_empty() && "Cannot delete a node that is not dead!");
582
583  // Drop all of the operands and decrement used node's use counts.
584  N->DropOperands();
585
586  DeallocateNode(N);
587}
588
589void SelectionDAG::DeallocateNode(SDNode *N) {
590  if (N->OperandsNeedDelete)
591    delete[] N->OperandList;
592
593  // Set the opcode to DELETED_NODE to help catch bugs when node
594  // memory is reallocated.
595  N->NodeType = ISD::DELETED_NODE;
596
597  NodeAllocator.Deallocate(AllNodes.remove(N));
598}
599
600/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
601/// correspond to it.  This is useful when we're about to delete or repurpose
602/// the node.  We don't want future request for structurally identical nodes
603/// to return N anymore.
604bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
605  bool Erased = false;
606  switch (N->getOpcode()) {
607  case ISD::EntryToken:
608    assert(0 && "EntryToken should not be in CSEMaps!");
609    return false;
610  case ISD::HANDLENODE: return false;  // noop.
611  case ISD::CONDCODE:
612    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
613           "Cond code doesn't exist!");
614    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
615    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
616    break;
617  case ISD::ExternalSymbol:
618    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
619    break;
620  case ISD::TargetExternalSymbol:
621    Erased =
622      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
623    break;
624  case ISD::VALUETYPE: {
625    MVT VT = cast<VTSDNode>(N)->getVT();
626    if (VT.isExtended()) {
627      Erased = ExtendedValueTypeNodes.erase(VT);
628    } else {
629      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
630      ValueTypeNodes[VT.getSimpleVT()] = 0;
631    }
632    break;
633  }
634  default:
635    // Remove it from the CSE Map.
636    Erased = CSEMap.RemoveNode(N);
637    break;
638  }
639#ifndef NDEBUG
640  // Verify that the node was actually in one of the CSE maps, unless it has a
641  // flag result (which cannot be CSE'd) or is one of the special cases that are
642  // not subject to CSE.
643  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
644      !N->isMachineOpcode() && !doNotCSE(N)) {
645    N->dump(this);
646    cerr << "\n";
647    assert(0 && "Node is not in map!");
648  }
649#endif
650  return Erased;
651}
652
653/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
654/// maps and modified in place. Add it back to the CSE maps, unless an identical
655/// node already exists, in which case transfer all its users to the existing
656/// node. This transfer can potentially trigger recursive merging.
657///
658void
659SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
660                                       DAGUpdateListener *UpdateListener) {
661  // For node types that aren't CSE'd, just act as if no identical node
662  // already exists.
663  if (!doNotCSE(N)) {
664    SDNode *Existing = CSEMap.GetOrInsertNode(N);
665    if (Existing != N) {
666      // If there was already an existing matching node, use ReplaceAllUsesWith
667      // to replace the dead one with the existing one.  This can cause
668      // recursive merging of other unrelated nodes down the line.
669      ReplaceAllUsesWith(N, Existing, UpdateListener);
670
671      // N is now dead.  Inform the listener if it exists and delete it.
672      if (UpdateListener)
673        UpdateListener->NodeDeleted(N, Existing);
674      DeleteNodeNotInCSEMaps(N);
675      return;
676    }
677  }
678
679  // If the node doesn't already exist, we updated it.  Inform a listener if
680  // it exists.
681  if (UpdateListener)
682    UpdateListener->NodeUpdated(N);
683}
684
685/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
686/// were replaced with those specified.  If this node is never memoized,
687/// return null, otherwise return a pointer to the slot it would take.  If a
688/// node already exists with these operands, the slot will be non-null.
689SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
690                                           void *&InsertPos) {
691  if (doNotCSE(N))
692    return 0;
693
694  SDValue Ops[] = { Op };
695  FoldingSetNodeID ID;
696  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
697  AddNodeIDCustom(ID, N);
698  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
699}
700
701/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
702/// were replaced with those specified.  If this node is never memoized,
703/// return null, otherwise return a pointer to the slot it would take.  If a
704/// node already exists with these operands, the slot will be non-null.
705SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
706                                           SDValue Op1, SDValue Op2,
707                                           void *&InsertPos) {
708  if (doNotCSE(N))
709    return 0;
710
711  SDValue Ops[] = { Op1, Op2 };
712  FoldingSetNodeID ID;
713  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
714  AddNodeIDCustom(ID, N);
715  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
716}
717
718
719/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
720/// were replaced with those specified.  If this node is never memoized,
721/// return null, otherwise return a pointer to the slot it would take.  If a
722/// node already exists with these operands, the slot will be non-null.
723SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
724                                           const SDValue *Ops,unsigned NumOps,
725                                           void *&InsertPos) {
726  if (doNotCSE(N))
727    return 0;
728
729  FoldingSetNodeID ID;
730  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
731  AddNodeIDCustom(ID, N);
732  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
733}
734
735/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
736void SelectionDAG::VerifyNode(SDNode *N) {
737  switch (N->getOpcode()) {
738  default:
739    break;
740  case ISD::BUILD_PAIR: {
741    MVT VT = N->getValueType(0);
742    assert(N->getNumValues() == 1 && "Too many results!");
743    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
744           "Wrong return type!");
745    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
746    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
747           "Mismatched operand types!");
748    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
749           "Wrong operand type!");
750    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
751           "Wrong return type size");
752    break;
753  }
754  case ISD::BUILD_VECTOR: {
755    assert(N->getNumValues() == 1 && "Too many results!");
756    assert(N->getValueType(0).isVector() && "Wrong return type!");
757    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
758           "Wrong number of operands!");
759    // FIXME: Change vector_shuffle to a variadic node with mask elements being
760    // operands of the node.  Currently the mask is a BUILD_VECTOR passed as an
761    // operand, and it is not always possible to legalize it.  Turning off the
762    // following checks at least makes it possible to legalize most of the time.
763//    MVT EltVT = N->getValueType(0).getVectorElementType();
764//    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
765//      assert(I->getValueType() == EltVT &&
766//             "Wrong operand type!");
767    break;
768  }
769  }
770}
771
772/// getMVTAlignment - Compute the default alignment value for the
773/// given type.
774///
775unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
776  const Type *Ty = VT == MVT::iPTR ?
777                   PointerType::get(Type::Int8Ty, 0) :
778                   VT.getTypeForMVT();
779
780  return TLI.getTargetData()->getABITypeAlignment(Ty);
781}
782
783SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
784  : TLI(tli), FLI(fli),
785    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
786    Root(getEntryNode()) {
787  AllNodes.push_back(&EntryNode);
788}
789
790void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
791                        DwarfWriter *dw) {
792  MF = &mf;
793  MMI = mmi;
794  DW = dw;
795}
796
797SelectionDAG::~SelectionDAG() {
798  allnodes_clear();
799}
800
801void SelectionDAG::allnodes_clear() {
802  assert(&*AllNodes.begin() == &EntryNode);
803  AllNodes.remove(AllNodes.begin());
804  while (!AllNodes.empty())
805    DeallocateNode(AllNodes.begin());
806}
807
808void SelectionDAG::clear() {
809  allnodes_clear();
810  OperandAllocator.Reset();
811  CSEMap.clear();
812
813  ExtendedValueTypeNodes.clear();
814  ExternalSymbols.clear();
815  TargetExternalSymbols.clear();
816  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
817            static_cast<CondCodeSDNode*>(0));
818  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
819            static_cast<SDNode*>(0));
820
821  EntryNode.UseList = 0;
822  AllNodes.push_back(&EntryNode);
823  Root = getEntryNode();
824}
825
826SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
827  if (Op.getValueType() == VT) return Op;
828  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
829                                   VT.getSizeInBits());
830  return getNode(ISD::AND, Op.getValueType(), Op,
831                 getConstant(Imm, Op.getValueType()));
832}
833
834/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
835///
836SDValue SelectionDAG::getNOT(SDValue Val, MVT VT) {
837  SDValue NegOne;
838  if (VT.isVector()) {
839    MVT EltVT = VT.getVectorElementType();
840    SDValue NegOneElt = getConstant(EltVT.getIntegerVTBitMask(), EltVT);
841    std::vector<SDValue> NegOnes(VT.getVectorNumElements(), NegOneElt);
842    NegOne = getNode(ISD::BUILD_VECTOR, VT, &NegOnes[0], NegOnes.size());
843  } else
844    NegOne = getConstant(VT.getIntegerVTBitMask(), VT);
845
846  return getNode(ISD::XOR, VT, Val, NegOne);
847}
848
849SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
850  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
851  assert((EltVT.getSizeInBits() >= 64 ||
852         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
853         "getConstant with a uint64_t value that doesn't fit in the type!");
854  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
855}
856
857SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
858  return getConstant(*ConstantInt::get(Val), VT, isT);
859}
860
861SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
862  assert(VT.isInteger() && "Cannot create FP integer constant!");
863
864  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
865  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
866         "APInt size does not match type size!");
867
868  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
869  FoldingSetNodeID ID;
870  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
871  ID.AddPointer(&Val);
872  void *IP = 0;
873  SDNode *N = NULL;
874  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
875    if (!VT.isVector())
876      return SDValue(N, 0);
877  if (!N) {
878    N = NodeAllocator.Allocate<ConstantSDNode>();
879    new (N) ConstantSDNode(isT, &Val, EltVT);
880    CSEMap.InsertNode(N, IP);
881    AllNodes.push_back(N);
882  }
883
884  SDValue Result(N, 0);
885  if (VT.isVector()) {
886    SmallVector<SDValue, 8> Ops;
887    Ops.assign(VT.getVectorNumElements(), Result);
888    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
889  }
890  return Result;
891}
892
893SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
894  return getConstant(Val, TLI.getPointerTy(), isTarget);
895}
896
897
898SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
899  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
900}
901
902SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
903  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
904
905  MVT EltVT =
906    VT.isVector() ? VT.getVectorElementType() : VT;
907
908  // Do the map lookup using the actual bit pattern for the floating point
909  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
910  // we don't have issues with SNANs.
911  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
912  FoldingSetNodeID ID;
913  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
914  ID.AddPointer(&V);
915  void *IP = 0;
916  SDNode *N = NULL;
917  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
918    if (!VT.isVector())
919      return SDValue(N, 0);
920  if (!N) {
921    N = NodeAllocator.Allocate<ConstantFPSDNode>();
922    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
923    CSEMap.InsertNode(N, IP);
924    AllNodes.push_back(N);
925  }
926
927  SDValue Result(N, 0);
928  if (VT.isVector()) {
929    SmallVector<SDValue, 8> Ops;
930    Ops.assign(VT.getVectorNumElements(), Result);
931    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
932  }
933  return Result;
934}
935
936SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
937  MVT EltVT =
938    VT.isVector() ? VT.getVectorElementType() : VT;
939  if (EltVT==MVT::f32)
940    return getConstantFP(APFloat((float)Val), VT, isTarget);
941  else
942    return getConstantFP(APFloat(Val), VT, isTarget);
943}
944
945SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
946                                       MVT VT, int64_t Offset,
947                                       bool isTargetGA) {
948  unsigned Opc;
949
950  // Truncate (with sign-extension) the offset value to the pointer size.
951  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
952  if (BitWidth < 64)
953    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
954
955  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
956  if (!GVar) {
957    // If GV is an alias then use the aliasee for determining thread-localness.
958    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
959      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
960  }
961
962  if (GVar && GVar->isThreadLocal())
963    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
964  else
965    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
966
967  FoldingSetNodeID ID;
968  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
969  ID.AddPointer(GV);
970  ID.AddInteger(Offset);
971  void *IP = 0;
972  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
973    return SDValue(E, 0);
974  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
975  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
976  CSEMap.InsertNode(N, IP);
977  AllNodes.push_back(N);
978  return SDValue(N, 0);
979}
980
981SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
982  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
983  FoldingSetNodeID ID;
984  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
985  ID.AddInteger(FI);
986  void *IP = 0;
987  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
988    return SDValue(E, 0);
989  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
990  new (N) FrameIndexSDNode(FI, VT, isTarget);
991  CSEMap.InsertNode(N, IP);
992  AllNodes.push_back(N);
993  return SDValue(N, 0);
994}
995
996SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
997  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
998  FoldingSetNodeID ID;
999  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1000  ID.AddInteger(JTI);
1001  void *IP = 0;
1002  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1003    return SDValue(E, 0);
1004  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1005  new (N) JumpTableSDNode(JTI, VT, isTarget);
1006  CSEMap.InsertNode(N, IP);
1007  AllNodes.push_back(N);
1008  return SDValue(N, 0);
1009}
1010
1011SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1012                                      unsigned Alignment, int Offset,
1013                                      bool isTarget) {
1014  if (Alignment == 0)
1015    Alignment =
1016      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1017  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1018  FoldingSetNodeID ID;
1019  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1020  ID.AddInteger(Alignment);
1021  ID.AddInteger(Offset);
1022  ID.AddPointer(C);
1023  void *IP = 0;
1024  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1025    return SDValue(E, 0);
1026  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1027  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1028  CSEMap.InsertNode(N, IP);
1029  AllNodes.push_back(N);
1030  return SDValue(N, 0);
1031}
1032
1033
1034SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1035                                      unsigned Alignment, int Offset,
1036                                      bool isTarget) {
1037  if (Alignment == 0)
1038    Alignment =
1039      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1040  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1041  FoldingSetNodeID ID;
1042  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1043  ID.AddInteger(Alignment);
1044  ID.AddInteger(Offset);
1045  C->AddSelectionDAGCSEId(ID);
1046  void *IP = 0;
1047  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1048    return SDValue(E, 0);
1049  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1050  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1051  CSEMap.InsertNode(N, IP);
1052  AllNodes.push_back(N);
1053  return SDValue(N, 0);
1054}
1055
1056
1057SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1058  FoldingSetNodeID ID;
1059  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1060  ID.AddPointer(MBB);
1061  void *IP = 0;
1062  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1063    return SDValue(E, 0);
1064  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1065  new (N) BasicBlockSDNode(MBB);
1066  CSEMap.InsertNode(N, IP);
1067  AllNodes.push_back(N);
1068  return SDValue(N, 0);
1069}
1070
1071SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1072  FoldingSetNodeID ID;
1073  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1074  ID.AddInteger(Flags.getRawBits());
1075  void *IP = 0;
1076  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1077    return SDValue(E, 0);
1078  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1079  new (N) ARG_FLAGSSDNode(Flags);
1080  CSEMap.InsertNode(N, IP);
1081  AllNodes.push_back(N);
1082  return SDValue(N, 0);
1083}
1084
1085SDValue SelectionDAG::getValueType(MVT VT) {
1086  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1087    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1088
1089  SDNode *&N = VT.isExtended() ?
1090    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1091
1092  if (N) return SDValue(N, 0);
1093  N = NodeAllocator.Allocate<VTSDNode>();
1094  new (N) VTSDNode(VT);
1095  AllNodes.push_back(N);
1096  return SDValue(N, 0);
1097}
1098
1099SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1100  SDNode *&N = ExternalSymbols[Sym];
1101  if (N) return SDValue(N, 0);
1102  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1103  new (N) ExternalSymbolSDNode(false, Sym, VT);
1104  AllNodes.push_back(N);
1105  return SDValue(N, 0);
1106}
1107
1108SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1109  SDNode *&N = TargetExternalSymbols[Sym];
1110  if (N) return SDValue(N, 0);
1111  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1112  new (N) ExternalSymbolSDNode(true, Sym, VT);
1113  AllNodes.push_back(N);
1114  return SDValue(N, 0);
1115}
1116
1117SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1118  if ((unsigned)Cond >= CondCodeNodes.size())
1119    CondCodeNodes.resize(Cond+1);
1120
1121  if (CondCodeNodes[Cond] == 0) {
1122    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1123    new (N) CondCodeSDNode(Cond);
1124    CondCodeNodes[Cond] = N;
1125    AllNodes.push_back(N);
1126  }
1127  return SDValue(CondCodeNodes[Cond], 0);
1128}
1129
1130SDValue SelectionDAG::getConvertRndSat(MVT VT, SDValue Val, SDValue DTy,
1131                                       SDValue STy, SDValue Rnd, SDValue Sat,
1132                                       ISD::CvtCode Code) {
1133  // If the src and dest types are the same, no conversion is necessary.
1134  if (DTy == STy)
1135    return Val;
1136
1137  FoldingSetNodeID ID;
1138  void* IP = 0;
1139  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1140    return SDValue(E, 0);
1141  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1142  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1143  new (N) CvtRndSatSDNode(VT, Ops, 5, Code);
1144  CSEMap.InsertNode(N, IP);
1145  AllNodes.push_back(N);
1146  return SDValue(N, 0);
1147}
1148
1149SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1150  FoldingSetNodeID ID;
1151  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1152  ID.AddInteger(RegNo);
1153  void *IP = 0;
1154  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1155    return SDValue(E, 0);
1156  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1157  new (N) RegisterSDNode(RegNo, VT);
1158  CSEMap.InsertNode(N, IP);
1159  AllNodes.push_back(N);
1160  return SDValue(N, 0);
1161}
1162
1163SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1164                                      unsigned Line, unsigned Col,
1165                                      Value *CU) {
1166  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1167  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1168  AllNodes.push_back(N);
1169  return SDValue(N, 0);
1170}
1171
1172SDValue SelectionDAG::getLabel(unsigned Opcode,
1173                               SDValue Root,
1174                               unsigned LabelID) {
1175  FoldingSetNodeID ID;
1176  SDValue Ops[] = { Root };
1177  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1178  ID.AddInteger(LabelID);
1179  void *IP = 0;
1180  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1181    return SDValue(E, 0);
1182  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1183  new (N) LabelSDNode(Opcode, Root, LabelID);
1184  CSEMap.InsertNode(N, IP);
1185  AllNodes.push_back(N);
1186  return SDValue(N, 0);
1187}
1188
1189SDValue SelectionDAG::getSrcValue(const Value *V) {
1190  assert((!V || isa<PointerType>(V->getType())) &&
1191         "SrcValue is not a pointer?");
1192
1193  FoldingSetNodeID ID;
1194  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1195  ID.AddPointer(V);
1196
1197  void *IP = 0;
1198  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1199    return SDValue(E, 0);
1200
1201  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1202  new (N) SrcValueSDNode(V);
1203  CSEMap.InsertNode(N, IP);
1204  AllNodes.push_back(N);
1205  return SDValue(N, 0);
1206}
1207
1208SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1209#ifndef NDEBUG
1210  const Value *v = MO.getValue();
1211  assert((!v || isa<PointerType>(v->getType())) &&
1212         "SrcValue is not a pointer?");
1213#endif
1214
1215  FoldingSetNodeID ID;
1216  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1217  MO.Profile(ID);
1218
1219  void *IP = 0;
1220  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1221    return SDValue(E, 0);
1222
1223  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1224  new (N) MemOperandSDNode(MO);
1225  CSEMap.InsertNode(N, IP);
1226  AllNodes.push_back(N);
1227  return SDValue(N, 0);
1228}
1229
1230/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1231/// specified value type.
1232SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1233  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1234  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1235  const Type *Ty = VT.getTypeForMVT();
1236  unsigned StackAlign =
1237  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1238
1239  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1240  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1241}
1242
1243/// CreateStackTemporary - Create a stack temporary suitable for holding
1244/// either of the specified value types.
1245SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1246  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1247                            VT2.getStoreSizeInBits())/8;
1248  const Type *Ty1 = VT1.getTypeForMVT();
1249  const Type *Ty2 = VT2.getTypeForMVT();
1250  const TargetData *TD = TLI.getTargetData();
1251  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1252                            TD->getPrefTypeAlignment(Ty2));
1253
1254  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1255  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1256  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1257}
1258
1259SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1260                                SDValue N2, ISD::CondCode Cond) {
1261  // These setcc operations always fold.
1262  switch (Cond) {
1263  default: break;
1264  case ISD::SETFALSE:
1265  case ISD::SETFALSE2: return getConstant(0, VT);
1266  case ISD::SETTRUE:
1267  case ISD::SETTRUE2:  return getConstant(1, VT);
1268
1269  case ISD::SETOEQ:
1270  case ISD::SETOGT:
1271  case ISD::SETOGE:
1272  case ISD::SETOLT:
1273  case ISD::SETOLE:
1274  case ISD::SETONE:
1275  case ISD::SETO:
1276  case ISD::SETUO:
1277  case ISD::SETUEQ:
1278  case ISD::SETUNE:
1279    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1280    break;
1281  }
1282
1283  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1284    const APInt &C2 = N2C->getAPIntValue();
1285    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1286      const APInt &C1 = N1C->getAPIntValue();
1287
1288      switch (Cond) {
1289      default: assert(0 && "Unknown integer setcc!");
1290      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1291      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1292      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1293      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1294      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1295      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1296      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1297      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1298      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1299      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1300      }
1301    }
1302  }
1303  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1304    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1305      // No compile time operations on this type yet.
1306      if (N1C->getValueType(0) == MVT::ppcf128)
1307        return SDValue();
1308
1309      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1310      switch (Cond) {
1311      default: break;
1312      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1313                          return getNode(ISD::UNDEF, VT);
1314                        // fall through
1315      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1316      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1317                          return getNode(ISD::UNDEF, VT);
1318                        // fall through
1319      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1320                                           R==APFloat::cmpLessThan, VT);
1321      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1322                          return getNode(ISD::UNDEF, VT);
1323                        // fall through
1324      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1325      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1326                          return getNode(ISD::UNDEF, VT);
1327                        // fall through
1328      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1329      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1330                          return getNode(ISD::UNDEF, VT);
1331                        // fall through
1332      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1333                                           R==APFloat::cmpEqual, VT);
1334      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1335                          return getNode(ISD::UNDEF, VT);
1336                        // fall through
1337      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1338                                           R==APFloat::cmpEqual, VT);
1339      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1340      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1341      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1342                                           R==APFloat::cmpEqual, VT);
1343      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1344      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1345                                           R==APFloat::cmpLessThan, VT);
1346      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1347                                           R==APFloat::cmpUnordered, VT);
1348      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1349      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1350      }
1351    } else {
1352      // Ensure that the constant occurs on the RHS.
1353      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1354    }
1355  }
1356
1357  // Could not fold it.
1358  return SDValue();
1359}
1360
1361/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1362/// use this predicate to simplify operations downstream.
1363bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1364  unsigned BitWidth = Op.getValueSizeInBits();
1365  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1366}
1367
1368/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1369/// this predicate to simplify operations downstream.  Mask is known to be zero
1370/// for bits that V cannot have.
1371bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1372                                     unsigned Depth) const {
1373  APInt KnownZero, KnownOne;
1374  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1375  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1376  return (KnownZero & Mask) == Mask;
1377}
1378
1379/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1380/// known to be either zero or one and return them in the KnownZero/KnownOne
1381/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1382/// processing.
1383void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1384                                     APInt &KnownZero, APInt &KnownOne,
1385                                     unsigned Depth) const {
1386  unsigned BitWidth = Mask.getBitWidth();
1387  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1388         "Mask size mismatches value type size!");
1389
1390  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1391  if (Depth == 6 || Mask == 0)
1392    return;  // Limit search depth.
1393
1394  APInt KnownZero2, KnownOne2;
1395
1396  switch (Op.getOpcode()) {
1397  case ISD::Constant:
1398    // We know all of the bits for a constant!
1399    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1400    KnownZero = ~KnownOne & Mask;
1401    return;
1402  case ISD::AND:
1403    // If either the LHS or the RHS are Zero, the result is zero.
1404    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1405    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1406                      KnownZero2, KnownOne2, Depth+1);
1407    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1408    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1409
1410    // Output known-1 bits are only known if set in both the LHS & RHS.
1411    KnownOne &= KnownOne2;
1412    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1413    KnownZero |= KnownZero2;
1414    return;
1415  case ISD::OR:
1416    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1417    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1418                      KnownZero2, KnownOne2, Depth+1);
1419    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1420    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1421
1422    // Output known-0 bits are only known if clear in both the LHS & RHS.
1423    KnownZero &= KnownZero2;
1424    // Output known-1 are known to be set if set in either the LHS | RHS.
1425    KnownOne |= KnownOne2;
1426    return;
1427  case ISD::XOR: {
1428    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1429    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1430    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1431    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1432
1433    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1434    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1435    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1436    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1437    KnownZero = KnownZeroOut;
1438    return;
1439  }
1440  case ISD::MUL: {
1441    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1442    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1443    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1444    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1445    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1446
1447    // If low bits are zero in either operand, output low known-0 bits.
1448    // Also compute a conserative estimate for high known-0 bits.
1449    // More trickiness is possible, but this is sufficient for the
1450    // interesting case of alignment computation.
1451    KnownOne.clear();
1452    unsigned TrailZ = KnownZero.countTrailingOnes() +
1453                      KnownZero2.countTrailingOnes();
1454    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1455                               KnownZero2.countLeadingOnes(),
1456                               BitWidth) - BitWidth;
1457
1458    TrailZ = std::min(TrailZ, BitWidth);
1459    LeadZ = std::min(LeadZ, BitWidth);
1460    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1461                APInt::getHighBitsSet(BitWidth, LeadZ);
1462    KnownZero &= Mask;
1463    return;
1464  }
1465  case ISD::UDIV: {
1466    // For the purposes of computing leading zeros we can conservatively
1467    // treat a udiv as a logical right shift by the power of 2 known to
1468    // be less than the denominator.
1469    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1470    ComputeMaskedBits(Op.getOperand(0),
1471                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1472    unsigned LeadZ = KnownZero2.countLeadingOnes();
1473
1474    KnownOne2.clear();
1475    KnownZero2.clear();
1476    ComputeMaskedBits(Op.getOperand(1),
1477                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1478    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1479    if (RHSUnknownLeadingOnes != BitWidth)
1480      LeadZ = std::min(BitWidth,
1481                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1482
1483    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1484    return;
1485  }
1486  case ISD::SELECT:
1487    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1488    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1489    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1490    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1491
1492    // Only known if known in both the LHS and RHS.
1493    KnownOne &= KnownOne2;
1494    KnownZero &= KnownZero2;
1495    return;
1496  case ISD::SELECT_CC:
1497    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1498    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1499    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1500    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1501
1502    // Only known if known in both the LHS and RHS.
1503    KnownOne &= KnownOne2;
1504    KnownZero &= KnownZero2;
1505    return;
1506  case ISD::SADDO:
1507  case ISD::UADDO:
1508  case ISD::SSUBO:
1509  case ISD::USUBO:
1510  case ISD::SMULO:
1511  case ISD::UMULO:
1512    if (Op.getResNo() != 1)
1513      return;
1514    // The boolean result conforms to getBooleanContents.  Fall through.
1515  case ISD::SETCC:
1516    // If we know the result of a setcc has the top bits zero, use this info.
1517    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1518        BitWidth > 1)
1519      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1520    return;
1521  case ISD::SHL:
1522    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1523    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1524      unsigned ShAmt = SA->getZExtValue();
1525
1526      // If the shift count is an invalid immediate, don't do anything.
1527      if (ShAmt >= BitWidth)
1528        return;
1529
1530      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1531                        KnownZero, KnownOne, Depth+1);
1532      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1533      KnownZero <<= ShAmt;
1534      KnownOne  <<= ShAmt;
1535      // low bits known zero.
1536      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1537    }
1538    return;
1539  case ISD::SRL:
1540    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1541    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1542      unsigned ShAmt = SA->getZExtValue();
1543
1544      // If the shift count is an invalid immediate, don't do anything.
1545      if (ShAmt >= BitWidth)
1546        return;
1547
1548      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1549                        KnownZero, KnownOne, Depth+1);
1550      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1551      KnownZero = KnownZero.lshr(ShAmt);
1552      KnownOne  = KnownOne.lshr(ShAmt);
1553
1554      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1555      KnownZero |= HighBits;  // High bits known zero.
1556    }
1557    return;
1558  case ISD::SRA:
1559    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1560      unsigned ShAmt = SA->getZExtValue();
1561
1562      // If the shift count is an invalid immediate, don't do anything.
1563      if (ShAmt >= BitWidth)
1564        return;
1565
1566      APInt InDemandedMask = (Mask << ShAmt);
1567      // If any of the demanded bits are produced by the sign extension, we also
1568      // demand the input sign bit.
1569      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1570      if (HighBits.getBoolValue())
1571        InDemandedMask |= APInt::getSignBit(BitWidth);
1572
1573      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1574                        Depth+1);
1575      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1576      KnownZero = KnownZero.lshr(ShAmt);
1577      KnownOne  = KnownOne.lshr(ShAmt);
1578
1579      // Handle the sign bits.
1580      APInt SignBit = APInt::getSignBit(BitWidth);
1581      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1582
1583      if (KnownZero.intersects(SignBit)) {
1584        KnownZero |= HighBits;  // New bits are known zero.
1585      } else if (KnownOne.intersects(SignBit)) {
1586        KnownOne  |= HighBits;  // New bits are known one.
1587      }
1588    }
1589    return;
1590  case ISD::SIGN_EXTEND_INREG: {
1591    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1592    unsigned EBits = EVT.getSizeInBits();
1593
1594    // Sign extension.  Compute the demanded bits in the result that are not
1595    // present in the input.
1596    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1597
1598    APInt InSignBit = APInt::getSignBit(EBits);
1599    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1600
1601    // If the sign extended bits are demanded, we know that the sign
1602    // bit is demanded.
1603    InSignBit.zext(BitWidth);
1604    if (NewBits.getBoolValue())
1605      InputDemandedBits |= InSignBit;
1606
1607    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1608                      KnownZero, KnownOne, Depth+1);
1609    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1610
1611    // If the sign bit of the input is known set or clear, then we know the
1612    // top bits of the result.
1613    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1614      KnownZero |= NewBits;
1615      KnownOne  &= ~NewBits;
1616    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1617      KnownOne  |= NewBits;
1618      KnownZero &= ~NewBits;
1619    } else {                              // Input sign bit unknown
1620      KnownZero &= ~NewBits;
1621      KnownOne  &= ~NewBits;
1622    }
1623    return;
1624  }
1625  case ISD::CTTZ:
1626  case ISD::CTLZ:
1627  case ISD::CTPOP: {
1628    unsigned LowBits = Log2_32(BitWidth)+1;
1629    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1630    KnownOne.clear();
1631    return;
1632  }
1633  case ISD::LOAD: {
1634    if (ISD::isZEXTLoad(Op.getNode())) {
1635      LoadSDNode *LD = cast<LoadSDNode>(Op);
1636      MVT VT = LD->getMemoryVT();
1637      unsigned MemBits = VT.getSizeInBits();
1638      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1639    }
1640    return;
1641  }
1642  case ISD::ZERO_EXTEND: {
1643    MVT InVT = Op.getOperand(0).getValueType();
1644    unsigned InBits = InVT.getSizeInBits();
1645    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1646    APInt InMask    = Mask;
1647    InMask.trunc(InBits);
1648    KnownZero.trunc(InBits);
1649    KnownOne.trunc(InBits);
1650    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1651    KnownZero.zext(BitWidth);
1652    KnownOne.zext(BitWidth);
1653    KnownZero |= NewBits;
1654    return;
1655  }
1656  case ISD::SIGN_EXTEND: {
1657    MVT InVT = Op.getOperand(0).getValueType();
1658    unsigned InBits = InVT.getSizeInBits();
1659    APInt InSignBit = APInt::getSignBit(InBits);
1660    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1661    APInt InMask = Mask;
1662    InMask.trunc(InBits);
1663
1664    // If any of the sign extended bits are demanded, we know that the sign
1665    // bit is demanded. Temporarily set this bit in the mask for our callee.
1666    if (NewBits.getBoolValue())
1667      InMask |= InSignBit;
1668
1669    KnownZero.trunc(InBits);
1670    KnownOne.trunc(InBits);
1671    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1672
1673    // Note if the sign bit is known to be zero or one.
1674    bool SignBitKnownZero = KnownZero.isNegative();
1675    bool SignBitKnownOne  = KnownOne.isNegative();
1676    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1677           "Sign bit can't be known to be both zero and one!");
1678
1679    // If the sign bit wasn't actually demanded by our caller, we don't
1680    // want it set in the KnownZero and KnownOne result values. Reset the
1681    // mask and reapply it to the result values.
1682    InMask = Mask;
1683    InMask.trunc(InBits);
1684    KnownZero &= InMask;
1685    KnownOne  &= InMask;
1686
1687    KnownZero.zext(BitWidth);
1688    KnownOne.zext(BitWidth);
1689
1690    // If the sign bit is known zero or one, the top bits match.
1691    if (SignBitKnownZero)
1692      KnownZero |= NewBits;
1693    else if (SignBitKnownOne)
1694      KnownOne  |= NewBits;
1695    return;
1696  }
1697  case ISD::ANY_EXTEND: {
1698    MVT InVT = Op.getOperand(0).getValueType();
1699    unsigned InBits = InVT.getSizeInBits();
1700    APInt InMask = Mask;
1701    InMask.trunc(InBits);
1702    KnownZero.trunc(InBits);
1703    KnownOne.trunc(InBits);
1704    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1705    KnownZero.zext(BitWidth);
1706    KnownOne.zext(BitWidth);
1707    return;
1708  }
1709  case ISD::TRUNCATE: {
1710    MVT InVT = Op.getOperand(0).getValueType();
1711    unsigned InBits = InVT.getSizeInBits();
1712    APInt InMask = Mask;
1713    InMask.zext(InBits);
1714    KnownZero.zext(InBits);
1715    KnownOne.zext(InBits);
1716    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1717    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1718    KnownZero.trunc(BitWidth);
1719    KnownOne.trunc(BitWidth);
1720    break;
1721  }
1722  case ISD::AssertZext: {
1723    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1724    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1725    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1726                      KnownOne, Depth+1);
1727    KnownZero |= (~InMask) & Mask;
1728    return;
1729  }
1730  case ISD::FGETSIGN:
1731    // All bits are zero except the low bit.
1732    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1733    return;
1734
1735  case ISD::SUB: {
1736    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1737      // We know that the top bits of C-X are clear if X contains less bits
1738      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1739      // positive if we can prove that X is >= 0 and < 16.
1740      if (CLHS->getAPIntValue().isNonNegative()) {
1741        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1742        // NLZ can't be BitWidth with no sign bit
1743        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1744        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1745                          Depth+1);
1746
1747        // If all of the MaskV bits are known to be zero, then we know the
1748        // output top bits are zero, because we now know that the output is
1749        // from [0-C].
1750        if ((KnownZero2 & MaskV) == MaskV) {
1751          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1752          // Top bits known zero.
1753          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1754        }
1755      }
1756    }
1757  }
1758  // fall through
1759  case ISD::ADD: {
1760    // Output known-0 bits are known if clear or set in both the low clear bits
1761    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1762    // low 3 bits clear.
1763    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1764    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1765    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1766    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1767
1768    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1769    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1770    KnownZeroOut = std::min(KnownZeroOut,
1771                            KnownZero2.countTrailingOnes());
1772
1773    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1774    return;
1775  }
1776  case ISD::SREM:
1777    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1778      const APInt &RA = Rem->getAPIntValue();
1779      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1780        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1781        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1782        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1783
1784        // If the sign bit of the first operand is zero, the sign bit of
1785        // the result is zero. If the first operand has no one bits below
1786        // the second operand's single 1 bit, its sign will be zero.
1787        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1788          KnownZero2 |= ~LowBits;
1789
1790        KnownZero |= KnownZero2 & Mask;
1791
1792        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1793      }
1794    }
1795    return;
1796  case ISD::UREM: {
1797    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1798      const APInt &RA = Rem->getAPIntValue();
1799      if (RA.isPowerOf2()) {
1800        APInt LowBits = (RA - 1);
1801        APInt Mask2 = LowBits & Mask;
1802        KnownZero |= ~LowBits & Mask;
1803        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1804        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1805        break;
1806      }
1807    }
1808
1809    // Since the result is less than or equal to either operand, any leading
1810    // zero bits in either operand must also exist in the result.
1811    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1812    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1813                      Depth+1);
1814    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1815                      Depth+1);
1816
1817    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1818                                KnownZero2.countLeadingOnes());
1819    KnownOne.clear();
1820    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1821    return;
1822  }
1823  default:
1824    // Allow the target to implement this method for its nodes.
1825    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1826  case ISD::INTRINSIC_WO_CHAIN:
1827  case ISD::INTRINSIC_W_CHAIN:
1828  case ISD::INTRINSIC_VOID:
1829      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1830    }
1831    return;
1832  }
1833}
1834
1835/// ComputeNumSignBits - Return the number of times the sign bit of the
1836/// register is replicated into the other bits.  We know that at least 1 bit
1837/// is always equal to the sign bit (itself), but other cases can give us
1838/// information.  For example, immediately after an "SRA X, 2", we know that
1839/// the top 3 bits are all equal to each other, so we return 3.
1840unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1841  MVT VT = Op.getValueType();
1842  assert(VT.isInteger() && "Invalid VT!");
1843  unsigned VTBits = VT.getSizeInBits();
1844  unsigned Tmp, Tmp2;
1845  unsigned FirstAnswer = 1;
1846
1847  if (Depth == 6)
1848    return 1;  // Limit search depth.
1849
1850  switch (Op.getOpcode()) {
1851  default: break;
1852  case ISD::AssertSext:
1853    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1854    return VTBits-Tmp+1;
1855  case ISD::AssertZext:
1856    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1857    return VTBits-Tmp;
1858
1859  case ISD::Constant: {
1860    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1861    // If negative, return # leading ones.
1862    if (Val.isNegative())
1863      return Val.countLeadingOnes();
1864
1865    // Return # leading zeros.
1866    return Val.countLeadingZeros();
1867  }
1868
1869  case ISD::SIGN_EXTEND:
1870    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1871    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1872
1873  case ISD::SIGN_EXTEND_INREG:
1874    // Max of the input and what this extends.
1875    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1876    Tmp = VTBits-Tmp+1;
1877
1878    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1879    return std::max(Tmp, Tmp2);
1880
1881  case ISD::SRA:
1882    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1883    // SRA X, C   -> adds C sign bits.
1884    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1885      Tmp += C->getZExtValue();
1886      if (Tmp > VTBits) Tmp = VTBits;
1887    }
1888    return Tmp;
1889  case ISD::SHL:
1890    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1891      // shl destroys sign bits.
1892      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1893      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1894          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1895      return Tmp - C->getZExtValue();
1896    }
1897    break;
1898  case ISD::AND:
1899  case ISD::OR:
1900  case ISD::XOR:    // NOT is handled here.
1901    // Logical binary ops preserve the number of sign bits at the worst.
1902    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1903    if (Tmp != 1) {
1904      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1905      FirstAnswer = std::min(Tmp, Tmp2);
1906      // We computed what we know about the sign bits as our first
1907      // answer. Now proceed to the generic code that uses
1908      // ComputeMaskedBits, and pick whichever answer is better.
1909    }
1910    break;
1911
1912  case ISD::SELECT:
1913    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1914    if (Tmp == 1) return 1;  // Early out.
1915    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1916    return std::min(Tmp, Tmp2);
1917
1918  case ISD::SADDO:
1919  case ISD::UADDO:
1920  case ISD::SSUBO:
1921  case ISD::USUBO:
1922  case ISD::SMULO:
1923  case ISD::UMULO:
1924    if (Op.getResNo() != 1)
1925      break;
1926    // The boolean result conforms to getBooleanContents.  Fall through.
1927  case ISD::SETCC:
1928    // If setcc returns 0/-1, all bits are sign bits.
1929    if (TLI.getBooleanContents() ==
1930        TargetLowering::ZeroOrNegativeOneBooleanContent)
1931      return VTBits;
1932    break;
1933  case ISD::ROTL:
1934  case ISD::ROTR:
1935    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1936      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1937
1938      // Handle rotate right by N like a rotate left by 32-N.
1939      if (Op.getOpcode() == ISD::ROTR)
1940        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1941
1942      // If we aren't rotating out all of the known-in sign bits, return the
1943      // number that are left.  This handles rotl(sext(x), 1) for example.
1944      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1945      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1946    }
1947    break;
1948  case ISD::ADD:
1949    // Add can have at most one carry bit.  Thus we know that the output
1950    // is, at worst, one more bit than the inputs.
1951    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1952    if (Tmp == 1) return 1;  // Early out.
1953
1954    // Special case decrementing a value (ADD X, -1):
1955    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1956      if (CRHS->isAllOnesValue()) {
1957        APInt KnownZero, KnownOne;
1958        APInt Mask = APInt::getAllOnesValue(VTBits);
1959        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1960
1961        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1962        // sign bits set.
1963        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1964          return VTBits;
1965
1966        // If we are subtracting one from a positive number, there is no carry
1967        // out of the result.
1968        if (KnownZero.isNegative())
1969          return Tmp;
1970      }
1971
1972    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1973    if (Tmp2 == 1) return 1;
1974      return std::min(Tmp, Tmp2)-1;
1975    break;
1976
1977  case ISD::SUB:
1978    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1979    if (Tmp2 == 1) return 1;
1980
1981    // Handle NEG.
1982    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1983      if (CLHS->isNullValue()) {
1984        APInt KnownZero, KnownOne;
1985        APInt Mask = APInt::getAllOnesValue(VTBits);
1986        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1987        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1988        // sign bits set.
1989        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1990          return VTBits;
1991
1992        // If the input is known to be positive (the sign bit is known clear),
1993        // the output of the NEG has the same number of sign bits as the input.
1994        if (KnownZero.isNegative())
1995          return Tmp2;
1996
1997        // Otherwise, we treat this like a SUB.
1998      }
1999
2000    // Sub can have at most one carry bit.  Thus we know that the output
2001    // is, at worst, one more bit than the inputs.
2002    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2003    if (Tmp == 1) return 1;  // Early out.
2004      return std::min(Tmp, Tmp2)-1;
2005    break;
2006  case ISD::TRUNCATE:
2007    // FIXME: it's tricky to do anything useful for this, but it is an important
2008    // case for targets like X86.
2009    break;
2010  }
2011
2012  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2013  if (Op.getOpcode() == ISD::LOAD) {
2014    LoadSDNode *LD = cast<LoadSDNode>(Op);
2015    unsigned ExtType = LD->getExtensionType();
2016    switch (ExtType) {
2017    default: break;
2018    case ISD::SEXTLOAD:    // '17' bits known
2019      Tmp = LD->getMemoryVT().getSizeInBits();
2020      return VTBits-Tmp+1;
2021    case ISD::ZEXTLOAD:    // '16' bits known
2022      Tmp = LD->getMemoryVT().getSizeInBits();
2023      return VTBits-Tmp;
2024    }
2025  }
2026
2027  // Allow the target to implement this method for its nodes.
2028  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2029      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2030      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2031      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2032    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2033    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2034  }
2035
2036  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2037  // use this information.
2038  APInt KnownZero, KnownOne;
2039  APInt Mask = APInt::getAllOnesValue(VTBits);
2040  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2041
2042  if (KnownZero.isNegative()) {        // sign bit is 0
2043    Mask = KnownZero;
2044  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2045    Mask = KnownOne;
2046  } else {
2047    // Nothing known.
2048    return FirstAnswer;
2049  }
2050
2051  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2052  // the number of identical bits in the top of the input value.
2053  Mask = ~Mask;
2054  Mask <<= Mask.getBitWidth()-VTBits;
2055  // Return # leading zeros.  We use 'min' here in case Val was zero before
2056  // shifting.  We don't want to return '64' as for an i32 "0".
2057  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2058}
2059
2060
2061bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2062  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2063  if (!GA) return false;
2064  if (GA->getOffset() != 0) return false;
2065  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2066  if (!GV) return false;
2067  MachineModuleInfo *MMI = getMachineModuleInfo();
2068  return MMI && MMI->hasDebugInfo();
2069}
2070
2071
2072/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2073/// element of the result of the vector shuffle.
2074SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2075  MVT VT = N->getValueType(0);
2076  SDValue PermMask = N->getOperand(2);
2077  SDValue Idx = PermMask.getOperand(i);
2078  if (Idx.getOpcode() == ISD::UNDEF)
2079    return getNode(ISD::UNDEF, VT.getVectorElementType());
2080  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2081  unsigned NumElems = PermMask.getNumOperands();
2082  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2083  Index %= NumElems;
2084
2085  if (V.getOpcode() == ISD::BIT_CONVERT) {
2086    V = V.getOperand(0);
2087    MVT VVT = V.getValueType();
2088    if (!VVT.isVector() || VVT.getVectorNumElements() != NumElems)
2089      return SDValue();
2090  }
2091  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2092    return (Index == 0) ? V.getOperand(0)
2093                      : getNode(ISD::UNDEF, VT.getVectorElementType());
2094  if (V.getOpcode() == ISD::BUILD_VECTOR)
2095    return V.getOperand(Index);
2096  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2097    return getShuffleScalarElt(V.getNode(), Index);
2098  return SDValue();
2099}
2100
2101
2102/// getNode - Gets or creates the specified node.
2103///
2104SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
2105  FoldingSetNodeID ID;
2106  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2107  void *IP = 0;
2108  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2109    return SDValue(E, 0);
2110  SDNode *N = NodeAllocator.Allocate<SDNode>();
2111  new (N) SDNode(Opcode, SDNode::getSDVTList(VT));
2112  CSEMap.InsertNode(N, IP);
2113
2114  AllNodes.push_back(N);
2115#ifndef NDEBUG
2116  VerifyNode(N);
2117#endif
2118  return SDValue(N, 0);
2119}
2120
2121SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
2122  // Constant fold unary operations with an integer constant operand.
2123  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2124    const APInt &Val = C->getAPIntValue();
2125    unsigned BitWidth = VT.getSizeInBits();
2126    switch (Opcode) {
2127    default: break;
2128    case ISD::SIGN_EXTEND:
2129      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2130    case ISD::ANY_EXTEND:
2131    case ISD::ZERO_EXTEND:
2132    case ISD::TRUNCATE:
2133      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2134    case ISD::UINT_TO_FP:
2135    case ISD::SINT_TO_FP: {
2136      const uint64_t zero[] = {0, 0};
2137      // No compile time operations on this type.
2138      if (VT==MVT::ppcf128)
2139        break;
2140      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2141      (void)apf.convertFromAPInt(Val,
2142                                 Opcode==ISD::SINT_TO_FP,
2143                                 APFloat::rmNearestTiesToEven);
2144      return getConstantFP(apf, VT);
2145    }
2146    case ISD::BIT_CONVERT:
2147      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2148        return getConstantFP(Val.bitsToFloat(), VT);
2149      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2150        return getConstantFP(Val.bitsToDouble(), VT);
2151      break;
2152    case ISD::BSWAP:
2153      return getConstant(Val.byteSwap(), VT);
2154    case ISD::CTPOP:
2155      return getConstant(Val.countPopulation(), VT);
2156    case ISD::CTLZ:
2157      return getConstant(Val.countLeadingZeros(), VT);
2158    case ISD::CTTZ:
2159      return getConstant(Val.countTrailingZeros(), VT);
2160    }
2161  }
2162
2163  // Constant fold unary operations with a floating point constant operand.
2164  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2165    APFloat V = C->getValueAPF();    // make copy
2166    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2167      switch (Opcode) {
2168      case ISD::FNEG:
2169        V.changeSign();
2170        return getConstantFP(V, VT);
2171      case ISD::FABS:
2172        V.clearSign();
2173        return getConstantFP(V, VT);
2174      case ISD::FP_ROUND:
2175      case ISD::FP_EXTEND: {
2176        bool ignored;
2177        // This can return overflow, underflow, or inexact; we don't care.
2178        // FIXME need to be more flexible about rounding mode.
2179        (void)V.convert(*MVTToAPFloatSemantics(VT),
2180                        APFloat::rmNearestTiesToEven, &ignored);
2181        return getConstantFP(V, VT);
2182      }
2183      case ISD::FP_TO_SINT:
2184      case ISD::FP_TO_UINT: {
2185        integerPart x;
2186        bool ignored;
2187        assert(integerPartWidth >= 64);
2188        // FIXME need to be more flexible about rounding mode.
2189        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2190                              Opcode==ISD::FP_TO_SINT,
2191                              APFloat::rmTowardZero, &ignored);
2192        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2193          break;
2194        return getConstant(x, VT);
2195      }
2196      case ISD::BIT_CONVERT:
2197        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2198          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2199        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2200          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2201        break;
2202      }
2203    }
2204  }
2205
2206  unsigned OpOpcode = Operand.getNode()->getOpcode();
2207  switch (Opcode) {
2208  case ISD::TokenFactor:
2209  case ISD::MERGE_VALUES:
2210  case ISD::CONCAT_VECTORS:
2211    return Operand;         // Factor, merge or concat of one node?  No need.
2212  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2213  case ISD::FP_EXTEND:
2214    assert(VT.isFloatingPoint() &&
2215           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2216    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2217    if (Operand.getOpcode() == ISD::UNDEF)
2218      return getNode(ISD::UNDEF, VT);
2219    break;
2220  case ISD::SIGN_EXTEND:
2221    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2222           "Invalid SIGN_EXTEND!");
2223    if (Operand.getValueType() == VT) return Operand;   // noop extension
2224    assert(Operand.getValueType().bitsLT(VT)
2225           && "Invalid sext node, dst < src!");
2226    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2227      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2228    break;
2229  case ISD::ZERO_EXTEND:
2230    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2231           "Invalid ZERO_EXTEND!");
2232    if (Operand.getValueType() == VT) return Operand;   // noop extension
2233    assert(Operand.getValueType().bitsLT(VT)
2234           && "Invalid zext node, dst < src!");
2235    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2236      return getNode(ISD::ZERO_EXTEND, VT, Operand.getNode()->getOperand(0));
2237    break;
2238  case ISD::ANY_EXTEND:
2239    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2240           "Invalid ANY_EXTEND!");
2241    if (Operand.getValueType() == VT) return Operand;   // noop extension
2242    assert(Operand.getValueType().bitsLT(VT)
2243           && "Invalid anyext node, dst < src!");
2244    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2245      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2246      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2247    break;
2248  case ISD::TRUNCATE:
2249    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2250           "Invalid TRUNCATE!");
2251    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2252    assert(Operand.getValueType().bitsGT(VT)
2253           && "Invalid truncate node, src < dst!");
2254    if (OpOpcode == ISD::TRUNCATE)
2255      return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2256    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2257             OpOpcode == ISD::ANY_EXTEND) {
2258      // If the source is smaller than the dest, we still need an extend.
2259      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2260        return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2261      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2262        return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2263      else
2264        return Operand.getNode()->getOperand(0);
2265    }
2266    break;
2267  case ISD::BIT_CONVERT:
2268    // Basic sanity checking.
2269    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2270           && "Cannot BIT_CONVERT between types of different sizes!");
2271    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2272    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2273      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2274    if (OpOpcode == ISD::UNDEF)
2275      return getNode(ISD::UNDEF, VT);
2276    break;
2277  case ISD::SCALAR_TO_VECTOR:
2278    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2279           VT.getVectorElementType() == Operand.getValueType() &&
2280           "Illegal SCALAR_TO_VECTOR node!");
2281    if (OpOpcode == ISD::UNDEF)
2282      return getNode(ISD::UNDEF, VT);
2283    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2284    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2285        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2286        Operand.getConstantOperandVal(1) == 0 &&
2287        Operand.getOperand(0).getValueType() == VT)
2288      return Operand.getOperand(0);
2289    break;
2290  case ISD::FNEG:
2291    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2292      return getNode(ISD::FSUB, VT, Operand.getNode()->getOperand(1),
2293                     Operand.getNode()->getOperand(0));
2294    if (OpOpcode == ISD::FNEG)  // --X -> X
2295      return Operand.getNode()->getOperand(0);
2296    break;
2297  case ISD::FABS:
2298    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2299      return getNode(ISD::FABS, VT, Operand.getNode()->getOperand(0));
2300    break;
2301  }
2302
2303  SDNode *N;
2304  SDVTList VTs = getVTList(VT);
2305  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2306    FoldingSetNodeID ID;
2307    SDValue Ops[1] = { Operand };
2308    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2309    void *IP = 0;
2310    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2311      return SDValue(E, 0);
2312    N = NodeAllocator.Allocate<UnarySDNode>();
2313    new (N) UnarySDNode(Opcode, VTs, Operand);
2314    CSEMap.InsertNode(N, IP);
2315  } else {
2316    N = NodeAllocator.Allocate<UnarySDNode>();
2317    new (N) UnarySDNode(Opcode, VTs, Operand);
2318  }
2319
2320  AllNodes.push_back(N);
2321#ifndef NDEBUG
2322  VerifyNode(N);
2323#endif
2324  return SDValue(N, 0);
2325}
2326
2327SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2328                                             MVT VT,
2329                                             ConstantSDNode *Cst1,
2330                                             ConstantSDNode *Cst2) {
2331  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2332
2333  switch (Opcode) {
2334  case ISD::ADD:  return getConstant(C1 + C2, VT);
2335  case ISD::SUB:  return getConstant(C1 - C2, VT);
2336  case ISD::MUL:  return getConstant(C1 * C2, VT);
2337  case ISD::UDIV:
2338    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2339    break;
2340  case ISD::UREM:
2341    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2342    break;
2343  case ISD::SDIV:
2344    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2345    break;
2346  case ISD::SREM:
2347    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2348    break;
2349  case ISD::AND:  return getConstant(C1 & C2, VT);
2350  case ISD::OR:   return getConstant(C1 | C2, VT);
2351  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2352  case ISD::SHL:  return getConstant(C1 << C2, VT);
2353  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2354  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2355  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2356  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2357  default: break;
2358  }
2359
2360  return SDValue();
2361}
2362
2363SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2364                              SDValue N1, SDValue N2) {
2365  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2366  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2367  switch (Opcode) {
2368  default: break;
2369  case ISD::TokenFactor:
2370    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2371           N2.getValueType() == MVT::Other && "Invalid token factor!");
2372    // Fold trivial token factors.
2373    if (N1.getOpcode() == ISD::EntryToken) return N2;
2374    if (N2.getOpcode() == ISD::EntryToken) return N1;
2375    if (N1 == N2) return N1;
2376    break;
2377  case ISD::CONCAT_VECTORS:
2378    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2379    // one big BUILD_VECTOR.
2380    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2381        N2.getOpcode() == ISD::BUILD_VECTOR) {
2382      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2383      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2384      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2385    }
2386    break;
2387  case ISD::AND:
2388    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2389           N1.getValueType() == VT && "Binary operator types must match!");
2390    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2391    // worth handling here.
2392    if (N2C && N2C->isNullValue())
2393      return N2;
2394    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2395      return N1;
2396    break;
2397  case ISD::OR:
2398  case ISD::XOR:
2399  case ISD::ADD:
2400  case ISD::SUB:
2401    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2402           N1.getValueType() == VT && "Binary operator types must match!");
2403    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2404    // it's worth handling here.
2405    if (N2C && N2C->isNullValue())
2406      return N1;
2407    break;
2408  case ISD::UDIV:
2409  case ISD::UREM:
2410  case ISD::MULHU:
2411  case ISD::MULHS:
2412  case ISD::MUL:
2413  case ISD::SDIV:
2414  case ISD::SREM:
2415    assert(VT.isInteger() && "This operator does not apply to FP types!");
2416    // fall through
2417  case ISD::FADD:
2418  case ISD::FSUB:
2419  case ISD::FMUL:
2420  case ISD::FDIV:
2421  case ISD::FREM:
2422    if (UnsafeFPMath) {
2423      if (Opcode == ISD::FADD) {
2424        // 0+x --> x
2425        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2426          if (CFP->getValueAPF().isZero())
2427            return N2;
2428        // x+0 --> x
2429        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2430          if (CFP->getValueAPF().isZero())
2431            return N1;
2432      } else if (Opcode == ISD::FSUB) {
2433        // x-0 --> x
2434        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2435          if (CFP->getValueAPF().isZero())
2436            return N1;
2437      }
2438    }
2439    assert(N1.getValueType() == N2.getValueType() &&
2440           N1.getValueType() == VT && "Binary operator types must match!");
2441    break;
2442  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2443    assert(N1.getValueType() == VT &&
2444           N1.getValueType().isFloatingPoint() &&
2445           N2.getValueType().isFloatingPoint() &&
2446           "Invalid FCOPYSIGN!");
2447    break;
2448  case ISD::SHL:
2449  case ISD::SRA:
2450  case ISD::SRL:
2451  case ISD::ROTL:
2452  case ISD::ROTR:
2453    assert(VT == N1.getValueType() &&
2454           "Shift operators return type must be the same as their first arg");
2455    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2456           "Shifts only work on integers");
2457    assert((N2.getValueType() == TLI.getShiftAmountTy() ||
2458            (N2.getValueType().isVector() && N2.getValueType().isInteger())) &&
2459           "Wrong type for shift amount");
2460
2461    // Always fold shifts of i1 values so the code generator doesn't need to
2462    // handle them.  Since we know the size of the shift has to be less than the
2463    // size of the value, the shift/rotate count is guaranteed to be zero.
2464    if (VT == MVT::i1)
2465      return N1;
2466    break;
2467  case ISD::FP_ROUND_INREG: {
2468    MVT EVT = cast<VTSDNode>(N2)->getVT();
2469    assert(VT == N1.getValueType() && "Not an inreg round!");
2470    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2471           "Cannot FP_ROUND_INREG integer types");
2472    assert(EVT.bitsLE(VT) && "Not rounding down!");
2473    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2474    break;
2475  }
2476  case ISD::FP_ROUND:
2477    assert(VT.isFloatingPoint() &&
2478           N1.getValueType().isFloatingPoint() &&
2479           VT.bitsLE(N1.getValueType()) &&
2480           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2481    if (N1.getValueType() == VT) return N1;  // noop conversion.
2482    break;
2483  case ISD::AssertSext:
2484  case ISD::AssertZext: {
2485    MVT EVT = cast<VTSDNode>(N2)->getVT();
2486    assert(VT == N1.getValueType() && "Not an inreg extend!");
2487    assert(VT.isInteger() && EVT.isInteger() &&
2488           "Cannot *_EXTEND_INREG FP types");
2489    assert(EVT.bitsLE(VT) && "Not extending!");
2490    if (VT == EVT) return N1; // noop assertion.
2491    break;
2492  }
2493  case ISD::SIGN_EXTEND_INREG: {
2494    MVT EVT = cast<VTSDNode>(N2)->getVT();
2495    assert(VT == N1.getValueType() && "Not an inreg extend!");
2496    assert(VT.isInteger() && EVT.isInteger() &&
2497           "Cannot *_EXTEND_INREG FP types");
2498    assert(EVT.bitsLE(VT) && "Not extending!");
2499    if (EVT == VT) return N1;  // Not actually extending
2500
2501    if (N1C) {
2502      APInt Val = N1C->getAPIntValue();
2503      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2504      Val <<= Val.getBitWidth()-FromBits;
2505      Val = Val.ashr(Val.getBitWidth()-FromBits);
2506      return getConstant(Val, VT);
2507    }
2508    break;
2509  }
2510  case ISD::EXTRACT_VECTOR_ELT:
2511    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2512    if (N1.getOpcode() == ISD::UNDEF)
2513      return getNode(ISD::UNDEF, VT);
2514
2515    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2516    // expanding copies of large vectors from registers.
2517    if (N2C &&
2518        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2519        N1.getNumOperands() > 0) {
2520      unsigned Factor =
2521        N1.getOperand(0).getValueType().getVectorNumElements();
2522      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2523                     N1.getOperand(N2C->getZExtValue() / Factor),
2524                     getConstant(N2C->getZExtValue() % Factor,
2525                                 N2.getValueType()));
2526    }
2527
2528    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2529    // expanding large vector constants.
2530    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2531      return N1.getOperand(N2C->getZExtValue());
2532
2533    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2534    // operations are lowered to scalars.
2535    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2536      if (N1.getOperand(2) == N2)
2537        return N1.getOperand(1);
2538      else
2539        return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2540    }
2541    break;
2542  case ISD::EXTRACT_ELEMENT:
2543    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2544    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2545           (N1.getValueType().isInteger() == VT.isInteger()) &&
2546           "Wrong types for EXTRACT_ELEMENT!");
2547
2548    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2549    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2550    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2551    if (N1.getOpcode() == ISD::BUILD_PAIR)
2552      return N1.getOperand(N2C->getZExtValue());
2553
2554    // EXTRACT_ELEMENT of a constant int is also very common.
2555    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2556      unsigned ElementSize = VT.getSizeInBits();
2557      unsigned Shift = ElementSize * N2C->getZExtValue();
2558      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2559      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2560    }
2561    break;
2562  case ISD::EXTRACT_SUBVECTOR:
2563    if (N1.getValueType() == VT) // Trivial extraction.
2564      return N1;
2565    break;
2566  }
2567
2568  if (N1C) {
2569    if (N2C) {
2570      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2571      if (SV.getNode()) return SV;
2572    } else {      // Cannonicalize constant to RHS if commutative
2573      if (isCommutativeBinOp(Opcode)) {
2574        std::swap(N1C, N2C);
2575        std::swap(N1, N2);
2576      }
2577    }
2578  }
2579
2580  // Constant fold FP operations.
2581  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2582  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2583  if (N1CFP) {
2584    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2585      // Cannonicalize constant to RHS if commutative
2586      std::swap(N1CFP, N2CFP);
2587      std::swap(N1, N2);
2588    } else if (N2CFP && VT != MVT::ppcf128) {
2589      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2590      APFloat::opStatus s;
2591      switch (Opcode) {
2592      case ISD::FADD:
2593        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2594        if (s != APFloat::opInvalidOp)
2595          return getConstantFP(V1, VT);
2596        break;
2597      case ISD::FSUB:
2598        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2599        if (s!=APFloat::opInvalidOp)
2600          return getConstantFP(V1, VT);
2601        break;
2602      case ISD::FMUL:
2603        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2604        if (s!=APFloat::opInvalidOp)
2605          return getConstantFP(V1, VT);
2606        break;
2607      case ISD::FDIV:
2608        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2609        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2610          return getConstantFP(V1, VT);
2611        break;
2612      case ISD::FREM :
2613        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2614        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2615          return getConstantFP(V1, VT);
2616        break;
2617      case ISD::FCOPYSIGN:
2618        V1.copySign(V2);
2619        return getConstantFP(V1, VT);
2620      default: break;
2621      }
2622    }
2623  }
2624
2625  // Canonicalize an UNDEF to the RHS, even over a constant.
2626  if (N1.getOpcode() == ISD::UNDEF) {
2627    if (isCommutativeBinOp(Opcode)) {
2628      std::swap(N1, N2);
2629    } else {
2630      switch (Opcode) {
2631      case ISD::FP_ROUND_INREG:
2632      case ISD::SIGN_EXTEND_INREG:
2633      case ISD::SUB:
2634      case ISD::FSUB:
2635      case ISD::FDIV:
2636      case ISD::FREM:
2637      case ISD::SRA:
2638        return N1;     // fold op(undef, arg2) -> undef
2639      case ISD::UDIV:
2640      case ISD::SDIV:
2641      case ISD::UREM:
2642      case ISD::SREM:
2643      case ISD::SRL:
2644      case ISD::SHL:
2645        if (!VT.isVector())
2646          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2647        // For vectors, we can't easily build an all zero vector, just return
2648        // the LHS.
2649        return N2;
2650      }
2651    }
2652  }
2653
2654  // Fold a bunch of operators when the RHS is undef.
2655  if (N2.getOpcode() == ISD::UNDEF) {
2656    switch (Opcode) {
2657    case ISD::XOR:
2658      if (N1.getOpcode() == ISD::UNDEF)
2659        // Handle undef ^ undef -> 0 special case. This is a common
2660        // idiom (misuse).
2661        return getConstant(0, VT);
2662      // fallthrough
2663    case ISD::ADD:
2664    case ISD::ADDC:
2665    case ISD::ADDE:
2666    case ISD::SUB:
2667    case ISD::FADD:
2668    case ISD::FSUB:
2669    case ISD::FMUL:
2670    case ISD::FDIV:
2671    case ISD::FREM:
2672    case ISD::UDIV:
2673    case ISD::SDIV:
2674    case ISD::UREM:
2675    case ISD::SREM:
2676      return N2;       // fold op(arg1, undef) -> undef
2677    case ISD::MUL:
2678    case ISD::AND:
2679    case ISD::SRL:
2680    case ISD::SHL:
2681      if (!VT.isVector())
2682        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2683      // For vectors, we can't easily build an all zero vector, just return
2684      // the LHS.
2685      return N1;
2686    case ISD::OR:
2687      if (!VT.isVector())
2688        return getConstant(VT.getIntegerVTBitMask(), VT);
2689      // For vectors, we can't easily build an all one vector, just return
2690      // the LHS.
2691      return N1;
2692    case ISD::SRA:
2693      return N1;
2694    }
2695  }
2696
2697  // Memoize this node if possible.
2698  SDNode *N;
2699  SDVTList VTs = getVTList(VT);
2700  if (VT != MVT::Flag) {
2701    SDValue Ops[] = { N1, N2 };
2702    FoldingSetNodeID ID;
2703    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2704    void *IP = 0;
2705    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2706      return SDValue(E, 0);
2707    N = NodeAllocator.Allocate<BinarySDNode>();
2708    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2709    CSEMap.InsertNode(N, IP);
2710  } else {
2711    N = NodeAllocator.Allocate<BinarySDNode>();
2712    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2713  }
2714
2715  AllNodes.push_back(N);
2716#ifndef NDEBUG
2717  VerifyNode(N);
2718#endif
2719  return SDValue(N, 0);
2720}
2721
2722SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2723                              SDValue N1, SDValue N2, SDValue N3) {
2724  // Perform various simplifications.
2725  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2726  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2727  switch (Opcode) {
2728  case ISD::CONCAT_VECTORS:
2729    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2730    // one big BUILD_VECTOR.
2731    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2732        N2.getOpcode() == ISD::BUILD_VECTOR &&
2733        N3.getOpcode() == ISD::BUILD_VECTOR) {
2734      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2735      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2736      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2737      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2738    }
2739    break;
2740  case ISD::SETCC: {
2741    // Use FoldSetCC to simplify SETCC's.
2742    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2743    if (Simp.getNode()) return Simp;
2744    break;
2745  }
2746  case ISD::SELECT:
2747    if (N1C) {
2748     if (N1C->getZExtValue())
2749        return N2;             // select true, X, Y -> X
2750      else
2751        return N3;             // select false, X, Y -> Y
2752    }
2753
2754    if (N2 == N3) return N2;   // select C, X, X -> X
2755    break;
2756  case ISD::BRCOND:
2757    if (N2C) {
2758      if (N2C->getZExtValue()) // Unconditional branch
2759        return getNode(ISD::BR, MVT::Other, N1, N3);
2760      else
2761        return N1;         // Never-taken branch
2762    }
2763    break;
2764  case ISD::VECTOR_SHUFFLE:
2765    assert(N1.getValueType() == N2.getValueType() &&
2766           N1.getValueType().isVector() &&
2767           VT.isVector() && N3.getValueType().isVector() &&
2768           N3.getOpcode() == ISD::BUILD_VECTOR &&
2769           VT.getVectorNumElements() == N3.getNumOperands() &&
2770           "Illegal VECTOR_SHUFFLE node!");
2771    break;
2772  case ISD::BIT_CONVERT:
2773    // Fold bit_convert nodes from a type to themselves.
2774    if (N1.getValueType() == VT)
2775      return N1;
2776    break;
2777  }
2778
2779  // Memoize node if it doesn't produce a flag.
2780  SDNode *N;
2781  SDVTList VTs = getVTList(VT);
2782  if (VT != MVT::Flag) {
2783    SDValue Ops[] = { N1, N2, N3 };
2784    FoldingSetNodeID ID;
2785    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2786    void *IP = 0;
2787    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2788      return SDValue(E, 0);
2789    N = NodeAllocator.Allocate<TernarySDNode>();
2790    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2791    CSEMap.InsertNode(N, IP);
2792  } else {
2793    N = NodeAllocator.Allocate<TernarySDNode>();
2794    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2795  }
2796  AllNodes.push_back(N);
2797#ifndef NDEBUG
2798  VerifyNode(N);
2799#endif
2800  return SDValue(N, 0);
2801}
2802
2803SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2804                              SDValue N1, SDValue N2, SDValue N3,
2805                              SDValue N4) {
2806  SDValue Ops[] = { N1, N2, N3, N4 };
2807  return getNode(Opcode, VT, Ops, 4);
2808}
2809
2810SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2811                              SDValue N1, SDValue N2, SDValue N3,
2812                              SDValue N4, SDValue N5) {
2813  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2814  return getNode(Opcode, VT, Ops, 5);
2815}
2816
2817/// getMemsetValue - Vectorized representation of the memset value
2818/// operand.
2819static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) {
2820  unsigned NumBits = VT.isVector() ?
2821    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2822  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2823    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2824    unsigned Shift = 8;
2825    for (unsigned i = NumBits; i > 8; i >>= 1) {
2826      Val = (Val << Shift) | Val;
2827      Shift <<= 1;
2828    }
2829    if (VT.isInteger())
2830      return DAG.getConstant(Val, VT);
2831    return DAG.getConstantFP(APFloat(Val), VT);
2832  }
2833
2834  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2835  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2836  unsigned Shift = 8;
2837  for (unsigned i = NumBits; i > 8; i >>= 1) {
2838    Value = DAG.getNode(ISD::OR, VT,
2839                        DAG.getNode(ISD::SHL, VT, Value,
2840                                    DAG.getConstant(Shift,
2841                                                    TLI.getShiftAmountTy())),
2842                        Value);
2843    Shift <<= 1;
2844  }
2845
2846  return Value;
2847}
2848
2849/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2850/// used when a memcpy is turned into a memset when the source is a constant
2851/// string ptr.
2852static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2853                                    const TargetLowering &TLI,
2854                                    std::string &Str, unsigned Offset) {
2855  // Handle vector with all elements zero.
2856  if (Str.empty()) {
2857    if (VT.isInteger())
2858      return DAG.getConstant(0, VT);
2859    unsigned NumElts = VT.getVectorNumElements();
2860    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2861    return DAG.getNode(ISD::BIT_CONVERT, VT,
2862                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2863  }
2864
2865  assert(!VT.isVector() && "Can't handle vector type here!");
2866  unsigned NumBits = VT.getSizeInBits();
2867  unsigned MSB = NumBits / 8;
2868  uint64_t Val = 0;
2869  if (TLI.isLittleEndian())
2870    Offset = Offset + MSB - 1;
2871  for (unsigned i = 0; i != MSB; ++i) {
2872    Val = (Val << 8) | (unsigned char)Str[Offset];
2873    Offset += TLI.isLittleEndian() ? -1 : 1;
2874  }
2875  return DAG.getConstant(Val, VT);
2876}
2877
2878/// getMemBasePlusOffset - Returns base and offset node for the
2879///
2880static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2881                                      SelectionDAG &DAG) {
2882  MVT VT = Base.getValueType();
2883  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2884}
2885
2886/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2887///
2888static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2889  unsigned SrcDelta = 0;
2890  GlobalAddressSDNode *G = NULL;
2891  if (Src.getOpcode() == ISD::GlobalAddress)
2892    G = cast<GlobalAddressSDNode>(Src);
2893  else if (Src.getOpcode() == ISD::ADD &&
2894           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2895           Src.getOperand(1).getOpcode() == ISD::Constant) {
2896    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2897    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2898  }
2899  if (!G)
2900    return false;
2901
2902  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2903  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2904    return true;
2905
2906  return false;
2907}
2908
2909/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2910/// to replace the memset / memcpy is below the threshold. It also returns the
2911/// types of the sequence of memory ops to perform memset / memcpy.
2912static
2913bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2914                              SDValue Dst, SDValue Src,
2915                              unsigned Limit, uint64_t Size, unsigned &Align,
2916                              std::string &Str, bool &isSrcStr,
2917                              SelectionDAG &DAG,
2918                              const TargetLowering &TLI) {
2919  isSrcStr = isMemSrcFromString(Src, Str);
2920  bool isSrcConst = isa<ConstantSDNode>(Src);
2921  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2922  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2923  if (VT != MVT::iAny) {
2924    unsigned NewAlign = (unsigned)
2925      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2926    // If source is a string constant, this will require an unaligned load.
2927    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2928      if (Dst.getOpcode() != ISD::FrameIndex) {
2929        // Can't change destination alignment. It requires a unaligned store.
2930        if (AllowUnalign)
2931          VT = MVT::iAny;
2932      } else {
2933        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2934        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2935        if (MFI->isFixedObjectIndex(FI)) {
2936          // Can't change destination alignment. It requires a unaligned store.
2937          if (AllowUnalign)
2938            VT = MVT::iAny;
2939        } else {
2940          // Give the stack frame object a larger alignment if needed.
2941          if (MFI->getObjectAlignment(FI) < NewAlign)
2942            MFI->setObjectAlignment(FI, NewAlign);
2943          Align = NewAlign;
2944        }
2945      }
2946    }
2947  }
2948
2949  if (VT == MVT::iAny) {
2950    if (AllowUnalign) {
2951      VT = MVT::i64;
2952    } else {
2953      switch (Align & 7) {
2954      case 0:  VT = MVT::i64; break;
2955      case 4:  VT = MVT::i32; break;
2956      case 2:  VT = MVT::i16; break;
2957      default: VT = MVT::i8;  break;
2958      }
2959    }
2960
2961    MVT LVT = MVT::i64;
2962    while (!TLI.isTypeLegal(LVT))
2963      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2964    assert(LVT.isInteger());
2965
2966    if (VT.bitsGT(LVT))
2967      VT = LVT;
2968  }
2969
2970  unsigned NumMemOps = 0;
2971  while (Size != 0) {
2972    unsigned VTSize = VT.getSizeInBits() / 8;
2973    while (VTSize > Size) {
2974      // For now, only use non-vector load / store's for the left-over pieces.
2975      if (VT.isVector()) {
2976        VT = MVT::i64;
2977        while (!TLI.isTypeLegal(VT))
2978          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2979        VTSize = VT.getSizeInBits() / 8;
2980      } else {
2981        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2982        VTSize >>= 1;
2983      }
2984    }
2985
2986    if (++NumMemOps > Limit)
2987      return false;
2988    MemOps.push_back(VT);
2989    Size -= VTSize;
2990  }
2991
2992  return true;
2993}
2994
2995static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG,
2996                                         SDValue Chain, SDValue Dst,
2997                                         SDValue Src, uint64_t Size,
2998                                         unsigned Align, bool AlwaysInline,
2999                                         const Value *DstSV, uint64_t DstSVOff,
3000                                         const Value *SrcSV, uint64_t SrcSVOff){
3001  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3002
3003  // Expand memcpy to a series of load and store ops if the size operand falls
3004  // below a certain threshold.
3005  std::vector<MVT> MemOps;
3006  uint64_t Limit = -1ULL;
3007  if (!AlwaysInline)
3008    Limit = TLI.getMaxStoresPerMemcpy();
3009  unsigned DstAlign = Align;  // Destination alignment can change.
3010  std::string Str;
3011  bool CopyFromStr;
3012  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3013                                Str, CopyFromStr, DAG, TLI))
3014    return SDValue();
3015
3016
3017  bool isZeroStr = CopyFromStr && Str.empty();
3018  SmallVector<SDValue, 8> OutChains;
3019  unsigned NumMemOps = MemOps.size();
3020  uint64_t SrcOff = 0, DstOff = 0;
3021  for (unsigned i = 0; i < NumMemOps; i++) {
3022    MVT VT = MemOps[i];
3023    unsigned VTSize = VT.getSizeInBits() / 8;
3024    SDValue Value, Store;
3025
3026    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3027      // It's unlikely a store of a vector immediate can be done in a single
3028      // instruction. It would require a load from a constantpool first.
3029      // We also handle store a vector with all zero's.
3030      // FIXME: Handle other cases where store of vector immediate is done in
3031      // a single instruction.
3032      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
3033      Store = DAG.getStore(Chain, Value,
3034                           getMemBasePlusOffset(Dst, DstOff, DAG),
3035                           DstSV, DstSVOff + DstOff, false, DstAlign);
3036    } else {
3037      Value = DAG.getLoad(VT, Chain,
3038                          getMemBasePlusOffset(Src, SrcOff, DAG),
3039                          SrcSV, SrcSVOff + SrcOff, false, Align);
3040      Store = DAG.getStore(Chain, Value,
3041                           getMemBasePlusOffset(Dst, DstOff, DAG),
3042                           DstSV, DstSVOff + DstOff, false, DstAlign);
3043    }
3044    OutChains.push_back(Store);
3045    SrcOff += VTSize;
3046    DstOff += VTSize;
3047  }
3048
3049  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3050                     &OutChains[0], OutChains.size());
3051}
3052
3053static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG,
3054                                          SDValue Chain, SDValue Dst,
3055                                          SDValue Src, uint64_t Size,
3056                                          unsigned Align, bool AlwaysInline,
3057                                          const Value *DstSV, uint64_t DstSVOff,
3058                                          const Value *SrcSV, uint64_t SrcSVOff){
3059  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3060
3061  // Expand memmove to a series of load and store ops if the size operand falls
3062  // below a certain threshold.
3063  std::vector<MVT> MemOps;
3064  uint64_t Limit = -1ULL;
3065  if (!AlwaysInline)
3066    Limit = TLI.getMaxStoresPerMemmove();
3067  unsigned DstAlign = Align;  // Destination alignment can change.
3068  std::string Str;
3069  bool CopyFromStr;
3070  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3071                                Str, CopyFromStr, DAG, TLI))
3072    return SDValue();
3073
3074  uint64_t SrcOff = 0, DstOff = 0;
3075
3076  SmallVector<SDValue, 8> LoadValues;
3077  SmallVector<SDValue, 8> LoadChains;
3078  SmallVector<SDValue, 8> OutChains;
3079  unsigned NumMemOps = MemOps.size();
3080  for (unsigned i = 0; i < NumMemOps; i++) {
3081    MVT VT = MemOps[i];
3082    unsigned VTSize = VT.getSizeInBits() / 8;
3083    SDValue Value, Store;
3084
3085    Value = DAG.getLoad(VT, Chain,
3086                        getMemBasePlusOffset(Src, SrcOff, DAG),
3087                        SrcSV, SrcSVOff + SrcOff, false, Align);
3088    LoadValues.push_back(Value);
3089    LoadChains.push_back(Value.getValue(1));
3090    SrcOff += VTSize;
3091  }
3092  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3093                      &LoadChains[0], LoadChains.size());
3094  OutChains.clear();
3095  for (unsigned i = 0; i < NumMemOps; i++) {
3096    MVT VT = MemOps[i];
3097    unsigned VTSize = VT.getSizeInBits() / 8;
3098    SDValue Value, Store;
3099
3100    Store = DAG.getStore(Chain, LoadValues[i],
3101                         getMemBasePlusOffset(Dst, DstOff, DAG),
3102                         DstSV, DstSVOff + DstOff, false, DstAlign);
3103    OutChains.push_back(Store);
3104    DstOff += VTSize;
3105  }
3106
3107  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3108                     &OutChains[0], OutChains.size());
3109}
3110
3111static SDValue getMemsetStores(SelectionDAG &DAG,
3112                                 SDValue Chain, SDValue Dst,
3113                                 SDValue Src, uint64_t Size,
3114                                 unsigned Align,
3115                                 const Value *DstSV, uint64_t DstSVOff) {
3116  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3117
3118  // Expand memset to a series of load/store ops if the size operand
3119  // falls below a certain threshold.
3120  std::vector<MVT> MemOps;
3121  std::string Str;
3122  bool CopyFromStr;
3123  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3124                                Size, Align, Str, CopyFromStr, DAG, TLI))
3125    return SDValue();
3126
3127  SmallVector<SDValue, 8> OutChains;
3128  uint64_t DstOff = 0;
3129
3130  unsigned NumMemOps = MemOps.size();
3131  for (unsigned i = 0; i < NumMemOps; i++) {
3132    MVT VT = MemOps[i];
3133    unsigned VTSize = VT.getSizeInBits() / 8;
3134    SDValue Value = getMemsetValue(Src, VT, DAG);
3135    SDValue Store = DAG.getStore(Chain, Value,
3136                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3137                                 DstSV, DstSVOff + DstOff);
3138    OutChains.push_back(Store);
3139    DstOff += VTSize;
3140  }
3141
3142  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3143                     &OutChains[0], OutChains.size());
3144}
3145
3146SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst,
3147                                SDValue Src, SDValue Size,
3148                                unsigned Align, bool AlwaysInline,
3149                                const Value *DstSV, uint64_t DstSVOff,
3150                                const Value *SrcSV, uint64_t SrcSVOff) {
3151
3152  // Check to see if we should lower the memcpy to loads and stores first.
3153  // For cases within the target-specified limits, this is the best choice.
3154  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3155  if (ConstantSize) {
3156    // Memcpy with size zero? Just return the original chain.
3157    if (ConstantSize->isNullValue())
3158      return Chain;
3159
3160    SDValue Result =
3161      getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3162                              ConstantSize->getZExtValue(),
3163                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3164    if (Result.getNode())
3165      return Result;
3166  }
3167
3168  // Then check to see if we should lower the memcpy with target-specific
3169  // code. If the target chooses to do this, this is the next best.
3170  SDValue Result =
3171    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
3172                                AlwaysInline,
3173                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3174  if (Result.getNode())
3175    return Result;
3176
3177  // If we really need inline code and the target declined to provide it,
3178  // use a (potentially long) sequence of loads and stores.
3179  if (AlwaysInline) {
3180    assert(ConstantSize && "AlwaysInline requires a constant size!");
3181    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3182                                   ConstantSize->getZExtValue(), Align, true,
3183                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3184  }
3185
3186  // Emit a library call.
3187  TargetLowering::ArgListTy Args;
3188  TargetLowering::ArgListEntry Entry;
3189  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3190  Entry.Node = Dst; Args.push_back(Entry);
3191  Entry.Node = Src; Args.push_back(Entry);
3192  Entry.Node = Size; Args.push_back(Entry);
3193  std::pair<SDValue,SDValue> CallResult =
3194    TLI.LowerCallTo(Chain, Type::VoidTy,
3195                    false, false, false, false, CallingConv::C, false,
3196                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3197                    Args, *this);
3198  return CallResult.second;
3199}
3200
3201SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst,
3202                                 SDValue Src, SDValue Size,
3203                                 unsigned Align,
3204                                 const Value *DstSV, uint64_t DstSVOff,
3205                                 const Value *SrcSV, uint64_t SrcSVOff) {
3206
3207  // Check to see if we should lower the memmove to loads and stores first.
3208  // For cases within the target-specified limits, this is the best choice.
3209  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3210  if (ConstantSize) {
3211    // Memmove with size zero? Just return the original chain.
3212    if (ConstantSize->isNullValue())
3213      return Chain;
3214
3215    SDValue Result =
3216      getMemmoveLoadsAndStores(*this, Chain, Dst, Src,
3217                               ConstantSize->getZExtValue(),
3218                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3219    if (Result.getNode())
3220      return Result;
3221  }
3222
3223  // Then check to see if we should lower the memmove with target-specific
3224  // code. If the target chooses to do this, this is the next best.
3225  SDValue Result =
3226    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
3227                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3228  if (Result.getNode())
3229    return Result;
3230
3231  // Emit a library call.
3232  TargetLowering::ArgListTy Args;
3233  TargetLowering::ArgListEntry Entry;
3234  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3235  Entry.Node = Dst; Args.push_back(Entry);
3236  Entry.Node = Src; Args.push_back(Entry);
3237  Entry.Node = Size; Args.push_back(Entry);
3238  std::pair<SDValue,SDValue> CallResult =
3239    TLI.LowerCallTo(Chain, Type::VoidTy,
3240                    false, false, false, false, CallingConv::C, false,
3241                    getExternalSymbol("memmove", TLI.getPointerTy()),
3242                    Args, *this);
3243  return CallResult.second;
3244}
3245
3246SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst,
3247                                SDValue Src, SDValue Size,
3248                                unsigned Align,
3249                                const Value *DstSV, uint64_t DstSVOff) {
3250
3251  // Check to see if we should lower the memset to stores first.
3252  // For cases within the target-specified limits, this is the best choice.
3253  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3254  if (ConstantSize) {
3255    // Memset with size zero? Just return the original chain.
3256    if (ConstantSize->isNullValue())
3257      return Chain;
3258
3259    SDValue Result =
3260      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(),
3261                      Align, DstSV, DstSVOff);
3262    if (Result.getNode())
3263      return Result;
3264  }
3265
3266  // Then check to see if we should lower the memset with target-specific
3267  // code. If the target chooses to do this, this is the next best.
3268  SDValue Result =
3269    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3270                                DstSV, DstSVOff);
3271  if (Result.getNode())
3272    return Result;
3273
3274  // Emit a library call.
3275  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3276  TargetLowering::ArgListTy Args;
3277  TargetLowering::ArgListEntry Entry;
3278  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3279  Args.push_back(Entry);
3280  // Extend or truncate the argument to be an i32 value for the call.
3281  if (Src.getValueType().bitsGT(MVT::i32))
3282    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3283  else
3284    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3285  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3286  Args.push_back(Entry);
3287  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3288  Args.push_back(Entry);
3289  std::pair<SDValue,SDValue> CallResult =
3290    TLI.LowerCallTo(Chain, Type::VoidTy,
3291                    false, false, false, false, CallingConv::C, false,
3292                    getExternalSymbol("memset", TLI.getPointerTy()),
3293                    Args, *this);
3294  return CallResult.second;
3295}
3296
3297SDValue SelectionDAG::getAtomic(unsigned Opcode, MVT MemVT,
3298                                SDValue Chain,
3299                                SDValue Ptr, SDValue Cmp,
3300                                SDValue Swp, const Value* PtrVal,
3301                                unsigned Alignment) {
3302  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3303  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3304
3305  MVT VT = Cmp.getValueType();
3306
3307  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3308    Alignment = getMVTAlignment(MemVT);
3309
3310  SDVTList VTs = getVTList(VT, MVT::Other);
3311  FoldingSetNodeID ID;
3312  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3313  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3314  void* IP = 0;
3315  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3316    return SDValue(E, 0);
3317  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3318  new (N) AtomicSDNode(Opcode, VTs, MemVT,
3319                       Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3320  CSEMap.InsertNode(N, IP);
3321  AllNodes.push_back(N);
3322  return SDValue(N, 0);
3323}
3324
3325SDValue SelectionDAG::getAtomic(unsigned Opcode, MVT MemVT,
3326                                SDValue Chain,
3327                                SDValue Ptr, SDValue Val,
3328                                const Value* PtrVal,
3329                                unsigned Alignment) {
3330  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3331          Opcode == ISD::ATOMIC_LOAD_SUB ||
3332          Opcode == ISD::ATOMIC_LOAD_AND ||
3333          Opcode == ISD::ATOMIC_LOAD_OR ||
3334          Opcode == ISD::ATOMIC_LOAD_XOR ||
3335          Opcode == ISD::ATOMIC_LOAD_NAND ||
3336          Opcode == ISD::ATOMIC_LOAD_MIN ||
3337          Opcode == ISD::ATOMIC_LOAD_MAX ||
3338          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3339          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3340          Opcode == ISD::ATOMIC_SWAP) &&
3341         "Invalid Atomic Op");
3342
3343  MVT VT = Val.getValueType();
3344
3345  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3346    Alignment = getMVTAlignment(MemVT);
3347
3348  SDVTList VTs = getVTList(VT, MVT::Other);
3349  FoldingSetNodeID ID;
3350  SDValue Ops[] = {Chain, Ptr, Val};
3351  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3352  void* IP = 0;
3353  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3354    return SDValue(E, 0);
3355  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3356  new (N) AtomicSDNode(Opcode, VTs, MemVT,
3357                       Chain, Ptr, Val, PtrVal, Alignment);
3358  CSEMap.InsertNode(N, IP);
3359  AllNodes.push_back(N);
3360  return SDValue(N, 0);
3361}
3362
3363/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3364/// Allowed to return something different (and simpler) if Simplify is true.
3365SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps) {
3366  if (NumOps == 1)
3367    return Ops[0];
3368
3369  SmallVector<MVT, 4> VTs;
3370  VTs.reserve(NumOps);
3371  for (unsigned i = 0; i < NumOps; ++i)
3372    VTs.push_back(Ops[i].getValueType());
3373  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3374}
3375
3376SDValue
3377SelectionDAG::getMemIntrinsicNode(unsigned Opcode,
3378                                  const MVT *VTs, unsigned NumVTs,
3379                                  const SDValue *Ops, unsigned NumOps,
3380                                  MVT MemVT, const Value *srcValue, int SVOff,
3381                                  unsigned Align, bool Vol,
3382                                  bool ReadMem, bool WriteMem) {
3383  return getMemIntrinsicNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps,
3384                             MemVT, srcValue, SVOff, Align, Vol,
3385                             ReadMem, WriteMem);
3386}
3387
3388SDValue
3389SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDVTList VTList,
3390                                  const SDValue *Ops, unsigned NumOps,
3391                                  MVT MemVT, const Value *srcValue, int SVOff,
3392                                  unsigned Align, bool Vol,
3393                                  bool ReadMem, bool WriteMem) {
3394  // Memoize the node unless it returns a flag.
3395  MemIntrinsicSDNode *N;
3396  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3397    FoldingSetNodeID ID;
3398    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3399    void *IP = 0;
3400    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3401      return SDValue(E, 0);
3402
3403    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3404    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3405                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3406    CSEMap.InsertNode(N, IP);
3407  } else {
3408    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3409    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3410                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3411  }
3412  AllNodes.push_back(N);
3413  return SDValue(N, 0);
3414}
3415
3416SDValue
3417SelectionDAG::getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall,
3418                      bool IsInreg, SDVTList VTs,
3419                      const SDValue *Operands, unsigned NumOperands) {
3420  // Do not include isTailCall in the folding set profile.
3421  FoldingSetNodeID ID;
3422  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3423  ID.AddInteger(CallingConv);
3424  ID.AddInteger(IsVarArgs);
3425  void *IP = 0;
3426  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3427    // Instead of including isTailCall in the folding set, we just
3428    // set the flag of the existing node.
3429    if (!IsTailCall)
3430      cast<CallSDNode>(E)->setNotTailCall();
3431    return SDValue(E, 0);
3432  }
3433  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3434  new (N) CallSDNode(CallingConv, IsVarArgs, IsTailCall, IsInreg,
3435                     VTs, Operands, NumOperands);
3436  CSEMap.InsertNode(N, IP);
3437  AllNodes.push_back(N);
3438  return SDValue(N, 0);
3439}
3440
3441SDValue
3442SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3443                      MVT VT, SDValue Chain,
3444                      SDValue Ptr, SDValue Offset,
3445                      const Value *SV, int SVOffset, MVT EVT,
3446                      bool isVolatile, unsigned Alignment) {
3447  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3448    Alignment = getMVTAlignment(VT);
3449
3450  if (VT == EVT) {
3451    ExtType = ISD::NON_EXTLOAD;
3452  } else if (ExtType == ISD::NON_EXTLOAD) {
3453    assert(VT == EVT && "Non-extending load from different memory type!");
3454  } else {
3455    // Extending load.
3456    if (VT.isVector())
3457      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3458             "Invalid vector extload!");
3459    else
3460      assert(EVT.bitsLT(VT) &&
3461             "Should only be an extending load, not truncating!");
3462    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3463           "Cannot sign/zero extend a FP/Vector load!");
3464    assert(VT.isInteger() == EVT.isInteger() &&
3465           "Cannot convert from FP to Int or Int -> FP!");
3466  }
3467
3468  bool Indexed = AM != ISD::UNINDEXED;
3469  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3470         "Unindexed load with an offset!");
3471
3472  SDVTList VTs = Indexed ?
3473    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3474  SDValue Ops[] = { Chain, Ptr, Offset };
3475  FoldingSetNodeID ID;
3476  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3477  ID.AddInteger(AM);
3478  ID.AddInteger(ExtType);
3479  ID.AddInteger(EVT.getRawBits());
3480  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3481  void *IP = 0;
3482  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3483    return SDValue(E, 0);
3484  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3485  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3486                     Alignment, isVolatile);
3487  CSEMap.InsertNode(N, IP);
3488  AllNodes.push_back(N);
3489  return SDValue(N, 0);
3490}
3491
3492SDValue SelectionDAG::getLoad(MVT VT,
3493                              SDValue Chain, SDValue Ptr,
3494                              const Value *SV, int SVOffset,
3495                              bool isVolatile, unsigned Alignment) {
3496  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3497  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3498                 SV, SVOffset, VT, isVolatile, Alignment);
3499}
3500
3501SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3502                                 SDValue Chain, SDValue Ptr,
3503                                 const Value *SV,
3504                                 int SVOffset, MVT EVT,
3505                                 bool isVolatile, unsigned Alignment) {
3506  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3507  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3508                 SV, SVOffset, EVT, isVolatile, Alignment);
3509}
3510
3511SDValue
3512SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
3513                             SDValue Offset, ISD::MemIndexedMode AM) {
3514  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3515  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3516         "Load is already a indexed load!");
3517  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3518                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3519                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3520                 LD->isVolatile(), LD->getAlignment());
3521}
3522
3523SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
3524                               SDValue Ptr, const Value *SV, int SVOffset,
3525                               bool isVolatile, unsigned Alignment) {
3526  MVT VT = Val.getValueType();
3527
3528  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3529    Alignment = getMVTAlignment(VT);
3530
3531  SDVTList VTs = getVTList(MVT::Other);
3532  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3533  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3534  FoldingSetNodeID ID;
3535  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3536  ID.AddInteger(ISD::UNINDEXED);
3537  ID.AddInteger(false);
3538  ID.AddInteger(VT.getRawBits());
3539  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3540  void *IP = 0;
3541  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3542    return SDValue(E, 0);
3543  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3544  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3545                      VT, SV, SVOffset, Alignment, isVolatile);
3546  CSEMap.InsertNode(N, IP);
3547  AllNodes.push_back(N);
3548  return SDValue(N, 0);
3549}
3550
3551SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
3552                                    SDValue Ptr, const Value *SV,
3553                                    int SVOffset, MVT SVT,
3554                                    bool isVolatile, unsigned Alignment) {
3555  MVT VT = Val.getValueType();
3556
3557  if (VT == SVT)
3558    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3559
3560  assert(VT.bitsGT(SVT) && "Not a truncation?");
3561  assert(VT.isInteger() == SVT.isInteger() &&
3562         "Can't do FP-INT conversion!");
3563
3564  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3565    Alignment = getMVTAlignment(VT);
3566
3567  SDVTList VTs = getVTList(MVT::Other);
3568  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3569  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3570  FoldingSetNodeID ID;
3571  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3572  ID.AddInteger(ISD::UNINDEXED);
3573  ID.AddInteger(1);
3574  ID.AddInteger(SVT.getRawBits());
3575  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3576  void *IP = 0;
3577  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3578    return SDValue(E, 0);
3579  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3580  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3581                      SVT, SV, SVOffset, Alignment, isVolatile);
3582  CSEMap.InsertNode(N, IP);
3583  AllNodes.push_back(N);
3584  return SDValue(N, 0);
3585}
3586
3587SDValue
3588SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
3589                              SDValue Offset, ISD::MemIndexedMode AM) {
3590  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3591  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3592         "Store is already a indexed store!");
3593  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3594  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3595  FoldingSetNodeID ID;
3596  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3597  ID.AddInteger(AM);
3598  ID.AddInteger(ST->isTruncatingStore());
3599  ID.AddInteger(ST->getMemoryVT().getRawBits());
3600  ID.AddInteger(ST->getRawFlags());
3601  void *IP = 0;
3602  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3603    return SDValue(E, 0);
3604  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3605  new (N) StoreSDNode(Ops, VTs, AM,
3606                      ST->isTruncatingStore(), ST->getMemoryVT(),
3607                      ST->getSrcValue(), ST->getSrcValueOffset(),
3608                      ST->getAlignment(), ST->isVolatile());
3609  CSEMap.InsertNode(N, IP);
3610  AllNodes.push_back(N);
3611  return SDValue(N, 0);
3612}
3613
3614SDValue SelectionDAG::getVAArg(MVT VT,
3615                               SDValue Chain, SDValue Ptr,
3616                               SDValue SV) {
3617  SDValue Ops[] = { Chain, Ptr, SV };
3618  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3619}
3620
3621SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3622                              const SDUse *Ops, unsigned NumOps) {
3623  switch (NumOps) {
3624  case 0: return getNode(Opcode, VT);
3625  case 1: return getNode(Opcode, VT, Ops[0]);
3626  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3627  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3628  default: break;
3629  }
3630
3631  // Copy from an SDUse array into an SDValue array for use with
3632  // the regular getNode logic.
3633  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3634  return getNode(Opcode, VT, &NewOps[0], NumOps);
3635}
3636
3637SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3638                              const SDValue *Ops, unsigned NumOps) {
3639  switch (NumOps) {
3640  case 0: return getNode(Opcode, VT);
3641  case 1: return getNode(Opcode, VT, Ops[0]);
3642  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3643  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3644  default: break;
3645  }
3646
3647  switch (Opcode) {
3648  default: break;
3649  case ISD::SELECT_CC: {
3650    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3651    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3652           "LHS and RHS of condition must have same type!");
3653    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3654           "True and False arms of SelectCC must have same type!");
3655    assert(Ops[2].getValueType() == VT &&
3656           "select_cc node must be of same type as true and false value!");
3657    break;
3658  }
3659  case ISD::BR_CC: {
3660    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3661    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3662           "LHS/RHS of comparison should match types!");
3663    break;
3664  }
3665  }
3666
3667  // Memoize nodes.
3668  SDNode *N;
3669  SDVTList VTs = getVTList(VT);
3670  if (VT != MVT::Flag) {
3671    FoldingSetNodeID ID;
3672    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3673    void *IP = 0;
3674    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3675      return SDValue(E, 0);
3676    N = NodeAllocator.Allocate<SDNode>();
3677    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3678    CSEMap.InsertNode(N, IP);
3679  } else {
3680    N = NodeAllocator.Allocate<SDNode>();
3681    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3682  }
3683  AllNodes.push_back(N);
3684#ifndef NDEBUG
3685  VerifyNode(N);
3686#endif
3687  return SDValue(N, 0);
3688}
3689
3690SDValue SelectionDAG::getNode(unsigned Opcode,
3691                              const std::vector<MVT> &ResultTys,
3692                              const SDValue *Ops, unsigned NumOps) {
3693  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3694                 Ops, NumOps);
3695}
3696
3697SDValue SelectionDAG::getNode(unsigned Opcode,
3698                              const MVT *VTs, unsigned NumVTs,
3699                              const SDValue *Ops, unsigned NumOps) {
3700  if (NumVTs == 1)
3701    return getNode(Opcode, VTs[0], Ops, NumOps);
3702  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3703}
3704
3705SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3706                              const SDValue *Ops, unsigned NumOps) {
3707  if (VTList.NumVTs == 1)
3708    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3709
3710  switch (Opcode) {
3711  // FIXME: figure out how to safely handle things like
3712  // int foo(int x) { return 1 << (x & 255); }
3713  // int bar() { return foo(256); }
3714#if 0
3715  case ISD::SRA_PARTS:
3716  case ISD::SRL_PARTS:
3717  case ISD::SHL_PARTS:
3718    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3719        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3720      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3721    else if (N3.getOpcode() == ISD::AND)
3722      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3723        // If the and is only masking out bits that cannot effect the shift,
3724        // eliminate the and.
3725        unsigned NumBits = VT.getSizeInBits()*2;
3726        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3727          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3728      }
3729    break;
3730#endif
3731  }
3732
3733  // Memoize the node unless it returns a flag.
3734  SDNode *N;
3735  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3736    FoldingSetNodeID ID;
3737    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3738    void *IP = 0;
3739    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3740      return SDValue(E, 0);
3741    if (NumOps == 1) {
3742      N = NodeAllocator.Allocate<UnarySDNode>();
3743      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3744    } else if (NumOps == 2) {
3745      N = NodeAllocator.Allocate<BinarySDNode>();
3746      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3747    } else if (NumOps == 3) {
3748      N = NodeAllocator.Allocate<TernarySDNode>();
3749      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3750    } else {
3751      N = NodeAllocator.Allocate<SDNode>();
3752      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3753    }
3754    CSEMap.InsertNode(N, IP);
3755  } else {
3756    if (NumOps == 1) {
3757      N = NodeAllocator.Allocate<UnarySDNode>();
3758      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3759    } else if (NumOps == 2) {
3760      N = NodeAllocator.Allocate<BinarySDNode>();
3761      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3762    } else if (NumOps == 3) {
3763      N = NodeAllocator.Allocate<TernarySDNode>();
3764      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3765    } else {
3766      N = NodeAllocator.Allocate<SDNode>();
3767      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3768    }
3769  }
3770  AllNodes.push_back(N);
3771#ifndef NDEBUG
3772  VerifyNode(N);
3773#endif
3774  return SDValue(N, 0);
3775}
3776
3777SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3778  return getNode(Opcode, VTList, 0, 0);
3779}
3780
3781SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3782                                SDValue N1) {
3783  SDValue Ops[] = { N1 };
3784  return getNode(Opcode, VTList, Ops, 1);
3785}
3786
3787SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3788                              SDValue N1, SDValue N2) {
3789  SDValue Ops[] = { N1, N2 };
3790  return getNode(Opcode, VTList, Ops, 2);
3791}
3792
3793SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3794                              SDValue N1, SDValue N2, SDValue N3) {
3795  SDValue Ops[] = { N1, N2, N3 };
3796  return getNode(Opcode, VTList, Ops, 3);
3797}
3798
3799SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3800                              SDValue N1, SDValue N2, SDValue N3,
3801                              SDValue N4) {
3802  SDValue Ops[] = { N1, N2, N3, N4 };
3803  return getNode(Opcode, VTList, Ops, 4);
3804}
3805
3806SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3807                              SDValue N1, SDValue N2, SDValue N3,
3808                              SDValue N4, SDValue N5) {
3809  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3810  return getNode(Opcode, VTList, Ops, 5);
3811}
3812
3813SDVTList SelectionDAG::getVTList(MVT VT) {
3814  return makeVTList(SDNode::getValueTypeList(VT), 1);
3815}
3816
3817SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3818  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3819       E = VTList.rend(); I != E; ++I)
3820    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3821      return *I;
3822
3823  MVT *Array = Allocator.Allocate<MVT>(2);
3824  Array[0] = VT1;
3825  Array[1] = VT2;
3826  SDVTList Result = makeVTList(Array, 2);
3827  VTList.push_back(Result);
3828  return Result;
3829}
3830
3831SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3832  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3833       E = VTList.rend(); I != E; ++I)
3834    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3835                          I->VTs[2] == VT3)
3836      return *I;
3837
3838  MVT *Array = Allocator.Allocate<MVT>(3);
3839  Array[0] = VT1;
3840  Array[1] = VT2;
3841  Array[2] = VT3;
3842  SDVTList Result = makeVTList(Array, 3);
3843  VTList.push_back(Result);
3844  return Result;
3845}
3846
3847SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
3848  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3849       E = VTList.rend(); I != E; ++I)
3850    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3851                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
3852      return *I;
3853
3854  MVT *Array = Allocator.Allocate<MVT>(3);
3855  Array[0] = VT1;
3856  Array[1] = VT2;
3857  Array[2] = VT3;
3858  Array[3] = VT4;
3859  SDVTList Result = makeVTList(Array, 4);
3860  VTList.push_back(Result);
3861  return Result;
3862}
3863
3864SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3865  switch (NumVTs) {
3866    case 0: assert(0 && "Cannot have nodes without results!");
3867    case 1: return getVTList(VTs[0]);
3868    case 2: return getVTList(VTs[0], VTs[1]);
3869    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3870    default: break;
3871  }
3872
3873  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3874       E = VTList.rend(); I != E; ++I) {
3875    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3876      continue;
3877
3878    bool NoMatch = false;
3879    for (unsigned i = 2; i != NumVTs; ++i)
3880      if (VTs[i] != I->VTs[i]) {
3881        NoMatch = true;
3882        break;
3883      }
3884    if (!NoMatch)
3885      return *I;
3886  }
3887
3888  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3889  std::copy(VTs, VTs+NumVTs, Array);
3890  SDVTList Result = makeVTList(Array, NumVTs);
3891  VTList.push_back(Result);
3892  return Result;
3893}
3894
3895
3896/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3897/// specified operands.  If the resultant node already exists in the DAG,
3898/// this does not modify the specified node, instead it returns the node that
3899/// already exists.  If the resultant node does not exist in the DAG, the
3900/// input node is returned.  As a degenerate case, if you specify the same
3901/// input operands as the node already has, the input node is returned.
3902SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3903  SDNode *N = InN.getNode();
3904  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3905
3906  // Check to see if there is no change.
3907  if (Op == N->getOperand(0)) return InN;
3908
3909  // See if the modified node already exists.
3910  void *InsertPos = 0;
3911  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3912    return SDValue(Existing, InN.getResNo());
3913
3914  // Nope it doesn't.  Remove the node from its current place in the maps.
3915  if (InsertPos)
3916    if (!RemoveNodeFromCSEMaps(N))
3917      InsertPos = 0;
3918
3919  // Now we update the operands.
3920  N->OperandList[0].set(Op);
3921
3922  // If this gets put into a CSE map, add it.
3923  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3924  return InN;
3925}
3926
3927SDValue SelectionDAG::
3928UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3929  SDNode *N = InN.getNode();
3930  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3931
3932  // Check to see if there is no change.
3933  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3934    return InN;   // No operands changed, just return the input node.
3935
3936  // See if the modified node already exists.
3937  void *InsertPos = 0;
3938  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3939    return SDValue(Existing, InN.getResNo());
3940
3941  // Nope it doesn't.  Remove the node from its current place in the maps.
3942  if (InsertPos)
3943    if (!RemoveNodeFromCSEMaps(N))
3944      InsertPos = 0;
3945
3946  // Now we update the operands.
3947  if (N->OperandList[0] != Op1)
3948    N->OperandList[0].set(Op1);
3949  if (N->OperandList[1] != Op2)
3950    N->OperandList[1].set(Op2);
3951
3952  // If this gets put into a CSE map, add it.
3953  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3954  return InN;
3955}
3956
3957SDValue SelectionDAG::
3958UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3959  SDValue Ops[] = { Op1, Op2, Op3 };
3960  return UpdateNodeOperands(N, Ops, 3);
3961}
3962
3963SDValue SelectionDAG::
3964UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3965                   SDValue Op3, SDValue Op4) {
3966  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
3967  return UpdateNodeOperands(N, Ops, 4);
3968}
3969
3970SDValue SelectionDAG::
3971UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3972                   SDValue Op3, SDValue Op4, SDValue Op5) {
3973  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3974  return UpdateNodeOperands(N, Ops, 5);
3975}
3976
3977SDValue SelectionDAG::
3978UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
3979  SDNode *N = InN.getNode();
3980  assert(N->getNumOperands() == NumOps &&
3981         "Update with wrong number of operands");
3982
3983  // Check to see if there is no change.
3984  bool AnyChange = false;
3985  for (unsigned i = 0; i != NumOps; ++i) {
3986    if (Ops[i] != N->getOperand(i)) {
3987      AnyChange = true;
3988      break;
3989    }
3990  }
3991
3992  // No operands changed, just return the input node.
3993  if (!AnyChange) return InN;
3994
3995  // See if the modified node already exists.
3996  void *InsertPos = 0;
3997  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3998    return SDValue(Existing, InN.getResNo());
3999
4000  // Nope it doesn't.  Remove the node from its current place in the maps.
4001  if (InsertPos)
4002    if (!RemoveNodeFromCSEMaps(N))
4003      InsertPos = 0;
4004
4005  // Now we update the operands.
4006  for (unsigned i = 0; i != NumOps; ++i)
4007    if (N->OperandList[i] != Ops[i])
4008      N->OperandList[i].set(Ops[i]);
4009
4010  // If this gets put into a CSE map, add it.
4011  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4012  return InN;
4013}
4014
4015/// DropOperands - Release the operands and set this node to have
4016/// zero operands.
4017void SDNode::DropOperands() {
4018  // Unlike the code in MorphNodeTo that does this, we don't need to
4019  // watch for dead nodes here.
4020  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4021    SDUse &Use = *I++;
4022    Use.set(SDValue());
4023  }
4024}
4025
4026/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4027/// machine opcode.
4028///
4029SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4030                                   MVT VT) {
4031  SDVTList VTs = getVTList(VT);
4032  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4033}
4034
4035SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4036                                   MVT VT, SDValue Op1) {
4037  SDVTList VTs = getVTList(VT);
4038  SDValue Ops[] = { Op1 };
4039  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4040}
4041
4042SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4043                                   MVT VT, SDValue Op1,
4044                                   SDValue Op2) {
4045  SDVTList VTs = getVTList(VT);
4046  SDValue Ops[] = { Op1, Op2 };
4047  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4048}
4049
4050SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4051                                   MVT VT, SDValue Op1,
4052                                   SDValue Op2, SDValue Op3) {
4053  SDVTList VTs = getVTList(VT);
4054  SDValue Ops[] = { Op1, Op2, Op3 };
4055  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4056}
4057
4058SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4059                                   MVT VT, const SDValue *Ops,
4060                                   unsigned NumOps) {
4061  SDVTList VTs = getVTList(VT);
4062  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4063}
4064
4065SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4066                                   MVT VT1, MVT VT2, const SDValue *Ops,
4067                                   unsigned NumOps) {
4068  SDVTList VTs = getVTList(VT1, VT2);
4069  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4070}
4071
4072SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4073                                   MVT VT1, MVT VT2) {
4074  SDVTList VTs = getVTList(VT1, VT2);
4075  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4076}
4077
4078SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4079                                   MVT VT1, MVT VT2, MVT VT3,
4080                                   const SDValue *Ops, unsigned NumOps) {
4081  SDVTList VTs = getVTList(VT1, VT2, VT3);
4082  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4083}
4084
4085SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4086                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4087                                   const SDValue *Ops, unsigned NumOps) {
4088  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4089  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4090}
4091
4092SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4093                                   MVT VT1, MVT VT2,
4094                                   SDValue Op1) {
4095  SDVTList VTs = getVTList(VT1, VT2);
4096  SDValue Ops[] = { Op1 };
4097  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4098}
4099
4100SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4101                                   MVT VT1, MVT VT2,
4102                                   SDValue Op1, SDValue Op2) {
4103  SDVTList VTs = getVTList(VT1, VT2);
4104  SDValue Ops[] = { Op1, Op2 };
4105  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4106}
4107
4108SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4109                                   MVT VT1, MVT VT2,
4110                                   SDValue Op1, SDValue Op2,
4111                                   SDValue Op3) {
4112  SDVTList VTs = getVTList(VT1, VT2);
4113  SDValue Ops[] = { Op1, Op2, Op3 };
4114  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4115}
4116
4117SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4118                                   MVT VT1, MVT VT2, MVT VT3,
4119                                   SDValue Op1, SDValue Op2,
4120                                   SDValue Op3) {
4121  SDVTList VTs = getVTList(VT1, VT2, VT3);
4122  SDValue Ops[] = { Op1, Op2, Op3 };
4123  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4124}
4125
4126SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4127                                   SDVTList VTs, const SDValue *Ops,
4128                                   unsigned NumOps) {
4129  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4130}
4131
4132SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4133                                  MVT VT) {
4134  SDVTList VTs = getVTList(VT);
4135  return MorphNodeTo(N, Opc, VTs, 0, 0);
4136}
4137
4138SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4139                                  MVT VT, SDValue Op1) {
4140  SDVTList VTs = getVTList(VT);
4141  SDValue Ops[] = { Op1 };
4142  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4143}
4144
4145SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4146                                  MVT VT, SDValue Op1,
4147                                  SDValue Op2) {
4148  SDVTList VTs = getVTList(VT);
4149  SDValue Ops[] = { Op1, Op2 };
4150  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4151}
4152
4153SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4154                                  MVT VT, SDValue Op1,
4155                                  SDValue Op2, SDValue Op3) {
4156  SDVTList VTs = getVTList(VT);
4157  SDValue Ops[] = { Op1, Op2, Op3 };
4158  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4159}
4160
4161SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4162                                  MVT VT, const SDValue *Ops,
4163                                  unsigned NumOps) {
4164  SDVTList VTs = getVTList(VT);
4165  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4166}
4167
4168SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4169                                  MVT VT1, MVT VT2, const SDValue *Ops,
4170                                  unsigned NumOps) {
4171  SDVTList VTs = getVTList(VT1, VT2);
4172  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4173}
4174
4175SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4176                                  MVT VT1, MVT VT2) {
4177  SDVTList VTs = getVTList(VT1, VT2);
4178  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4179}
4180
4181SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4182                                  MVT VT1, MVT VT2, MVT VT3,
4183                                  const SDValue *Ops, unsigned NumOps) {
4184  SDVTList VTs = getVTList(VT1, VT2, VT3);
4185  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4186}
4187
4188SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4189                                  MVT VT1, MVT VT2,
4190                                  SDValue Op1) {
4191  SDVTList VTs = getVTList(VT1, VT2);
4192  SDValue Ops[] = { Op1 };
4193  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4194}
4195
4196SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4197                                  MVT VT1, MVT VT2,
4198                                  SDValue Op1, SDValue Op2) {
4199  SDVTList VTs = getVTList(VT1, VT2);
4200  SDValue Ops[] = { Op1, Op2 };
4201  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4202}
4203
4204SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4205                                  MVT VT1, MVT VT2,
4206                                  SDValue Op1, SDValue Op2,
4207                                  SDValue Op3) {
4208  SDVTList VTs = getVTList(VT1, VT2);
4209  SDValue Ops[] = { Op1, Op2, Op3 };
4210  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4211}
4212
4213/// MorphNodeTo - These *mutate* the specified node to have the specified
4214/// return type, opcode, and operands.
4215///
4216/// Note that MorphNodeTo returns the resultant node.  If there is already a
4217/// node of the specified opcode and operands, it returns that node instead of
4218/// the current one.
4219///
4220/// Using MorphNodeTo is faster than creating a new node and swapping it in
4221/// with ReplaceAllUsesWith both because it often avoids allocating a new
4222/// node, and because it doesn't require CSE recalculation for any of
4223/// the node's users.
4224///
4225SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4226                                  SDVTList VTs, const SDValue *Ops,
4227                                  unsigned NumOps) {
4228  // If an identical node already exists, use it.
4229  void *IP = 0;
4230  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4231    FoldingSetNodeID ID;
4232    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4233    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4234      return ON;
4235  }
4236
4237  if (!RemoveNodeFromCSEMaps(N))
4238    IP = 0;
4239
4240  // Start the morphing.
4241  N->NodeType = Opc;
4242  N->ValueList = VTs.VTs;
4243  N->NumValues = VTs.NumVTs;
4244
4245  // Clear the operands list, updating used nodes to remove this from their
4246  // use list.  Keep track of any operands that become dead as a result.
4247  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4248  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4249    SDUse &Use = *I++;
4250    SDNode *Used = Use.getNode();
4251    Use.set(SDValue());
4252    if (Used->use_empty())
4253      DeadNodeSet.insert(Used);
4254  }
4255
4256  // If NumOps is larger than the # of operands we currently have, reallocate
4257  // the operand list.
4258  if (NumOps > N->NumOperands) {
4259    if (N->OperandsNeedDelete)
4260      delete[] N->OperandList;
4261
4262    if (N->isMachineOpcode()) {
4263      // We're creating a final node that will live unmorphed for the
4264      // remainder of the current SelectionDAG iteration, so we can allocate
4265      // the operands directly out of a pool with no recycling metadata.
4266      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4267      N->OperandsNeedDelete = false;
4268    } else {
4269      N->OperandList = new SDUse[NumOps];
4270      N->OperandsNeedDelete = true;
4271    }
4272  }
4273
4274  // Assign the new operands.
4275  N->NumOperands = NumOps;
4276  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4277    N->OperandList[i].setUser(N);
4278    N->OperandList[i].setInitial(Ops[i]);
4279  }
4280
4281  // Delete any nodes that are still dead after adding the uses for the
4282  // new operands.
4283  SmallVector<SDNode *, 16> DeadNodes;
4284  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4285       E = DeadNodeSet.end(); I != E; ++I)
4286    if ((*I)->use_empty())
4287      DeadNodes.push_back(*I);
4288  RemoveDeadNodes(DeadNodes);
4289
4290  if (IP)
4291    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4292  return N;
4293}
4294
4295
4296/// getTargetNode - These are used for target selectors to create a new node
4297/// with specified return type(s), target opcode, and operands.
4298///
4299/// Note that getTargetNode returns the resultant node.  If there is already a
4300/// node of the specified opcode and operands, it returns that node instead of
4301/// the current one.
4302SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4303  return getNode(~Opcode, VT).getNode();
4304}
4305SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4306  return getNode(~Opcode, VT, Op1).getNode();
4307}
4308SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4309                                    SDValue Op1, SDValue Op2) {
4310  return getNode(~Opcode, VT, Op1, Op2).getNode();
4311}
4312SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4313                                    SDValue Op1, SDValue Op2,
4314                                    SDValue Op3) {
4315  return getNode(~Opcode, VT, Op1, Op2, Op3).getNode();
4316}
4317SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4318                                    const SDValue *Ops, unsigned NumOps) {
4319  return getNode(~Opcode, VT, Ops, NumOps).getNode();
4320}
4321SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4322  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4323  SDValue Op;
4324  return getNode(~Opcode, VTs, 2, &Op, 0).getNode();
4325}
4326SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4327                                    MVT VT2, SDValue Op1) {
4328  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4329  return getNode(~Opcode, VTs, 2, &Op1, 1).getNode();
4330}
4331SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4332                                    MVT VT2, SDValue Op1,
4333                                    SDValue Op2) {
4334  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4335  SDValue Ops[] = { Op1, Op2 };
4336  return getNode(~Opcode, VTs, 2, Ops, 2).getNode();
4337}
4338SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4339                                    MVT VT2, SDValue Op1,
4340                                    SDValue Op2, SDValue Op3) {
4341  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4342  SDValue Ops[] = { Op1, Op2, Op3 };
4343  return getNode(~Opcode, VTs, 2, Ops, 3).getNode();
4344}
4345SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4346                                    const SDValue *Ops, unsigned NumOps) {
4347  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4348  return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode();
4349}
4350SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4351                                    SDValue Op1, SDValue Op2) {
4352  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4353  SDValue Ops[] = { Op1, Op2 };
4354  return getNode(~Opcode, VTs, 3, Ops, 2).getNode();
4355}
4356SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4357                                    SDValue Op1, SDValue Op2,
4358                                    SDValue Op3) {
4359  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4360  SDValue Ops[] = { Op1, Op2, Op3 };
4361  return getNode(~Opcode, VTs, 3, Ops, 3).getNode();
4362}
4363SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4364                                    const SDValue *Ops, unsigned NumOps) {
4365  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4366  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4367}
4368SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4369                                    MVT VT2, MVT VT3, MVT VT4,
4370                                    const SDValue *Ops, unsigned NumOps) {
4371  std::vector<MVT> VTList;
4372  VTList.push_back(VT1);
4373  VTList.push_back(VT2);
4374  VTList.push_back(VT3);
4375  VTList.push_back(VT4);
4376  const MVT *VTs = getNodeValueTypes(VTList);
4377  return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode();
4378}
4379SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4380                                    const std::vector<MVT> &ResultTys,
4381                                    const SDValue *Ops, unsigned NumOps) {
4382  const MVT *VTs = getNodeValueTypes(ResultTys);
4383  return getNode(~Opcode, VTs, ResultTys.size(),
4384                 Ops, NumOps).getNode();
4385}
4386
4387/// getNodeIfExists - Get the specified node if it's already available, or
4388/// else return NULL.
4389SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4390                                      const SDValue *Ops, unsigned NumOps) {
4391  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4392    FoldingSetNodeID ID;
4393    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4394    void *IP = 0;
4395    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4396      return E;
4397  }
4398  return NULL;
4399}
4400
4401/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4402/// This can cause recursive merging of nodes in the DAG.
4403///
4404/// This version assumes From has a single result value.
4405///
4406void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4407                                      DAGUpdateListener *UpdateListener) {
4408  SDNode *From = FromN.getNode();
4409  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4410         "Cannot replace with this method!");
4411  assert(From != To.getNode() && "Cannot replace uses of with self");
4412
4413  // Iterate over all the existing uses of From. New uses will be added
4414  // to the beginning of the use list, which we avoid visiting.
4415  // This specifically avoids visiting uses of From that arise while the
4416  // replacement is happening, because any such uses would be the result
4417  // of CSE: If an existing node looks like From after one of its operands
4418  // is replaced by To, we don't want to replace of all its users with To
4419  // too. See PR3018 for more info.
4420  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4421  while (UI != UE) {
4422    SDNode *User = *UI;
4423
4424    // This node is about to morph, remove its old self from the CSE maps.
4425    RemoveNodeFromCSEMaps(User);
4426
4427    // A user can appear in a use list multiple times, and when this
4428    // happens the uses are usually next to each other in the list.
4429    // To help reduce the number of CSE recomputations, process all
4430    // the uses of this user that we can find this way.
4431    do {
4432      SDUse &Use = UI.getUse();
4433      ++UI;
4434      Use.set(To);
4435    } while (UI != UE && *UI == User);
4436
4437    // Now that we have modified User, add it back to the CSE maps.  If it
4438    // already exists there, recursively merge the results together.
4439    AddModifiedNodeToCSEMaps(User, UpdateListener);
4440  }
4441}
4442
4443/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4444/// This can cause recursive merging of nodes in the DAG.
4445///
4446/// This version assumes From/To have matching types and numbers of result
4447/// values.
4448///
4449void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4450                                      DAGUpdateListener *UpdateListener) {
4451  assert(From->getVTList().VTs == To->getVTList().VTs &&
4452         From->getNumValues() == To->getNumValues() &&
4453         "Cannot use this version of ReplaceAllUsesWith!");
4454
4455  // Handle the trivial case.
4456  if (From == To)
4457    return;
4458
4459  // Iterate over just the existing users of From. See the comments in
4460  // the ReplaceAllUsesWith above.
4461  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4462  while (UI != UE) {
4463    SDNode *User = *UI;
4464
4465    // This node is about to morph, remove its old self from the CSE maps.
4466    RemoveNodeFromCSEMaps(User);
4467
4468    // A user can appear in a use list multiple times, and when this
4469    // happens the uses are usually next to each other in the list.
4470    // To help reduce the number of CSE recomputations, process all
4471    // the uses of this user that we can find this way.
4472    do {
4473      SDUse &Use = UI.getUse();
4474      ++UI;
4475      Use.setNode(To);
4476    } while (UI != UE && *UI == User);
4477
4478    // Now that we have modified User, add it back to the CSE maps.  If it
4479    // already exists there, recursively merge the results together.
4480    AddModifiedNodeToCSEMaps(User, UpdateListener);
4481  }
4482}
4483
4484/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4485/// This can cause recursive merging of nodes in the DAG.
4486///
4487/// This version can replace From with any result values.  To must match the
4488/// number and types of values returned by From.
4489void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4490                                      const SDValue *To,
4491                                      DAGUpdateListener *UpdateListener) {
4492  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4493    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4494
4495  // Iterate over just the existing users of From. See the comments in
4496  // the ReplaceAllUsesWith above.
4497  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4498  while (UI != UE) {
4499    SDNode *User = *UI;
4500
4501    // This node is about to morph, remove its old self from the CSE maps.
4502    RemoveNodeFromCSEMaps(User);
4503
4504    // A user can appear in a use list multiple times, and when this
4505    // happens the uses are usually next to each other in the list.
4506    // To help reduce the number of CSE recomputations, process all
4507    // the uses of this user that we can find this way.
4508    do {
4509      SDUse &Use = UI.getUse();
4510      const SDValue &ToOp = To[Use.getResNo()];
4511      ++UI;
4512      Use.set(ToOp);
4513    } while (UI != UE && *UI == User);
4514
4515    // Now that we have modified User, add it back to the CSE maps.  If it
4516    // already exists there, recursively merge the results together.
4517    AddModifiedNodeToCSEMaps(User, UpdateListener);
4518  }
4519}
4520
4521/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4522/// uses of other values produced by From.getNode() alone.  The Deleted
4523/// vector is handled the same way as for ReplaceAllUsesWith.
4524void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4525                                             DAGUpdateListener *UpdateListener){
4526  // Handle the really simple, really trivial case efficiently.
4527  if (From == To) return;
4528
4529  // Handle the simple, trivial, case efficiently.
4530  if (From.getNode()->getNumValues() == 1) {
4531    ReplaceAllUsesWith(From, To, UpdateListener);
4532    return;
4533  }
4534
4535  // Iterate over just the existing users of From. See the comments in
4536  // the ReplaceAllUsesWith above.
4537  SDNode::use_iterator UI = From.getNode()->use_begin(),
4538                       UE = From.getNode()->use_end();
4539  while (UI != UE) {
4540    SDNode *User = *UI;
4541    bool UserRemovedFromCSEMaps = false;
4542
4543    // A user can appear in a use list multiple times, and when this
4544    // happens the uses are usually next to each other in the list.
4545    // To help reduce the number of CSE recomputations, process all
4546    // the uses of this user that we can find this way.
4547    do {
4548      SDUse &Use = UI.getUse();
4549
4550      // Skip uses of different values from the same node.
4551      if (Use.getResNo() != From.getResNo()) {
4552        ++UI;
4553        continue;
4554      }
4555
4556      // If this node hasn't been modified yet, it's still in the CSE maps,
4557      // so remove its old self from the CSE maps.
4558      if (!UserRemovedFromCSEMaps) {
4559        RemoveNodeFromCSEMaps(User);
4560        UserRemovedFromCSEMaps = true;
4561      }
4562
4563      ++UI;
4564      Use.set(To);
4565    } while (UI != UE && *UI == User);
4566
4567    // We are iterating over all uses of the From node, so if a use
4568    // doesn't use the specific value, no changes are made.
4569    if (!UserRemovedFromCSEMaps)
4570      continue;
4571
4572    // Now that we have modified User, add it back to the CSE maps.  If it
4573    // already exists there, recursively merge the results together.
4574    AddModifiedNodeToCSEMaps(User, UpdateListener);
4575  }
4576}
4577
4578namespace {
4579  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
4580  /// to record information about a use.
4581  struct UseMemo {
4582    SDNode *User;
4583    unsigned Index;
4584    SDUse *Use;
4585  };
4586
4587  /// operator< - Sort Memos by User.
4588  bool operator<(const UseMemo &L, const UseMemo &R) {
4589    return (intptr_t)L.User < (intptr_t)R.User;
4590  }
4591}
4592
4593/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4594/// uses of other values produced by From.getNode() alone.  The same value
4595/// may appear in both the From and To list.  The Deleted vector is
4596/// handled the same way as for ReplaceAllUsesWith.
4597void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4598                                              const SDValue *To,
4599                                              unsigned Num,
4600                                              DAGUpdateListener *UpdateListener){
4601  // Handle the simple, trivial case efficiently.
4602  if (Num == 1)
4603    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4604
4605  // Read up all the uses and make records of them. This helps
4606  // processing new uses that are introduced during the
4607  // replacement process.
4608  SmallVector<UseMemo, 4> Uses;
4609  for (unsigned i = 0; i != Num; ++i) {
4610    unsigned FromResNo = From[i].getResNo();
4611    SDNode *FromNode = From[i].getNode();
4612    for (SDNode::use_iterator UI = FromNode->use_begin(),
4613         E = FromNode->use_end(); UI != E; ++UI) {
4614      SDUse &Use = UI.getUse();
4615      if (Use.getResNo() == FromResNo) {
4616        UseMemo Memo = { *UI, i, &Use };
4617        Uses.push_back(Memo);
4618      }
4619    }
4620  }
4621
4622  // Sort the uses, so that all the uses from a given User are together.
4623  std::sort(Uses.begin(), Uses.end());
4624
4625  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
4626       UseIndex != UseIndexEnd; ) {
4627    // We know that this user uses some value of From.  If it is the right
4628    // value, update it.
4629    SDNode *User = Uses[UseIndex].User;
4630
4631    // This node is about to morph, remove its old self from the CSE maps.
4632    RemoveNodeFromCSEMaps(User);
4633
4634    // The Uses array is sorted, so all the uses for a given User
4635    // are next to each other in the list.
4636    // To help reduce the number of CSE recomputations, process all
4637    // the uses of this user that we can find this way.
4638    do {
4639      unsigned i = Uses[UseIndex].Index;
4640      SDUse &Use = *Uses[UseIndex].Use;
4641      ++UseIndex;
4642
4643      Use.set(To[i]);
4644    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
4645
4646    // Now that we have modified User, add it back to the CSE maps.  If it
4647    // already exists there, recursively merge the results together.
4648    AddModifiedNodeToCSEMaps(User, UpdateListener);
4649  }
4650}
4651
4652/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4653/// based on their topological order. It returns the maximum id and a vector
4654/// of the SDNodes* in assigned order by reference.
4655unsigned SelectionDAG::AssignTopologicalOrder() {
4656
4657  unsigned DAGSize = 0;
4658
4659  // SortedPos tracks the progress of the algorithm. Nodes before it are
4660  // sorted, nodes after it are unsorted. When the algorithm completes
4661  // it is at the end of the list.
4662  allnodes_iterator SortedPos = allnodes_begin();
4663
4664  // Visit all the nodes. Move nodes with no operands to the front of
4665  // the list immediately. Annotate nodes that do have operands with their
4666  // operand count. Before we do this, the Node Id fields of the nodes
4667  // may contain arbitrary values. After, the Node Id fields for nodes
4668  // before SortedPos will contain the topological sort index, and the
4669  // Node Id fields for nodes At SortedPos and after will contain the
4670  // count of outstanding operands.
4671  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4672    SDNode *N = I++;
4673    unsigned Degree = N->getNumOperands();
4674    if (Degree == 0) {
4675      // A node with no uses, add it to the result array immediately.
4676      N->setNodeId(DAGSize++);
4677      allnodes_iterator Q = N;
4678      if (Q != SortedPos)
4679        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4680      ++SortedPos;
4681    } else {
4682      // Temporarily use the Node Id as scratch space for the degree count.
4683      N->setNodeId(Degree);
4684    }
4685  }
4686
4687  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4688  // such that by the time the end is reached all nodes will be sorted.
4689  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4690    SDNode *N = I;
4691    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4692         UI != UE; ++UI) {
4693      SDNode *P = *UI;
4694      unsigned Degree = P->getNodeId();
4695      --Degree;
4696      if (Degree == 0) {
4697        // All of P's operands are sorted, so P may sorted now.
4698        P->setNodeId(DAGSize++);
4699        if (P != SortedPos)
4700          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4701        ++SortedPos;
4702      } else {
4703        // Update P's outstanding operand count.
4704        P->setNodeId(Degree);
4705      }
4706    }
4707  }
4708
4709  assert(SortedPos == AllNodes.end() &&
4710         "Topological sort incomplete!");
4711  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4712         "First node in topological sort is not the entry token!");
4713  assert(AllNodes.front().getNodeId() == 0 &&
4714         "First node in topological sort has non-zero id!");
4715  assert(AllNodes.front().getNumOperands() == 0 &&
4716         "First node in topological sort has operands!");
4717  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4718         "Last node in topologic sort has unexpected id!");
4719  assert(AllNodes.back().use_empty() &&
4720         "Last node in topologic sort has users!");
4721  assert(DAGSize == allnodes_size() && "Node count mismatch!");
4722  return DAGSize;
4723}
4724
4725
4726
4727//===----------------------------------------------------------------------===//
4728//                              SDNode Class
4729//===----------------------------------------------------------------------===//
4730
4731HandleSDNode::~HandleSDNode() {
4732  DropOperands();
4733}
4734
4735GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4736                                         MVT VT, int64_t o)
4737  : SDNode(isa<GlobalVariable>(GA) &&
4738           cast<GlobalVariable>(GA)->isThreadLocal() ?
4739           // Thread Local
4740           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4741           // Non Thread Local
4742           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4743           getSDVTList(VT)), Offset(o) {
4744  TheGlobal = const_cast<GlobalValue*>(GA);
4745}
4746
4747MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
4748                     const Value *srcValue, int SVO,
4749                     unsigned alignment, bool vol)
4750 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4751   Flags(encodeMemSDNodeFlags(vol, alignment)) {
4752
4753  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4754  assert(getAlignment() == alignment && "Alignment representation error!");
4755  assert(isVolatile() == vol && "Volatile representation error!");
4756}
4757
4758MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops,
4759                     unsigned NumOps, MVT memvt, const Value *srcValue,
4760                     int SVO, unsigned alignment, bool vol)
4761   : SDNode(Opc, VTs, Ops, NumOps),
4762     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4763     Flags(vol | ((Log2_32(alignment) + 1) << 1)) {
4764  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4765  assert(getAlignment() == alignment && "Alignment representation error!");
4766  assert(isVolatile() == vol && "Volatile representation error!");
4767}
4768
4769/// getMemOperand - Return a MachineMemOperand object describing the memory
4770/// reference performed by this memory reference.
4771MachineMemOperand MemSDNode::getMemOperand() const {
4772  int Flags = 0;
4773  if (isa<LoadSDNode>(this))
4774    Flags = MachineMemOperand::MOLoad;
4775  else if (isa<StoreSDNode>(this))
4776    Flags = MachineMemOperand::MOStore;
4777  else if (isa<AtomicSDNode>(this)) {
4778    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4779  }
4780  else {
4781    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4782    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4783    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4784    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4785  }
4786
4787  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4788  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4789
4790  // Check if the memory reference references a frame index
4791  const FrameIndexSDNode *FI =
4792  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4793  if (!getSrcValue() && FI)
4794    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4795                             Flags, 0, Size, getAlignment());
4796  else
4797    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4798                             Size, getAlignment());
4799}
4800
4801/// Profile - Gather unique data for the node.
4802///
4803void SDNode::Profile(FoldingSetNodeID &ID) const {
4804  AddNodeIDNode(ID, this);
4805}
4806
4807/// getValueTypeList - Return a pointer to the specified value type.
4808///
4809const MVT *SDNode::getValueTypeList(MVT VT) {
4810  if (VT.isExtended()) {
4811    static std::set<MVT, MVT::compareRawBits> EVTs;
4812    return &(*EVTs.insert(VT).first);
4813  } else {
4814    static MVT VTs[MVT::LAST_VALUETYPE];
4815    VTs[VT.getSimpleVT()] = VT;
4816    return &VTs[VT.getSimpleVT()];
4817  }
4818}
4819
4820/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4821/// indicated value.  This method ignores uses of other values defined by this
4822/// operation.
4823bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4824  assert(Value < getNumValues() && "Bad value!");
4825
4826  // TODO: Only iterate over uses of a given value of the node
4827  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4828    if (UI.getUse().getResNo() == Value) {
4829      if (NUses == 0)
4830        return false;
4831      --NUses;
4832    }
4833  }
4834
4835  // Found exactly the right number of uses?
4836  return NUses == 0;
4837}
4838
4839
4840/// hasAnyUseOfValue - Return true if there are any use of the indicated
4841/// value. This method ignores uses of other values defined by this operation.
4842bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4843  assert(Value < getNumValues() && "Bad value!");
4844
4845  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4846    if (UI.getUse().getResNo() == Value)
4847      return true;
4848
4849  return false;
4850}
4851
4852
4853/// isOnlyUserOf - Return true if this node is the only use of N.
4854///
4855bool SDNode::isOnlyUserOf(SDNode *N) const {
4856  bool Seen = false;
4857  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4858    SDNode *User = *I;
4859    if (User == this)
4860      Seen = true;
4861    else
4862      return false;
4863  }
4864
4865  return Seen;
4866}
4867
4868/// isOperand - Return true if this node is an operand of N.
4869///
4870bool SDValue::isOperandOf(SDNode *N) const {
4871  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4872    if (*this == N->getOperand(i))
4873      return true;
4874  return false;
4875}
4876
4877bool SDNode::isOperandOf(SDNode *N) const {
4878  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4879    if (this == N->OperandList[i].getNode())
4880      return true;
4881  return false;
4882}
4883
4884/// reachesChainWithoutSideEffects - Return true if this operand (which must
4885/// be a chain) reaches the specified operand without crossing any
4886/// side-effecting instructions.  In practice, this looks through token
4887/// factors and non-volatile loads.  In order to remain efficient, this only
4888/// looks a couple of nodes in, it does not do an exhaustive search.
4889bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4890                                               unsigned Depth) const {
4891  if (*this == Dest) return true;
4892
4893  // Don't search too deeply, we just want to be able to see through
4894  // TokenFactor's etc.
4895  if (Depth == 0) return false;
4896
4897  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4898  // of the operands of the TF reach dest, then we can do the xform.
4899  if (getOpcode() == ISD::TokenFactor) {
4900    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4901      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4902        return true;
4903    return false;
4904  }
4905
4906  // Loads don't have side effects, look through them.
4907  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4908    if (!Ld->isVolatile())
4909      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4910  }
4911  return false;
4912}
4913
4914
4915static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4916                            SmallPtrSet<SDNode *, 32> &Visited) {
4917  if (found || !Visited.insert(N))
4918    return;
4919
4920  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4921    SDNode *Op = N->getOperand(i).getNode();
4922    if (Op == P) {
4923      found = true;
4924      return;
4925    }
4926    findPredecessor(Op, P, found, Visited);
4927  }
4928}
4929
4930/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4931/// is either an operand of N or it can be reached by recursively traversing
4932/// up the operands.
4933/// NOTE: this is an expensive method. Use it carefully.
4934bool SDNode::isPredecessorOf(SDNode *N) const {
4935  SmallPtrSet<SDNode *, 32> Visited;
4936  bool found = false;
4937  findPredecessor(N, this, found, Visited);
4938  return found;
4939}
4940
4941uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4942  assert(Num < NumOperands && "Invalid child # of SDNode!");
4943  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
4944}
4945
4946std::string SDNode::getOperationName(const SelectionDAG *G) const {
4947  switch (getOpcode()) {
4948  default:
4949    if (getOpcode() < ISD::BUILTIN_OP_END)
4950      return "<<Unknown DAG Node>>";
4951    if (isMachineOpcode()) {
4952      if (G)
4953        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4954          if (getMachineOpcode() < TII->getNumOpcodes())
4955            return TII->get(getMachineOpcode()).getName();
4956      return "<<Unknown Machine Node>>";
4957    }
4958    if (G) {
4959      const TargetLowering &TLI = G->getTargetLoweringInfo();
4960      const char *Name = TLI.getTargetNodeName(getOpcode());
4961      if (Name) return Name;
4962      return "<<Unknown Target Node>>";
4963    }
4964    return "<<Unknown Node>>";
4965
4966#ifndef NDEBUG
4967  case ISD::DELETED_NODE:
4968    return "<<Deleted Node!>>";
4969#endif
4970  case ISD::PREFETCH:      return "Prefetch";
4971  case ISD::MEMBARRIER:    return "MemBarrier";
4972  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
4973  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
4974  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
4975  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
4976  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
4977  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
4978  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
4979  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
4980  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
4981  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
4982  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
4983  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
4984  case ISD::PCMARKER:      return "PCMarker";
4985  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
4986  case ISD::SRCVALUE:      return "SrcValue";
4987  case ISD::MEMOPERAND:    return "MemOperand";
4988  case ISD::EntryToken:    return "EntryToken";
4989  case ISD::TokenFactor:   return "TokenFactor";
4990  case ISD::AssertSext:    return "AssertSext";
4991  case ISD::AssertZext:    return "AssertZext";
4992
4993  case ISD::BasicBlock:    return "BasicBlock";
4994  case ISD::ARG_FLAGS:     return "ArgFlags";
4995  case ISD::VALUETYPE:     return "ValueType";
4996  case ISD::Register:      return "Register";
4997
4998  case ISD::Constant:      return "Constant";
4999  case ISD::ConstantFP:    return "ConstantFP";
5000  case ISD::GlobalAddress: return "GlobalAddress";
5001  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5002  case ISD::FrameIndex:    return "FrameIndex";
5003  case ISD::JumpTable:     return "JumpTable";
5004  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5005  case ISD::RETURNADDR: return "RETURNADDR";
5006  case ISD::FRAMEADDR: return "FRAMEADDR";
5007  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5008  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5009  case ISD::EHSELECTION: return "EHSELECTION";
5010  case ISD::EH_RETURN: return "EH_RETURN";
5011  case ISD::ConstantPool:  return "ConstantPool";
5012  case ISD::ExternalSymbol: return "ExternalSymbol";
5013  case ISD::INTRINSIC_WO_CHAIN: {
5014    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5015    return Intrinsic::getName((Intrinsic::ID)IID);
5016  }
5017  case ISD::INTRINSIC_VOID:
5018  case ISD::INTRINSIC_W_CHAIN: {
5019    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5020    return Intrinsic::getName((Intrinsic::ID)IID);
5021  }
5022
5023  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5024  case ISD::TargetConstant: return "TargetConstant";
5025  case ISD::TargetConstantFP:return "TargetConstantFP";
5026  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5027  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5028  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5029  case ISD::TargetJumpTable:  return "TargetJumpTable";
5030  case ISD::TargetConstantPool:  return "TargetConstantPool";
5031  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5032
5033  case ISD::CopyToReg:     return "CopyToReg";
5034  case ISD::CopyFromReg:   return "CopyFromReg";
5035  case ISD::UNDEF:         return "undef";
5036  case ISD::MERGE_VALUES:  return "merge_values";
5037  case ISD::INLINEASM:     return "inlineasm";
5038  case ISD::DBG_LABEL:     return "dbg_label";
5039  case ISD::EH_LABEL:      return "eh_label";
5040  case ISD::DECLARE:       return "declare";
5041  case ISD::HANDLENODE:    return "handlenode";
5042  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5043  case ISD::CALL:          return "call";
5044
5045  // Unary operators
5046  case ISD::FABS:   return "fabs";
5047  case ISD::FNEG:   return "fneg";
5048  case ISD::FSQRT:  return "fsqrt";
5049  case ISD::FSIN:   return "fsin";
5050  case ISD::FCOS:   return "fcos";
5051  case ISD::FPOWI:  return "fpowi";
5052  case ISD::FPOW:   return "fpow";
5053  case ISD::FTRUNC: return "ftrunc";
5054  case ISD::FFLOOR: return "ffloor";
5055  case ISD::FCEIL:  return "fceil";
5056  case ISD::FRINT:  return "frint";
5057  case ISD::FNEARBYINT: return "fnearbyint";
5058
5059  // Binary operators
5060  case ISD::ADD:    return "add";
5061  case ISD::SUB:    return "sub";
5062  case ISD::MUL:    return "mul";
5063  case ISD::MULHU:  return "mulhu";
5064  case ISD::MULHS:  return "mulhs";
5065  case ISD::SDIV:   return "sdiv";
5066  case ISD::UDIV:   return "udiv";
5067  case ISD::SREM:   return "srem";
5068  case ISD::UREM:   return "urem";
5069  case ISD::SMUL_LOHI:  return "smul_lohi";
5070  case ISD::UMUL_LOHI:  return "umul_lohi";
5071  case ISD::SDIVREM:    return "sdivrem";
5072  case ISD::UDIVREM:    return "udivrem";
5073  case ISD::AND:    return "and";
5074  case ISD::OR:     return "or";
5075  case ISD::XOR:    return "xor";
5076  case ISD::SHL:    return "shl";
5077  case ISD::SRA:    return "sra";
5078  case ISD::SRL:    return "srl";
5079  case ISD::ROTL:   return "rotl";
5080  case ISD::ROTR:   return "rotr";
5081  case ISD::FADD:   return "fadd";
5082  case ISD::FSUB:   return "fsub";
5083  case ISD::FMUL:   return "fmul";
5084  case ISD::FDIV:   return "fdiv";
5085  case ISD::FREM:   return "frem";
5086  case ISD::FCOPYSIGN: return "fcopysign";
5087  case ISD::FGETSIGN:  return "fgetsign";
5088
5089  case ISD::SETCC:       return "setcc";
5090  case ISD::VSETCC:      return "vsetcc";
5091  case ISD::SELECT:      return "select";
5092  case ISD::SELECT_CC:   return "select_cc";
5093  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5094  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5095  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5096  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5097  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5098  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5099  case ISD::CARRY_FALSE:         return "carry_false";
5100  case ISD::ADDC:        return "addc";
5101  case ISD::ADDE:        return "adde";
5102  case ISD::SADDO:       return "saddo";
5103  case ISD::UADDO:       return "uaddo";
5104  case ISD::SSUBO:       return "ssubo";
5105  case ISD::USUBO:       return "usubo";
5106  case ISD::SMULO:       return "smulo";
5107  case ISD::UMULO:       return "umulo";
5108  case ISD::SUBC:        return "subc";
5109  case ISD::SUBE:        return "sube";
5110  case ISD::SHL_PARTS:   return "shl_parts";
5111  case ISD::SRA_PARTS:   return "sra_parts";
5112  case ISD::SRL_PARTS:   return "srl_parts";
5113
5114  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5115  case ISD::INSERT_SUBREG:      return "insert_subreg";
5116
5117  // Conversion operators.
5118  case ISD::SIGN_EXTEND: return "sign_extend";
5119  case ISD::ZERO_EXTEND: return "zero_extend";
5120  case ISD::ANY_EXTEND:  return "any_extend";
5121  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5122  case ISD::TRUNCATE:    return "truncate";
5123  case ISD::FP_ROUND:    return "fp_round";
5124  case ISD::FLT_ROUNDS_: return "flt_rounds";
5125  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5126  case ISD::FP_EXTEND:   return "fp_extend";
5127
5128  case ISD::SINT_TO_FP:  return "sint_to_fp";
5129  case ISD::UINT_TO_FP:  return "uint_to_fp";
5130  case ISD::FP_TO_SINT:  return "fp_to_sint";
5131  case ISD::FP_TO_UINT:  return "fp_to_uint";
5132  case ISD::BIT_CONVERT: return "bit_convert";
5133
5134  case ISD::CONVERT_RNDSAT: {
5135    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5136    default: assert(0 && "Unknown cvt code!");
5137    case ISD::CVT_FF:  return "cvt_ff";
5138    case ISD::CVT_FS:  return "cvt_fs";
5139    case ISD::CVT_FU:  return "cvt_fu";
5140    case ISD::CVT_SF:  return "cvt_sf";
5141    case ISD::CVT_UF:  return "cvt_uf";
5142    case ISD::CVT_SS:  return "cvt_ss";
5143    case ISD::CVT_SU:  return "cvt_su";
5144    case ISD::CVT_US:  return "cvt_us";
5145    case ISD::CVT_UU:  return "cvt_uu";
5146    }
5147  }
5148
5149    // Control flow instructions
5150  case ISD::BR:      return "br";
5151  case ISD::BRIND:   return "brind";
5152  case ISD::BR_JT:   return "br_jt";
5153  case ISD::BRCOND:  return "brcond";
5154  case ISD::BR_CC:   return "br_cc";
5155  case ISD::RET:     return "ret";
5156  case ISD::CALLSEQ_START:  return "callseq_start";
5157  case ISD::CALLSEQ_END:    return "callseq_end";
5158
5159    // Other operators
5160  case ISD::LOAD:               return "load";
5161  case ISD::STORE:              return "store";
5162  case ISD::VAARG:              return "vaarg";
5163  case ISD::VACOPY:             return "vacopy";
5164  case ISD::VAEND:              return "vaend";
5165  case ISD::VASTART:            return "vastart";
5166  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5167  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5168  case ISD::BUILD_PAIR:         return "build_pair";
5169  case ISD::STACKSAVE:          return "stacksave";
5170  case ISD::STACKRESTORE:       return "stackrestore";
5171  case ISD::TRAP:               return "trap";
5172
5173  // Bit manipulation
5174  case ISD::BSWAP:   return "bswap";
5175  case ISD::CTPOP:   return "ctpop";
5176  case ISD::CTTZ:    return "cttz";
5177  case ISD::CTLZ:    return "ctlz";
5178
5179  // Debug info
5180  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5181  case ISD::DEBUG_LOC: return "debug_loc";
5182
5183  // Trampolines
5184  case ISD::TRAMPOLINE: return "trampoline";
5185
5186  case ISD::CONDCODE:
5187    switch (cast<CondCodeSDNode>(this)->get()) {
5188    default: assert(0 && "Unknown setcc condition!");
5189    case ISD::SETOEQ:  return "setoeq";
5190    case ISD::SETOGT:  return "setogt";
5191    case ISD::SETOGE:  return "setoge";
5192    case ISD::SETOLT:  return "setolt";
5193    case ISD::SETOLE:  return "setole";
5194    case ISD::SETONE:  return "setone";
5195
5196    case ISD::SETO:    return "seto";
5197    case ISD::SETUO:   return "setuo";
5198    case ISD::SETUEQ:  return "setue";
5199    case ISD::SETUGT:  return "setugt";
5200    case ISD::SETUGE:  return "setuge";
5201    case ISD::SETULT:  return "setult";
5202    case ISD::SETULE:  return "setule";
5203    case ISD::SETUNE:  return "setune";
5204
5205    case ISD::SETEQ:   return "seteq";
5206    case ISD::SETGT:   return "setgt";
5207    case ISD::SETGE:   return "setge";
5208    case ISD::SETLT:   return "setlt";
5209    case ISD::SETLE:   return "setle";
5210    case ISD::SETNE:   return "setne";
5211    }
5212  }
5213}
5214
5215const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5216  switch (AM) {
5217  default:
5218    return "";
5219  case ISD::PRE_INC:
5220    return "<pre-inc>";
5221  case ISD::PRE_DEC:
5222    return "<pre-dec>";
5223  case ISD::POST_INC:
5224    return "<post-inc>";
5225  case ISD::POST_DEC:
5226    return "<post-dec>";
5227  }
5228}
5229
5230std::string ISD::ArgFlagsTy::getArgFlagsString() {
5231  std::string S = "< ";
5232
5233  if (isZExt())
5234    S += "zext ";
5235  if (isSExt())
5236    S += "sext ";
5237  if (isInReg())
5238    S += "inreg ";
5239  if (isSRet())
5240    S += "sret ";
5241  if (isByVal())
5242    S += "byval ";
5243  if (isNest())
5244    S += "nest ";
5245  if (getByValAlign())
5246    S += "byval-align:" + utostr(getByValAlign()) + " ";
5247  if (getOrigAlign())
5248    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5249  if (getByValSize())
5250    S += "byval-size:" + utostr(getByValSize()) + " ";
5251  return S + ">";
5252}
5253
5254void SDNode::dump() const { dump(0); }
5255void SDNode::dump(const SelectionDAG *G) const {
5256  print(errs(), G);
5257  errs().flush();
5258}
5259
5260void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5261  OS << (void*)this << ": ";
5262
5263  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5264    if (i) OS << ",";
5265    if (getValueType(i) == MVT::Other)
5266      OS << "ch";
5267    else
5268      OS << getValueType(i).getMVTString();
5269  }
5270  OS << " = " << getOperationName(G);
5271
5272  OS << " ";
5273  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5274    if (i) OS << ", ";
5275    OS << (void*)getOperand(i).getNode();
5276    if (unsigned RN = getOperand(i).getResNo())
5277      OS << ":" << RN;
5278  }
5279
5280  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5281    SDNode *Mask = getOperand(2).getNode();
5282    OS << "<";
5283    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5284      if (i) OS << ",";
5285      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5286        OS << "u";
5287      else
5288        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5289    }
5290    OS << ">";
5291  }
5292
5293  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5294    OS << '<' << CSDN->getAPIntValue() << '>';
5295  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5296    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5297      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5298    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5299      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5300    else {
5301      OS << "<APFloat(";
5302      CSDN->getValueAPF().bitcastToAPInt().dump();
5303      OS << ")>";
5304    }
5305  } else if (const GlobalAddressSDNode *GADN =
5306             dyn_cast<GlobalAddressSDNode>(this)) {
5307    int64_t offset = GADN->getOffset();
5308    OS << '<';
5309    WriteAsOperand(OS, GADN->getGlobal());
5310    OS << '>';
5311    if (offset > 0)
5312      OS << " + " << offset;
5313    else
5314      OS << " " << offset;
5315  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5316    OS << "<" << FIDN->getIndex() << ">";
5317  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5318    OS << "<" << JTDN->getIndex() << ">";
5319  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5320    int offset = CP->getOffset();
5321    if (CP->isMachineConstantPoolEntry())
5322      OS << "<" << *CP->getMachineCPVal() << ">";
5323    else
5324      OS << "<" << *CP->getConstVal() << ">";
5325    if (offset > 0)
5326      OS << " + " << offset;
5327    else
5328      OS << " " << offset;
5329  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5330    OS << "<";
5331    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5332    if (LBB)
5333      OS << LBB->getName() << " ";
5334    OS << (const void*)BBDN->getBasicBlock() << ">";
5335  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5336    if (G && R->getReg() &&
5337        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5338      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5339    } else {
5340      OS << " #" << R->getReg();
5341    }
5342  } else if (const ExternalSymbolSDNode *ES =
5343             dyn_cast<ExternalSymbolSDNode>(this)) {
5344    OS << "'" << ES->getSymbol() << "'";
5345  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5346    if (M->getValue())
5347      OS << "<" << M->getValue() << ">";
5348    else
5349      OS << "<null>";
5350  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5351    if (M->MO.getValue())
5352      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5353    else
5354      OS << "<null:" << M->MO.getOffset() << ">";
5355  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5356    OS << N->getArgFlags().getArgFlagsString();
5357  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5358    OS << ":" << N->getVT().getMVTString();
5359  }
5360  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5361    const Value *SrcValue = LD->getSrcValue();
5362    int SrcOffset = LD->getSrcValueOffset();
5363    OS << " <";
5364    if (SrcValue)
5365      OS << SrcValue;
5366    else
5367      OS << "null";
5368    OS << ":" << SrcOffset << ">";
5369
5370    bool doExt = true;
5371    switch (LD->getExtensionType()) {
5372    default: doExt = false; break;
5373    case ISD::EXTLOAD: OS << " <anyext "; break;
5374    case ISD::SEXTLOAD: OS << " <sext "; break;
5375    case ISD::ZEXTLOAD: OS << " <zext "; break;
5376    }
5377    if (doExt)
5378      OS << LD->getMemoryVT().getMVTString() << ">";
5379
5380    const char *AM = getIndexedModeName(LD->getAddressingMode());
5381    if (*AM)
5382      OS << " " << AM;
5383    if (LD->isVolatile())
5384      OS << " <volatile>";
5385    OS << " alignment=" << LD->getAlignment();
5386  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5387    const Value *SrcValue = ST->getSrcValue();
5388    int SrcOffset = ST->getSrcValueOffset();
5389    OS << " <";
5390    if (SrcValue)
5391      OS << SrcValue;
5392    else
5393      OS << "null";
5394    OS << ":" << SrcOffset << ">";
5395
5396    if (ST->isTruncatingStore())
5397      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5398
5399    const char *AM = getIndexedModeName(ST->getAddressingMode());
5400    if (*AM)
5401      OS << " " << AM;
5402    if (ST->isVolatile())
5403      OS << " <volatile>";
5404    OS << " alignment=" << ST->getAlignment();
5405  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5406    const Value *SrcValue = AT->getSrcValue();
5407    int SrcOffset = AT->getSrcValueOffset();
5408    OS << " <";
5409    if (SrcValue)
5410      OS << SrcValue;
5411    else
5412      OS << "null";
5413    OS << ":" << SrcOffset << ">";
5414    if (AT->isVolatile())
5415      OS << " <volatile>";
5416    OS << " alignment=" << AT->getAlignment();
5417  }
5418}
5419
5420static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5421  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5422    if (N->getOperand(i).getNode()->hasOneUse())
5423      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5424    else
5425      cerr << "\n" << std::string(indent+2, ' ')
5426           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5427
5428
5429  cerr << "\n" << std::string(indent, ' ');
5430  N->dump(G);
5431}
5432
5433void SelectionDAG::dump() const {
5434  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5435
5436  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5437       I != E; ++I) {
5438    const SDNode *N = I;
5439    if (!N->hasOneUse() && N != getRoot().getNode())
5440      DumpNodes(N, 2, this);
5441  }
5442
5443  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5444
5445  cerr << "\n\n";
5446}
5447
5448const Type *ConstantPoolSDNode::getType() const {
5449  if (isMachineConstantPoolEntry())
5450    return Val.MachineCPVal->getType();
5451  return Val.ConstVal->getType();
5452}
5453