SelectionDAG.cpp revision cfbb32346a7eca19d4dc00fd2c1a0248537b3497
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/DebugInfo.h"
19#include "llvm/Analysis/ValueTracking.h"
20#include "llvm/Function.h"
21#include "llvm/GlobalAlias.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/Intrinsics.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Assembly/Writer.h"
26#include "llvm/CallingConv.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/CodeGen/PseudoSourceValue.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Target/TargetFrameInfo.h"
35#include "llvm/Target/TargetLowering.h"
36#include "llvm/Target/TargetSelectionDAGInfo.h"
37#include "llvm/Target/TargetOptions.h"
38#include "llvm/Target/TargetInstrInfo.h"
39#include "llvm/Target/TargetIntrinsicInfo.h"
40#include "llvm/Target/TargetMachine.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/ManagedStatic.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/System/Mutex.h"
48#include "llvm/ADT/SetVector.h"
49#include "llvm/ADT/SmallPtrSet.h"
50#include "llvm/ADT/SmallSet.h"
51#include "llvm/ADT/SmallVector.h"
52#include "llvm/ADT/StringExtras.h"
53#include <algorithm>
54#include <cmath>
55using namespace llvm;
56
57/// makeVTList - Return an instance of the SDVTList struct initialized with the
58/// specified members.
59static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
60  SDVTList Res = {VTs, NumVTs};
61  return Res;
62}
63
64static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
65  switch (VT.getSimpleVT().SimpleTy) {
66  default: llvm_unreachable("Unknown FP format");
67  case MVT::f32:     return &APFloat::IEEEsingle;
68  case MVT::f64:     return &APFloat::IEEEdouble;
69  case MVT::f80:     return &APFloat::x87DoubleExtended;
70  case MVT::f128:    return &APFloat::IEEEquad;
71  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
72  }
73}
74
75SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
76
77//===----------------------------------------------------------------------===//
78//                              ConstantFPSDNode Class
79//===----------------------------------------------------------------------===//
80
81/// isExactlyValue - We don't rely on operator== working on double values, as
82/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
83/// As such, this method can be used to do an exact bit-for-bit comparison of
84/// two floating point values.
85bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
86  return getValueAPF().bitwiseIsEqual(V);
87}
88
89bool ConstantFPSDNode::isValueValidForType(EVT VT,
90                                           const APFloat& Val) {
91  assert(VT.isFloatingPoint() && "Can only convert between FP types");
92
93  // PPC long double cannot be converted to any other type.
94  if (VT == MVT::ppcf128 ||
95      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
96    return false;
97
98  // convert modifies in place, so make a copy.
99  APFloat Val2 = APFloat(Val);
100  bool losesInfo;
101  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
102                      &losesInfo);
103  return !losesInfo;
104}
105
106//===----------------------------------------------------------------------===//
107//                              ISD Namespace
108//===----------------------------------------------------------------------===//
109
110/// isBuildVectorAllOnes - Return true if the specified node is a
111/// BUILD_VECTOR where all of the elements are ~0 or undef.
112bool ISD::isBuildVectorAllOnes(const SDNode *N) {
113  // Look through a bit convert.
114  if (N->getOpcode() == ISD::BIT_CONVERT)
115    N = N->getOperand(0).getNode();
116
117  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
118
119  unsigned i = 0, e = N->getNumOperands();
120
121  // Skip over all of the undef values.
122  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
123    ++i;
124
125  // Do not accept an all-undef vector.
126  if (i == e) return false;
127
128  // Do not accept build_vectors that aren't all constants or which have non-~0
129  // elements.
130  SDValue NotZero = N->getOperand(i);
131  if (isa<ConstantSDNode>(NotZero)) {
132    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
133      return false;
134  } else if (isa<ConstantFPSDNode>(NotZero)) {
135    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
136                bitcastToAPInt().isAllOnesValue())
137      return false;
138  } else
139    return false;
140
141  // Okay, we have at least one ~0 value, check to see if the rest match or are
142  // undefs.
143  for (++i; i != e; ++i)
144    if (N->getOperand(i) != NotZero &&
145        N->getOperand(i).getOpcode() != ISD::UNDEF)
146      return false;
147  return true;
148}
149
150
151/// isBuildVectorAllZeros - Return true if the specified node is a
152/// BUILD_VECTOR where all of the elements are 0 or undef.
153bool ISD::isBuildVectorAllZeros(const SDNode *N) {
154  // Look through a bit convert.
155  if (N->getOpcode() == ISD::BIT_CONVERT)
156    N = N->getOperand(0).getNode();
157
158  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
159
160  unsigned i = 0, e = N->getNumOperands();
161
162  // Skip over all of the undef values.
163  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
164    ++i;
165
166  // Do not accept an all-undef vector.
167  if (i == e) return false;
168
169  // Do not accept build_vectors that aren't all constants or which have non-0
170  // elements.
171  SDValue Zero = N->getOperand(i);
172  if (isa<ConstantSDNode>(Zero)) {
173    if (!cast<ConstantSDNode>(Zero)->isNullValue())
174      return false;
175  } else if (isa<ConstantFPSDNode>(Zero)) {
176    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
177      return false;
178  } else
179    return false;
180
181  // Okay, we have at least one 0 value, check to see if the rest match or are
182  // undefs.
183  for (++i; i != e; ++i)
184    if (N->getOperand(i) != Zero &&
185        N->getOperand(i).getOpcode() != ISD::UNDEF)
186      return false;
187  return true;
188}
189
190/// isScalarToVector - Return true if the specified node is a
191/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
192/// element is not an undef.
193bool ISD::isScalarToVector(const SDNode *N) {
194  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
195    return true;
196
197  if (N->getOpcode() != ISD::BUILD_VECTOR)
198    return false;
199  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
200    return false;
201  unsigned NumElems = N->getNumOperands();
202  for (unsigned i = 1; i < NumElems; ++i) {
203    SDValue V = N->getOperand(i);
204    if (V.getOpcode() != ISD::UNDEF)
205      return false;
206  }
207  return true;
208}
209
210/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
211/// when given the operation for (X op Y).
212ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
213  // To perform this operation, we just need to swap the L and G bits of the
214  // operation.
215  unsigned OldL = (Operation >> 2) & 1;
216  unsigned OldG = (Operation >> 1) & 1;
217  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
218                       (OldL << 1) |       // New G bit
219                       (OldG << 2));       // New L bit.
220}
221
222/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
223/// 'op' is a valid SetCC operation.
224ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
225  unsigned Operation = Op;
226  if (isInteger)
227    Operation ^= 7;   // Flip L, G, E bits, but not U.
228  else
229    Operation ^= 15;  // Flip all of the condition bits.
230
231  if (Operation > ISD::SETTRUE2)
232    Operation &= ~8;  // Don't let N and U bits get set.
233
234  return ISD::CondCode(Operation);
235}
236
237
238/// isSignedOp - For an integer comparison, return 1 if the comparison is a
239/// signed operation and 2 if the result is an unsigned comparison.  Return zero
240/// if the operation does not depend on the sign of the input (setne and seteq).
241static int isSignedOp(ISD::CondCode Opcode) {
242  switch (Opcode) {
243  default: llvm_unreachable("Illegal integer setcc operation!");
244  case ISD::SETEQ:
245  case ISD::SETNE: return 0;
246  case ISD::SETLT:
247  case ISD::SETLE:
248  case ISD::SETGT:
249  case ISD::SETGE: return 1;
250  case ISD::SETULT:
251  case ISD::SETULE:
252  case ISD::SETUGT:
253  case ISD::SETUGE: return 2;
254  }
255}
256
257/// getSetCCOrOperation - Return the result of a logical OR between different
258/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
259/// returns SETCC_INVALID if it is not possible to represent the resultant
260/// comparison.
261ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
262                                       bool isInteger) {
263  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
264    // Cannot fold a signed integer setcc with an unsigned integer setcc.
265    return ISD::SETCC_INVALID;
266
267  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
268
269  // If the N and U bits get set then the resultant comparison DOES suddenly
270  // care about orderedness, and is true when ordered.
271  if (Op > ISD::SETTRUE2)
272    Op &= ~16;     // Clear the U bit if the N bit is set.
273
274  // Canonicalize illegal integer setcc's.
275  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
276    Op = ISD::SETNE;
277
278  return ISD::CondCode(Op);
279}
280
281/// getSetCCAndOperation - Return the result of a logical AND between different
282/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
283/// function returns zero if it is not possible to represent the resultant
284/// comparison.
285ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
286                                        bool isInteger) {
287  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
288    // Cannot fold a signed setcc with an unsigned setcc.
289    return ISD::SETCC_INVALID;
290
291  // Combine all of the condition bits.
292  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
293
294  // Canonicalize illegal integer setcc's.
295  if (isInteger) {
296    switch (Result) {
297    default: break;
298    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
299    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
300    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
301    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
302    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
303    }
304  }
305
306  return Result;
307}
308
309//===----------------------------------------------------------------------===//
310//                           SDNode Profile Support
311//===----------------------------------------------------------------------===//
312
313/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
314///
315static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
316  ID.AddInteger(OpC);
317}
318
319/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
320/// solely with their pointer.
321static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
322  ID.AddPointer(VTList.VTs);
323}
324
325/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
326///
327static void AddNodeIDOperands(FoldingSetNodeID &ID,
328                              const SDValue *Ops, unsigned NumOps) {
329  for (; NumOps; --NumOps, ++Ops) {
330    ID.AddPointer(Ops->getNode());
331    ID.AddInteger(Ops->getResNo());
332  }
333}
334
335/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
336///
337static void AddNodeIDOperands(FoldingSetNodeID &ID,
338                              const SDUse *Ops, unsigned NumOps) {
339  for (; NumOps; --NumOps, ++Ops) {
340    ID.AddPointer(Ops->getNode());
341    ID.AddInteger(Ops->getResNo());
342  }
343}
344
345static void AddNodeIDNode(FoldingSetNodeID &ID,
346                          unsigned short OpC, SDVTList VTList,
347                          const SDValue *OpList, unsigned N) {
348  AddNodeIDOpcode(ID, OpC);
349  AddNodeIDValueTypes(ID, VTList);
350  AddNodeIDOperands(ID, OpList, N);
351}
352
353/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
354/// the NodeID data.
355static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
356  switch (N->getOpcode()) {
357  case ISD::TargetExternalSymbol:
358  case ISD::ExternalSymbol:
359    llvm_unreachable("Should only be used on nodes with operands");
360  default: break;  // Normal nodes don't need extra info.
361  case ISD::TargetConstant:
362  case ISD::Constant:
363    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
364    break;
365  case ISD::TargetConstantFP:
366  case ISD::ConstantFP: {
367    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
368    break;
369  }
370  case ISD::TargetGlobalAddress:
371  case ISD::GlobalAddress:
372  case ISD::TargetGlobalTLSAddress:
373  case ISD::GlobalTLSAddress: {
374    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
375    ID.AddPointer(GA->getGlobal());
376    ID.AddInteger(GA->getOffset());
377    ID.AddInteger(GA->getTargetFlags());
378    break;
379  }
380  case ISD::BasicBlock:
381    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
382    break;
383  case ISD::Register:
384    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
385    break;
386
387  case ISD::SRCVALUE:
388    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
389    break;
390  case ISD::FrameIndex:
391  case ISD::TargetFrameIndex:
392    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
393    break;
394  case ISD::JumpTable:
395  case ISD::TargetJumpTable:
396    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
397    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
398    break;
399  case ISD::ConstantPool:
400  case ISD::TargetConstantPool: {
401    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
402    ID.AddInteger(CP->getAlignment());
403    ID.AddInteger(CP->getOffset());
404    if (CP->isMachineConstantPoolEntry())
405      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
406    else
407      ID.AddPointer(CP->getConstVal());
408    ID.AddInteger(CP->getTargetFlags());
409    break;
410  }
411  case ISD::LOAD: {
412    const LoadSDNode *LD = cast<LoadSDNode>(N);
413    ID.AddInteger(LD->getMemoryVT().getRawBits());
414    ID.AddInteger(LD->getRawSubclassData());
415    break;
416  }
417  case ISD::STORE: {
418    const StoreSDNode *ST = cast<StoreSDNode>(N);
419    ID.AddInteger(ST->getMemoryVT().getRawBits());
420    ID.AddInteger(ST->getRawSubclassData());
421    break;
422  }
423  case ISD::ATOMIC_CMP_SWAP:
424  case ISD::ATOMIC_SWAP:
425  case ISD::ATOMIC_LOAD_ADD:
426  case ISD::ATOMIC_LOAD_SUB:
427  case ISD::ATOMIC_LOAD_AND:
428  case ISD::ATOMIC_LOAD_OR:
429  case ISD::ATOMIC_LOAD_XOR:
430  case ISD::ATOMIC_LOAD_NAND:
431  case ISD::ATOMIC_LOAD_MIN:
432  case ISD::ATOMIC_LOAD_MAX:
433  case ISD::ATOMIC_LOAD_UMIN:
434  case ISD::ATOMIC_LOAD_UMAX: {
435    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
436    ID.AddInteger(AT->getMemoryVT().getRawBits());
437    ID.AddInteger(AT->getRawSubclassData());
438    break;
439  }
440  case ISD::VECTOR_SHUFFLE: {
441    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
442    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
443         i != e; ++i)
444      ID.AddInteger(SVN->getMaskElt(i));
445    break;
446  }
447  case ISD::TargetBlockAddress:
448  case ISD::BlockAddress: {
449    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
450    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
451    break;
452  }
453  } // end switch (N->getOpcode())
454}
455
456/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
457/// data.
458static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
459  AddNodeIDOpcode(ID, N->getOpcode());
460  // Add the return value info.
461  AddNodeIDValueTypes(ID, N->getVTList());
462  // Add the operand info.
463  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
464
465  // Handle SDNode leafs with special info.
466  AddNodeIDCustom(ID, N);
467}
468
469/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
470/// the CSE map that carries volatility, temporalness, indexing mode, and
471/// extension/truncation information.
472///
473static inline unsigned
474encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
475                     bool isNonTemporal) {
476  assert((ConvType & 3) == ConvType &&
477         "ConvType may not require more than 2 bits!");
478  assert((AM & 7) == AM &&
479         "AM may not require more than 3 bits!");
480  return ConvType |
481         (AM << 2) |
482         (isVolatile << 5) |
483         (isNonTemporal << 6);
484}
485
486//===----------------------------------------------------------------------===//
487//                              SelectionDAG Class
488//===----------------------------------------------------------------------===//
489
490/// doNotCSE - Return true if CSE should not be performed for this node.
491static bool doNotCSE(SDNode *N) {
492  if (N->getValueType(0) == MVT::Flag)
493    return true; // Never CSE anything that produces a flag.
494
495  switch (N->getOpcode()) {
496  default: break;
497  case ISD::HANDLENODE:
498  case ISD::EH_LABEL:
499    return true;   // Never CSE these nodes.
500  }
501
502  // Check that remaining values produced are not flags.
503  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
504    if (N->getValueType(i) == MVT::Flag)
505      return true; // Never CSE anything that produces a flag.
506
507  return false;
508}
509
510/// RemoveDeadNodes - This method deletes all unreachable nodes in the
511/// SelectionDAG.
512void SelectionDAG::RemoveDeadNodes() {
513  // Create a dummy node (which is not added to allnodes), that adds a reference
514  // to the root node, preventing it from being deleted.
515  HandleSDNode Dummy(getRoot());
516
517  SmallVector<SDNode*, 128> DeadNodes;
518
519  // Add all obviously-dead nodes to the DeadNodes worklist.
520  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
521    if (I->use_empty())
522      DeadNodes.push_back(I);
523
524  RemoveDeadNodes(DeadNodes);
525
526  // If the root changed (e.g. it was a dead load, update the root).
527  setRoot(Dummy.getValue());
528}
529
530/// RemoveDeadNodes - This method deletes the unreachable nodes in the
531/// given list, and any nodes that become unreachable as a result.
532void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
533                                   DAGUpdateListener *UpdateListener) {
534
535  // Process the worklist, deleting the nodes and adding their uses to the
536  // worklist.
537  while (!DeadNodes.empty()) {
538    SDNode *N = DeadNodes.pop_back_val();
539
540    if (UpdateListener)
541      UpdateListener->NodeDeleted(N, 0);
542
543    // Take the node out of the appropriate CSE map.
544    RemoveNodeFromCSEMaps(N);
545
546    // Next, brutally remove the operand list.  This is safe to do, as there are
547    // no cycles in the graph.
548    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
549      SDUse &Use = *I++;
550      SDNode *Operand = Use.getNode();
551      Use.set(SDValue());
552
553      // Now that we removed this operand, see if there are no uses of it left.
554      if (Operand->use_empty())
555        DeadNodes.push_back(Operand);
556    }
557
558    DeallocateNode(N);
559  }
560}
561
562void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
563  SmallVector<SDNode*, 16> DeadNodes(1, N);
564  RemoveDeadNodes(DeadNodes, UpdateListener);
565}
566
567void SelectionDAG::DeleteNode(SDNode *N) {
568  // First take this out of the appropriate CSE map.
569  RemoveNodeFromCSEMaps(N);
570
571  // Finally, remove uses due to operands of this node, remove from the
572  // AllNodes list, and delete the node.
573  DeleteNodeNotInCSEMaps(N);
574}
575
576void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
577  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
578  assert(N->use_empty() && "Cannot delete a node that is not dead!");
579
580  // Drop all of the operands and decrement used node's use counts.
581  N->DropOperands();
582
583  DeallocateNode(N);
584}
585
586void SelectionDAG::DeallocateNode(SDNode *N) {
587  if (N->OperandsNeedDelete)
588    delete[] N->OperandList;
589
590  // Set the opcode to DELETED_NODE to help catch bugs when node
591  // memory is reallocated.
592  N->NodeType = ISD::DELETED_NODE;
593
594  NodeAllocator.Deallocate(AllNodes.remove(N));
595
596  // Remove the ordering of this node.
597  Ordering->remove(N);
598
599  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
600  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
601  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
602    DbgVals[i]->setIsInvalidated();
603}
604
605/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
606/// correspond to it.  This is useful when we're about to delete or repurpose
607/// the node.  We don't want future request for structurally identical nodes
608/// to return N anymore.
609bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
610  bool Erased = false;
611  switch (N->getOpcode()) {
612  case ISD::EntryToken:
613    llvm_unreachable("EntryToken should not be in CSEMaps!");
614    return false;
615  case ISD::HANDLENODE: return false;  // noop.
616  case ISD::CONDCODE:
617    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
618           "Cond code doesn't exist!");
619    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
620    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
621    break;
622  case ISD::ExternalSymbol:
623    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
624    break;
625  case ISD::TargetExternalSymbol: {
626    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
627    Erased = TargetExternalSymbols.erase(
628               std::pair<std::string,unsigned char>(ESN->getSymbol(),
629                                                    ESN->getTargetFlags()));
630    break;
631  }
632  case ISD::VALUETYPE: {
633    EVT VT = cast<VTSDNode>(N)->getVT();
634    if (VT.isExtended()) {
635      Erased = ExtendedValueTypeNodes.erase(VT);
636    } else {
637      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
638      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
639    }
640    break;
641  }
642  default:
643    // Remove it from the CSE Map.
644    Erased = CSEMap.RemoveNode(N);
645    break;
646  }
647#ifndef NDEBUG
648  // Verify that the node was actually in one of the CSE maps, unless it has a
649  // flag result (which cannot be CSE'd) or is one of the special cases that are
650  // not subject to CSE.
651  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
652      !N->isMachineOpcode() && !doNotCSE(N)) {
653    N->dump(this);
654    dbgs() << "\n";
655    llvm_unreachable("Node is not in map!");
656  }
657#endif
658  return Erased;
659}
660
661/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
662/// maps and modified in place. Add it back to the CSE maps, unless an identical
663/// node already exists, in which case transfer all its users to the existing
664/// node. This transfer can potentially trigger recursive merging.
665///
666void
667SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
668                                       DAGUpdateListener *UpdateListener) {
669  // For node types that aren't CSE'd, just act as if no identical node
670  // already exists.
671  if (!doNotCSE(N)) {
672    SDNode *Existing = CSEMap.GetOrInsertNode(N);
673    if (Existing != N) {
674      // If there was already an existing matching node, use ReplaceAllUsesWith
675      // to replace the dead one with the existing one.  This can cause
676      // recursive merging of other unrelated nodes down the line.
677      ReplaceAllUsesWith(N, Existing, UpdateListener);
678
679      // N is now dead.  Inform the listener if it exists and delete it.
680      if (UpdateListener)
681        UpdateListener->NodeDeleted(N, Existing);
682      DeleteNodeNotInCSEMaps(N);
683      return;
684    }
685  }
686
687  // If the node doesn't already exist, we updated it.  Inform a listener if
688  // it exists.
689  if (UpdateListener)
690    UpdateListener->NodeUpdated(N);
691}
692
693/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
694/// were replaced with those specified.  If this node is never memoized,
695/// return null, otherwise return a pointer to the slot it would take.  If a
696/// node already exists with these operands, the slot will be non-null.
697SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
698                                           void *&InsertPos) {
699  if (doNotCSE(N))
700    return 0;
701
702  SDValue Ops[] = { Op };
703  FoldingSetNodeID ID;
704  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
705  AddNodeIDCustom(ID, N);
706  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
707  return Node;
708}
709
710/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
711/// were replaced with those specified.  If this node is never memoized,
712/// return null, otherwise return a pointer to the slot it would take.  If a
713/// node already exists with these operands, the slot will be non-null.
714SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
715                                           SDValue Op1, SDValue Op2,
716                                           void *&InsertPos) {
717  if (doNotCSE(N))
718    return 0;
719
720  SDValue Ops[] = { Op1, Op2 };
721  FoldingSetNodeID ID;
722  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
723  AddNodeIDCustom(ID, N);
724  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
725  return Node;
726}
727
728
729/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
730/// were replaced with those specified.  If this node is never memoized,
731/// return null, otherwise return a pointer to the slot it would take.  If a
732/// node already exists with these operands, the slot will be non-null.
733SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
734                                           const SDValue *Ops,unsigned NumOps,
735                                           void *&InsertPos) {
736  if (doNotCSE(N))
737    return 0;
738
739  FoldingSetNodeID ID;
740  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
741  AddNodeIDCustom(ID, N);
742  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
743  return Node;
744}
745
746/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
747void SelectionDAG::VerifyNode(SDNode *N) {
748  switch (N->getOpcode()) {
749  default:
750    break;
751  case ISD::BUILD_PAIR: {
752    EVT VT = N->getValueType(0);
753    assert(N->getNumValues() == 1 && "Too many results!");
754    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
755           "Wrong return type!");
756    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
757    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
758           "Mismatched operand types!");
759    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
760           "Wrong operand type!");
761    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
762           "Wrong return type size");
763    break;
764  }
765  case ISD::BUILD_VECTOR: {
766    assert(N->getNumValues() == 1 && "Too many results!");
767    assert(N->getValueType(0).isVector() && "Wrong return type!");
768    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
769           "Wrong number of operands!");
770    EVT EltVT = N->getValueType(0).getVectorElementType();
771    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
772      assert((I->getValueType() == EltVT ||
773             (EltVT.isInteger() && I->getValueType().isInteger() &&
774              EltVT.bitsLE(I->getValueType()))) &&
775            "Wrong operand type!");
776    break;
777  }
778  }
779}
780
781/// getEVTAlignment - Compute the default alignment value for the
782/// given type.
783///
784unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
785  const Type *Ty = VT == MVT::iPTR ?
786                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
787                   VT.getTypeForEVT(*getContext());
788
789  return TLI.getTargetData()->getABITypeAlignment(Ty);
790}
791
792// EntryNode could meaningfully have debug info if we can find it...
793SelectionDAG::SelectionDAG(const TargetMachine &tm, FunctionLoweringInfo &fli)
794  : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
795    FLI(fli),
796    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
797    Root(getEntryNode()), Ordering(0) {
798  AllNodes.push_back(&EntryNode);
799  Ordering = new SDNodeOrdering();
800  DbgInfo = new SDDbgInfo();
801}
802
803void SelectionDAG::init(MachineFunction &mf) {
804  MF = &mf;
805  Context = &mf.getFunction()->getContext();
806}
807
808SelectionDAG::~SelectionDAG() {
809  allnodes_clear();
810  delete Ordering;
811  DbgInfo->clear();
812  delete DbgInfo;
813}
814
815void SelectionDAG::allnodes_clear() {
816  assert(&*AllNodes.begin() == &EntryNode);
817  AllNodes.remove(AllNodes.begin());
818  while (!AllNodes.empty())
819    DeallocateNode(AllNodes.begin());
820}
821
822void SelectionDAG::clear() {
823  allnodes_clear();
824  OperandAllocator.Reset();
825  CSEMap.clear();
826
827  ExtendedValueTypeNodes.clear();
828  ExternalSymbols.clear();
829  TargetExternalSymbols.clear();
830  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
831            static_cast<CondCodeSDNode*>(0));
832  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
833            static_cast<SDNode*>(0));
834
835  EntryNode.UseList = 0;
836  AllNodes.push_back(&EntryNode);
837  Root = getEntryNode();
838  delete Ordering;
839  Ordering = new SDNodeOrdering();
840  DbgInfo->clear();
841  delete DbgInfo;
842  DbgInfo = new SDDbgInfo();
843}
844
845SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
846  return VT.bitsGT(Op.getValueType()) ?
847    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
848    getNode(ISD::TRUNCATE, DL, VT, Op);
849}
850
851SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
852  return VT.bitsGT(Op.getValueType()) ?
853    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
854    getNode(ISD::TRUNCATE, DL, VT, Op);
855}
856
857SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
858  assert(!VT.isVector() &&
859         "getZeroExtendInReg should use the vector element type instead of "
860         "the vector type!");
861  if (Op.getValueType() == VT) return Op;
862  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
863  APInt Imm = APInt::getLowBitsSet(BitWidth,
864                                   VT.getSizeInBits());
865  return getNode(ISD::AND, DL, Op.getValueType(), Op,
866                 getConstant(Imm, Op.getValueType()));
867}
868
869/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
870///
871SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
872  EVT EltVT = VT.getScalarType();
873  SDValue NegOne =
874    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
875  return getNode(ISD::XOR, DL, VT, Val, NegOne);
876}
877
878SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
879  EVT EltVT = VT.getScalarType();
880  assert((EltVT.getSizeInBits() >= 64 ||
881         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
882         "getConstant with a uint64_t value that doesn't fit in the type!");
883  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
884}
885
886SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
887  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
888}
889
890SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
891  assert(VT.isInteger() && "Cannot create FP integer constant!");
892
893  EVT EltVT = VT.getScalarType();
894  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
895         "APInt size does not match type size!");
896
897  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
898  FoldingSetNodeID ID;
899  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
900  ID.AddPointer(&Val);
901  void *IP = 0;
902  SDNode *N = NULL;
903  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
904    if (!VT.isVector())
905      return SDValue(N, 0);
906
907  if (!N) {
908    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
909    CSEMap.InsertNode(N, IP);
910    AllNodes.push_back(N);
911  }
912
913  SDValue Result(N, 0);
914  if (VT.isVector()) {
915    SmallVector<SDValue, 8> Ops;
916    Ops.assign(VT.getVectorNumElements(), Result);
917    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
918  }
919  return Result;
920}
921
922SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
923  return getConstant(Val, TLI.getPointerTy(), isTarget);
924}
925
926
927SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
928  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
929}
930
931SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
932  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
933
934  EVT EltVT = VT.getScalarType();
935
936  // Do the map lookup using the actual bit pattern for the floating point
937  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
938  // we don't have issues with SNANs.
939  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
940  FoldingSetNodeID ID;
941  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
942  ID.AddPointer(&V);
943  void *IP = 0;
944  SDNode *N = NULL;
945  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
946    if (!VT.isVector())
947      return SDValue(N, 0);
948
949  if (!N) {
950    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
951    CSEMap.InsertNode(N, IP);
952    AllNodes.push_back(N);
953  }
954
955  SDValue Result(N, 0);
956  if (VT.isVector()) {
957    SmallVector<SDValue, 8> Ops;
958    Ops.assign(VT.getVectorNumElements(), Result);
959    // FIXME DebugLoc info might be appropriate here
960    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
961  }
962  return Result;
963}
964
965SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
966  EVT EltVT = VT.getScalarType();
967  if (EltVT==MVT::f32)
968    return getConstantFP(APFloat((float)Val), VT, isTarget);
969  else if (EltVT==MVT::f64)
970    return getConstantFP(APFloat(Val), VT, isTarget);
971  else if (EltVT==MVT::f80 || EltVT==MVT::f128) {
972    bool ignored;
973    APFloat apf = APFloat(Val);
974    apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
975                &ignored);
976    return getConstantFP(apf, VT, isTarget);
977  } else {
978    assert(0 && "Unsupported type in getConstantFP");
979    return SDValue();
980  }
981}
982
983SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
984                                       EVT VT, int64_t Offset,
985                                       bool isTargetGA,
986                                       unsigned char TargetFlags) {
987  assert((TargetFlags == 0 || isTargetGA) &&
988         "Cannot set target flags on target-independent globals");
989
990  // Truncate (with sign-extension) the offset value to the pointer size.
991  EVT PTy = TLI.getPointerTy();
992  unsigned BitWidth = PTy.getSizeInBits();
993  if (BitWidth < 64)
994    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
995
996  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
997  if (!GVar) {
998    // If GV is an alias then use the aliasee for determining thread-localness.
999    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1000      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1001  }
1002
1003  unsigned Opc;
1004  if (GVar && GVar->isThreadLocal())
1005    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1006  else
1007    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1008
1009  FoldingSetNodeID ID;
1010  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1011  ID.AddPointer(GV);
1012  ID.AddInteger(Offset);
1013  ID.AddInteger(TargetFlags);
1014  void *IP = 0;
1015  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1016    return SDValue(E, 0);
1017
1018  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, GV, VT,
1019                                                      Offset, TargetFlags);
1020  CSEMap.InsertNode(N, IP);
1021  AllNodes.push_back(N);
1022  return SDValue(N, 0);
1023}
1024
1025SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1026  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1027  FoldingSetNodeID ID;
1028  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1029  ID.AddInteger(FI);
1030  void *IP = 0;
1031  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1032    return SDValue(E, 0);
1033
1034  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1035  CSEMap.InsertNode(N, IP);
1036  AllNodes.push_back(N);
1037  return SDValue(N, 0);
1038}
1039
1040SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1041                                   unsigned char TargetFlags) {
1042  assert((TargetFlags == 0 || isTarget) &&
1043         "Cannot set target flags on target-independent jump tables");
1044  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1045  FoldingSetNodeID ID;
1046  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1047  ID.AddInteger(JTI);
1048  ID.AddInteger(TargetFlags);
1049  void *IP = 0;
1050  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1051    return SDValue(E, 0);
1052
1053  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1054                                                  TargetFlags);
1055  CSEMap.InsertNode(N, IP);
1056  AllNodes.push_back(N);
1057  return SDValue(N, 0);
1058}
1059
1060SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1061                                      unsigned Alignment, int Offset,
1062                                      bool isTarget,
1063                                      unsigned char TargetFlags) {
1064  assert((TargetFlags == 0 || isTarget) &&
1065         "Cannot set target flags on target-independent globals");
1066  if (Alignment == 0)
1067    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1068  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1069  FoldingSetNodeID ID;
1070  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1071  ID.AddInteger(Alignment);
1072  ID.AddInteger(Offset);
1073  ID.AddPointer(C);
1074  ID.AddInteger(TargetFlags);
1075  void *IP = 0;
1076  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1077    return SDValue(E, 0);
1078
1079  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1080                                                     Alignment, TargetFlags);
1081  CSEMap.InsertNode(N, IP);
1082  AllNodes.push_back(N);
1083  return SDValue(N, 0);
1084}
1085
1086
1087SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1088                                      unsigned Alignment, int Offset,
1089                                      bool isTarget,
1090                                      unsigned char TargetFlags) {
1091  assert((TargetFlags == 0 || isTarget) &&
1092         "Cannot set target flags on target-independent globals");
1093  if (Alignment == 0)
1094    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1095  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1096  FoldingSetNodeID ID;
1097  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1098  ID.AddInteger(Alignment);
1099  ID.AddInteger(Offset);
1100  C->AddSelectionDAGCSEId(ID);
1101  ID.AddInteger(TargetFlags);
1102  void *IP = 0;
1103  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1104    return SDValue(E, 0);
1105
1106  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1107                                                     Alignment, TargetFlags);
1108  CSEMap.InsertNode(N, IP);
1109  AllNodes.push_back(N);
1110  return SDValue(N, 0);
1111}
1112
1113SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1114  FoldingSetNodeID ID;
1115  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1116  ID.AddPointer(MBB);
1117  void *IP = 0;
1118  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1119    return SDValue(E, 0);
1120
1121  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1122  CSEMap.InsertNode(N, IP);
1123  AllNodes.push_back(N);
1124  return SDValue(N, 0);
1125}
1126
1127SDValue SelectionDAG::getValueType(EVT VT) {
1128  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1129      ValueTypeNodes.size())
1130    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1131
1132  SDNode *&N = VT.isExtended() ?
1133    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1134
1135  if (N) return SDValue(N, 0);
1136  N = new (NodeAllocator) VTSDNode(VT);
1137  AllNodes.push_back(N);
1138  return SDValue(N, 0);
1139}
1140
1141SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1142  SDNode *&N = ExternalSymbols[Sym];
1143  if (N) return SDValue(N, 0);
1144  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1145  AllNodes.push_back(N);
1146  return SDValue(N, 0);
1147}
1148
1149SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1150                                              unsigned char TargetFlags) {
1151  SDNode *&N =
1152    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1153                                                               TargetFlags)];
1154  if (N) return SDValue(N, 0);
1155  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1156  AllNodes.push_back(N);
1157  return SDValue(N, 0);
1158}
1159
1160SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1161  if ((unsigned)Cond >= CondCodeNodes.size())
1162    CondCodeNodes.resize(Cond+1);
1163
1164  if (CondCodeNodes[Cond] == 0) {
1165    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1166    CondCodeNodes[Cond] = N;
1167    AllNodes.push_back(N);
1168  }
1169
1170  return SDValue(CondCodeNodes[Cond], 0);
1171}
1172
1173// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1174// the shuffle mask M that point at N1 to point at N2, and indices that point
1175// N2 to point at N1.
1176static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1177  std::swap(N1, N2);
1178  int NElts = M.size();
1179  for (int i = 0; i != NElts; ++i) {
1180    if (M[i] >= NElts)
1181      M[i] -= NElts;
1182    else if (M[i] >= 0)
1183      M[i] += NElts;
1184  }
1185}
1186
1187SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1188                                       SDValue N2, const int *Mask) {
1189  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1190  assert(VT.isVector() && N1.getValueType().isVector() &&
1191         "Vector Shuffle VTs must be a vectors");
1192  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1193         && "Vector Shuffle VTs must have same element type");
1194
1195  // Canonicalize shuffle undef, undef -> undef
1196  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1197    return getUNDEF(VT);
1198
1199  // Validate that all indices in Mask are within the range of the elements
1200  // input to the shuffle.
1201  unsigned NElts = VT.getVectorNumElements();
1202  SmallVector<int, 8> MaskVec;
1203  for (unsigned i = 0; i != NElts; ++i) {
1204    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1205    MaskVec.push_back(Mask[i]);
1206  }
1207
1208  // Canonicalize shuffle v, v -> v, undef
1209  if (N1 == N2) {
1210    N2 = getUNDEF(VT);
1211    for (unsigned i = 0; i != NElts; ++i)
1212      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1213  }
1214
1215  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1216  if (N1.getOpcode() == ISD::UNDEF)
1217    commuteShuffle(N1, N2, MaskVec);
1218
1219  // Canonicalize all index into lhs, -> shuffle lhs, undef
1220  // Canonicalize all index into rhs, -> shuffle rhs, undef
1221  bool AllLHS = true, AllRHS = true;
1222  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1223  for (unsigned i = 0; i != NElts; ++i) {
1224    if (MaskVec[i] >= (int)NElts) {
1225      if (N2Undef)
1226        MaskVec[i] = -1;
1227      else
1228        AllLHS = false;
1229    } else if (MaskVec[i] >= 0) {
1230      AllRHS = false;
1231    }
1232  }
1233  if (AllLHS && AllRHS)
1234    return getUNDEF(VT);
1235  if (AllLHS && !N2Undef)
1236    N2 = getUNDEF(VT);
1237  if (AllRHS) {
1238    N1 = getUNDEF(VT);
1239    commuteShuffle(N1, N2, MaskVec);
1240  }
1241
1242  // If Identity shuffle, or all shuffle in to undef, return that node.
1243  bool AllUndef = true;
1244  bool Identity = true;
1245  for (unsigned i = 0; i != NElts; ++i) {
1246    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1247    if (MaskVec[i] >= 0) AllUndef = false;
1248  }
1249  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1250    return N1;
1251  if (AllUndef)
1252    return getUNDEF(VT);
1253
1254  FoldingSetNodeID ID;
1255  SDValue Ops[2] = { N1, N2 };
1256  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1257  for (unsigned i = 0; i != NElts; ++i)
1258    ID.AddInteger(MaskVec[i]);
1259
1260  void* IP = 0;
1261  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1262    return SDValue(E, 0);
1263
1264  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1265  // SDNode doesn't have access to it.  This memory will be "leaked" when
1266  // the node is deallocated, but recovered when the NodeAllocator is released.
1267  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1268  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1269
1270  ShuffleVectorSDNode *N =
1271    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1272  CSEMap.InsertNode(N, IP);
1273  AllNodes.push_back(N);
1274  return SDValue(N, 0);
1275}
1276
1277SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1278                                       SDValue Val, SDValue DTy,
1279                                       SDValue STy, SDValue Rnd, SDValue Sat,
1280                                       ISD::CvtCode Code) {
1281  // If the src and dest types are the same and the conversion is between
1282  // integer types of the same sign or two floats, no conversion is necessary.
1283  if (DTy == STy &&
1284      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1285    return Val;
1286
1287  FoldingSetNodeID ID;
1288  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1289  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1290  void* IP = 0;
1291  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1292    return SDValue(E, 0);
1293
1294  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1295                                                           Code);
1296  CSEMap.InsertNode(N, IP);
1297  AllNodes.push_back(N);
1298  return SDValue(N, 0);
1299}
1300
1301SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1302  FoldingSetNodeID ID;
1303  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1304  ID.AddInteger(RegNo);
1305  void *IP = 0;
1306  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1307    return SDValue(E, 0);
1308
1309  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1310  CSEMap.InsertNode(N, IP);
1311  AllNodes.push_back(N);
1312  return SDValue(N, 0);
1313}
1314
1315SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1316  FoldingSetNodeID ID;
1317  SDValue Ops[] = { Root };
1318  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1319  ID.AddPointer(Label);
1320  void *IP = 0;
1321  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1322    return SDValue(E, 0);
1323
1324  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1325  CSEMap.InsertNode(N, IP);
1326  AllNodes.push_back(N);
1327  return SDValue(N, 0);
1328}
1329
1330
1331SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1332                                      bool isTarget,
1333                                      unsigned char TargetFlags) {
1334  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1335
1336  FoldingSetNodeID ID;
1337  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1338  ID.AddPointer(BA);
1339  ID.AddInteger(TargetFlags);
1340  void *IP = 0;
1341  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1342    return SDValue(E, 0);
1343
1344  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1345  CSEMap.InsertNode(N, IP);
1346  AllNodes.push_back(N);
1347  return SDValue(N, 0);
1348}
1349
1350SDValue SelectionDAG::getSrcValue(const Value *V) {
1351  assert((!V || V->getType()->isPointerTy()) &&
1352         "SrcValue is not a pointer?");
1353
1354  FoldingSetNodeID ID;
1355  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1356  ID.AddPointer(V);
1357
1358  void *IP = 0;
1359  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1360    return SDValue(E, 0);
1361
1362  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1363  CSEMap.InsertNode(N, IP);
1364  AllNodes.push_back(N);
1365  return SDValue(N, 0);
1366}
1367
1368/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1369SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1370  FoldingSetNodeID ID;
1371  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1372  ID.AddPointer(MD);
1373
1374  void *IP = 0;
1375  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1376    return SDValue(E, 0);
1377
1378  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1379  CSEMap.InsertNode(N, IP);
1380  AllNodes.push_back(N);
1381  return SDValue(N, 0);
1382}
1383
1384
1385/// getShiftAmountOperand - Return the specified value casted to
1386/// the target's desired shift amount type.
1387SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1388  EVT OpTy = Op.getValueType();
1389  MVT ShTy = TLI.getShiftAmountTy();
1390  if (OpTy == ShTy || OpTy.isVector()) return Op;
1391
1392  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1393  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1394}
1395
1396/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1397/// specified value type.
1398SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1399  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1400  unsigned ByteSize = VT.getStoreSize();
1401  const Type *Ty = VT.getTypeForEVT(*getContext());
1402  unsigned StackAlign =
1403  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1404
1405  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1406  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1407}
1408
1409/// CreateStackTemporary - Create a stack temporary suitable for holding
1410/// either of the specified value types.
1411SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1412  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1413                            VT2.getStoreSizeInBits())/8;
1414  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1415  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1416  const TargetData *TD = TLI.getTargetData();
1417  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1418                            TD->getPrefTypeAlignment(Ty2));
1419
1420  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1421  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1422  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1423}
1424
1425SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1426                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1427  // These setcc operations always fold.
1428  switch (Cond) {
1429  default: break;
1430  case ISD::SETFALSE:
1431  case ISD::SETFALSE2: return getConstant(0, VT);
1432  case ISD::SETTRUE:
1433  case ISD::SETTRUE2:  return getConstant(1, VT);
1434
1435  case ISD::SETOEQ:
1436  case ISD::SETOGT:
1437  case ISD::SETOGE:
1438  case ISD::SETOLT:
1439  case ISD::SETOLE:
1440  case ISD::SETONE:
1441  case ISD::SETO:
1442  case ISD::SETUO:
1443  case ISD::SETUEQ:
1444  case ISD::SETUNE:
1445    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1446    break;
1447  }
1448
1449  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1450    const APInt &C2 = N2C->getAPIntValue();
1451    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1452      const APInt &C1 = N1C->getAPIntValue();
1453
1454      switch (Cond) {
1455      default: llvm_unreachable("Unknown integer setcc!");
1456      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1457      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1458      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1459      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1460      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1461      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1462      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1463      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1464      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1465      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1466      }
1467    }
1468  }
1469  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1470    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1471      // No compile time operations on this type yet.
1472      if (N1C->getValueType(0) == MVT::ppcf128)
1473        return SDValue();
1474
1475      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1476      switch (Cond) {
1477      default: break;
1478      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1479                          return getUNDEF(VT);
1480                        // fall through
1481      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1482      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1483                          return getUNDEF(VT);
1484                        // fall through
1485      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1486                                           R==APFloat::cmpLessThan, VT);
1487      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1488                          return getUNDEF(VT);
1489                        // fall through
1490      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1491      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1492                          return getUNDEF(VT);
1493                        // fall through
1494      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1495      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1496                          return getUNDEF(VT);
1497                        // fall through
1498      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1499                                           R==APFloat::cmpEqual, VT);
1500      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1501                          return getUNDEF(VT);
1502                        // fall through
1503      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1504                                           R==APFloat::cmpEqual, VT);
1505      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1506      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1507      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1508                                           R==APFloat::cmpEqual, VT);
1509      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1510      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1511                                           R==APFloat::cmpLessThan, VT);
1512      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1513                                           R==APFloat::cmpUnordered, VT);
1514      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1515      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1516      }
1517    } else {
1518      // Ensure that the constant occurs on the RHS.
1519      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1520    }
1521  }
1522
1523  // Could not fold it.
1524  return SDValue();
1525}
1526
1527/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1528/// use this predicate to simplify operations downstream.
1529bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1530  // This predicate is not safe for vector operations.
1531  if (Op.getValueType().isVector())
1532    return false;
1533
1534  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1535  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1536}
1537
1538/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1539/// this predicate to simplify operations downstream.  Mask is known to be zero
1540/// for bits that V cannot have.
1541bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1542                                     unsigned Depth) const {
1543  APInt KnownZero, KnownOne;
1544  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1545  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1546  return (KnownZero & Mask) == Mask;
1547}
1548
1549/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1550/// known to be either zero or one and return them in the KnownZero/KnownOne
1551/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1552/// processing.
1553void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1554                                     APInt &KnownZero, APInt &KnownOne,
1555                                     unsigned Depth) const {
1556  unsigned BitWidth = Mask.getBitWidth();
1557  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1558         "Mask size mismatches value type size!");
1559
1560  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1561  if (Depth == 6 || Mask == 0)
1562    return;  // Limit search depth.
1563
1564  APInt KnownZero2, KnownOne2;
1565
1566  switch (Op.getOpcode()) {
1567  case ISD::Constant:
1568    // We know all of the bits for a constant!
1569    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1570    KnownZero = ~KnownOne & Mask;
1571    return;
1572  case ISD::AND:
1573    // If either the LHS or the RHS are Zero, the result is zero.
1574    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1575    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1576                      KnownZero2, KnownOne2, Depth+1);
1577    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1578    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1579
1580    // Output known-1 bits are only known if set in both the LHS & RHS.
1581    KnownOne &= KnownOne2;
1582    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1583    KnownZero |= KnownZero2;
1584    return;
1585  case ISD::OR:
1586    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1587    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1588                      KnownZero2, KnownOne2, Depth+1);
1589    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1590    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1591
1592    // Output known-0 bits are only known if clear in both the LHS & RHS.
1593    KnownZero &= KnownZero2;
1594    // Output known-1 are known to be set if set in either the LHS | RHS.
1595    KnownOne |= KnownOne2;
1596    return;
1597  case ISD::XOR: {
1598    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1599    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1600    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1601    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1602
1603    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1604    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1605    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1606    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1607    KnownZero = KnownZeroOut;
1608    return;
1609  }
1610  case ISD::MUL: {
1611    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1612    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1613    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1614    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1615    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1616
1617    // If low bits are zero in either operand, output low known-0 bits.
1618    // Also compute a conserative estimate for high known-0 bits.
1619    // More trickiness is possible, but this is sufficient for the
1620    // interesting case of alignment computation.
1621    KnownOne.clear();
1622    unsigned TrailZ = KnownZero.countTrailingOnes() +
1623                      KnownZero2.countTrailingOnes();
1624    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1625                               KnownZero2.countLeadingOnes(),
1626                               BitWidth) - BitWidth;
1627
1628    TrailZ = std::min(TrailZ, BitWidth);
1629    LeadZ = std::min(LeadZ, BitWidth);
1630    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1631                APInt::getHighBitsSet(BitWidth, LeadZ);
1632    KnownZero &= Mask;
1633    return;
1634  }
1635  case ISD::UDIV: {
1636    // For the purposes of computing leading zeros we can conservatively
1637    // treat a udiv as a logical right shift by the power of 2 known to
1638    // be less than the denominator.
1639    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1640    ComputeMaskedBits(Op.getOperand(0),
1641                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1642    unsigned LeadZ = KnownZero2.countLeadingOnes();
1643
1644    KnownOne2.clear();
1645    KnownZero2.clear();
1646    ComputeMaskedBits(Op.getOperand(1),
1647                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1648    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1649    if (RHSUnknownLeadingOnes != BitWidth)
1650      LeadZ = std::min(BitWidth,
1651                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1652
1653    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1654    return;
1655  }
1656  case ISD::SELECT:
1657    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1658    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1659    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1660    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1661
1662    // Only known if known in both the LHS and RHS.
1663    KnownOne &= KnownOne2;
1664    KnownZero &= KnownZero2;
1665    return;
1666  case ISD::SELECT_CC:
1667    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1668    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1669    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1670    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1671
1672    // Only known if known in both the LHS and RHS.
1673    KnownOne &= KnownOne2;
1674    KnownZero &= KnownZero2;
1675    return;
1676  case ISD::SADDO:
1677  case ISD::UADDO:
1678  case ISD::SSUBO:
1679  case ISD::USUBO:
1680  case ISD::SMULO:
1681  case ISD::UMULO:
1682    if (Op.getResNo() != 1)
1683      return;
1684    // The boolean result conforms to getBooleanContents.  Fall through.
1685  case ISD::SETCC:
1686    // If we know the result of a setcc has the top bits zero, use this info.
1687    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1688        BitWidth > 1)
1689      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1690    return;
1691  case ISD::SHL:
1692    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1693    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1694      unsigned ShAmt = SA->getZExtValue();
1695
1696      // If the shift count is an invalid immediate, don't do anything.
1697      if (ShAmt >= BitWidth)
1698        return;
1699
1700      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1701                        KnownZero, KnownOne, Depth+1);
1702      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1703      KnownZero <<= ShAmt;
1704      KnownOne  <<= ShAmt;
1705      // low bits known zero.
1706      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1707    }
1708    return;
1709  case ISD::SRL:
1710    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1711    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1712      unsigned ShAmt = SA->getZExtValue();
1713
1714      // If the shift count is an invalid immediate, don't do anything.
1715      if (ShAmt >= BitWidth)
1716        return;
1717
1718      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1719                        KnownZero, KnownOne, Depth+1);
1720      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1721      KnownZero = KnownZero.lshr(ShAmt);
1722      KnownOne  = KnownOne.lshr(ShAmt);
1723
1724      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1725      KnownZero |= HighBits;  // High bits known zero.
1726    }
1727    return;
1728  case ISD::SRA:
1729    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1730      unsigned ShAmt = SA->getZExtValue();
1731
1732      // If the shift count is an invalid immediate, don't do anything.
1733      if (ShAmt >= BitWidth)
1734        return;
1735
1736      APInt InDemandedMask = (Mask << ShAmt);
1737      // If any of the demanded bits are produced by the sign extension, we also
1738      // demand the input sign bit.
1739      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1740      if (HighBits.getBoolValue())
1741        InDemandedMask |= APInt::getSignBit(BitWidth);
1742
1743      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1744                        Depth+1);
1745      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1746      KnownZero = KnownZero.lshr(ShAmt);
1747      KnownOne  = KnownOne.lshr(ShAmt);
1748
1749      // Handle the sign bits.
1750      APInt SignBit = APInt::getSignBit(BitWidth);
1751      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1752
1753      if (KnownZero.intersects(SignBit)) {
1754        KnownZero |= HighBits;  // New bits are known zero.
1755      } else if (KnownOne.intersects(SignBit)) {
1756        KnownOne  |= HighBits;  // New bits are known one.
1757      }
1758    }
1759    return;
1760  case ISD::SIGN_EXTEND_INREG: {
1761    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1762    unsigned EBits = EVT.getScalarType().getSizeInBits();
1763
1764    // Sign extension.  Compute the demanded bits in the result that are not
1765    // present in the input.
1766    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1767
1768    APInt InSignBit = APInt::getSignBit(EBits);
1769    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1770
1771    // If the sign extended bits are demanded, we know that the sign
1772    // bit is demanded.
1773    InSignBit.zext(BitWidth);
1774    if (NewBits.getBoolValue())
1775      InputDemandedBits |= InSignBit;
1776
1777    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1778                      KnownZero, KnownOne, Depth+1);
1779    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1780
1781    // If the sign bit of the input is known set or clear, then we know the
1782    // top bits of the result.
1783    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1784      KnownZero |= NewBits;
1785      KnownOne  &= ~NewBits;
1786    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1787      KnownOne  |= NewBits;
1788      KnownZero &= ~NewBits;
1789    } else {                              // Input sign bit unknown
1790      KnownZero &= ~NewBits;
1791      KnownOne  &= ~NewBits;
1792    }
1793    return;
1794  }
1795  case ISD::CTTZ:
1796  case ISD::CTLZ:
1797  case ISD::CTPOP: {
1798    unsigned LowBits = Log2_32(BitWidth)+1;
1799    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1800    KnownOne.clear();
1801    return;
1802  }
1803  case ISD::LOAD: {
1804    if (ISD::isZEXTLoad(Op.getNode())) {
1805      LoadSDNode *LD = cast<LoadSDNode>(Op);
1806      EVT VT = LD->getMemoryVT();
1807      unsigned MemBits = VT.getScalarType().getSizeInBits();
1808      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1809    }
1810    return;
1811  }
1812  case ISD::ZERO_EXTEND: {
1813    EVT InVT = Op.getOperand(0).getValueType();
1814    unsigned InBits = InVT.getScalarType().getSizeInBits();
1815    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1816    APInt InMask    = Mask;
1817    InMask.trunc(InBits);
1818    KnownZero.trunc(InBits);
1819    KnownOne.trunc(InBits);
1820    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1821    KnownZero.zext(BitWidth);
1822    KnownOne.zext(BitWidth);
1823    KnownZero |= NewBits;
1824    return;
1825  }
1826  case ISD::SIGN_EXTEND: {
1827    EVT InVT = Op.getOperand(0).getValueType();
1828    unsigned InBits = InVT.getScalarType().getSizeInBits();
1829    APInt InSignBit = APInt::getSignBit(InBits);
1830    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1831    APInt InMask = Mask;
1832    InMask.trunc(InBits);
1833
1834    // If any of the sign extended bits are demanded, we know that the sign
1835    // bit is demanded. Temporarily set this bit in the mask for our callee.
1836    if (NewBits.getBoolValue())
1837      InMask |= InSignBit;
1838
1839    KnownZero.trunc(InBits);
1840    KnownOne.trunc(InBits);
1841    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1842
1843    // Note if the sign bit is known to be zero or one.
1844    bool SignBitKnownZero = KnownZero.isNegative();
1845    bool SignBitKnownOne  = KnownOne.isNegative();
1846    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1847           "Sign bit can't be known to be both zero and one!");
1848
1849    // If the sign bit wasn't actually demanded by our caller, we don't
1850    // want it set in the KnownZero and KnownOne result values. Reset the
1851    // mask and reapply it to the result values.
1852    InMask = Mask;
1853    InMask.trunc(InBits);
1854    KnownZero &= InMask;
1855    KnownOne  &= InMask;
1856
1857    KnownZero.zext(BitWidth);
1858    KnownOne.zext(BitWidth);
1859
1860    // If the sign bit is known zero or one, the top bits match.
1861    if (SignBitKnownZero)
1862      KnownZero |= NewBits;
1863    else if (SignBitKnownOne)
1864      KnownOne  |= NewBits;
1865    return;
1866  }
1867  case ISD::ANY_EXTEND: {
1868    EVT InVT = Op.getOperand(0).getValueType();
1869    unsigned InBits = InVT.getScalarType().getSizeInBits();
1870    APInt InMask = Mask;
1871    InMask.trunc(InBits);
1872    KnownZero.trunc(InBits);
1873    KnownOne.trunc(InBits);
1874    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1875    KnownZero.zext(BitWidth);
1876    KnownOne.zext(BitWidth);
1877    return;
1878  }
1879  case ISD::TRUNCATE: {
1880    EVT InVT = Op.getOperand(0).getValueType();
1881    unsigned InBits = InVT.getScalarType().getSizeInBits();
1882    APInt InMask = Mask;
1883    InMask.zext(InBits);
1884    KnownZero.zext(InBits);
1885    KnownOne.zext(InBits);
1886    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1887    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1888    KnownZero.trunc(BitWidth);
1889    KnownOne.trunc(BitWidth);
1890    break;
1891  }
1892  case ISD::AssertZext: {
1893    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1894    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1895    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1896                      KnownOne, Depth+1);
1897    KnownZero |= (~InMask) & Mask;
1898    return;
1899  }
1900  case ISD::FGETSIGN:
1901    // All bits are zero except the low bit.
1902    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1903    return;
1904
1905  case ISD::SUB: {
1906    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1907      // We know that the top bits of C-X are clear if X contains less bits
1908      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1909      // positive if we can prove that X is >= 0 and < 16.
1910      if (CLHS->getAPIntValue().isNonNegative()) {
1911        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1912        // NLZ can't be BitWidth with no sign bit
1913        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1914        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1915                          Depth+1);
1916
1917        // If all of the MaskV bits are known to be zero, then we know the
1918        // output top bits are zero, because we now know that the output is
1919        // from [0-C].
1920        if ((KnownZero2 & MaskV) == MaskV) {
1921          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1922          // Top bits known zero.
1923          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1924        }
1925      }
1926    }
1927  }
1928  // fall through
1929  case ISD::ADD: {
1930    // Output known-0 bits are known if clear or set in both the low clear bits
1931    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1932    // low 3 bits clear.
1933    APInt Mask2 = APInt::getLowBitsSet(BitWidth,
1934                                       BitWidth - Mask.countLeadingZeros());
1935    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1936    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1937    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1938
1939    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1940    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1941    KnownZeroOut = std::min(KnownZeroOut,
1942                            KnownZero2.countTrailingOnes());
1943
1944    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1945    return;
1946  }
1947  case ISD::SREM:
1948    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1949      const APInt &RA = Rem->getAPIntValue().abs();
1950      if (RA.isPowerOf2()) {
1951        APInt LowBits = RA - 1;
1952        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1953        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1954
1955        // The low bits of the first operand are unchanged by the srem.
1956        KnownZero = KnownZero2 & LowBits;
1957        KnownOne = KnownOne2 & LowBits;
1958
1959        // If the first operand is non-negative or has all low bits zero, then
1960        // the upper bits are all zero.
1961        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1962          KnownZero |= ~LowBits;
1963
1964        // If the first operand is negative and not all low bits are zero, then
1965        // the upper bits are all one.
1966        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1967          KnownOne |= ~LowBits;
1968
1969        KnownZero &= Mask;
1970        KnownOne &= Mask;
1971
1972        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1973      }
1974    }
1975    return;
1976  case ISD::UREM: {
1977    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1978      const APInt &RA = Rem->getAPIntValue();
1979      if (RA.isPowerOf2()) {
1980        APInt LowBits = (RA - 1);
1981        APInt Mask2 = LowBits & Mask;
1982        KnownZero |= ~LowBits & Mask;
1983        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1984        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1985        break;
1986      }
1987    }
1988
1989    // Since the result is less than or equal to either operand, any leading
1990    // zero bits in either operand must also exist in the result.
1991    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1992    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1993                      Depth+1);
1994    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1995                      Depth+1);
1996
1997    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1998                                KnownZero2.countLeadingOnes());
1999    KnownOne.clear();
2000    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
2001    return;
2002  }
2003  default:
2004    // Allow the target to implement this method for its nodes.
2005    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2006  case ISD::INTRINSIC_WO_CHAIN:
2007  case ISD::INTRINSIC_W_CHAIN:
2008  case ISD::INTRINSIC_VOID:
2009      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2010                                         Depth);
2011    }
2012    return;
2013  }
2014}
2015
2016/// ComputeNumSignBits - Return the number of times the sign bit of the
2017/// register is replicated into the other bits.  We know that at least 1 bit
2018/// is always equal to the sign bit (itself), but other cases can give us
2019/// information.  For example, immediately after an "SRA X, 2", we know that
2020/// the top 3 bits are all equal to each other, so we return 3.
2021unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2022  EVT VT = Op.getValueType();
2023  assert(VT.isInteger() && "Invalid VT!");
2024  unsigned VTBits = VT.getScalarType().getSizeInBits();
2025  unsigned Tmp, Tmp2;
2026  unsigned FirstAnswer = 1;
2027
2028  if (Depth == 6)
2029    return 1;  // Limit search depth.
2030
2031  switch (Op.getOpcode()) {
2032  default: break;
2033  case ISD::AssertSext:
2034    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2035    return VTBits-Tmp+1;
2036  case ISD::AssertZext:
2037    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2038    return VTBits-Tmp;
2039
2040  case ISD::Constant: {
2041    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2042    // If negative, return # leading ones.
2043    if (Val.isNegative())
2044      return Val.countLeadingOnes();
2045
2046    // Return # leading zeros.
2047    return Val.countLeadingZeros();
2048  }
2049
2050  case ISD::SIGN_EXTEND:
2051    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2052    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2053
2054  case ISD::SIGN_EXTEND_INREG:
2055    // Max of the input and what this extends.
2056    Tmp =
2057      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2058    Tmp = VTBits-Tmp+1;
2059
2060    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2061    return std::max(Tmp, Tmp2);
2062
2063  case ISD::SRA:
2064    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2065    // SRA X, C   -> adds C sign bits.
2066    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2067      Tmp += C->getZExtValue();
2068      if (Tmp > VTBits) Tmp = VTBits;
2069    }
2070    return Tmp;
2071  case ISD::SHL:
2072    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2073      // shl destroys sign bits.
2074      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2075      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2076          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2077      return Tmp - C->getZExtValue();
2078    }
2079    break;
2080  case ISD::AND:
2081  case ISD::OR:
2082  case ISD::XOR:    // NOT is handled here.
2083    // Logical binary ops preserve the number of sign bits at the worst.
2084    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2085    if (Tmp != 1) {
2086      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2087      FirstAnswer = std::min(Tmp, Tmp2);
2088      // We computed what we know about the sign bits as our first
2089      // answer. Now proceed to the generic code that uses
2090      // ComputeMaskedBits, and pick whichever answer is better.
2091    }
2092    break;
2093
2094  case ISD::SELECT:
2095    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2096    if (Tmp == 1) return 1;  // Early out.
2097    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2098    return std::min(Tmp, Tmp2);
2099
2100  case ISD::SADDO:
2101  case ISD::UADDO:
2102  case ISD::SSUBO:
2103  case ISD::USUBO:
2104  case ISD::SMULO:
2105  case ISD::UMULO:
2106    if (Op.getResNo() != 1)
2107      break;
2108    // The boolean result conforms to getBooleanContents.  Fall through.
2109  case ISD::SETCC:
2110    // If setcc returns 0/-1, all bits are sign bits.
2111    if (TLI.getBooleanContents() ==
2112        TargetLowering::ZeroOrNegativeOneBooleanContent)
2113      return VTBits;
2114    break;
2115  case ISD::ROTL:
2116  case ISD::ROTR:
2117    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2118      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2119
2120      // Handle rotate right by N like a rotate left by 32-N.
2121      if (Op.getOpcode() == ISD::ROTR)
2122        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2123
2124      // If we aren't rotating out all of the known-in sign bits, return the
2125      // number that are left.  This handles rotl(sext(x), 1) for example.
2126      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2127      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2128    }
2129    break;
2130  case ISD::ADD:
2131    // Add can have at most one carry bit.  Thus we know that the output
2132    // is, at worst, one more bit than the inputs.
2133    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2134    if (Tmp == 1) return 1;  // Early out.
2135
2136    // Special case decrementing a value (ADD X, -1):
2137    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2138      if (CRHS->isAllOnesValue()) {
2139        APInt KnownZero, KnownOne;
2140        APInt Mask = APInt::getAllOnesValue(VTBits);
2141        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2142
2143        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2144        // sign bits set.
2145        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2146          return VTBits;
2147
2148        // If we are subtracting one from a positive number, there is no carry
2149        // out of the result.
2150        if (KnownZero.isNegative())
2151          return Tmp;
2152      }
2153
2154    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2155    if (Tmp2 == 1) return 1;
2156      return std::min(Tmp, Tmp2)-1;
2157    break;
2158
2159  case ISD::SUB:
2160    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2161    if (Tmp2 == 1) return 1;
2162
2163    // Handle NEG.
2164    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2165      if (CLHS->isNullValue()) {
2166        APInt KnownZero, KnownOne;
2167        APInt Mask = APInt::getAllOnesValue(VTBits);
2168        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2169        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2170        // sign bits set.
2171        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2172          return VTBits;
2173
2174        // If the input is known to be positive (the sign bit is known clear),
2175        // the output of the NEG has the same number of sign bits as the input.
2176        if (KnownZero.isNegative())
2177          return Tmp2;
2178
2179        // Otherwise, we treat this like a SUB.
2180      }
2181
2182    // Sub can have at most one carry bit.  Thus we know that the output
2183    // is, at worst, one more bit than the inputs.
2184    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2185    if (Tmp == 1) return 1;  // Early out.
2186      return std::min(Tmp, Tmp2)-1;
2187    break;
2188  case ISD::TRUNCATE:
2189    // FIXME: it's tricky to do anything useful for this, but it is an important
2190    // case for targets like X86.
2191    break;
2192  }
2193
2194  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2195  if (Op.getOpcode() == ISD::LOAD) {
2196    LoadSDNode *LD = cast<LoadSDNode>(Op);
2197    unsigned ExtType = LD->getExtensionType();
2198    switch (ExtType) {
2199    default: break;
2200    case ISD::SEXTLOAD:    // '17' bits known
2201      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2202      return VTBits-Tmp+1;
2203    case ISD::ZEXTLOAD:    // '16' bits known
2204      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2205      return VTBits-Tmp;
2206    }
2207  }
2208
2209  // Allow the target to implement this method for its nodes.
2210  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2211      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2212      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2213      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2214    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2215    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2216  }
2217
2218  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2219  // use this information.
2220  APInt KnownZero, KnownOne;
2221  APInt Mask = APInt::getAllOnesValue(VTBits);
2222  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2223
2224  if (KnownZero.isNegative()) {        // sign bit is 0
2225    Mask = KnownZero;
2226  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2227    Mask = KnownOne;
2228  } else {
2229    // Nothing known.
2230    return FirstAnswer;
2231  }
2232
2233  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2234  // the number of identical bits in the top of the input value.
2235  Mask = ~Mask;
2236  Mask <<= Mask.getBitWidth()-VTBits;
2237  // Return # leading zeros.  We use 'min' here in case Val was zero before
2238  // shifting.  We don't want to return '64' as for an i32 "0".
2239  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2240}
2241
2242bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2243  // If we're told that NaNs won't happen, assume they won't.
2244  if (FiniteOnlyFPMath())
2245    return true;
2246
2247  // If the value is a constant, we can obviously see if it is a NaN or not.
2248  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2249    return !C->getValueAPF().isNaN();
2250
2251  // TODO: Recognize more cases here.
2252
2253  return false;
2254}
2255
2256bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2257  // If the value is a constant, we can obviously see if it is a zero or not.
2258  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2259    return !C->isZero();
2260
2261  // TODO: Recognize more cases here.
2262
2263  return false;
2264}
2265
2266bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2267  // Check the obvious case.
2268  if (A == B) return true;
2269
2270  // For for negative and positive zero.
2271  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2272    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2273      if (CA->isZero() && CB->isZero()) return true;
2274
2275  // Otherwise they may not be equal.
2276  return false;
2277}
2278
2279bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2280  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2281  if (!GA) return false;
2282  if (GA->getOffset() != 0) return false;
2283  const GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2284  if (!GV) return false;
2285  return MF->getMMI().hasDebugInfo();
2286}
2287
2288
2289/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2290/// element of the result of the vector shuffle.
2291SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2292                                          unsigned i) {
2293  EVT VT = N->getValueType(0);
2294  DebugLoc dl = N->getDebugLoc();
2295  if (N->getMaskElt(i) < 0)
2296    return getUNDEF(VT.getVectorElementType());
2297  unsigned Index = N->getMaskElt(i);
2298  unsigned NumElems = VT.getVectorNumElements();
2299  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2300  Index %= NumElems;
2301
2302  if (V.getOpcode() == ISD::BIT_CONVERT) {
2303    V = V.getOperand(0);
2304    EVT VVT = V.getValueType();
2305    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2306      return SDValue();
2307  }
2308  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2309    return (Index == 0) ? V.getOperand(0)
2310                      : getUNDEF(VT.getVectorElementType());
2311  if (V.getOpcode() == ISD::BUILD_VECTOR)
2312    return V.getOperand(Index);
2313  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2314    return getShuffleScalarElt(SVN, Index);
2315  return SDValue();
2316}
2317
2318
2319/// getNode - Gets or creates the specified node.
2320///
2321SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2322  FoldingSetNodeID ID;
2323  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2324  void *IP = 0;
2325  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2326    return SDValue(E, 0);
2327
2328  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2329  CSEMap.InsertNode(N, IP);
2330
2331  AllNodes.push_back(N);
2332#ifndef NDEBUG
2333  VerifyNode(N);
2334#endif
2335  return SDValue(N, 0);
2336}
2337
2338SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2339                              EVT VT, SDValue Operand) {
2340  // Constant fold unary operations with an integer constant operand.
2341  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2342    const APInt &Val = C->getAPIntValue();
2343    switch (Opcode) {
2344    default: break;
2345    case ISD::SIGN_EXTEND:
2346      return getConstant(APInt(Val).sextOrTrunc(VT.getSizeInBits()), VT);
2347    case ISD::ANY_EXTEND:
2348    case ISD::ZERO_EXTEND:
2349    case ISD::TRUNCATE:
2350      return getConstant(APInt(Val).zextOrTrunc(VT.getSizeInBits()), VT);
2351    case ISD::UINT_TO_FP:
2352    case ISD::SINT_TO_FP: {
2353      const uint64_t zero[] = {0, 0};
2354      // No compile time operations on ppcf128.
2355      if (VT == MVT::ppcf128) break;
2356      APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2357      (void)apf.convertFromAPInt(Val,
2358                                 Opcode==ISD::SINT_TO_FP,
2359                                 APFloat::rmNearestTiesToEven);
2360      return getConstantFP(apf, VT);
2361    }
2362    case ISD::BIT_CONVERT:
2363      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2364        return getConstantFP(Val.bitsToFloat(), VT);
2365      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2366        return getConstantFP(Val.bitsToDouble(), VT);
2367      break;
2368    case ISD::BSWAP:
2369      return getConstant(Val.byteSwap(), VT);
2370    case ISD::CTPOP:
2371      return getConstant(Val.countPopulation(), VT);
2372    case ISD::CTLZ:
2373      return getConstant(Val.countLeadingZeros(), VT);
2374    case ISD::CTTZ:
2375      return getConstant(Val.countTrailingZeros(), VT);
2376    }
2377  }
2378
2379  // Constant fold unary operations with a floating point constant operand.
2380  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2381    APFloat V = C->getValueAPF();    // make copy
2382    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2383      switch (Opcode) {
2384      case ISD::FNEG:
2385        V.changeSign();
2386        return getConstantFP(V, VT);
2387      case ISD::FABS:
2388        V.clearSign();
2389        return getConstantFP(V, VT);
2390      case ISD::FP_ROUND:
2391      case ISD::FP_EXTEND: {
2392        bool ignored;
2393        // This can return overflow, underflow, or inexact; we don't care.
2394        // FIXME need to be more flexible about rounding mode.
2395        (void)V.convert(*EVTToAPFloatSemantics(VT),
2396                        APFloat::rmNearestTiesToEven, &ignored);
2397        return getConstantFP(V, VT);
2398      }
2399      case ISD::FP_TO_SINT:
2400      case ISD::FP_TO_UINT: {
2401        integerPart x[2];
2402        bool ignored;
2403        assert(integerPartWidth >= 64);
2404        // FIXME need to be more flexible about rounding mode.
2405        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2406                              Opcode==ISD::FP_TO_SINT,
2407                              APFloat::rmTowardZero, &ignored);
2408        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2409          break;
2410        APInt api(VT.getSizeInBits(), 2, x);
2411        return getConstant(api, VT);
2412      }
2413      case ISD::BIT_CONVERT:
2414        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2415          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2416        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2417          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2418        break;
2419      }
2420    }
2421  }
2422
2423  unsigned OpOpcode = Operand.getNode()->getOpcode();
2424  switch (Opcode) {
2425  case ISD::TokenFactor:
2426  case ISD::MERGE_VALUES:
2427  case ISD::CONCAT_VECTORS:
2428    return Operand;         // Factor, merge or concat of one node?  No need.
2429  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2430  case ISD::FP_EXTEND:
2431    assert(VT.isFloatingPoint() &&
2432           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2433    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2434    assert((!VT.isVector() ||
2435            VT.getVectorNumElements() ==
2436            Operand.getValueType().getVectorNumElements()) &&
2437           "Vector element count mismatch!");
2438    if (Operand.getOpcode() == ISD::UNDEF)
2439      return getUNDEF(VT);
2440    break;
2441  case ISD::SIGN_EXTEND:
2442    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2443           "Invalid SIGN_EXTEND!");
2444    if (Operand.getValueType() == VT) return Operand;   // noop extension
2445    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2446           "Invalid sext node, dst < src!");
2447    assert((!VT.isVector() ||
2448            VT.getVectorNumElements() ==
2449            Operand.getValueType().getVectorNumElements()) &&
2450           "Vector element count mismatch!");
2451    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2452      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2453    break;
2454  case ISD::ZERO_EXTEND:
2455    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2456           "Invalid ZERO_EXTEND!");
2457    if (Operand.getValueType() == VT) return Operand;   // noop extension
2458    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2459           "Invalid zext node, dst < src!");
2460    assert((!VT.isVector() ||
2461            VT.getVectorNumElements() ==
2462            Operand.getValueType().getVectorNumElements()) &&
2463           "Vector element count mismatch!");
2464    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2465      return getNode(ISD::ZERO_EXTEND, DL, VT,
2466                     Operand.getNode()->getOperand(0));
2467    break;
2468  case ISD::ANY_EXTEND:
2469    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2470           "Invalid ANY_EXTEND!");
2471    if (Operand.getValueType() == VT) return Operand;   // noop extension
2472    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2473           "Invalid anyext node, dst < src!");
2474    assert((!VT.isVector() ||
2475            VT.getVectorNumElements() ==
2476            Operand.getValueType().getVectorNumElements()) &&
2477           "Vector element count mismatch!");
2478    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2479      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2480      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2481    break;
2482  case ISD::TRUNCATE:
2483    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2484           "Invalid TRUNCATE!");
2485    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2486    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2487           "Invalid truncate node, src < dst!");
2488    assert((!VT.isVector() ||
2489            VT.getVectorNumElements() ==
2490            Operand.getValueType().getVectorNumElements()) &&
2491           "Vector element count mismatch!");
2492    if (OpOpcode == ISD::TRUNCATE)
2493      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2494    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2495             OpOpcode == ISD::ANY_EXTEND) {
2496      // If the source is smaller than the dest, we still need an extend.
2497      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2498            .bitsLT(VT.getScalarType()))
2499        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2500      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2501        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2502      else
2503        return Operand.getNode()->getOperand(0);
2504    }
2505    break;
2506  case ISD::BIT_CONVERT:
2507    // Basic sanity checking.
2508    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2509           && "Cannot BIT_CONVERT between types of different sizes!");
2510    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2511    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2512      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2513    if (OpOpcode == ISD::UNDEF)
2514      return getUNDEF(VT);
2515    break;
2516  case ISD::SCALAR_TO_VECTOR:
2517    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2518           (VT.getVectorElementType() == Operand.getValueType() ||
2519            (VT.getVectorElementType().isInteger() &&
2520             Operand.getValueType().isInteger() &&
2521             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2522           "Illegal SCALAR_TO_VECTOR node!");
2523    if (OpOpcode == ISD::UNDEF)
2524      return getUNDEF(VT);
2525    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2526    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2527        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2528        Operand.getConstantOperandVal(1) == 0 &&
2529        Operand.getOperand(0).getValueType() == VT)
2530      return Operand.getOperand(0);
2531    break;
2532  case ISD::FNEG:
2533    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2534    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2535      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2536                     Operand.getNode()->getOperand(0));
2537    if (OpOpcode == ISD::FNEG)  // --X -> X
2538      return Operand.getNode()->getOperand(0);
2539    break;
2540  case ISD::FABS:
2541    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2542      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2543    break;
2544  }
2545
2546  SDNode *N;
2547  SDVTList VTs = getVTList(VT);
2548  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2549    FoldingSetNodeID ID;
2550    SDValue Ops[1] = { Operand };
2551    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2552    void *IP = 0;
2553    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2554      return SDValue(E, 0);
2555
2556    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2557    CSEMap.InsertNode(N, IP);
2558  } else {
2559    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2560  }
2561
2562  AllNodes.push_back(N);
2563#ifndef NDEBUG
2564  VerifyNode(N);
2565#endif
2566  return SDValue(N, 0);
2567}
2568
2569SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2570                                             EVT VT,
2571                                             ConstantSDNode *Cst1,
2572                                             ConstantSDNode *Cst2) {
2573  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2574
2575  switch (Opcode) {
2576  case ISD::ADD:  return getConstant(C1 + C2, VT);
2577  case ISD::SUB:  return getConstant(C1 - C2, VT);
2578  case ISD::MUL:  return getConstant(C1 * C2, VT);
2579  case ISD::UDIV:
2580    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2581    break;
2582  case ISD::UREM:
2583    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2584    break;
2585  case ISD::SDIV:
2586    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2587    break;
2588  case ISD::SREM:
2589    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2590    break;
2591  case ISD::AND:  return getConstant(C1 & C2, VT);
2592  case ISD::OR:   return getConstant(C1 | C2, VT);
2593  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2594  case ISD::SHL:  return getConstant(C1 << C2, VT);
2595  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2596  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2597  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2598  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2599  default: break;
2600  }
2601
2602  return SDValue();
2603}
2604
2605SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2606                              SDValue N1, SDValue N2) {
2607  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2608  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2609  switch (Opcode) {
2610  default: break;
2611  case ISD::TokenFactor:
2612    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2613           N2.getValueType() == MVT::Other && "Invalid token factor!");
2614    // Fold trivial token factors.
2615    if (N1.getOpcode() == ISD::EntryToken) return N2;
2616    if (N2.getOpcode() == ISD::EntryToken) return N1;
2617    if (N1 == N2) return N1;
2618    break;
2619  case ISD::CONCAT_VECTORS:
2620    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2621    // one big BUILD_VECTOR.
2622    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2623        N2.getOpcode() == ISD::BUILD_VECTOR) {
2624      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2625      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2626      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2627    }
2628    break;
2629  case ISD::AND:
2630    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2631           N1.getValueType() == VT && "Binary operator types must match!");
2632    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2633    // worth handling here.
2634    if (N2C && N2C->isNullValue())
2635      return N2;
2636    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2637      return N1;
2638    break;
2639  case ISD::OR:
2640  case ISD::XOR:
2641  case ISD::ADD:
2642  case ISD::SUB:
2643    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2644           N1.getValueType() == VT && "Binary operator types must match!");
2645    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2646    // it's worth handling here.
2647    if (N2C && N2C->isNullValue())
2648      return N1;
2649    break;
2650  case ISD::UDIV:
2651  case ISD::UREM:
2652  case ISD::MULHU:
2653  case ISD::MULHS:
2654  case ISD::MUL:
2655  case ISD::SDIV:
2656  case ISD::SREM:
2657    assert(VT.isInteger() && "This operator does not apply to FP types!");
2658    // fall through
2659  case ISD::FADD:
2660  case ISD::FSUB:
2661  case ISD::FMUL:
2662  case ISD::FDIV:
2663  case ISD::FREM:
2664    if (UnsafeFPMath) {
2665      if (Opcode == ISD::FADD) {
2666        // 0+x --> x
2667        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2668          if (CFP->getValueAPF().isZero())
2669            return N2;
2670        // x+0 --> x
2671        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2672          if (CFP->getValueAPF().isZero())
2673            return N1;
2674      } else if (Opcode == ISD::FSUB) {
2675        // x-0 --> x
2676        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2677          if (CFP->getValueAPF().isZero())
2678            return N1;
2679      }
2680    }
2681    assert(N1.getValueType() == N2.getValueType() &&
2682           N1.getValueType() == VT && "Binary operator types must match!");
2683    break;
2684  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2685    assert(N1.getValueType() == VT &&
2686           N1.getValueType().isFloatingPoint() &&
2687           N2.getValueType().isFloatingPoint() &&
2688           "Invalid FCOPYSIGN!");
2689    break;
2690  case ISD::SHL:
2691  case ISD::SRA:
2692  case ISD::SRL:
2693  case ISD::ROTL:
2694  case ISD::ROTR:
2695    assert(VT == N1.getValueType() &&
2696           "Shift operators return type must be the same as their first arg");
2697    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2698           "Shifts only work on integers");
2699
2700    // Always fold shifts of i1 values so the code generator doesn't need to
2701    // handle them.  Since we know the size of the shift has to be less than the
2702    // size of the value, the shift/rotate count is guaranteed to be zero.
2703    if (VT == MVT::i1)
2704      return N1;
2705    if (N2C && N2C->isNullValue())
2706      return N1;
2707    break;
2708  case ISD::FP_ROUND_INREG: {
2709    EVT EVT = cast<VTSDNode>(N2)->getVT();
2710    assert(VT == N1.getValueType() && "Not an inreg round!");
2711    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2712           "Cannot FP_ROUND_INREG integer types");
2713    assert(EVT.isVector() == VT.isVector() &&
2714           "FP_ROUND_INREG type should be vector iff the operand "
2715           "type is vector!");
2716    assert((!EVT.isVector() ||
2717            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2718           "Vector element counts must match in FP_ROUND_INREG");
2719    assert(EVT.bitsLE(VT) && "Not rounding down!");
2720    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2721    break;
2722  }
2723  case ISD::FP_ROUND:
2724    assert(VT.isFloatingPoint() &&
2725           N1.getValueType().isFloatingPoint() &&
2726           VT.bitsLE(N1.getValueType()) &&
2727           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2728    if (N1.getValueType() == VT) return N1;  // noop conversion.
2729    break;
2730  case ISD::AssertSext:
2731  case ISD::AssertZext: {
2732    EVT EVT = cast<VTSDNode>(N2)->getVT();
2733    assert(VT == N1.getValueType() && "Not an inreg extend!");
2734    assert(VT.isInteger() && EVT.isInteger() &&
2735           "Cannot *_EXTEND_INREG FP types");
2736    assert(!EVT.isVector() &&
2737           "AssertSExt/AssertZExt type should be the vector element type "
2738           "rather than the vector type!");
2739    assert(EVT.bitsLE(VT) && "Not extending!");
2740    if (VT == EVT) return N1; // noop assertion.
2741    break;
2742  }
2743  case ISD::SIGN_EXTEND_INREG: {
2744    EVT EVT = cast<VTSDNode>(N2)->getVT();
2745    assert(VT == N1.getValueType() && "Not an inreg extend!");
2746    assert(VT.isInteger() && EVT.isInteger() &&
2747           "Cannot *_EXTEND_INREG FP types");
2748    assert(EVT.isVector() == VT.isVector() &&
2749           "SIGN_EXTEND_INREG type should be vector iff the operand "
2750           "type is vector!");
2751    assert((!EVT.isVector() ||
2752            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2753           "Vector element counts must match in SIGN_EXTEND_INREG");
2754    assert(EVT.bitsLE(VT) && "Not extending!");
2755    if (EVT == VT) return N1;  // Not actually extending
2756
2757    if (N1C) {
2758      APInt Val = N1C->getAPIntValue();
2759      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2760      Val <<= Val.getBitWidth()-FromBits;
2761      Val = Val.ashr(Val.getBitWidth()-FromBits);
2762      return getConstant(Val, VT);
2763    }
2764    break;
2765  }
2766  case ISD::EXTRACT_VECTOR_ELT:
2767    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2768    if (N1.getOpcode() == ISD::UNDEF)
2769      return getUNDEF(VT);
2770
2771    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2772    // expanding copies of large vectors from registers.
2773    if (N2C &&
2774        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2775        N1.getNumOperands() > 0) {
2776      unsigned Factor =
2777        N1.getOperand(0).getValueType().getVectorNumElements();
2778      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2779                     N1.getOperand(N2C->getZExtValue() / Factor),
2780                     getConstant(N2C->getZExtValue() % Factor,
2781                                 N2.getValueType()));
2782    }
2783
2784    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2785    // expanding large vector constants.
2786    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2787      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2788      EVT VEltTy = N1.getValueType().getVectorElementType();
2789      if (Elt.getValueType() != VEltTy) {
2790        // If the vector element type is not legal, the BUILD_VECTOR operands
2791        // are promoted and implicitly truncated.  Make that explicit here.
2792        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2793      }
2794      if (VT != VEltTy) {
2795        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2796        // result is implicitly extended.
2797        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2798      }
2799      return Elt;
2800    }
2801
2802    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2803    // operations are lowered to scalars.
2804    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2805      // If the indices are the same, return the inserted element else
2806      // if the indices are known different, extract the element from
2807      // the original vector.
2808      SDValue N1Op2 = N1.getOperand(2);
2809      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2810
2811      if (N1Op2C && N2C) {
2812        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2813          if (VT == N1.getOperand(1).getValueType())
2814            return N1.getOperand(1);
2815          else
2816            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2817        }
2818
2819        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2820      }
2821    }
2822    break;
2823  case ISD::EXTRACT_ELEMENT:
2824    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2825    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2826           (N1.getValueType().isInteger() == VT.isInteger()) &&
2827           "Wrong types for EXTRACT_ELEMENT!");
2828
2829    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2830    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2831    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2832    if (N1.getOpcode() == ISD::BUILD_PAIR)
2833      return N1.getOperand(N2C->getZExtValue());
2834
2835    // EXTRACT_ELEMENT of a constant int is also very common.
2836    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2837      unsigned ElementSize = VT.getSizeInBits();
2838      unsigned Shift = ElementSize * N2C->getZExtValue();
2839      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2840      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2841    }
2842    break;
2843  case ISD::EXTRACT_SUBVECTOR:
2844    if (N1.getValueType() == VT) // Trivial extraction.
2845      return N1;
2846    break;
2847  }
2848
2849  if (N1C) {
2850    if (N2C) {
2851      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2852      if (SV.getNode()) return SV;
2853    } else {      // Cannonicalize constant to RHS if commutative
2854      if (isCommutativeBinOp(Opcode)) {
2855        std::swap(N1C, N2C);
2856        std::swap(N1, N2);
2857      }
2858    }
2859  }
2860
2861  // Constant fold FP operations.
2862  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2863  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2864  if (N1CFP) {
2865    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2866      // Cannonicalize constant to RHS if commutative
2867      std::swap(N1CFP, N2CFP);
2868      std::swap(N1, N2);
2869    } else if (N2CFP && VT != MVT::ppcf128) {
2870      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2871      APFloat::opStatus s;
2872      switch (Opcode) {
2873      case ISD::FADD:
2874        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2875        if (s != APFloat::opInvalidOp)
2876          return getConstantFP(V1, VT);
2877        break;
2878      case ISD::FSUB:
2879        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2880        if (s!=APFloat::opInvalidOp)
2881          return getConstantFP(V1, VT);
2882        break;
2883      case ISD::FMUL:
2884        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2885        if (s!=APFloat::opInvalidOp)
2886          return getConstantFP(V1, VT);
2887        break;
2888      case ISD::FDIV:
2889        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2890        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2891          return getConstantFP(V1, VT);
2892        break;
2893      case ISD::FREM :
2894        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2895        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2896          return getConstantFP(V1, VT);
2897        break;
2898      case ISD::FCOPYSIGN:
2899        V1.copySign(V2);
2900        return getConstantFP(V1, VT);
2901      default: break;
2902      }
2903    }
2904  }
2905
2906  // Canonicalize an UNDEF to the RHS, even over a constant.
2907  if (N1.getOpcode() == ISD::UNDEF) {
2908    if (isCommutativeBinOp(Opcode)) {
2909      std::swap(N1, N2);
2910    } else {
2911      switch (Opcode) {
2912      case ISD::FP_ROUND_INREG:
2913      case ISD::SIGN_EXTEND_INREG:
2914      case ISD::SUB:
2915      case ISD::FSUB:
2916      case ISD::FDIV:
2917      case ISD::FREM:
2918      case ISD::SRA:
2919        return N1;     // fold op(undef, arg2) -> undef
2920      case ISD::UDIV:
2921      case ISD::SDIV:
2922      case ISD::UREM:
2923      case ISD::SREM:
2924      case ISD::SRL:
2925      case ISD::SHL:
2926        if (!VT.isVector())
2927          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2928        // For vectors, we can't easily build an all zero vector, just return
2929        // the LHS.
2930        return N2;
2931      }
2932    }
2933  }
2934
2935  // Fold a bunch of operators when the RHS is undef.
2936  if (N2.getOpcode() == ISD::UNDEF) {
2937    switch (Opcode) {
2938    case ISD::XOR:
2939      if (N1.getOpcode() == ISD::UNDEF)
2940        // Handle undef ^ undef -> 0 special case. This is a common
2941        // idiom (misuse).
2942        return getConstant(0, VT);
2943      // fallthrough
2944    case ISD::ADD:
2945    case ISD::ADDC:
2946    case ISD::ADDE:
2947    case ISD::SUB:
2948    case ISD::UDIV:
2949    case ISD::SDIV:
2950    case ISD::UREM:
2951    case ISD::SREM:
2952      return N2;       // fold op(arg1, undef) -> undef
2953    case ISD::FADD:
2954    case ISD::FSUB:
2955    case ISD::FMUL:
2956    case ISD::FDIV:
2957    case ISD::FREM:
2958      if (UnsafeFPMath)
2959        return N2;
2960      break;
2961    case ISD::MUL:
2962    case ISD::AND:
2963    case ISD::SRL:
2964    case ISD::SHL:
2965      if (!VT.isVector())
2966        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2967      // For vectors, we can't easily build an all zero vector, just return
2968      // the LHS.
2969      return N1;
2970    case ISD::OR:
2971      if (!VT.isVector())
2972        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2973      // For vectors, we can't easily build an all one vector, just return
2974      // the LHS.
2975      return N1;
2976    case ISD::SRA:
2977      return N1;
2978    }
2979  }
2980
2981  // Memoize this node if possible.
2982  SDNode *N;
2983  SDVTList VTs = getVTList(VT);
2984  if (VT != MVT::Flag) {
2985    SDValue Ops[] = { N1, N2 };
2986    FoldingSetNodeID ID;
2987    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2988    void *IP = 0;
2989    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2990      return SDValue(E, 0);
2991
2992    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2993    CSEMap.InsertNode(N, IP);
2994  } else {
2995    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2996  }
2997
2998  AllNodes.push_back(N);
2999#ifndef NDEBUG
3000  VerifyNode(N);
3001#endif
3002  return SDValue(N, 0);
3003}
3004
3005SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3006                              SDValue N1, SDValue N2, SDValue N3) {
3007  // Perform various simplifications.
3008  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3009  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
3010  switch (Opcode) {
3011  case ISD::CONCAT_VECTORS:
3012    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3013    // one big BUILD_VECTOR.
3014    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3015        N2.getOpcode() == ISD::BUILD_VECTOR &&
3016        N3.getOpcode() == ISD::BUILD_VECTOR) {
3017      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
3018      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
3019      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
3020      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3021    }
3022    break;
3023  case ISD::SETCC: {
3024    // Use FoldSetCC to simplify SETCC's.
3025    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3026    if (Simp.getNode()) return Simp;
3027    break;
3028  }
3029  case ISD::SELECT:
3030    if (N1C) {
3031     if (N1C->getZExtValue())
3032        return N2;             // select true, X, Y -> X
3033      else
3034        return N3;             // select false, X, Y -> Y
3035    }
3036
3037    if (N2 == N3) return N2;   // select C, X, X -> X
3038    break;
3039  case ISD::BRCOND:
3040    if (N2C) {
3041      if (N2C->getZExtValue()) // Unconditional branch
3042        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
3043      else
3044        return N1;         // Never-taken branch
3045    }
3046    break;
3047  case ISD::VECTOR_SHUFFLE:
3048    llvm_unreachable("should use getVectorShuffle constructor!");
3049    break;
3050  case ISD::BIT_CONVERT:
3051    // Fold bit_convert nodes from a type to themselves.
3052    if (N1.getValueType() == VT)
3053      return N1;
3054    break;
3055  }
3056
3057  // Memoize node if it doesn't produce a flag.
3058  SDNode *N;
3059  SDVTList VTs = getVTList(VT);
3060  if (VT != MVT::Flag) {
3061    SDValue Ops[] = { N1, N2, N3 };
3062    FoldingSetNodeID ID;
3063    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3064    void *IP = 0;
3065    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3066      return SDValue(E, 0);
3067
3068    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3069    CSEMap.InsertNode(N, IP);
3070  } else {
3071    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3072  }
3073
3074  AllNodes.push_back(N);
3075#ifndef NDEBUG
3076  VerifyNode(N);
3077#endif
3078  return SDValue(N, 0);
3079}
3080
3081SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3082                              SDValue N1, SDValue N2, SDValue N3,
3083                              SDValue N4) {
3084  SDValue Ops[] = { N1, N2, N3, N4 };
3085  return getNode(Opcode, DL, VT, Ops, 4);
3086}
3087
3088SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3089                              SDValue N1, SDValue N2, SDValue N3,
3090                              SDValue N4, SDValue N5) {
3091  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3092  return getNode(Opcode, DL, VT, Ops, 5);
3093}
3094
3095/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3096/// the incoming stack arguments to be loaded from the stack.
3097SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3098  SmallVector<SDValue, 8> ArgChains;
3099
3100  // Include the original chain at the beginning of the list. When this is
3101  // used by target LowerCall hooks, this helps legalize find the
3102  // CALLSEQ_BEGIN node.
3103  ArgChains.push_back(Chain);
3104
3105  // Add a chain value for each stack argument.
3106  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3107       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3108    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3109      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3110        if (FI->getIndex() < 0)
3111          ArgChains.push_back(SDValue(L, 1));
3112
3113  // Build a tokenfactor for all the chains.
3114  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3115                 &ArgChains[0], ArgChains.size());
3116}
3117
3118/// getMemsetValue - Vectorized representation of the memset value
3119/// operand.
3120static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3121                              DebugLoc dl) {
3122  assert(Value.getOpcode() != ISD::UNDEF);
3123
3124  unsigned NumBits = VT.getScalarType().getSizeInBits();
3125  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3126    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3127    unsigned Shift = 8;
3128    for (unsigned i = NumBits; i > 8; i >>= 1) {
3129      Val = (Val << Shift) | Val;
3130      Shift <<= 1;
3131    }
3132    if (VT.isInteger())
3133      return DAG.getConstant(Val, VT);
3134    return DAG.getConstantFP(APFloat(Val), VT);
3135  }
3136
3137  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3138  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3139  unsigned Shift = 8;
3140  for (unsigned i = NumBits; i > 8; i >>= 1) {
3141    Value = DAG.getNode(ISD::OR, dl, VT,
3142                        DAG.getNode(ISD::SHL, dl, VT, Value,
3143                                    DAG.getConstant(Shift,
3144                                                    TLI.getShiftAmountTy())),
3145                        Value);
3146    Shift <<= 1;
3147  }
3148
3149  return Value;
3150}
3151
3152/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3153/// used when a memcpy is turned into a memset when the source is a constant
3154/// string ptr.
3155static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3156                                  const TargetLowering &TLI,
3157                                  std::string &Str, unsigned Offset) {
3158  // Handle vector with all elements zero.
3159  if (Str.empty()) {
3160    if (VT.isInteger())
3161      return DAG.getConstant(0, VT);
3162    else if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
3163             VT.getSimpleVT().SimpleTy == MVT::f64)
3164      return DAG.getConstantFP(0.0, VT);
3165    else if (VT.isVector()) {
3166      unsigned NumElts = VT.getVectorNumElements();
3167      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3168      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3169                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3170                                                             EltVT, NumElts)));
3171    } else
3172      llvm_unreachable("Expected type!");
3173  }
3174
3175  assert(!VT.isVector() && "Can't handle vector type here!");
3176  unsigned NumBits = VT.getSizeInBits();
3177  unsigned MSB = NumBits / 8;
3178  uint64_t Val = 0;
3179  if (TLI.isLittleEndian())
3180    Offset = Offset + MSB - 1;
3181  for (unsigned i = 0; i != MSB; ++i) {
3182    Val = (Val << 8) | (unsigned char)Str[Offset];
3183    Offset += TLI.isLittleEndian() ? -1 : 1;
3184  }
3185  return DAG.getConstant(Val, VT);
3186}
3187
3188/// getMemBasePlusOffset - Returns base and offset node for the
3189///
3190static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3191                                      SelectionDAG &DAG) {
3192  EVT VT = Base.getValueType();
3193  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3194                     VT, Base, DAG.getConstant(Offset, VT));
3195}
3196
3197/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3198///
3199static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3200  unsigned SrcDelta = 0;
3201  GlobalAddressSDNode *G = NULL;
3202  if (Src.getOpcode() == ISD::GlobalAddress)
3203    G = cast<GlobalAddressSDNode>(Src);
3204  else if (Src.getOpcode() == ISD::ADD &&
3205           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3206           Src.getOperand(1).getOpcode() == ISD::Constant) {
3207    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3208    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3209  }
3210  if (!G)
3211    return false;
3212
3213  const GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3214  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3215    return true;
3216
3217  return false;
3218}
3219
3220/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3221/// to replace the memset / memcpy. Return true if the number of memory ops
3222/// is below the threshold. It returns the types of the sequence of
3223/// memory ops to perform memset / memcpy by reference.
3224static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3225                                     unsigned Limit, uint64_t Size,
3226                                     unsigned DstAlign, unsigned SrcAlign,
3227                                     bool NonScalarIntSafe,
3228                                     bool MemcpyStrSrc,
3229                                     SelectionDAG &DAG,
3230                                     const TargetLowering &TLI) {
3231  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3232         "Expecting memcpy / memset source to meet alignment requirement!");
3233  // If 'SrcAlign' is zero, that means the memory operation does not need load
3234  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3235  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3236  // specified alignment of the memory operation. If it is zero, that means
3237  // it's possible to change the alignment of the destination. 'MemcpyStrSrc'
3238  // indicates whether the memcpy source is constant so it does not need to be
3239  // loaded.
3240  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3241                                   NonScalarIntSafe, MemcpyStrSrc,
3242                                   DAG.getMachineFunction());
3243
3244  if (VT == MVT::Other) {
3245    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3246        TLI.allowsUnalignedMemoryAccesses(VT)) {
3247      VT = TLI.getPointerTy();
3248    } else {
3249      switch (DstAlign & 7) {
3250      case 0:  VT = MVT::i64; break;
3251      case 4:  VT = MVT::i32; break;
3252      case 2:  VT = MVT::i16; break;
3253      default: VT = MVT::i8;  break;
3254      }
3255    }
3256
3257    MVT LVT = MVT::i64;
3258    while (!TLI.isTypeLegal(LVT))
3259      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3260    assert(LVT.isInteger());
3261
3262    if (VT.bitsGT(LVT))
3263      VT = LVT;
3264  }
3265
3266  unsigned NumMemOps = 0;
3267  while (Size != 0) {
3268    unsigned VTSize = VT.getSizeInBits() / 8;
3269    while (VTSize > Size) {
3270      // For now, only use non-vector load / store's for the left-over pieces.
3271      if (VT.isVector() || VT.isFloatingPoint()) {
3272        VT = MVT::i64;
3273        while (!TLI.isTypeLegal(VT))
3274          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3275        VTSize = VT.getSizeInBits() / 8;
3276      } else {
3277        // This can result in a type that is not legal on the target, e.g.
3278        // 1 or 2 bytes on PPC.
3279        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3280        VTSize >>= 1;
3281      }
3282    }
3283
3284    if (++NumMemOps > Limit)
3285      return false;
3286    MemOps.push_back(VT);
3287    Size -= VTSize;
3288  }
3289
3290  return true;
3291}
3292
3293static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3294                                       SDValue Chain, SDValue Dst,
3295                                       SDValue Src, uint64_t Size,
3296                                       unsigned Align, bool isVol,
3297                                       bool AlwaysInline,
3298                                       const Value *DstSV, uint64_t DstSVOff,
3299                                       const Value *SrcSV, uint64_t SrcSVOff) {
3300  // Turn a memcpy of undef to nop.
3301  if (Src.getOpcode() == ISD::UNDEF)
3302    return Chain;
3303
3304  // Expand memcpy to a series of load and store ops if the size operand falls
3305  // below a certain threshold.
3306  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3307  std::vector<EVT> MemOps;
3308  bool DstAlignCanChange = false;
3309  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3310  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3311  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3312    DstAlignCanChange = true;
3313  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3314  if (Align > SrcAlign)
3315    SrcAlign = Align;
3316  std::string Str;
3317  bool CopyFromStr = isMemSrcFromString(Src, Str);
3318  bool isZeroStr = CopyFromStr && Str.empty();
3319  uint64_t Limit = -1ULL;
3320  if (!AlwaysInline)
3321    Limit = TLI.getMaxStoresPerMemcpy();
3322  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3323                                (DstAlignCanChange ? 0 : Align),
3324                                (isZeroStr ? 0 : SrcAlign),
3325                                true, CopyFromStr, DAG, TLI))
3326    return SDValue();
3327
3328  if (DstAlignCanChange) {
3329    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3330    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3331    if (NewAlign > Align) {
3332      // Give the stack frame object a larger alignment if needed.
3333      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3334        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3335      Align = NewAlign;
3336    }
3337  }
3338
3339  SmallVector<SDValue, 8> OutChains;
3340  unsigned NumMemOps = MemOps.size();
3341  uint64_t SrcOff = 0, DstOff = 0;
3342  for (unsigned i = 0; i != NumMemOps; ++i) {
3343    EVT VT = MemOps[i];
3344    unsigned VTSize = VT.getSizeInBits() / 8;
3345    SDValue Value, Store;
3346
3347    if (CopyFromStr &&
3348        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3349      // It's unlikely a store of a vector immediate can be done in a single
3350      // instruction. It would require a load from a constantpool first.
3351      // We only handle zero vectors here.
3352      // FIXME: Handle other cases where store of vector immediate is done in
3353      // a single instruction.
3354      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3355      Store = DAG.getStore(Chain, dl, Value,
3356                           getMemBasePlusOffset(Dst, DstOff, DAG),
3357                           DstSV, DstSVOff + DstOff, isVol, false, Align);
3358    } else {
3359      // The type might not be legal for the target.  This should only happen
3360      // if the type is smaller than a legal type, as on PPC, so the right
3361      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3362      // to Load/Store if NVT==VT.
3363      // FIXME does the case above also need this?
3364      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3365      assert(NVT.bitsGE(VT));
3366      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3367                             getMemBasePlusOffset(Src, SrcOff, DAG),
3368                             SrcSV, SrcSVOff + SrcOff, VT, isVol, false,
3369                             MinAlign(SrcAlign, SrcOff));
3370      Store = DAG.getTruncStore(Chain, dl, Value,
3371                                getMemBasePlusOffset(Dst, DstOff, DAG),
3372                                DstSV, DstSVOff + DstOff, VT, isVol, false,
3373                                Align);
3374    }
3375    OutChains.push_back(Store);
3376    SrcOff += VTSize;
3377    DstOff += VTSize;
3378  }
3379
3380  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3381                     &OutChains[0], OutChains.size());
3382}
3383
3384static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3385                                        SDValue Chain, SDValue Dst,
3386                                        SDValue Src, uint64_t Size,
3387                                        unsigned Align,  bool isVol,
3388                                        bool AlwaysInline,
3389                                        const Value *DstSV, uint64_t DstSVOff,
3390                                        const Value *SrcSV, uint64_t SrcSVOff) {
3391  // Turn a memmove of undef to nop.
3392  if (Src.getOpcode() == ISD::UNDEF)
3393    return Chain;
3394
3395  // Expand memmove to a series of load and store ops if the size operand falls
3396  // below a certain threshold.
3397  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3398  std::vector<EVT> MemOps;
3399  uint64_t Limit = -1ULL;
3400  if (!AlwaysInline)
3401    Limit = TLI.getMaxStoresPerMemmove();
3402  bool DstAlignCanChange = false;
3403  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3404  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3405  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3406    DstAlignCanChange = true;
3407  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3408  if (Align > SrcAlign)
3409    SrcAlign = Align;
3410
3411  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3412                                (DstAlignCanChange ? 0 : Align),
3413                                SrcAlign, true, false, DAG, TLI))
3414    return SDValue();
3415
3416  if (DstAlignCanChange) {
3417    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3418    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3419    if (NewAlign > Align) {
3420      // Give the stack frame object a larger alignment if needed.
3421      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3422        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3423      Align = NewAlign;
3424    }
3425  }
3426
3427  uint64_t SrcOff = 0, DstOff = 0;
3428  SmallVector<SDValue, 8> LoadValues;
3429  SmallVector<SDValue, 8> LoadChains;
3430  SmallVector<SDValue, 8> OutChains;
3431  unsigned NumMemOps = MemOps.size();
3432  for (unsigned i = 0; i < NumMemOps; i++) {
3433    EVT VT = MemOps[i];
3434    unsigned VTSize = VT.getSizeInBits() / 8;
3435    SDValue Value, Store;
3436
3437    Value = DAG.getLoad(VT, dl, Chain,
3438                        getMemBasePlusOffset(Src, SrcOff, DAG),
3439                        SrcSV, SrcSVOff + SrcOff, isVol, false, SrcAlign);
3440    LoadValues.push_back(Value);
3441    LoadChains.push_back(Value.getValue(1));
3442    SrcOff += VTSize;
3443  }
3444  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3445                      &LoadChains[0], LoadChains.size());
3446  OutChains.clear();
3447  for (unsigned i = 0; i < NumMemOps; i++) {
3448    EVT VT = MemOps[i];
3449    unsigned VTSize = VT.getSizeInBits() / 8;
3450    SDValue Value, Store;
3451
3452    Store = DAG.getStore(Chain, dl, LoadValues[i],
3453                         getMemBasePlusOffset(Dst, DstOff, DAG),
3454                         DstSV, DstSVOff + DstOff, isVol, false, Align);
3455    OutChains.push_back(Store);
3456    DstOff += VTSize;
3457  }
3458
3459  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3460                     &OutChains[0], OutChains.size());
3461}
3462
3463static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3464                               SDValue Chain, SDValue Dst,
3465                               SDValue Src, uint64_t Size,
3466                               unsigned Align, bool isVol,
3467                               const Value *DstSV, uint64_t DstSVOff) {
3468  // Turn a memset of undef to nop.
3469  if (Src.getOpcode() == ISD::UNDEF)
3470    return Chain;
3471
3472  // Expand memset to a series of load/store ops if the size operand
3473  // falls below a certain threshold.
3474  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3475  std::vector<EVT> MemOps;
3476  bool DstAlignCanChange = false;
3477  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3478  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3479  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3480    DstAlignCanChange = true;
3481  bool NonScalarIntSafe =
3482    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3483  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(),
3484                                Size, (DstAlignCanChange ? 0 : Align), 0,
3485                                NonScalarIntSafe, false, DAG, TLI))
3486    return SDValue();
3487
3488  if (DstAlignCanChange) {
3489    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3490    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3491    if (NewAlign > Align) {
3492      // Give the stack frame object a larger alignment if needed.
3493      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3494        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3495      Align = NewAlign;
3496    }
3497  }
3498
3499  SmallVector<SDValue, 8> OutChains;
3500  uint64_t DstOff = 0;
3501  unsigned NumMemOps = MemOps.size();
3502  for (unsigned i = 0; i < NumMemOps; i++) {
3503    EVT VT = MemOps[i];
3504    unsigned VTSize = VT.getSizeInBits() / 8;
3505    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3506    SDValue Store = DAG.getStore(Chain, dl, Value,
3507                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3508                                 DstSV, DstSVOff + DstOff, isVol, false, 0);
3509    OutChains.push_back(Store);
3510    DstOff += VTSize;
3511  }
3512
3513  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3514                     &OutChains[0], OutChains.size());
3515}
3516
3517SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3518                                SDValue Src, SDValue Size,
3519                                unsigned Align, bool isVol, bool AlwaysInline,
3520                                const Value *DstSV, uint64_t DstSVOff,
3521                                const Value *SrcSV, uint64_t SrcSVOff) {
3522
3523  // Check to see if we should lower the memcpy to loads and stores first.
3524  // For cases within the target-specified limits, this is the best choice.
3525  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3526  if (ConstantSize) {
3527    // Memcpy with size zero? Just return the original chain.
3528    if (ConstantSize->isNullValue())
3529      return Chain;
3530
3531    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3532                                             ConstantSize->getZExtValue(),Align,
3533                                isVol, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3534    if (Result.getNode())
3535      return Result;
3536  }
3537
3538  // Then check to see if we should lower the memcpy with target-specific
3539  // code. If the target chooses to do this, this is the next best.
3540  SDValue Result =
3541    TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3542                                isVol, AlwaysInline,
3543                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3544  if (Result.getNode())
3545    return Result;
3546
3547  // If we really need inline code and the target declined to provide it,
3548  // use a (potentially long) sequence of loads and stores.
3549  if (AlwaysInline) {
3550    assert(ConstantSize && "AlwaysInline requires a constant size!");
3551    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3552                                   ConstantSize->getZExtValue(), Align, isVol,
3553                                   true, DstSV, DstSVOff, SrcSV, SrcSVOff);
3554  }
3555
3556  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3557  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3558  // respect volatile, so they may do things like read or write memory
3559  // beyond the given memory regions. But fixing this isn't easy, and most
3560  // people don't care.
3561
3562  // Emit a library call.
3563  TargetLowering::ArgListTy Args;
3564  TargetLowering::ArgListEntry Entry;
3565  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3566  Entry.Node = Dst; Args.push_back(Entry);
3567  Entry.Node = Src; Args.push_back(Entry);
3568  Entry.Node = Size; Args.push_back(Entry);
3569  // FIXME: pass in DebugLoc
3570  std::pair<SDValue,SDValue> CallResult =
3571    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3572                    false, false, false, false, 0,
3573                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3574                    /*isReturnValueUsed=*/false,
3575                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3576                                      TLI.getPointerTy()),
3577                    Args, *this, dl);
3578  return CallResult.second;
3579}
3580
3581SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3582                                 SDValue Src, SDValue Size,
3583                                 unsigned Align, bool isVol,
3584                                 const Value *DstSV, uint64_t DstSVOff,
3585                                 const Value *SrcSV, uint64_t SrcSVOff) {
3586
3587  // Check to see if we should lower the memmove to loads and stores first.
3588  // For cases within the target-specified limits, this is the best choice.
3589  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3590  if (ConstantSize) {
3591    // Memmove with size zero? Just return the original chain.
3592    if (ConstantSize->isNullValue())
3593      return Chain;
3594
3595    SDValue Result =
3596      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3597                               ConstantSize->getZExtValue(), Align, isVol,
3598                               false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3599    if (Result.getNode())
3600      return Result;
3601  }
3602
3603  // Then check to see if we should lower the memmove with target-specific
3604  // code. If the target chooses to do this, this is the next best.
3605  SDValue Result =
3606    TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3607                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3608  if (Result.getNode())
3609    return Result;
3610
3611  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3612  // not be safe.  See memcpy above for more details.
3613
3614  // Emit a library call.
3615  TargetLowering::ArgListTy Args;
3616  TargetLowering::ArgListEntry Entry;
3617  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3618  Entry.Node = Dst; Args.push_back(Entry);
3619  Entry.Node = Src; Args.push_back(Entry);
3620  Entry.Node = Size; Args.push_back(Entry);
3621  // FIXME:  pass in DebugLoc
3622  std::pair<SDValue,SDValue> CallResult =
3623    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3624                    false, false, false, false, 0,
3625                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3626                    /*isReturnValueUsed=*/false,
3627                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3628                                      TLI.getPointerTy()),
3629                    Args, *this, dl);
3630  return CallResult.second;
3631}
3632
3633SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3634                                SDValue Src, SDValue Size,
3635                                unsigned Align, bool isVol,
3636                                const Value *DstSV, uint64_t DstSVOff) {
3637
3638  // Check to see if we should lower the memset to stores first.
3639  // For cases within the target-specified limits, this is the best choice.
3640  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3641  if (ConstantSize) {
3642    // Memset with size zero? Just return the original chain.
3643    if (ConstantSize->isNullValue())
3644      return Chain;
3645
3646    SDValue Result =
3647      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3648                      Align, isVol, DstSV, DstSVOff);
3649
3650    if (Result.getNode())
3651      return Result;
3652  }
3653
3654  // Then check to see if we should lower the memset with target-specific
3655  // code. If the target chooses to do this, this is the next best.
3656  SDValue Result =
3657    TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3658                                DstSV, DstSVOff);
3659  if (Result.getNode())
3660    return Result;
3661
3662  // Emit a library call.
3663  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3664  TargetLowering::ArgListTy Args;
3665  TargetLowering::ArgListEntry Entry;
3666  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3667  Args.push_back(Entry);
3668  // Extend or truncate the argument to be an i32 value for the call.
3669  if (Src.getValueType().bitsGT(MVT::i32))
3670    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3671  else
3672    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3673  Entry.Node = Src;
3674  Entry.Ty = Type::getInt32Ty(*getContext());
3675  Entry.isSExt = true;
3676  Args.push_back(Entry);
3677  Entry.Node = Size;
3678  Entry.Ty = IntPtrTy;
3679  Entry.isSExt = false;
3680  Args.push_back(Entry);
3681  // FIXME: pass in DebugLoc
3682  std::pair<SDValue,SDValue> CallResult =
3683    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3684                    false, false, false, false, 0,
3685                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3686                    /*isReturnValueUsed=*/false,
3687                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3688                                      TLI.getPointerTy()),
3689                    Args, *this, dl);
3690  return CallResult.second;
3691}
3692
3693SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3694                                SDValue Chain,
3695                                SDValue Ptr, SDValue Cmp,
3696                                SDValue Swp, const Value* PtrVal,
3697                                unsigned Alignment) {
3698  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3699    Alignment = getEVTAlignment(MemVT);
3700
3701  // Check if the memory reference references a frame index
3702  if (!PtrVal)
3703    if (const FrameIndexSDNode *FI =
3704          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3705      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3706
3707  MachineFunction &MF = getMachineFunction();
3708  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3709
3710  // For now, atomics are considered to be volatile always.
3711  Flags |= MachineMemOperand::MOVolatile;
3712
3713  MachineMemOperand *MMO =
3714    MF.getMachineMemOperand(PtrVal, Flags, 0,
3715                            MemVT.getStoreSize(), Alignment);
3716
3717  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3718}
3719
3720SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3721                                SDValue Chain,
3722                                SDValue Ptr, SDValue Cmp,
3723                                SDValue Swp, MachineMemOperand *MMO) {
3724  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3725  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3726
3727  EVT VT = Cmp.getValueType();
3728
3729  SDVTList VTs = getVTList(VT, MVT::Other);
3730  FoldingSetNodeID ID;
3731  ID.AddInteger(MemVT.getRawBits());
3732  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3733  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3734  void* IP = 0;
3735  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3736    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3737    return SDValue(E, 0);
3738  }
3739  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3740                                               Ptr, Cmp, Swp, MMO);
3741  CSEMap.InsertNode(N, IP);
3742  AllNodes.push_back(N);
3743  return SDValue(N, 0);
3744}
3745
3746SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3747                                SDValue Chain,
3748                                SDValue Ptr, SDValue Val,
3749                                const Value* PtrVal,
3750                                unsigned Alignment) {
3751  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3752    Alignment = getEVTAlignment(MemVT);
3753
3754  // Check if the memory reference references a frame index
3755  if (!PtrVal)
3756    if (const FrameIndexSDNode *FI =
3757          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3758      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3759
3760  MachineFunction &MF = getMachineFunction();
3761  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3762
3763  // For now, atomics are considered to be volatile always.
3764  Flags |= MachineMemOperand::MOVolatile;
3765
3766  MachineMemOperand *MMO =
3767    MF.getMachineMemOperand(PtrVal, Flags, 0,
3768                            MemVT.getStoreSize(), Alignment);
3769
3770  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3771}
3772
3773SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3774                                SDValue Chain,
3775                                SDValue Ptr, SDValue Val,
3776                                MachineMemOperand *MMO) {
3777  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3778          Opcode == ISD::ATOMIC_LOAD_SUB ||
3779          Opcode == ISD::ATOMIC_LOAD_AND ||
3780          Opcode == ISD::ATOMIC_LOAD_OR ||
3781          Opcode == ISD::ATOMIC_LOAD_XOR ||
3782          Opcode == ISD::ATOMIC_LOAD_NAND ||
3783          Opcode == ISD::ATOMIC_LOAD_MIN ||
3784          Opcode == ISD::ATOMIC_LOAD_MAX ||
3785          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3786          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3787          Opcode == ISD::ATOMIC_SWAP) &&
3788         "Invalid Atomic Op");
3789
3790  EVT VT = Val.getValueType();
3791
3792  SDVTList VTs = getVTList(VT, MVT::Other);
3793  FoldingSetNodeID ID;
3794  ID.AddInteger(MemVT.getRawBits());
3795  SDValue Ops[] = {Chain, Ptr, Val};
3796  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3797  void* IP = 0;
3798  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3799    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3800    return SDValue(E, 0);
3801  }
3802  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3803                                               Ptr, Val, MMO);
3804  CSEMap.InsertNode(N, IP);
3805  AllNodes.push_back(N);
3806  return SDValue(N, 0);
3807}
3808
3809/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3810/// Allowed to return something different (and simpler) if Simplify is true.
3811SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3812                                     DebugLoc dl) {
3813  if (NumOps == 1)
3814    return Ops[0];
3815
3816  SmallVector<EVT, 4> VTs;
3817  VTs.reserve(NumOps);
3818  for (unsigned i = 0; i < NumOps; ++i)
3819    VTs.push_back(Ops[i].getValueType());
3820  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3821                 Ops, NumOps);
3822}
3823
3824SDValue
3825SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3826                                  const EVT *VTs, unsigned NumVTs,
3827                                  const SDValue *Ops, unsigned NumOps,
3828                                  EVT MemVT, const Value *srcValue, int SVOff,
3829                                  unsigned Align, bool Vol,
3830                                  bool ReadMem, bool WriteMem) {
3831  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3832                             MemVT, srcValue, SVOff, Align, Vol,
3833                             ReadMem, WriteMem);
3834}
3835
3836SDValue
3837SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3838                                  const SDValue *Ops, unsigned NumOps,
3839                                  EVT MemVT, const Value *srcValue, int SVOff,
3840                                  unsigned Align, bool Vol,
3841                                  bool ReadMem, bool WriteMem) {
3842  if (Align == 0)  // Ensure that codegen never sees alignment 0
3843    Align = getEVTAlignment(MemVT);
3844
3845  MachineFunction &MF = getMachineFunction();
3846  unsigned Flags = 0;
3847  if (WriteMem)
3848    Flags |= MachineMemOperand::MOStore;
3849  if (ReadMem)
3850    Flags |= MachineMemOperand::MOLoad;
3851  if (Vol)
3852    Flags |= MachineMemOperand::MOVolatile;
3853  MachineMemOperand *MMO =
3854    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3855                            MemVT.getStoreSize(), Align);
3856
3857  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3858}
3859
3860SDValue
3861SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3862                                  const SDValue *Ops, unsigned NumOps,
3863                                  EVT MemVT, MachineMemOperand *MMO) {
3864  assert((Opcode == ISD::INTRINSIC_VOID ||
3865          Opcode == ISD::INTRINSIC_W_CHAIN ||
3866          (Opcode <= INT_MAX &&
3867           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3868         "Opcode is not a memory-accessing opcode!");
3869
3870  // Memoize the node unless it returns a flag.
3871  MemIntrinsicSDNode *N;
3872  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3873    FoldingSetNodeID ID;
3874    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3875    void *IP = 0;
3876    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3877      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3878      return SDValue(E, 0);
3879    }
3880
3881    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3882                                               MemVT, MMO);
3883    CSEMap.InsertNode(N, IP);
3884  } else {
3885    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3886                                               MemVT, MMO);
3887  }
3888  AllNodes.push_back(N);
3889  return SDValue(N, 0);
3890}
3891
3892SDValue
3893SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3894                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3895                      SDValue Ptr, SDValue Offset,
3896                      const Value *SV, int SVOffset, EVT MemVT,
3897                      bool isVolatile, bool isNonTemporal,
3898                      unsigned Alignment) {
3899  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3900    Alignment = getEVTAlignment(VT);
3901
3902  // Check if the memory reference references a frame index
3903  if (!SV)
3904    if (const FrameIndexSDNode *FI =
3905          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3906      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3907
3908  MachineFunction &MF = getMachineFunction();
3909  unsigned Flags = MachineMemOperand::MOLoad;
3910  if (isVolatile)
3911    Flags |= MachineMemOperand::MOVolatile;
3912  if (isNonTemporal)
3913    Flags |= MachineMemOperand::MONonTemporal;
3914  MachineMemOperand *MMO =
3915    MF.getMachineMemOperand(SV, Flags, SVOffset,
3916                            MemVT.getStoreSize(), Alignment);
3917  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3918}
3919
3920SDValue
3921SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3922                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3923                      SDValue Ptr, SDValue Offset, EVT MemVT,
3924                      MachineMemOperand *MMO) {
3925  if (VT == MemVT) {
3926    ExtType = ISD::NON_EXTLOAD;
3927  } else if (ExtType == ISD::NON_EXTLOAD) {
3928    assert(VT == MemVT && "Non-extending load from different memory type!");
3929  } else {
3930    // Extending load.
3931    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3932           "Should only be an extending load, not truncating!");
3933    assert(VT.isInteger() == MemVT.isInteger() &&
3934           "Cannot convert from FP to Int or Int -> FP!");
3935    assert(VT.isVector() == MemVT.isVector() &&
3936           "Cannot use trunc store to convert to or from a vector!");
3937    assert((!VT.isVector() ||
3938            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3939           "Cannot use trunc store to change the number of vector elements!");
3940  }
3941
3942  bool Indexed = AM != ISD::UNINDEXED;
3943  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3944         "Unindexed load with an offset!");
3945
3946  SDVTList VTs = Indexed ?
3947    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3948  SDValue Ops[] = { Chain, Ptr, Offset };
3949  FoldingSetNodeID ID;
3950  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3951  ID.AddInteger(MemVT.getRawBits());
3952  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3953                                     MMO->isNonTemporal()));
3954  void *IP = 0;
3955  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3956    cast<LoadSDNode>(E)->refineAlignment(MMO);
3957    return SDValue(E, 0);
3958  }
3959  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
3960                                             MemVT, MMO);
3961  CSEMap.InsertNode(N, IP);
3962  AllNodes.push_back(N);
3963  return SDValue(N, 0);
3964}
3965
3966SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3967                              SDValue Chain, SDValue Ptr,
3968                              const Value *SV, int SVOffset,
3969                              bool isVolatile, bool isNonTemporal,
3970                              unsigned Alignment) {
3971  SDValue Undef = getUNDEF(Ptr.getValueType());
3972  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3973                 SV, SVOffset, VT, isVolatile, isNonTemporal, Alignment);
3974}
3975
3976SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3977                                 SDValue Chain, SDValue Ptr,
3978                                 const Value *SV,
3979                                 int SVOffset, EVT MemVT,
3980                                 bool isVolatile, bool isNonTemporal,
3981                                 unsigned Alignment) {
3982  SDValue Undef = getUNDEF(Ptr.getValueType());
3983  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3984                 SV, SVOffset, MemVT, isVolatile, isNonTemporal, Alignment);
3985}
3986
3987SDValue
3988SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3989                             SDValue Offset, ISD::MemIndexedMode AM) {
3990  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3991  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3992         "Load is already a indexed load!");
3993  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3994                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3995                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3996                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
3997}
3998
3999SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4000                               SDValue Ptr, const Value *SV, int SVOffset,
4001                               bool isVolatile, bool isNonTemporal,
4002                               unsigned Alignment) {
4003  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4004    Alignment = getEVTAlignment(Val.getValueType());
4005
4006  // Check if the memory reference references a frame index
4007  if (!SV)
4008    if (const FrameIndexSDNode *FI =
4009          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
4010      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
4011
4012  MachineFunction &MF = getMachineFunction();
4013  unsigned Flags = MachineMemOperand::MOStore;
4014  if (isVolatile)
4015    Flags |= MachineMemOperand::MOVolatile;
4016  if (isNonTemporal)
4017    Flags |= MachineMemOperand::MONonTemporal;
4018  MachineMemOperand *MMO =
4019    MF.getMachineMemOperand(SV, Flags, SVOffset,
4020                            Val.getValueType().getStoreSize(), Alignment);
4021
4022  return getStore(Chain, dl, Val, Ptr, MMO);
4023}
4024
4025SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4026                               SDValue Ptr, MachineMemOperand *MMO) {
4027  EVT VT = Val.getValueType();
4028  SDVTList VTs = getVTList(MVT::Other);
4029  SDValue Undef = getUNDEF(Ptr.getValueType());
4030  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4031  FoldingSetNodeID ID;
4032  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4033  ID.AddInteger(VT.getRawBits());
4034  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4035                                     MMO->isNonTemporal()));
4036  void *IP = 0;
4037  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4038    cast<StoreSDNode>(E)->refineAlignment(MMO);
4039    return SDValue(E, 0);
4040  }
4041  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4042                                              false, VT, MMO);
4043  CSEMap.InsertNode(N, IP);
4044  AllNodes.push_back(N);
4045  return SDValue(N, 0);
4046}
4047
4048SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4049                                    SDValue Ptr, const Value *SV,
4050                                    int SVOffset, EVT SVT,
4051                                    bool isVolatile, bool isNonTemporal,
4052                                    unsigned Alignment) {
4053  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4054    Alignment = getEVTAlignment(SVT);
4055
4056  // Check if the memory reference references a frame index
4057  if (!SV)
4058    if (const FrameIndexSDNode *FI =
4059          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
4060      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
4061
4062  MachineFunction &MF = getMachineFunction();
4063  unsigned Flags = MachineMemOperand::MOStore;
4064  if (isVolatile)
4065    Flags |= MachineMemOperand::MOVolatile;
4066  if (isNonTemporal)
4067    Flags |= MachineMemOperand::MONonTemporal;
4068  MachineMemOperand *MMO =
4069    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
4070
4071  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4072}
4073
4074SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4075                                    SDValue Ptr, EVT SVT,
4076                                    MachineMemOperand *MMO) {
4077  EVT VT = Val.getValueType();
4078
4079  if (VT == SVT)
4080    return getStore(Chain, dl, Val, Ptr, MMO);
4081
4082  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4083         "Should only be a truncating store, not extending!");
4084  assert(VT.isInteger() == SVT.isInteger() &&
4085         "Can't do FP-INT conversion!");
4086  assert(VT.isVector() == SVT.isVector() &&
4087         "Cannot use trunc store to convert to or from a vector!");
4088  assert((!VT.isVector() ||
4089          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4090         "Cannot use trunc store to change the number of vector elements!");
4091
4092  SDVTList VTs = getVTList(MVT::Other);
4093  SDValue Undef = getUNDEF(Ptr.getValueType());
4094  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4095  FoldingSetNodeID ID;
4096  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4097  ID.AddInteger(SVT.getRawBits());
4098  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4099                                     MMO->isNonTemporal()));
4100  void *IP = 0;
4101  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4102    cast<StoreSDNode>(E)->refineAlignment(MMO);
4103    return SDValue(E, 0);
4104  }
4105  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4106                                              true, SVT, MMO);
4107  CSEMap.InsertNode(N, IP);
4108  AllNodes.push_back(N);
4109  return SDValue(N, 0);
4110}
4111
4112SDValue
4113SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4114                              SDValue Offset, ISD::MemIndexedMode AM) {
4115  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4116  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4117         "Store is already a indexed store!");
4118  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4119  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4120  FoldingSetNodeID ID;
4121  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4122  ID.AddInteger(ST->getMemoryVT().getRawBits());
4123  ID.AddInteger(ST->getRawSubclassData());
4124  void *IP = 0;
4125  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4126    return SDValue(E, 0);
4127
4128  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4129                                              ST->isTruncatingStore(),
4130                                              ST->getMemoryVT(),
4131                                              ST->getMemOperand());
4132  CSEMap.InsertNode(N, IP);
4133  AllNodes.push_back(N);
4134  return SDValue(N, 0);
4135}
4136
4137SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4138                               SDValue Chain, SDValue Ptr,
4139                               SDValue SV) {
4140  SDValue Ops[] = { Chain, Ptr, SV };
4141  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4142}
4143
4144SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4145                              const SDUse *Ops, unsigned NumOps) {
4146  switch (NumOps) {
4147  case 0: return getNode(Opcode, DL, VT);
4148  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4149  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4150  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4151  default: break;
4152  }
4153
4154  // Copy from an SDUse array into an SDValue array for use with
4155  // the regular getNode logic.
4156  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4157  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4158}
4159
4160SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4161                              const SDValue *Ops, unsigned NumOps) {
4162  switch (NumOps) {
4163  case 0: return getNode(Opcode, DL, VT);
4164  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4165  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4166  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4167  default: break;
4168  }
4169
4170  switch (Opcode) {
4171  default: break;
4172  case ISD::SELECT_CC: {
4173    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4174    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4175           "LHS and RHS of condition must have same type!");
4176    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4177           "True and False arms of SelectCC must have same type!");
4178    assert(Ops[2].getValueType() == VT &&
4179           "select_cc node must be of same type as true and false value!");
4180    break;
4181  }
4182  case ISD::BR_CC: {
4183    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4184    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4185           "LHS/RHS of comparison should match types!");
4186    break;
4187  }
4188  }
4189
4190  // Memoize nodes.
4191  SDNode *N;
4192  SDVTList VTs = getVTList(VT);
4193
4194  if (VT != MVT::Flag) {
4195    FoldingSetNodeID ID;
4196    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4197    void *IP = 0;
4198
4199    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4200      return SDValue(E, 0);
4201
4202    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4203    CSEMap.InsertNode(N, IP);
4204  } else {
4205    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4206  }
4207
4208  AllNodes.push_back(N);
4209#ifndef NDEBUG
4210  VerifyNode(N);
4211#endif
4212  return SDValue(N, 0);
4213}
4214
4215SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4216                              const std::vector<EVT> &ResultTys,
4217                              const SDValue *Ops, unsigned NumOps) {
4218  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4219                 Ops, NumOps);
4220}
4221
4222SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4223                              const EVT *VTs, unsigned NumVTs,
4224                              const SDValue *Ops, unsigned NumOps) {
4225  if (NumVTs == 1)
4226    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4227  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4228}
4229
4230SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4231                              const SDValue *Ops, unsigned NumOps) {
4232  if (VTList.NumVTs == 1)
4233    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4234
4235#if 0
4236  switch (Opcode) {
4237  // FIXME: figure out how to safely handle things like
4238  // int foo(int x) { return 1 << (x & 255); }
4239  // int bar() { return foo(256); }
4240  case ISD::SRA_PARTS:
4241  case ISD::SRL_PARTS:
4242  case ISD::SHL_PARTS:
4243    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4244        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4245      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4246    else if (N3.getOpcode() == ISD::AND)
4247      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4248        // If the and is only masking out bits that cannot effect the shift,
4249        // eliminate the and.
4250        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4251        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4252          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4253      }
4254    break;
4255  }
4256#endif
4257
4258  // Memoize the node unless it returns a flag.
4259  SDNode *N;
4260  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4261    FoldingSetNodeID ID;
4262    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4263    void *IP = 0;
4264    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4265      return SDValue(E, 0);
4266
4267    if (NumOps == 1) {
4268      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4269    } else if (NumOps == 2) {
4270      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4271    } else if (NumOps == 3) {
4272      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4273                                            Ops[2]);
4274    } else {
4275      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4276    }
4277    CSEMap.InsertNode(N, IP);
4278  } else {
4279    if (NumOps == 1) {
4280      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4281    } else if (NumOps == 2) {
4282      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4283    } else if (NumOps == 3) {
4284      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4285                                            Ops[2]);
4286    } else {
4287      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4288    }
4289  }
4290  AllNodes.push_back(N);
4291#ifndef NDEBUG
4292  VerifyNode(N);
4293#endif
4294  return SDValue(N, 0);
4295}
4296
4297SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4298  return getNode(Opcode, DL, VTList, 0, 0);
4299}
4300
4301SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4302                              SDValue N1) {
4303  SDValue Ops[] = { N1 };
4304  return getNode(Opcode, DL, VTList, Ops, 1);
4305}
4306
4307SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4308                              SDValue N1, SDValue N2) {
4309  SDValue Ops[] = { N1, N2 };
4310  return getNode(Opcode, DL, VTList, Ops, 2);
4311}
4312
4313SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4314                              SDValue N1, SDValue N2, SDValue N3) {
4315  SDValue Ops[] = { N1, N2, N3 };
4316  return getNode(Opcode, DL, VTList, Ops, 3);
4317}
4318
4319SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4320                              SDValue N1, SDValue N2, SDValue N3,
4321                              SDValue N4) {
4322  SDValue Ops[] = { N1, N2, N3, N4 };
4323  return getNode(Opcode, DL, VTList, Ops, 4);
4324}
4325
4326SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4327                              SDValue N1, SDValue N2, SDValue N3,
4328                              SDValue N4, SDValue N5) {
4329  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4330  return getNode(Opcode, DL, VTList, Ops, 5);
4331}
4332
4333SDVTList SelectionDAG::getVTList(EVT VT) {
4334  return makeVTList(SDNode::getValueTypeList(VT), 1);
4335}
4336
4337SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4338  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4339       E = VTList.rend(); I != E; ++I)
4340    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4341      return *I;
4342
4343  EVT *Array = Allocator.Allocate<EVT>(2);
4344  Array[0] = VT1;
4345  Array[1] = VT2;
4346  SDVTList Result = makeVTList(Array, 2);
4347  VTList.push_back(Result);
4348  return Result;
4349}
4350
4351SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4352  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4353       E = VTList.rend(); I != E; ++I)
4354    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4355                          I->VTs[2] == VT3)
4356      return *I;
4357
4358  EVT *Array = Allocator.Allocate<EVT>(3);
4359  Array[0] = VT1;
4360  Array[1] = VT2;
4361  Array[2] = VT3;
4362  SDVTList Result = makeVTList(Array, 3);
4363  VTList.push_back(Result);
4364  return Result;
4365}
4366
4367SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4368  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4369       E = VTList.rend(); I != E; ++I)
4370    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4371                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4372      return *I;
4373
4374  EVT *Array = Allocator.Allocate<EVT>(4);
4375  Array[0] = VT1;
4376  Array[1] = VT2;
4377  Array[2] = VT3;
4378  Array[3] = VT4;
4379  SDVTList Result = makeVTList(Array, 4);
4380  VTList.push_back(Result);
4381  return Result;
4382}
4383
4384SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4385  switch (NumVTs) {
4386    case 0: llvm_unreachable("Cannot have nodes without results!");
4387    case 1: return getVTList(VTs[0]);
4388    case 2: return getVTList(VTs[0], VTs[1]);
4389    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4390    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4391    default: break;
4392  }
4393
4394  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4395       E = VTList.rend(); I != E; ++I) {
4396    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4397      continue;
4398
4399    bool NoMatch = false;
4400    for (unsigned i = 2; i != NumVTs; ++i)
4401      if (VTs[i] != I->VTs[i]) {
4402        NoMatch = true;
4403        break;
4404      }
4405    if (!NoMatch)
4406      return *I;
4407  }
4408
4409  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4410  std::copy(VTs, VTs+NumVTs, Array);
4411  SDVTList Result = makeVTList(Array, NumVTs);
4412  VTList.push_back(Result);
4413  return Result;
4414}
4415
4416
4417/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4418/// specified operands.  If the resultant node already exists in the DAG,
4419/// this does not modify the specified node, instead it returns the node that
4420/// already exists.  If the resultant node does not exist in the DAG, the
4421/// input node is returned.  As a degenerate case, if you specify the same
4422/// input operands as the node already has, the input node is returned.
4423SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4424  SDNode *N = InN.getNode();
4425  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4426
4427  // Check to see if there is no change.
4428  if (Op == N->getOperand(0)) return InN;
4429
4430  // See if the modified node already exists.
4431  void *InsertPos = 0;
4432  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4433    return SDValue(Existing, InN.getResNo());
4434
4435  // Nope it doesn't.  Remove the node from its current place in the maps.
4436  if (InsertPos)
4437    if (!RemoveNodeFromCSEMaps(N))
4438      InsertPos = 0;
4439
4440  // Now we update the operands.
4441  N->OperandList[0].set(Op);
4442
4443  // If this gets put into a CSE map, add it.
4444  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4445  return InN;
4446}
4447
4448SDValue SelectionDAG::
4449UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4450  SDNode *N = InN.getNode();
4451  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4452
4453  // Check to see if there is no change.
4454  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4455    return InN;   // No operands changed, just return the input node.
4456
4457  // See if the modified node already exists.
4458  void *InsertPos = 0;
4459  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4460    return SDValue(Existing, InN.getResNo());
4461
4462  // Nope it doesn't.  Remove the node from its current place in the maps.
4463  if (InsertPos)
4464    if (!RemoveNodeFromCSEMaps(N))
4465      InsertPos = 0;
4466
4467  // Now we update the operands.
4468  if (N->OperandList[0] != Op1)
4469    N->OperandList[0].set(Op1);
4470  if (N->OperandList[1] != Op2)
4471    N->OperandList[1].set(Op2);
4472
4473  // If this gets put into a CSE map, add it.
4474  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4475  return InN;
4476}
4477
4478SDValue SelectionDAG::
4479UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4480  SDValue Ops[] = { Op1, Op2, Op3 };
4481  return UpdateNodeOperands(N, Ops, 3);
4482}
4483
4484SDValue SelectionDAG::
4485UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4486                   SDValue Op3, SDValue Op4) {
4487  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4488  return UpdateNodeOperands(N, Ops, 4);
4489}
4490
4491SDValue SelectionDAG::
4492UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4493                   SDValue Op3, SDValue Op4, SDValue Op5) {
4494  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4495  return UpdateNodeOperands(N, Ops, 5);
4496}
4497
4498SDValue SelectionDAG::
4499UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4500  SDNode *N = InN.getNode();
4501  assert(N->getNumOperands() == NumOps &&
4502         "Update with wrong number of operands");
4503
4504  // Check to see if there is no change.
4505  bool AnyChange = false;
4506  for (unsigned i = 0; i != NumOps; ++i) {
4507    if (Ops[i] != N->getOperand(i)) {
4508      AnyChange = true;
4509      break;
4510    }
4511  }
4512
4513  // No operands changed, just return the input node.
4514  if (!AnyChange) return InN;
4515
4516  // See if the modified node already exists.
4517  void *InsertPos = 0;
4518  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4519    return SDValue(Existing, InN.getResNo());
4520
4521  // Nope it doesn't.  Remove the node from its current place in the maps.
4522  if (InsertPos)
4523    if (!RemoveNodeFromCSEMaps(N))
4524      InsertPos = 0;
4525
4526  // Now we update the operands.
4527  for (unsigned i = 0; i != NumOps; ++i)
4528    if (N->OperandList[i] != Ops[i])
4529      N->OperandList[i].set(Ops[i]);
4530
4531  // If this gets put into a CSE map, add it.
4532  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4533  return InN;
4534}
4535
4536/// DropOperands - Release the operands and set this node to have
4537/// zero operands.
4538void SDNode::DropOperands() {
4539  // Unlike the code in MorphNodeTo that does this, we don't need to
4540  // watch for dead nodes here.
4541  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4542    SDUse &Use = *I++;
4543    Use.set(SDValue());
4544  }
4545}
4546
4547/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4548/// machine opcode.
4549///
4550SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4551                                   EVT VT) {
4552  SDVTList VTs = getVTList(VT);
4553  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4554}
4555
4556SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4557                                   EVT VT, SDValue Op1) {
4558  SDVTList VTs = getVTList(VT);
4559  SDValue Ops[] = { Op1 };
4560  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4561}
4562
4563SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4564                                   EVT VT, SDValue Op1,
4565                                   SDValue Op2) {
4566  SDVTList VTs = getVTList(VT);
4567  SDValue Ops[] = { Op1, Op2 };
4568  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4569}
4570
4571SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4572                                   EVT VT, SDValue Op1,
4573                                   SDValue Op2, SDValue Op3) {
4574  SDVTList VTs = getVTList(VT);
4575  SDValue Ops[] = { Op1, Op2, Op3 };
4576  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4577}
4578
4579SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4580                                   EVT VT, const SDValue *Ops,
4581                                   unsigned NumOps) {
4582  SDVTList VTs = getVTList(VT);
4583  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4584}
4585
4586SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4587                                   EVT VT1, EVT VT2, const SDValue *Ops,
4588                                   unsigned NumOps) {
4589  SDVTList VTs = getVTList(VT1, VT2);
4590  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4591}
4592
4593SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4594                                   EVT VT1, EVT VT2) {
4595  SDVTList VTs = getVTList(VT1, VT2);
4596  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4597}
4598
4599SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4600                                   EVT VT1, EVT VT2, EVT VT3,
4601                                   const SDValue *Ops, unsigned NumOps) {
4602  SDVTList VTs = getVTList(VT1, VT2, VT3);
4603  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4604}
4605
4606SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4607                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4608                                   const SDValue *Ops, unsigned NumOps) {
4609  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4610  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4611}
4612
4613SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4614                                   EVT VT1, EVT VT2,
4615                                   SDValue Op1) {
4616  SDVTList VTs = getVTList(VT1, VT2);
4617  SDValue Ops[] = { Op1 };
4618  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4619}
4620
4621SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4622                                   EVT VT1, EVT VT2,
4623                                   SDValue Op1, SDValue Op2) {
4624  SDVTList VTs = getVTList(VT1, VT2);
4625  SDValue Ops[] = { Op1, Op2 };
4626  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4627}
4628
4629SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4630                                   EVT VT1, EVT VT2,
4631                                   SDValue Op1, SDValue Op2,
4632                                   SDValue Op3) {
4633  SDVTList VTs = getVTList(VT1, VT2);
4634  SDValue Ops[] = { Op1, Op2, Op3 };
4635  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4636}
4637
4638SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4639                                   EVT VT1, EVT VT2, EVT VT3,
4640                                   SDValue Op1, SDValue Op2,
4641                                   SDValue Op3) {
4642  SDVTList VTs = getVTList(VT1, VT2, VT3);
4643  SDValue Ops[] = { Op1, Op2, Op3 };
4644  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4645}
4646
4647SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4648                                   SDVTList VTs, const SDValue *Ops,
4649                                   unsigned NumOps) {
4650  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4651  // Reset the NodeID to -1.
4652  N->setNodeId(-1);
4653  return N;
4654}
4655
4656/// MorphNodeTo - This *mutates* the specified node to have the specified
4657/// return type, opcode, and operands.
4658///
4659/// Note that MorphNodeTo returns the resultant node.  If there is already a
4660/// node of the specified opcode and operands, it returns that node instead of
4661/// the current one.  Note that the DebugLoc need not be the same.
4662///
4663/// Using MorphNodeTo is faster than creating a new node and swapping it in
4664/// with ReplaceAllUsesWith both because it often avoids allocating a new
4665/// node, and because it doesn't require CSE recalculation for any of
4666/// the node's users.
4667///
4668SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4669                                  SDVTList VTs, const SDValue *Ops,
4670                                  unsigned NumOps) {
4671  // If an identical node already exists, use it.
4672  void *IP = 0;
4673  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4674    FoldingSetNodeID ID;
4675    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4676    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4677      return ON;
4678  }
4679
4680  if (!RemoveNodeFromCSEMaps(N))
4681    IP = 0;
4682
4683  // Start the morphing.
4684  N->NodeType = Opc;
4685  N->ValueList = VTs.VTs;
4686  N->NumValues = VTs.NumVTs;
4687
4688  // Clear the operands list, updating used nodes to remove this from their
4689  // use list.  Keep track of any operands that become dead as a result.
4690  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4691  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4692    SDUse &Use = *I++;
4693    SDNode *Used = Use.getNode();
4694    Use.set(SDValue());
4695    if (Used->use_empty())
4696      DeadNodeSet.insert(Used);
4697  }
4698
4699  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4700    // Initialize the memory references information.
4701    MN->setMemRefs(0, 0);
4702    // If NumOps is larger than the # of operands we can have in a
4703    // MachineSDNode, reallocate the operand list.
4704    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4705      if (MN->OperandsNeedDelete)
4706        delete[] MN->OperandList;
4707      if (NumOps > array_lengthof(MN->LocalOperands))
4708        // We're creating a final node that will live unmorphed for the
4709        // remainder of the current SelectionDAG iteration, so we can allocate
4710        // the operands directly out of a pool with no recycling metadata.
4711        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4712                         Ops, NumOps);
4713      else
4714        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4715      MN->OperandsNeedDelete = false;
4716    } else
4717      MN->InitOperands(MN->OperandList, Ops, NumOps);
4718  } else {
4719    // If NumOps is larger than the # of operands we currently have, reallocate
4720    // the operand list.
4721    if (NumOps > N->NumOperands) {
4722      if (N->OperandsNeedDelete)
4723        delete[] N->OperandList;
4724      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4725      N->OperandsNeedDelete = true;
4726    } else
4727      N->InitOperands(N->OperandList, Ops, NumOps);
4728  }
4729
4730  // Delete any nodes that are still dead after adding the uses for the
4731  // new operands.
4732  if (!DeadNodeSet.empty()) {
4733    SmallVector<SDNode *, 16> DeadNodes;
4734    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4735         E = DeadNodeSet.end(); I != E; ++I)
4736      if ((*I)->use_empty())
4737        DeadNodes.push_back(*I);
4738    RemoveDeadNodes(DeadNodes);
4739  }
4740
4741  if (IP)
4742    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4743  return N;
4744}
4745
4746
4747/// getMachineNode - These are used for target selectors to create a new node
4748/// with specified return type(s), MachineInstr opcode, and operands.
4749///
4750/// Note that getMachineNode returns the resultant node.  If there is already a
4751/// node of the specified opcode and operands, it returns that node instead of
4752/// the current one.
4753MachineSDNode *
4754SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4755  SDVTList VTs = getVTList(VT);
4756  return getMachineNode(Opcode, dl, VTs, 0, 0);
4757}
4758
4759MachineSDNode *
4760SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4761  SDVTList VTs = getVTList(VT);
4762  SDValue Ops[] = { Op1 };
4763  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4764}
4765
4766MachineSDNode *
4767SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4768                             SDValue Op1, SDValue Op2) {
4769  SDVTList VTs = getVTList(VT);
4770  SDValue Ops[] = { Op1, Op2 };
4771  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4772}
4773
4774MachineSDNode *
4775SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4776                             SDValue Op1, SDValue Op2, SDValue Op3) {
4777  SDVTList VTs = getVTList(VT);
4778  SDValue Ops[] = { Op1, Op2, Op3 };
4779  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4780}
4781
4782MachineSDNode *
4783SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4784                             const SDValue *Ops, unsigned NumOps) {
4785  SDVTList VTs = getVTList(VT);
4786  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4787}
4788
4789MachineSDNode *
4790SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4791  SDVTList VTs = getVTList(VT1, VT2);
4792  return getMachineNode(Opcode, dl, VTs, 0, 0);
4793}
4794
4795MachineSDNode *
4796SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4797                             EVT VT1, EVT VT2, SDValue Op1) {
4798  SDVTList VTs = getVTList(VT1, VT2);
4799  SDValue Ops[] = { Op1 };
4800  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4801}
4802
4803MachineSDNode *
4804SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4805                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4806  SDVTList VTs = getVTList(VT1, VT2);
4807  SDValue Ops[] = { Op1, Op2 };
4808  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4809}
4810
4811MachineSDNode *
4812SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4813                             EVT VT1, EVT VT2, SDValue Op1,
4814                             SDValue Op2, SDValue Op3) {
4815  SDVTList VTs = getVTList(VT1, VT2);
4816  SDValue Ops[] = { Op1, Op2, Op3 };
4817  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4818}
4819
4820MachineSDNode *
4821SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4822                             EVT VT1, EVT VT2,
4823                             const SDValue *Ops, unsigned NumOps) {
4824  SDVTList VTs = getVTList(VT1, VT2);
4825  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4826}
4827
4828MachineSDNode *
4829SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4830                             EVT VT1, EVT VT2, EVT VT3,
4831                             SDValue Op1, SDValue Op2) {
4832  SDVTList VTs = getVTList(VT1, VT2, VT3);
4833  SDValue Ops[] = { Op1, Op2 };
4834  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4835}
4836
4837MachineSDNode *
4838SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4839                             EVT VT1, EVT VT2, EVT VT3,
4840                             SDValue Op1, SDValue Op2, SDValue Op3) {
4841  SDVTList VTs = getVTList(VT1, VT2, VT3);
4842  SDValue Ops[] = { Op1, Op2, Op3 };
4843  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4844}
4845
4846MachineSDNode *
4847SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4848                             EVT VT1, EVT VT2, EVT VT3,
4849                             const SDValue *Ops, unsigned NumOps) {
4850  SDVTList VTs = getVTList(VT1, VT2, VT3);
4851  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4852}
4853
4854MachineSDNode *
4855SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4856                             EVT VT2, EVT VT3, EVT VT4,
4857                             const SDValue *Ops, unsigned NumOps) {
4858  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4859  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4860}
4861
4862MachineSDNode *
4863SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4864                             const std::vector<EVT> &ResultTys,
4865                             const SDValue *Ops, unsigned NumOps) {
4866  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4867  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4868}
4869
4870MachineSDNode *
4871SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4872                             const SDValue *Ops, unsigned NumOps) {
4873  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4874  MachineSDNode *N;
4875  void *IP;
4876
4877  if (DoCSE) {
4878    FoldingSetNodeID ID;
4879    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4880    IP = 0;
4881    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4882      return cast<MachineSDNode>(E);
4883  }
4884
4885  // Allocate a new MachineSDNode.
4886  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
4887
4888  // Initialize the operands list.
4889  if (NumOps > array_lengthof(N->LocalOperands))
4890    // We're creating a final node that will live unmorphed for the
4891    // remainder of the current SelectionDAG iteration, so we can allocate
4892    // the operands directly out of a pool with no recycling metadata.
4893    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4894                    Ops, NumOps);
4895  else
4896    N->InitOperands(N->LocalOperands, Ops, NumOps);
4897  N->OperandsNeedDelete = false;
4898
4899  if (DoCSE)
4900    CSEMap.InsertNode(N, IP);
4901
4902  AllNodes.push_back(N);
4903#ifndef NDEBUG
4904  VerifyNode(N);
4905#endif
4906  return N;
4907}
4908
4909/// getTargetExtractSubreg - A convenience function for creating
4910/// TargetOpcode::EXTRACT_SUBREG nodes.
4911SDValue
4912SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4913                                     SDValue Operand) {
4914  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4915  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4916                                  VT, Operand, SRIdxVal);
4917  return SDValue(Subreg, 0);
4918}
4919
4920/// getTargetInsertSubreg - A convenience function for creating
4921/// TargetOpcode::INSERT_SUBREG nodes.
4922SDValue
4923SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4924                                    SDValue Operand, SDValue Subreg) {
4925  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4926  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4927                                  VT, Operand, Subreg, SRIdxVal);
4928  return SDValue(Result, 0);
4929}
4930
4931/// getNodeIfExists - Get the specified node if it's already available, or
4932/// else return NULL.
4933SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4934                                      const SDValue *Ops, unsigned NumOps) {
4935  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4936    FoldingSetNodeID ID;
4937    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4938    void *IP = 0;
4939    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4940      return E;
4941  }
4942  return NULL;
4943}
4944
4945/// getDbgValue - Creates a SDDbgValue node.
4946///
4947SDDbgValue *
4948SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
4949                          DebugLoc DL, unsigned O) {
4950  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
4951}
4952
4953SDDbgValue *
4954SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
4955                          DebugLoc DL, unsigned O) {
4956  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
4957}
4958
4959SDDbgValue *
4960SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
4961                          DebugLoc DL, unsigned O) {
4962  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
4963}
4964
4965namespace {
4966
4967/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
4968/// pointed to by a use iterator is deleted, increment the use iterator
4969/// so that it doesn't dangle.
4970///
4971/// This class also manages a "downlink" DAGUpdateListener, to forward
4972/// messages to ReplaceAllUsesWith's callers.
4973///
4974class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
4975  SelectionDAG::DAGUpdateListener *DownLink;
4976  SDNode::use_iterator &UI;
4977  SDNode::use_iterator &UE;
4978
4979  virtual void NodeDeleted(SDNode *N, SDNode *E) {
4980    // Increment the iterator as needed.
4981    while (UI != UE && N == *UI)
4982      ++UI;
4983
4984    // Then forward the message.
4985    if (DownLink) DownLink->NodeDeleted(N, E);
4986  }
4987
4988  virtual void NodeUpdated(SDNode *N) {
4989    // Just forward the message.
4990    if (DownLink) DownLink->NodeUpdated(N);
4991  }
4992
4993public:
4994  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
4995                     SDNode::use_iterator &ui,
4996                     SDNode::use_iterator &ue)
4997    : DownLink(dl), UI(ui), UE(ue) {}
4998};
4999
5000}
5001
5002/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5003/// This can cause recursive merging of nodes in the DAG.
5004///
5005/// This version assumes From has a single result value.
5006///
5007void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
5008                                      DAGUpdateListener *UpdateListener) {
5009  SDNode *From = FromN.getNode();
5010  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5011         "Cannot replace with this method!");
5012  assert(From != To.getNode() && "Cannot replace uses of with self");
5013
5014  // Iterate over all the existing uses of From. New uses will be added
5015  // to the beginning of the use list, which we avoid visiting.
5016  // This specifically avoids visiting uses of From that arise while the
5017  // replacement is happening, because any such uses would be the result
5018  // of CSE: If an existing node looks like From after one of its operands
5019  // is replaced by To, we don't want to replace of all its users with To
5020  // too. See PR3018 for more info.
5021  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5022  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5023  while (UI != UE) {
5024    SDNode *User = *UI;
5025
5026    // This node is about to morph, remove its old self from the CSE maps.
5027    RemoveNodeFromCSEMaps(User);
5028
5029    // A user can appear in a use list multiple times, and when this
5030    // happens the uses are usually next to each other in the list.
5031    // To help reduce the number of CSE recomputations, process all
5032    // the uses of this user that we can find this way.
5033    do {
5034      SDUse &Use = UI.getUse();
5035      ++UI;
5036      Use.set(To);
5037    } while (UI != UE && *UI == User);
5038
5039    // Now that we have modified User, add it back to the CSE maps.  If it
5040    // already exists there, recursively merge the results together.
5041    AddModifiedNodeToCSEMaps(User, &Listener);
5042  }
5043}
5044
5045/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5046/// This can cause recursive merging of nodes in the DAG.
5047///
5048/// This version assumes that for each value of From, there is a
5049/// corresponding value in To in the same position with the same type.
5050///
5051void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5052                                      DAGUpdateListener *UpdateListener) {
5053#ifndef NDEBUG
5054  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5055    assert((!From->hasAnyUseOfValue(i) ||
5056            From->getValueType(i) == To->getValueType(i)) &&
5057           "Cannot use this version of ReplaceAllUsesWith!");
5058#endif
5059
5060  // Handle the trivial case.
5061  if (From == To)
5062    return;
5063
5064  // Iterate over just the existing users of From. See the comments in
5065  // the ReplaceAllUsesWith above.
5066  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5067  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5068  while (UI != UE) {
5069    SDNode *User = *UI;
5070
5071    // This node is about to morph, remove its old self from the CSE maps.
5072    RemoveNodeFromCSEMaps(User);
5073
5074    // A user can appear in a use list multiple times, and when this
5075    // happens the uses are usually next to each other in the list.
5076    // To help reduce the number of CSE recomputations, process all
5077    // the uses of this user that we can find this way.
5078    do {
5079      SDUse &Use = UI.getUse();
5080      ++UI;
5081      Use.setNode(To);
5082    } while (UI != UE && *UI == User);
5083
5084    // Now that we have modified User, add it back to the CSE maps.  If it
5085    // already exists there, recursively merge the results together.
5086    AddModifiedNodeToCSEMaps(User, &Listener);
5087  }
5088}
5089
5090/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5091/// This can cause recursive merging of nodes in the DAG.
5092///
5093/// This version can replace From with any result values.  To must match the
5094/// number and types of values returned by From.
5095void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5096                                      const SDValue *To,
5097                                      DAGUpdateListener *UpdateListener) {
5098  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5099    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5100
5101  // Iterate over just the existing users of From. See the comments in
5102  // the ReplaceAllUsesWith above.
5103  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5104  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5105  while (UI != UE) {
5106    SDNode *User = *UI;
5107
5108    // This node is about to morph, remove its old self from the CSE maps.
5109    RemoveNodeFromCSEMaps(User);
5110
5111    // A user can appear in a use list multiple times, and when this
5112    // happens the uses are usually next to each other in the list.
5113    // To help reduce the number of CSE recomputations, process all
5114    // the uses of this user that we can find this way.
5115    do {
5116      SDUse &Use = UI.getUse();
5117      const SDValue &ToOp = To[Use.getResNo()];
5118      ++UI;
5119      Use.set(ToOp);
5120    } while (UI != UE && *UI == User);
5121
5122    // Now that we have modified User, add it back to the CSE maps.  If it
5123    // already exists there, recursively merge the results together.
5124    AddModifiedNodeToCSEMaps(User, &Listener);
5125  }
5126}
5127
5128/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5129/// uses of other values produced by From.getNode() alone.  The Deleted
5130/// vector is handled the same way as for ReplaceAllUsesWith.
5131void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5132                                             DAGUpdateListener *UpdateListener){
5133  // Handle the really simple, really trivial case efficiently.
5134  if (From == To) return;
5135
5136  // Handle the simple, trivial, case efficiently.
5137  if (From.getNode()->getNumValues() == 1) {
5138    ReplaceAllUsesWith(From, To, UpdateListener);
5139    return;
5140  }
5141
5142  // Iterate over just the existing users of From. See the comments in
5143  // the ReplaceAllUsesWith above.
5144  SDNode::use_iterator UI = From.getNode()->use_begin(),
5145                       UE = From.getNode()->use_end();
5146  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5147  while (UI != UE) {
5148    SDNode *User = *UI;
5149    bool UserRemovedFromCSEMaps = false;
5150
5151    // A user can appear in a use list multiple times, and when this
5152    // happens the uses are usually next to each other in the list.
5153    // To help reduce the number of CSE recomputations, process all
5154    // the uses of this user that we can find this way.
5155    do {
5156      SDUse &Use = UI.getUse();
5157
5158      // Skip uses of different values from the same node.
5159      if (Use.getResNo() != From.getResNo()) {
5160        ++UI;
5161        continue;
5162      }
5163
5164      // If this node hasn't been modified yet, it's still in the CSE maps,
5165      // so remove its old self from the CSE maps.
5166      if (!UserRemovedFromCSEMaps) {
5167        RemoveNodeFromCSEMaps(User);
5168        UserRemovedFromCSEMaps = true;
5169      }
5170
5171      ++UI;
5172      Use.set(To);
5173    } while (UI != UE && *UI == User);
5174
5175    // We are iterating over all uses of the From node, so if a use
5176    // doesn't use the specific value, no changes are made.
5177    if (!UserRemovedFromCSEMaps)
5178      continue;
5179
5180    // Now that we have modified User, add it back to the CSE maps.  If it
5181    // already exists there, recursively merge the results together.
5182    AddModifiedNodeToCSEMaps(User, &Listener);
5183  }
5184}
5185
5186namespace {
5187  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5188  /// to record information about a use.
5189  struct UseMemo {
5190    SDNode *User;
5191    unsigned Index;
5192    SDUse *Use;
5193  };
5194
5195  /// operator< - Sort Memos by User.
5196  bool operator<(const UseMemo &L, const UseMemo &R) {
5197    return (intptr_t)L.User < (intptr_t)R.User;
5198  }
5199}
5200
5201/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5202/// uses of other values produced by From.getNode() alone.  The same value
5203/// may appear in both the From and To list.  The Deleted vector is
5204/// handled the same way as for ReplaceAllUsesWith.
5205void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5206                                              const SDValue *To,
5207                                              unsigned Num,
5208                                              DAGUpdateListener *UpdateListener){
5209  // Handle the simple, trivial case efficiently.
5210  if (Num == 1)
5211    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5212
5213  // Read up all the uses and make records of them. This helps
5214  // processing new uses that are introduced during the
5215  // replacement process.
5216  SmallVector<UseMemo, 4> Uses;
5217  for (unsigned i = 0; i != Num; ++i) {
5218    unsigned FromResNo = From[i].getResNo();
5219    SDNode *FromNode = From[i].getNode();
5220    for (SDNode::use_iterator UI = FromNode->use_begin(),
5221         E = FromNode->use_end(); UI != E; ++UI) {
5222      SDUse &Use = UI.getUse();
5223      if (Use.getResNo() == FromResNo) {
5224        UseMemo Memo = { *UI, i, &Use };
5225        Uses.push_back(Memo);
5226      }
5227    }
5228  }
5229
5230  // Sort the uses, so that all the uses from a given User are together.
5231  std::sort(Uses.begin(), Uses.end());
5232
5233  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5234       UseIndex != UseIndexEnd; ) {
5235    // We know that this user uses some value of From.  If it is the right
5236    // value, update it.
5237    SDNode *User = Uses[UseIndex].User;
5238
5239    // This node is about to morph, remove its old self from the CSE maps.
5240    RemoveNodeFromCSEMaps(User);
5241
5242    // The Uses array is sorted, so all the uses for a given User
5243    // are next to each other in the list.
5244    // To help reduce the number of CSE recomputations, process all
5245    // the uses of this user that we can find this way.
5246    do {
5247      unsigned i = Uses[UseIndex].Index;
5248      SDUse &Use = *Uses[UseIndex].Use;
5249      ++UseIndex;
5250
5251      Use.set(To[i]);
5252    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5253
5254    // Now that we have modified User, add it back to the CSE maps.  If it
5255    // already exists there, recursively merge the results together.
5256    AddModifiedNodeToCSEMaps(User, UpdateListener);
5257  }
5258}
5259
5260/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5261/// based on their topological order. It returns the maximum id and a vector
5262/// of the SDNodes* in assigned order by reference.
5263unsigned SelectionDAG::AssignTopologicalOrder() {
5264
5265  unsigned DAGSize = 0;
5266
5267  // SortedPos tracks the progress of the algorithm. Nodes before it are
5268  // sorted, nodes after it are unsorted. When the algorithm completes
5269  // it is at the end of the list.
5270  allnodes_iterator SortedPos = allnodes_begin();
5271
5272  // Visit all the nodes. Move nodes with no operands to the front of
5273  // the list immediately. Annotate nodes that do have operands with their
5274  // operand count. Before we do this, the Node Id fields of the nodes
5275  // may contain arbitrary values. After, the Node Id fields for nodes
5276  // before SortedPos will contain the topological sort index, and the
5277  // Node Id fields for nodes At SortedPos and after will contain the
5278  // count of outstanding operands.
5279  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5280    SDNode *N = I++;
5281    checkForCycles(N);
5282    unsigned Degree = N->getNumOperands();
5283    if (Degree == 0) {
5284      // A node with no uses, add it to the result array immediately.
5285      N->setNodeId(DAGSize++);
5286      allnodes_iterator Q = N;
5287      if (Q != SortedPos)
5288        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5289      assert(SortedPos != AllNodes.end() && "Overran node list");
5290      ++SortedPos;
5291    } else {
5292      // Temporarily use the Node Id as scratch space for the degree count.
5293      N->setNodeId(Degree);
5294    }
5295  }
5296
5297  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5298  // such that by the time the end is reached all nodes will be sorted.
5299  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5300    SDNode *N = I;
5301    checkForCycles(N);
5302    // N is in sorted position, so all its uses have one less operand
5303    // that needs to be sorted.
5304    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5305         UI != UE; ++UI) {
5306      SDNode *P = *UI;
5307      unsigned Degree = P->getNodeId();
5308      assert(Degree != 0 && "Invalid node degree");
5309      --Degree;
5310      if (Degree == 0) {
5311        // All of P's operands are sorted, so P may sorted now.
5312        P->setNodeId(DAGSize++);
5313        if (P != SortedPos)
5314          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5315        assert(SortedPos != AllNodes.end() && "Overran node list");
5316        ++SortedPos;
5317      } else {
5318        // Update P's outstanding operand count.
5319        P->setNodeId(Degree);
5320      }
5321    }
5322    if (I == SortedPos) {
5323#ifndef NDEBUG
5324      SDNode *S = ++I;
5325      dbgs() << "Overran sorted position:\n";
5326      S->dumprFull();
5327#endif
5328      llvm_unreachable(0);
5329    }
5330  }
5331
5332  assert(SortedPos == AllNodes.end() &&
5333         "Topological sort incomplete!");
5334  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5335         "First node in topological sort is not the entry token!");
5336  assert(AllNodes.front().getNodeId() == 0 &&
5337         "First node in topological sort has non-zero id!");
5338  assert(AllNodes.front().getNumOperands() == 0 &&
5339         "First node in topological sort has operands!");
5340  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5341         "Last node in topologic sort has unexpected id!");
5342  assert(AllNodes.back().use_empty() &&
5343         "Last node in topologic sort has users!");
5344  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5345  return DAGSize;
5346}
5347
5348/// AssignOrdering - Assign an order to the SDNode.
5349void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5350  assert(SD && "Trying to assign an order to a null node!");
5351  Ordering->add(SD, Order);
5352}
5353
5354/// GetOrdering - Get the order for the SDNode.
5355unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5356  assert(SD && "Trying to get the order of a null node!");
5357  return Ordering->getOrder(SD);
5358}
5359
5360/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5361/// value is produced by SD.
5362void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5363  DbgInfo->add(DB, SD, isParameter);
5364  if (SD)
5365    SD->setHasDebugValue(true);
5366}
5367
5368//===----------------------------------------------------------------------===//
5369//                              SDNode Class
5370//===----------------------------------------------------------------------===//
5371
5372HandleSDNode::~HandleSDNode() {
5373  DropOperands();
5374}
5375
5376GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5377                                         EVT VT, int64_t o, unsigned char TF)
5378  : SDNode(Opc, DebugLoc(), getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5379  TheGlobal = GA;
5380}
5381
5382MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5383                     MachineMemOperand *mmo)
5384 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5385  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5386                                      MMO->isNonTemporal());
5387  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5388  assert(isNonTemporal() == MMO->isNonTemporal() &&
5389         "Non-temporal encoding error!");
5390  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5391}
5392
5393MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5394                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5395                     MachineMemOperand *mmo)
5396   : SDNode(Opc, dl, VTs, Ops, NumOps),
5397     MemoryVT(memvt), MMO(mmo) {
5398  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5399                                      MMO->isNonTemporal());
5400  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5401  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5402}
5403
5404/// Profile - Gather unique data for the node.
5405///
5406void SDNode::Profile(FoldingSetNodeID &ID) const {
5407  AddNodeIDNode(ID, this);
5408}
5409
5410namespace {
5411  struct EVTArray {
5412    std::vector<EVT> VTs;
5413
5414    EVTArray() {
5415      VTs.reserve(MVT::LAST_VALUETYPE);
5416      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5417        VTs.push_back(MVT((MVT::SimpleValueType)i));
5418    }
5419  };
5420}
5421
5422static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5423static ManagedStatic<EVTArray> SimpleVTArray;
5424static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5425
5426/// getValueTypeList - Return a pointer to the specified value type.
5427///
5428const EVT *SDNode::getValueTypeList(EVT VT) {
5429  if (VT.isExtended()) {
5430    sys::SmartScopedLock<true> Lock(*VTMutex);
5431    return &(*EVTs->insert(VT).first);
5432  } else {
5433    assert(VT.getSimpleVT().SimpleTy < MVT::LAST_VALUETYPE &&
5434           "Value type out of range!");
5435    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5436  }
5437}
5438
5439/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5440/// indicated value.  This method ignores uses of other values defined by this
5441/// operation.
5442bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5443  assert(Value < getNumValues() && "Bad value!");
5444
5445  // TODO: Only iterate over uses of a given value of the node
5446  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5447    if (UI.getUse().getResNo() == Value) {
5448      if (NUses == 0)
5449        return false;
5450      --NUses;
5451    }
5452  }
5453
5454  // Found exactly the right number of uses?
5455  return NUses == 0;
5456}
5457
5458
5459/// hasAnyUseOfValue - Return true if there are any use of the indicated
5460/// value. This method ignores uses of other values defined by this operation.
5461bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5462  assert(Value < getNumValues() && "Bad value!");
5463
5464  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5465    if (UI.getUse().getResNo() == Value)
5466      return true;
5467
5468  return false;
5469}
5470
5471
5472/// isOnlyUserOf - Return true if this node is the only use of N.
5473///
5474bool SDNode::isOnlyUserOf(SDNode *N) const {
5475  bool Seen = false;
5476  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5477    SDNode *User = *I;
5478    if (User == this)
5479      Seen = true;
5480    else
5481      return false;
5482  }
5483
5484  return Seen;
5485}
5486
5487/// isOperand - Return true if this node is an operand of N.
5488///
5489bool SDValue::isOperandOf(SDNode *N) const {
5490  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5491    if (*this == N->getOperand(i))
5492      return true;
5493  return false;
5494}
5495
5496bool SDNode::isOperandOf(SDNode *N) const {
5497  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5498    if (this == N->OperandList[i].getNode())
5499      return true;
5500  return false;
5501}
5502
5503/// reachesChainWithoutSideEffects - Return true if this operand (which must
5504/// be a chain) reaches the specified operand without crossing any
5505/// side-effecting instructions.  In practice, this looks through token
5506/// factors and non-volatile loads.  In order to remain efficient, this only
5507/// looks a couple of nodes in, it does not do an exhaustive search.
5508bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5509                                               unsigned Depth) const {
5510  if (*this == Dest) return true;
5511
5512  // Don't search too deeply, we just want to be able to see through
5513  // TokenFactor's etc.
5514  if (Depth == 0) return false;
5515
5516  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5517  // of the operands of the TF reach dest, then we can do the xform.
5518  if (getOpcode() == ISD::TokenFactor) {
5519    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5520      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5521        return true;
5522    return false;
5523  }
5524
5525  // Loads don't have side effects, look through them.
5526  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5527    if (!Ld->isVolatile())
5528      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5529  }
5530  return false;
5531}
5532
5533/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5534/// is either an operand of N or it can be reached by traversing up the operands.
5535/// NOTE: this is an expensive method. Use it carefully.
5536bool SDNode::isPredecessorOf(SDNode *N) const {
5537  SmallPtrSet<SDNode *, 32> Visited;
5538  SmallVector<SDNode *, 16> Worklist;
5539  Worklist.push_back(N);
5540
5541  do {
5542    N = Worklist.pop_back_val();
5543    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5544      SDNode *Op = N->getOperand(i).getNode();
5545      if (Op == this)
5546        return true;
5547      if (Visited.insert(Op))
5548        Worklist.push_back(Op);
5549    }
5550  } while (!Worklist.empty());
5551
5552  return false;
5553}
5554
5555uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5556  assert(Num < NumOperands && "Invalid child # of SDNode!");
5557  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5558}
5559
5560std::string SDNode::getOperationName(const SelectionDAG *G) const {
5561  switch (getOpcode()) {
5562  default:
5563    if (getOpcode() < ISD::BUILTIN_OP_END)
5564      return "<<Unknown DAG Node>>";
5565    if (isMachineOpcode()) {
5566      if (G)
5567        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5568          if (getMachineOpcode() < TII->getNumOpcodes())
5569            return TII->get(getMachineOpcode()).getName();
5570      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5571    }
5572    if (G) {
5573      const TargetLowering &TLI = G->getTargetLoweringInfo();
5574      const char *Name = TLI.getTargetNodeName(getOpcode());
5575      if (Name) return Name;
5576      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5577    }
5578    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5579
5580#ifndef NDEBUG
5581  case ISD::DELETED_NODE:
5582    return "<<Deleted Node!>>";
5583#endif
5584  case ISD::PREFETCH:      return "Prefetch";
5585  case ISD::MEMBARRIER:    return "MemBarrier";
5586  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5587  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5588  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5589  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5590  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5591  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5592  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5593  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5594  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5595  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5596  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5597  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5598  case ISD::PCMARKER:      return "PCMarker";
5599  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5600  case ISD::SRCVALUE:      return "SrcValue";
5601  case ISD::MDNODE_SDNODE: return "MDNode";
5602  case ISD::EntryToken:    return "EntryToken";
5603  case ISD::TokenFactor:   return "TokenFactor";
5604  case ISD::AssertSext:    return "AssertSext";
5605  case ISD::AssertZext:    return "AssertZext";
5606
5607  case ISD::BasicBlock:    return "BasicBlock";
5608  case ISD::VALUETYPE:     return "ValueType";
5609  case ISD::Register:      return "Register";
5610
5611  case ISD::Constant:      return "Constant";
5612  case ISD::ConstantFP:    return "ConstantFP";
5613  case ISD::GlobalAddress: return "GlobalAddress";
5614  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5615  case ISD::FrameIndex:    return "FrameIndex";
5616  case ISD::JumpTable:     return "JumpTable";
5617  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5618  case ISD::RETURNADDR: return "RETURNADDR";
5619  case ISD::FRAMEADDR: return "FRAMEADDR";
5620  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5621  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5622  case ISD::LSDAADDR: return "LSDAADDR";
5623  case ISD::EHSELECTION: return "EHSELECTION";
5624  case ISD::EH_RETURN: return "EH_RETURN";
5625  case ISD::ConstantPool:  return "ConstantPool";
5626  case ISD::ExternalSymbol: return "ExternalSymbol";
5627  case ISD::BlockAddress:  return "BlockAddress";
5628  case ISD::INTRINSIC_WO_CHAIN:
5629  case ISD::INTRINSIC_VOID:
5630  case ISD::INTRINSIC_W_CHAIN: {
5631    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5632    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5633    if (IID < Intrinsic::num_intrinsics)
5634      return Intrinsic::getName((Intrinsic::ID)IID);
5635    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5636      return TII->getName(IID);
5637    llvm_unreachable("Invalid intrinsic ID");
5638  }
5639
5640  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5641  case ISD::TargetConstant: return "TargetConstant";
5642  case ISD::TargetConstantFP:return "TargetConstantFP";
5643  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5644  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5645  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5646  case ISD::TargetJumpTable:  return "TargetJumpTable";
5647  case ISD::TargetConstantPool:  return "TargetConstantPool";
5648  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5649  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5650
5651  case ISD::CopyToReg:     return "CopyToReg";
5652  case ISD::CopyFromReg:   return "CopyFromReg";
5653  case ISD::UNDEF:         return "undef";
5654  case ISD::MERGE_VALUES:  return "merge_values";
5655  case ISD::INLINEASM:     return "inlineasm";
5656  case ISD::EH_LABEL:      return "eh_label";
5657  case ISD::HANDLENODE:    return "handlenode";
5658
5659  // Unary operators
5660  case ISD::FABS:   return "fabs";
5661  case ISD::FNEG:   return "fneg";
5662  case ISD::FSQRT:  return "fsqrt";
5663  case ISD::FSIN:   return "fsin";
5664  case ISD::FCOS:   return "fcos";
5665  case ISD::FPOWI:  return "fpowi";
5666  case ISD::FPOW:   return "fpow";
5667  case ISD::FTRUNC: return "ftrunc";
5668  case ISD::FFLOOR: return "ffloor";
5669  case ISD::FCEIL:  return "fceil";
5670  case ISD::FRINT:  return "frint";
5671  case ISD::FNEARBYINT: return "fnearbyint";
5672
5673  // Binary operators
5674  case ISD::ADD:    return "add";
5675  case ISD::SUB:    return "sub";
5676  case ISD::MUL:    return "mul";
5677  case ISD::MULHU:  return "mulhu";
5678  case ISD::MULHS:  return "mulhs";
5679  case ISD::SDIV:   return "sdiv";
5680  case ISD::UDIV:   return "udiv";
5681  case ISD::SREM:   return "srem";
5682  case ISD::UREM:   return "urem";
5683  case ISD::SMUL_LOHI:  return "smul_lohi";
5684  case ISD::UMUL_LOHI:  return "umul_lohi";
5685  case ISD::SDIVREM:    return "sdivrem";
5686  case ISD::UDIVREM:    return "udivrem";
5687  case ISD::AND:    return "and";
5688  case ISD::OR:     return "or";
5689  case ISD::XOR:    return "xor";
5690  case ISD::SHL:    return "shl";
5691  case ISD::SRA:    return "sra";
5692  case ISD::SRL:    return "srl";
5693  case ISD::ROTL:   return "rotl";
5694  case ISD::ROTR:   return "rotr";
5695  case ISD::FADD:   return "fadd";
5696  case ISD::FSUB:   return "fsub";
5697  case ISD::FMUL:   return "fmul";
5698  case ISD::FDIV:   return "fdiv";
5699  case ISD::FREM:   return "frem";
5700  case ISD::FCOPYSIGN: return "fcopysign";
5701  case ISD::FGETSIGN:  return "fgetsign";
5702
5703  case ISD::SETCC:       return "setcc";
5704  case ISD::VSETCC:      return "vsetcc";
5705  case ISD::SELECT:      return "select";
5706  case ISD::SELECT_CC:   return "select_cc";
5707  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5708  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5709  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5710  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5711  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5712  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5713  case ISD::CARRY_FALSE:         return "carry_false";
5714  case ISD::ADDC:        return "addc";
5715  case ISD::ADDE:        return "adde";
5716  case ISD::SADDO:       return "saddo";
5717  case ISD::UADDO:       return "uaddo";
5718  case ISD::SSUBO:       return "ssubo";
5719  case ISD::USUBO:       return "usubo";
5720  case ISD::SMULO:       return "smulo";
5721  case ISD::UMULO:       return "umulo";
5722  case ISD::SUBC:        return "subc";
5723  case ISD::SUBE:        return "sube";
5724  case ISD::SHL_PARTS:   return "shl_parts";
5725  case ISD::SRA_PARTS:   return "sra_parts";
5726  case ISD::SRL_PARTS:   return "srl_parts";
5727
5728  // Conversion operators.
5729  case ISD::SIGN_EXTEND: return "sign_extend";
5730  case ISD::ZERO_EXTEND: return "zero_extend";
5731  case ISD::ANY_EXTEND:  return "any_extend";
5732  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5733  case ISD::TRUNCATE:    return "truncate";
5734  case ISD::FP_ROUND:    return "fp_round";
5735  case ISD::FLT_ROUNDS_: return "flt_rounds";
5736  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5737  case ISD::FP_EXTEND:   return "fp_extend";
5738
5739  case ISD::SINT_TO_FP:  return "sint_to_fp";
5740  case ISD::UINT_TO_FP:  return "uint_to_fp";
5741  case ISD::FP_TO_SINT:  return "fp_to_sint";
5742  case ISD::FP_TO_UINT:  return "fp_to_uint";
5743  case ISD::BIT_CONVERT: return "bit_convert";
5744  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5745  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5746
5747  case ISD::CONVERT_RNDSAT: {
5748    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5749    default: llvm_unreachable("Unknown cvt code!");
5750    case ISD::CVT_FF:  return "cvt_ff";
5751    case ISD::CVT_FS:  return "cvt_fs";
5752    case ISD::CVT_FU:  return "cvt_fu";
5753    case ISD::CVT_SF:  return "cvt_sf";
5754    case ISD::CVT_UF:  return "cvt_uf";
5755    case ISD::CVT_SS:  return "cvt_ss";
5756    case ISD::CVT_SU:  return "cvt_su";
5757    case ISD::CVT_US:  return "cvt_us";
5758    case ISD::CVT_UU:  return "cvt_uu";
5759    }
5760  }
5761
5762    // Control flow instructions
5763  case ISD::BR:      return "br";
5764  case ISD::BRIND:   return "brind";
5765  case ISD::BR_JT:   return "br_jt";
5766  case ISD::BRCOND:  return "brcond";
5767  case ISD::BR_CC:   return "br_cc";
5768  case ISD::CALLSEQ_START:  return "callseq_start";
5769  case ISD::CALLSEQ_END:    return "callseq_end";
5770
5771    // Other operators
5772  case ISD::LOAD:               return "load";
5773  case ISD::STORE:              return "store";
5774  case ISD::VAARG:              return "vaarg";
5775  case ISD::VACOPY:             return "vacopy";
5776  case ISD::VAEND:              return "vaend";
5777  case ISD::VASTART:            return "vastart";
5778  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5779  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5780  case ISD::BUILD_PAIR:         return "build_pair";
5781  case ISD::STACKSAVE:          return "stacksave";
5782  case ISD::STACKRESTORE:       return "stackrestore";
5783  case ISD::TRAP:               return "trap";
5784
5785  // Bit manipulation
5786  case ISD::BSWAP:   return "bswap";
5787  case ISD::CTPOP:   return "ctpop";
5788  case ISD::CTTZ:    return "cttz";
5789  case ISD::CTLZ:    return "ctlz";
5790
5791  // Trampolines
5792  case ISD::TRAMPOLINE: return "trampoline";
5793
5794  case ISD::CONDCODE:
5795    switch (cast<CondCodeSDNode>(this)->get()) {
5796    default: llvm_unreachable("Unknown setcc condition!");
5797    case ISD::SETOEQ:  return "setoeq";
5798    case ISD::SETOGT:  return "setogt";
5799    case ISD::SETOGE:  return "setoge";
5800    case ISD::SETOLT:  return "setolt";
5801    case ISD::SETOLE:  return "setole";
5802    case ISD::SETONE:  return "setone";
5803
5804    case ISD::SETO:    return "seto";
5805    case ISD::SETUO:   return "setuo";
5806    case ISD::SETUEQ:  return "setue";
5807    case ISD::SETUGT:  return "setugt";
5808    case ISD::SETUGE:  return "setuge";
5809    case ISD::SETULT:  return "setult";
5810    case ISD::SETULE:  return "setule";
5811    case ISD::SETUNE:  return "setune";
5812
5813    case ISD::SETEQ:   return "seteq";
5814    case ISD::SETGT:   return "setgt";
5815    case ISD::SETGE:   return "setge";
5816    case ISD::SETLT:   return "setlt";
5817    case ISD::SETLE:   return "setle";
5818    case ISD::SETNE:   return "setne";
5819    }
5820  }
5821}
5822
5823const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5824  switch (AM) {
5825  default:
5826    return "";
5827  case ISD::PRE_INC:
5828    return "<pre-inc>";
5829  case ISD::PRE_DEC:
5830    return "<pre-dec>";
5831  case ISD::POST_INC:
5832    return "<post-inc>";
5833  case ISD::POST_DEC:
5834    return "<post-dec>";
5835  }
5836}
5837
5838std::string ISD::ArgFlagsTy::getArgFlagsString() {
5839  std::string S = "< ";
5840
5841  if (isZExt())
5842    S += "zext ";
5843  if (isSExt())
5844    S += "sext ";
5845  if (isInReg())
5846    S += "inreg ";
5847  if (isSRet())
5848    S += "sret ";
5849  if (isByVal())
5850    S += "byval ";
5851  if (isNest())
5852    S += "nest ";
5853  if (getByValAlign())
5854    S += "byval-align:" + utostr(getByValAlign()) + " ";
5855  if (getOrigAlign())
5856    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5857  if (getByValSize())
5858    S += "byval-size:" + utostr(getByValSize()) + " ";
5859  return S + ">";
5860}
5861
5862void SDNode::dump() const { dump(0); }
5863void SDNode::dump(const SelectionDAG *G) const {
5864  print(dbgs(), G);
5865}
5866
5867void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5868  OS << (void*)this << ": ";
5869
5870  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5871    if (i) OS << ",";
5872    if (getValueType(i) == MVT::Other)
5873      OS << "ch";
5874    else
5875      OS << getValueType(i).getEVTString();
5876  }
5877  OS << " = " << getOperationName(G);
5878}
5879
5880void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5881  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5882    if (!MN->memoperands_empty()) {
5883      OS << "<";
5884      OS << "Mem:";
5885      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5886           e = MN->memoperands_end(); i != e; ++i) {
5887        OS << **i;
5888        if (next(i) != e)
5889          OS << " ";
5890      }
5891      OS << ">";
5892    }
5893  } else if (const ShuffleVectorSDNode *SVN =
5894               dyn_cast<ShuffleVectorSDNode>(this)) {
5895    OS << "<";
5896    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5897      int Idx = SVN->getMaskElt(i);
5898      if (i) OS << ",";
5899      if (Idx < 0)
5900        OS << "u";
5901      else
5902        OS << Idx;
5903    }
5904    OS << ">";
5905  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5906    OS << '<' << CSDN->getAPIntValue() << '>';
5907  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5908    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5909      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5910    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5911      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5912    else {
5913      OS << "<APFloat(";
5914      CSDN->getValueAPF().bitcastToAPInt().dump();
5915      OS << ")>";
5916    }
5917  } else if (const GlobalAddressSDNode *GADN =
5918             dyn_cast<GlobalAddressSDNode>(this)) {
5919    int64_t offset = GADN->getOffset();
5920    OS << '<';
5921    WriteAsOperand(OS, GADN->getGlobal());
5922    OS << '>';
5923    if (offset > 0)
5924      OS << " + " << offset;
5925    else
5926      OS << " " << offset;
5927    if (unsigned int TF = GADN->getTargetFlags())
5928      OS << " [TF=" << TF << ']';
5929  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5930    OS << "<" << FIDN->getIndex() << ">";
5931  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5932    OS << "<" << JTDN->getIndex() << ">";
5933    if (unsigned int TF = JTDN->getTargetFlags())
5934      OS << " [TF=" << TF << ']';
5935  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5936    int offset = CP->getOffset();
5937    if (CP->isMachineConstantPoolEntry())
5938      OS << "<" << *CP->getMachineCPVal() << ">";
5939    else
5940      OS << "<" << *CP->getConstVal() << ">";
5941    if (offset > 0)
5942      OS << " + " << offset;
5943    else
5944      OS << " " << offset;
5945    if (unsigned int TF = CP->getTargetFlags())
5946      OS << " [TF=" << TF << ']';
5947  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5948    OS << "<";
5949    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5950    if (LBB)
5951      OS << LBB->getName() << " ";
5952    OS << (const void*)BBDN->getBasicBlock() << ">";
5953  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5954    if (G && R->getReg() &&
5955        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5956      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5957    } else {
5958      OS << " %reg" << R->getReg();
5959    }
5960  } else if (const ExternalSymbolSDNode *ES =
5961             dyn_cast<ExternalSymbolSDNode>(this)) {
5962    OS << "'" << ES->getSymbol() << "'";
5963    if (unsigned int TF = ES->getTargetFlags())
5964      OS << " [TF=" << TF << ']';
5965  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5966    if (M->getValue())
5967      OS << "<" << M->getValue() << ">";
5968    else
5969      OS << "<null>";
5970  } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
5971    if (MD->getMD())
5972      OS << "<" << MD->getMD() << ">";
5973    else
5974      OS << "<null>";
5975  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5976    OS << ":" << N->getVT().getEVTString();
5977  }
5978  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5979    OS << "<" << *LD->getMemOperand();
5980
5981    bool doExt = true;
5982    switch (LD->getExtensionType()) {
5983    default: doExt = false; break;
5984    case ISD::EXTLOAD: OS << ", anyext"; break;
5985    case ISD::SEXTLOAD: OS << ", sext"; break;
5986    case ISD::ZEXTLOAD: OS << ", zext"; break;
5987    }
5988    if (doExt)
5989      OS << " from " << LD->getMemoryVT().getEVTString();
5990
5991    const char *AM = getIndexedModeName(LD->getAddressingMode());
5992    if (*AM)
5993      OS << ", " << AM;
5994
5995    OS << ">";
5996  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5997    OS << "<" << *ST->getMemOperand();
5998
5999    if (ST->isTruncatingStore())
6000      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
6001
6002    const char *AM = getIndexedModeName(ST->getAddressingMode());
6003    if (*AM)
6004      OS << ", " << AM;
6005
6006    OS << ">";
6007  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
6008    OS << "<" << *M->getMemOperand() << ">";
6009  } else if (const BlockAddressSDNode *BA =
6010               dyn_cast<BlockAddressSDNode>(this)) {
6011    OS << "<";
6012    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
6013    OS << ", ";
6014    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
6015    OS << ">";
6016    if (unsigned int TF = BA->getTargetFlags())
6017      OS << " [TF=" << TF << ']';
6018  }
6019
6020  if (G)
6021    if (unsigned Order = G->GetOrdering(this))
6022      OS << " [ORD=" << Order << ']';
6023
6024  if (getNodeId() != -1)
6025    OS << " [ID=" << getNodeId() << ']';
6026
6027  DebugLoc dl = getDebugLoc();
6028  if (G && !dl.isUnknown()) {
6029    DIScope
6030      Scope(dl.getScope(G->getMachineFunction().getFunction()->getContext()));
6031    OS << " dbg:";
6032    // Omit the directory, since it's usually long and uninteresting.
6033    if (Scope.Verify())
6034      OS << Scope.getFilename();
6035    else
6036      OS << "<unknown>";
6037    OS << ':' << dl.getLine();
6038    if (dl.getCol() != 0)
6039      OS << ':' << dl.getCol();
6040  }
6041}
6042
6043void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6044  print_types(OS, G);
6045  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6046    if (i) OS << ", "; else OS << " ";
6047    OS << (void*)getOperand(i).getNode();
6048    if (unsigned RN = getOperand(i).getResNo())
6049      OS << ":" << RN;
6050  }
6051  print_details(OS, G);
6052}
6053
6054static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6055                                  const SelectionDAG *G, unsigned depth,
6056                                  unsigned indent)
6057{
6058  if (depth == 0)
6059    return;
6060
6061  OS.indent(indent);
6062
6063  N->print(OS, G);
6064
6065  if (depth < 1)
6066    return;
6067
6068  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6069    OS << '\n';
6070    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6071  }
6072}
6073
6074void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6075                            unsigned depth) const {
6076  printrWithDepthHelper(OS, this, G, depth, 0);
6077}
6078
6079void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6080  // Don't print impossibly deep things.
6081  printrWithDepth(OS, G, 100);
6082}
6083
6084void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6085  printrWithDepth(dbgs(), G, depth);
6086}
6087
6088void SDNode::dumprFull(const SelectionDAG *G) const {
6089  // Don't print impossibly deep things.
6090  dumprWithDepth(G, 100);
6091}
6092
6093static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6094  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6095    if (N->getOperand(i).getNode()->hasOneUse())
6096      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6097    else
6098      dbgs() << "\n" << std::string(indent+2, ' ')
6099           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6100
6101
6102  dbgs() << "\n";
6103  dbgs().indent(indent);
6104  N->dump(G);
6105}
6106
6107SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6108  assert(N->getNumValues() == 1 &&
6109         "Can't unroll a vector with multiple results!");
6110
6111  EVT VT = N->getValueType(0);
6112  unsigned NE = VT.getVectorNumElements();
6113  EVT EltVT = VT.getVectorElementType();
6114  DebugLoc dl = N->getDebugLoc();
6115
6116  SmallVector<SDValue, 8> Scalars;
6117  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6118
6119  // If ResNE is 0, fully unroll the vector op.
6120  if (ResNE == 0)
6121    ResNE = NE;
6122  else if (NE > ResNE)
6123    NE = ResNE;
6124
6125  unsigned i;
6126  for (i= 0; i != NE; ++i) {
6127    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6128      SDValue Operand = N->getOperand(j);
6129      EVT OperandVT = Operand.getValueType();
6130      if (OperandVT.isVector()) {
6131        // A vector operand; extract a single element.
6132        EVT OperandEltVT = OperandVT.getVectorElementType();
6133        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6134                              OperandEltVT,
6135                              Operand,
6136                              getConstant(i, MVT::i32));
6137      } else {
6138        // A scalar operand; just use it as is.
6139        Operands[j] = Operand;
6140      }
6141    }
6142
6143    switch (N->getOpcode()) {
6144    default:
6145      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6146                                &Operands[0], Operands.size()));
6147      break;
6148    case ISD::SHL:
6149    case ISD::SRA:
6150    case ISD::SRL:
6151    case ISD::ROTL:
6152    case ISD::ROTR:
6153      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6154                                getShiftAmountOperand(Operands[1])));
6155      break;
6156    case ISD::SIGN_EXTEND_INREG:
6157    case ISD::FP_ROUND_INREG: {
6158      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6159      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6160                                Operands[0],
6161                                getValueType(ExtVT)));
6162    }
6163    }
6164  }
6165
6166  for (; i < ResNE; ++i)
6167    Scalars.push_back(getUNDEF(EltVT));
6168
6169  return getNode(ISD::BUILD_VECTOR, dl,
6170                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6171                 &Scalars[0], Scalars.size());
6172}
6173
6174
6175/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6176/// location that is 'Dist' units away from the location that the 'Base' load
6177/// is loading from.
6178bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6179                                     unsigned Bytes, int Dist) const {
6180  if (LD->getChain() != Base->getChain())
6181    return false;
6182  EVT VT = LD->getValueType(0);
6183  if (VT.getSizeInBits() / 8 != Bytes)
6184    return false;
6185
6186  SDValue Loc = LD->getOperand(1);
6187  SDValue BaseLoc = Base->getOperand(1);
6188  if (Loc.getOpcode() == ISD::FrameIndex) {
6189    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6190      return false;
6191    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6192    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6193    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6194    int FS  = MFI->getObjectSize(FI);
6195    int BFS = MFI->getObjectSize(BFI);
6196    if (FS != BFS || FS != (int)Bytes) return false;
6197    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6198  }
6199  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6200    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6201    if (V && (V->getSExtValue() == Dist*Bytes))
6202      return true;
6203  }
6204
6205  const GlobalValue *GV1 = NULL;
6206  const GlobalValue *GV2 = NULL;
6207  int64_t Offset1 = 0;
6208  int64_t Offset2 = 0;
6209  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6210  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6211  if (isGA1 && isGA2 && GV1 == GV2)
6212    return Offset1 == (Offset2 + Dist*Bytes);
6213  return false;
6214}
6215
6216
6217/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6218/// it cannot be inferred.
6219unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6220  // If this is a GlobalAddress + cst, return the alignment.
6221  const GlobalValue *GV;
6222  int64_t GVOffset = 0;
6223  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6224    // If GV has specified alignment, then use it. Otherwise, use the preferred
6225    // alignment.
6226    unsigned Align = GV->getAlignment();
6227    if (!Align) {
6228      if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6229        if (GVar->hasInitializer()) {
6230          const TargetData *TD = TLI.getTargetData();
6231          Align = TD->getPreferredAlignment(GVar);
6232        }
6233      }
6234    }
6235    return MinAlign(Align, GVOffset);
6236  }
6237
6238  // If this is a direct reference to a stack slot, use information about the
6239  // stack slot's alignment.
6240  int FrameIdx = 1 << 31;
6241  int64_t FrameOffset = 0;
6242  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6243    FrameIdx = FI->getIndex();
6244  } else if (Ptr.getOpcode() == ISD::ADD &&
6245             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6246             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6247    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6248    FrameOffset = Ptr.getConstantOperandVal(1);
6249  }
6250
6251  if (FrameIdx != (1 << 31)) {
6252    // FIXME: Handle FI+CST.
6253    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6254    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6255                                    FrameOffset);
6256    if (MFI.isFixedObjectIndex(FrameIdx)) {
6257      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6258
6259      // The alignment of the frame index can be determined from its offset from
6260      // the incoming frame position.  If the frame object is at offset 32 and
6261      // the stack is guaranteed to be 16-byte aligned, then we know that the
6262      // object is 16-byte aligned.
6263      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6264      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6265
6266      // Finally, the frame object itself may have a known alignment.  Factor
6267      // the alignment + offset into a new alignment.  For example, if we know
6268      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6269      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6270      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6271      return std::max(Align, FIInfoAlign);
6272    }
6273    return FIInfoAlign;
6274  }
6275
6276  return 0;
6277}
6278
6279void SelectionDAG::dump() const {
6280  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6281
6282  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6283       I != E; ++I) {
6284    const SDNode *N = I;
6285    if (!N->hasOneUse() && N != getRoot().getNode())
6286      DumpNodes(N, 2, this);
6287  }
6288
6289  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6290
6291  dbgs() << "\n\n";
6292}
6293
6294void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6295  print_types(OS, G);
6296  print_details(OS, G);
6297}
6298
6299typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6300static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6301                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6302  if (!once.insert(N))          // If we've been here before, return now.
6303    return;
6304
6305  // Dump the current SDNode, but don't end the line yet.
6306  OS << std::string(indent, ' ');
6307  N->printr(OS, G);
6308
6309  // Having printed this SDNode, walk the children:
6310  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6311    const SDNode *child = N->getOperand(i).getNode();
6312
6313    if (i) OS << ",";
6314    OS << " ";
6315
6316    if (child->getNumOperands() == 0) {
6317      // This child has no grandchildren; print it inline right here.
6318      child->printr(OS, G);
6319      once.insert(child);
6320    } else {         // Just the address. FIXME: also print the child's opcode.
6321      OS << (void*)child;
6322      if (unsigned RN = N->getOperand(i).getResNo())
6323        OS << ":" << RN;
6324    }
6325  }
6326
6327  OS << "\n";
6328
6329  // Dump children that have grandchildren on their own line(s).
6330  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6331    const SDNode *child = N->getOperand(i).getNode();
6332    DumpNodesr(OS, child, indent+2, G, once);
6333  }
6334}
6335
6336void SDNode::dumpr() const {
6337  VisitedSDNodeSet once;
6338  DumpNodesr(dbgs(), this, 0, 0, once);
6339}
6340
6341void SDNode::dumpr(const SelectionDAG *G) const {
6342  VisitedSDNodeSet once;
6343  DumpNodesr(dbgs(), this, 0, G, once);
6344}
6345
6346
6347// getAddressSpace - Return the address space this GlobalAddress belongs to.
6348unsigned GlobalAddressSDNode::getAddressSpace() const {
6349  return getGlobal()->getType()->getAddressSpace();
6350}
6351
6352
6353const Type *ConstantPoolSDNode::getType() const {
6354  if (isMachineConstantPoolEntry())
6355    return Val.MachineCPVal->getType();
6356  return Val.ConstVal->getType();
6357}
6358
6359bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6360                                        APInt &SplatUndef,
6361                                        unsigned &SplatBitSize,
6362                                        bool &HasAnyUndefs,
6363                                        unsigned MinSplatBits,
6364                                        bool isBigEndian) {
6365  EVT VT = getValueType(0);
6366  assert(VT.isVector() && "Expected a vector type");
6367  unsigned sz = VT.getSizeInBits();
6368  if (MinSplatBits > sz)
6369    return false;
6370
6371  SplatValue = APInt(sz, 0);
6372  SplatUndef = APInt(sz, 0);
6373
6374  // Get the bits.  Bits with undefined values (when the corresponding element
6375  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6376  // in SplatValue.  If any of the values are not constant, give up and return
6377  // false.
6378  unsigned int nOps = getNumOperands();
6379  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6380  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6381
6382  for (unsigned j = 0; j < nOps; ++j) {
6383    unsigned i = isBigEndian ? nOps-1-j : j;
6384    SDValue OpVal = getOperand(i);
6385    unsigned BitPos = j * EltBitSize;
6386
6387    if (OpVal.getOpcode() == ISD::UNDEF)
6388      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6389    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6390      SplatValue |= APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6391                    zextOrTrunc(sz) << BitPos;
6392    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6393      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6394     else
6395      return false;
6396  }
6397
6398  // The build_vector is all constants or undefs.  Find the smallest element
6399  // size that splats the vector.
6400
6401  HasAnyUndefs = (SplatUndef != 0);
6402  while (sz > 8) {
6403
6404    unsigned HalfSize = sz / 2;
6405    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6406    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6407    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6408    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6409
6410    // If the two halves do not match (ignoring undef bits), stop here.
6411    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6412        MinSplatBits > HalfSize)
6413      break;
6414
6415    SplatValue = HighValue | LowValue;
6416    SplatUndef = HighUndef & LowUndef;
6417
6418    sz = HalfSize;
6419  }
6420
6421  SplatBitSize = sz;
6422  return true;
6423}
6424
6425bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6426  // Find the first non-undef value in the shuffle mask.
6427  unsigned i, e;
6428  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6429    /* search */;
6430
6431  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6432
6433  // Make sure all remaining elements are either undef or the same as the first
6434  // non-undef value.
6435  for (int Idx = Mask[i]; i != e; ++i)
6436    if (Mask[i] >= 0 && Mask[i] != Idx)
6437      return false;
6438  return true;
6439}
6440
6441#ifdef XDEBUG
6442static void checkForCyclesHelper(const SDNode *N,
6443                                 SmallPtrSet<const SDNode*, 32> &Visited,
6444                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6445  // If this node has already been checked, don't check it again.
6446  if (Checked.count(N))
6447    return;
6448
6449  // If a node has already been visited on this depth-first walk, reject it as
6450  // a cycle.
6451  if (!Visited.insert(N)) {
6452    dbgs() << "Offending node:\n";
6453    N->dumprFull();
6454    errs() << "Detected cycle in SelectionDAG\n";
6455    abort();
6456  }
6457
6458  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6459    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6460
6461  Checked.insert(N);
6462  Visited.erase(N);
6463}
6464#endif
6465
6466void llvm::checkForCycles(const llvm::SDNode *N) {
6467#ifdef XDEBUG
6468  assert(N && "Checking nonexistant SDNode");
6469  SmallPtrSet<const SDNode*, 32> visited;
6470  SmallPtrSet<const SDNode*, 32> checked;
6471  checkForCyclesHelper(N, visited, checked);
6472#endif
6473}
6474
6475void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6476  checkForCycles(DAG->getRoot().getNode());
6477}
6478