SelectionDAG.cpp revision d05b3a1ddbe025ad429a99bc38900635265504a9
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/Support/MathExtras.h"
24#include "llvm/Target/MRegisterInfo.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Target/TargetLowering.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/ADT/SetVector.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/StringExtras.h"
34#include <algorithm>
35#include <cmath>
36using namespace llvm;
37
38/// makeVTList - Return an instance of the SDVTList struct initialized with the
39/// specified members.
40static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
41  SDVTList Res = {VTs, NumVTs};
42  return Res;
43}
44
45//===----------------------------------------------------------------------===//
46//                              ConstantFPSDNode Class
47//===----------------------------------------------------------------------===//
48
49/// isExactlyValue - We don't rely on operator== working on double values, as
50/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
51/// As such, this method can be used to do an exact bit-for-bit comparison of
52/// two floating point values.
53bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
54  return Value.bitwiseIsEqual(V);
55}
56
57bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
58                                           const APFloat& Val) {
59  // convert modifies in place, so make a copy.
60  APFloat Val2 = APFloat(Val);
61  switch (VT) {
62  default:
63    return false;         // These can't be represented as floating point!
64
65  // FIXME rounding mode needs to be more flexible
66  case MVT::f32:
67    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
68           Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==
69              APFloat::opOK;
70  case MVT::f64:
71    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
72           &Val2.getSemantics() == &APFloat::IEEEdouble ||
73           Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==
74             APFloat::opOK;
75  // TODO: Figure out how to test if we can use a shorter type instead!
76  case MVT::f80:
77  case MVT::f128:
78  case MVT::ppcf128:
79    return true;
80  }
81}
82
83//===----------------------------------------------------------------------===//
84//                              ISD Namespace
85//===----------------------------------------------------------------------===//
86
87/// isBuildVectorAllOnes - Return true if the specified node is a
88/// BUILD_VECTOR where all of the elements are ~0 or undef.
89bool ISD::isBuildVectorAllOnes(const SDNode *N) {
90  // Look through a bit convert.
91  if (N->getOpcode() == ISD::BIT_CONVERT)
92    N = N->getOperand(0).Val;
93
94  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
95
96  unsigned i = 0, e = N->getNumOperands();
97
98  // Skip over all of the undef values.
99  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
100    ++i;
101
102  // Do not accept an all-undef vector.
103  if (i == e) return false;
104
105  // Do not accept build_vectors that aren't all constants or which have non-~0
106  // elements.
107  SDOperand NotZero = N->getOperand(i);
108  if (isa<ConstantSDNode>(NotZero)) {
109    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
110      return false;
111  } else if (isa<ConstantFPSDNode>(NotZero)) {
112    MVT::ValueType VT = NotZero.getValueType();
113    if (VT== MVT::f64) {
114      if (((cast<ConstantFPSDNode>(NotZero)->getValueAPF().
115                  convertToAPInt().getZExtValue())) != (uint64_t)-1)
116        return false;
117    } else {
118      if ((uint32_t)cast<ConstantFPSDNode>(NotZero)->
119                      getValueAPF().convertToAPInt().getZExtValue() !=
120          (uint32_t)-1)
121        return false;
122    }
123  } else
124    return false;
125
126  // Okay, we have at least one ~0 value, check to see if the rest match or are
127  // undefs.
128  for (++i; i != e; ++i)
129    if (N->getOperand(i) != NotZero &&
130        N->getOperand(i).getOpcode() != ISD::UNDEF)
131      return false;
132  return true;
133}
134
135
136/// isBuildVectorAllZeros - Return true if the specified node is a
137/// BUILD_VECTOR where all of the elements are 0 or undef.
138bool ISD::isBuildVectorAllZeros(const SDNode *N) {
139  // Look through a bit convert.
140  if (N->getOpcode() == ISD::BIT_CONVERT)
141    N = N->getOperand(0).Val;
142
143  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
144
145  unsigned i = 0, e = N->getNumOperands();
146
147  // Skip over all of the undef values.
148  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
149    ++i;
150
151  // Do not accept an all-undef vector.
152  if (i == e) return false;
153
154  // Do not accept build_vectors that aren't all constants or which have non-~0
155  // elements.
156  SDOperand Zero = N->getOperand(i);
157  if (isa<ConstantSDNode>(Zero)) {
158    if (!cast<ConstantSDNode>(Zero)->isNullValue())
159      return false;
160  } else if (isa<ConstantFPSDNode>(Zero)) {
161    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
162      return false;
163  } else
164    return false;
165
166  // Okay, we have at least one ~0 value, check to see if the rest match or are
167  // undefs.
168  for (++i; i != e; ++i)
169    if (N->getOperand(i) != Zero &&
170        N->getOperand(i).getOpcode() != ISD::UNDEF)
171      return false;
172  return true;
173}
174
175/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
176/// when given the operation for (X op Y).
177ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
178  // To perform this operation, we just need to swap the L and G bits of the
179  // operation.
180  unsigned OldL = (Operation >> 2) & 1;
181  unsigned OldG = (Operation >> 1) & 1;
182  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
183                       (OldL << 1) |       // New G bit
184                       (OldG << 2));        // New L bit.
185}
186
187/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
188/// 'op' is a valid SetCC operation.
189ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
190  unsigned Operation = Op;
191  if (isInteger)
192    Operation ^= 7;   // Flip L, G, E bits, but not U.
193  else
194    Operation ^= 15;  // Flip all of the condition bits.
195  if (Operation > ISD::SETTRUE2)
196    Operation &= ~8;     // Don't let N and U bits get set.
197  return ISD::CondCode(Operation);
198}
199
200
201/// isSignedOp - For an integer comparison, return 1 if the comparison is a
202/// signed operation and 2 if the result is an unsigned comparison.  Return zero
203/// if the operation does not depend on the sign of the input (setne and seteq).
204static int isSignedOp(ISD::CondCode Opcode) {
205  switch (Opcode) {
206  default: assert(0 && "Illegal integer setcc operation!");
207  case ISD::SETEQ:
208  case ISD::SETNE: return 0;
209  case ISD::SETLT:
210  case ISD::SETLE:
211  case ISD::SETGT:
212  case ISD::SETGE: return 1;
213  case ISD::SETULT:
214  case ISD::SETULE:
215  case ISD::SETUGT:
216  case ISD::SETUGE: return 2;
217  }
218}
219
220/// getSetCCOrOperation - Return the result of a logical OR between different
221/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
222/// returns SETCC_INVALID if it is not possible to represent the resultant
223/// comparison.
224ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
225                                       bool isInteger) {
226  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
227    // Cannot fold a signed integer setcc with an unsigned integer setcc.
228    return ISD::SETCC_INVALID;
229
230  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
231
232  // If the N and U bits get set then the resultant comparison DOES suddenly
233  // care about orderedness, and is true when ordered.
234  if (Op > ISD::SETTRUE2)
235    Op &= ~16;     // Clear the U bit if the N bit is set.
236
237  // Canonicalize illegal integer setcc's.
238  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
239    Op = ISD::SETNE;
240
241  return ISD::CondCode(Op);
242}
243
244/// getSetCCAndOperation - Return the result of a logical AND between different
245/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
246/// function returns zero if it is not possible to represent the resultant
247/// comparison.
248ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
249                                        bool isInteger) {
250  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
251    // Cannot fold a signed setcc with an unsigned setcc.
252    return ISD::SETCC_INVALID;
253
254  // Combine all of the condition bits.
255  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
256
257  // Canonicalize illegal integer setcc's.
258  if (isInteger) {
259    switch (Result) {
260    default: break;
261    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
262    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
263    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
264    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
265    }
266  }
267
268  return Result;
269}
270
271const TargetMachine &SelectionDAG::getTarget() const {
272  return TLI.getTargetMachine();
273}
274
275//===----------------------------------------------------------------------===//
276//                           SDNode Profile Support
277//===----------------------------------------------------------------------===//
278
279/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
280///
281static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
282  ID.AddInteger(OpC);
283}
284
285/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
286/// solely with their pointer.
287void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
288  ID.AddPointer(VTList.VTs);
289}
290
291/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
292///
293static void AddNodeIDOperands(FoldingSetNodeID &ID,
294                              const SDOperand *Ops, unsigned NumOps) {
295  for (; NumOps; --NumOps, ++Ops) {
296    ID.AddPointer(Ops->Val);
297    ID.AddInteger(Ops->ResNo);
298  }
299}
300
301static void AddNodeIDNode(FoldingSetNodeID &ID,
302                          unsigned short OpC, SDVTList VTList,
303                          const SDOperand *OpList, unsigned N) {
304  AddNodeIDOpcode(ID, OpC);
305  AddNodeIDValueTypes(ID, VTList);
306  AddNodeIDOperands(ID, OpList, N);
307}
308
309/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
310/// data.
311static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
312  AddNodeIDOpcode(ID, N->getOpcode());
313  // Add the return value info.
314  AddNodeIDValueTypes(ID, N->getVTList());
315  // Add the operand info.
316  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
317
318  // Handle SDNode leafs with special info.
319  switch (N->getOpcode()) {
320  default: break;  // Normal nodes don't need extra info.
321  case ISD::TargetConstant:
322  case ISD::Constant:
323    ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
324    break;
325  case ISD::TargetConstantFP:
326  case ISD::ConstantFP: {
327    ID.AddAPFloat(cast<ConstantFPSDNode>(N)->getValueAPF());
328    break;
329  }
330  case ISD::TargetGlobalAddress:
331  case ISD::GlobalAddress:
332  case ISD::TargetGlobalTLSAddress:
333  case ISD::GlobalTLSAddress: {
334    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
335    ID.AddPointer(GA->getGlobal());
336    ID.AddInteger(GA->getOffset());
337    break;
338  }
339  case ISD::BasicBlock:
340    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
341    break;
342  case ISD::Register:
343    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
344    break;
345  case ISD::SRCVALUE: {
346    SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
347    ID.AddPointer(SV->getValue());
348    ID.AddInteger(SV->getOffset());
349    break;
350  }
351  case ISD::FrameIndex:
352  case ISD::TargetFrameIndex:
353    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
354    break;
355  case ISD::JumpTable:
356  case ISD::TargetJumpTable:
357    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
358    break;
359  case ISD::ConstantPool:
360  case ISD::TargetConstantPool: {
361    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
362    ID.AddInteger(CP->getAlignment());
363    ID.AddInteger(CP->getOffset());
364    if (CP->isMachineConstantPoolEntry())
365      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
366    else
367      ID.AddPointer(CP->getConstVal());
368    break;
369  }
370  case ISD::LOAD: {
371    LoadSDNode *LD = cast<LoadSDNode>(N);
372    ID.AddInteger(LD->getAddressingMode());
373    ID.AddInteger(LD->getExtensionType());
374    ID.AddInteger((unsigned int)(LD->getLoadedVT()));
375    ID.AddInteger(LD->getAlignment());
376    ID.AddInteger(LD->isVolatile());
377    break;
378  }
379  case ISD::STORE: {
380    StoreSDNode *ST = cast<StoreSDNode>(N);
381    ID.AddInteger(ST->getAddressingMode());
382    ID.AddInteger(ST->isTruncatingStore());
383    ID.AddInteger((unsigned int)(ST->getStoredVT()));
384    ID.AddInteger(ST->getAlignment());
385    ID.AddInteger(ST->isVolatile());
386    break;
387  }
388  }
389}
390
391//===----------------------------------------------------------------------===//
392//                              SelectionDAG Class
393//===----------------------------------------------------------------------===//
394
395/// RemoveDeadNodes - This method deletes all unreachable nodes in the
396/// SelectionDAG.
397void SelectionDAG::RemoveDeadNodes() {
398  // Create a dummy node (which is not added to allnodes), that adds a reference
399  // to the root node, preventing it from being deleted.
400  HandleSDNode Dummy(getRoot());
401
402  SmallVector<SDNode*, 128> DeadNodes;
403
404  // Add all obviously-dead nodes to the DeadNodes worklist.
405  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
406    if (I->use_empty())
407      DeadNodes.push_back(I);
408
409  // Process the worklist, deleting the nodes and adding their uses to the
410  // worklist.
411  while (!DeadNodes.empty()) {
412    SDNode *N = DeadNodes.back();
413    DeadNodes.pop_back();
414
415    // Take the node out of the appropriate CSE map.
416    RemoveNodeFromCSEMaps(N);
417
418    // Next, brutally remove the operand list.  This is safe to do, as there are
419    // no cycles in the graph.
420    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
421      SDNode *Operand = I->Val;
422      Operand->removeUser(N);
423
424      // Now that we removed this operand, see if there are no uses of it left.
425      if (Operand->use_empty())
426        DeadNodes.push_back(Operand);
427    }
428    if (N->OperandsNeedDelete)
429      delete[] N->OperandList;
430    N->OperandList = 0;
431    N->NumOperands = 0;
432
433    // Finally, remove N itself.
434    AllNodes.erase(N);
435  }
436
437  // If the root changed (e.g. it was a dead load, update the root).
438  setRoot(Dummy.getValue());
439}
440
441void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
442  SmallVector<SDNode*, 16> DeadNodes;
443  DeadNodes.push_back(N);
444
445  // Process the worklist, deleting the nodes and adding their uses to the
446  // worklist.
447  while (!DeadNodes.empty()) {
448    SDNode *N = DeadNodes.back();
449    DeadNodes.pop_back();
450
451    // Take the node out of the appropriate CSE map.
452    RemoveNodeFromCSEMaps(N);
453
454    // Next, brutally remove the operand list.  This is safe to do, as there are
455    // no cycles in the graph.
456    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
457      SDNode *Operand = I->Val;
458      Operand->removeUser(N);
459
460      // Now that we removed this operand, see if there are no uses of it left.
461      if (Operand->use_empty())
462        DeadNodes.push_back(Operand);
463    }
464    if (N->OperandsNeedDelete)
465      delete[] N->OperandList;
466    N->OperandList = 0;
467    N->NumOperands = 0;
468
469    // Finally, remove N itself.
470    Deleted.push_back(N);
471    AllNodes.erase(N);
472  }
473}
474
475void SelectionDAG::DeleteNode(SDNode *N) {
476  assert(N->use_empty() && "Cannot delete a node that is not dead!");
477
478  // First take this out of the appropriate CSE map.
479  RemoveNodeFromCSEMaps(N);
480
481  // Finally, remove uses due to operands of this node, remove from the
482  // AllNodes list, and delete the node.
483  DeleteNodeNotInCSEMaps(N);
484}
485
486void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
487
488  // Remove it from the AllNodes list.
489  AllNodes.remove(N);
490
491  // Drop all of the operands and decrement used nodes use counts.
492  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
493    I->Val->removeUser(N);
494  if (N->OperandsNeedDelete)
495    delete[] N->OperandList;
496  N->OperandList = 0;
497  N->NumOperands = 0;
498
499  delete N;
500}
501
502/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
503/// correspond to it.  This is useful when we're about to delete or repurpose
504/// the node.  We don't want future request for structurally identical nodes
505/// to return N anymore.
506void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
507  bool Erased = false;
508  switch (N->getOpcode()) {
509  case ISD::HANDLENODE: return;  // noop.
510  case ISD::STRING:
511    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
512    break;
513  case ISD::CONDCODE:
514    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
515           "Cond code doesn't exist!");
516    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
517    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
518    break;
519  case ISD::ExternalSymbol:
520    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
521    break;
522  case ISD::TargetExternalSymbol:
523    Erased =
524      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
525    break;
526  case ISD::VALUETYPE: {
527    MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
528    if (MVT::isExtendedVT(VT)) {
529      Erased = ExtendedValueTypeNodes.erase(VT);
530    } else {
531      Erased = ValueTypeNodes[VT] != 0;
532      ValueTypeNodes[VT] = 0;
533    }
534    break;
535  }
536  default:
537    // Remove it from the CSE Map.
538    Erased = CSEMap.RemoveNode(N);
539    break;
540  }
541#ifndef NDEBUG
542  // Verify that the node was actually in one of the CSE maps, unless it has a
543  // flag result (which cannot be CSE'd) or is one of the special cases that are
544  // not subject to CSE.
545  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
546      !N->isTargetOpcode()) {
547    N->dump(this);
548    cerr << "\n";
549    assert(0 && "Node is not in map!");
550  }
551#endif
552}
553
554/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
555/// has been taken out and modified in some way.  If the specified node already
556/// exists in the CSE maps, do not modify the maps, but return the existing node
557/// instead.  If it doesn't exist, add it and return null.
558///
559SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
560  assert(N->getNumOperands() && "This is a leaf node!");
561  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
562    return 0;    // Never add these nodes.
563
564  // Check that remaining values produced are not flags.
565  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
566    if (N->getValueType(i) == MVT::Flag)
567      return 0;   // Never CSE anything that produces a flag.
568
569  SDNode *New = CSEMap.GetOrInsertNode(N);
570  if (New != N) return New;  // Node already existed.
571  return 0;
572}
573
574/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
575/// were replaced with those specified.  If this node is never memoized,
576/// return null, otherwise return a pointer to the slot it would take.  If a
577/// node already exists with these operands, the slot will be non-null.
578SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
579                                           void *&InsertPos) {
580  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
581    return 0;    // Never add these nodes.
582
583  // Check that remaining values produced are not flags.
584  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
585    if (N->getValueType(i) == MVT::Flag)
586      return 0;   // Never CSE anything that produces a flag.
587
588  SDOperand Ops[] = { Op };
589  FoldingSetNodeID ID;
590  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
591  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
592}
593
594/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
595/// were replaced with those specified.  If this node is never memoized,
596/// return null, otherwise return a pointer to the slot it would take.  If a
597/// node already exists with these operands, the slot will be non-null.
598SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
599                                           SDOperand Op1, SDOperand Op2,
600                                           void *&InsertPos) {
601  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
602    return 0;    // Never add these nodes.
603
604  // Check that remaining values produced are not flags.
605  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
606    if (N->getValueType(i) == MVT::Flag)
607      return 0;   // Never CSE anything that produces a flag.
608
609  SDOperand Ops[] = { Op1, Op2 };
610  FoldingSetNodeID ID;
611  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
612  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
613}
614
615
616/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
617/// were replaced with those specified.  If this node is never memoized,
618/// return null, otherwise return a pointer to the slot it would take.  If a
619/// node already exists with these operands, the slot will be non-null.
620SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
621                                           const SDOperand *Ops,unsigned NumOps,
622                                           void *&InsertPos) {
623  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
624    return 0;    // Never add these nodes.
625
626  // Check that remaining values produced are not flags.
627  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
628    if (N->getValueType(i) == MVT::Flag)
629      return 0;   // Never CSE anything that produces a flag.
630
631  FoldingSetNodeID ID;
632  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
633
634  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
635    ID.AddInteger(LD->getAddressingMode());
636    ID.AddInteger(LD->getExtensionType());
637    ID.AddInteger((unsigned int)(LD->getLoadedVT()));
638    ID.AddInteger(LD->getAlignment());
639    ID.AddInteger(LD->isVolatile());
640  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
641    ID.AddInteger(ST->getAddressingMode());
642    ID.AddInteger(ST->isTruncatingStore());
643    ID.AddInteger((unsigned int)(ST->getStoredVT()));
644    ID.AddInteger(ST->getAlignment());
645    ID.AddInteger(ST->isVolatile());
646  }
647
648  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
649}
650
651
652SelectionDAG::~SelectionDAG() {
653  while (!AllNodes.empty()) {
654    SDNode *N = AllNodes.begin();
655    N->SetNextInBucket(0);
656    if (N->OperandsNeedDelete)
657      delete [] N->OperandList;
658    N->OperandList = 0;
659    N->NumOperands = 0;
660    AllNodes.pop_front();
661  }
662}
663
664SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
665  if (Op.getValueType() == VT) return Op;
666  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
667  return getNode(ISD::AND, Op.getValueType(), Op,
668                 getConstant(Imm, Op.getValueType()));
669}
670
671SDOperand SelectionDAG::getString(const std::string &Val) {
672  StringSDNode *&N = StringNodes[Val];
673  if (!N) {
674    N = new StringSDNode(Val);
675    AllNodes.push_back(N);
676  }
677  return SDOperand(N, 0);
678}
679
680SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
681  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
682
683  MVT::ValueType EltVT =
684    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
685
686  // Mask out any bits that are not valid for this constant.
687  Val &= MVT::getIntVTBitMask(EltVT);
688
689  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
690  FoldingSetNodeID ID;
691  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
692  ID.AddInteger(Val);
693  void *IP = 0;
694  SDNode *N = NULL;
695  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
696    if (!MVT::isVector(VT))
697      return SDOperand(N, 0);
698  if (!N) {
699    N = new ConstantSDNode(isT, Val, EltVT);
700    CSEMap.InsertNode(N, IP);
701    AllNodes.push_back(N);
702  }
703
704  SDOperand Result(N, 0);
705  if (MVT::isVector(VT)) {
706    SmallVector<SDOperand, 8> Ops;
707    Ops.assign(MVT::getVectorNumElements(VT), Result);
708    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
709  }
710  return Result;
711}
712
713SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
714  return getConstant(Val, TLI.getPointerTy(), isTarget);
715}
716
717
718SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
719                                      bool isTarget) {
720  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
721
722  MVT::ValueType EltVT =
723    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
724
725  // Do the map lookup using the actual bit pattern for the floating point
726  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
727  // we don't have issues with SNANs.
728  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
729  FoldingSetNodeID ID;
730  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
731  ID.AddAPFloat(V);
732  void *IP = 0;
733  SDNode *N = NULL;
734  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
735    if (!MVT::isVector(VT))
736      return SDOperand(N, 0);
737  if (!N) {
738    N = new ConstantFPSDNode(isTarget, V, EltVT);
739    CSEMap.InsertNode(N, IP);
740    AllNodes.push_back(N);
741  }
742
743  SDOperand Result(N, 0);
744  if (MVT::isVector(VT)) {
745    SmallVector<SDOperand, 8> Ops;
746    Ops.assign(MVT::getVectorNumElements(VT), Result);
747    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
748  }
749  return Result;
750}
751
752SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
753                                      bool isTarget) {
754  MVT::ValueType EltVT =
755    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
756  if (EltVT==MVT::f32)
757    return getConstantFP(APFloat((float)Val), VT, isTarget);
758  else
759    return getConstantFP(APFloat(Val), VT, isTarget);
760}
761
762SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
763                                         MVT::ValueType VT, int Offset,
764                                         bool isTargetGA) {
765  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
766  unsigned Opc;
767  if (GVar && GVar->isThreadLocal())
768    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
769  else
770    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
771  FoldingSetNodeID ID;
772  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
773  ID.AddPointer(GV);
774  ID.AddInteger(Offset);
775  void *IP = 0;
776  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
777   return SDOperand(E, 0);
778  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
779  CSEMap.InsertNode(N, IP);
780  AllNodes.push_back(N);
781  return SDOperand(N, 0);
782}
783
784SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
785                                      bool isTarget) {
786  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
787  FoldingSetNodeID ID;
788  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
789  ID.AddInteger(FI);
790  void *IP = 0;
791  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
792    return SDOperand(E, 0);
793  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
794  CSEMap.InsertNode(N, IP);
795  AllNodes.push_back(N);
796  return SDOperand(N, 0);
797}
798
799SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
800  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
801  FoldingSetNodeID ID;
802  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
803  ID.AddInteger(JTI);
804  void *IP = 0;
805  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
806    return SDOperand(E, 0);
807  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
808  CSEMap.InsertNode(N, IP);
809  AllNodes.push_back(N);
810  return SDOperand(N, 0);
811}
812
813SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
814                                        unsigned Alignment, int Offset,
815                                        bool isTarget) {
816  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
817  FoldingSetNodeID ID;
818  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
819  ID.AddInteger(Alignment);
820  ID.AddInteger(Offset);
821  ID.AddPointer(C);
822  void *IP = 0;
823  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
824    return SDOperand(E, 0);
825  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
826  CSEMap.InsertNode(N, IP);
827  AllNodes.push_back(N);
828  return SDOperand(N, 0);
829}
830
831
832SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
833                                        MVT::ValueType VT,
834                                        unsigned Alignment, int Offset,
835                                        bool isTarget) {
836  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
837  FoldingSetNodeID ID;
838  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
839  ID.AddInteger(Alignment);
840  ID.AddInteger(Offset);
841  C->AddSelectionDAGCSEId(ID);
842  void *IP = 0;
843  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
844    return SDOperand(E, 0);
845  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
846  CSEMap.InsertNode(N, IP);
847  AllNodes.push_back(N);
848  return SDOperand(N, 0);
849}
850
851
852SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
853  FoldingSetNodeID ID;
854  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
855  ID.AddPointer(MBB);
856  void *IP = 0;
857  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
858    return SDOperand(E, 0);
859  SDNode *N = new BasicBlockSDNode(MBB);
860  CSEMap.InsertNode(N, IP);
861  AllNodes.push_back(N);
862  return SDOperand(N, 0);
863}
864
865SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
866  if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
867    ValueTypeNodes.resize(VT+1);
868
869  SDNode *&N = MVT::isExtendedVT(VT) ?
870    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
871
872  if (N) return SDOperand(N, 0);
873  N = new VTSDNode(VT);
874  AllNodes.push_back(N);
875  return SDOperand(N, 0);
876}
877
878SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
879  SDNode *&N = ExternalSymbols[Sym];
880  if (N) return SDOperand(N, 0);
881  N = new ExternalSymbolSDNode(false, Sym, VT);
882  AllNodes.push_back(N);
883  return SDOperand(N, 0);
884}
885
886SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
887                                                MVT::ValueType VT) {
888  SDNode *&N = TargetExternalSymbols[Sym];
889  if (N) return SDOperand(N, 0);
890  N = new ExternalSymbolSDNode(true, Sym, VT);
891  AllNodes.push_back(N);
892  return SDOperand(N, 0);
893}
894
895SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
896  if ((unsigned)Cond >= CondCodeNodes.size())
897    CondCodeNodes.resize(Cond+1);
898
899  if (CondCodeNodes[Cond] == 0) {
900    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
901    AllNodes.push_back(CondCodeNodes[Cond]);
902  }
903  return SDOperand(CondCodeNodes[Cond], 0);
904}
905
906SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
907  FoldingSetNodeID ID;
908  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
909  ID.AddInteger(RegNo);
910  void *IP = 0;
911  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
912    return SDOperand(E, 0);
913  SDNode *N = new RegisterSDNode(RegNo, VT);
914  CSEMap.InsertNode(N, IP);
915  AllNodes.push_back(N);
916  return SDOperand(N, 0);
917}
918
919SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
920  assert((!V || isa<PointerType>(V->getType())) &&
921         "SrcValue is not a pointer?");
922
923  FoldingSetNodeID ID;
924  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
925  ID.AddPointer(V);
926  ID.AddInteger(Offset);
927  void *IP = 0;
928  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
929    return SDOperand(E, 0);
930  SDNode *N = new SrcValueSDNode(V, Offset);
931  CSEMap.InsertNode(N, IP);
932  AllNodes.push_back(N);
933  return SDOperand(N, 0);
934}
935
936/// CreateStackTemporary - Create a stack temporary, suitable for holding the
937/// specified value type.
938SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
939  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
940  unsigned ByteSize = MVT::getSizeInBits(VT)/8;
941  const Type *Ty = MVT::getTypeForValueType(VT);
942  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
943  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
944  return getFrameIndex(FrameIdx, TLI.getPointerTy());
945}
946
947
948SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
949                                  SDOperand N2, ISD::CondCode Cond) {
950  // These setcc operations always fold.
951  switch (Cond) {
952  default: break;
953  case ISD::SETFALSE:
954  case ISD::SETFALSE2: return getConstant(0, VT);
955  case ISD::SETTRUE:
956  case ISD::SETTRUE2:  return getConstant(1, VT);
957
958  case ISD::SETOEQ:
959  case ISD::SETOGT:
960  case ISD::SETOGE:
961  case ISD::SETOLT:
962  case ISD::SETOLE:
963  case ISD::SETONE:
964  case ISD::SETO:
965  case ISD::SETUO:
966  case ISD::SETUEQ:
967  case ISD::SETUNE:
968    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
969    break;
970  }
971
972  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
973    uint64_t C2 = N2C->getValue();
974    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
975      uint64_t C1 = N1C->getValue();
976
977      // Sign extend the operands if required
978      if (ISD::isSignedIntSetCC(Cond)) {
979        C1 = N1C->getSignExtended();
980        C2 = N2C->getSignExtended();
981      }
982
983      switch (Cond) {
984      default: assert(0 && "Unknown integer setcc!");
985      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
986      case ISD::SETNE:  return getConstant(C1 != C2, VT);
987      case ISD::SETULT: return getConstant(C1 <  C2, VT);
988      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
989      case ISD::SETULE: return getConstant(C1 <= C2, VT);
990      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
991      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
992      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
993      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
994      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
995      }
996    }
997  }
998  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
999    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1000      // No compile time operations on this type yet.
1001      if (N1C->getValueType(0) == MVT::ppcf128)
1002        return SDOperand();
1003
1004      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1005      switch (Cond) {
1006      default: break;
1007      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1008                          return getNode(ISD::UNDEF, VT);
1009                        // fall through
1010      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1011      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1012                          return getNode(ISD::UNDEF, VT);
1013                        // fall through
1014      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1015                                           R==APFloat::cmpLessThan, VT);
1016      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1017                          return getNode(ISD::UNDEF, VT);
1018                        // fall through
1019      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1020      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1021                          return getNode(ISD::UNDEF, VT);
1022                        // fall through
1023      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1024      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1025                          return getNode(ISD::UNDEF, VT);
1026                        // fall through
1027      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1028                                           R==APFloat::cmpEqual, VT);
1029      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1030                          return getNode(ISD::UNDEF, VT);
1031                        // fall through
1032      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1033                                           R==APFloat::cmpEqual, VT);
1034      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1035      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1036      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1037                                           R==APFloat::cmpEqual, VT);
1038      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1039      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1040                                           R==APFloat::cmpLessThan, VT);
1041      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1042                                           R==APFloat::cmpUnordered, VT);
1043      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1044      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1045      }
1046    } else {
1047      // Ensure that the constant occurs on the RHS.
1048      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1049    }
1050
1051  // Could not fold it.
1052  return SDOperand();
1053}
1054
1055/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1056/// this predicate to simplify operations downstream.  Mask is known to be zero
1057/// for bits that V cannot have.
1058bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
1059                                     unsigned Depth) const {
1060  // The masks are not wide enough to represent this type!  Should use APInt.
1061  if (Op.getValueType() == MVT::i128)
1062    return false;
1063
1064  uint64_t KnownZero, KnownOne;
1065  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1066  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1067  return (KnownZero & Mask) == Mask;
1068}
1069
1070/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1071/// known to be either zero or one and return them in the KnownZero/KnownOne
1072/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1073/// processing.
1074void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
1075                                     uint64_t &KnownZero, uint64_t &KnownOne,
1076                                     unsigned Depth) const {
1077  KnownZero = KnownOne = 0;   // Don't know anything.
1078  if (Depth == 6 || Mask == 0)
1079    return;  // Limit search depth.
1080
1081  // The masks are not wide enough to represent this type!  Should use APInt.
1082  if (Op.getValueType() == MVT::i128)
1083    return;
1084
1085  uint64_t KnownZero2, KnownOne2;
1086
1087  switch (Op.getOpcode()) {
1088  case ISD::Constant:
1089    // We know all of the bits for a constant!
1090    KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
1091    KnownZero = ~KnownOne & Mask;
1092    return;
1093  case ISD::AND:
1094    // If either the LHS or the RHS are Zero, the result is zero.
1095    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1096    Mask &= ~KnownZero;
1097    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1098    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1099    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1100
1101    // Output known-1 bits are only known if set in both the LHS & RHS.
1102    KnownOne &= KnownOne2;
1103    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1104    KnownZero |= KnownZero2;
1105    return;
1106  case ISD::OR:
1107    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1108    Mask &= ~KnownOne;
1109    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1110    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1111    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1112
1113    // Output known-0 bits are only known if clear in both the LHS & RHS.
1114    KnownZero &= KnownZero2;
1115    // Output known-1 are known to be set if set in either the LHS | RHS.
1116    KnownOne |= KnownOne2;
1117    return;
1118  case ISD::XOR: {
1119    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1120    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1121    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1122    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1123
1124    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1125    uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1126    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1127    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1128    KnownZero = KnownZeroOut;
1129    return;
1130  }
1131  case ISD::SELECT:
1132    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1133    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1134    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1135    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1136
1137    // Only known if known in both the LHS and RHS.
1138    KnownOne &= KnownOne2;
1139    KnownZero &= KnownZero2;
1140    return;
1141  case ISD::SELECT_CC:
1142    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1143    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1144    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1145    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1146
1147    // Only known if known in both the LHS and RHS.
1148    KnownOne &= KnownOne2;
1149    KnownZero &= KnownZero2;
1150    return;
1151  case ISD::SETCC:
1152    // If we know the result of a setcc has the top bits zero, use this info.
1153    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
1154      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
1155    return;
1156  case ISD::SHL:
1157    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1158    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1159      ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
1160                        KnownZero, KnownOne, Depth+1);
1161      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1162      KnownZero <<= SA->getValue();
1163      KnownOne  <<= SA->getValue();
1164      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
1165    }
1166    return;
1167  case ISD::SRL:
1168    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1169    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1170      MVT::ValueType VT = Op.getValueType();
1171      unsigned ShAmt = SA->getValue();
1172
1173      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1174      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
1175                        KnownZero, KnownOne, Depth+1);
1176      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1177      KnownZero &= TypeMask;
1178      KnownOne  &= TypeMask;
1179      KnownZero >>= ShAmt;
1180      KnownOne  >>= ShAmt;
1181
1182      uint64_t HighBits = (1ULL << ShAmt)-1;
1183      HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
1184      KnownZero |= HighBits;  // High bits known zero.
1185    }
1186    return;
1187  case ISD::SRA:
1188    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1189      MVT::ValueType VT = Op.getValueType();
1190      unsigned ShAmt = SA->getValue();
1191
1192      // Compute the new bits that are at the top now.
1193      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1194
1195      uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
1196      // If any of the demanded bits are produced by the sign extension, we also
1197      // demand the input sign bit.
1198      uint64_t HighBits = (1ULL << ShAmt)-1;
1199      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
1200      if (HighBits & Mask)
1201        InDemandedMask |= MVT::getIntVTSignBit(VT);
1202
1203      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1204                        Depth+1);
1205      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1206      KnownZero &= TypeMask;
1207      KnownOne  &= TypeMask;
1208      KnownZero >>= ShAmt;
1209      KnownOne  >>= ShAmt;
1210
1211      // Handle the sign bits.
1212      uint64_t SignBit = MVT::getIntVTSignBit(VT);
1213      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
1214
1215      if (KnownZero & SignBit) {
1216        KnownZero |= HighBits;  // New bits are known zero.
1217      } else if (KnownOne & SignBit) {
1218        KnownOne  |= HighBits;  // New bits are known one.
1219      }
1220    }
1221    return;
1222  case ISD::SIGN_EXTEND_INREG: {
1223    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1224
1225    // Sign extension.  Compute the demanded bits in the result that are not
1226    // present in the input.
1227    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
1228
1229    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
1230    int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
1231
1232    // If the sign extended bits are demanded, we know that the sign
1233    // bit is demanded.
1234    if (NewBits)
1235      InputDemandedBits |= InSignBit;
1236
1237    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1238                      KnownZero, KnownOne, Depth+1);
1239    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1240
1241    // If the sign bit of the input is known set or clear, then we know the
1242    // top bits of the result.
1243    if (KnownZero & InSignBit) {          // Input sign bit known clear
1244      KnownZero |= NewBits;
1245      KnownOne  &= ~NewBits;
1246    } else if (KnownOne & InSignBit) {    // Input sign bit known set
1247      KnownOne  |= NewBits;
1248      KnownZero &= ~NewBits;
1249    } else {                              // Input sign bit unknown
1250      KnownZero &= ~NewBits;
1251      KnownOne  &= ~NewBits;
1252    }
1253    return;
1254  }
1255  case ISD::CTTZ:
1256  case ISD::CTLZ:
1257  case ISD::CTPOP: {
1258    MVT::ValueType VT = Op.getValueType();
1259    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
1260    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
1261    KnownOne  = 0;
1262    return;
1263  }
1264  case ISD::LOAD: {
1265    if (ISD::isZEXTLoad(Op.Val)) {
1266      LoadSDNode *LD = cast<LoadSDNode>(Op);
1267      MVT::ValueType VT = LD->getLoadedVT();
1268      KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
1269    }
1270    return;
1271  }
1272  case ISD::ZERO_EXTEND: {
1273    uint64_t InMask  = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
1274    uint64_t NewBits = (~InMask) & Mask;
1275    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1276                      KnownOne, Depth+1);
1277    KnownZero |= NewBits & Mask;
1278    KnownOne  &= ~NewBits;
1279    return;
1280  }
1281  case ISD::SIGN_EXTEND: {
1282    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1283    unsigned InBits    = MVT::getSizeInBits(InVT);
1284    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
1285    uint64_t InSignBit = 1ULL << (InBits-1);
1286    uint64_t NewBits   = (~InMask) & Mask;
1287    uint64_t InDemandedBits = Mask & InMask;
1288
1289    // If any of the sign extended bits are demanded, we know that the sign
1290    // bit is demanded.
1291    if (NewBits & Mask)
1292      InDemandedBits |= InSignBit;
1293
1294    ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1295                      KnownOne, Depth+1);
1296    // If the sign bit is known zero or one, the  top bits match.
1297    if (KnownZero & InSignBit) {
1298      KnownZero |= NewBits;
1299      KnownOne  &= ~NewBits;
1300    } else if (KnownOne & InSignBit) {
1301      KnownOne  |= NewBits;
1302      KnownZero &= ~NewBits;
1303    } else {   // Otherwise, top bits aren't known.
1304      KnownOne  &= ~NewBits;
1305      KnownZero &= ~NewBits;
1306    }
1307    return;
1308  }
1309  case ISD::ANY_EXTEND: {
1310    MVT::ValueType VT = Op.getOperand(0).getValueType();
1311    ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
1312                      KnownZero, KnownOne, Depth+1);
1313    return;
1314  }
1315  case ISD::TRUNCATE: {
1316    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1317    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1318    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
1319    KnownZero &= OutMask;
1320    KnownOne &= OutMask;
1321    break;
1322  }
1323  case ISD::AssertZext: {
1324    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1325    uint64_t InMask = MVT::getIntVTBitMask(VT);
1326    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1327                      KnownOne, Depth+1);
1328    KnownZero |= (~InMask) & Mask;
1329    return;
1330  }
1331  case ISD::FGETSIGN:
1332    // All bits are zero except the low bit.
1333    KnownZero = MVT::getIntVTBitMask(Op.getValueType()) ^ 1;
1334    return;
1335
1336  case ISD::ADD: {
1337    // If either the LHS or the RHS are Zero, the result is zero.
1338    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1339    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1340    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1341    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1342
1343    // Output known-0 bits are known if clear or set in both the low clear bits
1344    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1345    // low 3 bits clear.
1346    uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
1347                                     CountTrailingZeros_64(~KnownZero2));
1348
1349    KnownZero = (1ULL << KnownZeroOut) - 1;
1350    KnownOne = 0;
1351    return;
1352  }
1353  case ISD::SUB: {
1354    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1355    if (!CLHS) return;
1356
1357    // We know that the top bits of C-X are clear if X contains less bits
1358    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1359    // positive if we can prove that X is >= 0 and < 16.
1360    MVT::ValueType VT = CLHS->getValueType(0);
1361    if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) {  // sign bit clear
1362      unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
1363      uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
1364      MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
1365      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1366
1367      // If all of the MaskV bits are known to be zero, then we know the output
1368      // top bits are zero, because we now know that the output is from [0-C].
1369      if ((KnownZero & MaskV) == MaskV) {
1370        unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
1371        KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask;  // Top bits known zero.
1372        KnownOne = 0;   // No one bits known.
1373      } else {
1374        KnownZero = KnownOne = 0;  // Otherwise, nothing known.
1375      }
1376    }
1377    return;
1378  }
1379  default:
1380    // Allow the target to implement this method for its nodes.
1381    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1382  case ISD::INTRINSIC_WO_CHAIN:
1383  case ISD::INTRINSIC_W_CHAIN:
1384  case ISD::INTRINSIC_VOID:
1385      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1386    }
1387    return;
1388  }
1389}
1390
1391/// ComputeNumSignBits - Return the number of times the sign bit of the
1392/// register is replicated into the other bits.  We know that at least 1 bit
1393/// is always equal to the sign bit (itself), but other cases can give us
1394/// information.  For example, immediately after an "SRA X, 2", we know that
1395/// the top 3 bits are all equal to each other, so we return 3.
1396unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1397  MVT::ValueType VT = Op.getValueType();
1398  assert(MVT::isInteger(VT) && "Invalid VT!");
1399  unsigned VTBits = MVT::getSizeInBits(VT);
1400  unsigned Tmp, Tmp2;
1401
1402  if (Depth == 6)
1403    return 1;  // Limit search depth.
1404
1405  switch (Op.getOpcode()) {
1406  default: break;
1407  case ISD::AssertSext:
1408    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1409    return VTBits-Tmp+1;
1410  case ISD::AssertZext:
1411    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1412    return VTBits-Tmp;
1413
1414  case ISD::Constant: {
1415    uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1416    // If negative, invert the bits, then look at it.
1417    if (Val & MVT::getIntVTSignBit(VT))
1418      Val = ~Val;
1419
1420    // Shift the bits so they are the leading bits in the int64_t.
1421    Val <<= 64-VTBits;
1422
1423    // Return # leading zeros.  We use 'min' here in case Val was zero before
1424    // shifting.  We don't want to return '64' as for an i32 "0".
1425    return std::min(VTBits, CountLeadingZeros_64(Val));
1426  }
1427
1428  case ISD::SIGN_EXTEND:
1429    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1430    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1431
1432  case ISD::SIGN_EXTEND_INREG:
1433    // Max of the input and what this extends.
1434    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1435    Tmp = VTBits-Tmp+1;
1436
1437    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1438    return std::max(Tmp, Tmp2);
1439
1440  case ISD::SRA:
1441    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1442    // SRA X, C   -> adds C sign bits.
1443    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1444      Tmp += C->getValue();
1445      if (Tmp > VTBits) Tmp = VTBits;
1446    }
1447    return Tmp;
1448  case ISD::SHL:
1449    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1450      // shl destroys sign bits.
1451      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1452      if (C->getValue() >= VTBits ||      // Bad shift.
1453          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1454      return Tmp - C->getValue();
1455    }
1456    break;
1457  case ISD::AND:
1458  case ISD::OR:
1459  case ISD::XOR:    // NOT is handled here.
1460    // Logical binary ops preserve the number of sign bits.
1461    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1462    if (Tmp == 1) return 1;  // Early out.
1463    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1464    return std::min(Tmp, Tmp2);
1465
1466  case ISD::SELECT:
1467    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1468    if (Tmp == 1) return 1;  // Early out.
1469    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1470    return std::min(Tmp, Tmp2);
1471
1472  case ISD::SETCC:
1473    // If setcc returns 0/-1, all bits are sign bits.
1474    if (TLI.getSetCCResultContents() ==
1475        TargetLowering::ZeroOrNegativeOneSetCCResult)
1476      return VTBits;
1477    break;
1478  case ISD::ROTL:
1479  case ISD::ROTR:
1480    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1481      unsigned RotAmt = C->getValue() & (VTBits-1);
1482
1483      // Handle rotate right by N like a rotate left by 32-N.
1484      if (Op.getOpcode() == ISD::ROTR)
1485        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1486
1487      // If we aren't rotating out all of the known-in sign bits, return the
1488      // number that are left.  This handles rotl(sext(x), 1) for example.
1489      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1490      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1491    }
1492    break;
1493  case ISD::ADD:
1494    // Add can have at most one carry bit.  Thus we know that the output
1495    // is, at worst, one more bit than the inputs.
1496    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1497    if (Tmp == 1) return 1;  // Early out.
1498
1499    // Special case decrementing a value (ADD X, -1):
1500    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1501      if (CRHS->isAllOnesValue()) {
1502        uint64_t KnownZero, KnownOne;
1503        uint64_t Mask = MVT::getIntVTBitMask(VT);
1504        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1505
1506        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1507        // sign bits set.
1508        if ((KnownZero|1) == Mask)
1509          return VTBits;
1510
1511        // If we are subtracting one from a positive number, there is no carry
1512        // out of the result.
1513        if (KnownZero & MVT::getIntVTSignBit(VT))
1514          return Tmp;
1515      }
1516
1517    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1518    if (Tmp2 == 1) return 1;
1519      return std::min(Tmp, Tmp2)-1;
1520    break;
1521
1522  case ISD::SUB:
1523    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1524    if (Tmp2 == 1) return 1;
1525
1526    // Handle NEG.
1527    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1528      if (CLHS->getValue() == 0) {
1529        uint64_t KnownZero, KnownOne;
1530        uint64_t Mask = MVT::getIntVTBitMask(VT);
1531        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1532        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1533        // sign bits set.
1534        if ((KnownZero|1) == Mask)
1535          return VTBits;
1536
1537        // If the input is known to be positive (the sign bit is known clear),
1538        // the output of the NEG has the same number of sign bits as the input.
1539        if (KnownZero & MVT::getIntVTSignBit(VT))
1540          return Tmp2;
1541
1542        // Otherwise, we treat this like a SUB.
1543      }
1544
1545    // Sub can have at most one carry bit.  Thus we know that the output
1546    // is, at worst, one more bit than the inputs.
1547    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1548    if (Tmp == 1) return 1;  // Early out.
1549      return std::min(Tmp, Tmp2)-1;
1550    break;
1551  case ISD::TRUNCATE:
1552    // FIXME: it's tricky to do anything useful for this, but it is an important
1553    // case for targets like X86.
1554    break;
1555  }
1556
1557  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1558  if (Op.getOpcode() == ISD::LOAD) {
1559    LoadSDNode *LD = cast<LoadSDNode>(Op);
1560    unsigned ExtType = LD->getExtensionType();
1561    switch (ExtType) {
1562    default: break;
1563    case ISD::SEXTLOAD:    // '17' bits known
1564      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1565      return VTBits-Tmp+1;
1566    case ISD::ZEXTLOAD:    // '16' bits known
1567      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1568      return VTBits-Tmp;
1569    }
1570  }
1571
1572  // Allow the target to implement this method for its nodes.
1573  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1574      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1575      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1576      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1577    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1578    if (NumBits > 1) return NumBits;
1579  }
1580
1581  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1582  // use this information.
1583  uint64_t KnownZero, KnownOne;
1584  uint64_t Mask = MVT::getIntVTBitMask(VT);
1585  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1586
1587  uint64_t SignBit = MVT::getIntVTSignBit(VT);
1588  if (KnownZero & SignBit) {        // SignBit is 0
1589    Mask = KnownZero;
1590  } else if (KnownOne & SignBit) {  // SignBit is 1;
1591    Mask = KnownOne;
1592  } else {
1593    // Nothing known.
1594    return 1;
1595  }
1596
1597  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1598  // the number of identical bits in the top of the input value.
1599  Mask ^= ~0ULL;
1600  Mask <<= 64-VTBits;
1601  // Return # leading zeros.  We use 'min' here in case Val was zero before
1602  // shifting.  We don't want to return '64' as for an i32 "0".
1603  return std::min(VTBits, CountLeadingZeros_64(Mask));
1604}
1605
1606
1607/// getNode - Gets or creates the specified node.
1608///
1609SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1610  FoldingSetNodeID ID;
1611  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1612  void *IP = 0;
1613  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1614    return SDOperand(E, 0);
1615  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1616  CSEMap.InsertNode(N, IP);
1617
1618  AllNodes.push_back(N);
1619  return SDOperand(N, 0);
1620}
1621
1622SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1623                                SDOperand Operand) {
1624  unsigned Tmp1;
1625  // Constant fold unary operations with an integer constant operand.
1626  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1627    uint64_t Val = C->getValue();
1628    switch (Opcode) {
1629    default: break;
1630    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1631    case ISD::ANY_EXTEND:
1632    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1633    case ISD::TRUNCATE:    return getConstant(Val, VT);
1634    case ISD::UINT_TO_FP:
1635    case ISD::SINT_TO_FP: {
1636      const uint64_t zero[] = {0, 0};
1637      // No compile time operations on this type.
1638      if (VT==MVT::ppcf128)
1639        break;
1640      APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero));
1641      (void)apf.convertFromZeroExtendedInteger(&Val,
1642                               MVT::getSizeInBits(Operand.getValueType()),
1643                               Opcode==ISD::SINT_TO_FP,
1644                               APFloat::rmNearestTiesToEven);
1645      return getConstantFP(apf, VT);
1646    }
1647    case ISD::BIT_CONVERT:
1648      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1649        return getConstantFP(BitsToFloat(Val), VT);
1650      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1651        return getConstantFP(BitsToDouble(Val), VT);
1652      break;
1653    case ISD::BSWAP:
1654      switch(VT) {
1655      default: assert(0 && "Invalid bswap!"); break;
1656      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1657      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1658      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1659      }
1660      break;
1661    case ISD::CTPOP:
1662      switch(VT) {
1663      default: assert(0 && "Invalid ctpop!"); break;
1664      case MVT::i1: return getConstant(Val != 0, VT);
1665      case MVT::i8:
1666        Tmp1 = (unsigned)Val & 0xFF;
1667        return getConstant(CountPopulation_32(Tmp1), VT);
1668      case MVT::i16:
1669        Tmp1 = (unsigned)Val & 0xFFFF;
1670        return getConstant(CountPopulation_32(Tmp1), VT);
1671      case MVT::i32:
1672        return getConstant(CountPopulation_32((unsigned)Val), VT);
1673      case MVT::i64:
1674        return getConstant(CountPopulation_64(Val), VT);
1675      }
1676    case ISD::CTLZ:
1677      switch(VT) {
1678      default: assert(0 && "Invalid ctlz!"); break;
1679      case MVT::i1: return getConstant(Val == 0, VT);
1680      case MVT::i8:
1681        Tmp1 = (unsigned)Val & 0xFF;
1682        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1683      case MVT::i16:
1684        Tmp1 = (unsigned)Val & 0xFFFF;
1685        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1686      case MVT::i32:
1687        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1688      case MVT::i64:
1689        return getConstant(CountLeadingZeros_64(Val), VT);
1690      }
1691    case ISD::CTTZ:
1692      switch(VT) {
1693      default: assert(0 && "Invalid cttz!"); break;
1694      case MVT::i1: return getConstant(Val == 0, VT);
1695      case MVT::i8:
1696        Tmp1 = (unsigned)Val | 0x100;
1697        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1698      case MVT::i16:
1699        Tmp1 = (unsigned)Val | 0x10000;
1700        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1701      case MVT::i32:
1702        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1703      case MVT::i64:
1704        return getConstant(CountTrailingZeros_64(Val), VT);
1705      }
1706    }
1707  }
1708
1709  // Constant fold unary operations with a floating point constant operand.
1710  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1711    APFloat V = C->getValueAPF();    // make copy
1712    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
1713      switch (Opcode) {
1714      case ISD::FNEG:
1715        V.changeSign();
1716        return getConstantFP(V, VT);
1717      case ISD::FABS:
1718        V.clearSign();
1719        return getConstantFP(V, VT);
1720      case ISD::FP_ROUND:
1721      case ISD::FP_EXTEND:
1722        // This can return overflow, underflow, or inexact; we don't care.
1723        // FIXME need to be more flexible about rounding mode.
1724        (void) V.convert(VT==MVT::f32 ? APFloat::IEEEsingle :
1725                         VT==MVT::f64 ? APFloat::IEEEdouble :
1726                         VT==MVT::f80 ? APFloat::x87DoubleExtended :
1727                         VT==MVT::f128 ? APFloat::IEEEquad :
1728                         APFloat::Bogus,
1729                         APFloat::rmNearestTiesToEven);
1730        return getConstantFP(V, VT);
1731      case ISD::FP_TO_SINT:
1732      case ISD::FP_TO_UINT: {
1733        integerPart x;
1734        assert(integerPartWidth >= 64);
1735        // FIXME need to be more flexible about rounding mode.
1736        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1737                              Opcode==ISD::FP_TO_SINT,
1738                              APFloat::rmTowardZero);
1739        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1740          break;
1741        return getConstant(x, VT);
1742      }
1743      case ISD::BIT_CONVERT:
1744        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1745          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1746        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1747          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1748        break;
1749      }
1750    }
1751  }
1752
1753  unsigned OpOpcode = Operand.Val->getOpcode();
1754  switch (Opcode) {
1755  case ISD::TokenFactor:
1756    return Operand;         // Factor of one node?  No factor.
1757  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
1758  case ISD::FP_EXTEND:
1759    assert(MVT::isFloatingPoint(VT) &&
1760           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1761    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
1762    break;
1763    case ISD::SIGN_EXTEND:
1764    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1765           "Invalid SIGN_EXTEND!");
1766    if (Operand.getValueType() == VT) return Operand;   // noop extension
1767    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1768           && "Invalid sext node, dst < src!");
1769    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1770      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1771    break;
1772  case ISD::ZERO_EXTEND:
1773    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1774           "Invalid ZERO_EXTEND!");
1775    if (Operand.getValueType() == VT) return Operand;   // noop extension
1776    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1777           && "Invalid zext node, dst < src!");
1778    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1779      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1780    break;
1781  case ISD::ANY_EXTEND:
1782    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1783           "Invalid ANY_EXTEND!");
1784    if (Operand.getValueType() == VT) return Operand;   // noop extension
1785    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1786           && "Invalid anyext node, dst < src!");
1787    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1788      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1789      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1790    break;
1791  case ISD::TRUNCATE:
1792    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1793           "Invalid TRUNCATE!");
1794    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1795    assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
1796           && "Invalid truncate node, src < dst!");
1797    if (OpOpcode == ISD::TRUNCATE)
1798      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1799    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1800             OpOpcode == ISD::ANY_EXTEND) {
1801      // If the source is smaller than the dest, we still need an extend.
1802      if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1803          < MVT::getSizeInBits(VT))
1804        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1805      else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1806               > MVT::getSizeInBits(VT))
1807        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1808      else
1809        return Operand.Val->getOperand(0);
1810    }
1811    break;
1812  case ISD::BIT_CONVERT:
1813    // Basic sanity checking.
1814    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1815           && "Cannot BIT_CONVERT between types of different sizes!");
1816    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1817    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1818      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1819    if (OpOpcode == ISD::UNDEF)
1820      return getNode(ISD::UNDEF, VT);
1821    break;
1822  case ISD::SCALAR_TO_VECTOR:
1823    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1824           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1825           "Illegal SCALAR_TO_VECTOR node!");
1826    break;
1827  case ISD::FNEG:
1828    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1829      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1830                     Operand.Val->getOperand(0));
1831    if (OpOpcode == ISD::FNEG)  // --X -> X
1832      return Operand.Val->getOperand(0);
1833    break;
1834  case ISD::FABS:
1835    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1836      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1837    break;
1838  }
1839
1840  SDNode *N;
1841  SDVTList VTs = getVTList(VT);
1842  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1843    FoldingSetNodeID ID;
1844    SDOperand Ops[1] = { Operand };
1845    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1846    void *IP = 0;
1847    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1848      return SDOperand(E, 0);
1849    N = new UnarySDNode(Opcode, VTs, Operand);
1850    CSEMap.InsertNode(N, IP);
1851  } else {
1852    N = new UnarySDNode(Opcode, VTs, Operand);
1853  }
1854  AllNodes.push_back(N);
1855  return SDOperand(N, 0);
1856}
1857
1858
1859
1860SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1861                                SDOperand N1, SDOperand N2) {
1862#ifndef NDEBUG
1863  switch (Opcode) {
1864  case ISD::TokenFactor:
1865    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1866           N2.getValueType() == MVT::Other && "Invalid token factor!");
1867    break;
1868  case ISD::AND:
1869  case ISD::OR:
1870  case ISD::XOR:
1871  case ISD::UDIV:
1872  case ISD::UREM:
1873  case ISD::MULHU:
1874  case ISD::MULHS:
1875    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1876    // fall through
1877  case ISD::ADD:
1878  case ISD::SUB:
1879  case ISD::MUL:
1880  case ISD::SDIV:
1881  case ISD::SREM:
1882    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1883    // fall through.
1884  case ISD::FADD:
1885  case ISD::FSUB:
1886  case ISD::FMUL:
1887  case ISD::FDIV:
1888  case ISD::FREM:
1889    assert(N1.getValueType() == N2.getValueType() &&
1890           N1.getValueType() == VT && "Binary operator types must match!");
1891    break;
1892  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1893    assert(N1.getValueType() == VT &&
1894           MVT::isFloatingPoint(N1.getValueType()) &&
1895           MVT::isFloatingPoint(N2.getValueType()) &&
1896           "Invalid FCOPYSIGN!");
1897    break;
1898  case ISD::SHL:
1899  case ISD::SRA:
1900  case ISD::SRL:
1901  case ISD::ROTL:
1902  case ISD::ROTR:
1903    assert(VT == N1.getValueType() &&
1904           "Shift operators return type must be the same as their first arg");
1905    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1906           VT != MVT::i1 && "Shifts only work on integers");
1907    break;
1908  case ISD::FP_ROUND_INREG: {
1909    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1910    assert(VT == N1.getValueType() && "Not an inreg round!");
1911    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1912           "Cannot FP_ROUND_INREG integer types");
1913    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
1914           "Not rounding down!");
1915    break;
1916  }
1917  case ISD::FP_ROUND:
1918    assert(MVT::isFloatingPoint(VT) &&
1919           MVT::isFloatingPoint(N1.getValueType()) &&
1920           MVT::getSizeInBits(VT) <= MVT::getSizeInBits(N1.getValueType()) &&
1921           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
1922    break;
1923  case ISD::AssertSext:
1924  case ISD::AssertZext:
1925  case ISD::SIGN_EXTEND_INREG: {
1926    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1927    assert(VT == N1.getValueType() && "Not an inreg extend!");
1928    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1929           "Cannot *_EXTEND_INREG FP types");
1930    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
1931           "Not extending!");
1932  }
1933
1934  default: break;
1935  }
1936#endif
1937
1938  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1939  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1940  if (N1C) {
1941    if (Opcode == ISD::SIGN_EXTEND_INREG) {
1942      int64_t Val = N1C->getValue();
1943      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1944      Val <<= 64-FromBits;
1945      Val >>= 64-FromBits;
1946      return getConstant(Val, VT);
1947    }
1948
1949    if (N2C) {
1950      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1951      switch (Opcode) {
1952      case ISD::ADD: return getConstant(C1 + C2, VT);
1953      case ISD::SUB: return getConstant(C1 - C2, VT);
1954      case ISD::MUL: return getConstant(C1 * C2, VT);
1955      case ISD::UDIV:
1956        if (C2) return getConstant(C1 / C2, VT);
1957        break;
1958      case ISD::UREM :
1959        if (C2) return getConstant(C1 % C2, VT);
1960        break;
1961      case ISD::SDIV :
1962        if (C2) return getConstant(N1C->getSignExtended() /
1963                                   N2C->getSignExtended(), VT);
1964        break;
1965      case ISD::SREM :
1966        if (C2) return getConstant(N1C->getSignExtended() %
1967                                   N2C->getSignExtended(), VT);
1968        break;
1969      case ISD::AND  : return getConstant(C1 & C2, VT);
1970      case ISD::OR   : return getConstant(C1 | C2, VT);
1971      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1972      case ISD::SHL  : return getConstant(C1 << C2, VT);
1973      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1974      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1975      case ISD::ROTL :
1976        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1977                           VT);
1978      case ISD::ROTR :
1979        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1980                           VT);
1981      default: break;
1982      }
1983    } else {      // Cannonicalize constant to RHS if commutative
1984      if (isCommutativeBinOp(Opcode)) {
1985        std::swap(N1C, N2C);
1986        std::swap(N1, N2);
1987      }
1988    }
1989  }
1990
1991  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1992  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1993  if (N1CFP) {
1994    if (N2CFP && VT!=MVT::ppcf128) {
1995      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
1996      APFloat::opStatus s;
1997      switch (Opcode) {
1998      case ISD::FADD:
1999        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2000        if (s!=APFloat::opInvalidOp)
2001          return getConstantFP(V1, VT);
2002        break;
2003      case ISD::FSUB:
2004        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2005        if (s!=APFloat::opInvalidOp)
2006          return getConstantFP(V1, VT);
2007        break;
2008      case ISD::FMUL:
2009        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2010        if (s!=APFloat::opInvalidOp)
2011          return getConstantFP(V1, VT);
2012        break;
2013      case ISD::FDIV:
2014        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2015        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2016          return getConstantFP(V1, VT);
2017        break;
2018      case ISD::FREM :
2019        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2020        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2021          return getConstantFP(V1, VT);
2022        break;
2023      case ISD::FCOPYSIGN:
2024        V1.copySign(V2);
2025        return getConstantFP(V1, VT);
2026      default: break;
2027      }
2028    } else {      // Cannonicalize constant to RHS if commutative
2029      if (isCommutativeBinOp(Opcode)) {
2030        std::swap(N1CFP, N2CFP);
2031        std::swap(N1, N2);
2032      }
2033    }
2034  }
2035
2036  // Canonicalize an UNDEF to the RHS, even over a constant.
2037  if (N1.getOpcode() == ISD::UNDEF) {
2038    if (isCommutativeBinOp(Opcode)) {
2039      std::swap(N1, N2);
2040    } else {
2041      switch (Opcode) {
2042      case ISD::FP_ROUND_INREG:
2043      case ISD::SIGN_EXTEND_INREG:
2044      case ISD::SUB:
2045      case ISD::FSUB:
2046      case ISD::FDIV:
2047      case ISD::FREM:
2048      case ISD::SRA:
2049        return N1;     // fold op(undef, arg2) -> undef
2050      case ISD::UDIV:
2051      case ISD::SDIV:
2052      case ISD::UREM:
2053      case ISD::SREM:
2054      case ISD::SRL:
2055      case ISD::SHL:
2056        if (!MVT::isVector(VT))
2057          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2058        // For vectors, we can't easily build an all zero vector, just return
2059        // the LHS.
2060        return N2;
2061      }
2062    }
2063  }
2064
2065  // Fold a bunch of operators when the RHS is undef.
2066  if (N2.getOpcode() == ISD::UNDEF) {
2067    switch (Opcode) {
2068    case ISD::ADD:
2069    case ISD::ADDC:
2070    case ISD::ADDE:
2071    case ISD::SUB:
2072    case ISD::FADD:
2073    case ISD::FSUB:
2074    case ISD::FMUL:
2075    case ISD::FDIV:
2076    case ISD::FREM:
2077    case ISD::UDIV:
2078    case ISD::SDIV:
2079    case ISD::UREM:
2080    case ISD::SREM:
2081    case ISD::XOR:
2082      return N2;       // fold op(arg1, undef) -> undef
2083    case ISD::MUL:
2084    case ISD::AND:
2085    case ISD::SRL:
2086    case ISD::SHL:
2087      if (!MVT::isVector(VT))
2088        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2089      // For vectors, we can't easily build an all zero vector, just return
2090      // the LHS.
2091      return N1;
2092    case ISD::OR:
2093      if (!MVT::isVector(VT))
2094        return getConstant(MVT::getIntVTBitMask(VT), VT);
2095      // For vectors, we can't easily build an all one vector, just return
2096      // the LHS.
2097      return N1;
2098    case ISD::SRA:
2099      return N1;
2100    }
2101  }
2102
2103  // Fold operations.
2104  switch (Opcode) {
2105  case ISD::TokenFactor:
2106    // Fold trivial token factors.
2107    if (N1.getOpcode() == ISD::EntryToken) return N2;
2108    if (N2.getOpcode() == ISD::EntryToken) return N1;
2109    break;
2110
2111  case ISD::AND:
2112    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2113    // worth handling here.
2114    if (N2C && N2C->getValue() == 0)
2115      return N2;
2116    break;
2117  case ISD::OR:
2118  case ISD::XOR:
2119    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
2120    // worth handling here.
2121    if (N2C && N2C->getValue() == 0)
2122      return N1;
2123    break;
2124  case ISD::FP_ROUND:
2125    if (N1.getValueType() == VT) return N1;  // noop conversion.
2126    break;
2127  case ISD::FP_ROUND_INREG:
2128    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2129    break;
2130  case ISD::SIGN_EXTEND_INREG: {
2131    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2132    if (EVT == VT) return N1;  // Not actually extending
2133    break;
2134  }
2135  case ISD::EXTRACT_VECTOR_ELT:
2136    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2137
2138    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2139    // expanding copies of large vectors from registers.
2140    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2141        N1.getNumOperands() > 0) {
2142      unsigned Factor =
2143        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2144      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2145                     N1.getOperand(N2C->getValue() / Factor),
2146                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2147    }
2148
2149    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2150    // expanding large vector constants.
2151    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2152      return N1.getOperand(N2C->getValue());
2153
2154    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2155    // operations are lowered to scalars.
2156    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2157      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2158        if (IEC == N2C)
2159          return N1.getOperand(1);
2160        else
2161          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2162      }
2163    break;
2164  case ISD::EXTRACT_ELEMENT:
2165    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2166
2167    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2168    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2169    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2170    if (N1.getOpcode() == ISD::BUILD_PAIR)
2171      return N1.getOperand(N2C->getValue());
2172
2173    // EXTRACT_ELEMENT of a constant int is also very common.
2174    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2175      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2176      return getConstant(C->getValue() >> Shift, VT);
2177    }
2178    break;
2179
2180  // FIXME: figure out how to safely handle things like
2181  // int foo(int x) { return 1 << (x & 255); }
2182  // int bar() { return foo(256); }
2183#if 0
2184  case ISD::SHL:
2185  case ISD::SRL:
2186  case ISD::SRA:
2187    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2188        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
2189      return getNode(Opcode, VT, N1, N2.getOperand(0));
2190    else if (N2.getOpcode() == ISD::AND)
2191      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
2192        // If the and is only masking out bits that cannot effect the shift,
2193        // eliminate the and.
2194        unsigned NumBits = MVT::getSizeInBits(VT);
2195        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2196          return getNode(Opcode, VT, N1, N2.getOperand(0));
2197      }
2198    break;
2199#endif
2200  }
2201
2202  // Memoize this node if possible.
2203  SDNode *N;
2204  SDVTList VTs = getVTList(VT);
2205  if (VT != MVT::Flag) {
2206    SDOperand Ops[] = { N1, N2 };
2207    FoldingSetNodeID ID;
2208    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2209    void *IP = 0;
2210    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2211      return SDOperand(E, 0);
2212    N = new BinarySDNode(Opcode, VTs, N1, N2);
2213    CSEMap.InsertNode(N, IP);
2214  } else {
2215    N = new BinarySDNode(Opcode, VTs, N1, N2);
2216  }
2217
2218  AllNodes.push_back(N);
2219  return SDOperand(N, 0);
2220}
2221
2222SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2223                                SDOperand N1, SDOperand N2, SDOperand N3) {
2224  // Perform various simplifications.
2225  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2226  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2227  switch (Opcode) {
2228  case ISD::SETCC: {
2229    // Use FoldSetCC to simplify SETCC's.
2230    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2231    if (Simp.Val) return Simp;
2232    break;
2233  }
2234  case ISD::SELECT:
2235    if (N1C)
2236      if (N1C->getValue())
2237        return N2;             // select true, X, Y -> X
2238      else
2239        return N3;             // select false, X, Y -> Y
2240
2241    if (N2 == N3) return N2;   // select C, X, X -> X
2242    break;
2243  case ISD::BRCOND:
2244    if (N2C)
2245      if (N2C->getValue()) // Unconditional branch
2246        return getNode(ISD::BR, MVT::Other, N1, N3);
2247      else
2248        return N1;         // Never-taken branch
2249    break;
2250  case ISD::VECTOR_SHUFFLE:
2251    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2252           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2253           N3.getOpcode() == ISD::BUILD_VECTOR &&
2254           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2255           "Illegal VECTOR_SHUFFLE node!");
2256    break;
2257  case ISD::BIT_CONVERT:
2258    // Fold bit_convert nodes from a type to themselves.
2259    if (N1.getValueType() == VT)
2260      return N1;
2261    break;
2262  }
2263
2264  // Memoize node if it doesn't produce a flag.
2265  SDNode *N;
2266  SDVTList VTs = getVTList(VT);
2267  if (VT != MVT::Flag) {
2268    SDOperand Ops[] = { N1, N2, N3 };
2269    FoldingSetNodeID ID;
2270    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2271    void *IP = 0;
2272    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2273      return SDOperand(E, 0);
2274    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2275    CSEMap.InsertNode(N, IP);
2276  } else {
2277    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2278  }
2279  AllNodes.push_back(N);
2280  return SDOperand(N, 0);
2281}
2282
2283SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2284                                SDOperand N1, SDOperand N2, SDOperand N3,
2285                                SDOperand N4) {
2286  SDOperand Ops[] = { N1, N2, N3, N4 };
2287  return getNode(Opcode, VT, Ops, 4);
2288}
2289
2290SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2291                                SDOperand N1, SDOperand N2, SDOperand N3,
2292                                SDOperand N4, SDOperand N5) {
2293  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2294  return getNode(Opcode, VT, Ops, 5);
2295}
2296
2297SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dest,
2298                                  SDOperand Src, SDOperand Size,
2299                                  SDOperand Align,
2300                                  SDOperand AlwaysInline) {
2301  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2302  return getNode(ISD::MEMCPY, MVT::Other, Ops, 6);
2303}
2304
2305SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dest,
2306                                  SDOperand Src, SDOperand Size,
2307                                  SDOperand Align,
2308                                  SDOperand AlwaysInline) {
2309  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2310  return getNode(ISD::MEMMOVE, MVT::Other, Ops, 6);
2311}
2312
2313SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dest,
2314                                  SDOperand Src, SDOperand Size,
2315                                  SDOperand Align,
2316                                  SDOperand AlwaysInline) {
2317  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2318  return getNode(ISD::MEMSET, MVT::Other, Ops, 6);
2319}
2320
2321SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2322                                SDOperand Chain, SDOperand Ptr,
2323                                const Value *SV, int SVOffset,
2324                                bool isVolatile, unsigned Alignment) {
2325  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2326    const Type *Ty = 0;
2327    if (VT != MVT::iPTR) {
2328      Ty = MVT::getTypeForValueType(VT);
2329    } else if (SV) {
2330      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2331      assert(PT && "Value for load must be a pointer");
2332      Ty = PT->getElementType();
2333    }
2334    assert(Ty && "Could not get type information for load");
2335    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2336  }
2337  SDVTList VTs = getVTList(VT, MVT::Other);
2338  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2339  SDOperand Ops[] = { Chain, Ptr, Undef };
2340  FoldingSetNodeID ID;
2341  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2342  ID.AddInteger(ISD::UNINDEXED);
2343  ID.AddInteger(ISD::NON_EXTLOAD);
2344  ID.AddInteger((unsigned int)VT);
2345  ID.AddInteger(Alignment);
2346  ID.AddInteger(isVolatile);
2347  void *IP = 0;
2348  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2349    return SDOperand(E, 0);
2350  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2351                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2352                             isVolatile);
2353  CSEMap.InsertNode(N, IP);
2354  AllNodes.push_back(N);
2355  return SDOperand(N, 0);
2356}
2357
2358SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2359                                   SDOperand Chain, SDOperand Ptr,
2360                                   const Value *SV,
2361                                   int SVOffset, MVT::ValueType EVT,
2362                                   bool isVolatile, unsigned Alignment) {
2363  // If they are asking for an extending load from/to the same thing, return a
2364  // normal load.
2365  if (VT == EVT)
2366    return getLoad(VT, Chain, Ptr, SV, SVOffset, isVolatile, Alignment);
2367
2368  if (MVT::isVector(VT))
2369    assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2370  else
2371    assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
2372           "Should only be an extending load, not truncating!");
2373  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2374         "Cannot sign/zero extend a FP/Vector load!");
2375  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2376         "Cannot convert from FP to Int or Int -> FP!");
2377
2378  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2379    const Type *Ty = 0;
2380    if (VT != MVT::iPTR) {
2381      Ty = MVT::getTypeForValueType(VT);
2382    } else if (SV) {
2383      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2384      assert(PT && "Value for load must be a pointer");
2385      Ty = PT->getElementType();
2386    }
2387    assert(Ty && "Could not get type information for load");
2388    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2389  }
2390  SDVTList VTs = getVTList(VT, MVT::Other);
2391  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2392  SDOperand Ops[] = { Chain, Ptr, Undef };
2393  FoldingSetNodeID ID;
2394  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2395  ID.AddInteger(ISD::UNINDEXED);
2396  ID.AddInteger(ExtType);
2397  ID.AddInteger((unsigned int)EVT);
2398  ID.AddInteger(Alignment);
2399  ID.AddInteger(isVolatile);
2400  void *IP = 0;
2401  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2402    return SDOperand(E, 0);
2403  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2404                             SV, SVOffset, Alignment, isVolatile);
2405  CSEMap.InsertNode(N, IP);
2406  AllNodes.push_back(N);
2407  return SDOperand(N, 0);
2408}
2409
2410SDOperand
2411SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2412                             SDOperand Offset, ISD::MemIndexedMode AM) {
2413  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2414  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2415         "Load is already a indexed load!");
2416  MVT::ValueType VT = OrigLoad.getValueType();
2417  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2418  SDOperand Ops[] = { LD->getChain(), Base, Offset };
2419  FoldingSetNodeID ID;
2420  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2421  ID.AddInteger(AM);
2422  ID.AddInteger(LD->getExtensionType());
2423  ID.AddInteger((unsigned int)(LD->getLoadedVT()));
2424  ID.AddInteger(LD->getAlignment());
2425  ID.AddInteger(LD->isVolatile());
2426  void *IP = 0;
2427  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2428    return SDOperand(E, 0);
2429  SDNode *N = new LoadSDNode(Ops, VTs, AM,
2430                             LD->getExtensionType(), LD->getLoadedVT(),
2431                             LD->getSrcValue(), LD->getSrcValueOffset(),
2432                             LD->getAlignment(), LD->isVolatile());
2433  CSEMap.InsertNode(N, IP);
2434  AllNodes.push_back(N);
2435  return SDOperand(N, 0);
2436}
2437
2438SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2439                                 SDOperand Ptr, const Value *SV, int SVOffset,
2440                                 bool isVolatile, unsigned Alignment) {
2441  MVT::ValueType VT = Val.getValueType();
2442
2443  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2444    const Type *Ty = 0;
2445    if (VT != MVT::iPTR) {
2446      Ty = MVT::getTypeForValueType(VT);
2447    } else if (SV) {
2448      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2449      assert(PT && "Value for store must be a pointer");
2450      Ty = PT->getElementType();
2451    }
2452    assert(Ty && "Could not get type information for store");
2453    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2454  }
2455  SDVTList VTs = getVTList(MVT::Other);
2456  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2457  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2458  FoldingSetNodeID ID;
2459  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2460  ID.AddInteger(ISD::UNINDEXED);
2461  ID.AddInteger(false);
2462  ID.AddInteger((unsigned int)VT);
2463  ID.AddInteger(Alignment);
2464  ID.AddInteger(isVolatile);
2465  void *IP = 0;
2466  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2467    return SDOperand(E, 0);
2468  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2469                              VT, SV, SVOffset, Alignment, isVolatile);
2470  CSEMap.InsertNode(N, IP);
2471  AllNodes.push_back(N);
2472  return SDOperand(N, 0);
2473}
2474
2475SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2476                                      SDOperand Ptr, const Value *SV,
2477                                      int SVOffset, MVT::ValueType SVT,
2478                                      bool isVolatile, unsigned Alignment) {
2479  MVT::ValueType VT = Val.getValueType();
2480
2481  if (VT == SVT)
2482    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
2483
2484  assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
2485         "Not a truncation?");
2486  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2487         "Can't do FP-INT conversion!");
2488
2489  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2490    const Type *Ty = 0;
2491    if (VT != MVT::iPTR) {
2492      Ty = MVT::getTypeForValueType(VT);
2493    } else if (SV) {
2494      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2495      assert(PT && "Value for store must be a pointer");
2496      Ty = PT->getElementType();
2497    }
2498    assert(Ty && "Could not get type information for store");
2499    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2500  }
2501  SDVTList VTs = getVTList(MVT::Other);
2502  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2503  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2504  FoldingSetNodeID ID;
2505  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2506  ID.AddInteger(ISD::UNINDEXED);
2507  ID.AddInteger(1);
2508  ID.AddInteger((unsigned int)SVT);
2509  ID.AddInteger(Alignment);
2510  ID.AddInteger(isVolatile);
2511  void *IP = 0;
2512  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2513    return SDOperand(E, 0);
2514  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
2515                              SVT, SV, SVOffset, Alignment, isVolatile);
2516  CSEMap.InsertNode(N, IP);
2517  AllNodes.push_back(N);
2518  return SDOperand(N, 0);
2519}
2520
2521SDOperand
2522SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2523                              SDOperand Offset, ISD::MemIndexedMode AM) {
2524  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2525  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2526         "Store is already a indexed store!");
2527  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2528  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2529  FoldingSetNodeID ID;
2530  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2531  ID.AddInteger(AM);
2532  ID.AddInteger(ST->isTruncatingStore());
2533  ID.AddInteger((unsigned int)(ST->getStoredVT()));
2534  ID.AddInteger(ST->getAlignment());
2535  ID.AddInteger(ST->isVolatile());
2536  void *IP = 0;
2537  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2538    return SDOperand(E, 0);
2539  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2540                              ST->isTruncatingStore(), ST->getStoredVT(),
2541                              ST->getSrcValue(), ST->getSrcValueOffset(),
2542                              ST->getAlignment(), ST->isVolatile());
2543  CSEMap.InsertNode(N, IP);
2544  AllNodes.push_back(N);
2545  return SDOperand(N, 0);
2546}
2547
2548SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2549                                 SDOperand Chain, SDOperand Ptr,
2550                                 SDOperand SV) {
2551  SDOperand Ops[] = { Chain, Ptr, SV };
2552  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2553}
2554
2555SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2556                                const SDOperand *Ops, unsigned NumOps) {
2557  switch (NumOps) {
2558  case 0: return getNode(Opcode, VT);
2559  case 1: return getNode(Opcode, VT, Ops[0]);
2560  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2561  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2562  default: break;
2563  }
2564
2565  switch (Opcode) {
2566  default: break;
2567  case ISD::SELECT_CC: {
2568    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2569    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2570           "LHS and RHS of condition must have same type!");
2571    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2572           "True and False arms of SelectCC must have same type!");
2573    assert(Ops[2].getValueType() == VT &&
2574           "select_cc node must be of same type as true and false value!");
2575    break;
2576  }
2577  case ISD::BR_CC: {
2578    assert(NumOps == 5 && "BR_CC takes 5 operands!");
2579    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2580           "LHS/RHS of comparison should match types!");
2581    break;
2582  }
2583  }
2584
2585  // Memoize nodes.
2586  SDNode *N;
2587  SDVTList VTs = getVTList(VT);
2588  if (VT != MVT::Flag) {
2589    FoldingSetNodeID ID;
2590    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2591    void *IP = 0;
2592    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2593      return SDOperand(E, 0);
2594    N = new SDNode(Opcode, VTs, Ops, NumOps);
2595    CSEMap.InsertNode(N, IP);
2596  } else {
2597    N = new SDNode(Opcode, VTs, Ops, NumOps);
2598  }
2599  AllNodes.push_back(N);
2600  return SDOperand(N, 0);
2601}
2602
2603SDOperand SelectionDAG::getNode(unsigned Opcode,
2604                                std::vector<MVT::ValueType> &ResultTys,
2605                                const SDOperand *Ops, unsigned NumOps) {
2606  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2607                 Ops, NumOps);
2608}
2609
2610SDOperand SelectionDAG::getNode(unsigned Opcode,
2611                                const MVT::ValueType *VTs, unsigned NumVTs,
2612                                const SDOperand *Ops, unsigned NumOps) {
2613  if (NumVTs == 1)
2614    return getNode(Opcode, VTs[0], Ops, NumOps);
2615  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2616}
2617
2618SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2619                                const SDOperand *Ops, unsigned NumOps) {
2620  if (VTList.NumVTs == 1)
2621    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2622
2623  switch (Opcode) {
2624  // FIXME: figure out how to safely handle things like
2625  // int foo(int x) { return 1 << (x & 255); }
2626  // int bar() { return foo(256); }
2627#if 0
2628  case ISD::SRA_PARTS:
2629  case ISD::SRL_PARTS:
2630  case ISD::SHL_PARTS:
2631    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2632        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2633      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2634    else if (N3.getOpcode() == ISD::AND)
2635      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2636        // If the and is only masking out bits that cannot effect the shift,
2637        // eliminate the and.
2638        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2639        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2640          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2641      }
2642    break;
2643#endif
2644  }
2645
2646  // Memoize the node unless it returns a flag.
2647  SDNode *N;
2648  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2649    FoldingSetNodeID ID;
2650    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2651    void *IP = 0;
2652    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2653      return SDOperand(E, 0);
2654    if (NumOps == 1)
2655      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2656    else if (NumOps == 2)
2657      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2658    else if (NumOps == 3)
2659      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2660    else
2661      N = new SDNode(Opcode, VTList, Ops, NumOps);
2662    CSEMap.InsertNode(N, IP);
2663  } else {
2664    if (NumOps == 1)
2665      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2666    else if (NumOps == 2)
2667      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2668    else if (NumOps == 3)
2669      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2670    else
2671      N = new SDNode(Opcode, VTList, Ops, NumOps);
2672  }
2673  AllNodes.push_back(N);
2674  return SDOperand(N, 0);
2675}
2676
2677SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
2678  return getNode(Opcode, VTList, 0, 0);
2679}
2680
2681SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2682                                SDOperand N1) {
2683  SDOperand Ops[] = { N1 };
2684  return getNode(Opcode, VTList, Ops, 1);
2685}
2686
2687SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2688                                SDOperand N1, SDOperand N2) {
2689  SDOperand Ops[] = { N1, N2 };
2690  return getNode(Opcode, VTList, Ops, 2);
2691}
2692
2693SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2694                                SDOperand N1, SDOperand N2, SDOperand N3) {
2695  SDOperand Ops[] = { N1, N2, N3 };
2696  return getNode(Opcode, VTList, Ops, 3);
2697}
2698
2699SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2700                                SDOperand N1, SDOperand N2, SDOperand N3,
2701                                SDOperand N4) {
2702  SDOperand Ops[] = { N1, N2, N3, N4 };
2703  return getNode(Opcode, VTList, Ops, 4);
2704}
2705
2706SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2707                                SDOperand N1, SDOperand N2, SDOperand N3,
2708                                SDOperand N4, SDOperand N5) {
2709  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2710  return getNode(Opcode, VTList, Ops, 5);
2711}
2712
2713SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2714  return makeVTList(SDNode::getValueTypeList(VT), 1);
2715}
2716
2717SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2718  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2719       E = VTList.end(); I != E; ++I) {
2720    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2721      return makeVTList(&(*I)[0], 2);
2722  }
2723  std::vector<MVT::ValueType> V;
2724  V.push_back(VT1);
2725  V.push_back(VT2);
2726  VTList.push_front(V);
2727  return makeVTList(&(*VTList.begin())[0], 2);
2728}
2729SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2730                                 MVT::ValueType VT3) {
2731  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2732       E = VTList.end(); I != E; ++I) {
2733    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2734        (*I)[2] == VT3)
2735      return makeVTList(&(*I)[0], 3);
2736  }
2737  std::vector<MVT::ValueType> V;
2738  V.push_back(VT1);
2739  V.push_back(VT2);
2740  V.push_back(VT3);
2741  VTList.push_front(V);
2742  return makeVTList(&(*VTList.begin())[0], 3);
2743}
2744
2745SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2746  switch (NumVTs) {
2747    case 0: assert(0 && "Cannot have nodes without results!");
2748    case 1: return getVTList(VTs[0]);
2749    case 2: return getVTList(VTs[0], VTs[1]);
2750    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2751    default: break;
2752  }
2753
2754  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2755       E = VTList.end(); I != E; ++I) {
2756    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2757
2758    bool NoMatch = false;
2759    for (unsigned i = 2; i != NumVTs; ++i)
2760      if (VTs[i] != (*I)[i]) {
2761        NoMatch = true;
2762        break;
2763      }
2764    if (!NoMatch)
2765      return makeVTList(&*I->begin(), NumVTs);
2766  }
2767
2768  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2769  return makeVTList(&*VTList.begin()->begin(), NumVTs);
2770}
2771
2772
2773/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2774/// specified operands.  If the resultant node already exists in the DAG,
2775/// this does not modify the specified node, instead it returns the node that
2776/// already exists.  If the resultant node does not exist in the DAG, the
2777/// input node is returned.  As a degenerate case, if you specify the same
2778/// input operands as the node already has, the input node is returned.
2779SDOperand SelectionDAG::
2780UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2781  SDNode *N = InN.Val;
2782  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2783
2784  // Check to see if there is no change.
2785  if (Op == N->getOperand(0)) return InN;
2786
2787  // See if the modified node already exists.
2788  void *InsertPos = 0;
2789  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2790    return SDOperand(Existing, InN.ResNo);
2791
2792  // Nope it doesn't.  Remove the node from it's current place in the maps.
2793  if (InsertPos)
2794    RemoveNodeFromCSEMaps(N);
2795
2796  // Now we update the operands.
2797  N->OperandList[0].Val->removeUser(N);
2798  Op.Val->addUser(N);
2799  N->OperandList[0] = Op;
2800
2801  // If this gets put into a CSE map, add it.
2802  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2803  return InN;
2804}
2805
2806SDOperand SelectionDAG::
2807UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2808  SDNode *N = InN.Val;
2809  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2810
2811  // Check to see if there is no change.
2812  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2813    return InN;   // No operands changed, just return the input node.
2814
2815  // See if the modified node already exists.
2816  void *InsertPos = 0;
2817  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2818    return SDOperand(Existing, InN.ResNo);
2819
2820  // Nope it doesn't.  Remove the node from it's current place in the maps.
2821  if (InsertPos)
2822    RemoveNodeFromCSEMaps(N);
2823
2824  // Now we update the operands.
2825  if (N->OperandList[0] != Op1) {
2826    N->OperandList[0].Val->removeUser(N);
2827    Op1.Val->addUser(N);
2828    N->OperandList[0] = Op1;
2829  }
2830  if (N->OperandList[1] != Op2) {
2831    N->OperandList[1].Val->removeUser(N);
2832    Op2.Val->addUser(N);
2833    N->OperandList[1] = Op2;
2834  }
2835
2836  // If this gets put into a CSE map, add it.
2837  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2838  return InN;
2839}
2840
2841SDOperand SelectionDAG::
2842UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2843  SDOperand Ops[] = { Op1, Op2, Op3 };
2844  return UpdateNodeOperands(N, Ops, 3);
2845}
2846
2847SDOperand SelectionDAG::
2848UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2849                   SDOperand Op3, SDOperand Op4) {
2850  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2851  return UpdateNodeOperands(N, Ops, 4);
2852}
2853
2854SDOperand SelectionDAG::
2855UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2856                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2857  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2858  return UpdateNodeOperands(N, Ops, 5);
2859}
2860
2861
2862SDOperand SelectionDAG::
2863UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2864  SDNode *N = InN.Val;
2865  assert(N->getNumOperands() == NumOps &&
2866         "Update with wrong number of operands");
2867
2868  // Check to see if there is no change.
2869  bool AnyChange = false;
2870  for (unsigned i = 0; i != NumOps; ++i) {
2871    if (Ops[i] != N->getOperand(i)) {
2872      AnyChange = true;
2873      break;
2874    }
2875  }
2876
2877  // No operands changed, just return the input node.
2878  if (!AnyChange) return InN;
2879
2880  // See if the modified node already exists.
2881  void *InsertPos = 0;
2882  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2883    return SDOperand(Existing, InN.ResNo);
2884
2885  // Nope it doesn't.  Remove the node from it's current place in the maps.
2886  if (InsertPos)
2887    RemoveNodeFromCSEMaps(N);
2888
2889  // Now we update the operands.
2890  for (unsigned i = 0; i != NumOps; ++i) {
2891    if (N->OperandList[i] != Ops[i]) {
2892      N->OperandList[i].Val->removeUser(N);
2893      Ops[i].Val->addUser(N);
2894      N->OperandList[i] = Ops[i];
2895    }
2896  }
2897
2898  // If this gets put into a CSE map, add it.
2899  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2900  return InN;
2901}
2902
2903
2904/// MorphNodeTo - This frees the operands of the current node, resets the
2905/// opcode, types, and operands to the specified value.  This should only be
2906/// used by the SelectionDAG class.
2907void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2908                         const SDOperand *Ops, unsigned NumOps) {
2909  NodeType = Opc;
2910  ValueList = L.VTs;
2911  NumValues = L.NumVTs;
2912
2913  // Clear the operands list, updating used nodes to remove this from their
2914  // use list.
2915  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2916    I->Val->removeUser(this);
2917
2918  // If NumOps is larger than the # of operands we currently have, reallocate
2919  // the operand list.
2920  if (NumOps > NumOperands) {
2921    if (OperandsNeedDelete)
2922      delete [] OperandList;
2923    OperandList = new SDOperand[NumOps];
2924    OperandsNeedDelete = true;
2925  }
2926
2927  // Assign the new operands.
2928  NumOperands = NumOps;
2929
2930  for (unsigned i = 0, e = NumOps; i != e; ++i) {
2931    OperandList[i] = Ops[i];
2932    SDNode *N = OperandList[i].Val;
2933    N->Uses.push_back(this);
2934  }
2935}
2936
2937/// SelectNodeTo - These are used for target selectors to *mutate* the
2938/// specified node to have the specified return type, Target opcode, and
2939/// operands.  Note that target opcodes are stored as
2940/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2941///
2942/// Note that SelectNodeTo returns the resultant node.  If there is already a
2943/// node of the specified opcode and operands, it returns that node instead of
2944/// the current one.
2945SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2946                                   MVT::ValueType VT) {
2947  SDVTList VTs = getVTList(VT);
2948  FoldingSetNodeID ID;
2949  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2950  void *IP = 0;
2951  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2952    return ON;
2953
2954  RemoveNodeFromCSEMaps(N);
2955
2956  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2957
2958  CSEMap.InsertNode(N, IP);
2959  return N;
2960}
2961
2962SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2963                                   MVT::ValueType VT, SDOperand Op1) {
2964  // If an identical node already exists, use it.
2965  SDVTList VTs = getVTList(VT);
2966  SDOperand Ops[] = { Op1 };
2967
2968  FoldingSetNodeID ID;
2969  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2970  void *IP = 0;
2971  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2972    return ON;
2973
2974  RemoveNodeFromCSEMaps(N);
2975  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2976  CSEMap.InsertNode(N, IP);
2977  return N;
2978}
2979
2980SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2981                                   MVT::ValueType VT, SDOperand Op1,
2982                                   SDOperand Op2) {
2983  // If an identical node already exists, use it.
2984  SDVTList VTs = getVTList(VT);
2985  SDOperand Ops[] = { Op1, Op2 };
2986
2987  FoldingSetNodeID ID;
2988  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2989  void *IP = 0;
2990  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2991    return ON;
2992
2993  RemoveNodeFromCSEMaps(N);
2994
2995  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2996
2997  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2998  return N;
2999}
3000
3001SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3002                                   MVT::ValueType VT, SDOperand Op1,
3003                                   SDOperand Op2, SDOperand Op3) {
3004  // If an identical node already exists, use it.
3005  SDVTList VTs = getVTList(VT);
3006  SDOperand Ops[] = { Op1, Op2, Op3 };
3007  FoldingSetNodeID ID;
3008  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3009  void *IP = 0;
3010  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3011    return ON;
3012
3013  RemoveNodeFromCSEMaps(N);
3014
3015  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3016
3017  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3018  return N;
3019}
3020
3021SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3022                                   MVT::ValueType VT, const SDOperand *Ops,
3023                                   unsigned NumOps) {
3024  // If an identical node already exists, use it.
3025  SDVTList VTs = getVTList(VT);
3026  FoldingSetNodeID ID;
3027  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3028  void *IP = 0;
3029  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3030    return ON;
3031
3032  RemoveNodeFromCSEMaps(N);
3033  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3034
3035  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3036  return N;
3037}
3038
3039SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3040                                   MVT::ValueType VT1, MVT::ValueType VT2,
3041                                   SDOperand Op1, SDOperand Op2) {
3042  SDVTList VTs = getVTList(VT1, VT2);
3043  FoldingSetNodeID ID;
3044  SDOperand Ops[] = { Op1, Op2 };
3045  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3046  void *IP = 0;
3047  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3048    return ON;
3049
3050  RemoveNodeFromCSEMaps(N);
3051  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3052  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3053  return N;
3054}
3055
3056SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3057                                   MVT::ValueType VT1, MVT::ValueType VT2,
3058                                   SDOperand Op1, SDOperand Op2,
3059                                   SDOperand Op3) {
3060  // If an identical node already exists, use it.
3061  SDVTList VTs = getVTList(VT1, VT2);
3062  SDOperand Ops[] = { Op1, Op2, Op3 };
3063  FoldingSetNodeID ID;
3064  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3065  void *IP = 0;
3066  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3067    return ON;
3068
3069  RemoveNodeFromCSEMaps(N);
3070
3071  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3072  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3073  return N;
3074}
3075
3076
3077/// getTargetNode - These are used for target selectors to create a new node
3078/// with specified return type(s), target opcode, and operands.
3079///
3080/// Note that getTargetNode returns the resultant node.  If there is already a
3081/// node of the specified opcode and operands, it returns that node instead of
3082/// the current one.
3083SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3084  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3085}
3086SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3087                                    SDOperand Op1) {
3088  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3089}
3090SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3091                                    SDOperand Op1, SDOperand Op2) {
3092  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3093}
3094SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3095                                    SDOperand Op1, SDOperand Op2,
3096                                    SDOperand Op3) {
3097  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3098}
3099SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3100                                    const SDOperand *Ops, unsigned NumOps) {
3101  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3102}
3103SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3104                                    MVT::ValueType VT2) {
3105  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3106  SDOperand Op;
3107  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3108}
3109SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3110                                    MVT::ValueType VT2, SDOperand Op1) {
3111  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3112  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3113}
3114SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3115                                    MVT::ValueType VT2, SDOperand Op1,
3116                                    SDOperand Op2) {
3117  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3118  SDOperand Ops[] = { Op1, Op2 };
3119  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3120}
3121SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3122                                    MVT::ValueType VT2, SDOperand Op1,
3123                                    SDOperand Op2, SDOperand Op3) {
3124  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3125  SDOperand Ops[] = { Op1, Op2, Op3 };
3126  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3127}
3128SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3129                                    MVT::ValueType VT2,
3130                                    const SDOperand *Ops, unsigned NumOps) {
3131  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3132  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3133}
3134SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3135                                    MVT::ValueType VT2, MVT::ValueType VT3,
3136                                    SDOperand Op1, SDOperand Op2) {
3137  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3138  SDOperand Ops[] = { Op1, Op2 };
3139  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3140}
3141SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3142                                    MVT::ValueType VT2, MVT::ValueType VT3,
3143                                    SDOperand Op1, SDOperand Op2,
3144                                    SDOperand Op3) {
3145  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3146  SDOperand Ops[] = { Op1, Op2, Op3 };
3147  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3148}
3149SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3150                                    MVT::ValueType VT2, MVT::ValueType VT3,
3151                                    const SDOperand *Ops, unsigned NumOps) {
3152  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3153  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3154}
3155SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3156                                    MVT::ValueType VT2, MVT::ValueType VT3,
3157                                    MVT::ValueType VT4,
3158                                    const SDOperand *Ops, unsigned NumOps) {
3159  std::vector<MVT::ValueType> VTList;
3160  VTList.push_back(VT1);
3161  VTList.push_back(VT2);
3162  VTList.push_back(VT3);
3163  VTList.push_back(VT4);
3164  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3165  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3166}
3167SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3168                                    std::vector<MVT::ValueType> &ResultTys,
3169                                    const SDOperand *Ops, unsigned NumOps) {
3170  const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3171  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3172                 Ops, NumOps).Val;
3173}
3174
3175/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3176/// This can cause recursive merging of nodes in the DAG.
3177///
3178/// This version assumes From/To have a single result value.
3179///
3180void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
3181                                      std::vector<SDNode*> *Deleted) {
3182  SDNode *From = FromN.Val, *To = ToN.Val;
3183  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
3184         "Cannot replace with this method!");
3185  assert(From != To && "Cannot replace uses of with self");
3186
3187  while (!From->use_empty()) {
3188    // Process users until they are all gone.
3189    SDNode *U = *From->use_begin();
3190
3191    // This node is about to morph, remove its old self from the CSE maps.
3192    RemoveNodeFromCSEMaps(U);
3193
3194    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3195         I != E; ++I)
3196      if (I->Val == From) {
3197        From->removeUser(U);
3198        I->Val = To;
3199        To->addUser(U);
3200      }
3201
3202    // Now that we have modified U, add it back to the CSE maps.  If it already
3203    // exists there, recursively merge the results together.
3204    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3205      ReplaceAllUsesWith(U, Existing, Deleted);
3206      // U is now dead.
3207      if (Deleted) Deleted->push_back(U);
3208      DeleteNodeNotInCSEMaps(U);
3209    }
3210  }
3211}
3212
3213/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3214/// This can cause recursive merging of nodes in the DAG.
3215///
3216/// This version assumes From/To have matching types and numbers of result
3217/// values.
3218///
3219void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3220                                      std::vector<SDNode*> *Deleted) {
3221  assert(From != To && "Cannot replace uses of with self");
3222  assert(From->getNumValues() == To->getNumValues() &&
3223         "Cannot use this version of ReplaceAllUsesWith!");
3224  if (From->getNumValues() == 1) {  // If possible, use the faster version.
3225    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
3226    return;
3227  }
3228
3229  while (!From->use_empty()) {
3230    // Process users until they are all gone.
3231    SDNode *U = *From->use_begin();
3232
3233    // This node is about to morph, remove its old self from the CSE maps.
3234    RemoveNodeFromCSEMaps(U);
3235
3236    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3237         I != E; ++I)
3238      if (I->Val == From) {
3239        From->removeUser(U);
3240        I->Val = To;
3241        To->addUser(U);
3242      }
3243
3244    // Now that we have modified U, add it back to the CSE maps.  If it already
3245    // exists there, recursively merge the results together.
3246    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3247      ReplaceAllUsesWith(U, Existing, Deleted);
3248      // U is now dead.
3249      if (Deleted) Deleted->push_back(U);
3250      DeleteNodeNotInCSEMaps(U);
3251    }
3252  }
3253}
3254
3255/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3256/// This can cause recursive merging of nodes in the DAG.
3257///
3258/// This version can replace From with any result values.  To must match the
3259/// number and types of values returned by From.
3260void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3261                                      const SDOperand *To,
3262                                      std::vector<SDNode*> *Deleted) {
3263  if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
3264    // Degenerate case handled above.
3265    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
3266    return;
3267  }
3268
3269  while (!From->use_empty()) {
3270    // Process users until they are all gone.
3271    SDNode *U = *From->use_begin();
3272
3273    // This node is about to morph, remove its old self from the CSE maps.
3274    RemoveNodeFromCSEMaps(U);
3275
3276    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3277         I != E; ++I)
3278      if (I->Val == From) {
3279        const SDOperand &ToOp = To[I->ResNo];
3280        From->removeUser(U);
3281        *I = ToOp;
3282        ToOp.Val->addUser(U);
3283      }
3284
3285    // Now that we have modified U, add it back to the CSE maps.  If it already
3286    // exists there, recursively merge the results together.
3287    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3288      ReplaceAllUsesWith(U, Existing, Deleted);
3289      // U is now dead.
3290      if (Deleted) Deleted->push_back(U);
3291      DeleteNodeNotInCSEMaps(U);
3292    }
3293  }
3294}
3295
3296/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3297/// uses of other values produced by From.Val alone.  The Deleted vector is
3298/// handled the same was as for ReplaceAllUsesWith.
3299void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3300                                             std::vector<SDNode*> *Deleted) {
3301  assert(From != To && "Cannot replace a value with itself");
3302  // Handle the simple, trivial, case efficiently.
3303  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
3304    ReplaceAllUsesWith(From, To, Deleted);
3305    return;
3306  }
3307
3308  // Get all of the users of From.Val.  We want these in a nice,
3309  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3310  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3311
3312  std::vector<SDNode*> LocalDeletionVector;
3313
3314  // Pick a deletion vector to use.  If the user specified one, use theirs,
3315  // otherwise use a local one.
3316  std::vector<SDNode*> *DeleteVector = Deleted ? Deleted : &LocalDeletionVector;
3317  while (!Users.empty()) {
3318    // We know that this user uses some value of From.  If it is the right
3319    // value, update it.
3320    SDNode *User = Users.back();
3321    Users.pop_back();
3322
3323    // Scan for an operand that matches From.
3324    SDOperand *Op = User->OperandList, *E = User->OperandList+User->NumOperands;
3325    for (; Op != E; ++Op)
3326      if (*Op == From) break;
3327
3328    // If there are no matches, the user must use some other result of From.
3329    if (Op == E) continue;
3330
3331    // Okay, we know this user needs to be updated.  Remove its old self
3332    // from the CSE maps.
3333    RemoveNodeFromCSEMaps(User);
3334
3335    // Update all operands that match "From".
3336    for (; Op != E; ++Op) {
3337      if (*Op == From) {
3338        From.Val->removeUser(User);
3339        *Op = To;
3340        To.Val->addUser(User);
3341      }
3342    }
3343
3344    // Now that we have modified User, add it back to the CSE maps.  If it
3345    // already exists there, recursively merge the results together.
3346    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3347    if (!Existing) continue;  // Continue on to next user.
3348
3349    // If there was already an existing matching node, use ReplaceAllUsesWith
3350    // to replace the dead one with the existing one.  However, this can cause
3351    // recursive merging of other unrelated nodes down the line.  The merging
3352    // can cause deletion of nodes that used the old value.  In this case,
3353    // we have to be certain to remove them from the Users set.
3354    unsigned NumDeleted = DeleteVector->size();
3355    ReplaceAllUsesWith(User, Existing, DeleteVector);
3356
3357    // User is now dead.
3358    DeleteVector->push_back(User);
3359    DeleteNodeNotInCSEMaps(User);
3360
3361    // We have to be careful here, because ReplaceAllUsesWith could have
3362    // deleted a user of From, which means there may be dangling pointers
3363    // in the "Users" setvector.  Scan over the deleted node pointers and
3364    // remove them from the setvector.
3365    for (unsigned i = NumDeleted, e = DeleteVector->size(); i != e; ++i)
3366      Users.remove((*DeleteVector)[i]);
3367
3368    // If the user doesn't need the set of deleted elements, don't retain them
3369    // to the next loop iteration.
3370    if (Deleted == 0)
3371      LocalDeletionVector.clear();
3372  }
3373}
3374
3375
3376/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3377/// their allnodes order. It returns the maximum id.
3378unsigned SelectionDAG::AssignNodeIds() {
3379  unsigned Id = 0;
3380  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3381    SDNode *N = I;
3382    N->setNodeId(Id++);
3383  }
3384  return Id;
3385}
3386
3387/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3388/// based on their topological order. It returns the maximum id and a vector
3389/// of the SDNodes* in assigned order by reference.
3390unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3391  unsigned DAGSize = AllNodes.size();
3392  std::vector<unsigned> InDegree(DAGSize);
3393  std::vector<SDNode*> Sources;
3394
3395  // Use a two pass approach to avoid using a std::map which is slow.
3396  unsigned Id = 0;
3397  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3398    SDNode *N = I;
3399    N->setNodeId(Id++);
3400    unsigned Degree = N->use_size();
3401    InDegree[N->getNodeId()] = Degree;
3402    if (Degree == 0)
3403      Sources.push_back(N);
3404  }
3405
3406  TopOrder.clear();
3407  while (!Sources.empty()) {
3408    SDNode *N = Sources.back();
3409    Sources.pop_back();
3410    TopOrder.push_back(N);
3411    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3412      SDNode *P = I->Val;
3413      unsigned Degree = --InDegree[P->getNodeId()];
3414      if (Degree == 0)
3415        Sources.push_back(P);
3416    }
3417  }
3418
3419  // Second pass, assign the actual topological order as node ids.
3420  Id = 0;
3421  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3422       TI != TE; ++TI)
3423    (*TI)->setNodeId(Id++);
3424
3425  return Id;
3426}
3427
3428
3429
3430//===----------------------------------------------------------------------===//
3431//                              SDNode Class
3432//===----------------------------------------------------------------------===//
3433
3434// Out-of-line virtual method to give class a home.
3435void SDNode::ANCHOR() {}
3436void UnarySDNode::ANCHOR() {}
3437void BinarySDNode::ANCHOR() {}
3438void TernarySDNode::ANCHOR() {}
3439void HandleSDNode::ANCHOR() {}
3440void StringSDNode::ANCHOR() {}
3441void ConstantSDNode::ANCHOR() {}
3442void ConstantFPSDNode::ANCHOR() {}
3443void GlobalAddressSDNode::ANCHOR() {}
3444void FrameIndexSDNode::ANCHOR() {}
3445void JumpTableSDNode::ANCHOR() {}
3446void ConstantPoolSDNode::ANCHOR() {}
3447void BasicBlockSDNode::ANCHOR() {}
3448void SrcValueSDNode::ANCHOR() {}
3449void RegisterSDNode::ANCHOR() {}
3450void ExternalSymbolSDNode::ANCHOR() {}
3451void CondCodeSDNode::ANCHOR() {}
3452void VTSDNode::ANCHOR() {}
3453void LoadSDNode::ANCHOR() {}
3454void StoreSDNode::ANCHOR() {}
3455
3456HandleSDNode::~HandleSDNode() {
3457  SDVTList VTs = { 0, 0 };
3458  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3459}
3460
3461GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3462                                         MVT::ValueType VT, int o)
3463  : SDNode(isa<GlobalVariable>(GA) &&
3464           cast<GlobalVariable>(GA)->isThreadLocal() ?
3465           // Thread Local
3466           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3467           // Non Thread Local
3468           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3469           getSDVTList(VT)), Offset(o) {
3470  TheGlobal = const_cast<GlobalValue*>(GA);
3471}
3472
3473/// Profile - Gather unique data for the node.
3474///
3475void SDNode::Profile(FoldingSetNodeID &ID) {
3476  AddNodeIDNode(ID, this);
3477}
3478
3479/// getValueTypeList - Return a pointer to the specified value type.
3480///
3481MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3482  if (MVT::isExtendedVT(VT)) {
3483    static std::set<MVT::ValueType> EVTs;
3484    return (MVT::ValueType *)&(*EVTs.insert(VT).first);
3485  } else {
3486    static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3487    VTs[VT] = VT;
3488    return &VTs[VT];
3489  }
3490}
3491
3492/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3493/// indicated value.  This method ignores uses of other values defined by this
3494/// operation.
3495bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3496  assert(Value < getNumValues() && "Bad value!");
3497
3498  // If there is only one value, this is easy.
3499  if (getNumValues() == 1)
3500    return use_size() == NUses;
3501  if (use_size() < NUses) return false;
3502
3503  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3504
3505  SmallPtrSet<SDNode*, 32> UsersHandled;
3506
3507  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3508    SDNode *User = *UI;
3509    if (User->getNumOperands() == 1 ||
3510        UsersHandled.insert(User))     // First time we've seen this?
3511      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3512        if (User->getOperand(i) == TheValue) {
3513          if (NUses == 0)
3514            return false;   // too many uses
3515          --NUses;
3516        }
3517  }
3518
3519  // Found exactly the right number of uses?
3520  return NUses == 0;
3521}
3522
3523
3524/// hasAnyUseOfValue - Return true if there are any use of the indicated
3525/// value. This method ignores uses of other values defined by this operation.
3526bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3527  assert(Value < getNumValues() && "Bad value!");
3528
3529  if (use_size() == 0) return false;
3530
3531  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3532
3533  SmallPtrSet<SDNode*, 32> UsersHandled;
3534
3535  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3536    SDNode *User = *UI;
3537    if (User->getNumOperands() == 1 ||
3538        UsersHandled.insert(User))     // First time we've seen this?
3539      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3540        if (User->getOperand(i) == TheValue) {
3541          return true;
3542        }
3543  }
3544
3545  return false;
3546}
3547
3548
3549/// isOnlyUse - Return true if this node is the only use of N.
3550///
3551bool SDNode::isOnlyUse(SDNode *N) const {
3552  bool Seen = false;
3553  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3554    SDNode *User = *I;
3555    if (User == this)
3556      Seen = true;
3557    else
3558      return false;
3559  }
3560
3561  return Seen;
3562}
3563
3564/// isOperand - Return true if this node is an operand of N.
3565///
3566bool SDOperand::isOperand(SDNode *N) const {
3567  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3568    if (*this == N->getOperand(i))
3569      return true;
3570  return false;
3571}
3572
3573bool SDNode::isOperand(SDNode *N) const {
3574  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3575    if (this == N->OperandList[i].Val)
3576      return true;
3577  return false;
3578}
3579
3580/// reachesChainWithoutSideEffects - Return true if this operand (which must
3581/// be a chain) reaches the specified operand without crossing any
3582/// side-effecting instructions.  In practice, this looks through token
3583/// factors and non-volatile loads.  In order to remain efficient, this only
3584/// looks a couple of nodes in, it does not do an exhaustive search.
3585bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
3586                                               unsigned Depth) const {
3587  if (*this == Dest) return true;
3588
3589  // Don't search too deeply, we just want to be able to see through
3590  // TokenFactor's etc.
3591  if (Depth == 0) return false;
3592
3593  // If this is a token factor, all inputs to the TF happen in parallel.  If any
3594  // of the operands of the TF reach dest, then we can do the xform.
3595  if (getOpcode() == ISD::TokenFactor) {
3596    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3597      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
3598        return true;
3599    return false;
3600  }
3601
3602  // Loads don't have side effects, look through them.
3603  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
3604    if (!Ld->isVolatile())
3605      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
3606  }
3607  return false;
3608}
3609
3610
3611static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3612                            SmallPtrSet<SDNode *, 32> &Visited) {
3613  if (found || !Visited.insert(N))
3614    return;
3615
3616  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3617    SDNode *Op = N->getOperand(i).Val;
3618    if (Op == P) {
3619      found = true;
3620      return;
3621    }
3622    findPredecessor(Op, P, found, Visited);
3623  }
3624}
3625
3626/// isPredecessor - Return true if this node is a predecessor of N. This node
3627/// is either an operand of N or it can be reached by recursively traversing
3628/// up the operands.
3629/// NOTE: this is an expensive method. Use it carefully.
3630bool SDNode::isPredecessor(SDNode *N) const {
3631  SmallPtrSet<SDNode *, 32> Visited;
3632  bool found = false;
3633  findPredecessor(N, this, found, Visited);
3634  return found;
3635}
3636
3637uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3638  assert(Num < NumOperands && "Invalid child # of SDNode!");
3639  return cast<ConstantSDNode>(OperandList[Num])->getValue();
3640}
3641
3642std::string SDNode::getOperationName(const SelectionDAG *G) const {
3643  switch (getOpcode()) {
3644  default:
3645    if (getOpcode() < ISD::BUILTIN_OP_END)
3646      return "<<Unknown DAG Node>>";
3647    else {
3648      if (G) {
3649        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3650          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3651            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
3652
3653        TargetLowering &TLI = G->getTargetLoweringInfo();
3654        const char *Name =
3655          TLI.getTargetNodeName(getOpcode());
3656        if (Name) return Name;
3657      }
3658
3659      return "<<Unknown Target Node>>";
3660    }
3661
3662  case ISD::PCMARKER:      return "PCMarker";
3663  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3664  case ISD::SRCVALUE:      return "SrcValue";
3665  case ISD::EntryToken:    return "EntryToken";
3666  case ISD::TokenFactor:   return "TokenFactor";
3667  case ISD::AssertSext:    return "AssertSext";
3668  case ISD::AssertZext:    return "AssertZext";
3669
3670  case ISD::STRING:        return "String";
3671  case ISD::BasicBlock:    return "BasicBlock";
3672  case ISD::VALUETYPE:     return "ValueType";
3673  case ISD::Register:      return "Register";
3674
3675  case ISD::Constant:      return "Constant";
3676  case ISD::ConstantFP:    return "ConstantFP";
3677  case ISD::GlobalAddress: return "GlobalAddress";
3678  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3679  case ISD::FrameIndex:    return "FrameIndex";
3680  case ISD::JumpTable:     return "JumpTable";
3681  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3682  case ISD::RETURNADDR: return "RETURNADDR";
3683  case ISD::FRAMEADDR: return "FRAMEADDR";
3684  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3685  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3686  case ISD::EHSELECTION: return "EHSELECTION";
3687  case ISD::EH_RETURN: return "EH_RETURN";
3688  case ISD::ConstantPool:  return "ConstantPool";
3689  case ISD::ExternalSymbol: return "ExternalSymbol";
3690  case ISD::INTRINSIC_WO_CHAIN: {
3691    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3692    return Intrinsic::getName((Intrinsic::ID)IID);
3693  }
3694  case ISD::INTRINSIC_VOID:
3695  case ISD::INTRINSIC_W_CHAIN: {
3696    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3697    return Intrinsic::getName((Intrinsic::ID)IID);
3698  }
3699
3700  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
3701  case ISD::TargetConstant: return "TargetConstant";
3702  case ISD::TargetConstantFP:return "TargetConstantFP";
3703  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3704  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3705  case ISD::TargetFrameIndex: return "TargetFrameIndex";
3706  case ISD::TargetJumpTable:  return "TargetJumpTable";
3707  case ISD::TargetConstantPool:  return "TargetConstantPool";
3708  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3709
3710  case ISD::CopyToReg:     return "CopyToReg";
3711  case ISD::CopyFromReg:   return "CopyFromReg";
3712  case ISD::UNDEF:         return "undef";
3713  case ISD::MERGE_VALUES:  return "merge_values";
3714  case ISD::INLINEASM:     return "inlineasm";
3715  case ISD::LABEL:         return "label";
3716  case ISD::HANDLENODE:    return "handlenode";
3717  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3718  case ISD::CALL:          return "call";
3719
3720  // Unary operators
3721  case ISD::FABS:   return "fabs";
3722  case ISD::FNEG:   return "fneg";
3723  case ISD::FSQRT:  return "fsqrt";
3724  case ISD::FSIN:   return "fsin";
3725  case ISD::FCOS:   return "fcos";
3726  case ISD::FPOWI:  return "fpowi";
3727  case ISD::FPOW:   return "fpow";
3728
3729  // Binary operators
3730  case ISD::ADD:    return "add";
3731  case ISD::SUB:    return "sub";
3732  case ISD::MUL:    return "mul";
3733  case ISD::MULHU:  return "mulhu";
3734  case ISD::MULHS:  return "mulhs";
3735  case ISD::SDIV:   return "sdiv";
3736  case ISD::UDIV:   return "udiv";
3737  case ISD::SREM:   return "srem";
3738  case ISD::UREM:   return "urem";
3739  case ISD::SMUL_LOHI:  return "smul_lohi";
3740  case ISD::UMUL_LOHI:  return "umul_lohi";
3741  case ISD::SDIVREM:    return "sdivrem";
3742  case ISD::UDIVREM:    return "divrem";
3743  case ISD::AND:    return "and";
3744  case ISD::OR:     return "or";
3745  case ISD::XOR:    return "xor";
3746  case ISD::SHL:    return "shl";
3747  case ISD::SRA:    return "sra";
3748  case ISD::SRL:    return "srl";
3749  case ISD::ROTL:   return "rotl";
3750  case ISD::ROTR:   return "rotr";
3751  case ISD::FADD:   return "fadd";
3752  case ISD::FSUB:   return "fsub";
3753  case ISD::FMUL:   return "fmul";
3754  case ISD::FDIV:   return "fdiv";
3755  case ISD::FREM:   return "frem";
3756  case ISD::FCOPYSIGN: return "fcopysign";
3757  case ISD::FGETSIGN:  return "fgetsign";
3758
3759  case ISD::SETCC:       return "setcc";
3760  case ISD::SELECT:      return "select";
3761  case ISD::SELECT_CC:   return "select_cc";
3762  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
3763  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
3764  case ISD::CONCAT_VECTORS:      return "concat_vectors";
3765  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
3766  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
3767  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
3768  case ISD::CARRY_FALSE:         return "carry_false";
3769  case ISD::ADDC:        return "addc";
3770  case ISD::ADDE:        return "adde";
3771  case ISD::SUBC:        return "subc";
3772  case ISD::SUBE:        return "sube";
3773  case ISD::SHL_PARTS:   return "shl_parts";
3774  case ISD::SRA_PARTS:   return "sra_parts";
3775  case ISD::SRL_PARTS:   return "srl_parts";
3776
3777  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
3778  case ISD::INSERT_SUBREG:      return "insert_subreg";
3779
3780  // Conversion operators.
3781  case ISD::SIGN_EXTEND: return "sign_extend";
3782  case ISD::ZERO_EXTEND: return "zero_extend";
3783  case ISD::ANY_EXTEND:  return "any_extend";
3784  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3785  case ISD::TRUNCATE:    return "truncate";
3786  case ISD::FP_ROUND:    return "fp_round";
3787  case ISD::FLT_ROUNDS:  return "flt_rounds";
3788  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3789  case ISD::FP_EXTEND:   return "fp_extend";
3790
3791  case ISD::SINT_TO_FP:  return "sint_to_fp";
3792  case ISD::UINT_TO_FP:  return "uint_to_fp";
3793  case ISD::FP_TO_SINT:  return "fp_to_sint";
3794  case ISD::FP_TO_UINT:  return "fp_to_uint";
3795  case ISD::BIT_CONVERT: return "bit_convert";
3796
3797    // Control flow instructions
3798  case ISD::BR:      return "br";
3799  case ISD::BRIND:   return "brind";
3800  case ISD::BR_JT:   return "br_jt";
3801  case ISD::BRCOND:  return "brcond";
3802  case ISD::BR_CC:   return "br_cc";
3803  case ISD::RET:     return "ret";
3804  case ISD::CALLSEQ_START:  return "callseq_start";
3805  case ISD::CALLSEQ_END:    return "callseq_end";
3806
3807    // Other operators
3808  case ISD::LOAD:               return "load";
3809  case ISD::STORE:              return "store";
3810  case ISD::VAARG:              return "vaarg";
3811  case ISD::VACOPY:             return "vacopy";
3812  case ISD::VAEND:              return "vaend";
3813  case ISD::VASTART:            return "vastart";
3814  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3815  case ISD::EXTRACT_ELEMENT:    return "extract_element";
3816  case ISD::BUILD_PAIR:         return "build_pair";
3817  case ISD::STACKSAVE:          return "stacksave";
3818  case ISD::STACKRESTORE:       return "stackrestore";
3819  case ISD::TRAP:               return "trap";
3820
3821  // Block memory operations.
3822  case ISD::MEMSET:  return "memset";
3823  case ISD::MEMCPY:  return "memcpy";
3824  case ISD::MEMMOVE: return "memmove";
3825
3826  // Bit manipulation
3827  case ISD::BSWAP:   return "bswap";
3828  case ISD::CTPOP:   return "ctpop";
3829  case ISD::CTTZ:    return "cttz";
3830  case ISD::CTLZ:    return "ctlz";
3831
3832  // Debug info
3833  case ISD::LOCATION: return "location";
3834  case ISD::DEBUG_LOC: return "debug_loc";
3835
3836  // Trampolines
3837  case ISD::TRAMPOLINE: return "trampoline";
3838
3839  case ISD::CONDCODE:
3840    switch (cast<CondCodeSDNode>(this)->get()) {
3841    default: assert(0 && "Unknown setcc condition!");
3842    case ISD::SETOEQ:  return "setoeq";
3843    case ISD::SETOGT:  return "setogt";
3844    case ISD::SETOGE:  return "setoge";
3845    case ISD::SETOLT:  return "setolt";
3846    case ISD::SETOLE:  return "setole";
3847    case ISD::SETONE:  return "setone";
3848
3849    case ISD::SETO:    return "seto";
3850    case ISD::SETUO:   return "setuo";
3851    case ISD::SETUEQ:  return "setue";
3852    case ISD::SETUGT:  return "setugt";
3853    case ISD::SETUGE:  return "setuge";
3854    case ISD::SETULT:  return "setult";
3855    case ISD::SETULE:  return "setule";
3856    case ISD::SETUNE:  return "setune";
3857
3858    case ISD::SETEQ:   return "seteq";
3859    case ISD::SETGT:   return "setgt";
3860    case ISD::SETGE:   return "setge";
3861    case ISD::SETLT:   return "setlt";
3862    case ISD::SETLE:   return "setle";
3863    case ISD::SETNE:   return "setne";
3864    }
3865  }
3866}
3867
3868const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
3869  switch (AM) {
3870  default:
3871    return "";
3872  case ISD::PRE_INC:
3873    return "<pre-inc>";
3874  case ISD::PRE_DEC:
3875    return "<pre-dec>";
3876  case ISD::POST_INC:
3877    return "<post-inc>";
3878  case ISD::POST_DEC:
3879    return "<post-dec>";
3880  }
3881}
3882
3883void SDNode::dump() const { dump(0); }
3884void SDNode::dump(const SelectionDAG *G) const {
3885  cerr << (void*)this << ": ";
3886
3887  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
3888    if (i) cerr << ",";
3889    if (getValueType(i) == MVT::Other)
3890      cerr << "ch";
3891    else
3892      cerr << MVT::getValueTypeString(getValueType(i));
3893  }
3894  cerr << " = " << getOperationName(G);
3895
3896  cerr << " ";
3897  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3898    if (i) cerr << ", ";
3899    cerr << (void*)getOperand(i).Val;
3900    if (unsigned RN = getOperand(i).ResNo)
3901      cerr << ":" << RN;
3902  }
3903
3904  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
3905    SDNode *Mask = getOperand(2).Val;
3906    cerr << "<";
3907    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
3908      if (i) cerr << ",";
3909      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
3910        cerr << "u";
3911      else
3912        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
3913    }
3914    cerr << ">";
3915  }
3916
3917  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
3918    cerr << "<" << CSDN->getValue() << ">";
3919  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
3920    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
3921      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
3922    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
3923      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
3924    else {
3925      cerr << "<APFloat(";
3926      CSDN->getValueAPF().convertToAPInt().dump();
3927      cerr << ")>";
3928    }
3929  } else if (const GlobalAddressSDNode *GADN =
3930             dyn_cast<GlobalAddressSDNode>(this)) {
3931    int offset = GADN->getOffset();
3932    cerr << "<";
3933    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
3934    if (offset > 0)
3935      cerr << " + " << offset;
3936    else
3937      cerr << " " << offset;
3938  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
3939    cerr << "<" << FIDN->getIndex() << ">";
3940  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
3941    cerr << "<" << JTDN->getIndex() << ">";
3942  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
3943    int offset = CP->getOffset();
3944    if (CP->isMachineConstantPoolEntry())
3945      cerr << "<" << *CP->getMachineCPVal() << ">";
3946    else
3947      cerr << "<" << *CP->getConstVal() << ">";
3948    if (offset > 0)
3949      cerr << " + " << offset;
3950    else
3951      cerr << " " << offset;
3952  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
3953    cerr << "<";
3954    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
3955    if (LBB)
3956      cerr << LBB->getName() << " ";
3957    cerr << (const void*)BBDN->getBasicBlock() << ">";
3958  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
3959    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
3960      cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
3961    } else {
3962      cerr << " #" << R->getReg();
3963    }
3964  } else if (const ExternalSymbolSDNode *ES =
3965             dyn_cast<ExternalSymbolSDNode>(this)) {
3966    cerr << "'" << ES->getSymbol() << "'";
3967  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
3968    if (M->getValue())
3969      cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
3970    else
3971      cerr << "<null:" << M->getOffset() << ">";
3972  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
3973    cerr << ":" << MVT::getValueTypeString(N->getVT());
3974  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
3975    const Value *SrcValue = LD->getSrcValue();
3976    int SrcOffset = LD->getSrcValueOffset();
3977    cerr << " <";
3978    if (SrcValue)
3979      cerr << SrcValue;
3980    else
3981      cerr << "null";
3982    cerr << ":" << SrcOffset << ">";
3983
3984    bool doExt = true;
3985    switch (LD->getExtensionType()) {
3986    default: doExt = false; break;
3987    case ISD::EXTLOAD:
3988      cerr << " <anyext ";
3989      break;
3990    case ISD::SEXTLOAD:
3991      cerr << " <sext ";
3992      break;
3993    case ISD::ZEXTLOAD:
3994      cerr << " <zext ";
3995      break;
3996    }
3997    if (doExt)
3998      cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
3999
4000    const char *AM = getIndexedModeName(LD->getAddressingMode());
4001    if (*AM)
4002      cerr << " " << AM;
4003    if (LD->isVolatile())
4004      cerr << " <volatile>";
4005    cerr << " alignment=" << LD->getAlignment();
4006  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
4007    const Value *SrcValue = ST->getSrcValue();
4008    int SrcOffset = ST->getSrcValueOffset();
4009    cerr << " <";
4010    if (SrcValue)
4011      cerr << SrcValue;
4012    else
4013      cerr << "null";
4014    cerr << ":" << SrcOffset << ">";
4015
4016    if (ST->isTruncatingStore())
4017      cerr << " <trunc "
4018           << MVT::getValueTypeString(ST->getStoredVT()) << ">";
4019
4020    const char *AM = getIndexedModeName(ST->getAddressingMode());
4021    if (*AM)
4022      cerr << " " << AM;
4023    if (ST->isVolatile())
4024      cerr << " <volatile>";
4025    cerr << " alignment=" << ST->getAlignment();
4026  }
4027}
4028
4029static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4030  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4031    if (N->getOperand(i).Val->hasOneUse())
4032      DumpNodes(N->getOperand(i).Val, indent+2, G);
4033    else
4034      cerr << "\n" << std::string(indent+2, ' ')
4035           << (void*)N->getOperand(i).Val << ": <multiple use>";
4036
4037
4038  cerr << "\n" << std::string(indent, ' ');
4039  N->dump(G);
4040}
4041
4042void SelectionDAG::dump() const {
4043  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4044  std::vector<const SDNode*> Nodes;
4045  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4046       I != E; ++I)
4047    Nodes.push_back(I);
4048
4049  std::sort(Nodes.begin(), Nodes.end());
4050
4051  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4052    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4053      DumpNodes(Nodes[i], 2, this);
4054  }
4055
4056  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4057
4058  cerr << "\n\n";
4059}
4060
4061const Type *ConstantPoolSDNode::getType() const {
4062  if (isMachineConstantPoolEntry())
4063    return Val.MachineCPVal->getType();
4064  return Val.ConstVal->getType();
4065}
4066