SelectionDAG.cpp revision d1045a634ff2156c6666ad36c747a265c1d902ee
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineModuleInfo.h"
24#include "llvm/CodeGen/PseudoSourceValue.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Target/TargetRegisterInfo.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Target/TargetLowering.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/ADT/SetVector.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallSet.h"
34#include "llvm/ADT/SmallVector.h"
35#include "llvm/ADT/StringExtras.h"
36#include <algorithm>
37#include <cmath>
38using namespace llvm;
39
40/// makeVTList - Return an instance of the SDVTList struct initialized with the
41/// specified members.
42static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
43  SDVTList Res = {VTs, NumVTs};
44  return Res;
45}
46
47SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
48
49//===----------------------------------------------------------------------===//
50//                              ConstantFPSDNode Class
51//===----------------------------------------------------------------------===//
52
53/// isExactlyValue - We don't rely on operator== working on double values, as
54/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
55/// As such, this method can be used to do an exact bit-for-bit comparison of
56/// two floating point values.
57bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
58  return Value.bitwiseIsEqual(V);
59}
60
61bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
62                                           const APFloat& Val) {
63  // convert modifies in place, so make a copy.
64  APFloat Val2 = APFloat(Val);
65  switch (VT) {
66  default:
67    return false;         // These can't be represented as floating point!
68
69  // FIXME rounding mode needs to be more flexible
70  case MVT::f32:
71    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
72           Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==
73              APFloat::opOK;
74  case MVT::f64:
75    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
76           &Val2.getSemantics() == &APFloat::IEEEdouble ||
77           Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==
78             APFloat::opOK;
79  // TODO: Figure out how to test if we can use a shorter type instead!
80  case MVT::f80:
81  case MVT::f128:
82  case MVT::ppcf128:
83    return true;
84  }
85}
86
87//===----------------------------------------------------------------------===//
88//                              ISD Namespace
89//===----------------------------------------------------------------------===//
90
91/// isBuildVectorAllOnes - Return true if the specified node is a
92/// BUILD_VECTOR where all of the elements are ~0 or undef.
93bool ISD::isBuildVectorAllOnes(const SDNode *N) {
94  // Look through a bit convert.
95  if (N->getOpcode() == ISD::BIT_CONVERT)
96    N = N->getOperand(0).Val;
97
98  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
99
100  unsigned i = 0, e = N->getNumOperands();
101
102  // Skip over all of the undef values.
103  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
104    ++i;
105
106  // Do not accept an all-undef vector.
107  if (i == e) return false;
108
109  // Do not accept build_vectors that aren't all constants or which have non-~0
110  // elements.
111  SDOperand NotZero = N->getOperand(i);
112  if (isa<ConstantSDNode>(NotZero)) {
113    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
114      return false;
115  } else if (isa<ConstantFPSDNode>(NotZero)) {
116    MVT::ValueType VT = NotZero.getValueType();
117    if (VT== MVT::f64) {
118      if (((cast<ConstantFPSDNode>(NotZero)->getValueAPF().
119                  convertToAPInt().getZExtValue())) != (uint64_t)-1)
120        return false;
121    } else {
122      if ((uint32_t)cast<ConstantFPSDNode>(NotZero)->
123                      getValueAPF().convertToAPInt().getZExtValue() !=
124          (uint32_t)-1)
125        return false;
126    }
127  } else
128    return false;
129
130  // Okay, we have at least one ~0 value, check to see if the rest match or are
131  // undefs.
132  for (++i; i != e; ++i)
133    if (N->getOperand(i) != NotZero &&
134        N->getOperand(i).getOpcode() != ISD::UNDEF)
135      return false;
136  return true;
137}
138
139
140/// isBuildVectorAllZeros - Return true if the specified node is a
141/// BUILD_VECTOR where all of the elements are 0 or undef.
142bool ISD::isBuildVectorAllZeros(const SDNode *N) {
143  // Look through a bit convert.
144  if (N->getOpcode() == ISD::BIT_CONVERT)
145    N = N->getOperand(0).Val;
146
147  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
148
149  unsigned i = 0, e = N->getNumOperands();
150
151  // Skip over all of the undef values.
152  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
153    ++i;
154
155  // Do not accept an all-undef vector.
156  if (i == e) return false;
157
158  // Do not accept build_vectors that aren't all constants or which have non-~0
159  // elements.
160  SDOperand Zero = N->getOperand(i);
161  if (isa<ConstantSDNode>(Zero)) {
162    if (!cast<ConstantSDNode>(Zero)->isNullValue())
163      return false;
164  } else if (isa<ConstantFPSDNode>(Zero)) {
165    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
166      return false;
167  } else
168    return false;
169
170  // Okay, we have at least one ~0 value, check to see if the rest match or are
171  // undefs.
172  for (++i; i != e; ++i)
173    if (N->getOperand(i) != Zero &&
174        N->getOperand(i).getOpcode() != ISD::UNDEF)
175      return false;
176  return true;
177}
178
179/// isScalarToVector - Return true if the specified node is a
180/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
181/// element is not an undef.
182bool ISD::isScalarToVector(const SDNode *N) {
183  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
184    return true;
185
186  if (N->getOpcode() != ISD::BUILD_VECTOR)
187    return false;
188  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
189    return false;
190  unsigned NumElems = N->getNumOperands();
191  for (unsigned i = 1; i < NumElems; ++i) {
192    SDOperand V = N->getOperand(i);
193    if (V.getOpcode() != ISD::UNDEF)
194      return false;
195  }
196  return true;
197}
198
199
200/// isDebugLabel - Return true if the specified node represents a debug
201/// label (i.e. ISD::LABEL or TargetInstrInfo::LABEL node and third operand
202/// is 0).
203bool ISD::isDebugLabel(const SDNode *N) {
204  SDOperand Zero;
205  if (N->getOpcode() == ISD::LABEL)
206    Zero = N->getOperand(2);
207  else if (N->isTargetOpcode() &&
208           N->getTargetOpcode() == TargetInstrInfo::LABEL)
209    // Chain moved to last operand.
210    Zero = N->getOperand(1);
211  else
212    return false;
213  return isa<ConstantSDNode>(Zero) && cast<ConstantSDNode>(Zero)->isNullValue();
214}
215
216/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
217/// when given the operation for (X op Y).
218ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
219  // To perform this operation, we just need to swap the L and G bits of the
220  // operation.
221  unsigned OldL = (Operation >> 2) & 1;
222  unsigned OldG = (Operation >> 1) & 1;
223  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
224                       (OldL << 1) |       // New G bit
225                       (OldG << 2));        // New L bit.
226}
227
228/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
229/// 'op' is a valid SetCC operation.
230ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
231  unsigned Operation = Op;
232  if (isInteger)
233    Operation ^= 7;   // Flip L, G, E bits, but not U.
234  else
235    Operation ^= 15;  // Flip all of the condition bits.
236  if (Operation > ISD::SETTRUE2)
237    Operation &= ~8;     // Don't let N and U bits get set.
238  return ISD::CondCode(Operation);
239}
240
241
242/// isSignedOp - For an integer comparison, return 1 if the comparison is a
243/// signed operation and 2 if the result is an unsigned comparison.  Return zero
244/// if the operation does not depend on the sign of the input (setne and seteq).
245static int isSignedOp(ISD::CondCode Opcode) {
246  switch (Opcode) {
247  default: assert(0 && "Illegal integer setcc operation!");
248  case ISD::SETEQ:
249  case ISD::SETNE: return 0;
250  case ISD::SETLT:
251  case ISD::SETLE:
252  case ISD::SETGT:
253  case ISD::SETGE: return 1;
254  case ISD::SETULT:
255  case ISD::SETULE:
256  case ISD::SETUGT:
257  case ISD::SETUGE: return 2;
258  }
259}
260
261/// getSetCCOrOperation - Return the result of a logical OR between different
262/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
263/// returns SETCC_INVALID if it is not possible to represent the resultant
264/// comparison.
265ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
266                                       bool isInteger) {
267  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
268    // Cannot fold a signed integer setcc with an unsigned integer setcc.
269    return ISD::SETCC_INVALID;
270
271  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
272
273  // If the N and U bits get set then the resultant comparison DOES suddenly
274  // care about orderedness, and is true when ordered.
275  if (Op > ISD::SETTRUE2)
276    Op &= ~16;     // Clear the U bit if the N bit is set.
277
278  // Canonicalize illegal integer setcc's.
279  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
280    Op = ISD::SETNE;
281
282  return ISD::CondCode(Op);
283}
284
285/// getSetCCAndOperation - Return the result of a logical AND between different
286/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
287/// function returns zero if it is not possible to represent the resultant
288/// comparison.
289ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
290                                        bool isInteger) {
291  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
292    // Cannot fold a signed setcc with an unsigned setcc.
293    return ISD::SETCC_INVALID;
294
295  // Combine all of the condition bits.
296  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
297
298  // Canonicalize illegal integer setcc's.
299  if (isInteger) {
300    switch (Result) {
301    default: break;
302    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
303    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
304    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
305    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
306    }
307  }
308
309  return Result;
310}
311
312const TargetMachine &SelectionDAG::getTarget() const {
313  return TLI.getTargetMachine();
314}
315
316//===----------------------------------------------------------------------===//
317//                           SDNode Profile Support
318//===----------------------------------------------------------------------===//
319
320/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
321///
322static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
323  ID.AddInteger(OpC);
324}
325
326/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
327/// solely with their pointer.
328void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
329  ID.AddPointer(VTList.VTs);
330}
331
332/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
333///
334static void AddNodeIDOperands(FoldingSetNodeID &ID,
335                              const SDOperand *Ops, unsigned NumOps) {
336  for (; NumOps; --NumOps, ++Ops) {
337    ID.AddPointer(Ops->Val);
338    ID.AddInteger(Ops->ResNo);
339  }
340}
341
342static void AddNodeIDNode(FoldingSetNodeID &ID,
343                          unsigned short OpC, SDVTList VTList,
344                          const SDOperand *OpList, unsigned N) {
345  AddNodeIDOpcode(ID, OpC);
346  AddNodeIDValueTypes(ID, VTList);
347  AddNodeIDOperands(ID, OpList, N);
348}
349
350/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
351/// data.
352static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
353  AddNodeIDOpcode(ID, N->getOpcode());
354  // Add the return value info.
355  AddNodeIDValueTypes(ID, N->getVTList());
356  // Add the operand info.
357  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
358
359  // Handle SDNode leafs with special info.
360  switch (N->getOpcode()) {
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::TargetConstant:
363  case ISD::Constant:
364    ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
365    break;
366  case ISD::TargetConstantFP:
367  case ISD::ConstantFP: {
368    ID.Add(cast<ConstantFPSDNode>(N)->getValueAPF());
369    break;
370  }
371  case ISD::TargetGlobalAddress:
372  case ISD::GlobalAddress:
373  case ISD::TargetGlobalTLSAddress:
374  case ISD::GlobalTLSAddress: {
375    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
376    ID.AddPointer(GA->getGlobal());
377    ID.AddInteger(GA->getOffset());
378    break;
379  }
380  case ISD::BasicBlock:
381    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
382    break;
383  case ISD::Register:
384    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
385    break;
386  case ISD::SRCVALUE:
387    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
388    break;
389  case ISD::MEMOPERAND: {
390    const MemOperand &MO = cast<MemOperandSDNode>(N)->MO;
391    ID.AddPointer(MO.getValue());
392    ID.AddInteger(MO.getFlags());
393    ID.AddInteger(MO.getOffset());
394    ID.AddInteger(MO.getSize());
395    ID.AddInteger(MO.getAlignment());
396    break;
397  }
398  case ISD::FrameIndex:
399  case ISD::TargetFrameIndex:
400    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
401    break;
402  case ISD::JumpTable:
403  case ISD::TargetJumpTable:
404    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
405    break;
406  case ISD::ConstantPool:
407  case ISD::TargetConstantPool: {
408    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
409    ID.AddInteger(CP->getAlignment());
410    ID.AddInteger(CP->getOffset());
411    if (CP->isMachineConstantPoolEntry())
412      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
413    else
414      ID.AddPointer(CP->getConstVal());
415    break;
416  }
417  case ISD::LOAD: {
418    LoadSDNode *LD = cast<LoadSDNode>(N);
419    ID.AddInteger(LD->getAddressingMode());
420    ID.AddInteger(LD->getExtensionType());
421    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
422    ID.AddInteger(LD->getAlignment());
423    ID.AddInteger(LD->isVolatile());
424    break;
425  }
426  case ISD::STORE: {
427    StoreSDNode *ST = cast<StoreSDNode>(N);
428    ID.AddInteger(ST->getAddressingMode());
429    ID.AddInteger(ST->isTruncatingStore());
430    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
431    ID.AddInteger(ST->getAlignment());
432    ID.AddInteger(ST->isVolatile());
433    break;
434  }
435  }
436}
437
438//===----------------------------------------------------------------------===//
439//                              SelectionDAG Class
440//===----------------------------------------------------------------------===//
441
442/// RemoveDeadNodes - This method deletes all unreachable nodes in the
443/// SelectionDAG.
444void SelectionDAG::RemoveDeadNodes() {
445  // Create a dummy node (which is not added to allnodes), that adds a reference
446  // to the root node, preventing it from being deleted.
447  HandleSDNode Dummy(getRoot());
448
449  SmallVector<SDNode*, 128> DeadNodes;
450
451  // Add all obviously-dead nodes to the DeadNodes worklist.
452  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
453    if (I->use_empty())
454      DeadNodes.push_back(I);
455
456  // Process the worklist, deleting the nodes and adding their uses to the
457  // worklist.
458  while (!DeadNodes.empty()) {
459    SDNode *N = DeadNodes.back();
460    DeadNodes.pop_back();
461
462    // Take the node out of the appropriate CSE map.
463    RemoveNodeFromCSEMaps(N);
464
465    // Next, brutally remove the operand list.  This is safe to do, as there are
466    // no cycles in the graph.
467    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
468      SDNode *Operand = I->Val;
469      Operand->removeUser(N);
470
471      // Now that we removed this operand, see if there are no uses of it left.
472      if (Operand->use_empty())
473        DeadNodes.push_back(Operand);
474    }
475    if (N->OperandsNeedDelete)
476      delete[] N->OperandList;
477    N->OperandList = 0;
478    N->NumOperands = 0;
479
480    // Finally, remove N itself.
481    AllNodes.erase(N);
482  }
483
484  // If the root changed (e.g. it was a dead load, update the root).
485  setRoot(Dummy.getValue());
486}
487
488void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
489  SmallVector<SDNode*, 16> DeadNodes;
490  DeadNodes.push_back(N);
491
492  // Process the worklist, deleting the nodes and adding their uses to the
493  // worklist.
494  while (!DeadNodes.empty()) {
495    SDNode *N = DeadNodes.back();
496    DeadNodes.pop_back();
497
498    if (UpdateListener)
499      UpdateListener->NodeDeleted(N);
500
501    // Take the node out of the appropriate CSE map.
502    RemoveNodeFromCSEMaps(N);
503
504    // Next, brutally remove the operand list.  This is safe to do, as there are
505    // no cycles in the graph.
506    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
507      SDNode *Operand = I->Val;
508      Operand->removeUser(N);
509
510      // Now that we removed this operand, see if there are no uses of it left.
511      if (Operand->use_empty())
512        DeadNodes.push_back(Operand);
513    }
514    if (N->OperandsNeedDelete)
515      delete[] N->OperandList;
516    N->OperandList = 0;
517    N->NumOperands = 0;
518
519    // Finally, remove N itself.
520    AllNodes.erase(N);
521  }
522}
523
524void SelectionDAG::DeleteNode(SDNode *N) {
525  assert(N->use_empty() && "Cannot delete a node that is not dead!");
526
527  // First take this out of the appropriate CSE map.
528  RemoveNodeFromCSEMaps(N);
529
530  // Finally, remove uses due to operands of this node, remove from the
531  // AllNodes list, and delete the node.
532  DeleteNodeNotInCSEMaps(N);
533}
534
535void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
536
537  // Remove it from the AllNodes list.
538  AllNodes.remove(N);
539
540  // Drop all of the operands and decrement used nodes use counts.
541  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
542    I->Val->removeUser(N);
543  if (N->OperandsNeedDelete)
544    delete[] N->OperandList;
545  N->OperandList = 0;
546  N->NumOperands = 0;
547
548  delete N;
549}
550
551/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
552/// correspond to it.  This is useful when we're about to delete or repurpose
553/// the node.  We don't want future request for structurally identical nodes
554/// to return N anymore.
555void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
556  bool Erased = false;
557  switch (N->getOpcode()) {
558  case ISD::HANDLENODE: return;  // noop.
559  case ISD::STRING:
560    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
561    break;
562  case ISD::CONDCODE:
563    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
564           "Cond code doesn't exist!");
565    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
566    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
567    break;
568  case ISD::ExternalSymbol:
569    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
570    break;
571  case ISD::TargetExternalSymbol:
572    Erased =
573      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
574    break;
575  case ISD::VALUETYPE: {
576    MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
577    if (MVT::isExtendedVT(VT)) {
578      Erased = ExtendedValueTypeNodes.erase(VT);
579    } else {
580      Erased = ValueTypeNodes[VT] != 0;
581      ValueTypeNodes[VT] = 0;
582    }
583    break;
584  }
585  default:
586    // Remove it from the CSE Map.
587    Erased = CSEMap.RemoveNode(N);
588    break;
589  }
590#ifndef NDEBUG
591  // Verify that the node was actually in one of the CSE maps, unless it has a
592  // flag result (which cannot be CSE'd) or is one of the special cases that are
593  // not subject to CSE.
594  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
595      !N->isTargetOpcode()) {
596    N->dump(this);
597    cerr << "\n";
598    assert(0 && "Node is not in map!");
599  }
600#endif
601}
602
603/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
604/// has been taken out and modified in some way.  If the specified node already
605/// exists in the CSE maps, do not modify the maps, but return the existing node
606/// instead.  If it doesn't exist, add it and return null.
607///
608SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
609  assert(N->getNumOperands() && "This is a leaf node!");
610  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
611    return 0;    // Never add these nodes.
612
613  // Check that remaining values produced are not flags.
614  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
615    if (N->getValueType(i) == MVT::Flag)
616      return 0;   // Never CSE anything that produces a flag.
617
618  SDNode *New = CSEMap.GetOrInsertNode(N);
619  if (New != N) return New;  // Node already existed.
620  return 0;
621}
622
623/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
624/// were replaced with those specified.  If this node is never memoized,
625/// return null, otherwise return a pointer to the slot it would take.  If a
626/// node already exists with these operands, the slot will be non-null.
627SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
628                                           void *&InsertPos) {
629  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
630    return 0;    // Never add these nodes.
631
632  // Check that remaining values produced are not flags.
633  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
634    if (N->getValueType(i) == MVT::Flag)
635      return 0;   // Never CSE anything that produces a flag.
636
637  SDOperand Ops[] = { Op };
638  FoldingSetNodeID ID;
639  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
640  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
641}
642
643/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
644/// were replaced with those specified.  If this node is never memoized,
645/// return null, otherwise return a pointer to the slot it would take.  If a
646/// node already exists with these operands, the slot will be non-null.
647SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
648                                           SDOperand Op1, SDOperand Op2,
649                                           void *&InsertPos) {
650  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
651    return 0;    // Never add these nodes.
652
653  // Check that remaining values produced are not flags.
654  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
655    if (N->getValueType(i) == MVT::Flag)
656      return 0;   // Never CSE anything that produces a flag.
657
658  SDOperand Ops[] = { Op1, Op2 };
659  FoldingSetNodeID ID;
660  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
661  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
662}
663
664
665/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
666/// were replaced with those specified.  If this node is never memoized,
667/// return null, otherwise return a pointer to the slot it would take.  If a
668/// node already exists with these operands, the slot will be non-null.
669SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
670                                           const SDOperand *Ops,unsigned NumOps,
671                                           void *&InsertPos) {
672  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
673    return 0;    // Never add these nodes.
674
675  // Check that remaining values produced are not flags.
676  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
677    if (N->getValueType(i) == MVT::Flag)
678      return 0;   // Never CSE anything that produces a flag.
679
680  FoldingSetNodeID ID;
681  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
682
683  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
684    ID.AddInteger(LD->getAddressingMode());
685    ID.AddInteger(LD->getExtensionType());
686    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
687    ID.AddInteger(LD->getAlignment());
688    ID.AddInteger(LD->isVolatile());
689  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
690    ID.AddInteger(ST->getAddressingMode());
691    ID.AddInteger(ST->isTruncatingStore());
692    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
693    ID.AddInteger(ST->getAlignment());
694    ID.AddInteger(ST->isVolatile());
695  }
696
697  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
698}
699
700
701SelectionDAG::~SelectionDAG() {
702  while (!AllNodes.empty()) {
703    SDNode *N = AllNodes.begin();
704    N->SetNextInBucket(0);
705    if (N->OperandsNeedDelete)
706      delete [] N->OperandList;
707    N->OperandList = 0;
708    N->NumOperands = 0;
709    AllNodes.pop_front();
710  }
711}
712
713SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
714  if (Op.getValueType() == VT) return Op;
715  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
716  return getNode(ISD::AND, Op.getValueType(), Op,
717                 getConstant(Imm, Op.getValueType()));
718}
719
720SDOperand SelectionDAG::getString(const std::string &Val) {
721  StringSDNode *&N = StringNodes[Val];
722  if (!N) {
723    N = new StringSDNode(Val);
724    AllNodes.push_back(N);
725  }
726  return SDOperand(N, 0);
727}
728
729SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
730  MVT::ValueType EltVT =
731    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
732
733  return getConstant(APInt(MVT::getSizeInBits(EltVT), Val), VT, isT);
734}
735
736SDOperand SelectionDAG::getConstant(const APInt &Val, MVT::ValueType VT, bool isT) {
737  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
738
739  MVT::ValueType EltVT =
740    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
741
742  assert(Val.getBitWidth() == MVT::getSizeInBits(EltVT) &&
743         "APInt size does not match type size!");
744
745  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
746  FoldingSetNodeID ID;
747  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
748  ID.Add(Val);
749  void *IP = 0;
750  SDNode *N = NULL;
751  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
752    if (!MVT::isVector(VT))
753      return SDOperand(N, 0);
754  if (!N) {
755    N = new ConstantSDNode(isT, Val, EltVT);
756    CSEMap.InsertNode(N, IP);
757    AllNodes.push_back(N);
758  }
759
760  SDOperand Result(N, 0);
761  if (MVT::isVector(VT)) {
762    SmallVector<SDOperand, 8> Ops;
763    Ops.assign(MVT::getVectorNumElements(VT), Result);
764    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
765  }
766  return Result;
767}
768
769SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
770  return getConstant(Val, TLI.getPointerTy(), isTarget);
771}
772
773
774SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
775                                      bool isTarget) {
776  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
777
778  MVT::ValueType EltVT =
779    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
780
781  // Do the map lookup using the actual bit pattern for the floating point
782  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
783  // we don't have issues with SNANs.
784  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
785  FoldingSetNodeID ID;
786  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
787  ID.Add(V);
788  void *IP = 0;
789  SDNode *N = NULL;
790  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
791    if (!MVT::isVector(VT))
792      return SDOperand(N, 0);
793  if (!N) {
794    N = new ConstantFPSDNode(isTarget, V, EltVT);
795    CSEMap.InsertNode(N, IP);
796    AllNodes.push_back(N);
797  }
798
799  SDOperand Result(N, 0);
800  if (MVT::isVector(VT)) {
801    SmallVector<SDOperand, 8> Ops;
802    Ops.assign(MVT::getVectorNumElements(VT), Result);
803    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
804  }
805  return Result;
806}
807
808SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
809                                      bool isTarget) {
810  MVT::ValueType EltVT =
811    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
812  if (EltVT==MVT::f32)
813    return getConstantFP(APFloat((float)Val), VT, isTarget);
814  else
815    return getConstantFP(APFloat(Val), VT, isTarget);
816}
817
818SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
819                                         MVT::ValueType VT, int Offset,
820                                         bool isTargetGA) {
821  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
822  unsigned Opc;
823  if (GVar && GVar->isThreadLocal())
824    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
825  else
826    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
827  FoldingSetNodeID ID;
828  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
829  ID.AddPointer(GV);
830  ID.AddInteger(Offset);
831  void *IP = 0;
832  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
833   return SDOperand(E, 0);
834  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
835  CSEMap.InsertNode(N, IP);
836  AllNodes.push_back(N);
837  return SDOperand(N, 0);
838}
839
840SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
841                                      bool isTarget) {
842  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
843  FoldingSetNodeID ID;
844  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
845  ID.AddInteger(FI);
846  void *IP = 0;
847  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
848    return SDOperand(E, 0);
849  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
850  CSEMap.InsertNode(N, IP);
851  AllNodes.push_back(N);
852  return SDOperand(N, 0);
853}
854
855SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
856  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
857  FoldingSetNodeID ID;
858  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
859  ID.AddInteger(JTI);
860  void *IP = 0;
861  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
862    return SDOperand(E, 0);
863  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
864  CSEMap.InsertNode(N, IP);
865  AllNodes.push_back(N);
866  return SDOperand(N, 0);
867}
868
869SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
870                                        unsigned Alignment, int Offset,
871                                        bool isTarget) {
872  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
873  FoldingSetNodeID ID;
874  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
875  ID.AddInteger(Alignment);
876  ID.AddInteger(Offset);
877  ID.AddPointer(C);
878  void *IP = 0;
879  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
880    return SDOperand(E, 0);
881  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
882  CSEMap.InsertNode(N, IP);
883  AllNodes.push_back(N);
884  return SDOperand(N, 0);
885}
886
887
888SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
889                                        MVT::ValueType VT,
890                                        unsigned Alignment, int Offset,
891                                        bool isTarget) {
892  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
893  FoldingSetNodeID ID;
894  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
895  ID.AddInteger(Alignment);
896  ID.AddInteger(Offset);
897  C->AddSelectionDAGCSEId(ID);
898  void *IP = 0;
899  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
900    return SDOperand(E, 0);
901  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
902  CSEMap.InsertNode(N, IP);
903  AllNodes.push_back(N);
904  return SDOperand(N, 0);
905}
906
907
908SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
909  FoldingSetNodeID ID;
910  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
911  ID.AddPointer(MBB);
912  void *IP = 0;
913  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
914    return SDOperand(E, 0);
915  SDNode *N = new BasicBlockSDNode(MBB);
916  CSEMap.InsertNode(N, IP);
917  AllNodes.push_back(N);
918  return SDOperand(N, 0);
919}
920
921SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
922  if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
923    ValueTypeNodes.resize(VT+1);
924
925  SDNode *&N = MVT::isExtendedVT(VT) ?
926    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
927
928  if (N) return SDOperand(N, 0);
929  N = new VTSDNode(VT);
930  AllNodes.push_back(N);
931  return SDOperand(N, 0);
932}
933
934SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
935  SDNode *&N = ExternalSymbols[Sym];
936  if (N) return SDOperand(N, 0);
937  N = new ExternalSymbolSDNode(false, Sym, VT);
938  AllNodes.push_back(N);
939  return SDOperand(N, 0);
940}
941
942SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
943                                                MVT::ValueType VT) {
944  SDNode *&N = TargetExternalSymbols[Sym];
945  if (N) return SDOperand(N, 0);
946  N = new ExternalSymbolSDNode(true, Sym, VT);
947  AllNodes.push_back(N);
948  return SDOperand(N, 0);
949}
950
951SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
952  if ((unsigned)Cond >= CondCodeNodes.size())
953    CondCodeNodes.resize(Cond+1);
954
955  if (CondCodeNodes[Cond] == 0) {
956    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
957    AllNodes.push_back(CondCodeNodes[Cond]);
958  }
959  return SDOperand(CondCodeNodes[Cond], 0);
960}
961
962SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
963  FoldingSetNodeID ID;
964  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
965  ID.AddInteger(RegNo);
966  void *IP = 0;
967  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
968    return SDOperand(E, 0);
969  SDNode *N = new RegisterSDNode(RegNo, VT);
970  CSEMap.InsertNode(N, IP);
971  AllNodes.push_back(N);
972  return SDOperand(N, 0);
973}
974
975SDOperand SelectionDAG::getSrcValue(const Value *V) {
976  assert((!V || isa<PointerType>(V->getType())) &&
977         "SrcValue is not a pointer?");
978
979  FoldingSetNodeID ID;
980  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
981  ID.AddPointer(V);
982
983  void *IP = 0;
984  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
985    return SDOperand(E, 0);
986
987  SDNode *N = new SrcValueSDNode(V);
988  CSEMap.InsertNode(N, IP);
989  AllNodes.push_back(N);
990  return SDOperand(N, 0);
991}
992
993SDOperand SelectionDAG::getMemOperand(const MemOperand &MO) {
994  const Value *v = MO.getValue();
995  assert((!v || isa<PointerType>(v->getType())) &&
996         "SrcValue is not a pointer?");
997
998  FoldingSetNodeID ID;
999  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1000  ID.AddPointer(v);
1001  ID.AddInteger(MO.getFlags());
1002  ID.AddInteger(MO.getOffset());
1003  ID.AddInteger(MO.getSize());
1004  ID.AddInteger(MO.getAlignment());
1005
1006  void *IP = 0;
1007  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1008    return SDOperand(E, 0);
1009
1010  SDNode *N = new MemOperandSDNode(MO);
1011  CSEMap.InsertNode(N, IP);
1012  AllNodes.push_back(N);
1013  return SDOperand(N, 0);
1014}
1015
1016/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1017/// specified value type.
1018SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
1019  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1020  unsigned ByteSize = MVT::getSizeInBits(VT)/8;
1021  const Type *Ty = MVT::getTypeForValueType(VT);
1022  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
1023  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1024  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1025}
1026
1027
1028SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
1029                                  SDOperand N2, ISD::CondCode Cond) {
1030  // These setcc operations always fold.
1031  switch (Cond) {
1032  default: break;
1033  case ISD::SETFALSE:
1034  case ISD::SETFALSE2: return getConstant(0, VT);
1035  case ISD::SETTRUE:
1036  case ISD::SETTRUE2:  return getConstant(1, VT);
1037
1038  case ISD::SETOEQ:
1039  case ISD::SETOGT:
1040  case ISD::SETOGE:
1041  case ISD::SETOLT:
1042  case ISD::SETOLE:
1043  case ISD::SETONE:
1044  case ISD::SETO:
1045  case ISD::SETUO:
1046  case ISD::SETUEQ:
1047  case ISD::SETUNE:
1048    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
1049    break;
1050  }
1051
1052  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
1053    uint64_t C2 = N2C->getValue();
1054    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1055      uint64_t C1 = N1C->getValue();
1056
1057      // Sign extend the operands if required
1058      if (ISD::isSignedIntSetCC(Cond)) {
1059        C1 = N1C->getSignExtended();
1060        C2 = N2C->getSignExtended();
1061      }
1062
1063      switch (Cond) {
1064      default: assert(0 && "Unknown integer setcc!");
1065      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1066      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1067      case ISD::SETULT: return getConstant(C1 <  C2, VT);
1068      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
1069      case ISD::SETULE: return getConstant(C1 <= C2, VT);
1070      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
1071      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
1072      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
1073      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
1074      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
1075      }
1076    }
1077  }
1078  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
1079    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1080      // No compile time operations on this type yet.
1081      if (N1C->getValueType(0) == MVT::ppcf128)
1082        return SDOperand();
1083
1084      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1085      switch (Cond) {
1086      default: break;
1087      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1088                          return getNode(ISD::UNDEF, VT);
1089                        // fall through
1090      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1091      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1092                          return getNode(ISD::UNDEF, VT);
1093                        // fall through
1094      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1095                                           R==APFloat::cmpLessThan, VT);
1096      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1097                          return getNode(ISD::UNDEF, VT);
1098                        // fall through
1099      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1100      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1101                          return getNode(ISD::UNDEF, VT);
1102                        // fall through
1103      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1104      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1105                          return getNode(ISD::UNDEF, VT);
1106                        // fall through
1107      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1108                                           R==APFloat::cmpEqual, VT);
1109      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1110                          return getNode(ISD::UNDEF, VT);
1111                        // fall through
1112      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1113                                           R==APFloat::cmpEqual, VT);
1114      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1115      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1116      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1117                                           R==APFloat::cmpEqual, VT);
1118      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1119      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1120                                           R==APFloat::cmpLessThan, VT);
1121      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1122                                           R==APFloat::cmpUnordered, VT);
1123      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1124      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1125      }
1126    } else {
1127      // Ensure that the constant occurs on the RHS.
1128      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1129    }
1130
1131  // Could not fold it.
1132  return SDOperand();
1133}
1134
1135/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1136/// this predicate to simplify operations downstream.  Mask is known to be zero
1137/// for bits that V cannot have.
1138bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
1139                                     unsigned Depth) const {
1140  // The masks are not wide enough to represent this type!  Should use APInt.
1141  if (Op.getValueType() == MVT::i128)
1142    return false;
1143
1144  uint64_t KnownZero, KnownOne;
1145  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1146  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1147  return (KnownZero & Mask) == Mask;
1148}
1149
1150/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1151/// known to be either zero or one and return them in the KnownZero/KnownOne
1152/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1153/// processing.
1154void SelectionDAG::ComputeMaskedBits(SDOperand Op, const APInt &Mask,
1155                                     APInt &KnownZero, APInt &KnownOne,
1156                                     unsigned Depth) const {
1157  unsigned BitWidth = Mask.getBitWidth();
1158  assert(BitWidth == MVT::getSizeInBits(Op.getValueType()) &&
1159         "Mask size mismatches value type size!");
1160
1161  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1162  if (Depth == 6 || Mask == 0)
1163    return;  // Limit search depth.
1164
1165  APInt KnownZero2, KnownOne2;
1166
1167  switch (Op.getOpcode()) {
1168  case ISD::Constant:
1169    // We know all of the bits for a constant!
1170    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1171    KnownZero = ~KnownOne & Mask;
1172    return;
1173  case ISD::AND:
1174    // If either the LHS or the RHS are Zero, the result is zero.
1175    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1176    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1177                      KnownZero2, KnownOne2, Depth+1);
1178    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1179    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1180
1181    // Output known-1 bits are only known if set in both the LHS & RHS.
1182    KnownOne &= KnownOne2;
1183    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1184    KnownZero |= KnownZero2;
1185    return;
1186  case ISD::OR:
1187    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1188    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1189                      KnownZero2, KnownOne2, Depth+1);
1190    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1191    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1192
1193    // Output known-0 bits are only known if clear in both the LHS & RHS.
1194    KnownZero &= KnownZero2;
1195    // Output known-1 are known to be set if set in either the LHS | RHS.
1196    KnownOne |= KnownOne2;
1197    return;
1198  case ISD::XOR: {
1199    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1200    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1201    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1202    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1203
1204    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1205    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1206    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1207    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1208    KnownZero = KnownZeroOut;
1209    return;
1210  }
1211  case ISD::SELECT:
1212    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1213    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1214    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1215    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1216
1217    // Only known if known in both the LHS and RHS.
1218    KnownOne &= KnownOne2;
1219    KnownZero &= KnownZero2;
1220    return;
1221  case ISD::SELECT_CC:
1222    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1223    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1224    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1225    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1226
1227    // Only known if known in both the LHS and RHS.
1228    KnownOne &= KnownOne2;
1229    KnownZero &= KnownZero2;
1230    return;
1231  case ISD::SETCC:
1232    // If we know the result of a setcc has the top bits zero, use this info.
1233    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1234        BitWidth > 1)
1235      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1236    return;
1237  case ISD::SHL:
1238    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1239    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1240      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(SA->getValue()),
1241                        KnownZero, KnownOne, Depth+1);
1242      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1243      KnownZero <<= SA->getValue();
1244      KnownOne  <<= SA->getValue();
1245      // low bits known zero.
1246      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getValue());
1247    }
1248    return;
1249  case ISD::SRL:
1250    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1251    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1252      unsigned ShAmt = SA->getValue();
1253
1254      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1255                        KnownZero, KnownOne, Depth+1);
1256      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1257      KnownZero = KnownZero.lshr(ShAmt);
1258      KnownOne  = KnownOne.lshr(ShAmt);
1259
1260      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1261      KnownZero |= HighBits;  // High bits known zero.
1262    }
1263    return;
1264  case ISD::SRA:
1265    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1266      unsigned ShAmt = SA->getValue();
1267
1268      APInt InDemandedMask = (Mask << ShAmt);
1269      // If any of the demanded bits are produced by the sign extension, we also
1270      // demand the input sign bit.
1271      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1272      if (HighBits.getBoolValue())
1273        InDemandedMask |= APInt::getSignBit(BitWidth);
1274
1275      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1276                        Depth+1);
1277      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1278      KnownZero = KnownZero.lshr(ShAmt);
1279      KnownOne  = KnownOne.lshr(ShAmt);
1280
1281      // Handle the sign bits.
1282      APInt SignBit = APInt::getSignBit(BitWidth);
1283      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1284
1285      if (!!(KnownZero & SignBit)) {
1286        KnownZero |= HighBits;  // New bits are known zero.
1287      } else if (!!(KnownOne & SignBit)) {
1288        KnownOne  |= HighBits;  // New bits are known one.
1289      }
1290    }
1291    return;
1292  case ISD::SIGN_EXTEND_INREG: {
1293    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1294    unsigned EBits = MVT::getSizeInBits(EVT);
1295
1296    // Sign extension.  Compute the demanded bits in the result that are not
1297    // present in the input.
1298    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1299
1300    APInt InSignBit = APInt::getSignBit(EBits);
1301    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1302
1303    // If the sign extended bits are demanded, we know that the sign
1304    // bit is demanded.
1305    InSignBit.zext(BitWidth);
1306    if (NewBits.getBoolValue())
1307      InputDemandedBits |= InSignBit;
1308
1309    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1310                      KnownZero, KnownOne, Depth+1);
1311    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1312
1313    // If the sign bit of the input is known set or clear, then we know the
1314    // top bits of the result.
1315    if (!!(KnownZero & InSignBit)) {          // Input sign bit known clear
1316      KnownZero |= NewBits;
1317      KnownOne  &= ~NewBits;
1318    } else if (!!(KnownOne & InSignBit)) {    // Input sign bit known set
1319      KnownOne  |= NewBits;
1320      KnownZero &= ~NewBits;
1321    } else {                              // Input sign bit unknown
1322      KnownZero &= ~NewBits;
1323      KnownOne  &= ~NewBits;
1324    }
1325    return;
1326  }
1327  case ISD::CTTZ:
1328  case ISD::CTLZ:
1329  case ISD::CTPOP: {
1330    unsigned LowBits = Log2_32(BitWidth)+1;
1331    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1332    KnownOne  = APInt(BitWidth, 0);
1333    return;
1334  }
1335  case ISD::LOAD: {
1336    if (ISD::isZEXTLoad(Op.Val)) {
1337      LoadSDNode *LD = cast<LoadSDNode>(Op);
1338      MVT::ValueType VT = LD->getMemoryVT();
1339      unsigned MemBits = MVT::getSizeInBits(VT);
1340      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1341    }
1342    return;
1343  }
1344  case ISD::ZERO_EXTEND: {
1345    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1346    unsigned InBits = MVT::getSizeInBits(InVT);
1347    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1348    APInt InMask    = Mask;
1349    InMask.trunc(InBits);
1350    KnownZero.trunc(InBits);
1351    KnownOne.trunc(InBits);
1352    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1353    KnownZero.zext(BitWidth);
1354    KnownOne.zext(BitWidth);
1355    KnownZero |= NewBits;
1356    return;
1357  }
1358  case ISD::SIGN_EXTEND: {
1359    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1360    unsigned InBits = MVT::getSizeInBits(InVT);
1361    APInt InSignBit = APInt::getSignBit(InBits);
1362    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1363    APInt InMask = Mask;
1364    InMask.trunc(InBits);
1365
1366    // If any of the sign extended bits are demanded, we know that the sign
1367    // bit is demanded. Temporarily set this bit in the mask for our callee.
1368    if (NewBits.getBoolValue())
1369      InMask |= InSignBit;
1370
1371    KnownZero.trunc(InBits);
1372    KnownOne.trunc(InBits);
1373    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1374
1375    // Note if the sign bit is known to be zero or one.
1376    bool SignBitKnownZero = KnownZero.isNegative();
1377    bool SignBitKnownOne  = KnownOne.isNegative();
1378    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1379           "Sign bit can't be known to be both zero and one!");
1380
1381    // If the sign bit wasn't actually demanded by our caller, we don't
1382    // want it set in the KnownZero and KnownOne result values. Reset the
1383    // mask and reapply it to the result values.
1384    InMask = Mask;
1385    InMask.trunc(InBits);
1386    KnownZero &= InMask;
1387    KnownOne  &= InMask;
1388
1389    KnownZero.zext(BitWidth);
1390    KnownOne.zext(BitWidth);
1391
1392    // If the sign bit is known zero or one, the top bits match.
1393    if (SignBitKnownZero)
1394      KnownZero |= NewBits;
1395    else if (SignBitKnownOne)
1396      KnownOne  |= NewBits;
1397    return;
1398  }
1399  case ISD::ANY_EXTEND: {
1400    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1401    unsigned InBits = MVT::getSizeInBits(InVT);
1402    APInt InMask = Mask;
1403    InMask.trunc(InBits);
1404    KnownZero.trunc(InBits);
1405    KnownOne.trunc(InBits);
1406    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1407    KnownZero.zext(BitWidth);
1408    KnownOne.zext(BitWidth);
1409    return;
1410  }
1411  case ISD::TRUNCATE: {
1412    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1413    unsigned InBits = MVT::getSizeInBits(InVT);
1414    APInt InMask = Mask;
1415    InMask.zext(InBits);
1416    KnownZero.zext(InBits);
1417    KnownOne.zext(InBits);
1418    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1419    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1420    KnownZero.trunc(BitWidth);
1421    KnownOne.trunc(BitWidth);
1422    break;
1423  }
1424  case ISD::AssertZext: {
1425    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1426    APInt InMask = APInt::getLowBitsSet(BitWidth, MVT::getSizeInBits(VT));
1427    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1428                      KnownOne, Depth+1);
1429    KnownZero |= (~InMask) & Mask;
1430    return;
1431  }
1432  case ISD::FGETSIGN:
1433    // All bits are zero except the low bit.
1434    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1435    return;
1436
1437  case ISD::ADD: {
1438    // If either the LHS or the RHS are Zero, the result is zero.
1439    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1440    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1441    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1442    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1443
1444    // Output known-0 bits are known if clear or set in both the low clear bits
1445    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1446    // low 3 bits clear.
1447    unsigned KnownZeroOut = std::min(KnownZero.countTrailingOnes(),
1448                                     KnownZero2.countTrailingOnes());
1449
1450    KnownZero = APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1451    KnownOne = APInt(BitWidth, 0);
1452    return;
1453  }
1454  case ISD::SUB: {
1455    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1456    if (!CLHS) return;
1457
1458    // We know that the top bits of C-X are clear if X contains less bits
1459    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1460    // positive if we can prove that X is >= 0 and < 16.
1461    if (CLHS->getAPIntValue().isNonNegative()) {
1462      unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1463      // NLZ can't be BitWidth with no sign bit
1464      APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1465      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1466
1467      // If all of the MaskV bits are known to be zero, then we know the output
1468      // top bits are zero, because we now know that the output is from [0-C].
1469      if ((KnownZero & MaskV) == MaskV) {
1470        unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1471        // Top bits known zero.
1472        KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1473        KnownOne = APInt(BitWidth, 0);   // No one bits known.
1474      } else {
1475        KnownZero = KnownOne = APInt(BitWidth, 0);  // Otherwise, nothing known.
1476      }
1477    }
1478    return;
1479  }
1480  default:
1481    // Allow the target to implement this method for its nodes.
1482    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1483  case ISD::INTRINSIC_WO_CHAIN:
1484  case ISD::INTRINSIC_W_CHAIN:
1485  case ISD::INTRINSIC_VOID:
1486      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1487    }
1488    return;
1489  }
1490}
1491
1492/// ComputeMaskedBits - This is a wrapper around the APInt-using
1493/// form of ComputeMaskedBits for use by clients that haven't been converted
1494/// to APInt yet.
1495void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
1496                                     uint64_t &KnownZero, uint64_t &KnownOne,
1497                                     unsigned Depth) const {
1498  // The masks are not wide enough to represent this type!  Should use APInt.
1499  if (Op.getValueType() == MVT::i128)
1500    return;
1501
1502  unsigned NumBits = MVT::getSizeInBits(Op.getValueType());
1503  APInt APIntMask(NumBits, Mask);
1504  APInt APIntKnownZero(NumBits, 0);
1505  APInt APIntKnownOne(NumBits, 0);
1506  ComputeMaskedBits(Op, APIntMask, APIntKnownZero, APIntKnownOne, Depth);
1507  KnownZero = APIntKnownZero.getZExtValue();
1508  KnownOne = APIntKnownOne.getZExtValue();
1509}
1510
1511/// ComputeNumSignBits - Return the number of times the sign bit of the
1512/// register is replicated into the other bits.  We know that at least 1 bit
1513/// is always equal to the sign bit (itself), but other cases can give us
1514/// information.  For example, immediately after an "SRA X, 2", we know that
1515/// the top 3 bits are all equal to each other, so we return 3.
1516unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1517  MVT::ValueType VT = Op.getValueType();
1518  assert(MVT::isInteger(VT) && "Invalid VT!");
1519  unsigned VTBits = MVT::getSizeInBits(VT);
1520  unsigned Tmp, Tmp2;
1521
1522  if (Depth == 6)
1523    return 1;  // Limit search depth.
1524
1525  switch (Op.getOpcode()) {
1526  default: break;
1527  case ISD::AssertSext:
1528    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1529    return VTBits-Tmp+1;
1530  case ISD::AssertZext:
1531    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1532    return VTBits-Tmp;
1533
1534  case ISD::Constant: {
1535    uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1536    // If negative, invert the bits, then look at it.
1537    if (Val & MVT::getIntVTSignBit(VT))
1538      Val = ~Val;
1539
1540    // Shift the bits so they are the leading bits in the int64_t.
1541    Val <<= 64-VTBits;
1542
1543    // Return # leading zeros.  We use 'min' here in case Val was zero before
1544    // shifting.  We don't want to return '64' as for an i32 "0".
1545    return std::min(VTBits, CountLeadingZeros_64(Val));
1546  }
1547
1548  case ISD::SIGN_EXTEND:
1549    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1550    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1551
1552  case ISD::SIGN_EXTEND_INREG:
1553    // Max of the input and what this extends.
1554    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1555    Tmp = VTBits-Tmp+1;
1556
1557    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1558    return std::max(Tmp, Tmp2);
1559
1560  case ISD::SRA:
1561    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1562    // SRA X, C   -> adds C sign bits.
1563    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1564      Tmp += C->getValue();
1565      if (Tmp > VTBits) Tmp = VTBits;
1566    }
1567    return Tmp;
1568  case ISD::SHL:
1569    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1570      // shl destroys sign bits.
1571      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1572      if (C->getValue() >= VTBits ||      // Bad shift.
1573          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1574      return Tmp - C->getValue();
1575    }
1576    break;
1577  case ISD::AND:
1578  case ISD::OR:
1579  case ISD::XOR:    // NOT is handled here.
1580    // Logical binary ops preserve the number of sign bits.
1581    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1582    if (Tmp == 1) return 1;  // Early out.
1583    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1584    return std::min(Tmp, Tmp2);
1585
1586  case ISD::SELECT:
1587    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1588    if (Tmp == 1) return 1;  // Early out.
1589    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1590    return std::min(Tmp, Tmp2);
1591
1592  case ISD::SETCC:
1593    // If setcc returns 0/-1, all bits are sign bits.
1594    if (TLI.getSetCCResultContents() ==
1595        TargetLowering::ZeroOrNegativeOneSetCCResult)
1596      return VTBits;
1597    break;
1598  case ISD::ROTL:
1599  case ISD::ROTR:
1600    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1601      unsigned RotAmt = C->getValue() & (VTBits-1);
1602
1603      // Handle rotate right by N like a rotate left by 32-N.
1604      if (Op.getOpcode() == ISD::ROTR)
1605        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1606
1607      // If we aren't rotating out all of the known-in sign bits, return the
1608      // number that are left.  This handles rotl(sext(x), 1) for example.
1609      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1610      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1611    }
1612    break;
1613  case ISD::ADD:
1614    // Add can have at most one carry bit.  Thus we know that the output
1615    // is, at worst, one more bit than the inputs.
1616    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1617    if (Tmp == 1) return 1;  // Early out.
1618
1619    // Special case decrementing a value (ADD X, -1):
1620    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1621      if (CRHS->isAllOnesValue()) {
1622        uint64_t KnownZero, KnownOne;
1623        uint64_t Mask = MVT::getIntVTBitMask(VT);
1624        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1625
1626        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1627        // sign bits set.
1628        if ((KnownZero|1) == Mask)
1629          return VTBits;
1630
1631        // If we are subtracting one from a positive number, there is no carry
1632        // out of the result.
1633        if (KnownZero & MVT::getIntVTSignBit(VT))
1634          return Tmp;
1635      }
1636
1637    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1638    if (Tmp2 == 1) return 1;
1639      return std::min(Tmp, Tmp2)-1;
1640    break;
1641
1642  case ISD::SUB:
1643    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1644    if (Tmp2 == 1) return 1;
1645
1646    // Handle NEG.
1647    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1648      if (CLHS->getValue() == 0) {
1649        uint64_t KnownZero, KnownOne;
1650        uint64_t Mask = MVT::getIntVTBitMask(VT);
1651        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1652        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1653        // sign bits set.
1654        if ((KnownZero|1) == Mask)
1655          return VTBits;
1656
1657        // If the input is known to be positive (the sign bit is known clear),
1658        // the output of the NEG has the same number of sign bits as the input.
1659        if (KnownZero & MVT::getIntVTSignBit(VT))
1660          return Tmp2;
1661
1662        // Otherwise, we treat this like a SUB.
1663      }
1664
1665    // Sub can have at most one carry bit.  Thus we know that the output
1666    // is, at worst, one more bit than the inputs.
1667    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1668    if (Tmp == 1) return 1;  // Early out.
1669      return std::min(Tmp, Tmp2)-1;
1670    break;
1671  case ISD::TRUNCATE:
1672    // FIXME: it's tricky to do anything useful for this, but it is an important
1673    // case for targets like X86.
1674    break;
1675  }
1676
1677  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1678  if (Op.getOpcode() == ISD::LOAD) {
1679    LoadSDNode *LD = cast<LoadSDNode>(Op);
1680    unsigned ExtType = LD->getExtensionType();
1681    switch (ExtType) {
1682    default: break;
1683    case ISD::SEXTLOAD:    // '17' bits known
1684      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1685      return VTBits-Tmp+1;
1686    case ISD::ZEXTLOAD:    // '16' bits known
1687      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1688      return VTBits-Tmp;
1689    }
1690  }
1691
1692  // Allow the target to implement this method for its nodes.
1693  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1694      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1695      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1696      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1697    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1698    if (NumBits > 1) return NumBits;
1699  }
1700
1701  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1702  // use this information.
1703  uint64_t KnownZero, KnownOne;
1704  uint64_t Mask = MVT::getIntVTBitMask(VT);
1705  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1706
1707  uint64_t SignBit = MVT::getIntVTSignBit(VT);
1708  if (KnownZero & SignBit) {        // SignBit is 0
1709    Mask = KnownZero;
1710  } else if (KnownOne & SignBit) {  // SignBit is 1;
1711    Mask = KnownOne;
1712  } else {
1713    // Nothing known.
1714    return 1;
1715  }
1716
1717  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1718  // the number of identical bits in the top of the input value.
1719  Mask ^= ~0ULL;
1720  Mask <<= 64-VTBits;
1721  // Return # leading zeros.  We use 'min' here in case Val was zero before
1722  // shifting.  We don't want to return '64' as for an i32 "0".
1723  return std::min(VTBits, CountLeadingZeros_64(Mask));
1724}
1725
1726
1727bool SelectionDAG::isVerifiedDebugInfoDesc(SDOperand Op) const {
1728  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1729  if (!GA) return false;
1730  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
1731  if (!GV) return false;
1732  MachineModuleInfo *MMI = getMachineModuleInfo();
1733  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
1734}
1735
1736
1737/// getNode - Gets or creates the specified node.
1738///
1739SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1740  FoldingSetNodeID ID;
1741  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1742  void *IP = 0;
1743  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1744    return SDOperand(E, 0);
1745  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1746  CSEMap.InsertNode(N, IP);
1747
1748  AllNodes.push_back(N);
1749  return SDOperand(N, 0);
1750}
1751
1752SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1753                                SDOperand Operand) {
1754  unsigned Tmp1;
1755  // Constant fold unary operations with an integer constant operand.
1756  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1757    uint64_t Val = C->getValue();
1758    switch (Opcode) {
1759    default: break;
1760    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1761    case ISD::ANY_EXTEND:
1762    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1763    case ISD::TRUNCATE:    return getConstant(Val, VT);
1764    case ISD::UINT_TO_FP:
1765    case ISD::SINT_TO_FP: {
1766      const uint64_t zero[] = {0, 0};
1767      // No compile time operations on this type.
1768      if (VT==MVT::ppcf128)
1769        break;
1770      APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero));
1771      (void)apf.convertFromZeroExtendedInteger(&Val,
1772                               MVT::getSizeInBits(Operand.getValueType()),
1773                               Opcode==ISD::SINT_TO_FP,
1774                               APFloat::rmNearestTiesToEven);
1775      return getConstantFP(apf, VT);
1776    }
1777    case ISD::BIT_CONVERT:
1778      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1779        return getConstantFP(BitsToFloat(Val), VT);
1780      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1781        return getConstantFP(BitsToDouble(Val), VT);
1782      break;
1783    case ISD::BSWAP:
1784      switch(VT) {
1785      default: assert(0 && "Invalid bswap!"); break;
1786      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1787      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1788      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1789      }
1790      break;
1791    case ISD::CTPOP:
1792      switch(VT) {
1793      default: assert(0 && "Invalid ctpop!"); break;
1794      case MVT::i1: return getConstant(Val != 0, VT);
1795      case MVT::i8:
1796        Tmp1 = (unsigned)Val & 0xFF;
1797        return getConstant(CountPopulation_32(Tmp1), VT);
1798      case MVT::i16:
1799        Tmp1 = (unsigned)Val & 0xFFFF;
1800        return getConstant(CountPopulation_32(Tmp1), VT);
1801      case MVT::i32:
1802        return getConstant(CountPopulation_32((unsigned)Val), VT);
1803      case MVT::i64:
1804        return getConstant(CountPopulation_64(Val), VT);
1805      }
1806    case ISD::CTLZ:
1807      switch(VT) {
1808      default: assert(0 && "Invalid ctlz!"); break;
1809      case MVT::i1: return getConstant(Val == 0, VT);
1810      case MVT::i8:
1811        Tmp1 = (unsigned)Val & 0xFF;
1812        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1813      case MVT::i16:
1814        Tmp1 = (unsigned)Val & 0xFFFF;
1815        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1816      case MVT::i32:
1817        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1818      case MVT::i64:
1819        return getConstant(CountLeadingZeros_64(Val), VT);
1820      }
1821    case ISD::CTTZ:
1822      switch(VT) {
1823      default: assert(0 && "Invalid cttz!"); break;
1824      case MVT::i1: return getConstant(Val == 0, VT);
1825      case MVT::i8:
1826        Tmp1 = (unsigned)Val | 0x100;
1827        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1828      case MVT::i16:
1829        Tmp1 = (unsigned)Val | 0x10000;
1830        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1831      case MVT::i32:
1832        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1833      case MVT::i64:
1834        return getConstant(CountTrailingZeros_64(Val), VT);
1835      }
1836    }
1837  }
1838
1839  // Constant fold unary operations with a floating point constant operand.
1840  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1841    APFloat V = C->getValueAPF();    // make copy
1842    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
1843      switch (Opcode) {
1844      case ISD::FNEG:
1845        V.changeSign();
1846        return getConstantFP(V, VT);
1847      case ISD::FABS:
1848        V.clearSign();
1849        return getConstantFP(V, VT);
1850      case ISD::FP_ROUND:
1851      case ISD::FP_EXTEND:
1852        // This can return overflow, underflow, or inexact; we don't care.
1853        // FIXME need to be more flexible about rounding mode.
1854        (void) V.convert(VT==MVT::f32 ? APFloat::IEEEsingle :
1855                         VT==MVT::f64 ? APFloat::IEEEdouble :
1856                         VT==MVT::f80 ? APFloat::x87DoubleExtended :
1857                         VT==MVT::f128 ? APFloat::IEEEquad :
1858                         APFloat::Bogus,
1859                         APFloat::rmNearestTiesToEven);
1860        return getConstantFP(V, VT);
1861      case ISD::FP_TO_SINT:
1862      case ISD::FP_TO_UINT: {
1863        integerPart x;
1864        assert(integerPartWidth >= 64);
1865        // FIXME need to be more flexible about rounding mode.
1866        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1867                              Opcode==ISD::FP_TO_SINT,
1868                              APFloat::rmTowardZero);
1869        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1870          break;
1871        return getConstant(x, VT);
1872      }
1873      case ISD::BIT_CONVERT:
1874        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1875          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1876        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1877          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1878        break;
1879      }
1880    }
1881  }
1882
1883  unsigned OpOpcode = Operand.Val->getOpcode();
1884  switch (Opcode) {
1885  case ISD::TokenFactor:
1886    return Operand;         // Factor of one node?  No factor.
1887  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
1888  case ISD::FP_EXTEND:
1889    assert(MVT::isFloatingPoint(VT) &&
1890           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1891    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
1892    break;
1893    case ISD::SIGN_EXTEND:
1894    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1895           "Invalid SIGN_EXTEND!");
1896    if (Operand.getValueType() == VT) return Operand;   // noop extension
1897    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1898           && "Invalid sext node, dst < src!");
1899    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1900      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1901    break;
1902  case ISD::ZERO_EXTEND:
1903    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1904           "Invalid ZERO_EXTEND!");
1905    if (Operand.getValueType() == VT) return Operand;   // noop extension
1906    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1907           && "Invalid zext node, dst < src!");
1908    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1909      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1910    break;
1911  case ISD::ANY_EXTEND:
1912    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1913           "Invalid ANY_EXTEND!");
1914    if (Operand.getValueType() == VT) return Operand;   // noop extension
1915    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1916           && "Invalid anyext node, dst < src!");
1917    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1918      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1919      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1920    break;
1921  case ISD::TRUNCATE:
1922    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1923           "Invalid TRUNCATE!");
1924    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1925    assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
1926           && "Invalid truncate node, src < dst!");
1927    if (OpOpcode == ISD::TRUNCATE)
1928      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1929    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1930             OpOpcode == ISD::ANY_EXTEND) {
1931      // If the source is smaller than the dest, we still need an extend.
1932      if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1933          < MVT::getSizeInBits(VT))
1934        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1935      else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1936               > MVT::getSizeInBits(VT))
1937        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1938      else
1939        return Operand.Val->getOperand(0);
1940    }
1941    break;
1942  case ISD::BIT_CONVERT:
1943    // Basic sanity checking.
1944    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1945           && "Cannot BIT_CONVERT between types of different sizes!");
1946    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1947    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1948      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1949    if (OpOpcode == ISD::UNDEF)
1950      return getNode(ISD::UNDEF, VT);
1951    break;
1952  case ISD::SCALAR_TO_VECTOR:
1953    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1954           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1955           "Illegal SCALAR_TO_VECTOR node!");
1956    break;
1957  case ISD::FNEG:
1958    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1959      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1960                     Operand.Val->getOperand(0));
1961    if (OpOpcode == ISD::FNEG)  // --X -> X
1962      return Operand.Val->getOperand(0);
1963    break;
1964  case ISD::FABS:
1965    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1966      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1967    break;
1968  }
1969
1970  SDNode *N;
1971  SDVTList VTs = getVTList(VT);
1972  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1973    FoldingSetNodeID ID;
1974    SDOperand Ops[1] = { Operand };
1975    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1976    void *IP = 0;
1977    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1978      return SDOperand(E, 0);
1979    N = new UnarySDNode(Opcode, VTs, Operand);
1980    CSEMap.InsertNode(N, IP);
1981  } else {
1982    N = new UnarySDNode(Opcode, VTs, Operand);
1983  }
1984  AllNodes.push_back(N);
1985  return SDOperand(N, 0);
1986}
1987
1988
1989
1990SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1991                                SDOperand N1, SDOperand N2) {
1992  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1993  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1994  switch (Opcode) {
1995  default: break;
1996  case ISD::TokenFactor:
1997    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1998           N2.getValueType() == MVT::Other && "Invalid token factor!");
1999    // Fold trivial token factors.
2000    if (N1.getOpcode() == ISD::EntryToken) return N2;
2001    if (N2.getOpcode() == ISD::EntryToken) return N1;
2002    break;
2003  case ISD::AND:
2004    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
2005           N1.getValueType() == VT && "Binary operator types must match!");
2006    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2007    // worth handling here.
2008    if (N2C && N2C->getValue() == 0)
2009      return N2;
2010    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2011      return N1;
2012    break;
2013  case ISD::OR:
2014  case ISD::XOR:
2015    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
2016           N1.getValueType() == VT && "Binary operator types must match!");
2017    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
2018    // worth handling here.
2019    if (N2C && N2C->getValue() == 0)
2020      return N1;
2021    break;
2022  case ISD::UDIV:
2023  case ISD::UREM:
2024  case ISD::MULHU:
2025  case ISD::MULHS:
2026    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
2027    // fall through
2028  case ISD::ADD:
2029  case ISD::SUB:
2030  case ISD::MUL:
2031  case ISD::SDIV:
2032  case ISD::SREM:
2033  case ISD::FADD:
2034  case ISD::FSUB:
2035  case ISD::FMUL:
2036  case ISD::FDIV:
2037  case ISD::FREM:
2038    assert(N1.getValueType() == N2.getValueType() &&
2039           N1.getValueType() == VT && "Binary operator types must match!");
2040    break;
2041  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2042    assert(N1.getValueType() == VT &&
2043           MVT::isFloatingPoint(N1.getValueType()) &&
2044           MVT::isFloatingPoint(N2.getValueType()) &&
2045           "Invalid FCOPYSIGN!");
2046    break;
2047  case ISD::SHL:
2048  case ISD::SRA:
2049  case ISD::SRL:
2050  case ISD::ROTL:
2051  case ISD::ROTR:
2052    assert(VT == N1.getValueType() &&
2053           "Shift operators return type must be the same as their first arg");
2054    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
2055           VT != MVT::i1 && "Shifts only work on integers");
2056    break;
2057  case ISD::FP_ROUND_INREG: {
2058    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2059    assert(VT == N1.getValueType() && "Not an inreg round!");
2060    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
2061           "Cannot FP_ROUND_INREG integer types");
2062    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2063           "Not rounding down!");
2064    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2065    break;
2066  }
2067  case ISD::FP_ROUND:
2068    assert(MVT::isFloatingPoint(VT) &&
2069           MVT::isFloatingPoint(N1.getValueType()) &&
2070           MVT::getSizeInBits(VT) <= MVT::getSizeInBits(N1.getValueType()) &&
2071           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2072    if (N1.getValueType() == VT) return N1;  // noop conversion.
2073    break;
2074  case ISD::AssertSext:
2075  case ISD::AssertZext: {
2076    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2077    assert(VT == N1.getValueType() && "Not an inreg extend!");
2078    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2079           "Cannot *_EXTEND_INREG FP types");
2080    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2081           "Not extending!");
2082    if (VT == EVT) return N1; // noop assertion.
2083    break;
2084  }
2085  case ISD::SIGN_EXTEND_INREG: {
2086    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2087    assert(VT == N1.getValueType() && "Not an inreg extend!");
2088    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2089           "Cannot *_EXTEND_INREG FP types");
2090    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2091           "Not extending!");
2092    if (EVT == VT) return N1;  // Not actually extending
2093
2094    if (N1C) {
2095      int64_t Val = N1C->getValue();
2096      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
2097      Val <<= 64-FromBits;
2098      Val >>= 64-FromBits;
2099      return getConstant(Val, VT);
2100    }
2101    break;
2102  }
2103  case ISD::EXTRACT_VECTOR_ELT:
2104    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2105
2106    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2107    // expanding copies of large vectors from registers.
2108    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2109        N1.getNumOperands() > 0) {
2110      unsigned Factor =
2111        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2112      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2113                     N1.getOperand(N2C->getValue() / Factor),
2114                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2115    }
2116
2117    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2118    // expanding large vector constants.
2119    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2120      return N1.getOperand(N2C->getValue());
2121
2122    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2123    // operations are lowered to scalars.
2124    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2125      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2126        if (IEC == N2C)
2127          return N1.getOperand(1);
2128        else
2129          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2130      }
2131    break;
2132  case ISD::EXTRACT_ELEMENT:
2133    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2134
2135    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2136    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2137    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2138    if (N1.getOpcode() == ISD::BUILD_PAIR)
2139      return N1.getOperand(N2C->getValue());
2140
2141    // EXTRACT_ELEMENT of a constant int is also very common.
2142    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2143      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2144      return getConstant(C->getValue() >> Shift, VT);
2145    }
2146    break;
2147  }
2148
2149  if (N1C) {
2150    if (N2C) {
2151      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
2152      switch (Opcode) {
2153      case ISD::ADD: return getConstant(C1 + C2, VT);
2154      case ISD::SUB: return getConstant(C1 - C2, VT);
2155      case ISD::MUL: return getConstant(C1 * C2, VT);
2156      case ISD::UDIV:
2157        if (C2) return getConstant(C1 / C2, VT);
2158        break;
2159      case ISD::UREM :
2160        if (C2) return getConstant(C1 % C2, VT);
2161        break;
2162      case ISD::SDIV :
2163        if (C2) return getConstant(N1C->getSignExtended() /
2164                                   N2C->getSignExtended(), VT);
2165        break;
2166      case ISD::SREM :
2167        if (C2) return getConstant(N1C->getSignExtended() %
2168                                   N2C->getSignExtended(), VT);
2169        break;
2170      case ISD::AND  : return getConstant(C1 & C2, VT);
2171      case ISD::OR   : return getConstant(C1 | C2, VT);
2172      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2173      case ISD::SHL  : return getConstant(C1 << C2, VT);
2174      case ISD::SRL  : return getConstant(C1 >> C2, VT);
2175      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
2176      case ISD::ROTL :
2177        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
2178                           VT);
2179      case ISD::ROTR :
2180        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
2181                           VT);
2182      default: break;
2183      }
2184    } else {      // Cannonicalize constant to RHS if commutative
2185      if (isCommutativeBinOp(Opcode)) {
2186        std::swap(N1C, N2C);
2187        std::swap(N1, N2);
2188      }
2189    }
2190  }
2191
2192  // Constant fold FP operations.
2193  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2194  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2195  if (N1CFP) {
2196    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2197      // Cannonicalize constant to RHS if commutative
2198      std::swap(N1CFP, N2CFP);
2199      std::swap(N1, N2);
2200    } else if (N2CFP && VT != MVT::ppcf128) {
2201      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2202      APFloat::opStatus s;
2203      switch (Opcode) {
2204      case ISD::FADD:
2205        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2206        if (s != APFloat::opInvalidOp)
2207          return getConstantFP(V1, VT);
2208        break;
2209      case ISD::FSUB:
2210        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2211        if (s!=APFloat::opInvalidOp)
2212          return getConstantFP(V1, VT);
2213        break;
2214      case ISD::FMUL:
2215        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2216        if (s!=APFloat::opInvalidOp)
2217          return getConstantFP(V1, VT);
2218        break;
2219      case ISD::FDIV:
2220        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2221        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2222          return getConstantFP(V1, VT);
2223        break;
2224      case ISD::FREM :
2225        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2226        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2227          return getConstantFP(V1, VT);
2228        break;
2229      case ISD::FCOPYSIGN:
2230        V1.copySign(V2);
2231        return getConstantFP(V1, VT);
2232      default: break;
2233      }
2234    }
2235  }
2236
2237  // Canonicalize an UNDEF to the RHS, even over a constant.
2238  if (N1.getOpcode() == ISD::UNDEF) {
2239    if (isCommutativeBinOp(Opcode)) {
2240      std::swap(N1, N2);
2241    } else {
2242      switch (Opcode) {
2243      case ISD::FP_ROUND_INREG:
2244      case ISD::SIGN_EXTEND_INREG:
2245      case ISD::SUB:
2246      case ISD::FSUB:
2247      case ISD::FDIV:
2248      case ISD::FREM:
2249      case ISD::SRA:
2250        return N1;     // fold op(undef, arg2) -> undef
2251      case ISD::UDIV:
2252      case ISD::SDIV:
2253      case ISD::UREM:
2254      case ISD::SREM:
2255      case ISD::SRL:
2256      case ISD::SHL:
2257        if (!MVT::isVector(VT))
2258          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2259        // For vectors, we can't easily build an all zero vector, just return
2260        // the LHS.
2261        return N2;
2262      }
2263    }
2264  }
2265
2266  // Fold a bunch of operators when the RHS is undef.
2267  if (N2.getOpcode() == ISD::UNDEF) {
2268    switch (Opcode) {
2269    case ISD::ADD:
2270    case ISD::ADDC:
2271    case ISD::ADDE:
2272    case ISD::SUB:
2273    case ISD::FADD:
2274    case ISD::FSUB:
2275    case ISD::FMUL:
2276    case ISD::FDIV:
2277    case ISD::FREM:
2278    case ISD::UDIV:
2279    case ISD::SDIV:
2280    case ISD::UREM:
2281    case ISD::SREM:
2282    case ISD::XOR:
2283      return N2;       // fold op(arg1, undef) -> undef
2284    case ISD::MUL:
2285    case ISD::AND:
2286    case ISD::SRL:
2287    case ISD::SHL:
2288      if (!MVT::isVector(VT))
2289        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2290      // For vectors, we can't easily build an all zero vector, just return
2291      // the LHS.
2292      return N1;
2293    case ISD::OR:
2294      if (!MVT::isVector(VT))
2295        return getConstant(MVT::getIntVTBitMask(VT), VT);
2296      // For vectors, we can't easily build an all one vector, just return
2297      // the LHS.
2298      return N1;
2299    case ISD::SRA:
2300      return N1;
2301    }
2302  }
2303
2304  // Memoize this node if possible.
2305  SDNode *N;
2306  SDVTList VTs = getVTList(VT);
2307  if (VT != MVT::Flag) {
2308    SDOperand Ops[] = { N1, N2 };
2309    FoldingSetNodeID ID;
2310    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2311    void *IP = 0;
2312    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2313      return SDOperand(E, 0);
2314    N = new BinarySDNode(Opcode, VTs, N1, N2);
2315    CSEMap.InsertNode(N, IP);
2316  } else {
2317    N = new BinarySDNode(Opcode, VTs, N1, N2);
2318  }
2319
2320  AllNodes.push_back(N);
2321  return SDOperand(N, 0);
2322}
2323
2324SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2325                                SDOperand N1, SDOperand N2, SDOperand N3) {
2326  // Perform various simplifications.
2327  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2328  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2329  switch (Opcode) {
2330  case ISD::SETCC: {
2331    // Use FoldSetCC to simplify SETCC's.
2332    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2333    if (Simp.Val) return Simp;
2334    break;
2335  }
2336  case ISD::SELECT:
2337    if (N1C)
2338      if (N1C->getValue())
2339        return N2;             // select true, X, Y -> X
2340      else
2341        return N3;             // select false, X, Y -> Y
2342
2343    if (N2 == N3) return N2;   // select C, X, X -> X
2344    break;
2345  case ISD::BRCOND:
2346    if (N2C)
2347      if (N2C->getValue()) // Unconditional branch
2348        return getNode(ISD::BR, MVT::Other, N1, N3);
2349      else
2350        return N1;         // Never-taken branch
2351    break;
2352  case ISD::VECTOR_SHUFFLE:
2353    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2354           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2355           N3.getOpcode() == ISD::BUILD_VECTOR &&
2356           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2357           "Illegal VECTOR_SHUFFLE node!");
2358    break;
2359  case ISD::BIT_CONVERT:
2360    // Fold bit_convert nodes from a type to themselves.
2361    if (N1.getValueType() == VT)
2362      return N1;
2363    break;
2364  }
2365
2366  // Memoize node if it doesn't produce a flag.
2367  SDNode *N;
2368  SDVTList VTs = getVTList(VT);
2369  if (VT != MVT::Flag) {
2370    SDOperand Ops[] = { N1, N2, N3 };
2371    FoldingSetNodeID ID;
2372    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2373    void *IP = 0;
2374    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2375      return SDOperand(E, 0);
2376    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2377    CSEMap.InsertNode(N, IP);
2378  } else {
2379    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2380  }
2381  AllNodes.push_back(N);
2382  return SDOperand(N, 0);
2383}
2384
2385SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2386                                SDOperand N1, SDOperand N2, SDOperand N3,
2387                                SDOperand N4) {
2388  SDOperand Ops[] = { N1, N2, N3, N4 };
2389  return getNode(Opcode, VT, Ops, 4);
2390}
2391
2392SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2393                                SDOperand N1, SDOperand N2, SDOperand N3,
2394                                SDOperand N4, SDOperand N5) {
2395  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2396  return getNode(Opcode, VT, Ops, 5);
2397}
2398
2399SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dest,
2400                                  SDOperand Src, SDOperand Size,
2401                                  SDOperand Align,
2402                                  SDOperand AlwaysInline) {
2403  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2404  return getNode(ISD::MEMCPY, MVT::Other, Ops, 6);
2405}
2406
2407SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dest,
2408                                  SDOperand Src, SDOperand Size,
2409                                  SDOperand Align,
2410                                  SDOperand AlwaysInline) {
2411  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2412  return getNode(ISD::MEMMOVE, MVT::Other, Ops, 6);
2413}
2414
2415SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dest,
2416                                  SDOperand Src, SDOperand Size,
2417                                  SDOperand Align,
2418                                  SDOperand AlwaysInline) {
2419  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2420  return getNode(ISD::MEMSET, MVT::Other, Ops, 6);
2421}
2422
2423SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2424                                SDOperand Chain, SDOperand Ptr,
2425                                const Value *SV, int SVOffset,
2426                                bool isVolatile, unsigned Alignment) {
2427  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2428    const Type *Ty = 0;
2429    if (VT != MVT::iPTR) {
2430      Ty = MVT::getTypeForValueType(VT);
2431    } else if (SV) {
2432      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2433      assert(PT && "Value for load must be a pointer");
2434      Ty = PT->getElementType();
2435    }
2436    assert(Ty && "Could not get type information for load");
2437    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2438  }
2439  SDVTList VTs = getVTList(VT, MVT::Other);
2440  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2441  SDOperand Ops[] = { Chain, Ptr, Undef };
2442  FoldingSetNodeID ID;
2443  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2444  ID.AddInteger(ISD::UNINDEXED);
2445  ID.AddInteger(ISD::NON_EXTLOAD);
2446  ID.AddInteger((unsigned int)VT);
2447  ID.AddInteger(Alignment);
2448  ID.AddInteger(isVolatile);
2449  void *IP = 0;
2450  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2451    return SDOperand(E, 0);
2452  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2453                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2454                             isVolatile);
2455  CSEMap.InsertNode(N, IP);
2456  AllNodes.push_back(N);
2457  return SDOperand(N, 0);
2458}
2459
2460SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2461                                   SDOperand Chain, SDOperand Ptr,
2462                                   const Value *SV,
2463                                   int SVOffset, MVT::ValueType EVT,
2464                                   bool isVolatile, unsigned Alignment) {
2465  // If they are asking for an extending load from/to the same thing, return a
2466  // normal load.
2467  if (VT == EVT)
2468    return getLoad(VT, Chain, Ptr, SV, SVOffset, isVolatile, Alignment);
2469
2470  if (MVT::isVector(VT))
2471    assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2472  else
2473    assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
2474           "Should only be an extending load, not truncating!");
2475  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2476         "Cannot sign/zero extend a FP/Vector load!");
2477  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2478         "Cannot convert from FP to Int or Int -> FP!");
2479
2480  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2481    const Type *Ty = 0;
2482    if (VT != MVT::iPTR) {
2483      Ty = MVT::getTypeForValueType(VT);
2484    } else if (SV) {
2485      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2486      assert(PT && "Value for load must be a pointer");
2487      Ty = PT->getElementType();
2488    }
2489    assert(Ty && "Could not get type information for load");
2490    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2491  }
2492  SDVTList VTs = getVTList(VT, MVT::Other);
2493  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2494  SDOperand Ops[] = { Chain, Ptr, Undef };
2495  FoldingSetNodeID ID;
2496  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2497  ID.AddInteger(ISD::UNINDEXED);
2498  ID.AddInteger(ExtType);
2499  ID.AddInteger((unsigned int)EVT);
2500  ID.AddInteger(Alignment);
2501  ID.AddInteger(isVolatile);
2502  void *IP = 0;
2503  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2504    return SDOperand(E, 0);
2505  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2506                             SV, SVOffset, Alignment, isVolatile);
2507  CSEMap.InsertNode(N, IP);
2508  AllNodes.push_back(N);
2509  return SDOperand(N, 0);
2510}
2511
2512SDOperand
2513SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2514                             SDOperand Offset, ISD::MemIndexedMode AM) {
2515  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2516  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2517         "Load is already a indexed load!");
2518  MVT::ValueType VT = OrigLoad.getValueType();
2519  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2520  SDOperand Ops[] = { LD->getChain(), Base, Offset };
2521  FoldingSetNodeID ID;
2522  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2523  ID.AddInteger(AM);
2524  ID.AddInteger(LD->getExtensionType());
2525  ID.AddInteger((unsigned int)(LD->getMemoryVT()));
2526  ID.AddInteger(LD->getAlignment());
2527  ID.AddInteger(LD->isVolatile());
2528  void *IP = 0;
2529  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2530    return SDOperand(E, 0);
2531  SDNode *N = new LoadSDNode(Ops, VTs, AM,
2532                             LD->getExtensionType(), LD->getMemoryVT(),
2533                             LD->getSrcValue(), LD->getSrcValueOffset(),
2534                             LD->getAlignment(), LD->isVolatile());
2535  CSEMap.InsertNode(N, IP);
2536  AllNodes.push_back(N);
2537  return SDOperand(N, 0);
2538}
2539
2540SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2541                                 SDOperand Ptr, const Value *SV, int SVOffset,
2542                                 bool isVolatile, unsigned Alignment) {
2543  MVT::ValueType VT = Val.getValueType();
2544
2545  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2546    const Type *Ty = 0;
2547    if (VT != MVT::iPTR) {
2548      Ty = MVT::getTypeForValueType(VT);
2549    } else if (SV) {
2550      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2551      assert(PT && "Value for store must be a pointer");
2552      Ty = PT->getElementType();
2553    }
2554    assert(Ty && "Could not get type information for store");
2555    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2556  }
2557  SDVTList VTs = getVTList(MVT::Other);
2558  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2559  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2560  FoldingSetNodeID ID;
2561  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2562  ID.AddInteger(ISD::UNINDEXED);
2563  ID.AddInteger(false);
2564  ID.AddInteger((unsigned int)VT);
2565  ID.AddInteger(Alignment);
2566  ID.AddInteger(isVolatile);
2567  void *IP = 0;
2568  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2569    return SDOperand(E, 0);
2570  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2571                              VT, SV, SVOffset, Alignment, isVolatile);
2572  CSEMap.InsertNode(N, IP);
2573  AllNodes.push_back(N);
2574  return SDOperand(N, 0);
2575}
2576
2577SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2578                                      SDOperand Ptr, const Value *SV,
2579                                      int SVOffset, MVT::ValueType SVT,
2580                                      bool isVolatile, unsigned Alignment) {
2581  MVT::ValueType VT = Val.getValueType();
2582
2583  if (VT == SVT)
2584    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
2585
2586  assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
2587         "Not a truncation?");
2588  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2589         "Can't do FP-INT conversion!");
2590
2591  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2592    const Type *Ty = 0;
2593    if (VT != MVT::iPTR) {
2594      Ty = MVT::getTypeForValueType(VT);
2595    } else if (SV) {
2596      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2597      assert(PT && "Value for store must be a pointer");
2598      Ty = PT->getElementType();
2599    }
2600    assert(Ty && "Could not get type information for store");
2601    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2602  }
2603  SDVTList VTs = getVTList(MVT::Other);
2604  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2605  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2606  FoldingSetNodeID ID;
2607  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2608  ID.AddInteger(ISD::UNINDEXED);
2609  ID.AddInteger(1);
2610  ID.AddInteger((unsigned int)SVT);
2611  ID.AddInteger(Alignment);
2612  ID.AddInteger(isVolatile);
2613  void *IP = 0;
2614  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2615    return SDOperand(E, 0);
2616  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
2617                              SVT, SV, SVOffset, Alignment, isVolatile);
2618  CSEMap.InsertNode(N, IP);
2619  AllNodes.push_back(N);
2620  return SDOperand(N, 0);
2621}
2622
2623SDOperand
2624SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2625                              SDOperand Offset, ISD::MemIndexedMode AM) {
2626  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2627  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2628         "Store is already a indexed store!");
2629  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2630  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2631  FoldingSetNodeID ID;
2632  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2633  ID.AddInteger(AM);
2634  ID.AddInteger(ST->isTruncatingStore());
2635  ID.AddInteger((unsigned int)(ST->getMemoryVT()));
2636  ID.AddInteger(ST->getAlignment());
2637  ID.AddInteger(ST->isVolatile());
2638  void *IP = 0;
2639  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2640    return SDOperand(E, 0);
2641  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2642                              ST->isTruncatingStore(), ST->getMemoryVT(),
2643                              ST->getSrcValue(), ST->getSrcValueOffset(),
2644                              ST->getAlignment(), ST->isVolatile());
2645  CSEMap.InsertNode(N, IP);
2646  AllNodes.push_back(N);
2647  return SDOperand(N, 0);
2648}
2649
2650SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2651                                 SDOperand Chain, SDOperand Ptr,
2652                                 SDOperand SV) {
2653  SDOperand Ops[] = { Chain, Ptr, SV };
2654  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2655}
2656
2657SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2658                                const SDOperand *Ops, unsigned NumOps) {
2659  switch (NumOps) {
2660  case 0: return getNode(Opcode, VT);
2661  case 1: return getNode(Opcode, VT, Ops[0]);
2662  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2663  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2664  default: break;
2665  }
2666
2667  switch (Opcode) {
2668  default: break;
2669  case ISD::SELECT_CC: {
2670    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2671    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2672           "LHS and RHS of condition must have same type!");
2673    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2674           "True and False arms of SelectCC must have same type!");
2675    assert(Ops[2].getValueType() == VT &&
2676           "select_cc node must be of same type as true and false value!");
2677    break;
2678  }
2679  case ISD::BR_CC: {
2680    assert(NumOps == 5 && "BR_CC takes 5 operands!");
2681    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2682           "LHS/RHS of comparison should match types!");
2683    break;
2684  }
2685  }
2686
2687  // Memoize nodes.
2688  SDNode *N;
2689  SDVTList VTs = getVTList(VT);
2690  if (VT != MVT::Flag) {
2691    FoldingSetNodeID ID;
2692    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2693    void *IP = 0;
2694    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2695      return SDOperand(E, 0);
2696    N = new SDNode(Opcode, VTs, Ops, NumOps);
2697    CSEMap.InsertNode(N, IP);
2698  } else {
2699    N = new SDNode(Opcode, VTs, Ops, NumOps);
2700  }
2701  AllNodes.push_back(N);
2702  return SDOperand(N, 0);
2703}
2704
2705SDOperand SelectionDAG::getNode(unsigned Opcode,
2706                                std::vector<MVT::ValueType> &ResultTys,
2707                                const SDOperand *Ops, unsigned NumOps) {
2708  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2709                 Ops, NumOps);
2710}
2711
2712SDOperand SelectionDAG::getNode(unsigned Opcode,
2713                                const MVT::ValueType *VTs, unsigned NumVTs,
2714                                const SDOperand *Ops, unsigned NumOps) {
2715  if (NumVTs == 1)
2716    return getNode(Opcode, VTs[0], Ops, NumOps);
2717  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2718}
2719
2720SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2721                                const SDOperand *Ops, unsigned NumOps) {
2722  if (VTList.NumVTs == 1)
2723    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2724
2725  switch (Opcode) {
2726  // FIXME: figure out how to safely handle things like
2727  // int foo(int x) { return 1 << (x & 255); }
2728  // int bar() { return foo(256); }
2729#if 0
2730  case ISD::SRA_PARTS:
2731  case ISD::SRL_PARTS:
2732  case ISD::SHL_PARTS:
2733    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2734        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2735      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2736    else if (N3.getOpcode() == ISD::AND)
2737      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2738        // If the and is only masking out bits that cannot effect the shift,
2739        // eliminate the and.
2740        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2741        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2742          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2743      }
2744    break;
2745#endif
2746  }
2747
2748  // Memoize the node unless it returns a flag.
2749  SDNode *N;
2750  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2751    FoldingSetNodeID ID;
2752    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2753    void *IP = 0;
2754    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2755      return SDOperand(E, 0);
2756    if (NumOps == 1)
2757      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2758    else if (NumOps == 2)
2759      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2760    else if (NumOps == 3)
2761      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2762    else
2763      N = new SDNode(Opcode, VTList, Ops, NumOps);
2764    CSEMap.InsertNode(N, IP);
2765  } else {
2766    if (NumOps == 1)
2767      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2768    else if (NumOps == 2)
2769      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2770    else if (NumOps == 3)
2771      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2772    else
2773      N = new SDNode(Opcode, VTList, Ops, NumOps);
2774  }
2775  AllNodes.push_back(N);
2776  return SDOperand(N, 0);
2777}
2778
2779SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
2780  return getNode(Opcode, VTList, 0, 0);
2781}
2782
2783SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2784                                SDOperand N1) {
2785  SDOperand Ops[] = { N1 };
2786  return getNode(Opcode, VTList, Ops, 1);
2787}
2788
2789SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2790                                SDOperand N1, SDOperand N2) {
2791  SDOperand Ops[] = { N1, N2 };
2792  return getNode(Opcode, VTList, Ops, 2);
2793}
2794
2795SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2796                                SDOperand N1, SDOperand N2, SDOperand N3) {
2797  SDOperand Ops[] = { N1, N2, N3 };
2798  return getNode(Opcode, VTList, Ops, 3);
2799}
2800
2801SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2802                                SDOperand N1, SDOperand N2, SDOperand N3,
2803                                SDOperand N4) {
2804  SDOperand Ops[] = { N1, N2, N3, N4 };
2805  return getNode(Opcode, VTList, Ops, 4);
2806}
2807
2808SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2809                                SDOperand N1, SDOperand N2, SDOperand N3,
2810                                SDOperand N4, SDOperand N5) {
2811  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2812  return getNode(Opcode, VTList, Ops, 5);
2813}
2814
2815SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2816  return makeVTList(SDNode::getValueTypeList(VT), 1);
2817}
2818
2819SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2820  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2821       E = VTList.end(); I != E; ++I) {
2822    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2823      return makeVTList(&(*I)[0], 2);
2824  }
2825  std::vector<MVT::ValueType> V;
2826  V.push_back(VT1);
2827  V.push_back(VT2);
2828  VTList.push_front(V);
2829  return makeVTList(&(*VTList.begin())[0], 2);
2830}
2831SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2832                                 MVT::ValueType VT3) {
2833  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2834       E = VTList.end(); I != E; ++I) {
2835    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2836        (*I)[2] == VT3)
2837      return makeVTList(&(*I)[0], 3);
2838  }
2839  std::vector<MVT::ValueType> V;
2840  V.push_back(VT1);
2841  V.push_back(VT2);
2842  V.push_back(VT3);
2843  VTList.push_front(V);
2844  return makeVTList(&(*VTList.begin())[0], 3);
2845}
2846
2847SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2848  switch (NumVTs) {
2849    case 0: assert(0 && "Cannot have nodes without results!");
2850    case 1: return getVTList(VTs[0]);
2851    case 2: return getVTList(VTs[0], VTs[1]);
2852    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2853    default: break;
2854  }
2855
2856  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2857       E = VTList.end(); I != E; ++I) {
2858    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2859
2860    bool NoMatch = false;
2861    for (unsigned i = 2; i != NumVTs; ++i)
2862      if (VTs[i] != (*I)[i]) {
2863        NoMatch = true;
2864        break;
2865      }
2866    if (!NoMatch)
2867      return makeVTList(&*I->begin(), NumVTs);
2868  }
2869
2870  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2871  return makeVTList(&*VTList.begin()->begin(), NumVTs);
2872}
2873
2874
2875/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2876/// specified operands.  If the resultant node already exists in the DAG,
2877/// this does not modify the specified node, instead it returns the node that
2878/// already exists.  If the resultant node does not exist in the DAG, the
2879/// input node is returned.  As a degenerate case, if you specify the same
2880/// input operands as the node already has, the input node is returned.
2881SDOperand SelectionDAG::
2882UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2883  SDNode *N = InN.Val;
2884  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2885
2886  // Check to see if there is no change.
2887  if (Op == N->getOperand(0)) return InN;
2888
2889  // See if the modified node already exists.
2890  void *InsertPos = 0;
2891  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2892    return SDOperand(Existing, InN.ResNo);
2893
2894  // Nope it doesn't.  Remove the node from it's current place in the maps.
2895  if (InsertPos)
2896    RemoveNodeFromCSEMaps(N);
2897
2898  // Now we update the operands.
2899  N->OperandList[0].Val->removeUser(N);
2900  Op.Val->addUser(N);
2901  N->OperandList[0] = Op;
2902
2903  // If this gets put into a CSE map, add it.
2904  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2905  return InN;
2906}
2907
2908SDOperand SelectionDAG::
2909UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2910  SDNode *N = InN.Val;
2911  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2912
2913  // Check to see if there is no change.
2914  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2915    return InN;   // No operands changed, just return the input node.
2916
2917  // See if the modified node already exists.
2918  void *InsertPos = 0;
2919  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2920    return SDOperand(Existing, InN.ResNo);
2921
2922  // Nope it doesn't.  Remove the node from it's current place in the maps.
2923  if (InsertPos)
2924    RemoveNodeFromCSEMaps(N);
2925
2926  // Now we update the operands.
2927  if (N->OperandList[0] != Op1) {
2928    N->OperandList[0].Val->removeUser(N);
2929    Op1.Val->addUser(N);
2930    N->OperandList[0] = Op1;
2931  }
2932  if (N->OperandList[1] != Op2) {
2933    N->OperandList[1].Val->removeUser(N);
2934    Op2.Val->addUser(N);
2935    N->OperandList[1] = Op2;
2936  }
2937
2938  // If this gets put into a CSE map, add it.
2939  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2940  return InN;
2941}
2942
2943SDOperand SelectionDAG::
2944UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2945  SDOperand Ops[] = { Op1, Op2, Op3 };
2946  return UpdateNodeOperands(N, Ops, 3);
2947}
2948
2949SDOperand SelectionDAG::
2950UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2951                   SDOperand Op3, SDOperand Op4) {
2952  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2953  return UpdateNodeOperands(N, Ops, 4);
2954}
2955
2956SDOperand SelectionDAG::
2957UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2958                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2959  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2960  return UpdateNodeOperands(N, Ops, 5);
2961}
2962
2963
2964SDOperand SelectionDAG::
2965UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2966  SDNode *N = InN.Val;
2967  assert(N->getNumOperands() == NumOps &&
2968         "Update with wrong number of operands");
2969
2970  // Check to see if there is no change.
2971  bool AnyChange = false;
2972  for (unsigned i = 0; i != NumOps; ++i) {
2973    if (Ops[i] != N->getOperand(i)) {
2974      AnyChange = true;
2975      break;
2976    }
2977  }
2978
2979  // No operands changed, just return the input node.
2980  if (!AnyChange) return InN;
2981
2982  // See if the modified node already exists.
2983  void *InsertPos = 0;
2984  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2985    return SDOperand(Existing, InN.ResNo);
2986
2987  // Nope it doesn't.  Remove the node from it's current place in the maps.
2988  if (InsertPos)
2989    RemoveNodeFromCSEMaps(N);
2990
2991  // Now we update the operands.
2992  for (unsigned i = 0; i != NumOps; ++i) {
2993    if (N->OperandList[i] != Ops[i]) {
2994      N->OperandList[i].Val->removeUser(N);
2995      Ops[i].Val->addUser(N);
2996      N->OperandList[i] = Ops[i];
2997    }
2998  }
2999
3000  // If this gets put into a CSE map, add it.
3001  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3002  return InN;
3003}
3004
3005
3006/// MorphNodeTo - This frees the operands of the current node, resets the
3007/// opcode, types, and operands to the specified value.  This should only be
3008/// used by the SelectionDAG class.
3009void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
3010                         const SDOperand *Ops, unsigned NumOps) {
3011  NodeType = Opc;
3012  ValueList = L.VTs;
3013  NumValues = L.NumVTs;
3014
3015  // Clear the operands list, updating used nodes to remove this from their
3016  // use list.
3017  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3018    I->Val->removeUser(this);
3019
3020  // If NumOps is larger than the # of operands we currently have, reallocate
3021  // the operand list.
3022  if (NumOps > NumOperands) {
3023    if (OperandsNeedDelete)
3024      delete [] OperandList;
3025    OperandList = new SDOperand[NumOps];
3026    OperandsNeedDelete = true;
3027  }
3028
3029  // Assign the new operands.
3030  NumOperands = NumOps;
3031
3032  for (unsigned i = 0, e = NumOps; i != e; ++i) {
3033    OperandList[i] = Ops[i];
3034    SDNode *N = OperandList[i].Val;
3035    N->Uses.push_back(this);
3036  }
3037}
3038
3039/// SelectNodeTo - These are used for target selectors to *mutate* the
3040/// specified node to have the specified return type, Target opcode, and
3041/// operands.  Note that target opcodes are stored as
3042/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
3043///
3044/// Note that SelectNodeTo returns the resultant node.  If there is already a
3045/// node of the specified opcode and operands, it returns that node instead of
3046/// the current one.
3047SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3048                                   MVT::ValueType VT) {
3049  SDVTList VTs = getVTList(VT);
3050  FoldingSetNodeID ID;
3051  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
3052  void *IP = 0;
3053  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3054    return ON;
3055
3056  RemoveNodeFromCSEMaps(N);
3057
3058  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
3059
3060  CSEMap.InsertNode(N, IP);
3061  return N;
3062}
3063
3064SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3065                                   MVT::ValueType VT, SDOperand Op1) {
3066  // If an identical node already exists, use it.
3067  SDVTList VTs = getVTList(VT);
3068  SDOperand Ops[] = { Op1 };
3069
3070  FoldingSetNodeID ID;
3071  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3072  void *IP = 0;
3073  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3074    return ON;
3075
3076  RemoveNodeFromCSEMaps(N);
3077  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3078  CSEMap.InsertNode(N, IP);
3079  return N;
3080}
3081
3082SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3083                                   MVT::ValueType VT, SDOperand Op1,
3084                                   SDOperand Op2) {
3085  // If an identical node already exists, use it.
3086  SDVTList VTs = getVTList(VT);
3087  SDOperand Ops[] = { Op1, Op2 };
3088
3089  FoldingSetNodeID ID;
3090  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3091  void *IP = 0;
3092  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3093    return ON;
3094
3095  RemoveNodeFromCSEMaps(N);
3096
3097  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3098
3099  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3100  return N;
3101}
3102
3103SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3104                                   MVT::ValueType VT, SDOperand Op1,
3105                                   SDOperand Op2, SDOperand Op3) {
3106  // If an identical node already exists, use it.
3107  SDVTList VTs = getVTList(VT);
3108  SDOperand Ops[] = { Op1, Op2, Op3 };
3109  FoldingSetNodeID ID;
3110  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3111  void *IP = 0;
3112  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3113    return ON;
3114
3115  RemoveNodeFromCSEMaps(N);
3116
3117  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3118
3119  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3120  return N;
3121}
3122
3123SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3124                                   MVT::ValueType VT, const SDOperand *Ops,
3125                                   unsigned NumOps) {
3126  // If an identical node already exists, use it.
3127  SDVTList VTs = getVTList(VT);
3128  FoldingSetNodeID ID;
3129  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3130  void *IP = 0;
3131  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3132    return ON;
3133
3134  RemoveNodeFromCSEMaps(N);
3135  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3136
3137  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3138  return N;
3139}
3140
3141SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3142                                   MVT::ValueType VT1, MVT::ValueType VT2,
3143                                   SDOperand Op1, SDOperand Op2) {
3144  SDVTList VTs = getVTList(VT1, VT2);
3145  FoldingSetNodeID ID;
3146  SDOperand Ops[] = { Op1, Op2 };
3147  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3148  void *IP = 0;
3149  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3150    return ON;
3151
3152  RemoveNodeFromCSEMaps(N);
3153  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3154  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3155  return N;
3156}
3157
3158SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3159                                   MVT::ValueType VT1, MVT::ValueType VT2,
3160                                   SDOperand Op1, SDOperand Op2,
3161                                   SDOperand Op3) {
3162  // If an identical node already exists, use it.
3163  SDVTList VTs = getVTList(VT1, VT2);
3164  SDOperand Ops[] = { Op1, Op2, Op3 };
3165  FoldingSetNodeID ID;
3166  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3167  void *IP = 0;
3168  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3169    return ON;
3170
3171  RemoveNodeFromCSEMaps(N);
3172
3173  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3174  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3175  return N;
3176}
3177
3178
3179/// getTargetNode - These are used for target selectors to create a new node
3180/// with specified return type(s), target opcode, and operands.
3181///
3182/// Note that getTargetNode returns the resultant node.  If there is already a
3183/// node of the specified opcode and operands, it returns that node instead of
3184/// the current one.
3185SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3186  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3187}
3188SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3189                                    SDOperand Op1) {
3190  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3191}
3192SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3193                                    SDOperand Op1, SDOperand Op2) {
3194  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3195}
3196SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3197                                    SDOperand Op1, SDOperand Op2,
3198                                    SDOperand Op3) {
3199  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3200}
3201SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3202                                    const SDOperand *Ops, unsigned NumOps) {
3203  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3204}
3205SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3206                                    MVT::ValueType VT2) {
3207  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3208  SDOperand Op;
3209  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3210}
3211SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3212                                    MVT::ValueType VT2, SDOperand Op1) {
3213  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3214  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3215}
3216SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3217                                    MVT::ValueType VT2, SDOperand Op1,
3218                                    SDOperand Op2) {
3219  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3220  SDOperand Ops[] = { Op1, Op2 };
3221  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3222}
3223SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3224                                    MVT::ValueType VT2, SDOperand Op1,
3225                                    SDOperand Op2, SDOperand Op3) {
3226  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3227  SDOperand Ops[] = { Op1, Op2, Op3 };
3228  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3229}
3230SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3231                                    MVT::ValueType VT2,
3232                                    const SDOperand *Ops, unsigned NumOps) {
3233  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3234  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3235}
3236SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3237                                    MVT::ValueType VT2, MVT::ValueType VT3,
3238                                    SDOperand Op1, SDOperand Op2) {
3239  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3240  SDOperand Ops[] = { Op1, Op2 };
3241  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3242}
3243SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3244                                    MVT::ValueType VT2, MVT::ValueType VT3,
3245                                    SDOperand Op1, SDOperand Op2,
3246                                    SDOperand Op3) {
3247  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3248  SDOperand Ops[] = { Op1, Op2, Op3 };
3249  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3250}
3251SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3252                                    MVT::ValueType VT2, MVT::ValueType VT3,
3253                                    const SDOperand *Ops, unsigned NumOps) {
3254  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3255  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3256}
3257SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3258                                    MVT::ValueType VT2, MVT::ValueType VT3,
3259                                    MVT::ValueType VT4,
3260                                    const SDOperand *Ops, unsigned NumOps) {
3261  std::vector<MVT::ValueType> VTList;
3262  VTList.push_back(VT1);
3263  VTList.push_back(VT2);
3264  VTList.push_back(VT3);
3265  VTList.push_back(VT4);
3266  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3267  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3268}
3269SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3270                                    std::vector<MVT::ValueType> &ResultTys,
3271                                    const SDOperand *Ops, unsigned NumOps) {
3272  const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3273  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3274                 Ops, NumOps).Val;
3275}
3276
3277
3278/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3279/// This can cause recursive merging of nodes in the DAG.
3280///
3281/// This version assumes From has a single result value.
3282///
3283void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand To,
3284                                      DAGUpdateListener *UpdateListener) {
3285  SDNode *From = FromN.Val;
3286  assert(From->getNumValues() == 1 && FromN.ResNo == 0 &&
3287         "Cannot replace with this method!");
3288  assert(From != To.Val && "Cannot replace uses of with self");
3289
3290  while (!From->use_empty()) {
3291    // Process users until they are all gone.
3292    SDNode *U = *From->use_begin();
3293
3294    // This node is about to morph, remove its old self from the CSE maps.
3295    RemoveNodeFromCSEMaps(U);
3296
3297    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3298         I != E; ++I)
3299      if (I->Val == From) {
3300        From->removeUser(U);
3301        *I = To;
3302        To.Val->addUser(U);
3303      }
3304
3305    // Now that we have modified U, add it back to the CSE maps.  If it already
3306    // exists there, recursively merge the results together.
3307    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3308      ReplaceAllUsesWith(U, Existing, UpdateListener);
3309      // U is now dead.  Inform the listener if it exists and delete it.
3310      if (UpdateListener)
3311        UpdateListener->NodeDeleted(U);
3312      DeleteNodeNotInCSEMaps(U);
3313    } else {
3314      // If the node doesn't already exist, we updated it.  Inform a listener if
3315      // it exists.
3316      if (UpdateListener)
3317        UpdateListener->NodeUpdated(U);
3318    }
3319  }
3320}
3321
3322/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3323/// This can cause recursive merging of nodes in the DAG.
3324///
3325/// This version assumes From/To have matching types and numbers of result
3326/// values.
3327///
3328void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3329                                      DAGUpdateListener *UpdateListener) {
3330  assert(From != To && "Cannot replace uses of with self");
3331  assert(From->getNumValues() == To->getNumValues() &&
3332         "Cannot use this version of ReplaceAllUsesWith!");
3333  if (From->getNumValues() == 1)   // If possible, use the faster version.
3334    return ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0),
3335                              UpdateListener);
3336
3337  while (!From->use_empty()) {
3338    // Process users until they are all gone.
3339    SDNode *U = *From->use_begin();
3340
3341    // This node is about to morph, remove its old self from the CSE maps.
3342    RemoveNodeFromCSEMaps(U);
3343
3344    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3345         I != E; ++I)
3346      if (I->Val == From) {
3347        From->removeUser(U);
3348        I->Val = To;
3349        To->addUser(U);
3350      }
3351
3352    // Now that we have modified U, add it back to the CSE maps.  If it already
3353    // exists there, recursively merge the results together.
3354    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3355      ReplaceAllUsesWith(U, Existing, UpdateListener);
3356      // U is now dead.  Inform the listener if it exists and delete it.
3357      if (UpdateListener)
3358        UpdateListener->NodeDeleted(U);
3359      DeleteNodeNotInCSEMaps(U);
3360    } else {
3361      // If the node doesn't already exist, we updated it.  Inform a listener if
3362      // it exists.
3363      if (UpdateListener)
3364        UpdateListener->NodeUpdated(U);
3365    }
3366  }
3367}
3368
3369/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3370/// This can cause recursive merging of nodes in the DAG.
3371///
3372/// This version can replace From with any result values.  To must match the
3373/// number and types of values returned by From.
3374void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3375                                      const SDOperand *To,
3376                                      DAGUpdateListener *UpdateListener) {
3377  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
3378    return ReplaceAllUsesWith(SDOperand(From, 0), To[0], UpdateListener);
3379
3380  while (!From->use_empty()) {
3381    // Process users until they are all gone.
3382    SDNode *U = *From->use_begin();
3383
3384    // This node is about to morph, remove its old self from the CSE maps.
3385    RemoveNodeFromCSEMaps(U);
3386
3387    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3388         I != E; ++I)
3389      if (I->Val == From) {
3390        const SDOperand &ToOp = To[I->ResNo];
3391        From->removeUser(U);
3392        *I = ToOp;
3393        ToOp.Val->addUser(U);
3394      }
3395
3396    // Now that we have modified U, add it back to the CSE maps.  If it already
3397    // exists there, recursively merge the results together.
3398    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3399      ReplaceAllUsesWith(U, Existing, UpdateListener);
3400      // U is now dead.  Inform the listener if it exists and delete it.
3401      if (UpdateListener)
3402        UpdateListener->NodeDeleted(U);
3403      DeleteNodeNotInCSEMaps(U);
3404    } else {
3405      // If the node doesn't already exist, we updated it.  Inform a listener if
3406      // it exists.
3407      if (UpdateListener)
3408        UpdateListener->NodeUpdated(U);
3409    }
3410  }
3411}
3412
3413namespace {
3414  /// ChainedSetUpdaterListener - This class is a DAGUpdateListener that removes
3415  /// any deleted nodes from the set passed into its constructor and recursively
3416  /// notifies another update listener if specified.
3417  class ChainedSetUpdaterListener :
3418  public SelectionDAG::DAGUpdateListener {
3419    SmallSetVector<SDNode*, 16> &Set;
3420    SelectionDAG::DAGUpdateListener *Chain;
3421  public:
3422    ChainedSetUpdaterListener(SmallSetVector<SDNode*, 16> &set,
3423                              SelectionDAG::DAGUpdateListener *chain)
3424      : Set(set), Chain(chain) {}
3425
3426    virtual void NodeDeleted(SDNode *N) {
3427      Set.remove(N);
3428      if (Chain) Chain->NodeDeleted(N);
3429    }
3430    virtual void NodeUpdated(SDNode *N) {
3431      if (Chain) Chain->NodeUpdated(N);
3432    }
3433  };
3434}
3435
3436/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3437/// uses of other values produced by From.Val alone.  The Deleted vector is
3438/// handled the same way as for ReplaceAllUsesWith.
3439void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3440                                             DAGUpdateListener *UpdateListener){
3441  assert(From != To && "Cannot replace a value with itself");
3442
3443  // Handle the simple, trivial, case efficiently.
3444  if (From.Val->getNumValues() == 1) {
3445    ReplaceAllUsesWith(From, To, UpdateListener);
3446    return;
3447  }
3448
3449  if (From.use_empty()) return;
3450
3451  // Get all of the users of From.Val.  We want these in a nice,
3452  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3453  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3454
3455  // When one of the recursive merges deletes nodes from the graph, we need to
3456  // make sure that UpdateListener is notified *and* that the node is removed
3457  // from Users if present.  CSUL does this.
3458  ChainedSetUpdaterListener CSUL(Users, UpdateListener);
3459
3460  while (!Users.empty()) {
3461    // We know that this user uses some value of From.  If it is the right
3462    // value, update it.
3463    SDNode *User = Users.back();
3464    Users.pop_back();
3465
3466    // Scan for an operand that matches From.
3467    SDOperand *Op = User->OperandList, *E = User->OperandList+User->NumOperands;
3468    for (; Op != E; ++Op)
3469      if (*Op == From) break;
3470
3471    // If there are no matches, the user must use some other result of From.
3472    if (Op == E) continue;
3473
3474    // Okay, we know this user needs to be updated.  Remove its old self
3475    // from the CSE maps.
3476    RemoveNodeFromCSEMaps(User);
3477
3478    // Update all operands that match "From" in case there are multiple uses.
3479    for (; Op != E; ++Op) {
3480      if (*Op == From) {
3481        From.Val->removeUser(User);
3482        *Op = To;
3483        To.Val->addUser(User);
3484      }
3485    }
3486
3487    // Now that we have modified User, add it back to the CSE maps.  If it
3488    // already exists there, recursively merge the results together.
3489    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3490    if (!Existing) {
3491      if (UpdateListener) UpdateListener->NodeUpdated(User);
3492      continue;  // Continue on to next user.
3493    }
3494
3495    // If there was already an existing matching node, use ReplaceAllUsesWith
3496    // to replace the dead one with the existing one.  This can cause
3497    // recursive merging of other unrelated nodes down the line.  The merging
3498    // can cause deletion of nodes that used the old value.  To handle this, we
3499    // use CSUL to remove them from the Users set.
3500    ReplaceAllUsesWith(User, Existing, &CSUL);
3501
3502    // User is now dead.  Notify a listener if present.
3503    if (UpdateListener) UpdateListener->NodeDeleted(User);
3504    DeleteNodeNotInCSEMaps(User);
3505  }
3506}
3507
3508
3509/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3510/// their allnodes order. It returns the maximum id.
3511unsigned SelectionDAG::AssignNodeIds() {
3512  unsigned Id = 0;
3513  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3514    SDNode *N = I;
3515    N->setNodeId(Id++);
3516  }
3517  return Id;
3518}
3519
3520/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3521/// based on their topological order. It returns the maximum id and a vector
3522/// of the SDNodes* in assigned order by reference.
3523unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3524  unsigned DAGSize = AllNodes.size();
3525  std::vector<unsigned> InDegree(DAGSize);
3526  std::vector<SDNode*> Sources;
3527
3528  // Use a two pass approach to avoid using a std::map which is slow.
3529  unsigned Id = 0;
3530  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3531    SDNode *N = I;
3532    N->setNodeId(Id++);
3533    unsigned Degree = N->use_size();
3534    InDegree[N->getNodeId()] = Degree;
3535    if (Degree == 0)
3536      Sources.push_back(N);
3537  }
3538
3539  TopOrder.clear();
3540  while (!Sources.empty()) {
3541    SDNode *N = Sources.back();
3542    Sources.pop_back();
3543    TopOrder.push_back(N);
3544    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3545      SDNode *P = I->Val;
3546      unsigned Degree = --InDegree[P->getNodeId()];
3547      if (Degree == 0)
3548        Sources.push_back(P);
3549    }
3550  }
3551
3552  // Second pass, assign the actual topological order as node ids.
3553  Id = 0;
3554  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3555       TI != TE; ++TI)
3556    (*TI)->setNodeId(Id++);
3557
3558  return Id;
3559}
3560
3561
3562
3563//===----------------------------------------------------------------------===//
3564//                              SDNode Class
3565//===----------------------------------------------------------------------===//
3566
3567// Out-of-line virtual method to give class a home.
3568void SDNode::ANCHOR() {}
3569void UnarySDNode::ANCHOR() {}
3570void BinarySDNode::ANCHOR() {}
3571void TernarySDNode::ANCHOR() {}
3572void HandleSDNode::ANCHOR() {}
3573void StringSDNode::ANCHOR() {}
3574void ConstantSDNode::ANCHOR() {}
3575void ConstantFPSDNode::ANCHOR() {}
3576void GlobalAddressSDNode::ANCHOR() {}
3577void FrameIndexSDNode::ANCHOR() {}
3578void JumpTableSDNode::ANCHOR() {}
3579void ConstantPoolSDNode::ANCHOR() {}
3580void BasicBlockSDNode::ANCHOR() {}
3581void SrcValueSDNode::ANCHOR() {}
3582void MemOperandSDNode::ANCHOR() {}
3583void RegisterSDNode::ANCHOR() {}
3584void ExternalSymbolSDNode::ANCHOR() {}
3585void CondCodeSDNode::ANCHOR() {}
3586void VTSDNode::ANCHOR() {}
3587void LoadSDNode::ANCHOR() {}
3588void StoreSDNode::ANCHOR() {}
3589
3590HandleSDNode::~HandleSDNode() {
3591  SDVTList VTs = { 0, 0 };
3592  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3593}
3594
3595GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3596                                         MVT::ValueType VT, int o)
3597  : SDNode(isa<GlobalVariable>(GA) &&
3598           cast<GlobalVariable>(GA)->isThreadLocal() ?
3599           // Thread Local
3600           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3601           // Non Thread Local
3602           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3603           getSDVTList(VT)), Offset(o) {
3604  TheGlobal = const_cast<GlobalValue*>(GA);
3605}
3606
3607/// getMemOperand - Return a MemOperand object describing the memory
3608/// reference performed by this load or store.
3609MemOperand LSBaseSDNode::getMemOperand() const {
3610  int Size = (MVT::getSizeInBits(getMemoryVT()) + 7) >> 3;
3611  int Flags =
3612    getOpcode() == ISD::LOAD ? MemOperand::MOLoad : MemOperand::MOStore;
3613  if (IsVolatile) Flags |= MemOperand::MOVolatile;
3614
3615  // Check if the load references a frame index, and does not have
3616  // an SV attached.
3617  const FrameIndexSDNode *FI =
3618    dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
3619  if (!getSrcValue() && FI)
3620    return MemOperand(PseudoSourceValue::getFixedStack(), Flags,
3621                      FI->getIndex(), Size, Alignment);
3622  else
3623    return MemOperand(getSrcValue(), Flags,
3624                      getSrcValueOffset(), Size, Alignment);
3625}
3626
3627/// Profile - Gather unique data for the node.
3628///
3629void SDNode::Profile(FoldingSetNodeID &ID) {
3630  AddNodeIDNode(ID, this);
3631}
3632
3633/// getValueTypeList - Return a pointer to the specified value type.
3634///
3635const MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3636  if (MVT::isExtendedVT(VT)) {
3637    static std::set<MVT::ValueType> EVTs;
3638    return &(*EVTs.insert(VT).first);
3639  } else {
3640    static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3641    VTs[VT] = VT;
3642    return &VTs[VT];
3643  }
3644}
3645
3646/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3647/// indicated value.  This method ignores uses of other values defined by this
3648/// operation.
3649bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3650  assert(Value < getNumValues() && "Bad value!");
3651
3652  // If there is only one value, this is easy.
3653  if (getNumValues() == 1)
3654    return use_size() == NUses;
3655  if (use_size() < NUses) return false;
3656
3657  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3658
3659  SmallPtrSet<SDNode*, 32> UsersHandled;
3660
3661  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3662    SDNode *User = *UI;
3663    if (User->getNumOperands() == 1 ||
3664        UsersHandled.insert(User))     // First time we've seen this?
3665      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3666        if (User->getOperand(i) == TheValue) {
3667          if (NUses == 0)
3668            return false;   // too many uses
3669          --NUses;
3670        }
3671  }
3672
3673  // Found exactly the right number of uses?
3674  return NUses == 0;
3675}
3676
3677
3678/// hasAnyUseOfValue - Return true if there are any use of the indicated
3679/// value. This method ignores uses of other values defined by this operation.
3680bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3681  assert(Value < getNumValues() && "Bad value!");
3682
3683  if (use_empty()) return false;
3684
3685  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3686
3687  SmallPtrSet<SDNode*, 32> UsersHandled;
3688
3689  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3690    SDNode *User = *UI;
3691    if (User->getNumOperands() == 1 ||
3692        UsersHandled.insert(User))     // First time we've seen this?
3693      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3694        if (User->getOperand(i) == TheValue) {
3695          return true;
3696        }
3697  }
3698
3699  return false;
3700}
3701
3702
3703/// isOnlyUse - Return true if this node is the only use of N.
3704///
3705bool SDNode::isOnlyUse(SDNode *N) const {
3706  bool Seen = false;
3707  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3708    SDNode *User = *I;
3709    if (User == this)
3710      Seen = true;
3711    else
3712      return false;
3713  }
3714
3715  return Seen;
3716}
3717
3718/// isOperand - Return true if this node is an operand of N.
3719///
3720bool SDOperand::isOperand(SDNode *N) const {
3721  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3722    if (*this == N->getOperand(i))
3723      return true;
3724  return false;
3725}
3726
3727bool SDNode::isOperand(SDNode *N) const {
3728  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3729    if (this == N->OperandList[i].Val)
3730      return true;
3731  return false;
3732}
3733
3734/// reachesChainWithoutSideEffects - Return true if this operand (which must
3735/// be a chain) reaches the specified operand without crossing any
3736/// side-effecting instructions.  In practice, this looks through token
3737/// factors and non-volatile loads.  In order to remain efficient, this only
3738/// looks a couple of nodes in, it does not do an exhaustive search.
3739bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
3740                                               unsigned Depth) const {
3741  if (*this == Dest) return true;
3742
3743  // Don't search too deeply, we just want to be able to see through
3744  // TokenFactor's etc.
3745  if (Depth == 0) return false;
3746
3747  // If this is a token factor, all inputs to the TF happen in parallel.  If any
3748  // of the operands of the TF reach dest, then we can do the xform.
3749  if (getOpcode() == ISD::TokenFactor) {
3750    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3751      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
3752        return true;
3753    return false;
3754  }
3755
3756  // Loads don't have side effects, look through them.
3757  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
3758    if (!Ld->isVolatile())
3759      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
3760  }
3761  return false;
3762}
3763
3764
3765static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3766                            SmallPtrSet<SDNode *, 32> &Visited) {
3767  if (found || !Visited.insert(N))
3768    return;
3769
3770  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3771    SDNode *Op = N->getOperand(i).Val;
3772    if (Op == P) {
3773      found = true;
3774      return;
3775    }
3776    findPredecessor(Op, P, found, Visited);
3777  }
3778}
3779
3780/// isPredecessor - Return true if this node is a predecessor of N. This node
3781/// is either an operand of N or it can be reached by recursively traversing
3782/// up the operands.
3783/// NOTE: this is an expensive method. Use it carefully.
3784bool SDNode::isPredecessor(SDNode *N) const {
3785  SmallPtrSet<SDNode *, 32> Visited;
3786  bool found = false;
3787  findPredecessor(N, this, found, Visited);
3788  return found;
3789}
3790
3791uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3792  assert(Num < NumOperands && "Invalid child # of SDNode!");
3793  return cast<ConstantSDNode>(OperandList[Num])->getValue();
3794}
3795
3796std::string SDNode::getOperationName(const SelectionDAG *G) const {
3797  switch (getOpcode()) {
3798  default:
3799    if (getOpcode() < ISD::BUILTIN_OP_END)
3800      return "<<Unknown DAG Node>>";
3801    else {
3802      if (G) {
3803        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3804          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3805            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
3806
3807        TargetLowering &TLI = G->getTargetLoweringInfo();
3808        const char *Name =
3809          TLI.getTargetNodeName(getOpcode());
3810        if (Name) return Name;
3811      }
3812
3813      return "<<Unknown Target Node>>";
3814    }
3815
3816  case ISD::MEMBARRIER:    return "MemBarrier";
3817  case ISD::PCMARKER:      return "PCMarker";
3818  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3819  case ISD::SRCVALUE:      return "SrcValue";
3820  case ISD::MEMOPERAND:    return "MemOperand";
3821  case ISD::EntryToken:    return "EntryToken";
3822  case ISD::TokenFactor:   return "TokenFactor";
3823  case ISD::AssertSext:    return "AssertSext";
3824  case ISD::AssertZext:    return "AssertZext";
3825
3826  case ISD::STRING:        return "String";
3827  case ISD::BasicBlock:    return "BasicBlock";
3828  case ISD::VALUETYPE:     return "ValueType";
3829  case ISD::Register:      return "Register";
3830
3831  case ISD::Constant:      return "Constant";
3832  case ISD::ConstantFP:    return "ConstantFP";
3833  case ISD::GlobalAddress: return "GlobalAddress";
3834  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3835  case ISD::FrameIndex:    return "FrameIndex";
3836  case ISD::JumpTable:     return "JumpTable";
3837  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3838  case ISD::RETURNADDR: return "RETURNADDR";
3839  case ISD::FRAMEADDR: return "FRAMEADDR";
3840  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3841  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3842  case ISD::EHSELECTION: return "EHSELECTION";
3843  case ISD::EH_RETURN: return "EH_RETURN";
3844  case ISD::ConstantPool:  return "ConstantPool";
3845  case ISD::ExternalSymbol: return "ExternalSymbol";
3846  case ISD::INTRINSIC_WO_CHAIN: {
3847    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3848    return Intrinsic::getName((Intrinsic::ID)IID);
3849  }
3850  case ISD::INTRINSIC_VOID:
3851  case ISD::INTRINSIC_W_CHAIN: {
3852    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3853    return Intrinsic::getName((Intrinsic::ID)IID);
3854  }
3855
3856  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
3857  case ISD::TargetConstant: return "TargetConstant";
3858  case ISD::TargetConstantFP:return "TargetConstantFP";
3859  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3860  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3861  case ISD::TargetFrameIndex: return "TargetFrameIndex";
3862  case ISD::TargetJumpTable:  return "TargetJumpTable";
3863  case ISD::TargetConstantPool:  return "TargetConstantPool";
3864  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3865
3866  case ISD::CopyToReg:     return "CopyToReg";
3867  case ISD::CopyFromReg:   return "CopyFromReg";
3868  case ISD::UNDEF:         return "undef";
3869  case ISD::MERGE_VALUES:  return "merge_values";
3870  case ISD::INLINEASM:     return "inlineasm";
3871  case ISD::LABEL:         return "label";
3872  case ISD::DECLARE:       return "declare";
3873  case ISD::HANDLENODE:    return "handlenode";
3874  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3875  case ISD::CALL:          return "call";
3876
3877  // Unary operators
3878  case ISD::FABS:   return "fabs";
3879  case ISD::FNEG:   return "fneg";
3880  case ISD::FSQRT:  return "fsqrt";
3881  case ISD::FSIN:   return "fsin";
3882  case ISD::FCOS:   return "fcos";
3883  case ISD::FPOWI:  return "fpowi";
3884  case ISD::FPOW:   return "fpow";
3885
3886  // Binary operators
3887  case ISD::ADD:    return "add";
3888  case ISD::SUB:    return "sub";
3889  case ISD::MUL:    return "mul";
3890  case ISD::MULHU:  return "mulhu";
3891  case ISD::MULHS:  return "mulhs";
3892  case ISD::SDIV:   return "sdiv";
3893  case ISD::UDIV:   return "udiv";
3894  case ISD::SREM:   return "srem";
3895  case ISD::UREM:   return "urem";
3896  case ISD::SMUL_LOHI:  return "smul_lohi";
3897  case ISD::UMUL_LOHI:  return "umul_lohi";
3898  case ISD::SDIVREM:    return "sdivrem";
3899  case ISD::UDIVREM:    return "divrem";
3900  case ISD::AND:    return "and";
3901  case ISD::OR:     return "or";
3902  case ISD::XOR:    return "xor";
3903  case ISD::SHL:    return "shl";
3904  case ISD::SRA:    return "sra";
3905  case ISD::SRL:    return "srl";
3906  case ISD::ROTL:   return "rotl";
3907  case ISD::ROTR:   return "rotr";
3908  case ISD::FADD:   return "fadd";
3909  case ISD::FSUB:   return "fsub";
3910  case ISD::FMUL:   return "fmul";
3911  case ISD::FDIV:   return "fdiv";
3912  case ISD::FREM:   return "frem";
3913  case ISD::FCOPYSIGN: return "fcopysign";
3914  case ISD::FGETSIGN:  return "fgetsign";
3915
3916  case ISD::SETCC:       return "setcc";
3917  case ISD::SELECT:      return "select";
3918  case ISD::SELECT_CC:   return "select_cc";
3919  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
3920  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
3921  case ISD::CONCAT_VECTORS:      return "concat_vectors";
3922  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
3923  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
3924  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
3925  case ISD::CARRY_FALSE:         return "carry_false";
3926  case ISD::ADDC:        return "addc";
3927  case ISD::ADDE:        return "adde";
3928  case ISD::SUBC:        return "subc";
3929  case ISD::SUBE:        return "sube";
3930  case ISD::SHL_PARTS:   return "shl_parts";
3931  case ISD::SRA_PARTS:   return "sra_parts";
3932  case ISD::SRL_PARTS:   return "srl_parts";
3933
3934  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
3935  case ISD::INSERT_SUBREG:      return "insert_subreg";
3936
3937  // Conversion operators.
3938  case ISD::SIGN_EXTEND: return "sign_extend";
3939  case ISD::ZERO_EXTEND: return "zero_extend";
3940  case ISD::ANY_EXTEND:  return "any_extend";
3941  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3942  case ISD::TRUNCATE:    return "truncate";
3943  case ISD::FP_ROUND:    return "fp_round";
3944  case ISD::FLT_ROUNDS_: return "flt_rounds";
3945  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3946  case ISD::FP_EXTEND:   return "fp_extend";
3947
3948  case ISD::SINT_TO_FP:  return "sint_to_fp";
3949  case ISD::UINT_TO_FP:  return "uint_to_fp";
3950  case ISD::FP_TO_SINT:  return "fp_to_sint";
3951  case ISD::FP_TO_UINT:  return "fp_to_uint";
3952  case ISD::BIT_CONVERT: return "bit_convert";
3953
3954    // Control flow instructions
3955  case ISD::BR:      return "br";
3956  case ISD::BRIND:   return "brind";
3957  case ISD::BR_JT:   return "br_jt";
3958  case ISD::BRCOND:  return "brcond";
3959  case ISD::BR_CC:   return "br_cc";
3960  case ISD::RET:     return "ret";
3961  case ISD::CALLSEQ_START:  return "callseq_start";
3962  case ISD::CALLSEQ_END:    return "callseq_end";
3963
3964    // Other operators
3965  case ISD::LOAD:               return "load";
3966  case ISD::STORE:              return "store";
3967  case ISD::VAARG:              return "vaarg";
3968  case ISD::VACOPY:             return "vacopy";
3969  case ISD::VAEND:              return "vaend";
3970  case ISD::VASTART:            return "vastart";
3971  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3972  case ISD::EXTRACT_ELEMENT:    return "extract_element";
3973  case ISD::BUILD_PAIR:         return "build_pair";
3974  case ISD::STACKSAVE:          return "stacksave";
3975  case ISD::STACKRESTORE:       return "stackrestore";
3976  case ISD::TRAP:               return "trap";
3977
3978  // Block memory operations.
3979  case ISD::MEMSET:  return "memset";
3980  case ISD::MEMCPY:  return "memcpy";
3981  case ISD::MEMMOVE: return "memmove";
3982
3983  // Bit manipulation
3984  case ISD::BSWAP:   return "bswap";
3985  case ISD::CTPOP:   return "ctpop";
3986  case ISD::CTTZ:    return "cttz";
3987  case ISD::CTLZ:    return "ctlz";
3988
3989  // Debug info
3990  case ISD::LOCATION: return "location";
3991  case ISD::DEBUG_LOC: return "debug_loc";
3992
3993  // Trampolines
3994  case ISD::TRAMPOLINE: return "trampoline";
3995
3996  case ISD::CONDCODE:
3997    switch (cast<CondCodeSDNode>(this)->get()) {
3998    default: assert(0 && "Unknown setcc condition!");
3999    case ISD::SETOEQ:  return "setoeq";
4000    case ISD::SETOGT:  return "setogt";
4001    case ISD::SETOGE:  return "setoge";
4002    case ISD::SETOLT:  return "setolt";
4003    case ISD::SETOLE:  return "setole";
4004    case ISD::SETONE:  return "setone";
4005
4006    case ISD::SETO:    return "seto";
4007    case ISD::SETUO:   return "setuo";
4008    case ISD::SETUEQ:  return "setue";
4009    case ISD::SETUGT:  return "setugt";
4010    case ISD::SETUGE:  return "setuge";
4011    case ISD::SETULT:  return "setult";
4012    case ISD::SETULE:  return "setule";
4013    case ISD::SETUNE:  return "setune";
4014
4015    case ISD::SETEQ:   return "seteq";
4016    case ISD::SETGT:   return "setgt";
4017    case ISD::SETGE:   return "setge";
4018    case ISD::SETLT:   return "setlt";
4019    case ISD::SETLE:   return "setle";
4020    case ISD::SETNE:   return "setne";
4021    }
4022  }
4023}
4024
4025const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
4026  switch (AM) {
4027  default:
4028    return "";
4029  case ISD::PRE_INC:
4030    return "<pre-inc>";
4031  case ISD::PRE_DEC:
4032    return "<pre-dec>";
4033  case ISD::POST_INC:
4034    return "<post-inc>";
4035  case ISD::POST_DEC:
4036    return "<post-dec>";
4037  }
4038}
4039
4040void SDNode::dump() const { dump(0); }
4041void SDNode::dump(const SelectionDAG *G) const {
4042  cerr << (void*)this << ": ";
4043
4044  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
4045    if (i) cerr << ",";
4046    if (getValueType(i) == MVT::Other)
4047      cerr << "ch";
4048    else
4049      cerr << MVT::getValueTypeString(getValueType(i));
4050  }
4051  cerr << " = " << getOperationName(G);
4052
4053  cerr << " ";
4054  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
4055    if (i) cerr << ", ";
4056    cerr << (void*)getOperand(i).Val;
4057    if (unsigned RN = getOperand(i).ResNo)
4058      cerr << ":" << RN;
4059  }
4060
4061  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
4062    SDNode *Mask = getOperand(2).Val;
4063    cerr << "<";
4064    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
4065      if (i) cerr << ",";
4066      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
4067        cerr << "u";
4068      else
4069        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
4070    }
4071    cerr << ">";
4072  }
4073
4074  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
4075    cerr << "<" << CSDN->getValue() << ">";
4076  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
4077    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
4078      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
4079    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
4080      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
4081    else {
4082      cerr << "<APFloat(";
4083      CSDN->getValueAPF().convertToAPInt().dump();
4084      cerr << ")>";
4085    }
4086  } else if (const GlobalAddressSDNode *GADN =
4087             dyn_cast<GlobalAddressSDNode>(this)) {
4088    int offset = GADN->getOffset();
4089    cerr << "<";
4090    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
4091    if (offset > 0)
4092      cerr << " + " << offset;
4093    else
4094      cerr << " " << offset;
4095  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
4096    cerr << "<" << FIDN->getIndex() << ">";
4097  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
4098    cerr << "<" << JTDN->getIndex() << ">";
4099  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
4100    int offset = CP->getOffset();
4101    if (CP->isMachineConstantPoolEntry())
4102      cerr << "<" << *CP->getMachineCPVal() << ">";
4103    else
4104      cerr << "<" << *CP->getConstVal() << ">";
4105    if (offset > 0)
4106      cerr << " + " << offset;
4107    else
4108      cerr << " " << offset;
4109  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
4110    cerr << "<";
4111    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
4112    if (LBB)
4113      cerr << LBB->getName() << " ";
4114    cerr << (const void*)BBDN->getBasicBlock() << ">";
4115  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
4116    if (G && R->getReg() &&
4117        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
4118      cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
4119    } else {
4120      cerr << " #" << R->getReg();
4121    }
4122  } else if (const ExternalSymbolSDNode *ES =
4123             dyn_cast<ExternalSymbolSDNode>(this)) {
4124    cerr << "'" << ES->getSymbol() << "'";
4125  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
4126    if (M->getValue())
4127      cerr << "<" << M->getValue() << ">";
4128    else
4129      cerr << "<null>";
4130  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
4131    if (M->MO.getValue())
4132      cerr << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
4133    else
4134      cerr << "<null:" << M->MO.getOffset() << ">";
4135  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
4136    cerr << ":" << MVT::getValueTypeString(N->getVT());
4137  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
4138    const Value *SrcValue = LD->getSrcValue();
4139    int SrcOffset = LD->getSrcValueOffset();
4140    cerr << " <";
4141    if (SrcValue)
4142      cerr << SrcValue;
4143    else
4144      cerr << "null";
4145    cerr << ":" << SrcOffset << ">";
4146
4147    bool doExt = true;
4148    switch (LD->getExtensionType()) {
4149    default: doExt = false; break;
4150    case ISD::EXTLOAD:
4151      cerr << " <anyext ";
4152      break;
4153    case ISD::SEXTLOAD:
4154      cerr << " <sext ";
4155      break;
4156    case ISD::ZEXTLOAD:
4157      cerr << " <zext ";
4158      break;
4159    }
4160    if (doExt)
4161      cerr << MVT::getValueTypeString(LD->getMemoryVT()) << ">";
4162
4163    const char *AM = getIndexedModeName(LD->getAddressingMode());
4164    if (*AM)
4165      cerr << " " << AM;
4166    if (LD->isVolatile())
4167      cerr << " <volatile>";
4168    cerr << " alignment=" << LD->getAlignment();
4169  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
4170    const Value *SrcValue = ST->getSrcValue();
4171    int SrcOffset = ST->getSrcValueOffset();
4172    cerr << " <";
4173    if (SrcValue)
4174      cerr << SrcValue;
4175    else
4176      cerr << "null";
4177    cerr << ":" << SrcOffset << ">";
4178
4179    if (ST->isTruncatingStore())
4180      cerr << " <trunc "
4181           << MVT::getValueTypeString(ST->getMemoryVT()) << ">";
4182
4183    const char *AM = getIndexedModeName(ST->getAddressingMode());
4184    if (*AM)
4185      cerr << " " << AM;
4186    if (ST->isVolatile())
4187      cerr << " <volatile>";
4188    cerr << " alignment=" << ST->getAlignment();
4189  }
4190}
4191
4192static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4193  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4194    if (N->getOperand(i).Val->hasOneUse())
4195      DumpNodes(N->getOperand(i).Val, indent+2, G);
4196    else
4197      cerr << "\n" << std::string(indent+2, ' ')
4198           << (void*)N->getOperand(i).Val << ": <multiple use>";
4199
4200
4201  cerr << "\n" << std::string(indent, ' ');
4202  N->dump(G);
4203}
4204
4205void SelectionDAG::dump() const {
4206  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4207  std::vector<const SDNode*> Nodes;
4208  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4209       I != E; ++I)
4210    Nodes.push_back(I);
4211
4212  std::sort(Nodes.begin(), Nodes.end());
4213
4214  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4215    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4216      DumpNodes(Nodes[i], 2, this);
4217  }
4218
4219  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4220
4221  cerr << "\n\n";
4222}
4223
4224const Type *ConstantPoolSDNode::getType() const {
4225  if (isMachineConstantPoolEntry())
4226    return Val.MachineCPVal->getType();
4227  return Val.ConstVal->getType();
4228}
4229