SelectionDAG.cpp revision d7307a96c5fd0340b60e962caa8f5a531442c72f
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/Support/MathExtras.h"
24#include "llvm/Target/MRegisterInfo.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Target/TargetLowering.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/ADT/SetVector.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/StringExtras.h"
34#include <algorithm>
35#include <cmath>
36using namespace llvm;
37
38/// makeVTList - Return an instance of the SDVTList struct initialized with the
39/// specified members.
40static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
41  SDVTList Res = {VTs, NumVTs};
42  return Res;
43}
44
45//===----------------------------------------------------------------------===//
46//                              ConstantFPSDNode Class
47//===----------------------------------------------------------------------===//
48
49/// isExactlyValue - We don't rely on operator== working on double values, as
50/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
51/// As such, this method can be used to do an exact bit-for-bit comparison of
52/// two floating point values.
53bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
54  return Value.bitwiseIsEqual(V);
55}
56
57bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
58                                           const APFloat& Val) {
59  // convert modifies in place, so make a copy.
60  APFloat Val2 = APFloat(Val);
61  switch (VT) {
62  default:
63    return false;         // These can't be represented as floating point!
64
65  // FIXME rounding mode needs to be more flexible
66  case MVT::f32:
67    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
68           Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==
69              APFloat::opOK;
70  case MVT::f64:
71    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
72           &Val2.getSemantics() == &APFloat::IEEEdouble ||
73           Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==
74             APFloat::opOK;
75  // TODO: Figure out how to test if we can use a shorter type instead!
76  case MVT::f80:
77  case MVT::f128:
78  case MVT::ppcf128:
79    return true;
80  }
81}
82
83//===----------------------------------------------------------------------===//
84//                              ISD Namespace
85//===----------------------------------------------------------------------===//
86
87/// isBuildVectorAllOnes - Return true if the specified node is a
88/// BUILD_VECTOR where all of the elements are ~0 or undef.
89bool ISD::isBuildVectorAllOnes(const SDNode *N) {
90  // Look through a bit convert.
91  if (N->getOpcode() == ISD::BIT_CONVERT)
92    N = N->getOperand(0).Val;
93
94  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
95
96  unsigned i = 0, e = N->getNumOperands();
97
98  // Skip over all of the undef values.
99  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
100    ++i;
101
102  // Do not accept an all-undef vector.
103  if (i == e) return false;
104
105  // Do not accept build_vectors that aren't all constants or which have non-~0
106  // elements.
107  SDOperand NotZero = N->getOperand(i);
108  if (isa<ConstantSDNode>(NotZero)) {
109    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
110      return false;
111  } else if (isa<ConstantFPSDNode>(NotZero)) {
112    MVT::ValueType VT = NotZero.getValueType();
113    if (VT== MVT::f64) {
114      if (((cast<ConstantFPSDNode>(NotZero)->getValueAPF().
115                  convertToAPInt().getZExtValue())) != (uint64_t)-1)
116        return false;
117    } else {
118      if ((uint32_t)cast<ConstantFPSDNode>(NotZero)->
119                      getValueAPF().convertToAPInt().getZExtValue() !=
120          (uint32_t)-1)
121        return false;
122    }
123  } else
124    return false;
125
126  // Okay, we have at least one ~0 value, check to see if the rest match or are
127  // undefs.
128  for (++i; i != e; ++i)
129    if (N->getOperand(i) != NotZero &&
130        N->getOperand(i).getOpcode() != ISD::UNDEF)
131      return false;
132  return true;
133}
134
135
136/// isBuildVectorAllZeros - Return true if the specified node is a
137/// BUILD_VECTOR where all of the elements are 0 or undef.
138bool ISD::isBuildVectorAllZeros(const SDNode *N) {
139  // Look through a bit convert.
140  if (N->getOpcode() == ISD::BIT_CONVERT)
141    N = N->getOperand(0).Val;
142
143  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
144
145  unsigned i = 0, e = N->getNumOperands();
146
147  // Skip over all of the undef values.
148  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
149    ++i;
150
151  // Do not accept an all-undef vector.
152  if (i == e) return false;
153
154  // Do not accept build_vectors that aren't all constants or which have non-~0
155  // elements.
156  SDOperand Zero = N->getOperand(i);
157  if (isa<ConstantSDNode>(Zero)) {
158    if (!cast<ConstantSDNode>(Zero)->isNullValue())
159      return false;
160  } else if (isa<ConstantFPSDNode>(Zero)) {
161    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
162      return false;
163  } else
164    return false;
165
166  // Okay, we have at least one ~0 value, check to see if the rest match or are
167  // undefs.
168  for (++i; i != e; ++i)
169    if (N->getOperand(i) != Zero &&
170        N->getOperand(i).getOpcode() != ISD::UNDEF)
171      return false;
172  return true;
173}
174
175/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
176/// when given the operation for (X op Y).
177ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
178  // To perform this operation, we just need to swap the L and G bits of the
179  // operation.
180  unsigned OldL = (Operation >> 2) & 1;
181  unsigned OldG = (Operation >> 1) & 1;
182  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
183                       (OldL << 1) |       // New G bit
184                       (OldG << 2));        // New L bit.
185}
186
187/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
188/// 'op' is a valid SetCC operation.
189ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
190  unsigned Operation = Op;
191  if (isInteger)
192    Operation ^= 7;   // Flip L, G, E bits, but not U.
193  else
194    Operation ^= 15;  // Flip all of the condition bits.
195  if (Operation > ISD::SETTRUE2)
196    Operation &= ~8;     // Don't let N and U bits get set.
197  return ISD::CondCode(Operation);
198}
199
200
201/// isSignedOp - For an integer comparison, return 1 if the comparison is a
202/// signed operation and 2 if the result is an unsigned comparison.  Return zero
203/// if the operation does not depend on the sign of the input (setne and seteq).
204static int isSignedOp(ISD::CondCode Opcode) {
205  switch (Opcode) {
206  default: assert(0 && "Illegal integer setcc operation!");
207  case ISD::SETEQ:
208  case ISD::SETNE: return 0;
209  case ISD::SETLT:
210  case ISD::SETLE:
211  case ISD::SETGT:
212  case ISD::SETGE: return 1;
213  case ISD::SETULT:
214  case ISD::SETULE:
215  case ISD::SETUGT:
216  case ISD::SETUGE: return 2;
217  }
218}
219
220/// getSetCCOrOperation - Return the result of a logical OR between different
221/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
222/// returns SETCC_INVALID if it is not possible to represent the resultant
223/// comparison.
224ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
225                                       bool isInteger) {
226  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
227    // Cannot fold a signed integer setcc with an unsigned integer setcc.
228    return ISD::SETCC_INVALID;
229
230  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
231
232  // If the N and U bits get set then the resultant comparison DOES suddenly
233  // care about orderedness, and is true when ordered.
234  if (Op > ISD::SETTRUE2)
235    Op &= ~16;     // Clear the U bit if the N bit is set.
236
237  // Canonicalize illegal integer setcc's.
238  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
239    Op = ISD::SETNE;
240
241  return ISD::CondCode(Op);
242}
243
244/// getSetCCAndOperation - Return the result of a logical AND between different
245/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
246/// function returns zero if it is not possible to represent the resultant
247/// comparison.
248ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
249                                        bool isInteger) {
250  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
251    // Cannot fold a signed setcc with an unsigned setcc.
252    return ISD::SETCC_INVALID;
253
254  // Combine all of the condition bits.
255  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
256
257  // Canonicalize illegal integer setcc's.
258  if (isInteger) {
259    switch (Result) {
260    default: break;
261    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
262    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
263    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
264    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
265    }
266  }
267
268  return Result;
269}
270
271const TargetMachine &SelectionDAG::getTarget() const {
272  return TLI.getTargetMachine();
273}
274
275//===----------------------------------------------------------------------===//
276//                           SDNode Profile Support
277//===----------------------------------------------------------------------===//
278
279/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
280///
281static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
282  ID.AddInteger(OpC);
283}
284
285/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
286/// solely with their pointer.
287void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
288  ID.AddPointer(VTList.VTs);
289}
290
291/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
292///
293static void AddNodeIDOperands(FoldingSetNodeID &ID,
294                              const SDOperand *Ops, unsigned NumOps) {
295  for (; NumOps; --NumOps, ++Ops) {
296    ID.AddPointer(Ops->Val);
297    ID.AddInteger(Ops->ResNo);
298  }
299}
300
301static void AddNodeIDNode(FoldingSetNodeID &ID,
302                          unsigned short OpC, SDVTList VTList,
303                          const SDOperand *OpList, unsigned N) {
304  AddNodeIDOpcode(ID, OpC);
305  AddNodeIDValueTypes(ID, VTList);
306  AddNodeIDOperands(ID, OpList, N);
307}
308
309/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
310/// data.
311static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
312  AddNodeIDOpcode(ID, N->getOpcode());
313  // Add the return value info.
314  AddNodeIDValueTypes(ID, N->getVTList());
315  // Add the operand info.
316  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
317
318  // Handle SDNode leafs with special info.
319  switch (N->getOpcode()) {
320  default: break;  // Normal nodes don't need extra info.
321  case ISD::TargetConstant:
322  case ISD::Constant:
323    ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
324    break;
325  case ISD::TargetConstantFP:
326  case ISD::ConstantFP: {
327    ID.AddAPFloat(cast<ConstantFPSDNode>(N)->getValueAPF());
328    break;
329  }
330  case ISD::TargetGlobalAddress:
331  case ISD::GlobalAddress:
332  case ISD::TargetGlobalTLSAddress:
333  case ISD::GlobalTLSAddress: {
334    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
335    ID.AddPointer(GA->getGlobal());
336    ID.AddInteger(GA->getOffset());
337    break;
338  }
339  case ISD::BasicBlock:
340    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
341    break;
342  case ISD::Register:
343    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
344    break;
345  case ISD::SRCVALUE: {
346    SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
347    ID.AddPointer(SV->getValue());
348    ID.AddInteger(SV->getOffset());
349    break;
350  }
351  case ISD::FrameIndex:
352  case ISD::TargetFrameIndex:
353    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
354    break;
355  case ISD::JumpTable:
356  case ISD::TargetJumpTable:
357    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
358    break;
359  case ISD::ConstantPool:
360  case ISD::TargetConstantPool: {
361    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
362    ID.AddInteger(CP->getAlignment());
363    ID.AddInteger(CP->getOffset());
364    if (CP->isMachineConstantPoolEntry())
365      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
366    else
367      ID.AddPointer(CP->getConstVal());
368    break;
369  }
370  case ISD::LOAD: {
371    LoadSDNode *LD = cast<LoadSDNode>(N);
372    ID.AddInteger(LD->getAddressingMode());
373    ID.AddInteger(LD->getExtensionType());
374    ID.AddInteger((unsigned int)(LD->getLoadedVT()));
375    ID.AddPointer(LD->getSrcValue());
376    ID.AddInteger(LD->getSrcValueOffset());
377    ID.AddInteger(LD->getAlignment());
378    ID.AddInteger(LD->isVolatile());
379    break;
380  }
381  case ISD::STORE: {
382    StoreSDNode *ST = cast<StoreSDNode>(N);
383    ID.AddInteger(ST->getAddressingMode());
384    ID.AddInteger(ST->isTruncatingStore());
385    ID.AddInteger((unsigned int)(ST->getStoredVT()));
386    ID.AddPointer(ST->getSrcValue());
387    ID.AddInteger(ST->getSrcValueOffset());
388    ID.AddInteger(ST->getAlignment());
389    ID.AddInteger(ST->isVolatile());
390    break;
391  }
392  }
393}
394
395//===----------------------------------------------------------------------===//
396//                              SelectionDAG Class
397//===----------------------------------------------------------------------===//
398
399/// RemoveDeadNodes - This method deletes all unreachable nodes in the
400/// SelectionDAG.
401void SelectionDAG::RemoveDeadNodes() {
402  // Create a dummy node (which is not added to allnodes), that adds a reference
403  // to the root node, preventing it from being deleted.
404  HandleSDNode Dummy(getRoot());
405
406  SmallVector<SDNode*, 128> DeadNodes;
407
408  // Add all obviously-dead nodes to the DeadNodes worklist.
409  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
410    if (I->use_empty())
411      DeadNodes.push_back(I);
412
413  // Process the worklist, deleting the nodes and adding their uses to the
414  // worklist.
415  while (!DeadNodes.empty()) {
416    SDNode *N = DeadNodes.back();
417    DeadNodes.pop_back();
418
419    // Take the node out of the appropriate CSE map.
420    RemoveNodeFromCSEMaps(N);
421
422    // Next, brutally remove the operand list.  This is safe to do, as there are
423    // no cycles in the graph.
424    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
425      SDNode *Operand = I->Val;
426      Operand->removeUser(N);
427
428      // Now that we removed this operand, see if there are no uses of it left.
429      if (Operand->use_empty())
430        DeadNodes.push_back(Operand);
431    }
432    if (N->OperandsNeedDelete)
433      delete[] N->OperandList;
434    N->OperandList = 0;
435    N->NumOperands = 0;
436
437    // Finally, remove N itself.
438    AllNodes.erase(N);
439  }
440
441  // If the root changed (e.g. it was a dead load, update the root).
442  setRoot(Dummy.getValue());
443}
444
445void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
446  SmallVector<SDNode*, 16> DeadNodes;
447  DeadNodes.push_back(N);
448
449  // Process the worklist, deleting the nodes and adding their uses to the
450  // worklist.
451  while (!DeadNodes.empty()) {
452    SDNode *N = DeadNodes.back();
453    DeadNodes.pop_back();
454
455    // Take the node out of the appropriate CSE map.
456    RemoveNodeFromCSEMaps(N);
457
458    // Next, brutally remove the operand list.  This is safe to do, as there are
459    // no cycles in the graph.
460    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
461      SDNode *Operand = I->Val;
462      Operand->removeUser(N);
463
464      // Now that we removed this operand, see if there are no uses of it left.
465      if (Operand->use_empty())
466        DeadNodes.push_back(Operand);
467    }
468    if (N->OperandsNeedDelete)
469      delete[] N->OperandList;
470    N->OperandList = 0;
471    N->NumOperands = 0;
472
473    // Finally, remove N itself.
474    Deleted.push_back(N);
475    AllNodes.erase(N);
476  }
477}
478
479void SelectionDAG::DeleteNode(SDNode *N) {
480  assert(N->use_empty() && "Cannot delete a node that is not dead!");
481
482  // First take this out of the appropriate CSE map.
483  RemoveNodeFromCSEMaps(N);
484
485  // Finally, remove uses due to operands of this node, remove from the
486  // AllNodes list, and delete the node.
487  DeleteNodeNotInCSEMaps(N);
488}
489
490void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
491
492  // Remove it from the AllNodes list.
493  AllNodes.remove(N);
494
495  // Drop all of the operands and decrement used nodes use counts.
496  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
497    I->Val->removeUser(N);
498  if (N->OperandsNeedDelete)
499    delete[] N->OperandList;
500  N->OperandList = 0;
501  N->NumOperands = 0;
502
503  delete N;
504}
505
506/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
507/// correspond to it.  This is useful when we're about to delete or repurpose
508/// the node.  We don't want future request for structurally identical nodes
509/// to return N anymore.
510void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
511  bool Erased = false;
512  switch (N->getOpcode()) {
513  case ISD::HANDLENODE: return;  // noop.
514  case ISD::STRING:
515    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
516    break;
517  case ISD::CONDCODE:
518    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
519           "Cond code doesn't exist!");
520    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
521    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
522    break;
523  case ISD::ExternalSymbol:
524    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
525    break;
526  case ISD::TargetExternalSymbol:
527    Erased =
528      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
529    break;
530  case ISD::VALUETYPE: {
531    MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
532    if (MVT::isExtendedVT(VT)) {
533      Erased = ExtendedValueTypeNodes.erase(VT);
534    } else {
535      Erased = ValueTypeNodes[VT] != 0;
536      ValueTypeNodes[VT] = 0;
537    }
538    break;
539  }
540  default:
541    // Remove it from the CSE Map.
542    Erased = CSEMap.RemoveNode(N);
543    break;
544  }
545#ifndef NDEBUG
546  // Verify that the node was actually in one of the CSE maps, unless it has a
547  // flag result (which cannot be CSE'd) or is one of the special cases that are
548  // not subject to CSE.
549  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
550      !N->isTargetOpcode()) {
551    N->dump(this);
552    cerr << "\n";
553    assert(0 && "Node is not in map!");
554  }
555#endif
556}
557
558/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
559/// has been taken out and modified in some way.  If the specified node already
560/// exists in the CSE maps, do not modify the maps, but return the existing node
561/// instead.  If it doesn't exist, add it and return null.
562///
563SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
564  assert(N->getNumOperands() && "This is a leaf node!");
565  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
566    return 0;    // Never add these nodes.
567
568  // Check that remaining values produced are not flags.
569  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
570    if (N->getValueType(i) == MVT::Flag)
571      return 0;   // Never CSE anything that produces a flag.
572
573  SDNode *New = CSEMap.GetOrInsertNode(N);
574  if (New != N) return New;  // Node already existed.
575  return 0;
576}
577
578/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
579/// were replaced with those specified.  If this node is never memoized,
580/// return null, otherwise return a pointer to the slot it would take.  If a
581/// node already exists with these operands, the slot will be non-null.
582SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
583                                           void *&InsertPos) {
584  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
585    return 0;    // Never add these nodes.
586
587  // Check that remaining values produced are not flags.
588  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
589    if (N->getValueType(i) == MVT::Flag)
590      return 0;   // Never CSE anything that produces a flag.
591
592  SDOperand Ops[] = { Op };
593  FoldingSetNodeID ID;
594  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
595  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
596}
597
598/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
599/// were replaced with those specified.  If this node is never memoized,
600/// return null, otherwise return a pointer to the slot it would take.  If a
601/// node already exists with these operands, the slot will be non-null.
602SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
603                                           SDOperand Op1, SDOperand Op2,
604                                           void *&InsertPos) {
605  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
606    return 0;    // Never add these nodes.
607
608  // Check that remaining values produced are not flags.
609  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
610    if (N->getValueType(i) == MVT::Flag)
611      return 0;   // Never CSE anything that produces a flag.
612
613  SDOperand Ops[] = { Op1, Op2 };
614  FoldingSetNodeID ID;
615  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
616  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
617}
618
619
620/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
621/// were replaced with those specified.  If this node is never memoized,
622/// return null, otherwise return a pointer to the slot it would take.  If a
623/// node already exists with these operands, the slot will be non-null.
624SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
625                                           const SDOperand *Ops,unsigned NumOps,
626                                           void *&InsertPos) {
627  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
628    return 0;    // Never add these nodes.
629
630  // Check that remaining values produced are not flags.
631  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
632    if (N->getValueType(i) == MVT::Flag)
633      return 0;   // Never CSE anything that produces a flag.
634
635  FoldingSetNodeID ID;
636  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
637
638  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
639    ID.AddInteger(LD->getAddressingMode());
640    ID.AddInteger(LD->getExtensionType());
641    ID.AddInteger((unsigned int)(LD->getLoadedVT()));
642    ID.AddPointer(LD->getSrcValue());
643    ID.AddInteger(LD->getSrcValueOffset());
644    ID.AddInteger(LD->getAlignment());
645    ID.AddInteger(LD->isVolatile());
646  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
647    ID.AddInteger(ST->getAddressingMode());
648    ID.AddInteger(ST->isTruncatingStore());
649    ID.AddInteger((unsigned int)(ST->getStoredVT()));
650    ID.AddPointer(ST->getSrcValue());
651    ID.AddInteger(ST->getSrcValueOffset());
652    ID.AddInteger(ST->getAlignment());
653    ID.AddInteger(ST->isVolatile());
654  }
655
656  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
657}
658
659
660SelectionDAG::~SelectionDAG() {
661  while (!AllNodes.empty()) {
662    SDNode *N = AllNodes.begin();
663    N->SetNextInBucket(0);
664    if (N->OperandsNeedDelete)
665      delete [] N->OperandList;
666    N->OperandList = 0;
667    N->NumOperands = 0;
668    AllNodes.pop_front();
669  }
670}
671
672SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
673  if (Op.getValueType() == VT) return Op;
674  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
675  return getNode(ISD::AND, Op.getValueType(), Op,
676                 getConstant(Imm, Op.getValueType()));
677}
678
679SDOperand SelectionDAG::getString(const std::string &Val) {
680  StringSDNode *&N = StringNodes[Val];
681  if (!N) {
682    N = new StringSDNode(Val);
683    AllNodes.push_back(N);
684  }
685  return SDOperand(N, 0);
686}
687
688SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
689  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
690  assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
691
692  // Mask out any bits that are not valid for this constant.
693  Val &= MVT::getIntVTBitMask(VT);
694
695  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
696  FoldingSetNodeID ID;
697  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
698  ID.AddInteger(Val);
699  void *IP = 0;
700  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
701    return SDOperand(E, 0);
702  SDNode *N = new ConstantSDNode(isT, Val, VT);
703  CSEMap.InsertNode(N, IP);
704  AllNodes.push_back(N);
705  return SDOperand(N, 0);
706}
707
708SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
709                                      bool isTarget) {
710  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
711
712  MVT::ValueType EltVT =
713    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
714
715  // Do the map lookup using the actual bit pattern for the floating point
716  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
717  // we don't have issues with SNANs.
718  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
719  FoldingSetNodeID ID;
720  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
721  ID.AddAPFloat(V);
722  void *IP = 0;
723  SDNode *N = NULL;
724  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
725    if (!MVT::isVector(VT))
726      return SDOperand(N, 0);
727  if (!N) {
728    N = new ConstantFPSDNode(isTarget, V, EltVT);
729    CSEMap.InsertNode(N, IP);
730    AllNodes.push_back(N);
731  }
732
733  SDOperand Result(N, 0);
734  if (MVT::isVector(VT)) {
735    SmallVector<SDOperand, 8> Ops;
736    Ops.assign(MVT::getVectorNumElements(VT), Result);
737    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
738  }
739  return Result;
740}
741
742SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
743                                      bool isTarget) {
744  MVT::ValueType EltVT =
745    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
746  if (EltVT==MVT::f32)
747    return getConstantFP(APFloat((float)Val), VT, isTarget);
748  else
749    return getConstantFP(APFloat(Val), VT, isTarget);
750}
751
752SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
753                                         MVT::ValueType VT, int Offset,
754                                         bool isTargetGA) {
755  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
756  unsigned Opc;
757  if (GVar && GVar->isThreadLocal())
758    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
759  else
760    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
761  FoldingSetNodeID ID;
762  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
763  ID.AddPointer(GV);
764  ID.AddInteger(Offset);
765  void *IP = 0;
766  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
767   return SDOperand(E, 0);
768  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
769  CSEMap.InsertNode(N, IP);
770  AllNodes.push_back(N);
771  return SDOperand(N, 0);
772}
773
774SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
775                                      bool isTarget) {
776  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
777  FoldingSetNodeID ID;
778  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
779  ID.AddInteger(FI);
780  void *IP = 0;
781  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
782    return SDOperand(E, 0);
783  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
784  CSEMap.InsertNode(N, IP);
785  AllNodes.push_back(N);
786  return SDOperand(N, 0);
787}
788
789SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
790  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
791  FoldingSetNodeID ID;
792  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
793  ID.AddInteger(JTI);
794  void *IP = 0;
795  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
796    return SDOperand(E, 0);
797  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
798  CSEMap.InsertNode(N, IP);
799  AllNodes.push_back(N);
800  return SDOperand(N, 0);
801}
802
803SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
804                                        unsigned Alignment, int Offset,
805                                        bool isTarget) {
806  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
807  FoldingSetNodeID ID;
808  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
809  ID.AddInteger(Alignment);
810  ID.AddInteger(Offset);
811  ID.AddPointer(C);
812  void *IP = 0;
813  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
814    return SDOperand(E, 0);
815  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
816  CSEMap.InsertNode(N, IP);
817  AllNodes.push_back(N);
818  return SDOperand(N, 0);
819}
820
821
822SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
823                                        MVT::ValueType VT,
824                                        unsigned Alignment, int Offset,
825                                        bool isTarget) {
826  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
827  FoldingSetNodeID ID;
828  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
829  ID.AddInteger(Alignment);
830  ID.AddInteger(Offset);
831  C->AddSelectionDAGCSEId(ID);
832  void *IP = 0;
833  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
834    return SDOperand(E, 0);
835  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
836  CSEMap.InsertNode(N, IP);
837  AllNodes.push_back(N);
838  return SDOperand(N, 0);
839}
840
841
842SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
843  FoldingSetNodeID ID;
844  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
845  ID.AddPointer(MBB);
846  void *IP = 0;
847  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
848    return SDOperand(E, 0);
849  SDNode *N = new BasicBlockSDNode(MBB);
850  CSEMap.InsertNode(N, IP);
851  AllNodes.push_back(N);
852  return SDOperand(N, 0);
853}
854
855SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
856  if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
857    ValueTypeNodes.resize(VT+1);
858
859  SDNode *&N = MVT::isExtendedVT(VT) ?
860    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
861
862  if (N) return SDOperand(N, 0);
863  N = new VTSDNode(VT);
864  AllNodes.push_back(N);
865  return SDOperand(N, 0);
866}
867
868SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
869  SDNode *&N = ExternalSymbols[Sym];
870  if (N) return SDOperand(N, 0);
871  N = new ExternalSymbolSDNode(false, Sym, VT);
872  AllNodes.push_back(N);
873  return SDOperand(N, 0);
874}
875
876SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
877                                                MVT::ValueType VT) {
878  SDNode *&N = TargetExternalSymbols[Sym];
879  if (N) return SDOperand(N, 0);
880  N = new ExternalSymbolSDNode(true, Sym, VT);
881  AllNodes.push_back(N);
882  return SDOperand(N, 0);
883}
884
885SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
886  if ((unsigned)Cond >= CondCodeNodes.size())
887    CondCodeNodes.resize(Cond+1);
888
889  if (CondCodeNodes[Cond] == 0) {
890    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
891    AllNodes.push_back(CondCodeNodes[Cond]);
892  }
893  return SDOperand(CondCodeNodes[Cond], 0);
894}
895
896SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
897  FoldingSetNodeID ID;
898  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
899  ID.AddInteger(RegNo);
900  void *IP = 0;
901  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
902    return SDOperand(E, 0);
903  SDNode *N = new RegisterSDNode(RegNo, VT);
904  CSEMap.InsertNode(N, IP);
905  AllNodes.push_back(N);
906  return SDOperand(N, 0);
907}
908
909SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
910  assert((!V || isa<PointerType>(V->getType())) &&
911         "SrcValue is not a pointer?");
912
913  FoldingSetNodeID ID;
914  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
915  ID.AddPointer(V);
916  ID.AddInteger(Offset);
917  void *IP = 0;
918  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
919    return SDOperand(E, 0);
920  SDNode *N = new SrcValueSDNode(V, Offset);
921  CSEMap.InsertNode(N, IP);
922  AllNodes.push_back(N);
923  return SDOperand(N, 0);
924}
925
926/// CreateStackTemporary - Create a stack temporary, suitable for holding the
927/// specified value type.
928SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
929  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
930  unsigned ByteSize = MVT::getSizeInBits(VT)/8;
931  const Type *Ty = MVT::getTypeForValueType(VT);
932  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
933  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
934  return getFrameIndex(FrameIdx, TLI.getPointerTy());
935}
936
937
938SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
939                                  SDOperand N2, ISD::CondCode Cond) {
940  // These setcc operations always fold.
941  switch (Cond) {
942  default: break;
943  case ISD::SETFALSE:
944  case ISD::SETFALSE2: return getConstant(0, VT);
945  case ISD::SETTRUE:
946  case ISD::SETTRUE2:  return getConstant(1, VT);
947
948  case ISD::SETOEQ:
949  case ISD::SETOGT:
950  case ISD::SETOGE:
951  case ISD::SETOLT:
952  case ISD::SETOLE:
953  case ISD::SETONE:
954  case ISD::SETO:
955  case ISD::SETUO:
956  case ISD::SETUEQ:
957  case ISD::SETUNE:
958    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
959    break;
960  }
961
962  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
963    uint64_t C2 = N2C->getValue();
964    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
965      uint64_t C1 = N1C->getValue();
966
967      // Sign extend the operands if required
968      if (ISD::isSignedIntSetCC(Cond)) {
969        C1 = N1C->getSignExtended();
970        C2 = N2C->getSignExtended();
971      }
972
973      switch (Cond) {
974      default: assert(0 && "Unknown integer setcc!");
975      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
976      case ISD::SETNE:  return getConstant(C1 != C2, VT);
977      case ISD::SETULT: return getConstant(C1 <  C2, VT);
978      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
979      case ISD::SETULE: return getConstant(C1 <= C2, VT);
980      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
981      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
982      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
983      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
984      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
985      }
986    }
987  }
988  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
989    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
990      // No compile time operations on this type yet.
991      if (N1C->getValueType(0) == MVT::ppcf128)
992        return SDOperand();
993
994      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
995      switch (Cond) {
996      default: break;
997      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
998                          return getNode(ISD::UNDEF, VT);
999                        // fall through
1000      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1001      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1002                          return getNode(ISD::UNDEF, VT);
1003                        // fall through
1004      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1005                                           R==APFloat::cmpLessThan, VT);
1006      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1007                          return getNode(ISD::UNDEF, VT);
1008                        // fall through
1009      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1010      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1011                          return getNode(ISD::UNDEF, VT);
1012                        // fall through
1013      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1014      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1015                          return getNode(ISD::UNDEF, VT);
1016                        // fall through
1017      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1018                                           R==APFloat::cmpEqual, VT);
1019      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1020                          return getNode(ISD::UNDEF, VT);
1021                        // fall through
1022      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1023                                           R==APFloat::cmpEqual, VT);
1024      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1025      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1026      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1027                                           R==APFloat::cmpEqual, VT);
1028      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1029      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1030                                           R==APFloat::cmpLessThan, VT);
1031      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1032                                           R==APFloat::cmpUnordered, VT);
1033      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1034      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1035      }
1036    } else {
1037      // Ensure that the constant occurs on the RHS.
1038      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1039    }
1040
1041  // Could not fold it.
1042  return SDOperand();
1043}
1044
1045/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1046/// this predicate to simplify operations downstream.  Mask is known to be zero
1047/// for bits that V cannot have.
1048bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
1049                                     unsigned Depth) const {
1050  // The masks are not wide enough to represent this type!  Should use APInt.
1051  if (Op.getValueType() == MVT::i128)
1052    return false;
1053
1054  uint64_t KnownZero, KnownOne;
1055  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1056  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1057  return (KnownZero & Mask) == Mask;
1058}
1059
1060/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1061/// known to be either zero or one and return them in the KnownZero/KnownOne
1062/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1063/// processing.
1064void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
1065                                     uint64_t &KnownZero, uint64_t &KnownOne,
1066                                     unsigned Depth) const {
1067  KnownZero = KnownOne = 0;   // Don't know anything.
1068  if (Depth == 6 || Mask == 0)
1069    return;  // Limit search depth.
1070
1071  // The masks are not wide enough to represent this type!  Should use APInt.
1072  if (Op.getValueType() == MVT::i128)
1073    return;
1074
1075  uint64_t KnownZero2, KnownOne2;
1076
1077  switch (Op.getOpcode()) {
1078  case ISD::Constant:
1079    // We know all of the bits for a constant!
1080    KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
1081    KnownZero = ~KnownOne & Mask;
1082    return;
1083  case ISD::AND:
1084    // If either the LHS or the RHS are Zero, the result is zero.
1085    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1086    Mask &= ~KnownZero;
1087    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1088    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1089    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1090
1091    // Output known-1 bits are only known if set in both the LHS & RHS.
1092    KnownOne &= KnownOne2;
1093    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1094    KnownZero |= KnownZero2;
1095    return;
1096  case ISD::OR:
1097    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1098    Mask &= ~KnownOne;
1099    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1100    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1101    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1102
1103    // Output known-0 bits are only known if clear in both the LHS & RHS.
1104    KnownZero &= KnownZero2;
1105    // Output known-1 are known to be set if set in either the LHS | RHS.
1106    KnownOne |= KnownOne2;
1107    return;
1108  case ISD::XOR: {
1109    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1110    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1111    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1112    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1113
1114    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1115    uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1116    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1117    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1118    KnownZero = KnownZeroOut;
1119    return;
1120  }
1121  case ISD::SELECT:
1122    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1123    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1124    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1125    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1126
1127    // Only known if known in both the LHS and RHS.
1128    KnownOne &= KnownOne2;
1129    KnownZero &= KnownZero2;
1130    return;
1131  case ISD::SELECT_CC:
1132    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1133    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1134    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1135    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1136
1137    // Only known if known in both the LHS and RHS.
1138    KnownOne &= KnownOne2;
1139    KnownZero &= KnownZero2;
1140    return;
1141  case ISD::SETCC:
1142    // If we know the result of a setcc has the top bits zero, use this info.
1143    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
1144      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
1145    return;
1146  case ISD::SHL:
1147    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1148    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1149      ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
1150                        KnownZero, KnownOne, Depth+1);
1151      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1152      KnownZero <<= SA->getValue();
1153      KnownOne  <<= SA->getValue();
1154      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
1155    }
1156    return;
1157  case ISD::SRL:
1158    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1159    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1160      MVT::ValueType VT = Op.getValueType();
1161      unsigned ShAmt = SA->getValue();
1162
1163      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1164      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
1165                        KnownZero, KnownOne, Depth+1);
1166      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1167      KnownZero &= TypeMask;
1168      KnownOne  &= TypeMask;
1169      KnownZero >>= ShAmt;
1170      KnownOne  >>= ShAmt;
1171
1172      uint64_t HighBits = (1ULL << ShAmt)-1;
1173      HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
1174      KnownZero |= HighBits;  // High bits known zero.
1175    }
1176    return;
1177  case ISD::SRA:
1178    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1179      MVT::ValueType VT = Op.getValueType();
1180      unsigned ShAmt = SA->getValue();
1181
1182      // Compute the new bits that are at the top now.
1183      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1184
1185      uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
1186      // If any of the demanded bits are produced by the sign extension, we also
1187      // demand the input sign bit.
1188      uint64_t HighBits = (1ULL << ShAmt)-1;
1189      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
1190      if (HighBits & Mask)
1191        InDemandedMask |= MVT::getIntVTSignBit(VT);
1192
1193      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1194                        Depth+1);
1195      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1196      KnownZero &= TypeMask;
1197      KnownOne  &= TypeMask;
1198      KnownZero >>= ShAmt;
1199      KnownOne  >>= ShAmt;
1200
1201      // Handle the sign bits.
1202      uint64_t SignBit = MVT::getIntVTSignBit(VT);
1203      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
1204
1205      if (KnownZero & SignBit) {
1206        KnownZero |= HighBits;  // New bits are known zero.
1207      } else if (KnownOne & SignBit) {
1208        KnownOne  |= HighBits;  // New bits are known one.
1209      }
1210    }
1211    return;
1212  case ISD::SIGN_EXTEND_INREG: {
1213    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1214
1215    // Sign extension.  Compute the demanded bits in the result that are not
1216    // present in the input.
1217    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
1218
1219    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
1220    int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
1221
1222    // If the sign extended bits are demanded, we know that the sign
1223    // bit is demanded.
1224    if (NewBits)
1225      InputDemandedBits |= InSignBit;
1226
1227    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1228                      KnownZero, KnownOne, Depth+1);
1229    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1230
1231    // If the sign bit of the input is known set or clear, then we know the
1232    // top bits of the result.
1233    if (KnownZero & InSignBit) {          // Input sign bit known clear
1234      KnownZero |= NewBits;
1235      KnownOne  &= ~NewBits;
1236    } else if (KnownOne & InSignBit) {    // Input sign bit known set
1237      KnownOne  |= NewBits;
1238      KnownZero &= ~NewBits;
1239    } else {                              // Input sign bit unknown
1240      KnownZero &= ~NewBits;
1241      KnownOne  &= ~NewBits;
1242    }
1243    return;
1244  }
1245  case ISD::CTTZ:
1246  case ISD::CTLZ:
1247  case ISD::CTPOP: {
1248    MVT::ValueType VT = Op.getValueType();
1249    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
1250    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
1251    KnownOne  = 0;
1252    return;
1253  }
1254  case ISD::LOAD: {
1255    if (ISD::isZEXTLoad(Op.Val)) {
1256      LoadSDNode *LD = cast<LoadSDNode>(Op);
1257      MVT::ValueType VT = LD->getLoadedVT();
1258      KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
1259    }
1260    return;
1261  }
1262  case ISD::ZERO_EXTEND: {
1263    uint64_t InMask  = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
1264    uint64_t NewBits = (~InMask) & Mask;
1265    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1266                      KnownOne, Depth+1);
1267    KnownZero |= NewBits & Mask;
1268    KnownOne  &= ~NewBits;
1269    return;
1270  }
1271  case ISD::SIGN_EXTEND: {
1272    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1273    unsigned InBits    = MVT::getSizeInBits(InVT);
1274    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
1275    uint64_t InSignBit = 1ULL << (InBits-1);
1276    uint64_t NewBits   = (~InMask) & Mask;
1277    uint64_t InDemandedBits = Mask & InMask;
1278
1279    // If any of the sign extended bits are demanded, we know that the sign
1280    // bit is demanded.
1281    if (NewBits & Mask)
1282      InDemandedBits |= InSignBit;
1283
1284    ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1285                      KnownOne, Depth+1);
1286    // If the sign bit is known zero or one, the  top bits match.
1287    if (KnownZero & InSignBit) {
1288      KnownZero |= NewBits;
1289      KnownOne  &= ~NewBits;
1290    } else if (KnownOne & InSignBit) {
1291      KnownOne  |= NewBits;
1292      KnownZero &= ~NewBits;
1293    } else {   // Otherwise, top bits aren't known.
1294      KnownOne  &= ~NewBits;
1295      KnownZero &= ~NewBits;
1296    }
1297    return;
1298  }
1299  case ISD::ANY_EXTEND: {
1300    MVT::ValueType VT = Op.getOperand(0).getValueType();
1301    ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
1302                      KnownZero, KnownOne, Depth+1);
1303    return;
1304  }
1305  case ISD::TRUNCATE: {
1306    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1307    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1308    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
1309    KnownZero &= OutMask;
1310    KnownOne &= OutMask;
1311    break;
1312  }
1313  case ISD::AssertZext: {
1314    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1315    uint64_t InMask = MVT::getIntVTBitMask(VT);
1316    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1317                      KnownOne, Depth+1);
1318    KnownZero |= (~InMask) & Mask;
1319    return;
1320  }
1321  case ISD::ADD: {
1322    // If either the LHS or the RHS are Zero, the result is zero.
1323    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1324    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1325    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1326    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1327
1328    // Output known-0 bits are known if clear or set in both the low clear bits
1329    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1330    // low 3 bits clear.
1331    uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
1332                                     CountTrailingZeros_64(~KnownZero2));
1333
1334    KnownZero = (1ULL << KnownZeroOut) - 1;
1335    KnownOne = 0;
1336    return;
1337  }
1338  case ISD::SUB: {
1339    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1340    if (!CLHS) return;
1341
1342    // We know that the top bits of C-X are clear if X contains less bits
1343    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1344    // positive if we can prove that X is >= 0 and < 16.
1345    MVT::ValueType VT = CLHS->getValueType(0);
1346    if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) {  // sign bit clear
1347      unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
1348      uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
1349      MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
1350      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1351
1352      // If all of the MaskV bits are known to be zero, then we know the output
1353      // top bits are zero, because we now know that the output is from [0-C].
1354      if ((KnownZero & MaskV) == MaskV) {
1355        unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
1356        KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask;  // Top bits known zero.
1357        KnownOne = 0;   // No one bits known.
1358      } else {
1359        KnownZero = KnownOne = 0;  // Otherwise, nothing known.
1360      }
1361    }
1362    return;
1363  }
1364  default:
1365    // Allow the target to implement this method for its nodes.
1366    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1367  case ISD::INTRINSIC_WO_CHAIN:
1368  case ISD::INTRINSIC_W_CHAIN:
1369  case ISD::INTRINSIC_VOID:
1370      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1371    }
1372    return;
1373  }
1374}
1375
1376/// ComputeNumSignBits - Return the number of times the sign bit of the
1377/// register is replicated into the other bits.  We know that at least 1 bit
1378/// is always equal to the sign bit (itself), but other cases can give us
1379/// information.  For example, immediately after an "SRA X, 2", we know that
1380/// the top 3 bits are all equal to each other, so we return 3.
1381unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1382  MVT::ValueType VT = Op.getValueType();
1383  assert(MVT::isInteger(VT) && "Invalid VT!");
1384  unsigned VTBits = MVT::getSizeInBits(VT);
1385  unsigned Tmp, Tmp2;
1386
1387  if (Depth == 6)
1388    return 1;  // Limit search depth.
1389
1390  switch (Op.getOpcode()) {
1391  default: break;
1392  case ISD::AssertSext:
1393    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1394    return VTBits-Tmp+1;
1395  case ISD::AssertZext:
1396    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1397    return VTBits-Tmp;
1398
1399  case ISD::Constant: {
1400    uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1401    // If negative, invert the bits, then look at it.
1402    if (Val & MVT::getIntVTSignBit(VT))
1403      Val = ~Val;
1404
1405    // Shift the bits so they are the leading bits in the int64_t.
1406    Val <<= 64-VTBits;
1407
1408    // Return # leading zeros.  We use 'min' here in case Val was zero before
1409    // shifting.  We don't want to return '64' as for an i32 "0".
1410    return std::min(VTBits, CountLeadingZeros_64(Val));
1411  }
1412
1413  case ISD::SIGN_EXTEND:
1414    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1415    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1416
1417  case ISD::SIGN_EXTEND_INREG:
1418    // Max of the input and what this extends.
1419    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1420    Tmp = VTBits-Tmp+1;
1421
1422    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1423    return std::max(Tmp, Tmp2);
1424
1425  case ISD::SRA:
1426    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1427    // SRA X, C   -> adds C sign bits.
1428    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1429      Tmp += C->getValue();
1430      if (Tmp > VTBits) Tmp = VTBits;
1431    }
1432    return Tmp;
1433  case ISD::SHL:
1434    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1435      // shl destroys sign bits.
1436      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1437      if (C->getValue() >= VTBits ||      // Bad shift.
1438          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1439      return Tmp - C->getValue();
1440    }
1441    break;
1442  case ISD::AND:
1443  case ISD::OR:
1444  case ISD::XOR:    // NOT is handled here.
1445    // Logical binary ops preserve the number of sign bits.
1446    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1447    if (Tmp == 1) return 1;  // Early out.
1448    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1449    return std::min(Tmp, Tmp2);
1450
1451  case ISD::SELECT:
1452    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1453    if (Tmp == 1) return 1;  // Early out.
1454    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1455    return std::min(Tmp, Tmp2);
1456
1457  case ISD::SETCC:
1458    // If setcc returns 0/-1, all bits are sign bits.
1459    if (TLI.getSetCCResultContents() ==
1460        TargetLowering::ZeroOrNegativeOneSetCCResult)
1461      return VTBits;
1462    break;
1463  case ISD::ROTL:
1464  case ISD::ROTR:
1465    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1466      unsigned RotAmt = C->getValue() & (VTBits-1);
1467
1468      // Handle rotate right by N like a rotate left by 32-N.
1469      if (Op.getOpcode() == ISD::ROTR)
1470        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1471
1472      // If we aren't rotating out all of the known-in sign bits, return the
1473      // number that are left.  This handles rotl(sext(x), 1) for example.
1474      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1475      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1476    }
1477    break;
1478  case ISD::ADD:
1479    // Add can have at most one carry bit.  Thus we know that the output
1480    // is, at worst, one more bit than the inputs.
1481    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1482    if (Tmp == 1) return 1;  // Early out.
1483
1484    // Special case decrementing a value (ADD X, -1):
1485    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1486      if (CRHS->isAllOnesValue()) {
1487        uint64_t KnownZero, KnownOne;
1488        uint64_t Mask = MVT::getIntVTBitMask(VT);
1489        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1490
1491        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1492        // sign bits set.
1493        if ((KnownZero|1) == Mask)
1494          return VTBits;
1495
1496        // If we are subtracting one from a positive number, there is no carry
1497        // out of the result.
1498        if (KnownZero & MVT::getIntVTSignBit(VT))
1499          return Tmp;
1500      }
1501
1502    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1503    if (Tmp2 == 1) return 1;
1504      return std::min(Tmp, Tmp2)-1;
1505    break;
1506
1507  case ISD::SUB:
1508    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1509    if (Tmp2 == 1) return 1;
1510
1511    // Handle NEG.
1512    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1513      if (CLHS->getValue() == 0) {
1514        uint64_t KnownZero, KnownOne;
1515        uint64_t Mask = MVT::getIntVTBitMask(VT);
1516        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1517        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1518        // sign bits set.
1519        if ((KnownZero|1) == Mask)
1520          return VTBits;
1521
1522        // If the input is known to be positive (the sign bit is known clear),
1523        // the output of the NEG has the same number of sign bits as the input.
1524        if (KnownZero & MVT::getIntVTSignBit(VT))
1525          return Tmp2;
1526
1527        // Otherwise, we treat this like a SUB.
1528      }
1529
1530    // Sub can have at most one carry bit.  Thus we know that the output
1531    // is, at worst, one more bit than the inputs.
1532    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1533    if (Tmp == 1) return 1;  // Early out.
1534      return std::min(Tmp, Tmp2)-1;
1535    break;
1536  case ISD::TRUNCATE:
1537    // FIXME: it's tricky to do anything useful for this, but it is an important
1538    // case for targets like X86.
1539    break;
1540  }
1541
1542  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1543  if (Op.getOpcode() == ISD::LOAD) {
1544    LoadSDNode *LD = cast<LoadSDNode>(Op);
1545    unsigned ExtType = LD->getExtensionType();
1546    switch (ExtType) {
1547    default: break;
1548    case ISD::SEXTLOAD:    // '17' bits known
1549      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1550      return VTBits-Tmp+1;
1551    case ISD::ZEXTLOAD:    // '16' bits known
1552      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1553      return VTBits-Tmp;
1554    }
1555  }
1556
1557  // Allow the target to implement this method for its nodes.
1558  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1559      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1560      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1561      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1562    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1563    if (NumBits > 1) return NumBits;
1564  }
1565
1566  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1567  // use this information.
1568  uint64_t KnownZero, KnownOne;
1569  uint64_t Mask = MVT::getIntVTBitMask(VT);
1570  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1571
1572  uint64_t SignBit = MVT::getIntVTSignBit(VT);
1573  if (KnownZero & SignBit) {        // SignBit is 0
1574    Mask = KnownZero;
1575  } else if (KnownOne & SignBit) {  // SignBit is 1;
1576    Mask = KnownOne;
1577  } else {
1578    // Nothing known.
1579    return 1;
1580  }
1581
1582  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1583  // the number of identical bits in the top of the input value.
1584  Mask ^= ~0ULL;
1585  Mask <<= 64-VTBits;
1586  // Return # leading zeros.  We use 'min' here in case Val was zero before
1587  // shifting.  We don't want to return '64' as for an i32 "0".
1588  return std::min(VTBits, CountLeadingZeros_64(Mask));
1589}
1590
1591
1592/// getNode - Gets or creates the specified node.
1593///
1594SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1595  FoldingSetNodeID ID;
1596  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1597  void *IP = 0;
1598  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1599    return SDOperand(E, 0);
1600  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1601  CSEMap.InsertNode(N, IP);
1602
1603  AllNodes.push_back(N);
1604  return SDOperand(N, 0);
1605}
1606
1607SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1608                                SDOperand Operand) {
1609  unsigned Tmp1;
1610  // Constant fold unary operations with an integer constant operand.
1611  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1612    uint64_t Val = C->getValue();
1613    switch (Opcode) {
1614    default: break;
1615    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1616    case ISD::ANY_EXTEND:
1617    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1618    case ISD::TRUNCATE:    return getConstant(Val, VT);
1619    case ISD::UINT_TO_FP:
1620    case ISD::SINT_TO_FP: {
1621      const uint64_t zero[] = {0, 0};
1622      // No compile time operations on this type.
1623      if (VT==MVT::ppcf128)
1624        break;
1625      APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero));
1626      (void)apf.convertFromZeroExtendedInteger(&Val,
1627                               MVT::getSizeInBits(Operand.getValueType()),
1628                               Opcode==ISD::SINT_TO_FP,
1629                               APFloat::rmNearestTiesToEven);
1630      return getConstantFP(apf, VT);
1631    }
1632    case ISD::BIT_CONVERT:
1633      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1634        return getConstantFP(BitsToFloat(Val), VT);
1635      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1636        return getConstantFP(BitsToDouble(Val), VT);
1637      break;
1638    case ISD::BSWAP:
1639      switch(VT) {
1640      default: assert(0 && "Invalid bswap!"); break;
1641      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1642      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1643      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1644      }
1645      break;
1646    case ISD::CTPOP:
1647      switch(VT) {
1648      default: assert(0 && "Invalid ctpop!"); break;
1649      case MVT::i1: return getConstant(Val != 0, VT);
1650      case MVT::i8:
1651        Tmp1 = (unsigned)Val & 0xFF;
1652        return getConstant(CountPopulation_32(Tmp1), VT);
1653      case MVT::i16:
1654        Tmp1 = (unsigned)Val & 0xFFFF;
1655        return getConstant(CountPopulation_32(Tmp1), VT);
1656      case MVT::i32:
1657        return getConstant(CountPopulation_32((unsigned)Val), VT);
1658      case MVT::i64:
1659        return getConstant(CountPopulation_64(Val), VT);
1660      }
1661    case ISD::CTLZ:
1662      switch(VT) {
1663      default: assert(0 && "Invalid ctlz!"); break;
1664      case MVT::i1: return getConstant(Val == 0, VT);
1665      case MVT::i8:
1666        Tmp1 = (unsigned)Val & 0xFF;
1667        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1668      case MVT::i16:
1669        Tmp1 = (unsigned)Val & 0xFFFF;
1670        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1671      case MVT::i32:
1672        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1673      case MVT::i64:
1674        return getConstant(CountLeadingZeros_64(Val), VT);
1675      }
1676    case ISD::CTTZ:
1677      switch(VT) {
1678      default: assert(0 && "Invalid cttz!"); break;
1679      case MVT::i1: return getConstant(Val == 0, VT);
1680      case MVT::i8:
1681        Tmp1 = (unsigned)Val | 0x100;
1682        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1683      case MVT::i16:
1684        Tmp1 = (unsigned)Val | 0x10000;
1685        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1686      case MVT::i32:
1687        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1688      case MVT::i64:
1689        return getConstant(CountTrailingZeros_64(Val), VT);
1690      }
1691    }
1692  }
1693
1694  // Constant fold unary operations with a floating point constant operand.
1695  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1696    APFloat V = C->getValueAPF();    // make copy
1697    if (VT!=MVT::ppcf128 && Operand.getValueType()!=MVT::ppcf128) {
1698      switch (Opcode) {
1699      case ISD::FNEG:
1700        V.changeSign();
1701        return getConstantFP(V, VT);
1702      case ISD::FABS:
1703        V.clearSign();
1704        return getConstantFP(V, VT);
1705      case ISD::FP_ROUND:
1706      case ISD::FP_EXTEND:
1707        // This can return overflow, underflow, or inexact; we don't care.
1708        // FIXME need to be more flexible about rounding mode.
1709        (void) V.convert(VT==MVT::f32 ? APFloat::IEEEsingle :
1710                         VT==MVT::f64 ? APFloat::IEEEdouble :
1711                         VT==MVT::f80 ? APFloat::x87DoubleExtended :
1712                         VT==MVT::f128 ? APFloat::IEEEquad :
1713                         APFloat::Bogus,
1714                         APFloat::rmNearestTiesToEven);
1715        return getConstantFP(V, VT);
1716      case ISD::FP_TO_SINT:
1717      case ISD::FP_TO_UINT: {
1718        integerPart x;
1719        assert(integerPartWidth >= 64);
1720        // FIXME need to be more flexible about rounding mode.
1721        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1722                              Opcode==ISD::FP_TO_SINT,
1723                              APFloat::rmTowardZero);
1724        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1725          break;
1726        return getConstant(x, VT);
1727      }
1728      case ISD::BIT_CONVERT:
1729        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1730          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1731        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1732          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1733        break;
1734      }
1735    }
1736  }
1737
1738  unsigned OpOpcode = Operand.Val->getOpcode();
1739  switch (Opcode) {
1740  case ISD::TokenFactor:
1741    return Operand;         // Factor of one node?  No factor.
1742  case ISD::FP_ROUND:
1743  case ISD::FP_EXTEND:
1744    assert(MVT::isFloatingPoint(VT) &&
1745           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1746    break;
1747  case ISD::SIGN_EXTEND:
1748    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1749           "Invalid SIGN_EXTEND!");
1750    if (Operand.getValueType() == VT) return Operand;   // noop extension
1751    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1752           && "Invalid sext node, dst < src!");
1753    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1754      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1755    break;
1756  case ISD::ZERO_EXTEND:
1757    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1758           "Invalid ZERO_EXTEND!");
1759    if (Operand.getValueType() == VT) return Operand;   // noop extension
1760    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1761           && "Invalid zext node, dst < src!");
1762    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1763      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1764    break;
1765  case ISD::ANY_EXTEND:
1766    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1767           "Invalid ANY_EXTEND!");
1768    if (Operand.getValueType() == VT) return Operand;   // noop extension
1769    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1770           && "Invalid anyext node, dst < src!");
1771    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1772      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1773      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1774    break;
1775  case ISD::TRUNCATE:
1776    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1777           "Invalid TRUNCATE!");
1778    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1779    assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
1780           && "Invalid truncate node, src < dst!");
1781    if (OpOpcode == ISD::TRUNCATE)
1782      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1783    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1784             OpOpcode == ISD::ANY_EXTEND) {
1785      // If the source is smaller than the dest, we still need an extend.
1786      if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1787          < MVT::getSizeInBits(VT))
1788        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1789      else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1790               > MVT::getSizeInBits(VT))
1791        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1792      else
1793        return Operand.Val->getOperand(0);
1794    }
1795    break;
1796  case ISD::BIT_CONVERT:
1797    // Basic sanity checking.
1798    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1799           && "Cannot BIT_CONVERT between types of different sizes!");
1800    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1801    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1802      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1803    if (OpOpcode == ISD::UNDEF)
1804      return getNode(ISD::UNDEF, VT);
1805    break;
1806  case ISD::SCALAR_TO_VECTOR:
1807    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1808           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1809           "Illegal SCALAR_TO_VECTOR node!");
1810    break;
1811  case ISD::FNEG:
1812    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1813      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1814                     Operand.Val->getOperand(0));
1815    if (OpOpcode == ISD::FNEG)  // --X -> X
1816      return Operand.Val->getOperand(0);
1817    break;
1818  case ISD::FABS:
1819    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1820      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1821    break;
1822  }
1823
1824  SDNode *N;
1825  SDVTList VTs = getVTList(VT);
1826  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1827    FoldingSetNodeID ID;
1828    SDOperand Ops[1] = { Operand };
1829    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1830    void *IP = 0;
1831    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1832      return SDOperand(E, 0);
1833    N = new UnarySDNode(Opcode, VTs, Operand);
1834    CSEMap.InsertNode(N, IP);
1835  } else {
1836    N = new UnarySDNode(Opcode, VTs, Operand);
1837  }
1838  AllNodes.push_back(N);
1839  return SDOperand(N, 0);
1840}
1841
1842
1843
1844SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1845                                SDOperand N1, SDOperand N2) {
1846#ifndef NDEBUG
1847  switch (Opcode) {
1848  case ISD::TokenFactor:
1849    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1850           N2.getValueType() == MVT::Other && "Invalid token factor!");
1851    break;
1852  case ISD::AND:
1853  case ISD::OR:
1854  case ISD::XOR:
1855  case ISD::UDIV:
1856  case ISD::UREM:
1857  case ISD::MULHU:
1858  case ISD::MULHS:
1859    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1860    // fall through
1861  case ISD::ADD:
1862  case ISD::SUB:
1863  case ISD::MUL:
1864  case ISD::SDIV:
1865  case ISD::SREM:
1866    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1867    // fall through.
1868  case ISD::FADD:
1869  case ISD::FSUB:
1870  case ISD::FMUL:
1871  case ISD::FDIV:
1872  case ISD::FREM:
1873    assert(N1.getValueType() == N2.getValueType() &&
1874           N1.getValueType() == VT && "Binary operator types must match!");
1875    break;
1876  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1877    assert(N1.getValueType() == VT &&
1878           MVT::isFloatingPoint(N1.getValueType()) &&
1879           MVT::isFloatingPoint(N2.getValueType()) &&
1880           "Invalid FCOPYSIGN!");
1881    break;
1882  case ISD::SHL:
1883  case ISD::SRA:
1884  case ISD::SRL:
1885  case ISD::ROTL:
1886  case ISD::ROTR:
1887    assert(VT == N1.getValueType() &&
1888           "Shift operators return type must be the same as their first arg");
1889    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1890           VT != MVT::i1 && "Shifts only work on integers");
1891    break;
1892  case ISD::FP_ROUND_INREG: {
1893    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1894    assert(VT == N1.getValueType() && "Not an inreg round!");
1895    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1896           "Cannot FP_ROUND_INREG integer types");
1897    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
1898           "Not rounding down!");
1899    break;
1900  }
1901  case ISD::AssertSext:
1902  case ISD::AssertZext:
1903  case ISD::SIGN_EXTEND_INREG: {
1904    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1905    assert(VT == N1.getValueType() && "Not an inreg extend!");
1906    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1907           "Cannot *_EXTEND_INREG FP types");
1908    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
1909           "Not extending!");
1910  }
1911
1912  default: break;
1913  }
1914#endif
1915
1916  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1917  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1918  if (N1C) {
1919    if (Opcode == ISD::SIGN_EXTEND_INREG) {
1920      int64_t Val = N1C->getValue();
1921      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1922      Val <<= 64-FromBits;
1923      Val >>= 64-FromBits;
1924      return getConstant(Val, VT);
1925    }
1926
1927    if (N2C) {
1928      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1929      switch (Opcode) {
1930      case ISD::ADD: return getConstant(C1 + C2, VT);
1931      case ISD::SUB: return getConstant(C1 - C2, VT);
1932      case ISD::MUL: return getConstant(C1 * C2, VT);
1933      case ISD::UDIV:
1934        if (C2) return getConstant(C1 / C2, VT);
1935        break;
1936      case ISD::UREM :
1937        if (C2) return getConstant(C1 % C2, VT);
1938        break;
1939      case ISD::SDIV :
1940        if (C2) return getConstant(N1C->getSignExtended() /
1941                                   N2C->getSignExtended(), VT);
1942        break;
1943      case ISD::SREM :
1944        if (C2) return getConstant(N1C->getSignExtended() %
1945                                   N2C->getSignExtended(), VT);
1946        break;
1947      case ISD::AND  : return getConstant(C1 & C2, VT);
1948      case ISD::OR   : return getConstant(C1 | C2, VT);
1949      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1950      case ISD::SHL  : return getConstant(C1 << C2, VT);
1951      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1952      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1953      case ISD::ROTL :
1954        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1955                           VT);
1956      case ISD::ROTR :
1957        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1958                           VT);
1959      default: break;
1960      }
1961    } else {      // Cannonicalize constant to RHS if commutative
1962      if (isCommutativeBinOp(Opcode)) {
1963        std::swap(N1C, N2C);
1964        std::swap(N1, N2);
1965      }
1966    }
1967  }
1968
1969  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1970  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1971  if (N1CFP) {
1972    if (N2CFP && VT!=MVT::ppcf128) {
1973      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
1974      APFloat::opStatus s;
1975      switch (Opcode) {
1976      case ISD::FADD:
1977        s = V1.add(V2, APFloat::rmNearestTiesToEven);
1978        if (s!=APFloat::opInvalidOp)
1979          return getConstantFP(V1, VT);
1980        break;
1981      case ISD::FSUB:
1982        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
1983        if (s!=APFloat::opInvalidOp)
1984          return getConstantFP(V1, VT);
1985        break;
1986      case ISD::FMUL:
1987        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
1988        if (s!=APFloat::opInvalidOp)
1989          return getConstantFP(V1, VT);
1990        break;
1991      case ISD::FDIV:
1992        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
1993        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
1994          return getConstantFP(V1, VT);
1995        break;
1996      case ISD::FREM :
1997        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
1998        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
1999          return getConstantFP(V1, VT);
2000        break;
2001      case ISD::FCOPYSIGN:
2002        V1.copySign(V2);
2003        return getConstantFP(V1, VT);
2004      default: break;
2005      }
2006    } else {      // Cannonicalize constant to RHS if commutative
2007      if (isCommutativeBinOp(Opcode)) {
2008        std::swap(N1CFP, N2CFP);
2009        std::swap(N1, N2);
2010      }
2011    }
2012  }
2013
2014  // Canonicalize an UNDEF to the RHS, even over a constant.
2015  if (N1.getOpcode() == ISD::UNDEF) {
2016    if (isCommutativeBinOp(Opcode)) {
2017      std::swap(N1, N2);
2018    } else {
2019      switch (Opcode) {
2020      case ISD::FP_ROUND_INREG:
2021      case ISD::SIGN_EXTEND_INREG:
2022      case ISD::SUB:
2023      case ISD::FSUB:
2024      case ISD::FDIV:
2025      case ISD::FREM:
2026      case ISD::SRA:
2027        return N1;     // fold op(undef, arg2) -> undef
2028      case ISD::UDIV:
2029      case ISD::SDIV:
2030      case ISD::UREM:
2031      case ISD::SREM:
2032      case ISD::SRL:
2033      case ISD::SHL:
2034        if (!MVT::isVector(VT))
2035          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2036        // For vectors, we can't easily build an all zero vector, just return
2037        // the LHS.
2038        return N2;
2039      }
2040    }
2041  }
2042
2043  // Fold a bunch of operators when the RHS is undef.
2044  if (N2.getOpcode() == ISD::UNDEF) {
2045    switch (Opcode) {
2046    case ISD::ADD:
2047    case ISD::ADDC:
2048    case ISD::ADDE:
2049    case ISD::SUB:
2050    case ISD::FADD:
2051    case ISD::FSUB:
2052    case ISD::FMUL:
2053    case ISD::FDIV:
2054    case ISD::FREM:
2055    case ISD::UDIV:
2056    case ISD::SDIV:
2057    case ISD::UREM:
2058    case ISD::SREM:
2059    case ISD::XOR:
2060      return N2;       // fold op(arg1, undef) -> undef
2061    case ISD::MUL:
2062    case ISD::AND:
2063    case ISD::SRL:
2064    case ISD::SHL:
2065      if (!MVT::isVector(VT))
2066        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2067      // For vectors, we can't easily build an all zero vector, just return
2068      // the LHS.
2069      return N1;
2070    case ISD::OR:
2071      if (!MVT::isVector(VT))
2072        return getConstant(MVT::getIntVTBitMask(VT), VT);
2073      // For vectors, we can't easily build an all one vector, just return
2074      // the LHS.
2075      return N1;
2076    case ISD::SRA:
2077      return N1;
2078    }
2079  }
2080
2081  // Fold operations.
2082  switch (Opcode) {
2083  case ISD::TokenFactor:
2084    // Fold trivial token factors.
2085    if (N1.getOpcode() == ISD::EntryToken) return N2;
2086    if (N2.getOpcode() == ISD::EntryToken) return N1;
2087    break;
2088
2089  case ISD::AND:
2090    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2091    // worth handling here.
2092    if (N2C && N2C->getValue() == 0)
2093      return N2;
2094    break;
2095  case ISD::OR:
2096  case ISD::XOR:
2097    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
2098    // worth handling here.
2099    if (N2C && N2C->getValue() == 0)
2100      return N1;
2101    break;
2102  case ISD::FP_ROUND_INREG:
2103    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2104    break;
2105  case ISD::SIGN_EXTEND_INREG: {
2106    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2107    if (EVT == VT) return N1;  // Not actually extending
2108    break;
2109  }
2110  case ISD::EXTRACT_VECTOR_ELT:
2111    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2112
2113    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2114    // expanding copies of large vectors from registers.
2115    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2116        N1.getNumOperands() > 0) {
2117      unsigned Factor =
2118        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2119      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2120                     N1.getOperand(N2C->getValue() / Factor),
2121                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2122    }
2123
2124    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2125    // expanding large vector constants.
2126    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2127      return N1.getOperand(N2C->getValue());
2128
2129    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2130    // operations are lowered to scalars.
2131    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2132      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2133        if (IEC == N2C)
2134          return N1.getOperand(1);
2135        else
2136          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2137      }
2138    break;
2139  case ISD::EXTRACT_ELEMENT:
2140    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2141
2142    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2143    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2144    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2145    if (N1.getOpcode() == ISD::BUILD_PAIR)
2146      return N1.getOperand(N2C->getValue());
2147
2148    // EXTRACT_ELEMENT of a constant int is also very common.
2149    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2150      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2151      return getConstant(C->getValue() >> Shift, VT);
2152    }
2153    break;
2154
2155  // FIXME: figure out how to safely handle things like
2156  // int foo(int x) { return 1 << (x & 255); }
2157  // int bar() { return foo(256); }
2158#if 0
2159  case ISD::SHL:
2160  case ISD::SRL:
2161  case ISD::SRA:
2162    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2163        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
2164      return getNode(Opcode, VT, N1, N2.getOperand(0));
2165    else if (N2.getOpcode() == ISD::AND)
2166      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
2167        // If the and is only masking out bits that cannot effect the shift,
2168        // eliminate the and.
2169        unsigned NumBits = MVT::getSizeInBits(VT);
2170        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2171          return getNode(Opcode, VT, N1, N2.getOperand(0));
2172      }
2173    break;
2174#endif
2175  }
2176
2177  // Memoize this node if possible.
2178  SDNode *N;
2179  SDVTList VTs = getVTList(VT);
2180  if (VT != MVT::Flag) {
2181    SDOperand Ops[] = { N1, N2 };
2182    FoldingSetNodeID ID;
2183    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2184    void *IP = 0;
2185    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2186      return SDOperand(E, 0);
2187    N = new BinarySDNode(Opcode, VTs, N1, N2);
2188    CSEMap.InsertNode(N, IP);
2189  } else {
2190    N = new BinarySDNode(Opcode, VTs, N1, N2);
2191  }
2192
2193  AllNodes.push_back(N);
2194  return SDOperand(N, 0);
2195}
2196
2197SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2198                                SDOperand N1, SDOperand N2, SDOperand N3) {
2199  // Perform various simplifications.
2200  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2201  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2202  switch (Opcode) {
2203  case ISD::SETCC: {
2204    // Use FoldSetCC to simplify SETCC's.
2205    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2206    if (Simp.Val) return Simp;
2207    break;
2208  }
2209  case ISD::SELECT:
2210    if (N1C)
2211      if (N1C->getValue())
2212        return N2;             // select true, X, Y -> X
2213      else
2214        return N3;             // select false, X, Y -> Y
2215
2216    if (N2 == N3) return N2;   // select C, X, X -> X
2217    break;
2218  case ISD::BRCOND:
2219    if (N2C)
2220      if (N2C->getValue()) // Unconditional branch
2221        return getNode(ISD::BR, MVT::Other, N1, N3);
2222      else
2223        return N1;         // Never-taken branch
2224    break;
2225  case ISD::VECTOR_SHUFFLE:
2226    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2227           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2228           N3.getOpcode() == ISD::BUILD_VECTOR &&
2229           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2230           "Illegal VECTOR_SHUFFLE node!");
2231    break;
2232  case ISD::BIT_CONVERT:
2233    // Fold bit_convert nodes from a type to themselves.
2234    if (N1.getValueType() == VT)
2235      return N1;
2236    break;
2237  }
2238
2239  // Memoize node if it doesn't produce a flag.
2240  SDNode *N;
2241  SDVTList VTs = getVTList(VT);
2242  if (VT != MVT::Flag) {
2243    SDOperand Ops[] = { N1, N2, N3 };
2244    FoldingSetNodeID ID;
2245    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2246    void *IP = 0;
2247    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2248      return SDOperand(E, 0);
2249    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2250    CSEMap.InsertNode(N, IP);
2251  } else {
2252    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2253  }
2254  AllNodes.push_back(N);
2255  return SDOperand(N, 0);
2256}
2257
2258SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2259                                SDOperand N1, SDOperand N2, SDOperand N3,
2260                                SDOperand N4) {
2261  SDOperand Ops[] = { N1, N2, N3, N4 };
2262  return getNode(Opcode, VT, Ops, 4);
2263}
2264
2265SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2266                                SDOperand N1, SDOperand N2, SDOperand N3,
2267                                SDOperand N4, SDOperand N5) {
2268  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2269  return getNode(Opcode, VT, Ops, 5);
2270}
2271
2272SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2273                                SDOperand Chain, SDOperand Ptr,
2274                                const Value *SV, int SVOffset,
2275                                bool isVolatile, unsigned Alignment) {
2276  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2277    const Type *Ty = 0;
2278    if (VT != MVT::iPTR) {
2279      Ty = MVT::getTypeForValueType(VT);
2280    } else if (SV) {
2281      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2282      assert(PT && "Value for load must be a pointer");
2283      Ty = PT->getElementType();
2284    }
2285    assert(Ty && "Could not get type information for load");
2286    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2287  }
2288  SDVTList VTs = getVTList(VT, MVT::Other);
2289  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2290  SDOperand Ops[] = { Chain, Ptr, Undef };
2291  FoldingSetNodeID ID;
2292  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2293  ID.AddInteger(ISD::UNINDEXED);
2294  ID.AddInteger(ISD::NON_EXTLOAD);
2295  ID.AddInteger((unsigned int)VT);
2296  ID.AddPointer(SV);
2297  ID.AddInteger(SVOffset);
2298  ID.AddInteger(Alignment);
2299  ID.AddInteger(isVolatile);
2300  void *IP = 0;
2301  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2302    return SDOperand(E, 0);
2303  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2304                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2305                             isVolatile);
2306  CSEMap.InsertNode(N, IP);
2307  AllNodes.push_back(N);
2308  return SDOperand(N, 0);
2309}
2310
2311SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2312                                   SDOperand Chain, SDOperand Ptr,
2313                                   const Value *SV,
2314                                   int SVOffset, MVT::ValueType EVT,
2315                                   bool isVolatile, unsigned Alignment) {
2316  // If they are asking for an extending load from/to the same thing, return a
2317  // normal load.
2318  if (VT == EVT)
2319    ExtType = ISD::NON_EXTLOAD;
2320
2321  if (MVT::isVector(VT))
2322    assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2323  else
2324    assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
2325           "Should only be an extending load, not truncating!");
2326  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2327         "Cannot sign/zero extend a FP/Vector load!");
2328  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2329         "Cannot convert from FP to Int or Int -> FP!");
2330
2331  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2332    const Type *Ty = 0;
2333    if (VT != MVT::iPTR) {
2334      Ty = MVT::getTypeForValueType(VT);
2335    } else if (SV) {
2336      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2337      assert(PT && "Value for load must be a pointer");
2338      Ty = PT->getElementType();
2339    }
2340    assert(Ty && "Could not get type information for load");
2341    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2342  }
2343  SDVTList VTs = getVTList(VT, MVT::Other);
2344  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2345  SDOperand Ops[] = { Chain, Ptr, Undef };
2346  FoldingSetNodeID ID;
2347  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2348  ID.AddInteger(ISD::UNINDEXED);
2349  ID.AddInteger(ExtType);
2350  ID.AddInteger((unsigned int)EVT);
2351  ID.AddPointer(SV);
2352  ID.AddInteger(SVOffset);
2353  ID.AddInteger(Alignment);
2354  ID.AddInteger(isVolatile);
2355  void *IP = 0;
2356  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2357    return SDOperand(E, 0);
2358  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2359                             SV, SVOffset, Alignment, isVolatile);
2360  CSEMap.InsertNode(N, IP);
2361  AllNodes.push_back(N);
2362  return SDOperand(N, 0);
2363}
2364
2365SDOperand
2366SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2367                             SDOperand Offset, ISD::MemIndexedMode AM) {
2368  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2369  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2370         "Load is already a indexed load!");
2371  MVT::ValueType VT = OrigLoad.getValueType();
2372  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2373  SDOperand Ops[] = { LD->getChain(), Base, Offset };
2374  FoldingSetNodeID ID;
2375  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2376  ID.AddInteger(AM);
2377  ID.AddInteger(LD->getExtensionType());
2378  ID.AddInteger((unsigned int)(LD->getLoadedVT()));
2379  ID.AddPointer(LD->getSrcValue());
2380  ID.AddInteger(LD->getSrcValueOffset());
2381  ID.AddInteger(LD->getAlignment());
2382  ID.AddInteger(LD->isVolatile());
2383  void *IP = 0;
2384  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2385    return SDOperand(E, 0);
2386  SDNode *N = new LoadSDNode(Ops, VTs, AM,
2387                             LD->getExtensionType(), LD->getLoadedVT(),
2388                             LD->getSrcValue(), LD->getSrcValueOffset(),
2389                             LD->getAlignment(), LD->isVolatile());
2390  CSEMap.InsertNode(N, IP);
2391  AllNodes.push_back(N);
2392  return SDOperand(N, 0);
2393}
2394
2395SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2396                                 SDOperand Ptr, const Value *SV, int SVOffset,
2397                                 bool isVolatile, unsigned Alignment) {
2398  MVT::ValueType VT = Val.getValueType();
2399
2400  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2401    const Type *Ty = 0;
2402    if (VT != MVT::iPTR) {
2403      Ty = MVT::getTypeForValueType(VT);
2404    } else if (SV) {
2405      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2406      assert(PT && "Value for store must be a pointer");
2407      Ty = PT->getElementType();
2408    }
2409    assert(Ty && "Could not get type information for store");
2410    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2411  }
2412  SDVTList VTs = getVTList(MVT::Other);
2413  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2414  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2415  FoldingSetNodeID ID;
2416  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2417  ID.AddInteger(ISD::UNINDEXED);
2418  ID.AddInteger(false);
2419  ID.AddInteger((unsigned int)VT);
2420  ID.AddPointer(SV);
2421  ID.AddInteger(SVOffset);
2422  ID.AddInteger(Alignment);
2423  ID.AddInteger(isVolatile);
2424  void *IP = 0;
2425  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2426    return SDOperand(E, 0);
2427  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2428                              VT, SV, SVOffset, Alignment, isVolatile);
2429  CSEMap.InsertNode(N, IP);
2430  AllNodes.push_back(N);
2431  return SDOperand(N, 0);
2432}
2433
2434SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2435                                      SDOperand Ptr, const Value *SV,
2436                                      int SVOffset, MVT::ValueType SVT,
2437                                      bool isVolatile, unsigned Alignment) {
2438  MVT::ValueType VT = Val.getValueType();
2439  bool isTrunc = VT != SVT;
2440
2441  assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
2442         "Not a truncation?");
2443  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2444         "Can't do FP-INT conversion!");
2445
2446  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2447    const Type *Ty = 0;
2448    if (VT != MVT::iPTR) {
2449      Ty = MVT::getTypeForValueType(VT);
2450    } else if (SV) {
2451      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2452      assert(PT && "Value for store must be a pointer");
2453      Ty = PT->getElementType();
2454    }
2455    assert(Ty && "Could not get type information for store");
2456    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2457  }
2458  SDVTList VTs = getVTList(MVT::Other);
2459  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2460  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2461  FoldingSetNodeID ID;
2462  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2463  ID.AddInteger(ISD::UNINDEXED);
2464  ID.AddInteger(isTrunc);
2465  ID.AddInteger((unsigned int)SVT);
2466  ID.AddPointer(SV);
2467  ID.AddInteger(SVOffset);
2468  ID.AddInteger(Alignment);
2469  ID.AddInteger(isVolatile);
2470  void *IP = 0;
2471  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2472    return SDOperand(E, 0);
2473  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, isTrunc,
2474                              SVT, SV, SVOffset, Alignment, isVolatile);
2475  CSEMap.InsertNode(N, IP);
2476  AllNodes.push_back(N);
2477  return SDOperand(N, 0);
2478}
2479
2480SDOperand
2481SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2482                              SDOperand Offset, ISD::MemIndexedMode AM) {
2483  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2484  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2485         "Store is already a indexed store!");
2486  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2487  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2488  FoldingSetNodeID ID;
2489  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2490  ID.AddInteger(AM);
2491  ID.AddInteger(ST->isTruncatingStore());
2492  ID.AddInteger((unsigned int)(ST->getStoredVT()));
2493  ID.AddPointer(ST->getSrcValue());
2494  ID.AddInteger(ST->getSrcValueOffset());
2495  ID.AddInteger(ST->getAlignment());
2496  ID.AddInteger(ST->isVolatile());
2497  void *IP = 0;
2498  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2499    return SDOperand(E, 0);
2500  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2501                              ST->isTruncatingStore(), ST->getStoredVT(),
2502                              ST->getSrcValue(), ST->getSrcValueOffset(),
2503                              ST->getAlignment(), ST->isVolatile());
2504  CSEMap.InsertNode(N, IP);
2505  AllNodes.push_back(N);
2506  return SDOperand(N, 0);
2507}
2508
2509SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2510                                 SDOperand Chain, SDOperand Ptr,
2511                                 SDOperand SV) {
2512  SDOperand Ops[] = { Chain, Ptr, SV };
2513  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2514}
2515
2516SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2517                                const SDOperand *Ops, unsigned NumOps) {
2518  switch (NumOps) {
2519  case 0: return getNode(Opcode, VT);
2520  case 1: return getNode(Opcode, VT, Ops[0]);
2521  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2522  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2523  default: break;
2524  }
2525
2526  switch (Opcode) {
2527  default: break;
2528  case ISD::SELECT_CC: {
2529    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2530    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2531           "LHS and RHS of condition must have same type!");
2532    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2533           "True and False arms of SelectCC must have same type!");
2534    assert(Ops[2].getValueType() == VT &&
2535           "select_cc node must be of same type as true and false value!");
2536    break;
2537  }
2538  case ISD::BR_CC: {
2539    assert(NumOps == 5 && "BR_CC takes 5 operands!");
2540    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2541           "LHS/RHS of comparison should match types!");
2542    break;
2543  }
2544  }
2545
2546  // Memoize nodes.
2547  SDNode *N;
2548  SDVTList VTs = getVTList(VT);
2549  if (VT != MVT::Flag) {
2550    FoldingSetNodeID ID;
2551    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2552    void *IP = 0;
2553    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2554      return SDOperand(E, 0);
2555    N = new SDNode(Opcode, VTs, Ops, NumOps);
2556    CSEMap.InsertNode(N, IP);
2557  } else {
2558    N = new SDNode(Opcode, VTs, Ops, NumOps);
2559  }
2560  AllNodes.push_back(N);
2561  return SDOperand(N, 0);
2562}
2563
2564SDOperand SelectionDAG::getNode(unsigned Opcode,
2565                                std::vector<MVT::ValueType> &ResultTys,
2566                                const SDOperand *Ops, unsigned NumOps) {
2567  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2568                 Ops, NumOps);
2569}
2570
2571SDOperand SelectionDAG::getNode(unsigned Opcode,
2572                                const MVT::ValueType *VTs, unsigned NumVTs,
2573                                const SDOperand *Ops, unsigned NumOps) {
2574  if (NumVTs == 1)
2575    return getNode(Opcode, VTs[0], Ops, NumOps);
2576  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2577}
2578
2579SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2580                                const SDOperand *Ops, unsigned NumOps) {
2581  if (VTList.NumVTs == 1)
2582    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2583
2584  switch (Opcode) {
2585  // FIXME: figure out how to safely handle things like
2586  // int foo(int x) { return 1 << (x & 255); }
2587  // int bar() { return foo(256); }
2588#if 0
2589  case ISD::SRA_PARTS:
2590  case ISD::SRL_PARTS:
2591  case ISD::SHL_PARTS:
2592    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2593        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2594      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2595    else if (N3.getOpcode() == ISD::AND)
2596      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2597        // If the and is only masking out bits that cannot effect the shift,
2598        // eliminate the and.
2599        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2600        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2601          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2602      }
2603    break;
2604#endif
2605  }
2606
2607  // Memoize the node unless it returns a flag.
2608  SDNode *N;
2609  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2610    FoldingSetNodeID ID;
2611    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2612    void *IP = 0;
2613    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2614      return SDOperand(E, 0);
2615    if (NumOps == 1)
2616      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2617    else if (NumOps == 2)
2618      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2619    else if (NumOps == 3)
2620      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2621    else
2622      N = new SDNode(Opcode, VTList, Ops, NumOps);
2623    CSEMap.InsertNode(N, IP);
2624  } else {
2625    if (NumOps == 1)
2626      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2627    else if (NumOps == 2)
2628      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2629    else if (NumOps == 3)
2630      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2631    else
2632      N = new SDNode(Opcode, VTList, Ops, NumOps);
2633  }
2634  AllNodes.push_back(N);
2635  return SDOperand(N, 0);
2636}
2637
2638SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
2639  return getNode(Opcode, VTList, 0, 0);
2640}
2641
2642SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2643                                SDOperand N1) {
2644  SDOperand Ops[] = { N1 };
2645  return getNode(Opcode, VTList, Ops, 1);
2646}
2647
2648SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2649                                SDOperand N1, SDOperand N2) {
2650  SDOperand Ops[] = { N1, N2 };
2651  return getNode(Opcode, VTList, Ops, 2);
2652}
2653
2654SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2655                                SDOperand N1, SDOperand N2, SDOperand N3) {
2656  SDOperand Ops[] = { N1, N2, N3 };
2657  return getNode(Opcode, VTList, Ops, 3);
2658}
2659
2660SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2661                                SDOperand N1, SDOperand N2, SDOperand N3,
2662                                SDOperand N4) {
2663  SDOperand Ops[] = { N1, N2, N3, N4 };
2664  return getNode(Opcode, VTList, Ops, 4);
2665}
2666
2667SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2668                                SDOperand N1, SDOperand N2, SDOperand N3,
2669                                SDOperand N4, SDOperand N5) {
2670  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2671  return getNode(Opcode, VTList, Ops, 5);
2672}
2673
2674SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2675  return makeVTList(SDNode::getValueTypeList(VT), 1);
2676}
2677
2678SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2679  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2680       E = VTList.end(); I != E; ++I) {
2681    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2682      return makeVTList(&(*I)[0], 2);
2683  }
2684  std::vector<MVT::ValueType> V;
2685  V.push_back(VT1);
2686  V.push_back(VT2);
2687  VTList.push_front(V);
2688  return makeVTList(&(*VTList.begin())[0], 2);
2689}
2690SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2691                                 MVT::ValueType VT3) {
2692  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2693       E = VTList.end(); I != E; ++I) {
2694    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2695        (*I)[2] == VT3)
2696      return makeVTList(&(*I)[0], 3);
2697  }
2698  std::vector<MVT::ValueType> V;
2699  V.push_back(VT1);
2700  V.push_back(VT2);
2701  V.push_back(VT3);
2702  VTList.push_front(V);
2703  return makeVTList(&(*VTList.begin())[0], 3);
2704}
2705
2706SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2707  switch (NumVTs) {
2708    case 0: assert(0 && "Cannot have nodes without results!");
2709    case 1: return getVTList(VTs[0]);
2710    case 2: return getVTList(VTs[0], VTs[1]);
2711    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2712    default: break;
2713  }
2714
2715  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2716       E = VTList.end(); I != E; ++I) {
2717    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2718
2719    bool NoMatch = false;
2720    for (unsigned i = 2; i != NumVTs; ++i)
2721      if (VTs[i] != (*I)[i]) {
2722        NoMatch = true;
2723        break;
2724      }
2725    if (!NoMatch)
2726      return makeVTList(&*I->begin(), NumVTs);
2727  }
2728
2729  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2730  return makeVTList(&*VTList.begin()->begin(), NumVTs);
2731}
2732
2733
2734/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2735/// specified operands.  If the resultant node already exists in the DAG,
2736/// this does not modify the specified node, instead it returns the node that
2737/// already exists.  If the resultant node does not exist in the DAG, the
2738/// input node is returned.  As a degenerate case, if you specify the same
2739/// input operands as the node already has, the input node is returned.
2740SDOperand SelectionDAG::
2741UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2742  SDNode *N = InN.Val;
2743  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2744
2745  // Check to see if there is no change.
2746  if (Op == N->getOperand(0)) return InN;
2747
2748  // See if the modified node already exists.
2749  void *InsertPos = 0;
2750  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2751    return SDOperand(Existing, InN.ResNo);
2752
2753  // Nope it doesn't.  Remove the node from it's current place in the maps.
2754  if (InsertPos)
2755    RemoveNodeFromCSEMaps(N);
2756
2757  // Now we update the operands.
2758  N->OperandList[0].Val->removeUser(N);
2759  Op.Val->addUser(N);
2760  N->OperandList[0] = Op;
2761
2762  // If this gets put into a CSE map, add it.
2763  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2764  return InN;
2765}
2766
2767SDOperand SelectionDAG::
2768UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2769  SDNode *N = InN.Val;
2770  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2771
2772  // Check to see if there is no change.
2773  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2774    return InN;   // No operands changed, just return the input node.
2775
2776  // See if the modified node already exists.
2777  void *InsertPos = 0;
2778  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2779    return SDOperand(Existing, InN.ResNo);
2780
2781  // Nope it doesn't.  Remove the node from it's current place in the maps.
2782  if (InsertPos)
2783    RemoveNodeFromCSEMaps(N);
2784
2785  // Now we update the operands.
2786  if (N->OperandList[0] != Op1) {
2787    N->OperandList[0].Val->removeUser(N);
2788    Op1.Val->addUser(N);
2789    N->OperandList[0] = Op1;
2790  }
2791  if (N->OperandList[1] != Op2) {
2792    N->OperandList[1].Val->removeUser(N);
2793    Op2.Val->addUser(N);
2794    N->OperandList[1] = Op2;
2795  }
2796
2797  // If this gets put into a CSE map, add it.
2798  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2799  return InN;
2800}
2801
2802SDOperand SelectionDAG::
2803UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2804  SDOperand Ops[] = { Op1, Op2, Op3 };
2805  return UpdateNodeOperands(N, Ops, 3);
2806}
2807
2808SDOperand SelectionDAG::
2809UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2810                   SDOperand Op3, SDOperand Op4) {
2811  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2812  return UpdateNodeOperands(N, Ops, 4);
2813}
2814
2815SDOperand SelectionDAG::
2816UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2817                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2818  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2819  return UpdateNodeOperands(N, Ops, 5);
2820}
2821
2822
2823SDOperand SelectionDAG::
2824UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2825  SDNode *N = InN.Val;
2826  assert(N->getNumOperands() == NumOps &&
2827         "Update with wrong number of operands");
2828
2829  // Check to see if there is no change.
2830  bool AnyChange = false;
2831  for (unsigned i = 0; i != NumOps; ++i) {
2832    if (Ops[i] != N->getOperand(i)) {
2833      AnyChange = true;
2834      break;
2835    }
2836  }
2837
2838  // No operands changed, just return the input node.
2839  if (!AnyChange) return InN;
2840
2841  // See if the modified node already exists.
2842  void *InsertPos = 0;
2843  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2844    return SDOperand(Existing, InN.ResNo);
2845
2846  // Nope it doesn't.  Remove the node from it's current place in the maps.
2847  if (InsertPos)
2848    RemoveNodeFromCSEMaps(N);
2849
2850  // Now we update the operands.
2851  for (unsigned i = 0; i != NumOps; ++i) {
2852    if (N->OperandList[i] != Ops[i]) {
2853      N->OperandList[i].Val->removeUser(N);
2854      Ops[i].Val->addUser(N);
2855      N->OperandList[i] = Ops[i];
2856    }
2857  }
2858
2859  // If this gets put into a CSE map, add it.
2860  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2861  return InN;
2862}
2863
2864
2865/// MorphNodeTo - This frees the operands of the current node, resets the
2866/// opcode, types, and operands to the specified value.  This should only be
2867/// used by the SelectionDAG class.
2868void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2869                         const SDOperand *Ops, unsigned NumOps) {
2870  NodeType = Opc;
2871  ValueList = L.VTs;
2872  NumValues = L.NumVTs;
2873
2874  // Clear the operands list, updating used nodes to remove this from their
2875  // use list.
2876  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2877    I->Val->removeUser(this);
2878
2879  // If NumOps is larger than the # of operands we currently have, reallocate
2880  // the operand list.
2881  if (NumOps > NumOperands) {
2882    if (OperandsNeedDelete)
2883      delete [] OperandList;
2884    OperandList = new SDOperand[NumOps];
2885    OperandsNeedDelete = true;
2886  }
2887
2888  // Assign the new operands.
2889  NumOperands = NumOps;
2890
2891  for (unsigned i = 0, e = NumOps; i != e; ++i) {
2892    OperandList[i] = Ops[i];
2893    SDNode *N = OperandList[i].Val;
2894    N->Uses.push_back(this);
2895  }
2896}
2897
2898/// SelectNodeTo - These are used for target selectors to *mutate* the
2899/// specified node to have the specified return type, Target opcode, and
2900/// operands.  Note that target opcodes are stored as
2901/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2902///
2903/// Note that SelectNodeTo returns the resultant node.  If there is already a
2904/// node of the specified opcode and operands, it returns that node instead of
2905/// the current one.
2906SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2907                                   MVT::ValueType VT) {
2908  SDVTList VTs = getVTList(VT);
2909  FoldingSetNodeID ID;
2910  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2911  void *IP = 0;
2912  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2913    return ON;
2914
2915  RemoveNodeFromCSEMaps(N);
2916
2917  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2918
2919  CSEMap.InsertNode(N, IP);
2920  return N;
2921}
2922
2923SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2924                                   MVT::ValueType VT, SDOperand Op1) {
2925  // If an identical node already exists, use it.
2926  SDVTList VTs = getVTList(VT);
2927  SDOperand Ops[] = { Op1 };
2928
2929  FoldingSetNodeID ID;
2930  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2931  void *IP = 0;
2932  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2933    return ON;
2934
2935  RemoveNodeFromCSEMaps(N);
2936  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2937  CSEMap.InsertNode(N, IP);
2938  return N;
2939}
2940
2941SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2942                                   MVT::ValueType VT, SDOperand Op1,
2943                                   SDOperand Op2) {
2944  // If an identical node already exists, use it.
2945  SDVTList VTs = getVTList(VT);
2946  SDOperand Ops[] = { Op1, Op2 };
2947
2948  FoldingSetNodeID ID;
2949  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2950  void *IP = 0;
2951  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2952    return ON;
2953
2954  RemoveNodeFromCSEMaps(N);
2955
2956  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2957
2958  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2959  return N;
2960}
2961
2962SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2963                                   MVT::ValueType VT, SDOperand Op1,
2964                                   SDOperand Op2, SDOperand Op3) {
2965  // If an identical node already exists, use it.
2966  SDVTList VTs = getVTList(VT);
2967  SDOperand Ops[] = { Op1, Op2, Op3 };
2968  FoldingSetNodeID ID;
2969  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2970  void *IP = 0;
2971  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2972    return ON;
2973
2974  RemoveNodeFromCSEMaps(N);
2975
2976  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2977
2978  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2979  return N;
2980}
2981
2982SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2983                                   MVT::ValueType VT, const SDOperand *Ops,
2984                                   unsigned NumOps) {
2985  // If an identical node already exists, use it.
2986  SDVTList VTs = getVTList(VT);
2987  FoldingSetNodeID ID;
2988  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2989  void *IP = 0;
2990  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2991    return ON;
2992
2993  RemoveNodeFromCSEMaps(N);
2994  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2995
2996  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2997  return N;
2998}
2999
3000SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3001                                   MVT::ValueType VT1, MVT::ValueType VT2,
3002                                   SDOperand Op1, SDOperand Op2) {
3003  SDVTList VTs = getVTList(VT1, VT2);
3004  FoldingSetNodeID ID;
3005  SDOperand Ops[] = { Op1, Op2 };
3006  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3007  void *IP = 0;
3008  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3009    return ON;
3010
3011  RemoveNodeFromCSEMaps(N);
3012  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3013  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3014  return N;
3015}
3016
3017SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3018                                   MVT::ValueType VT1, MVT::ValueType VT2,
3019                                   SDOperand Op1, SDOperand Op2,
3020                                   SDOperand Op3) {
3021  // If an identical node already exists, use it.
3022  SDVTList VTs = getVTList(VT1, VT2);
3023  SDOperand Ops[] = { Op1, Op2, Op3 };
3024  FoldingSetNodeID ID;
3025  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3026  void *IP = 0;
3027  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3028    return ON;
3029
3030  RemoveNodeFromCSEMaps(N);
3031
3032  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3033  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3034  return N;
3035}
3036
3037
3038/// getTargetNode - These are used for target selectors to create a new node
3039/// with specified return type(s), target opcode, and operands.
3040///
3041/// Note that getTargetNode returns the resultant node.  If there is already a
3042/// node of the specified opcode and operands, it returns that node instead of
3043/// the current one.
3044SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3045  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3046}
3047SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3048                                    SDOperand Op1) {
3049  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3050}
3051SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3052                                    SDOperand Op1, SDOperand Op2) {
3053  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3054}
3055SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3056                                    SDOperand Op1, SDOperand Op2,
3057                                    SDOperand Op3) {
3058  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3059}
3060SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3061                                    const SDOperand *Ops, unsigned NumOps) {
3062  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3063}
3064SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3065                                    MVT::ValueType VT2) {
3066  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3067  SDOperand Op;
3068  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3069}
3070SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3071                                    MVT::ValueType VT2, SDOperand Op1) {
3072  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3073  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3074}
3075SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3076                                    MVT::ValueType VT2, SDOperand Op1,
3077                                    SDOperand Op2) {
3078  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3079  SDOperand Ops[] = { Op1, Op2 };
3080  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3081}
3082SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3083                                    MVT::ValueType VT2, SDOperand Op1,
3084                                    SDOperand Op2, SDOperand Op3) {
3085  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3086  SDOperand Ops[] = { Op1, Op2, Op3 };
3087  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3088}
3089SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3090                                    MVT::ValueType VT2,
3091                                    const SDOperand *Ops, unsigned NumOps) {
3092  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3093  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3094}
3095SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3096                                    MVT::ValueType VT2, MVT::ValueType VT3,
3097                                    SDOperand Op1, SDOperand Op2) {
3098  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3099  SDOperand Ops[] = { Op1, Op2 };
3100  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3101}
3102SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3103                                    MVT::ValueType VT2, MVT::ValueType VT3,
3104                                    SDOperand Op1, SDOperand Op2,
3105                                    SDOperand Op3) {
3106  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3107  SDOperand Ops[] = { Op1, Op2, Op3 };
3108  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3109}
3110SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3111                                    MVT::ValueType VT2, MVT::ValueType VT3,
3112                                    const SDOperand *Ops, unsigned NumOps) {
3113  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3114  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3115}
3116SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3117                                    MVT::ValueType VT2, MVT::ValueType VT3,
3118                                    MVT::ValueType VT4,
3119                                    const SDOperand *Ops, unsigned NumOps) {
3120  std::vector<MVT::ValueType> VTList;
3121  VTList.push_back(VT1);
3122  VTList.push_back(VT2);
3123  VTList.push_back(VT3);
3124  VTList.push_back(VT4);
3125  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3126  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3127}
3128SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3129                                    std::vector<MVT::ValueType> &ResultTys,
3130                                    const SDOperand *Ops, unsigned NumOps) {
3131  const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3132  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3133                 Ops, NumOps).Val;
3134}
3135
3136/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3137/// This can cause recursive merging of nodes in the DAG.
3138///
3139/// This version assumes From/To have a single result value.
3140///
3141void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
3142                                      std::vector<SDNode*> *Deleted) {
3143  SDNode *From = FromN.Val, *To = ToN.Val;
3144  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
3145         "Cannot replace with this method!");
3146  assert(From != To && "Cannot replace uses of with self");
3147
3148  while (!From->use_empty()) {
3149    // Process users until they are all gone.
3150    SDNode *U = *From->use_begin();
3151
3152    // This node is about to morph, remove its old self from the CSE maps.
3153    RemoveNodeFromCSEMaps(U);
3154
3155    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3156         I != E; ++I)
3157      if (I->Val == From) {
3158        From->removeUser(U);
3159        I->Val = To;
3160        To->addUser(U);
3161      }
3162
3163    // Now that we have modified U, add it back to the CSE maps.  If it already
3164    // exists there, recursively merge the results together.
3165    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3166      ReplaceAllUsesWith(U, Existing, Deleted);
3167      // U is now dead.
3168      if (Deleted) Deleted->push_back(U);
3169      DeleteNodeNotInCSEMaps(U);
3170    }
3171  }
3172}
3173
3174/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3175/// This can cause recursive merging of nodes in the DAG.
3176///
3177/// This version assumes From/To have matching types and numbers of result
3178/// values.
3179///
3180void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3181                                      std::vector<SDNode*> *Deleted) {
3182  assert(From != To && "Cannot replace uses of with self");
3183  assert(From->getNumValues() == To->getNumValues() &&
3184         "Cannot use this version of ReplaceAllUsesWith!");
3185  if (From->getNumValues() == 1) {  // If possible, use the faster version.
3186    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
3187    return;
3188  }
3189
3190  while (!From->use_empty()) {
3191    // Process users until they are all gone.
3192    SDNode *U = *From->use_begin();
3193
3194    // This node is about to morph, remove its old self from the CSE maps.
3195    RemoveNodeFromCSEMaps(U);
3196
3197    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3198         I != E; ++I)
3199      if (I->Val == From) {
3200        From->removeUser(U);
3201        I->Val = To;
3202        To->addUser(U);
3203      }
3204
3205    // Now that we have modified U, add it back to the CSE maps.  If it already
3206    // exists there, recursively merge the results together.
3207    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3208      ReplaceAllUsesWith(U, Existing, Deleted);
3209      // U is now dead.
3210      if (Deleted) Deleted->push_back(U);
3211      DeleteNodeNotInCSEMaps(U);
3212    }
3213  }
3214}
3215
3216/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3217/// This can cause recursive merging of nodes in the DAG.
3218///
3219/// This version can replace From with any result values.  To must match the
3220/// number and types of values returned by From.
3221void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3222                                      const SDOperand *To,
3223                                      std::vector<SDNode*> *Deleted) {
3224  if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
3225    // Degenerate case handled above.
3226    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
3227    return;
3228  }
3229
3230  while (!From->use_empty()) {
3231    // Process users until they are all gone.
3232    SDNode *U = *From->use_begin();
3233
3234    // This node is about to morph, remove its old self from the CSE maps.
3235    RemoveNodeFromCSEMaps(U);
3236
3237    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3238         I != E; ++I)
3239      if (I->Val == From) {
3240        const SDOperand &ToOp = To[I->ResNo];
3241        From->removeUser(U);
3242        *I = ToOp;
3243        ToOp.Val->addUser(U);
3244      }
3245
3246    // Now that we have modified U, add it back to the CSE maps.  If it already
3247    // exists there, recursively merge the results together.
3248    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3249      ReplaceAllUsesWith(U, Existing, Deleted);
3250      // U is now dead.
3251      if (Deleted) Deleted->push_back(U);
3252      DeleteNodeNotInCSEMaps(U);
3253    }
3254  }
3255}
3256
3257/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3258/// uses of other values produced by From.Val alone.  The Deleted vector is
3259/// handled the same was as for ReplaceAllUsesWith.
3260void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3261                                             std::vector<SDNode*> *Deleted) {
3262  assert(From != To && "Cannot replace a value with itself");
3263  // Handle the simple, trivial, case efficiently.
3264  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
3265    ReplaceAllUsesWith(From, To, Deleted);
3266    return;
3267  }
3268
3269  // Get all of the users of From.Val.  We want these in a nice,
3270  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3271  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3272
3273  std::vector<SDNode*> LocalDeletionVector;
3274
3275  // Pick a deletion vector to use.  If the user specified one, use theirs,
3276  // otherwise use a local one.
3277  std::vector<SDNode*> *DeleteVector = Deleted ? Deleted : &LocalDeletionVector;
3278  while (!Users.empty()) {
3279    // We know that this user uses some value of From.  If it is the right
3280    // value, update it.
3281    SDNode *User = Users.back();
3282    Users.pop_back();
3283
3284    // Scan for an operand that matches From.
3285    SDOperand *Op = User->OperandList, *E = User->OperandList+User->NumOperands;
3286    for (; Op != E; ++Op)
3287      if (*Op == From) break;
3288
3289    // If there are no matches, the user must use some other result of From.
3290    if (Op == E) continue;
3291
3292    // Okay, we know this user needs to be updated.  Remove its old self
3293    // from the CSE maps.
3294    RemoveNodeFromCSEMaps(User);
3295
3296    // Update all operands that match "From".
3297    for (; Op != E; ++Op) {
3298      if (*Op == From) {
3299        From.Val->removeUser(User);
3300        *Op = To;
3301        To.Val->addUser(User);
3302      }
3303    }
3304
3305    // Now that we have modified User, add it back to the CSE maps.  If it
3306    // already exists there, recursively merge the results together.
3307    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3308    if (!Existing) continue;  // Continue on to next user.
3309
3310    // If there was already an existing matching node, use ReplaceAllUsesWith
3311    // to replace the dead one with the existing one.  However, this can cause
3312    // recursive merging of other unrelated nodes down the line.  The merging
3313    // can cause deletion of nodes that used the old value.  In this case,
3314    // we have to be certain to remove them from the Users set.
3315    unsigned NumDeleted = DeleteVector->size();
3316    ReplaceAllUsesWith(User, Existing, DeleteVector);
3317
3318    // User is now dead.
3319    DeleteVector->push_back(User);
3320    DeleteNodeNotInCSEMaps(User);
3321
3322    // We have to be careful here, because ReplaceAllUsesWith could have
3323    // deleted a user of From, which means there may be dangling pointers
3324    // in the "Users" setvector.  Scan over the deleted node pointers and
3325    // remove them from the setvector.
3326    for (unsigned i = NumDeleted, e = DeleteVector->size(); i != e; ++i)
3327      Users.remove((*DeleteVector)[i]);
3328
3329    // If the user doesn't need the set of deleted elements, don't retain them
3330    // to the next loop iteration.
3331    if (Deleted == 0)
3332      LocalDeletionVector.clear();
3333  }
3334}
3335
3336
3337/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3338/// their allnodes order. It returns the maximum id.
3339unsigned SelectionDAG::AssignNodeIds() {
3340  unsigned Id = 0;
3341  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3342    SDNode *N = I;
3343    N->setNodeId(Id++);
3344  }
3345  return Id;
3346}
3347
3348/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3349/// based on their topological order. It returns the maximum id and a vector
3350/// of the SDNodes* in assigned order by reference.
3351unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3352  unsigned DAGSize = AllNodes.size();
3353  std::vector<unsigned> InDegree(DAGSize);
3354  std::vector<SDNode*> Sources;
3355
3356  // Use a two pass approach to avoid using a std::map which is slow.
3357  unsigned Id = 0;
3358  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3359    SDNode *N = I;
3360    N->setNodeId(Id++);
3361    unsigned Degree = N->use_size();
3362    InDegree[N->getNodeId()] = Degree;
3363    if (Degree == 0)
3364      Sources.push_back(N);
3365  }
3366
3367  TopOrder.clear();
3368  while (!Sources.empty()) {
3369    SDNode *N = Sources.back();
3370    Sources.pop_back();
3371    TopOrder.push_back(N);
3372    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3373      SDNode *P = I->Val;
3374      unsigned Degree = --InDegree[P->getNodeId()];
3375      if (Degree == 0)
3376        Sources.push_back(P);
3377    }
3378  }
3379
3380  // Second pass, assign the actual topological order as node ids.
3381  Id = 0;
3382  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3383       TI != TE; ++TI)
3384    (*TI)->setNodeId(Id++);
3385
3386  return Id;
3387}
3388
3389
3390
3391//===----------------------------------------------------------------------===//
3392//                              SDNode Class
3393//===----------------------------------------------------------------------===//
3394
3395// Out-of-line virtual method to give class a home.
3396void SDNode::ANCHOR() {}
3397void UnarySDNode::ANCHOR() {}
3398void BinarySDNode::ANCHOR() {}
3399void TernarySDNode::ANCHOR() {}
3400void HandleSDNode::ANCHOR() {}
3401void StringSDNode::ANCHOR() {}
3402void ConstantSDNode::ANCHOR() {}
3403void ConstantFPSDNode::ANCHOR() {}
3404void GlobalAddressSDNode::ANCHOR() {}
3405void FrameIndexSDNode::ANCHOR() {}
3406void JumpTableSDNode::ANCHOR() {}
3407void ConstantPoolSDNode::ANCHOR() {}
3408void BasicBlockSDNode::ANCHOR() {}
3409void SrcValueSDNode::ANCHOR() {}
3410void RegisterSDNode::ANCHOR() {}
3411void ExternalSymbolSDNode::ANCHOR() {}
3412void CondCodeSDNode::ANCHOR() {}
3413void VTSDNode::ANCHOR() {}
3414void LoadSDNode::ANCHOR() {}
3415void StoreSDNode::ANCHOR() {}
3416
3417HandleSDNode::~HandleSDNode() {
3418  SDVTList VTs = { 0, 0 };
3419  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3420}
3421
3422GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3423                                         MVT::ValueType VT, int o)
3424  : SDNode(isa<GlobalVariable>(GA) &&
3425           cast<GlobalVariable>(GA)->isThreadLocal() ?
3426           // Thread Local
3427           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3428           // Non Thread Local
3429           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3430           getSDVTList(VT)), Offset(o) {
3431  TheGlobal = const_cast<GlobalValue*>(GA);
3432}
3433
3434/// Profile - Gather unique data for the node.
3435///
3436void SDNode::Profile(FoldingSetNodeID &ID) {
3437  AddNodeIDNode(ID, this);
3438}
3439
3440/// getValueTypeList - Return a pointer to the specified value type.
3441///
3442MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3443  if (MVT::isExtendedVT(VT)) {
3444    static std::set<MVT::ValueType> EVTs;
3445    return (MVT::ValueType *)&(*EVTs.insert(VT).first);
3446  } else {
3447    static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3448    VTs[VT] = VT;
3449    return &VTs[VT];
3450  }
3451}
3452
3453/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3454/// indicated value.  This method ignores uses of other values defined by this
3455/// operation.
3456bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3457  assert(Value < getNumValues() && "Bad value!");
3458
3459  // If there is only one value, this is easy.
3460  if (getNumValues() == 1)
3461    return use_size() == NUses;
3462  if (use_size() < NUses) return false;
3463
3464  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3465
3466  SmallPtrSet<SDNode*, 32> UsersHandled;
3467
3468  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3469    SDNode *User = *UI;
3470    if (User->getNumOperands() == 1 ||
3471        UsersHandled.insert(User))     // First time we've seen this?
3472      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3473        if (User->getOperand(i) == TheValue) {
3474          if (NUses == 0)
3475            return false;   // too many uses
3476          --NUses;
3477        }
3478  }
3479
3480  // Found exactly the right number of uses?
3481  return NUses == 0;
3482}
3483
3484
3485/// hasAnyUseOfValue - Return true if there are any use of the indicated
3486/// value. This method ignores uses of other values defined by this operation.
3487bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3488  assert(Value < getNumValues() && "Bad value!");
3489
3490  if (use_size() == 0) return false;
3491
3492  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3493
3494  SmallPtrSet<SDNode*, 32> UsersHandled;
3495
3496  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3497    SDNode *User = *UI;
3498    if (User->getNumOperands() == 1 ||
3499        UsersHandled.insert(User))     // First time we've seen this?
3500      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3501        if (User->getOperand(i) == TheValue) {
3502          return true;
3503        }
3504  }
3505
3506  return false;
3507}
3508
3509
3510/// isOnlyUse - Return true if this node is the only use of N.
3511///
3512bool SDNode::isOnlyUse(SDNode *N) const {
3513  bool Seen = false;
3514  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3515    SDNode *User = *I;
3516    if (User == this)
3517      Seen = true;
3518    else
3519      return false;
3520  }
3521
3522  return Seen;
3523}
3524
3525/// isOperand - Return true if this node is an operand of N.
3526///
3527bool SDOperand::isOperand(SDNode *N) const {
3528  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3529    if (*this == N->getOperand(i))
3530      return true;
3531  return false;
3532}
3533
3534bool SDNode::isOperand(SDNode *N) const {
3535  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3536    if (this == N->OperandList[i].Val)
3537      return true;
3538  return false;
3539}
3540
3541static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3542                            SmallPtrSet<SDNode *, 32> &Visited) {
3543  if (found || !Visited.insert(N))
3544    return;
3545
3546  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3547    SDNode *Op = N->getOperand(i).Val;
3548    if (Op == P) {
3549      found = true;
3550      return;
3551    }
3552    findPredecessor(Op, P, found, Visited);
3553  }
3554}
3555
3556/// isPredecessor - Return true if this node is a predecessor of N. This node
3557/// is either an operand of N or it can be reached by recursively traversing
3558/// up the operands.
3559/// NOTE: this is an expensive method. Use it carefully.
3560bool SDNode::isPredecessor(SDNode *N) const {
3561  SmallPtrSet<SDNode *, 32> Visited;
3562  bool found = false;
3563  findPredecessor(N, this, found, Visited);
3564  return found;
3565}
3566
3567uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3568  assert(Num < NumOperands && "Invalid child # of SDNode!");
3569  return cast<ConstantSDNode>(OperandList[Num])->getValue();
3570}
3571
3572std::string SDNode::getOperationName(const SelectionDAG *G) const {
3573  switch (getOpcode()) {
3574  default:
3575    if (getOpcode() < ISD::BUILTIN_OP_END)
3576      return "<<Unknown DAG Node>>";
3577    else {
3578      if (G) {
3579        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3580          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3581            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
3582
3583        TargetLowering &TLI = G->getTargetLoweringInfo();
3584        const char *Name =
3585          TLI.getTargetNodeName(getOpcode());
3586        if (Name) return Name;
3587      }
3588
3589      return "<<Unknown Target Node>>";
3590    }
3591
3592  case ISD::PCMARKER:      return "PCMarker";
3593  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3594  case ISD::SRCVALUE:      return "SrcValue";
3595  case ISD::EntryToken:    return "EntryToken";
3596  case ISD::TokenFactor:   return "TokenFactor";
3597  case ISD::AssertSext:    return "AssertSext";
3598  case ISD::AssertZext:    return "AssertZext";
3599
3600  case ISD::STRING:        return "String";
3601  case ISD::BasicBlock:    return "BasicBlock";
3602  case ISD::VALUETYPE:     return "ValueType";
3603  case ISD::Register:      return "Register";
3604
3605  case ISD::Constant:      return "Constant";
3606  case ISD::ConstantFP:    return "ConstantFP";
3607  case ISD::GlobalAddress: return "GlobalAddress";
3608  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3609  case ISD::FrameIndex:    return "FrameIndex";
3610  case ISD::JumpTable:     return "JumpTable";
3611  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3612  case ISD::RETURNADDR: return "RETURNADDR";
3613  case ISD::FRAMEADDR: return "FRAMEADDR";
3614  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3615  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3616  case ISD::EHSELECTION: return "EHSELECTION";
3617  case ISD::EH_RETURN: return "EH_RETURN";
3618  case ISD::ConstantPool:  return "ConstantPool";
3619  case ISD::ExternalSymbol: return "ExternalSymbol";
3620  case ISD::INTRINSIC_WO_CHAIN: {
3621    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3622    return Intrinsic::getName((Intrinsic::ID)IID);
3623  }
3624  case ISD::INTRINSIC_VOID:
3625  case ISD::INTRINSIC_W_CHAIN: {
3626    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3627    return Intrinsic::getName((Intrinsic::ID)IID);
3628  }
3629
3630  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
3631  case ISD::TargetConstant: return "TargetConstant";
3632  case ISD::TargetConstantFP:return "TargetConstantFP";
3633  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3634  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3635  case ISD::TargetFrameIndex: return "TargetFrameIndex";
3636  case ISD::TargetJumpTable:  return "TargetJumpTable";
3637  case ISD::TargetConstantPool:  return "TargetConstantPool";
3638  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3639
3640  case ISD::CopyToReg:     return "CopyToReg";
3641  case ISD::CopyFromReg:   return "CopyFromReg";
3642  case ISD::UNDEF:         return "undef";
3643  case ISD::MERGE_VALUES:  return "merge_values";
3644  case ISD::INLINEASM:     return "inlineasm";
3645  case ISD::LABEL:         return "label";
3646  case ISD::HANDLENODE:    return "handlenode";
3647  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3648  case ISD::CALL:          return "call";
3649
3650  // Unary operators
3651  case ISD::FABS:   return "fabs";
3652  case ISD::FNEG:   return "fneg";
3653  case ISD::FSQRT:  return "fsqrt";
3654  case ISD::FSIN:   return "fsin";
3655  case ISD::FCOS:   return "fcos";
3656  case ISD::FPOWI:  return "fpowi";
3657  case ISD::FPOW:   return "fpow";
3658
3659  // Binary operators
3660  case ISD::ADD:    return "add";
3661  case ISD::SUB:    return "sub";
3662  case ISD::MUL:    return "mul";
3663  case ISD::MULHU:  return "mulhu";
3664  case ISD::MULHS:  return "mulhs";
3665  case ISD::SDIV:   return "sdiv";
3666  case ISD::UDIV:   return "udiv";
3667  case ISD::SREM:   return "srem";
3668  case ISD::UREM:   return "urem";
3669  case ISD::SMUL_LOHI:  return "smul_lohi";
3670  case ISD::UMUL_LOHI:  return "umul_lohi";
3671  case ISD::SDIVREM:    return "sdivrem";
3672  case ISD::UDIVREM:    return "divrem";
3673  case ISD::AND:    return "and";
3674  case ISD::OR:     return "or";
3675  case ISD::XOR:    return "xor";
3676  case ISD::SHL:    return "shl";
3677  case ISD::SRA:    return "sra";
3678  case ISD::SRL:    return "srl";
3679  case ISD::ROTL:   return "rotl";
3680  case ISD::ROTR:   return "rotr";
3681  case ISD::FADD:   return "fadd";
3682  case ISD::FSUB:   return "fsub";
3683  case ISD::FMUL:   return "fmul";
3684  case ISD::FDIV:   return "fdiv";
3685  case ISD::FREM:   return "frem";
3686  case ISD::FCOPYSIGN: return "fcopysign";
3687
3688  case ISD::SETCC:       return "setcc";
3689  case ISD::SELECT:      return "select";
3690  case ISD::SELECT_CC:   return "select_cc";
3691  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
3692  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
3693  case ISD::CONCAT_VECTORS:      return "concat_vectors";
3694  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
3695  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
3696  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
3697  case ISD::CARRY_FALSE:         return "carry_false";
3698  case ISD::ADDC:        return "addc";
3699  case ISD::ADDE:        return "adde";
3700  case ISD::SUBC:        return "subc";
3701  case ISD::SUBE:        return "sube";
3702  case ISD::SHL_PARTS:   return "shl_parts";
3703  case ISD::SRA_PARTS:   return "sra_parts";
3704  case ISD::SRL_PARTS:   return "srl_parts";
3705
3706  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
3707  case ISD::INSERT_SUBREG:      return "insert_subreg";
3708
3709  // Conversion operators.
3710  case ISD::SIGN_EXTEND: return "sign_extend";
3711  case ISD::ZERO_EXTEND: return "zero_extend";
3712  case ISD::ANY_EXTEND:  return "any_extend";
3713  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3714  case ISD::TRUNCATE:    return "truncate";
3715  case ISD::FP_ROUND:    return "fp_round";
3716  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3717  case ISD::FP_EXTEND:   return "fp_extend";
3718
3719  case ISD::SINT_TO_FP:  return "sint_to_fp";
3720  case ISD::UINT_TO_FP:  return "uint_to_fp";
3721  case ISD::FP_TO_SINT:  return "fp_to_sint";
3722  case ISD::FP_TO_UINT:  return "fp_to_uint";
3723  case ISD::BIT_CONVERT: return "bit_convert";
3724
3725    // Control flow instructions
3726  case ISD::BR:      return "br";
3727  case ISD::BRIND:   return "brind";
3728  case ISD::BR_JT:   return "br_jt";
3729  case ISD::BRCOND:  return "brcond";
3730  case ISD::BR_CC:   return "br_cc";
3731  case ISD::RET:     return "ret";
3732  case ISD::CALLSEQ_START:  return "callseq_start";
3733  case ISD::CALLSEQ_END:    return "callseq_end";
3734
3735    // Other operators
3736  case ISD::LOAD:               return "load";
3737  case ISD::STORE:              return "store";
3738  case ISD::VAARG:              return "vaarg";
3739  case ISD::VACOPY:             return "vacopy";
3740  case ISD::VAEND:              return "vaend";
3741  case ISD::VASTART:            return "vastart";
3742  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3743  case ISD::EXTRACT_ELEMENT:    return "extract_element";
3744  case ISD::BUILD_PAIR:         return "build_pair";
3745  case ISD::STACKSAVE:          return "stacksave";
3746  case ISD::STACKRESTORE:       return "stackrestore";
3747
3748  // Block memory operations.
3749  case ISD::MEMSET:  return "memset";
3750  case ISD::MEMCPY:  return "memcpy";
3751  case ISD::MEMMOVE: return "memmove";
3752
3753  // Bit manipulation
3754  case ISD::BSWAP:   return "bswap";
3755  case ISD::CTPOP:   return "ctpop";
3756  case ISD::CTTZ:    return "cttz";
3757  case ISD::CTLZ:    return "ctlz";
3758
3759  // Debug info
3760  case ISD::LOCATION: return "location";
3761  case ISD::DEBUG_LOC: return "debug_loc";
3762
3763  // Trampolines
3764  case ISD::TRAMPOLINE: return "trampoline";
3765
3766  case ISD::CONDCODE:
3767    switch (cast<CondCodeSDNode>(this)->get()) {
3768    default: assert(0 && "Unknown setcc condition!");
3769    case ISD::SETOEQ:  return "setoeq";
3770    case ISD::SETOGT:  return "setogt";
3771    case ISD::SETOGE:  return "setoge";
3772    case ISD::SETOLT:  return "setolt";
3773    case ISD::SETOLE:  return "setole";
3774    case ISD::SETONE:  return "setone";
3775
3776    case ISD::SETO:    return "seto";
3777    case ISD::SETUO:   return "setuo";
3778    case ISD::SETUEQ:  return "setue";
3779    case ISD::SETUGT:  return "setugt";
3780    case ISD::SETUGE:  return "setuge";
3781    case ISD::SETULT:  return "setult";
3782    case ISD::SETULE:  return "setule";
3783    case ISD::SETUNE:  return "setune";
3784
3785    case ISD::SETEQ:   return "seteq";
3786    case ISD::SETGT:   return "setgt";
3787    case ISD::SETGE:   return "setge";
3788    case ISD::SETLT:   return "setlt";
3789    case ISD::SETLE:   return "setle";
3790    case ISD::SETNE:   return "setne";
3791    }
3792  }
3793}
3794
3795const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
3796  switch (AM) {
3797  default:
3798    return "";
3799  case ISD::PRE_INC:
3800    return "<pre-inc>";
3801  case ISD::PRE_DEC:
3802    return "<pre-dec>";
3803  case ISD::POST_INC:
3804    return "<post-inc>";
3805  case ISD::POST_DEC:
3806    return "<post-dec>";
3807  }
3808}
3809
3810void SDNode::dump() const { dump(0); }
3811void SDNode::dump(const SelectionDAG *G) const {
3812  cerr << (void*)this << ": ";
3813
3814  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
3815    if (i) cerr << ",";
3816    if (getValueType(i) == MVT::Other)
3817      cerr << "ch";
3818    else
3819      cerr << MVT::getValueTypeString(getValueType(i));
3820  }
3821  cerr << " = " << getOperationName(G);
3822
3823  cerr << " ";
3824  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3825    if (i) cerr << ", ";
3826    cerr << (void*)getOperand(i).Val;
3827    if (unsigned RN = getOperand(i).ResNo)
3828      cerr << ":" << RN;
3829  }
3830
3831  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
3832    cerr << "<" << CSDN->getValue() << ">";
3833  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
3834    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
3835      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
3836    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
3837      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
3838    else {
3839      cerr << "<APFloat(";
3840      CSDN->getValueAPF().convertToAPInt().dump();
3841      cerr << ")>";
3842    }
3843  } else if (const GlobalAddressSDNode *GADN =
3844             dyn_cast<GlobalAddressSDNode>(this)) {
3845    int offset = GADN->getOffset();
3846    cerr << "<";
3847    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
3848    if (offset > 0)
3849      cerr << " + " << offset;
3850    else
3851      cerr << " " << offset;
3852  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
3853    cerr << "<" << FIDN->getIndex() << ">";
3854  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
3855    cerr << "<" << JTDN->getIndex() << ">";
3856  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
3857    int offset = CP->getOffset();
3858    if (CP->isMachineConstantPoolEntry())
3859      cerr << "<" << *CP->getMachineCPVal() << ">";
3860    else
3861      cerr << "<" << *CP->getConstVal() << ">";
3862    if (offset > 0)
3863      cerr << " + " << offset;
3864    else
3865      cerr << " " << offset;
3866  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
3867    cerr << "<";
3868    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
3869    if (LBB)
3870      cerr << LBB->getName() << " ";
3871    cerr << (const void*)BBDN->getBasicBlock() << ">";
3872  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
3873    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
3874      cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
3875    } else {
3876      cerr << " #" << R->getReg();
3877    }
3878  } else if (const ExternalSymbolSDNode *ES =
3879             dyn_cast<ExternalSymbolSDNode>(this)) {
3880    cerr << "'" << ES->getSymbol() << "'";
3881  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
3882    if (M->getValue())
3883      cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
3884    else
3885      cerr << "<null:" << M->getOffset() << ">";
3886  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
3887    cerr << ":" << MVT::getValueTypeString(N->getVT());
3888  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
3889    bool doExt = true;
3890    switch (LD->getExtensionType()) {
3891    default: doExt = false; break;
3892    case ISD::EXTLOAD:
3893      cerr << " <anyext ";
3894      break;
3895    case ISD::SEXTLOAD:
3896      cerr << " <sext ";
3897      break;
3898    case ISD::ZEXTLOAD:
3899      cerr << " <zext ";
3900      break;
3901    }
3902    if (doExt)
3903      cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
3904
3905    const char *AM = getIndexedModeName(LD->getAddressingMode());
3906    if (*AM)
3907      cerr << " " << AM;
3908  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
3909    if (ST->isTruncatingStore())
3910      cerr << " <trunc "
3911           << MVT::getValueTypeString(ST->getStoredVT()) << ">";
3912
3913    const char *AM = getIndexedModeName(ST->getAddressingMode());
3914    if (*AM)
3915      cerr << " " << AM;
3916  }
3917}
3918
3919static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
3920  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3921    if (N->getOperand(i).Val->hasOneUse())
3922      DumpNodes(N->getOperand(i).Val, indent+2, G);
3923    else
3924      cerr << "\n" << std::string(indent+2, ' ')
3925           << (void*)N->getOperand(i).Val << ": <multiple use>";
3926
3927
3928  cerr << "\n" << std::string(indent, ' ');
3929  N->dump(G);
3930}
3931
3932void SelectionDAG::dump() const {
3933  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
3934  std::vector<const SDNode*> Nodes;
3935  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
3936       I != E; ++I)
3937    Nodes.push_back(I);
3938
3939  std::sort(Nodes.begin(), Nodes.end());
3940
3941  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3942    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
3943      DumpNodes(Nodes[i], 2, this);
3944  }
3945
3946  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
3947
3948  cerr << "\n\n";
3949}
3950
3951const Type *ConstantPoolSDNode::getType() const {
3952  if (isMachineConstantPoolEntry())
3953    return Val.MachineCPVal->getType();
3954  return Val.ConstVal->getType();
3955}
3956