SelectionDAG.cpp revision d9fe41c0c8f6eab686c6064e2ce0c8e211b0c995
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineModuleInfo.h"
24#include "llvm/CodeGen/PseudoSourceValue.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Target/TargetRegisterInfo.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Target/TargetLowering.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/ADT/SetVector.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallSet.h"
34#include "llvm/ADT/SmallVector.h"
35#include "llvm/ADT/StringExtras.h"
36#include <algorithm>
37#include <cmath>
38using namespace llvm;
39
40/// makeVTList - Return an instance of the SDVTList struct initialized with the
41/// specified members.
42static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
43  SDVTList Res = {VTs, NumVTs};
44  return Res;
45}
46
47SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
48
49//===----------------------------------------------------------------------===//
50//                              ConstantFPSDNode Class
51//===----------------------------------------------------------------------===//
52
53/// isExactlyValue - We don't rely on operator== working on double values, as
54/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
55/// As such, this method can be used to do an exact bit-for-bit comparison of
56/// two floating point values.
57bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
58  return Value.bitwiseIsEqual(V);
59}
60
61bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
62                                           const APFloat& Val) {
63  // convert modifies in place, so make a copy.
64  APFloat Val2 = APFloat(Val);
65  switch (VT) {
66  default:
67    return false;         // These can't be represented as floating point!
68
69  // FIXME rounding mode needs to be more flexible
70  case MVT::f32:
71    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
72           Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==
73              APFloat::opOK;
74  case MVT::f64:
75    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
76           &Val2.getSemantics() == &APFloat::IEEEdouble ||
77           Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==
78             APFloat::opOK;
79  // TODO: Figure out how to test if we can use a shorter type instead!
80  case MVT::f80:
81  case MVT::f128:
82  case MVT::ppcf128:
83    return true;
84  }
85}
86
87//===----------------------------------------------------------------------===//
88//                              ISD Namespace
89//===----------------------------------------------------------------------===//
90
91/// isBuildVectorAllOnes - Return true if the specified node is a
92/// BUILD_VECTOR where all of the elements are ~0 or undef.
93bool ISD::isBuildVectorAllOnes(const SDNode *N) {
94  // Look through a bit convert.
95  if (N->getOpcode() == ISD::BIT_CONVERT)
96    N = N->getOperand(0).Val;
97
98  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
99
100  unsigned i = 0, e = N->getNumOperands();
101
102  // Skip over all of the undef values.
103  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
104    ++i;
105
106  // Do not accept an all-undef vector.
107  if (i == e) return false;
108
109  // Do not accept build_vectors that aren't all constants or which have non-~0
110  // elements.
111  SDOperand NotZero = N->getOperand(i);
112  if (isa<ConstantSDNode>(NotZero)) {
113    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
114      return false;
115  } else if (isa<ConstantFPSDNode>(NotZero)) {
116    MVT::ValueType VT = NotZero.getValueType();
117    if (VT== MVT::f64) {
118      if (((cast<ConstantFPSDNode>(NotZero)->getValueAPF().
119                  convertToAPInt().getZExtValue())) != (uint64_t)-1)
120        return false;
121    } else {
122      if ((uint32_t)cast<ConstantFPSDNode>(NotZero)->
123                      getValueAPF().convertToAPInt().getZExtValue() !=
124          (uint32_t)-1)
125        return false;
126    }
127  } else
128    return false;
129
130  // Okay, we have at least one ~0 value, check to see if the rest match or are
131  // undefs.
132  for (++i; i != e; ++i)
133    if (N->getOperand(i) != NotZero &&
134        N->getOperand(i).getOpcode() != ISD::UNDEF)
135      return false;
136  return true;
137}
138
139
140/// isBuildVectorAllZeros - Return true if the specified node is a
141/// BUILD_VECTOR where all of the elements are 0 or undef.
142bool ISD::isBuildVectorAllZeros(const SDNode *N) {
143  // Look through a bit convert.
144  if (N->getOpcode() == ISD::BIT_CONVERT)
145    N = N->getOperand(0).Val;
146
147  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
148
149  unsigned i = 0, e = N->getNumOperands();
150
151  // Skip over all of the undef values.
152  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
153    ++i;
154
155  // Do not accept an all-undef vector.
156  if (i == e) return false;
157
158  // Do not accept build_vectors that aren't all constants or which have non-~0
159  // elements.
160  SDOperand Zero = N->getOperand(i);
161  if (isa<ConstantSDNode>(Zero)) {
162    if (!cast<ConstantSDNode>(Zero)->isNullValue())
163      return false;
164  } else if (isa<ConstantFPSDNode>(Zero)) {
165    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
166      return false;
167  } else
168    return false;
169
170  // Okay, we have at least one ~0 value, check to see if the rest match or are
171  // undefs.
172  for (++i; i != e; ++i)
173    if (N->getOperand(i) != Zero &&
174        N->getOperand(i).getOpcode() != ISD::UNDEF)
175      return false;
176  return true;
177}
178
179/// isDebugLabel - Return true if the specified node represents a debug
180/// label (i.e. ISD::LABEL or TargetInstrInfo::LABEL node and third operand
181/// is 0).
182bool ISD::isDebugLabel(const SDNode *N) {
183  SDOperand Zero;
184  if (N->getOpcode() == ISD::LABEL)
185    Zero = N->getOperand(2);
186  else if (N->isTargetOpcode() &&
187           N->getTargetOpcode() == TargetInstrInfo::LABEL)
188    // Chain moved to last operand.
189    Zero = N->getOperand(1);
190  else
191    return false;
192  return isa<ConstantSDNode>(Zero) && cast<ConstantSDNode>(Zero)->isNullValue();
193}
194
195/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
196/// when given the operation for (X op Y).
197ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
198  // To perform this operation, we just need to swap the L and G bits of the
199  // operation.
200  unsigned OldL = (Operation >> 2) & 1;
201  unsigned OldG = (Operation >> 1) & 1;
202  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
203                       (OldL << 1) |       // New G bit
204                       (OldG << 2));        // New L bit.
205}
206
207/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
208/// 'op' is a valid SetCC operation.
209ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
210  unsigned Operation = Op;
211  if (isInteger)
212    Operation ^= 7;   // Flip L, G, E bits, but not U.
213  else
214    Operation ^= 15;  // Flip all of the condition bits.
215  if (Operation > ISD::SETTRUE2)
216    Operation &= ~8;     // Don't let N and U bits get set.
217  return ISD::CondCode(Operation);
218}
219
220
221/// isSignedOp - For an integer comparison, return 1 if the comparison is a
222/// signed operation and 2 if the result is an unsigned comparison.  Return zero
223/// if the operation does not depend on the sign of the input (setne and seteq).
224static int isSignedOp(ISD::CondCode Opcode) {
225  switch (Opcode) {
226  default: assert(0 && "Illegal integer setcc operation!");
227  case ISD::SETEQ:
228  case ISD::SETNE: return 0;
229  case ISD::SETLT:
230  case ISD::SETLE:
231  case ISD::SETGT:
232  case ISD::SETGE: return 1;
233  case ISD::SETULT:
234  case ISD::SETULE:
235  case ISD::SETUGT:
236  case ISD::SETUGE: return 2;
237  }
238}
239
240/// getSetCCOrOperation - Return the result of a logical OR between different
241/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
242/// returns SETCC_INVALID if it is not possible to represent the resultant
243/// comparison.
244ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
245                                       bool isInteger) {
246  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
247    // Cannot fold a signed integer setcc with an unsigned integer setcc.
248    return ISD::SETCC_INVALID;
249
250  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
251
252  // If the N and U bits get set then the resultant comparison DOES suddenly
253  // care about orderedness, and is true when ordered.
254  if (Op > ISD::SETTRUE2)
255    Op &= ~16;     // Clear the U bit if the N bit is set.
256
257  // Canonicalize illegal integer setcc's.
258  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
259    Op = ISD::SETNE;
260
261  return ISD::CondCode(Op);
262}
263
264/// getSetCCAndOperation - Return the result of a logical AND between different
265/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
266/// function returns zero if it is not possible to represent the resultant
267/// comparison.
268ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
269                                        bool isInteger) {
270  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
271    // Cannot fold a signed setcc with an unsigned setcc.
272    return ISD::SETCC_INVALID;
273
274  // Combine all of the condition bits.
275  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
276
277  // Canonicalize illegal integer setcc's.
278  if (isInteger) {
279    switch (Result) {
280    default: break;
281    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
282    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
283    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
284    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
285    }
286  }
287
288  return Result;
289}
290
291const TargetMachine &SelectionDAG::getTarget() const {
292  return TLI.getTargetMachine();
293}
294
295//===----------------------------------------------------------------------===//
296//                           SDNode Profile Support
297//===----------------------------------------------------------------------===//
298
299/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
300///
301static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
302  ID.AddInteger(OpC);
303}
304
305/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
306/// solely with their pointer.
307void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
308  ID.AddPointer(VTList.VTs);
309}
310
311/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
312///
313static void AddNodeIDOperands(FoldingSetNodeID &ID,
314                              const SDOperand *Ops, unsigned NumOps) {
315  for (; NumOps; --NumOps, ++Ops) {
316    ID.AddPointer(Ops->Val);
317    ID.AddInteger(Ops->ResNo);
318  }
319}
320
321static void AddNodeIDNode(FoldingSetNodeID &ID,
322                          unsigned short OpC, SDVTList VTList,
323                          const SDOperand *OpList, unsigned N) {
324  AddNodeIDOpcode(ID, OpC);
325  AddNodeIDValueTypes(ID, VTList);
326  AddNodeIDOperands(ID, OpList, N);
327}
328
329/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
330/// data.
331static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
332  AddNodeIDOpcode(ID, N->getOpcode());
333  // Add the return value info.
334  AddNodeIDValueTypes(ID, N->getVTList());
335  // Add the operand info.
336  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
337
338  // Handle SDNode leafs with special info.
339  switch (N->getOpcode()) {
340  default: break;  // Normal nodes don't need extra info.
341  case ISD::TargetConstant:
342  case ISD::Constant:
343    ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
344    break;
345  case ISD::TargetConstantFP:
346  case ISD::ConstantFP: {
347    ID.Add(cast<ConstantFPSDNode>(N)->getValueAPF());
348    break;
349  }
350  case ISD::TargetGlobalAddress:
351  case ISD::GlobalAddress:
352  case ISD::TargetGlobalTLSAddress:
353  case ISD::GlobalTLSAddress: {
354    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
355    ID.AddPointer(GA->getGlobal());
356    ID.AddInteger(GA->getOffset());
357    break;
358  }
359  case ISD::BasicBlock:
360    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
361    break;
362  case ISD::Register:
363    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
364    break;
365  case ISD::SRCVALUE:
366    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
367    break;
368  case ISD::MEMOPERAND: {
369    const MemOperand &MO = cast<MemOperandSDNode>(N)->MO;
370    ID.AddPointer(MO.getValue());
371    ID.AddInteger(MO.getFlags());
372    ID.AddInteger(MO.getOffset());
373    ID.AddInteger(MO.getSize());
374    ID.AddInteger(MO.getAlignment());
375    break;
376  }
377  case ISD::FrameIndex:
378  case ISD::TargetFrameIndex:
379    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
380    break;
381  case ISD::JumpTable:
382  case ISD::TargetJumpTable:
383    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
384    break;
385  case ISD::ConstantPool:
386  case ISD::TargetConstantPool: {
387    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
388    ID.AddInteger(CP->getAlignment());
389    ID.AddInteger(CP->getOffset());
390    if (CP->isMachineConstantPoolEntry())
391      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
392    else
393      ID.AddPointer(CP->getConstVal());
394    break;
395  }
396  case ISD::LOAD: {
397    LoadSDNode *LD = cast<LoadSDNode>(N);
398    ID.AddInteger(LD->getAddressingMode());
399    ID.AddInteger(LD->getExtensionType());
400    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
401    ID.AddInteger(LD->getAlignment());
402    ID.AddInteger(LD->isVolatile());
403    break;
404  }
405  case ISD::STORE: {
406    StoreSDNode *ST = cast<StoreSDNode>(N);
407    ID.AddInteger(ST->getAddressingMode());
408    ID.AddInteger(ST->isTruncatingStore());
409    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
410    ID.AddInteger(ST->getAlignment());
411    ID.AddInteger(ST->isVolatile());
412    break;
413  }
414  }
415}
416
417//===----------------------------------------------------------------------===//
418//                              SelectionDAG Class
419//===----------------------------------------------------------------------===//
420
421/// RemoveDeadNodes - This method deletes all unreachable nodes in the
422/// SelectionDAG.
423void SelectionDAG::RemoveDeadNodes() {
424  // Create a dummy node (which is not added to allnodes), that adds a reference
425  // to the root node, preventing it from being deleted.
426  HandleSDNode Dummy(getRoot());
427
428  SmallVector<SDNode*, 128> DeadNodes;
429
430  // Add all obviously-dead nodes to the DeadNodes worklist.
431  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
432    if (I->use_empty())
433      DeadNodes.push_back(I);
434
435  // Process the worklist, deleting the nodes and adding their uses to the
436  // worklist.
437  while (!DeadNodes.empty()) {
438    SDNode *N = DeadNodes.back();
439    DeadNodes.pop_back();
440
441    // Take the node out of the appropriate CSE map.
442    RemoveNodeFromCSEMaps(N);
443
444    // Next, brutally remove the operand list.  This is safe to do, as there are
445    // no cycles in the graph.
446    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
447      SDNode *Operand = I->Val;
448      Operand->removeUser(N);
449
450      // Now that we removed this operand, see if there are no uses of it left.
451      if (Operand->use_empty())
452        DeadNodes.push_back(Operand);
453    }
454    if (N->OperandsNeedDelete)
455      delete[] N->OperandList;
456    N->OperandList = 0;
457    N->NumOperands = 0;
458
459    // Finally, remove N itself.
460    AllNodes.erase(N);
461  }
462
463  // If the root changed (e.g. it was a dead load, update the root).
464  setRoot(Dummy.getValue());
465}
466
467void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
468  SmallVector<SDNode*, 16> DeadNodes;
469  DeadNodes.push_back(N);
470
471  // Process the worklist, deleting the nodes and adding their uses to the
472  // worklist.
473  while (!DeadNodes.empty()) {
474    SDNode *N = DeadNodes.back();
475    DeadNodes.pop_back();
476
477    if (UpdateListener)
478      UpdateListener->NodeDeleted(N);
479
480    // Take the node out of the appropriate CSE map.
481    RemoveNodeFromCSEMaps(N);
482
483    // Next, brutally remove the operand list.  This is safe to do, as there are
484    // no cycles in the graph.
485    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
486      SDNode *Operand = I->Val;
487      Operand->removeUser(N);
488
489      // Now that we removed this operand, see if there are no uses of it left.
490      if (Operand->use_empty())
491        DeadNodes.push_back(Operand);
492    }
493    if (N->OperandsNeedDelete)
494      delete[] N->OperandList;
495    N->OperandList = 0;
496    N->NumOperands = 0;
497
498    // Finally, remove N itself.
499    AllNodes.erase(N);
500  }
501}
502
503void SelectionDAG::DeleteNode(SDNode *N) {
504  assert(N->use_empty() && "Cannot delete a node that is not dead!");
505
506  // First take this out of the appropriate CSE map.
507  RemoveNodeFromCSEMaps(N);
508
509  // Finally, remove uses due to operands of this node, remove from the
510  // AllNodes list, and delete the node.
511  DeleteNodeNotInCSEMaps(N);
512}
513
514void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
515
516  // Remove it from the AllNodes list.
517  AllNodes.remove(N);
518
519  // Drop all of the operands and decrement used nodes use counts.
520  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
521    I->Val->removeUser(N);
522  if (N->OperandsNeedDelete)
523    delete[] N->OperandList;
524  N->OperandList = 0;
525  N->NumOperands = 0;
526
527  delete N;
528}
529
530/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
531/// correspond to it.  This is useful when we're about to delete or repurpose
532/// the node.  We don't want future request for structurally identical nodes
533/// to return N anymore.
534void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
535  bool Erased = false;
536  switch (N->getOpcode()) {
537  case ISD::HANDLENODE: return;  // noop.
538  case ISD::STRING:
539    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
540    break;
541  case ISD::CONDCODE:
542    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
543           "Cond code doesn't exist!");
544    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
545    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
546    break;
547  case ISD::ExternalSymbol:
548    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
549    break;
550  case ISD::TargetExternalSymbol:
551    Erased =
552      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
553    break;
554  case ISD::VALUETYPE: {
555    MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
556    if (MVT::isExtendedVT(VT)) {
557      Erased = ExtendedValueTypeNodes.erase(VT);
558    } else {
559      Erased = ValueTypeNodes[VT] != 0;
560      ValueTypeNodes[VT] = 0;
561    }
562    break;
563  }
564  default:
565    // Remove it from the CSE Map.
566    Erased = CSEMap.RemoveNode(N);
567    break;
568  }
569#ifndef NDEBUG
570  // Verify that the node was actually in one of the CSE maps, unless it has a
571  // flag result (which cannot be CSE'd) or is one of the special cases that are
572  // not subject to CSE.
573  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
574      !N->isTargetOpcode()) {
575    N->dump(this);
576    cerr << "\n";
577    assert(0 && "Node is not in map!");
578  }
579#endif
580}
581
582/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
583/// has been taken out and modified in some way.  If the specified node already
584/// exists in the CSE maps, do not modify the maps, but return the existing node
585/// instead.  If it doesn't exist, add it and return null.
586///
587SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
588  assert(N->getNumOperands() && "This is a leaf node!");
589  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
590    return 0;    // Never add these nodes.
591
592  // Check that remaining values produced are not flags.
593  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
594    if (N->getValueType(i) == MVT::Flag)
595      return 0;   // Never CSE anything that produces a flag.
596
597  SDNode *New = CSEMap.GetOrInsertNode(N);
598  if (New != N) return New;  // Node already existed.
599  return 0;
600}
601
602/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
603/// were replaced with those specified.  If this node is never memoized,
604/// return null, otherwise return a pointer to the slot it would take.  If a
605/// node already exists with these operands, the slot will be non-null.
606SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
607                                           void *&InsertPos) {
608  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
609    return 0;    // Never add these nodes.
610
611  // Check that remaining values produced are not flags.
612  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
613    if (N->getValueType(i) == MVT::Flag)
614      return 0;   // Never CSE anything that produces a flag.
615
616  SDOperand Ops[] = { Op };
617  FoldingSetNodeID ID;
618  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
619  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
620}
621
622/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
623/// were replaced with those specified.  If this node is never memoized,
624/// return null, otherwise return a pointer to the slot it would take.  If a
625/// node already exists with these operands, the slot will be non-null.
626SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
627                                           SDOperand Op1, SDOperand Op2,
628                                           void *&InsertPos) {
629  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
630    return 0;    // Never add these nodes.
631
632  // Check that remaining values produced are not flags.
633  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
634    if (N->getValueType(i) == MVT::Flag)
635      return 0;   // Never CSE anything that produces a flag.
636
637  SDOperand Ops[] = { Op1, Op2 };
638  FoldingSetNodeID ID;
639  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
640  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
641}
642
643
644/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
645/// were replaced with those specified.  If this node is never memoized,
646/// return null, otherwise return a pointer to the slot it would take.  If a
647/// node already exists with these operands, the slot will be non-null.
648SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
649                                           const SDOperand *Ops,unsigned NumOps,
650                                           void *&InsertPos) {
651  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
652    return 0;    // Never add these nodes.
653
654  // Check that remaining values produced are not flags.
655  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
656    if (N->getValueType(i) == MVT::Flag)
657      return 0;   // Never CSE anything that produces a flag.
658
659  FoldingSetNodeID ID;
660  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
661
662  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
663    ID.AddInteger(LD->getAddressingMode());
664    ID.AddInteger(LD->getExtensionType());
665    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
666    ID.AddInteger(LD->getAlignment());
667    ID.AddInteger(LD->isVolatile());
668  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
669    ID.AddInteger(ST->getAddressingMode());
670    ID.AddInteger(ST->isTruncatingStore());
671    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
672    ID.AddInteger(ST->getAlignment());
673    ID.AddInteger(ST->isVolatile());
674  }
675
676  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
677}
678
679
680SelectionDAG::~SelectionDAG() {
681  while (!AllNodes.empty()) {
682    SDNode *N = AllNodes.begin();
683    N->SetNextInBucket(0);
684    if (N->OperandsNeedDelete)
685      delete [] N->OperandList;
686    N->OperandList = 0;
687    N->NumOperands = 0;
688    AllNodes.pop_front();
689  }
690}
691
692SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
693  if (Op.getValueType() == VT) return Op;
694  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
695  return getNode(ISD::AND, Op.getValueType(), Op,
696                 getConstant(Imm, Op.getValueType()));
697}
698
699SDOperand SelectionDAG::getString(const std::string &Val) {
700  StringSDNode *&N = StringNodes[Val];
701  if (!N) {
702    N = new StringSDNode(Val);
703    AllNodes.push_back(N);
704  }
705  return SDOperand(N, 0);
706}
707
708SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
709  MVT::ValueType EltVT =
710    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
711
712  return getConstant(APInt(MVT::getSizeInBits(EltVT), Val), VT, isT);
713}
714
715SDOperand SelectionDAG::getConstant(const APInt &Val, MVT::ValueType VT, bool isT) {
716  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
717
718  MVT::ValueType EltVT =
719    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
720
721  assert(Val.getBitWidth() == MVT::getSizeInBits(EltVT) &&
722         "APInt size does not match type size!");
723
724  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
725  FoldingSetNodeID ID;
726  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
727  ID.Add(Val);
728  void *IP = 0;
729  SDNode *N = NULL;
730  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
731    if (!MVT::isVector(VT))
732      return SDOperand(N, 0);
733  if (!N) {
734    N = new ConstantSDNode(isT, Val, EltVT);
735    CSEMap.InsertNode(N, IP);
736    AllNodes.push_back(N);
737  }
738
739  SDOperand Result(N, 0);
740  if (MVT::isVector(VT)) {
741    SmallVector<SDOperand, 8> Ops;
742    Ops.assign(MVT::getVectorNumElements(VT), Result);
743    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
744  }
745  return Result;
746}
747
748SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
749  return getConstant(Val, TLI.getPointerTy(), isTarget);
750}
751
752
753SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
754                                      bool isTarget) {
755  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
756
757  MVT::ValueType EltVT =
758    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
759
760  // Do the map lookup using the actual bit pattern for the floating point
761  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
762  // we don't have issues with SNANs.
763  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
764  FoldingSetNodeID ID;
765  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
766  ID.Add(V);
767  void *IP = 0;
768  SDNode *N = NULL;
769  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
770    if (!MVT::isVector(VT))
771      return SDOperand(N, 0);
772  if (!N) {
773    N = new ConstantFPSDNode(isTarget, V, EltVT);
774    CSEMap.InsertNode(N, IP);
775    AllNodes.push_back(N);
776  }
777
778  SDOperand Result(N, 0);
779  if (MVT::isVector(VT)) {
780    SmallVector<SDOperand, 8> Ops;
781    Ops.assign(MVT::getVectorNumElements(VT), Result);
782    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
783  }
784  return Result;
785}
786
787SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
788                                      bool isTarget) {
789  MVT::ValueType EltVT =
790    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
791  if (EltVT==MVT::f32)
792    return getConstantFP(APFloat((float)Val), VT, isTarget);
793  else
794    return getConstantFP(APFloat(Val), VT, isTarget);
795}
796
797SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
798                                         MVT::ValueType VT, int Offset,
799                                         bool isTargetGA) {
800  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
801  unsigned Opc;
802  if (GVar && GVar->isThreadLocal())
803    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
804  else
805    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
806  FoldingSetNodeID ID;
807  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
808  ID.AddPointer(GV);
809  ID.AddInteger(Offset);
810  void *IP = 0;
811  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
812   return SDOperand(E, 0);
813  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
814  CSEMap.InsertNode(N, IP);
815  AllNodes.push_back(N);
816  return SDOperand(N, 0);
817}
818
819SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
820                                      bool isTarget) {
821  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
822  FoldingSetNodeID ID;
823  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
824  ID.AddInteger(FI);
825  void *IP = 0;
826  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
827    return SDOperand(E, 0);
828  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
829  CSEMap.InsertNode(N, IP);
830  AllNodes.push_back(N);
831  return SDOperand(N, 0);
832}
833
834SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
835  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
836  FoldingSetNodeID ID;
837  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
838  ID.AddInteger(JTI);
839  void *IP = 0;
840  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
841    return SDOperand(E, 0);
842  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
843  CSEMap.InsertNode(N, IP);
844  AllNodes.push_back(N);
845  return SDOperand(N, 0);
846}
847
848SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
849                                        unsigned Alignment, int Offset,
850                                        bool isTarget) {
851  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
852  FoldingSetNodeID ID;
853  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
854  ID.AddInteger(Alignment);
855  ID.AddInteger(Offset);
856  ID.AddPointer(C);
857  void *IP = 0;
858  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
859    return SDOperand(E, 0);
860  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
861  CSEMap.InsertNode(N, IP);
862  AllNodes.push_back(N);
863  return SDOperand(N, 0);
864}
865
866
867SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
868                                        MVT::ValueType VT,
869                                        unsigned Alignment, int Offset,
870                                        bool isTarget) {
871  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
872  FoldingSetNodeID ID;
873  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
874  ID.AddInteger(Alignment);
875  ID.AddInteger(Offset);
876  C->AddSelectionDAGCSEId(ID);
877  void *IP = 0;
878  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
879    return SDOperand(E, 0);
880  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
881  CSEMap.InsertNode(N, IP);
882  AllNodes.push_back(N);
883  return SDOperand(N, 0);
884}
885
886
887SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
888  FoldingSetNodeID ID;
889  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
890  ID.AddPointer(MBB);
891  void *IP = 0;
892  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
893    return SDOperand(E, 0);
894  SDNode *N = new BasicBlockSDNode(MBB);
895  CSEMap.InsertNode(N, IP);
896  AllNodes.push_back(N);
897  return SDOperand(N, 0);
898}
899
900SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
901  if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
902    ValueTypeNodes.resize(VT+1);
903
904  SDNode *&N = MVT::isExtendedVT(VT) ?
905    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
906
907  if (N) return SDOperand(N, 0);
908  N = new VTSDNode(VT);
909  AllNodes.push_back(N);
910  return SDOperand(N, 0);
911}
912
913SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
914  SDNode *&N = ExternalSymbols[Sym];
915  if (N) return SDOperand(N, 0);
916  N = new ExternalSymbolSDNode(false, Sym, VT);
917  AllNodes.push_back(N);
918  return SDOperand(N, 0);
919}
920
921SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
922                                                MVT::ValueType VT) {
923  SDNode *&N = TargetExternalSymbols[Sym];
924  if (N) return SDOperand(N, 0);
925  N = new ExternalSymbolSDNode(true, Sym, VT);
926  AllNodes.push_back(N);
927  return SDOperand(N, 0);
928}
929
930SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
931  if ((unsigned)Cond >= CondCodeNodes.size())
932    CondCodeNodes.resize(Cond+1);
933
934  if (CondCodeNodes[Cond] == 0) {
935    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
936    AllNodes.push_back(CondCodeNodes[Cond]);
937  }
938  return SDOperand(CondCodeNodes[Cond], 0);
939}
940
941SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
942  FoldingSetNodeID ID;
943  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
944  ID.AddInteger(RegNo);
945  void *IP = 0;
946  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
947    return SDOperand(E, 0);
948  SDNode *N = new RegisterSDNode(RegNo, VT);
949  CSEMap.InsertNode(N, IP);
950  AllNodes.push_back(N);
951  return SDOperand(N, 0);
952}
953
954SDOperand SelectionDAG::getSrcValue(const Value *V) {
955  assert((!V || isa<PointerType>(V->getType())) &&
956         "SrcValue is not a pointer?");
957
958  FoldingSetNodeID ID;
959  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
960  ID.AddPointer(V);
961
962  void *IP = 0;
963  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
964    return SDOperand(E, 0);
965
966  SDNode *N = new SrcValueSDNode(V);
967  CSEMap.InsertNode(N, IP);
968  AllNodes.push_back(N);
969  return SDOperand(N, 0);
970}
971
972SDOperand SelectionDAG::getMemOperand(const MemOperand &MO) {
973  const Value *v = MO.getValue();
974  assert((!v || isa<PointerType>(v->getType())) &&
975         "SrcValue is not a pointer?");
976
977  FoldingSetNodeID ID;
978  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
979  ID.AddPointer(v);
980  ID.AddInteger(MO.getFlags());
981  ID.AddInteger(MO.getOffset());
982  ID.AddInteger(MO.getSize());
983  ID.AddInteger(MO.getAlignment());
984
985  void *IP = 0;
986  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
987    return SDOperand(E, 0);
988
989  SDNode *N = new MemOperandSDNode(MO);
990  CSEMap.InsertNode(N, IP);
991  AllNodes.push_back(N);
992  return SDOperand(N, 0);
993}
994
995/// CreateStackTemporary - Create a stack temporary, suitable for holding the
996/// specified value type.
997SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
998  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
999  unsigned ByteSize = MVT::getSizeInBits(VT)/8;
1000  const Type *Ty = MVT::getTypeForValueType(VT);
1001  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
1002  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1003  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1004}
1005
1006
1007SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
1008                                  SDOperand N2, ISD::CondCode Cond) {
1009  // These setcc operations always fold.
1010  switch (Cond) {
1011  default: break;
1012  case ISD::SETFALSE:
1013  case ISD::SETFALSE2: return getConstant(0, VT);
1014  case ISD::SETTRUE:
1015  case ISD::SETTRUE2:  return getConstant(1, VT);
1016
1017  case ISD::SETOEQ:
1018  case ISD::SETOGT:
1019  case ISD::SETOGE:
1020  case ISD::SETOLT:
1021  case ISD::SETOLE:
1022  case ISD::SETONE:
1023  case ISD::SETO:
1024  case ISD::SETUO:
1025  case ISD::SETUEQ:
1026  case ISD::SETUNE:
1027    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
1028    break;
1029  }
1030
1031  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
1032    uint64_t C2 = N2C->getValue();
1033    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1034      uint64_t C1 = N1C->getValue();
1035
1036      // Sign extend the operands if required
1037      if (ISD::isSignedIntSetCC(Cond)) {
1038        C1 = N1C->getSignExtended();
1039        C2 = N2C->getSignExtended();
1040      }
1041
1042      switch (Cond) {
1043      default: assert(0 && "Unknown integer setcc!");
1044      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1045      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1046      case ISD::SETULT: return getConstant(C1 <  C2, VT);
1047      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
1048      case ISD::SETULE: return getConstant(C1 <= C2, VT);
1049      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
1050      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
1051      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
1052      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
1053      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
1054      }
1055    }
1056  }
1057  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
1058    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1059      // No compile time operations on this type yet.
1060      if (N1C->getValueType(0) == MVT::ppcf128)
1061        return SDOperand();
1062
1063      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1064      switch (Cond) {
1065      default: break;
1066      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1067                          return getNode(ISD::UNDEF, VT);
1068                        // fall through
1069      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1070      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1071                          return getNode(ISD::UNDEF, VT);
1072                        // fall through
1073      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1074                                           R==APFloat::cmpLessThan, VT);
1075      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1076                          return getNode(ISD::UNDEF, VT);
1077                        // fall through
1078      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1079      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1080                          return getNode(ISD::UNDEF, VT);
1081                        // fall through
1082      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1083      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1084                          return getNode(ISD::UNDEF, VT);
1085                        // fall through
1086      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1087                                           R==APFloat::cmpEqual, VT);
1088      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1089                          return getNode(ISD::UNDEF, VT);
1090                        // fall through
1091      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1092                                           R==APFloat::cmpEqual, VT);
1093      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1094      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1095      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1096                                           R==APFloat::cmpEqual, VT);
1097      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1098      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1099                                           R==APFloat::cmpLessThan, VT);
1100      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1101                                           R==APFloat::cmpUnordered, VT);
1102      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1103      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1104      }
1105    } else {
1106      // Ensure that the constant occurs on the RHS.
1107      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1108    }
1109
1110  // Could not fold it.
1111  return SDOperand();
1112}
1113
1114/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1115/// this predicate to simplify operations downstream.  Mask is known to be zero
1116/// for bits that V cannot have.
1117bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
1118                                     unsigned Depth) const {
1119  // The masks are not wide enough to represent this type!  Should use APInt.
1120  if (Op.getValueType() == MVT::i128)
1121    return false;
1122
1123  uint64_t KnownZero, KnownOne;
1124  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1125  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1126  return (KnownZero & Mask) == Mask;
1127}
1128
1129/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1130/// known to be either zero or one and return them in the KnownZero/KnownOne
1131/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1132/// processing.
1133void SelectionDAG::ComputeMaskedBits(SDOperand Op, const APInt &Mask,
1134                                     APInt &KnownZero, APInt &KnownOne,
1135                                     unsigned Depth) const {
1136  unsigned BitWidth = Mask.getBitWidth();
1137  assert(BitWidth == MVT::getSizeInBits(Op.getValueType()) &&
1138         "Mask size mismatches value type size!");
1139
1140  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1141  if (Depth == 6 || Mask == 0)
1142    return;  // Limit search depth.
1143
1144  APInt KnownZero2, KnownOne2;
1145
1146  switch (Op.getOpcode()) {
1147  case ISD::Constant:
1148    // We know all of the bits for a constant!
1149    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1150    KnownZero = ~KnownOne & Mask;
1151    return;
1152  case ISD::AND:
1153    // If either the LHS or the RHS are Zero, the result is zero.
1154    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1155    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1156                      KnownZero2, KnownOne2, Depth+1);
1157    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1158    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1159
1160    // Output known-1 bits are only known if set in both the LHS & RHS.
1161    KnownOne &= KnownOne2;
1162    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1163    KnownZero |= KnownZero2;
1164    return;
1165  case ISD::OR:
1166    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1167    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1168                      KnownZero2, KnownOne2, Depth+1);
1169    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1170    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1171
1172    // Output known-0 bits are only known if clear in both the LHS & RHS.
1173    KnownZero &= KnownZero2;
1174    // Output known-1 are known to be set if set in either the LHS | RHS.
1175    KnownOne |= KnownOne2;
1176    return;
1177  case ISD::XOR: {
1178    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1179    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1180    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1181    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1182
1183    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1184    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1185    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1186    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1187    KnownZero = KnownZeroOut;
1188    return;
1189  }
1190  case ISD::SELECT:
1191    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1192    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1193    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1194    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1195
1196    // Only known if known in both the LHS and RHS.
1197    KnownOne &= KnownOne2;
1198    KnownZero &= KnownZero2;
1199    return;
1200  case ISD::SELECT_CC:
1201    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1202    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1203    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1204    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1205
1206    // Only known if known in both the LHS and RHS.
1207    KnownOne &= KnownOne2;
1208    KnownZero &= KnownZero2;
1209    return;
1210  case ISD::SETCC:
1211    // If we know the result of a setcc has the top bits zero, use this info.
1212    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1213        BitWidth > 1)
1214      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1215    return;
1216  case ISD::SHL:
1217    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1218    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1219      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(SA->getValue()),
1220                        KnownZero, KnownOne, Depth+1);
1221      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1222      KnownZero <<= SA->getValue();
1223      KnownOne  <<= SA->getValue();
1224      // low bits known zero.
1225      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getValue());
1226    }
1227    return;
1228  case ISD::SRL:
1229    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1230    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1231      unsigned ShAmt = SA->getValue();
1232
1233      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1234                        KnownZero, KnownOne, Depth+1);
1235      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1236      KnownZero = KnownZero.lshr(ShAmt);
1237      KnownOne  = KnownOne.lshr(ShAmt);
1238
1239      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1240      KnownZero |= HighBits;  // High bits known zero.
1241    }
1242    return;
1243  case ISD::SRA:
1244    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1245      unsigned ShAmt = SA->getValue();
1246
1247      APInt InDemandedMask = (Mask << ShAmt);
1248      // If any of the demanded bits are produced by the sign extension, we also
1249      // demand the input sign bit.
1250      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1251      if (HighBits.getBoolValue())
1252        InDemandedMask |= APInt::getSignBit(BitWidth);
1253
1254      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1255                        Depth+1);
1256      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1257      KnownZero = KnownZero.lshr(ShAmt);
1258      KnownOne  = KnownOne.lshr(ShAmt);
1259
1260      // Handle the sign bits.
1261      APInt SignBit = APInt::getSignBit(BitWidth);
1262      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1263
1264      if (!!(KnownZero & SignBit)) {
1265        KnownZero |= HighBits;  // New bits are known zero.
1266      } else if (!!(KnownOne & SignBit)) {
1267        KnownOne  |= HighBits;  // New bits are known one.
1268      }
1269    }
1270    return;
1271  case ISD::SIGN_EXTEND_INREG: {
1272    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1273    unsigned EBits = MVT::getSizeInBits(EVT);
1274
1275    // Sign extension.  Compute the demanded bits in the result that are not
1276    // present in the input.
1277    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1278
1279    APInt InSignBit = APInt::getSignBit(EBits);
1280    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1281
1282    // If the sign extended bits are demanded, we know that the sign
1283    // bit is demanded.
1284    InSignBit.zext(BitWidth);
1285    if (NewBits.getBoolValue())
1286      InputDemandedBits |= InSignBit;
1287
1288    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1289                      KnownZero, KnownOne, Depth+1);
1290    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1291
1292    // If the sign bit of the input is known set or clear, then we know the
1293    // top bits of the result.
1294    if (!!(KnownZero & InSignBit)) {          // Input sign bit known clear
1295      KnownZero |= NewBits;
1296      KnownOne  &= ~NewBits;
1297    } else if (!!(KnownOne & InSignBit)) {    // Input sign bit known set
1298      KnownOne  |= NewBits;
1299      KnownZero &= ~NewBits;
1300    } else {                              // Input sign bit unknown
1301      KnownZero &= ~NewBits;
1302      KnownOne  &= ~NewBits;
1303    }
1304    return;
1305  }
1306  case ISD::CTTZ:
1307  case ISD::CTLZ:
1308  case ISD::CTPOP: {
1309    unsigned LowBits = Log2_32(BitWidth)+1;
1310    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1311    KnownOne  = APInt(BitWidth, 0);
1312    return;
1313  }
1314  case ISD::LOAD: {
1315    if (ISD::isZEXTLoad(Op.Val)) {
1316      LoadSDNode *LD = cast<LoadSDNode>(Op);
1317      MVT::ValueType VT = LD->getMemoryVT();
1318      unsigned MemBits = MVT::getSizeInBits(VT);
1319      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1320    }
1321    return;
1322  }
1323  case ISD::ZERO_EXTEND: {
1324    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1325    unsigned InBits = MVT::getSizeInBits(InVT);
1326    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1327    APInt InMask    = Mask;
1328    InMask.trunc(InBits);
1329    KnownZero.trunc(InBits);
1330    KnownOne.trunc(InBits);
1331    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1332    KnownZero.zext(BitWidth);
1333    KnownOne.zext(BitWidth);
1334    KnownZero |= NewBits;
1335    return;
1336  }
1337  case ISD::SIGN_EXTEND: {
1338    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1339    unsigned InBits = MVT::getSizeInBits(InVT);
1340    APInt InSignBit = APInt::getSignBit(InBits);
1341    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1342    APInt InMask = Mask;
1343    InMask.trunc(InBits);
1344
1345    // If any of the sign extended bits are demanded, we know that the sign
1346    // bit is demanded. Temporarily set this bit in the mask for our callee.
1347    if (NewBits.getBoolValue())
1348      InMask |= InSignBit;
1349
1350    KnownZero.trunc(InBits);
1351    KnownOne.trunc(InBits);
1352    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1353
1354    // Note if the sign bit is known to be zero or one.
1355    bool SignBitKnownZero = KnownZero.isNegative();
1356    bool SignBitKnownOne  = KnownOne.isNegative();
1357    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1358           "Sign bit can't be known to be both zero and one!");
1359
1360    // If the sign bit wasn't actually demanded by our caller, we don't
1361    // want it set in the KnownZero and KnownOne result values. Reset the
1362    // mask and reapply it to the result values.
1363    InMask = Mask;
1364    InMask.trunc(InBits);
1365    KnownZero &= InMask;
1366    KnownOne  &= InMask;
1367
1368    KnownZero.zext(BitWidth);
1369    KnownOne.zext(BitWidth);
1370
1371    // If the sign bit is known zero or one, the top bits match.
1372    if (SignBitKnownZero)
1373      KnownZero |= NewBits;
1374    else if (SignBitKnownOne)
1375      KnownOne  |= NewBits;
1376    return;
1377  }
1378  case ISD::ANY_EXTEND: {
1379    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1380    unsigned InBits = MVT::getSizeInBits(InVT);
1381    APInt InMask = Mask;
1382    InMask.trunc(InBits);
1383    KnownZero.trunc(InBits);
1384    KnownOne.trunc(InBits);
1385    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1386    KnownZero.zext(BitWidth);
1387    KnownOne.zext(BitWidth);
1388    return;
1389  }
1390  case ISD::TRUNCATE: {
1391    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1392    unsigned InBits = MVT::getSizeInBits(InVT);
1393    APInt InMask = Mask;
1394    InMask.zext(InBits);
1395    KnownZero.zext(InBits);
1396    KnownOne.zext(InBits);
1397    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1398    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1399    KnownZero.trunc(BitWidth);
1400    KnownOne.trunc(BitWidth);
1401    break;
1402  }
1403  case ISD::AssertZext: {
1404    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1405    APInt InMask = APInt::getLowBitsSet(BitWidth, MVT::getSizeInBits(VT));
1406    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1407                      KnownOne, Depth+1);
1408    KnownZero |= (~InMask) & Mask;
1409    return;
1410  }
1411  case ISD::FGETSIGN:
1412    // All bits are zero except the low bit.
1413    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1414    return;
1415
1416  case ISD::ADD: {
1417    // If either the LHS or the RHS are Zero, the result is zero.
1418    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1419    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1420    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1421    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1422
1423    // Output known-0 bits are known if clear or set in both the low clear bits
1424    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1425    // low 3 bits clear.
1426    unsigned KnownZeroOut = std::min(KnownZero.countTrailingOnes(),
1427                                     KnownZero2.countTrailingOnes());
1428
1429    KnownZero = APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1430    KnownOne = APInt(BitWidth, 0);
1431    return;
1432  }
1433  case ISD::SUB: {
1434    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1435    if (!CLHS) return;
1436
1437    // We know that the top bits of C-X are clear if X contains less bits
1438    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1439    // positive if we can prove that X is >= 0 and < 16.
1440
1441    // sign bit clear
1442    if (CLHS->getAPIntValue().isNonNegative()) {
1443      unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1444      // NLZ can't be BitWidth with no sign bit
1445      APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ);
1446      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1447
1448      // If all of the MaskV bits are known to be zero, then we know the output
1449      // top bits are zero, because we now know that the output is from [0-C].
1450      if ((KnownZero & MaskV) == MaskV) {
1451        unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1452        // Top bits known zero.
1453        KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1454        KnownOne = APInt(BitWidth, 0);   // No one bits known.
1455      } else {
1456        KnownZero = KnownOne = APInt(BitWidth, 0);  // Otherwise, nothing known.
1457      }
1458    }
1459    return;
1460  }
1461  default:
1462    // Allow the target to implement this method for its nodes.
1463    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1464  case ISD::INTRINSIC_WO_CHAIN:
1465  case ISD::INTRINSIC_W_CHAIN:
1466  case ISD::INTRINSIC_VOID:
1467      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1468    }
1469    return;
1470  }
1471}
1472
1473/// ComputeMaskedBits - This is a wrapper around the APInt-using
1474/// form of ComputeMaskedBits for use by clients that haven't been converted
1475/// to APInt yet.
1476void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
1477                                     uint64_t &KnownZero, uint64_t &KnownOne,
1478                                     unsigned Depth) const {
1479  // The masks are not wide enough to represent this type!  Should use APInt.
1480  if (Op.getValueType() == MVT::i128)
1481    return;
1482
1483  unsigned NumBits = MVT::getSizeInBits(Op.getValueType());
1484  APInt APIntMask(NumBits, Mask);
1485  APInt APIntKnownZero(NumBits, 0);
1486  APInt APIntKnownOne(NumBits, 0);
1487  ComputeMaskedBits(Op, APIntMask, APIntKnownZero, APIntKnownOne, Depth);
1488  KnownZero = APIntKnownZero.getZExtValue();
1489  KnownOne = APIntKnownOne.getZExtValue();
1490}
1491
1492/// ComputeNumSignBits - Return the number of times the sign bit of the
1493/// register is replicated into the other bits.  We know that at least 1 bit
1494/// is always equal to the sign bit (itself), but other cases can give us
1495/// information.  For example, immediately after an "SRA X, 2", we know that
1496/// the top 3 bits are all equal to each other, so we return 3.
1497unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1498  MVT::ValueType VT = Op.getValueType();
1499  assert(MVT::isInteger(VT) && "Invalid VT!");
1500  unsigned VTBits = MVT::getSizeInBits(VT);
1501  unsigned Tmp, Tmp2;
1502
1503  if (Depth == 6)
1504    return 1;  // Limit search depth.
1505
1506  switch (Op.getOpcode()) {
1507  default: break;
1508  case ISD::AssertSext:
1509    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1510    return VTBits-Tmp+1;
1511  case ISD::AssertZext:
1512    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1513    return VTBits-Tmp;
1514
1515  case ISD::Constant: {
1516    uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1517    // If negative, invert the bits, then look at it.
1518    if (Val & MVT::getIntVTSignBit(VT))
1519      Val = ~Val;
1520
1521    // Shift the bits so they are the leading bits in the int64_t.
1522    Val <<= 64-VTBits;
1523
1524    // Return # leading zeros.  We use 'min' here in case Val was zero before
1525    // shifting.  We don't want to return '64' as for an i32 "0".
1526    return std::min(VTBits, CountLeadingZeros_64(Val));
1527  }
1528
1529  case ISD::SIGN_EXTEND:
1530    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1531    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1532
1533  case ISD::SIGN_EXTEND_INREG:
1534    // Max of the input and what this extends.
1535    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1536    Tmp = VTBits-Tmp+1;
1537
1538    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1539    return std::max(Tmp, Tmp2);
1540
1541  case ISD::SRA:
1542    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1543    // SRA X, C   -> adds C sign bits.
1544    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1545      Tmp += C->getValue();
1546      if (Tmp > VTBits) Tmp = VTBits;
1547    }
1548    return Tmp;
1549  case ISD::SHL:
1550    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1551      // shl destroys sign bits.
1552      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1553      if (C->getValue() >= VTBits ||      // Bad shift.
1554          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1555      return Tmp - C->getValue();
1556    }
1557    break;
1558  case ISD::AND:
1559  case ISD::OR:
1560  case ISD::XOR:    // NOT is handled here.
1561    // Logical binary ops preserve the number of sign bits.
1562    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1563    if (Tmp == 1) return 1;  // Early out.
1564    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1565    return std::min(Tmp, Tmp2);
1566
1567  case ISD::SELECT:
1568    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1569    if (Tmp == 1) return 1;  // Early out.
1570    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1571    return std::min(Tmp, Tmp2);
1572
1573  case ISD::SETCC:
1574    // If setcc returns 0/-1, all bits are sign bits.
1575    if (TLI.getSetCCResultContents() ==
1576        TargetLowering::ZeroOrNegativeOneSetCCResult)
1577      return VTBits;
1578    break;
1579  case ISD::ROTL:
1580  case ISD::ROTR:
1581    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1582      unsigned RotAmt = C->getValue() & (VTBits-1);
1583
1584      // Handle rotate right by N like a rotate left by 32-N.
1585      if (Op.getOpcode() == ISD::ROTR)
1586        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1587
1588      // If we aren't rotating out all of the known-in sign bits, return the
1589      // number that are left.  This handles rotl(sext(x), 1) for example.
1590      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1591      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1592    }
1593    break;
1594  case ISD::ADD:
1595    // Add can have at most one carry bit.  Thus we know that the output
1596    // is, at worst, one more bit than the inputs.
1597    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1598    if (Tmp == 1) return 1;  // Early out.
1599
1600    // Special case decrementing a value (ADD X, -1):
1601    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1602      if (CRHS->isAllOnesValue()) {
1603        uint64_t KnownZero, KnownOne;
1604        uint64_t Mask = MVT::getIntVTBitMask(VT);
1605        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1606
1607        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1608        // sign bits set.
1609        if ((KnownZero|1) == Mask)
1610          return VTBits;
1611
1612        // If we are subtracting one from a positive number, there is no carry
1613        // out of the result.
1614        if (KnownZero & MVT::getIntVTSignBit(VT))
1615          return Tmp;
1616      }
1617
1618    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1619    if (Tmp2 == 1) return 1;
1620      return std::min(Tmp, Tmp2)-1;
1621    break;
1622
1623  case ISD::SUB:
1624    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1625    if (Tmp2 == 1) return 1;
1626
1627    // Handle NEG.
1628    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1629      if (CLHS->getValue() == 0) {
1630        uint64_t KnownZero, KnownOne;
1631        uint64_t Mask = MVT::getIntVTBitMask(VT);
1632        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1633        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1634        // sign bits set.
1635        if ((KnownZero|1) == Mask)
1636          return VTBits;
1637
1638        // If the input is known to be positive (the sign bit is known clear),
1639        // the output of the NEG has the same number of sign bits as the input.
1640        if (KnownZero & MVT::getIntVTSignBit(VT))
1641          return Tmp2;
1642
1643        // Otherwise, we treat this like a SUB.
1644      }
1645
1646    // Sub can have at most one carry bit.  Thus we know that the output
1647    // is, at worst, one more bit than the inputs.
1648    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1649    if (Tmp == 1) return 1;  // Early out.
1650      return std::min(Tmp, Tmp2)-1;
1651    break;
1652  case ISD::TRUNCATE:
1653    // FIXME: it's tricky to do anything useful for this, but it is an important
1654    // case for targets like X86.
1655    break;
1656  }
1657
1658  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1659  if (Op.getOpcode() == ISD::LOAD) {
1660    LoadSDNode *LD = cast<LoadSDNode>(Op);
1661    unsigned ExtType = LD->getExtensionType();
1662    switch (ExtType) {
1663    default: break;
1664    case ISD::SEXTLOAD:    // '17' bits known
1665      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1666      return VTBits-Tmp+1;
1667    case ISD::ZEXTLOAD:    // '16' bits known
1668      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1669      return VTBits-Tmp;
1670    }
1671  }
1672
1673  // Allow the target to implement this method for its nodes.
1674  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1675      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1676      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1677      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1678    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1679    if (NumBits > 1) return NumBits;
1680  }
1681
1682  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1683  // use this information.
1684  uint64_t KnownZero, KnownOne;
1685  uint64_t Mask = MVT::getIntVTBitMask(VT);
1686  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1687
1688  uint64_t SignBit = MVT::getIntVTSignBit(VT);
1689  if (KnownZero & SignBit) {        // SignBit is 0
1690    Mask = KnownZero;
1691  } else if (KnownOne & SignBit) {  // SignBit is 1;
1692    Mask = KnownOne;
1693  } else {
1694    // Nothing known.
1695    return 1;
1696  }
1697
1698  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1699  // the number of identical bits in the top of the input value.
1700  Mask ^= ~0ULL;
1701  Mask <<= 64-VTBits;
1702  // Return # leading zeros.  We use 'min' here in case Val was zero before
1703  // shifting.  We don't want to return '64' as for an i32 "0".
1704  return std::min(VTBits, CountLeadingZeros_64(Mask));
1705}
1706
1707
1708bool SelectionDAG::isVerifiedDebugInfoDesc(SDOperand Op) const {
1709  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1710  if (!GA) return false;
1711  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
1712  if (!GV) return false;
1713  MachineModuleInfo *MMI = getMachineModuleInfo();
1714  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
1715}
1716
1717
1718/// getNode - Gets or creates the specified node.
1719///
1720SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1721  FoldingSetNodeID ID;
1722  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1723  void *IP = 0;
1724  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1725    return SDOperand(E, 0);
1726  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1727  CSEMap.InsertNode(N, IP);
1728
1729  AllNodes.push_back(N);
1730  return SDOperand(N, 0);
1731}
1732
1733SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1734                                SDOperand Operand) {
1735  unsigned Tmp1;
1736  // Constant fold unary operations with an integer constant operand.
1737  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1738    uint64_t Val = C->getValue();
1739    switch (Opcode) {
1740    default: break;
1741    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1742    case ISD::ANY_EXTEND:
1743    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1744    case ISD::TRUNCATE:    return getConstant(Val, VT);
1745    case ISD::UINT_TO_FP:
1746    case ISD::SINT_TO_FP: {
1747      const uint64_t zero[] = {0, 0};
1748      // No compile time operations on this type.
1749      if (VT==MVT::ppcf128)
1750        break;
1751      APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero));
1752      (void)apf.convertFromZeroExtendedInteger(&Val,
1753                               MVT::getSizeInBits(Operand.getValueType()),
1754                               Opcode==ISD::SINT_TO_FP,
1755                               APFloat::rmNearestTiesToEven);
1756      return getConstantFP(apf, VT);
1757    }
1758    case ISD::BIT_CONVERT:
1759      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1760        return getConstantFP(BitsToFloat(Val), VT);
1761      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1762        return getConstantFP(BitsToDouble(Val), VT);
1763      break;
1764    case ISD::BSWAP:
1765      switch(VT) {
1766      default: assert(0 && "Invalid bswap!"); break;
1767      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1768      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1769      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1770      }
1771      break;
1772    case ISD::CTPOP:
1773      switch(VT) {
1774      default: assert(0 && "Invalid ctpop!"); break;
1775      case MVT::i1: return getConstant(Val != 0, VT);
1776      case MVT::i8:
1777        Tmp1 = (unsigned)Val & 0xFF;
1778        return getConstant(CountPopulation_32(Tmp1), VT);
1779      case MVT::i16:
1780        Tmp1 = (unsigned)Val & 0xFFFF;
1781        return getConstant(CountPopulation_32(Tmp1), VT);
1782      case MVT::i32:
1783        return getConstant(CountPopulation_32((unsigned)Val), VT);
1784      case MVT::i64:
1785        return getConstant(CountPopulation_64(Val), VT);
1786      }
1787    case ISD::CTLZ:
1788      switch(VT) {
1789      default: assert(0 && "Invalid ctlz!"); break;
1790      case MVT::i1: return getConstant(Val == 0, VT);
1791      case MVT::i8:
1792        Tmp1 = (unsigned)Val & 0xFF;
1793        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1794      case MVT::i16:
1795        Tmp1 = (unsigned)Val & 0xFFFF;
1796        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1797      case MVT::i32:
1798        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1799      case MVT::i64:
1800        return getConstant(CountLeadingZeros_64(Val), VT);
1801      }
1802    case ISD::CTTZ:
1803      switch(VT) {
1804      default: assert(0 && "Invalid cttz!"); break;
1805      case MVT::i1: return getConstant(Val == 0, VT);
1806      case MVT::i8:
1807        Tmp1 = (unsigned)Val | 0x100;
1808        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1809      case MVT::i16:
1810        Tmp1 = (unsigned)Val | 0x10000;
1811        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1812      case MVT::i32:
1813        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1814      case MVT::i64:
1815        return getConstant(CountTrailingZeros_64(Val), VT);
1816      }
1817    }
1818  }
1819
1820  // Constant fold unary operations with a floating point constant operand.
1821  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1822    APFloat V = C->getValueAPF();    // make copy
1823    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
1824      switch (Opcode) {
1825      case ISD::FNEG:
1826        V.changeSign();
1827        return getConstantFP(V, VT);
1828      case ISD::FABS:
1829        V.clearSign();
1830        return getConstantFP(V, VT);
1831      case ISD::FP_ROUND:
1832      case ISD::FP_EXTEND:
1833        // This can return overflow, underflow, or inexact; we don't care.
1834        // FIXME need to be more flexible about rounding mode.
1835        (void) V.convert(VT==MVT::f32 ? APFloat::IEEEsingle :
1836                         VT==MVT::f64 ? APFloat::IEEEdouble :
1837                         VT==MVT::f80 ? APFloat::x87DoubleExtended :
1838                         VT==MVT::f128 ? APFloat::IEEEquad :
1839                         APFloat::Bogus,
1840                         APFloat::rmNearestTiesToEven);
1841        return getConstantFP(V, VT);
1842      case ISD::FP_TO_SINT:
1843      case ISD::FP_TO_UINT: {
1844        integerPart x;
1845        assert(integerPartWidth >= 64);
1846        // FIXME need to be more flexible about rounding mode.
1847        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1848                              Opcode==ISD::FP_TO_SINT,
1849                              APFloat::rmTowardZero);
1850        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1851          break;
1852        return getConstant(x, VT);
1853      }
1854      case ISD::BIT_CONVERT:
1855        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1856          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1857        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1858          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1859        break;
1860      }
1861    }
1862  }
1863
1864  unsigned OpOpcode = Operand.Val->getOpcode();
1865  switch (Opcode) {
1866  case ISD::TokenFactor:
1867    return Operand;         // Factor of one node?  No factor.
1868  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
1869  case ISD::FP_EXTEND:
1870    assert(MVT::isFloatingPoint(VT) &&
1871           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1872    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
1873    break;
1874    case ISD::SIGN_EXTEND:
1875    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1876           "Invalid SIGN_EXTEND!");
1877    if (Operand.getValueType() == VT) return Operand;   // noop extension
1878    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1879           && "Invalid sext node, dst < src!");
1880    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1881      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1882    break;
1883  case ISD::ZERO_EXTEND:
1884    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1885           "Invalid ZERO_EXTEND!");
1886    if (Operand.getValueType() == VT) return Operand;   // noop extension
1887    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1888           && "Invalid zext node, dst < src!");
1889    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1890      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1891    break;
1892  case ISD::ANY_EXTEND:
1893    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1894           "Invalid ANY_EXTEND!");
1895    if (Operand.getValueType() == VT) return Operand;   // noop extension
1896    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1897           && "Invalid anyext node, dst < src!");
1898    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1899      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1900      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1901    break;
1902  case ISD::TRUNCATE:
1903    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1904           "Invalid TRUNCATE!");
1905    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1906    assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
1907           && "Invalid truncate node, src < dst!");
1908    if (OpOpcode == ISD::TRUNCATE)
1909      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1910    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1911             OpOpcode == ISD::ANY_EXTEND) {
1912      // If the source is smaller than the dest, we still need an extend.
1913      if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1914          < MVT::getSizeInBits(VT))
1915        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1916      else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1917               > MVT::getSizeInBits(VT))
1918        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1919      else
1920        return Operand.Val->getOperand(0);
1921    }
1922    break;
1923  case ISD::BIT_CONVERT:
1924    // Basic sanity checking.
1925    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1926           && "Cannot BIT_CONVERT between types of different sizes!");
1927    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1928    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1929      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1930    if (OpOpcode == ISD::UNDEF)
1931      return getNode(ISD::UNDEF, VT);
1932    break;
1933  case ISD::SCALAR_TO_VECTOR:
1934    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1935           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1936           "Illegal SCALAR_TO_VECTOR node!");
1937    break;
1938  case ISD::FNEG:
1939    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1940      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1941                     Operand.Val->getOperand(0));
1942    if (OpOpcode == ISD::FNEG)  // --X -> X
1943      return Operand.Val->getOperand(0);
1944    break;
1945  case ISD::FABS:
1946    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1947      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1948    break;
1949  }
1950
1951  SDNode *N;
1952  SDVTList VTs = getVTList(VT);
1953  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1954    FoldingSetNodeID ID;
1955    SDOperand Ops[1] = { Operand };
1956    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1957    void *IP = 0;
1958    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1959      return SDOperand(E, 0);
1960    N = new UnarySDNode(Opcode, VTs, Operand);
1961    CSEMap.InsertNode(N, IP);
1962  } else {
1963    N = new UnarySDNode(Opcode, VTs, Operand);
1964  }
1965  AllNodes.push_back(N);
1966  return SDOperand(N, 0);
1967}
1968
1969
1970
1971SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1972                                SDOperand N1, SDOperand N2) {
1973  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1974  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1975  switch (Opcode) {
1976  default: break;
1977  case ISD::TokenFactor:
1978    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1979           N2.getValueType() == MVT::Other && "Invalid token factor!");
1980    // Fold trivial token factors.
1981    if (N1.getOpcode() == ISD::EntryToken) return N2;
1982    if (N2.getOpcode() == ISD::EntryToken) return N1;
1983    break;
1984  case ISD::AND:
1985    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1986           N1.getValueType() == VT && "Binary operator types must match!");
1987    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
1988    // worth handling here.
1989    if (N2C && N2C->getValue() == 0)
1990      return N2;
1991    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
1992      return N1;
1993    break;
1994  case ISD::OR:
1995  case ISD::XOR:
1996    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1997           N1.getValueType() == VT && "Binary operator types must match!");
1998    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
1999    // worth handling here.
2000    if (N2C && N2C->getValue() == 0)
2001      return N1;
2002    break;
2003  case ISD::UDIV:
2004  case ISD::UREM:
2005  case ISD::MULHU:
2006  case ISD::MULHS:
2007    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
2008    // fall through
2009  case ISD::ADD:
2010  case ISD::SUB:
2011  case ISD::MUL:
2012  case ISD::SDIV:
2013  case ISD::SREM:
2014  case ISD::FADD:
2015  case ISD::FSUB:
2016  case ISD::FMUL:
2017  case ISD::FDIV:
2018  case ISD::FREM:
2019    assert(N1.getValueType() == N2.getValueType() &&
2020           N1.getValueType() == VT && "Binary operator types must match!");
2021    break;
2022  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2023    assert(N1.getValueType() == VT &&
2024           MVT::isFloatingPoint(N1.getValueType()) &&
2025           MVT::isFloatingPoint(N2.getValueType()) &&
2026           "Invalid FCOPYSIGN!");
2027    break;
2028  case ISD::SHL:
2029  case ISD::SRA:
2030  case ISD::SRL:
2031  case ISD::ROTL:
2032  case ISD::ROTR:
2033    assert(VT == N1.getValueType() &&
2034           "Shift operators return type must be the same as their first arg");
2035    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
2036           VT != MVT::i1 && "Shifts only work on integers");
2037    break;
2038  case ISD::FP_ROUND_INREG: {
2039    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2040    assert(VT == N1.getValueType() && "Not an inreg round!");
2041    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
2042           "Cannot FP_ROUND_INREG integer types");
2043    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2044           "Not rounding down!");
2045    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2046    break;
2047  }
2048  case ISD::FP_ROUND:
2049    assert(MVT::isFloatingPoint(VT) &&
2050           MVT::isFloatingPoint(N1.getValueType()) &&
2051           MVT::getSizeInBits(VT) <= MVT::getSizeInBits(N1.getValueType()) &&
2052           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2053    if (N1.getValueType() == VT) return N1;  // noop conversion.
2054    break;
2055  case ISD::AssertSext:
2056  case ISD::AssertZext: {
2057    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2058    assert(VT == N1.getValueType() && "Not an inreg extend!");
2059    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2060           "Cannot *_EXTEND_INREG FP types");
2061    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2062           "Not extending!");
2063    if (VT == EVT) return N1; // noop assertion.
2064    break;
2065  }
2066  case ISD::SIGN_EXTEND_INREG: {
2067    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2068    assert(VT == N1.getValueType() && "Not an inreg extend!");
2069    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2070           "Cannot *_EXTEND_INREG FP types");
2071    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2072           "Not extending!");
2073    if (EVT == VT) return N1;  // Not actually extending
2074
2075    if (N1C) {
2076      int64_t Val = N1C->getValue();
2077      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
2078      Val <<= 64-FromBits;
2079      Val >>= 64-FromBits;
2080      return getConstant(Val, VT);
2081    }
2082    break;
2083  }
2084  case ISD::EXTRACT_VECTOR_ELT:
2085    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2086
2087    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2088    // expanding copies of large vectors from registers.
2089    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2090        N1.getNumOperands() > 0) {
2091      unsigned Factor =
2092        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2093      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2094                     N1.getOperand(N2C->getValue() / Factor),
2095                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2096    }
2097
2098    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2099    // expanding large vector constants.
2100    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2101      return N1.getOperand(N2C->getValue());
2102
2103    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2104    // operations are lowered to scalars.
2105    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2106      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2107        if (IEC == N2C)
2108          return N1.getOperand(1);
2109        else
2110          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2111      }
2112    break;
2113  case ISD::EXTRACT_ELEMENT:
2114    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2115
2116    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2117    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2118    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2119    if (N1.getOpcode() == ISD::BUILD_PAIR)
2120      return N1.getOperand(N2C->getValue());
2121
2122    // EXTRACT_ELEMENT of a constant int is also very common.
2123    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2124      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2125      return getConstant(C->getValue() >> Shift, VT);
2126    }
2127    break;
2128  }
2129
2130  if (N1C) {
2131    if (N2C) {
2132      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
2133      switch (Opcode) {
2134      case ISD::ADD: return getConstant(C1 + C2, VT);
2135      case ISD::SUB: return getConstant(C1 - C2, VT);
2136      case ISD::MUL: return getConstant(C1 * C2, VT);
2137      case ISD::UDIV:
2138        if (C2) return getConstant(C1 / C2, VT);
2139        break;
2140      case ISD::UREM :
2141        if (C2) return getConstant(C1 % C2, VT);
2142        break;
2143      case ISD::SDIV :
2144        if (C2) return getConstant(N1C->getSignExtended() /
2145                                   N2C->getSignExtended(), VT);
2146        break;
2147      case ISD::SREM :
2148        if (C2) return getConstant(N1C->getSignExtended() %
2149                                   N2C->getSignExtended(), VT);
2150        break;
2151      case ISD::AND  : return getConstant(C1 & C2, VT);
2152      case ISD::OR   : return getConstant(C1 | C2, VT);
2153      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2154      case ISD::SHL  : return getConstant(C1 << C2, VT);
2155      case ISD::SRL  : return getConstant(C1 >> C2, VT);
2156      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
2157      case ISD::ROTL :
2158        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
2159                           VT);
2160      case ISD::ROTR :
2161        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
2162                           VT);
2163      default: break;
2164      }
2165    } else {      // Cannonicalize constant to RHS if commutative
2166      if (isCommutativeBinOp(Opcode)) {
2167        std::swap(N1C, N2C);
2168        std::swap(N1, N2);
2169      }
2170    }
2171  }
2172
2173  // Constant fold FP operations.
2174  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2175  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2176  if (N1CFP) {
2177    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2178      // Cannonicalize constant to RHS if commutative
2179      std::swap(N1CFP, N2CFP);
2180      std::swap(N1, N2);
2181    } else if (N2CFP && VT != MVT::ppcf128) {
2182      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2183      APFloat::opStatus s;
2184      switch (Opcode) {
2185      case ISD::FADD:
2186        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2187        if (s != APFloat::opInvalidOp)
2188          return getConstantFP(V1, VT);
2189        break;
2190      case ISD::FSUB:
2191        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2192        if (s!=APFloat::opInvalidOp)
2193          return getConstantFP(V1, VT);
2194        break;
2195      case ISD::FMUL:
2196        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2197        if (s!=APFloat::opInvalidOp)
2198          return getConstantFP(V1, VT);
2199        break;
2200      case ISD::FDIV:
2201        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2202        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2203          return getConstantFP(V1, VT);
2204        break;
2205      case ISD::FREM :
2206        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2207        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2208          return getConstantFP(V1, VT);
2209        break;
2210      case ISD::FCOPYSIGN:
2211        V1.copySign(V2);
2212        return getConstantFP(V1, VT);
2213      default: break;
2214      }
2215    }
2216  }
2217
2218  // Canonicalize an UNDEF to the RHS, even over a constant.
2219  if (N1.getOpcode() == ISD::UNDEF) {
2220    if (isCommutativeBinOp(Opcode)) {
2221      std::swap(N1, N2);
2222    } else {
2223      switch (Opcode) {
2224      case ISD::FP_ROUND_INREG:
2225      case ISD::SIGN_EXTEND_INREG:
2226      case ISD::SUB:
2227      case ISD::FSUB:
2228      case ISD::FDIV:
2229      case ISD::FREM:
2230      case ISD::SRA:
2231        return N1;     // fold op(undef, arg2) -> undef
2232      case ISD::UDIV:
2233      case ISD::SDIV:
2234      case ISD::UREM:
2235      case ISD::SREM:
2236      case ISD::SRL:
2237      case ISD::SHL:
2238        if (!MVT::isVector(VT))
2239          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2240        // For vectors, we can't easily build an all zero vector, just return
2241        // the LHS.
2242        return N2;
2243      }
2244    }
2245  }
2246
2247  // Fold a bunch of operators when the RHS is undef.
2248  if (N2.getOpcode() == ISD::UNDEF) {
2249    switch (Opcode) {
2250    case ISD::ADD:
2251    case ISD::ADDC:
2252    case ISD::ADDE:
2253    case ISD::SUB:
2254    case ISD::FADD:
2255    case ISD::FSUB:
2256    case ISD::FMUL:
2257    case ISD::FDIV:
2258    case ISD::FREM:
2259    case ISD::UDIV:
2260    case ISD::SDIV:
2261    case ISD::UREM:
2262    case ISD::SREM:
2263    case ISD::XOR:
2264      return N2;       // fold op(arg1, undef) -> undef
2265    case ISD::MUL:
2266    case ISD::AND:
2267    case ISD::SRL:
2268    case ISD::SHL:
2269      if (!MVT::isVector(VT))
2270        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2271      // For vectors, we can't easily build an all zero vector, just return
2272      // the LHS.
2273      return N1;
2274    case ISD::OR:
2275      if (!MVT::isVector(VT))
2276        return getConstant(MVT::getIntVTBitMask(VT), VT);
2277      // For vectors, we can't easily build an all one vector, just return
2278      // the LHS.
2279      return N1;
2280    case ISD::SRA:
2281      return N1;
2282    }
2283  }
2284
2285  // Memoize this node if possible.
2286  SDNode *N;
2287  SDVTList VTs = getVTList(VT);
2288  if (VT != MVT::Flag) {
2289    SDOperand Ops[] = { N1, N2 };
2290    FoldingSetNodeID ID;
2291    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2292    void *IP = 0;
2293    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2294      return SDOperand(E, 0);
2295    N = new BinarySDNode(Opcode, VTs, N1, N2);
2296    CSEMap.InsertNode(N, IP);
2297  } else {
2298    N = new BinarySDNode(Opcode, VTs, N1, N2);
2299  }
2300
2301  AllNodes.push_back(N);
2302  return SDOperand(N, 0);
2303}
2304
2305SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2306                                SDOperand N1, SDOperand N2, SDOperand N3) {
2307  // Perform various simplifications.
2308  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2309  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2310  switch (Opcode) {
2311  case ISD::SETCC: {
2312    // Use FoldSetCC to simplify SETCC's.
2313    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2314    if (Simp.Val) return Simp;
2315    break;
2316  }
2317  case ISD::SELECT:
2318    if (N1C)
2319      if (N1C->getValue())
2320        return N2;             // select true, X, Y -> X
2321      else
2322        return N3;             // select false, X, Y -> Y
2323
2324    if (N2 == N3) return N2;   // select C, X, X -> X
2325    break;
2326  case ISD::BRCOND:
2327    if (N2C)
2328      if (N2C->getValue()) // Unconditional branch
2329        return getNode(ISD::BR, MVT::Other, N1, N3);
2330      else
2331        return N1;         // Never-taken branch
2332    break;
2333  case ISD::VECTOR_SHUFFLE:
2334    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2335           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2336           N3.getOpcode() == ISD::BUILD_VECTOR &&
2337           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2338           "Illegal VECTOR_SHUFFLE node!");
2339    break;
2340  case ISD::BIT_CONVERT:
2341    // Fold bit_convert nodes from a type to themselves.
2342    if (N1.getValueType() == VT)
2343      return N1;
2344    break;
2345  }
2346
2347  // Memoize node if it doesn't produce a flag.
2348  SDNode *N;
2349  SDVTList VTs = getVTList(VT);
2350  if (VT != MVT::Flag) {
2351    SDOperand Ops[] = { N1, N2, N3 };
2352    FoldingSetNodeID ID;
2353    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2354    void *IP = 0;
2355    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2356      return SDOperand(E, 0);
2357    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2358    CSEMap.InsertNode(N, IP);
2359  } else {
2360    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2361  }
2362  AllNodes.push_back(N);
2363  return SDOperand(N, 0);
2364}
2365
2366SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2367                                SDOperand N1, SDOperand N2, SDOperand N3,
2368                                SDOperand N4) {
2369  SDOperand Ops[] = { N1, N2, N3, N4 };
2370  return getNode(Opcode, VT, Ops, 4);
2371}
2372
2373SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2374                                SDOperand N1, SDOperand N2, SDOperand N3,
2375                                SDOperand N4, SDOperand N5) {
2376  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2377  return getNode(Opcode, VT, Ops, 5);
2378}
2379
2380SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dest,
2381                                  SDOperand Src, SDOperand Size,
2382                                  SDOperand Align,
2383                                  SDOperand AlwaysInline) {
2384  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2385  return getNode(ISD::MEMCPY, MVT::Other, Ops, 6);
2386}
2387
2388SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dest,
2389                                  SDOperand Src, SDOperand Size,
2390                                  SDOperand Align,
2391                                  SDOperand AlwaysInline) {
2392  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2393  return getNode(ISD::MEMMOVE, MVT::Other, Ops, 6);
2394}
2395
2396SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dest,
2397                                  SDOperand Src, SDOperand Size,
2398                                  SDOperand Align,
2399                                  SDOperand AlwaysInline) {
2400  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2401  return getNode(ISD::MEMSET, MVT::Other, Ops, 6);
2402}
2403
2404SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2405                                SDOperand Chain, SDOperand Ptr,
2406                                const Value *SV, int SVOffset,
2407                                bool isVolatile, unsigned Alignment) {
2408  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2409    const Type *Ty = 0;
2410    if (VT != MVT::iPTR) {
2411      Ty = MVT::getTypeForValueType(VT);
2412    } else if (SV) {
2413      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2414      assert(PT && "Value for load must be a pointer");
2415      Ty = PT->getElementType();
2416    }
2417    assert(Ty && "Could not get type information for load");
2418    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2419  }
2420  SDVTList VTs = getVTList(VT, MVT::Other);
2421  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2422  SDOperand Ops[] = { Chain, Ptr, Undef };
2423  FoldingSetNodeID ID;
2424  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2425  ID.AddInteger(ISD::UNINDEXED);
2426  ID.AddInteger(ISD::NON_EXTLOAD);
2427  ID.AddInteger((unsigned int)VT);
2428  ID.AddInteger(Alignment);
2429  ID.AddInteger(isVolatile);
2430  void *IP = 0;
2431  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2432    return SDOperand(E, 0);
2433  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2434                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2435                             isVolatile);
2436  CSEMap.InsertNode(N, IP);
2437  AllNodes.push_back(N);
2438  return SDOperand(N, 0);
2439}
2440
2441SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2442                                   SDOperand Chain, SDOperand Ptr,
2443                                   const Value *SV,
2444                                   int SVOffset, MVT::ValueType EVT,
2445                                   bool isVolatile, unsigned Alignment) {
2446  // If they are asking for an extending load from/to the same thing, return a
2447  // normal load.
2448  if (VT == EVT)
2449    return getLoad(VT, Chain, Ptr, SV, SVOffset, isVolatile, Alignment);
2450
2451  if (MVT::isVector(VT))
2452    assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2453  else
2454    assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
2455           "Should only be an extending load, not truncating!");
2456  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2457         "Cannot sign/zero extend a FP/Vector load!");
2458  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2459         "Cannot convert from FP to Int or Int -> FP!");
2460
2461  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2462    const Type *Ty = 0;
2463    if (VT != MVT::iPTR) {
2464      Ty = MVT::getTypeForValueType(VT);
2465    } else if (SV) {
2466      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2467      assert(PT && "Value for load must be a pointer");
2468      Ty = PT->getElementType();
2469    }
2470    assert(Ty && "Could not get type information for load");
2471    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2472  }
2473  SDVTList VTs = getVTList(VT, MVT::Other);
2474  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2475  SDOperand Ops[] = { Chain, Ptr, Undef };
2476  FoldingSetNodeID ID;
2477  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2478  ID.AddInteger(ISD::UNINDEXED);
2479  ID.AddInteger(ExtType);
2480  ID.AddInteger((unsigned int)EVT);
2481  ID.AddInteger(Alignment);
2482  ID.AddInteger(isVolatile);
2483  void *IP = 0;
2484  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2485    return SDOperand(E, 0);
2486  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2487                             SV, SVOffset, Alignment, isVolatile);
2488  CSEMap.InsertNode(N, IP);
2489  AllNodes.push_back(N);
2490  return SDOperand(N, 0);
2491}
2492
2493SDOperand
2494SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2495                             SDOperand Offset, ISD::MemIndexedMode AM) {
2496  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2497  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2498         "Load is already a indexed load!");
2499  MVT::ValueType VT = OrigLoad.getValueType();
2500  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2501  SDOperand Ops[] = { LD->getChain(), Base, Offset };
2502  FoldingSetNodeID ID;
2503  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2504  ID.AddInteger(AM);
2505  ID.AddInteger(LD->getExtensionType());
2506  ID.AddInteger((unsigned int)(LD->getMemoryVT()));
2507  ID.AddInteger(LD->getAlignment());
2508  ID.AddInteger(LD->isVolatile());
2509  void *IP = 0;
2510  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2511    return SDOperand(E, 0);
2512  SDNode *N = new LoadSDNode(Ops, VTs, AM,
2513                             LD->getExtensionType(), LD->getMemoryVT(),
2514                             LD->getSrcValue(), LD->getSrcValueOffset(),
2515                             LD->getAlignment(), LD->isVolatile());
2516  CSEMap.InsertNode(N, IP);
2517  AllNodes.push_back(N);
2518  return SDOperand(N, 0);
2519}
2520
2521SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2522                                 SDOperand Ptr, const Value *SV, int SVOffset,
2523                                 bool isVolatile, unsigned Alignment) {
2524  MVT::ValueType VT = Val.getValueType();
2525
2526  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2527    const Type *Ty = 0;
2528    if (VT != MVT::iPTR) {
2529      Ty = MVT::getTypeForValueType(VT);
2530    } else if (SV) {
2531      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2532      assert(PT && "Value for store must be a pointer");
2533      Ty = PT->getElementType();
2534    }
2535    assert(Ty && "Could not get type information for store");
2536    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2537  }
2538  SDVTList VTs = getVTList(MVT::Other);
2539  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2540  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2541  FoldingSetNodeID ID;
2542  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2543  ID.AddInteger(ISD::UNINDEXED);
2544  ID.AddInteger(false);
2545  ID.AddInteger((unsigned int)VT);
2546  ID.AddInteger(Alignment);
2547  ID.AddInteger(isVolatile);
2548  void *IP = 0;
2549  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2550    return SDOperand(E, 0);
2551  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2552                              VT, SV, SVOffset, Alignment, isVolatile);
2553  CSEMap.InsertNode(N, IP);
2554  AllNodes.push_back(N);
2555  return SDOperand(N, 0);
2556}
2557
2558SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2559                                      SDOperand Ptr, const Value *SV,
2560                                      int SVOffset, MVT::ValueType SVT,
2561                                      bool isVolatile, unsigned Alignment) {
2562  MVT::ValueType VT = Val.getValueType();
2563
2564  if (VT == SVT)
2565    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
2566
2567  assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
2568         "Not a truncation?");
2569  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2570         "Can't do FP-INT conversion!");
2571
2572  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2573    const Type *Ty = 0;
2574    if (VT != MVT::iPTR) {
2575      Ty = MVT::getTypeForValueType(VT);
2576    } else if (SV) {
2577      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2578      assert(PT && "Value for store must be a pointer");
2579      Ty = PT->getElementType();
2580    }
2581    assert(Ty && "Could not get type information for store");
2582    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2583  }
2584  SDVTList VTs = getVTList(MVT::Other);
2585  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2586  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2587  FoldingSetNodeID ID;
2588  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2589  ID.AddInteger(ISD::UNINDEXED);
2590  ID.AddInteger(1);
2591  ID.AddInteger((unsigned int)SVT);
2592  ID.AddInteger(Alignment);
2593  ID.AddInteger(isVolatile);
2594  void *IP = 0;
2595  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2596    return SDOperand(E, 0);
2597  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
2598                              SVT, SV, SVOffset, Alignment, isVolatile);
2599  CSEMap.InsertNode(N, IP);
2600  AllNodes.push_back(N);
2601  return SDOperand(N, 0);
2602}
2603
2604SDOperand
2605SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2606                              SDOperand Offset, ISD::MemIndexedMode AM) {
2607  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2608  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2609         "Store is already a indexed store!");
2610  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2611  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2612  FoldingSetNodeID ID;
2613  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2614  ID.AddInteger(AM);
2615  ID.AddInteger(ST->isTruncatingStore());
2616  ID.AddInteger((unsigned int)(ST->getMemoryVT()));
2617  ID.AddInteger(ST->getAlignment());
2618  ID.AddInteger(ST->isVolatile());
2619  void *IP = 0;
2620  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2621    return SDOperand(E, 0);
2622  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2623                              ST->isTruncatingStore(), ST->getMemoryVT(),
2624                              ST->getSrcValue(), ST->getSrcValueOffset(),
2625                              ST->getAlignment(), ST->isVolatile());
2626  CSEMap.InsertNode(N, IP);
2627  AllNodes.push_back(N);
2628  return SDOperand(N, 0);
2629}
2630
2631SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2632                                 SDOperand Chain, SDOperand Ptr,
2633                                 SDOperand SV) {
2634  SDOperand Ops[] = { Chain, Ptr, SV };
2635  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2636}
2637
2638SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2639                                const SDOperand *Ops, unsigned NumOps) {
2640  switch (NumOps) {
2641  case 0: return getNode(Opcode, VT);
2642  case 1: return getNode(Opcode, VT, Ops[0]);
2643  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2644  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2645  default: break;
2646  }
2647
2648  switch (Opcode) {
2649  default: break;
2650  case ISD::SELECT_CC: {
2651    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2652    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2653           "LHS and RHS of condition must have same type!");
2654    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2655           "True and False arms of SelectCC must have same type!");
2656    assert(Ops[2].getValueType() == VT &&
2657           "select_cc node must be of same type as true and false value!");
2658    break;
2659  }
2660  case ISD::BR_CC: {
2661    assert(NumOps == 5 && "BR_CC takes 5 operands!");
2662    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2663           "LHS/RHS of comparison should match types!");
2664    break;
2665  }
2666  }
2667
2668  // Memoize nodes.
2669  SDNode *N;
2670  SDVTList VTs = getVTList(VT);
2671  if (VT != MVT::Flag) {
2672    FoldingSetNodeID ID;
2673    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2674    void *IP = 0;
2675    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2676      return SDOperand(E, 0);
2677    N = new SDNode(Opcode, VTs, Ops, NumOps);
2678    CSEMap.InsertNode(N, IP);
2679  } else {
2680    N = new SDNode(Opcode, VTs, Ops, NumOps);
2681  }
2682  AllNodes.push_back(N);
2683  return SDOperand(N, 0);
2684}
2685
2686SDOperand SelectionDAG::getNode(unsigned Opcode,
2687                                std::vector<MVT::ValueType> &ResultTys,
2688                                const SDOperand *Ops, unsigned NumOps) {
2689  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2690                 Ops, NumOps);
2691}
2692
2693SDOperand SelectionDAG::getNode(unsigned Opcode,
2694                                const MVT::ValueType *VTs, unsigned NumVTs,
2695                                const SDOperand *Ops, unsigned NumOps) {
2696  if (NumVTs == 1)
2697    return getNode(Opcode, VTs[0], Ops, NumOps);
2698  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2699}
2700
2701SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2702                                const SDOperand *Ops, unsigned NumOps) {
2703  if (VTList.NumVTs == 1)
2704    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2705
2706  switch (Opcode) {
2707  // FIXME: figure out how to safely handle things like
2708  // int foo(int x) { return 1 << (x & 255); }
2709  // int bar() { return foo(256); }
2710#if 0
2711  case ISD::SRA_PARTS:
2712  case ISD::SRL_PARTS:
2713  case ISD::SHL_PARTS:
2714    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2715        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2716      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2717    else if (N3.getOpcode() == ISD::AND)
2718      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2719        // If the and is only masking out bits that cannot effect the shift,
2720        // eliminate the and.
2721        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2722        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2723          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2724      }
2725    break;
2726#endif
2727  }
2728
2729  // Memoize the node unless it returns a flag.
2730  SDNode *N;
2731  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2732    FoldingSetNodeID ID;
2733    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2734    void *IP = 0;
2735    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2736      return SDOperand(E, 0);
2737    if (NumOps == 1)
2738      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2739    else if (NumOps == 2)
2740      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2741    else if (NumOps == 3)
2742      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2743    else
2744      N = new SDNode(Opcode, VTList, Ops, NumOps);
2745    CSEMap.InsertNode(N, IP);
2746  } else {
2747    if (NumOps == 1)
2748      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2749    else if (NumOps == 2)
2750      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2751    else if (NumOps == 3)
2752      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2753    else
2754      N = new SDNode(Opcode, VTList, Ops, NumOps);
2755  }
2756  AllNodes.push_back(N);
2757  return SDOperand(N, 0);
2758}
2759
2760SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
2761  return getNode(Opcode, VTList, 0, 0);
2762}
2763
2764SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2765                                SDOperand N1) {
2766  SDOperand Ops[] = { N1 };
2767  return getNode(Opcode, VTList, Ops, 1);
2768}
2769
2770SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2771                                SDOperand N1, SDOperand N2) {
2772  SDOperand Ops[] = { N1, N2 };
2773  return getNode(Opcode, VTList, Ops, 2);
2774}
2775
2776SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2777                                SDOperand N1, SDOperand N2, SDOperand N3) {
2778  SDOperand Ops[] = { N1, N2, N3 };
2779  return getNode(Opcode, VTList, Ops, 3);
2780}
2781
2782SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2783                                SDOperand N1, SDOperand N2, SDOperand N3,
2784                                SDOperand N4) {
2785  SDOperand Ops[] = { N1, N2, N3, N4 };
2786  return getNode(Opcode, VTList, Ops, 4);
2787}
2788
2789SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2790                                SDOperand N1, SDOperand N2, SDOperand N3,
2791                                SDOperand N4, SDOperand N5) {
2792  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2793  return getNode(Opcode, VTList, Ops, 5);
2794}
2795
2796SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2797  return makeVTList(SDNode::getValueTypeList(VT), 1);
2798}
2799
2800SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2801  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2802       E = VTList.end(); I != E; ++I) {
2803    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2804      return makeVTList(&(*I)[0], 2);
2805  }
2806  std::vector<MVT::ValueType> V;
2807  V.push_back(VT1);
2808  V.push_back(VT2);
2809  VTList.push_front(V);
2810  return makeVTList(&(*VTList.begin())[0], 2);
2811}
2812SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2813                                 MVT::ValueType VT3) {
2814  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2815       E = VTList.end(); I != E; ++I) {
2816    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2817        (*I)[2] == VT3)
2818      return makeVTList(&(*I)[0], 3);
2819  }
2820  std::vector<MVT::ValueType> V;
2821  V.push_back(VT1);
2822  V.push_back(VT2);
2823  V.push_back(VT3);
2824  VTList.push_front(V);
2825  return makeVTList(&(*VTList.begin())[0], 3);
2826}
2827
2828SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2829  switch (NumVTs) {
2830    case 0: assert(0 && "Cannot have nodes without results!");
2831    case 1: return getVTList(VTs[0]);
2832    case 2: return getVTList(VTs[0], VTs[1]);
2833    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2834    default: break;
2835  }
2836
2837  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2838       E = VTList.end(); I != E; ++I) {
2839    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2840
2841    bool NoMatch = false;
2842    for (unsigned i = 2; i != NumVTs; ++i)
2843      if (VTs[i] != (*I)[i]) {
2844        NoMatch = true;
2845        break;
2846      }
2847    if (!NoMatch)
2848      return makeVTList(&*I->begin(), NumVTs);
2849  }
2850
2851  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2852  return makeVTList(&*VTList.begin()->begin(), NumVTs);
2853}
2854
2855
2856/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2857/// specified operands.  If the resultant node already exists in the DAG,
2858/// this does not modify the specified node, instead it returns the node that
2859/// already exists.  If the resultant node does not exist in the DAG, the
2860/// input node is returned.  As a degenerate case, if you specify the same
2861/// input operands as the node already has, the input node is returned.
2862SDOperand SelectionDAG::
2863UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2864  SDNode *N = InN.Val;
2865  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2866
2867  // Check to see if there is no change.
2868  if (Op == N->getOperand(0)) return InN;
2869
2870  // See if the modified node already exists.
2871  void *InsertPos = 0;
2872  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2873    return SDOperand(Existing, InN.ResNo);
2874
2875  // Nope it doesn't.  Remove the node from it's current place in the maps.
2876  if (InsertPos)
2877    RemoveNodeFromCSEMaps(N);
2878
2879  // Now we update the operands.
2880  N->OperandList[0].Val->removeUser(N);
2881  Op.Val->addUser(N);
2882  N->OperandList[0] = Op;
2883
2884  // If this gets put into a CSE map, add it.
2885  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2886  return InN;
2887}
2888
2889SDOperand SelectionDAG::
2890UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2891  SDNode *N = InN.Val;
2892  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2893
2894  // Check to see if there is no change.
2895  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2896    return InN;   // No operands changed, just return the input node.
2897
2898  // See if the modified node already exists.
2899  void *InsertPos = 0;
2900  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2901    return SDOperand(Existing, InN.ResNo);
2902
2903  // Nope it doesn't.  Remove the node from it's current place in the maps.
2904  if (InsertPos)
2905    RemoveNodeFromCSEMaps(N);
2906
2907  // Now we update the operands.
2908  if (N->OperandList[0] != Op1) {
2909    N->OperandList[0].Val->removeUser(N);
2910    Op1.Val->addUser(N);
2911    N->OperandList[0] = Op1;
2912  }
2913  if (N->OperandList[1] != Op2) {
2914    N->OperandList[1].Val->removeUser(N);
2915    Op2.Val->addUser(N);
2916    N->OperandList[1] = Op2;
2917  }
2918
2919  // If this gets put into a CSE map, add it.
2920  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2921  return InN;
2922}
2923
2924SDOperand SelectionDAG::
2925UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2926  SDOperand Ops[] = { Op1, Op2, Op3 };
2927  return UpdateNodeOperands(N, Ops, 3);
2928}
2929
2930SDOperand SelectionDAG::
2931UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2932                   SDOperand Op3, SDOperand Op4) {
2933  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2934  return UpdateNodeOperands(N, Ops, 4);
2935}
2936
2937SDOperand SelectionDAG::
2938UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2939                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2940  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2941  return UpdateNodeOperands(N, Ops, 5);
2942}
2943
2944
2945SDOperand SelectionDAG::
2946UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2947  SDNode *N = InN.Val;
2948  assert(N->getNumOperands() == NumOps &&
2949         "Update with wrong number of operands");
2950
2951  // Check to see if there is no change.
2952  bool AnyChange = false;
2953  for (unsigned i = 0; i != NumOps; ++i) {
2954    if (Ops[i] != N->getOperand(i)) {
2955      AnyChange = true;
2956      break;
2957    }
2958  }
2959
2960  // No operands changed, just return the input node.
2961  if (!AnyChange) return InN;
2962
2963  // See if the modified node already exists.
2964  void *InsertPos = 0;
2965  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2966    return SDOperand(Existing, InN.ResNo);
2967
2968  // Nope it doesn't.  Remove the node from it's current place in the maps.
2969  if (InsertPos)
2970    RemoveNodeFromCSEMaps(N);
2971
2972  // Now we update the operands.
2973  for (unsigned i = 0; i != NumOps; ++i) {
2974    if (N->OperandList[i] != Ops[i]) {
2975      N->OperandList[i].Val->removeUser(N);
2976      Ops[i].Val->addUser(N);
2977      N->OperandList[i] = Ops[i];
2978    }
2979  }
2980
2981  // If this gets put into a CSE map, add it.
2982  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2983  return InN;
2984}
2985
2986
2987/// MorphNodeTo - This frees the operands of the current node, resets the
2988/// opcode, types, and operands to the specified value.  This should only be
2989/// used by the SelectionDAG class.
2990void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2991                         const SDOperand *Ops, unsigned NumOps) {
2992  NodeType = Opc;
2993  ValueList = L.VTs;
2994  NumValues = L.NumVTs;
2995
2996  // Clear the operands list, updating used nodes to remove this from their
2997  // use list.
2998  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2999    I->Val->removeUser(this);
3000
3001  // If NumOps is larger than the # of operands we currently have, reallocate
3002  // the operand list.
3003  if (NumOps > NumOperands) {
3004    if (OperandsNeedDelete)
3005      delete [] OperandList;
3006    OperandList = new SDOperand[NumOps];
3007    OperandsNeedDelete = true;
3008  }
3009
3010  // Assign the new operands.
3011  NumOperands = NumOps;
3012
3013  for (unsigned i = 0, e = NumOps; i != e; ++i) {
3014    OperandList[i] = Ops[i];
3015    SDNode *N = OperandList[i].Val;
3016    N->Uses.push_back(this);
3017  }
3018}
3019
3020/// SelectNodeTo - These are used for target selectors to *mutate* the
3021/// specified node to have the specified return type, Target opcode, and
3022/// operands.  Note that target opcodes are stored as
3023/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
3024///
3025/// Note that SelectNodeTo returns the resultant node.  If there is already a
3026/// node of the specified opcode and operands, it returns that node instead of
3027/// the current one.
3028SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3029                                   MVT::ValueType VT) {
3030  SDVTList VTs = getVTList(VT);
3031  FoldingSetNodeID ID;
3032  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
3033  void *IP = 0;
3034  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3035    return ON;
3036
3037  RemoveNodeFromCSEMaps(N);
3038
3039  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
3040
3041  CSEMap.InsertNode(N, IP);
3042  return N;
3043}
3044
3045SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3046                                   MVT::ValueType VT, SDOperand Op1) {
3047  // If an identical node already exists, use it.
3048  SDVTList VTs = getVTList(VT);
3049  SDOperand Ops[] = { Op1 };
3050
3051  FoldingSetNodeID ID;
3052  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3053  void *IP = 0;
3054  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3055    return ON;
3056
3057  RemoveNodeFromCSEMaps(N);
3058  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3059  CSEMap.InsertNode(N, IP);
3060  return N;
3061}
3062
3063SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3064                                   MVT::ValueType VT, SDOperand Op1,
3065                                   SDOperand Op2) {
3066  // If an identical node already exists, use it.
3067  SDVTList VTs = getVTList(VT);
3068  SDOperand Ops[] = { Op1, Op2 };
3069
3070  FoldingSetNodeID ID;
3071  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3072  void *IP = 0;
3073  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3074    return ON;
3075
3076  RemoveNodeFromCSEMaps(N);
3077
3078  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3079
3080  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3081  return N;
3082}
3083
3084SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3085                                   MVT::ValueType VT, SDOperand Op1,
3086                                   SDOperand Op2, SDOperand Op3) {
3087  // If an identical node already exists, use it.
3088  SDVTList VTs = getVTList(VT);
3089  SDOperand Ops[] = { Op1, Op2, Op3 };
3090  FoldingSetNodeID ID;
3091  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3092  void *IP = 0;
3093  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3094    return ON;
3095
3096  RemoveNodeFromCSEMaps(N);
3097
3098  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3099
3100  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3101  return N;
3102}
3103
3104SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3105                                   MVT::ValueType VT, const SDOperand *Ops,
3106                                   unsigned NumOps) {
3107  // If an identical node already exists, use it.
3108  SDVTList VTs = getVTList(VT);
3109  FoldingSetNodeID ID;
3110  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3111  void *IP = 0;
3112  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3113    return ON;
3114
3115  RemoveNodeFromCSEMaps(N);
3116  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3117
3118  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3119  return N;
3120}
3121
3122SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3123                                   MVT::ValueType VT1, MVT::ValueType VT2,
3124                                   SDOperand Op1, SDOperand Op2) {
3125  SDVTList VTs = getVTList(VT1, VT2);
3126  FoldingSetNodeID ID;
3127  SDOperand Ops[] = { Op1, Op2 };
3128  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3129  void *IP = 0;
3130  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3131    return ON;
3132
3133  RemoveNodeFromCSEMaps(N);
3134  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3135  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3136  return N;
3137}
3138
3139SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3140                                   MVT::ValueType VT1, MVT::ValueType VT2,
3141                                   SDOperand Op1, SDOperand Op2,
3142                                   SDOperand Op3) {
3143  // If an identical node already exists, use it.
3144  SDVTList VTs = getVTList(VT1, VT2);
3145  SDOperand Ops[] = { Op1, Op2, Op3 };
3146  FoldingSetNodeID ID;
3147  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3148  void *IP = 0;
3149  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3150    return ON;
3151
3152  RemoveNodeFromCSEMaps(N);
3153
3154  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3155  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3156  return N;
3157}
3158
3159
3160/// getTargetNode - These are used for target selectors to create a new node
3161/// with specified return type(s), target opcode, and operands.
3162///
3163/// Note that getTargetNode returns the resultant node.  If there is already a
3164/// node of the specified opcode and operands, it returns that node instead of
3165/// the current one.
3166SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3167  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3168}
3169SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3170                                    SDOperand Op1) {
3171  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3172}
3173SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3174                                    SDOperand Op1, SDOperand Op2) {
3175  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3176}
3177SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3178                                    SDOperand Op1, SDOperand Op2,
3179                                    SDOperand Op3) {
3180  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3181}
3182SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3183                                    const SDOperand *Ops, unsigned NumOps) {
3184  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3185}
3186SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3187                                    MVT::ValueType VT2) {
3188  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3189  SDOperand Op;
3190  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3191}
3192SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3193                                    MVT::ValueType VT2, SDOperand Op1) {
3194  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3195  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3196}
3197SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3198                                    MVT::ValueType VT2, SDOperand Op1,
3199                                    SDOperand Op2) {
3200  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3201  SDOperand Ops[] = { Op1, Op2 };
3202  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3203}
3204SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3205                                    MVT::ValueType VT2, SDOperand Op1,
3206                                    SDOperand Op2, SDOperand Op3) {
3207  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3208  SDOperand Ops[] = { Op1, Op2, Op3 };
3209  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3210}
3211SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3212                                    MVT::ValueType VT2,
3213                                    const SDOperand *Ops, unsigned NumOps) {
3214  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3215  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3216}
3217SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3218                                    MVT::ValueType VT2, MVT::ValueType VT3,
3219                                    SDOperand Op1, SDOperand Op2) {
3220  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3221  SDOperand Ops[] = { Op1, Op2 };
3222  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3223}
3224SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3225                                    MVT::ValueType VT2, MVT::ValueType VT3,
3226                                    SDOperand Op1, SDOperand Op2,
3227                                    SDOperand Op3) {
3228  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3229  SDOperand Ops[] = { Op1, Op2, Op3 };
3230  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3231}
3232SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3233                                    MVT::ValueType VT2, MVT::ValueType VT3,
3234                                    const SDOperand *Ops, unsigned NumOps) {
3235  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3236  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3237}
3238SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3239                                    MVT::ValueType VT2, MVT::ValueType VT3,
3240                                    MVT::ValueType VT4,
3241                                    const SDOperand *Ops, unsigned NumOps) {
3242  std::vector<MVT::ValueType> VTList;
3243  VTList.push_back(VT1);
3244  VTList.push_back(VT2);
3245  VTList.push_back(VT3);
3246  VTList.push_back(VT4);
3247  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3248  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3249}
3250SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3251                                    std::vector<MVT::ValueType> &ResultTys,
3252                                    const SDOperand *Ops, unsigned NumOps) {
3253  const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3254  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3255                 Ops, NumOps).Val;
3256}
3257
3258
3259/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3260/// This can cause recursive merging of nodes in the DAG.
3261///
3262/// This version assumes From has a single result value.
3263///
3264void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand To,
3265                                      DAGUpdateListener *UpdateListener) {
3266  SDNode *From = FromN.Val;
3267  assert(From->getNumValues() == 1 && FromN.ResNo == 0 &&
3268         "Cannot replace with this method!");
3269  assert(From != To.Val && "Cannot replace uses of with self");
3270
3271  while (!From->use_empty()) {
3272    // Process users until they are all gone.
3273    SDNode *U = *From->use_begin();
3274
3275    // This node is about to morph, remove its old self from the CSE maps.
3276    RemoveNodeFromCSEMaps(U);
3277
3278    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3279         I != E; ++I)
3280      if (I->Val == From) {
3281        From->removeUser(U);
3282        *I = To;
3283        To.Val->addUser(U);
3284      }
3285
3286    // Now that we have modified U, add it back to the CSE maps.  If it already
3287    // exists there, recursively merge the results together.
3288    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3289      ReplaceAllUsesWith(U, Existing, UpdateListener);
3290      // U is now dead.  Inform the listener if it exists and delete it.
3291      if (UpdateListener)
3292        UpdateListener->NodeDeleted(U);
3293      DeleteNodeNotInCSEMaps(U);
3294    } else {
3295      // If the node doesn't already exist, we updated it.  Inform a listener if
3296      // it exists.
3297      if (UpdateListener)
3298        UpdateListener->NodeUpdated(U);
3299    }
3300  }
3301}
3302
3303/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3304/// This can cause recursive merging of nodes in the DAG.
3305///
3306/// This version assumes From/To have matching types and numbers of result
3307/// values.
3308///
3309void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3310                                      DAGUpdateListener *UpdateListener) {
3311  assert(From != To && "Cannot replace uses of with self");
3312  assert(From->getNumValues() == To->getNumValues() &&
3313         "Cannot use this version of ReplaceAllUsesWith!");
3314  if (From->getNumValues() == 1)   // If possible, use the faster version.
3315    return ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0),
3316                              UpdateListener);
3317
3318  while (!From->use_empty()) {
3319    // Process users until they are all gone.
3320    SDNode *U = *From->use_begin();
3321
3322    // This node is about to morph, remove its old self from the CSE maps.
3323    RemoveNodeFromCSEMaps(U);
3324
3325    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3326         I != E; ++I)
3327      if (I->Val == From) {
3328        From->removeUser(U);
3329        I->Val = To;
3330        To->addUser(U);
3331      }
3332
3333    // Now that we have modified U, add it back to the CSE maps.  If it already
3334    // exists there, recursively merge the results together.
3335    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3336      ReplaceAllUsesWith(U, Existing, UpdateListener);
3337      // U is now dead.  Inform the listener if it exists and delete it.
3338      if (UpdateListener)
3339        UpdateListener->NodeDeleted(U);
3340      DeleteNodeNotInCSEMaps(U);
3341    } else {
3342      // If the node doesn't already exist, we updated it.  Inform a listener if
3343      // it exists.
3344      if (UpdateListener)
3345        UpdateListener->NodeUpdated(U);
3346    }
3347  }
3348}
3349
3350/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3351/// This can cause recursive merging of nodes in the DAG.
3352///
3353/// This version can replace From with any result values.  To must match the
3354/// number and types of values returned by From.
3355void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3356                                      const SDOperand *To,
3357                                      DAGUpdateListener *UpdateListener) {
3358  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
3359    return ReplaceAllUsesWith(SDOperand(From, 0), To[0], UpdateListener);
3360
3361  while (!From->use_empty()) {
3362    // Process users until they are all gone.
3363    SDNode *U = *From->use_begin();
3364
3365    // This node is about to morph, remove its old self from the CSE maps.
3366    RemoveNodeFromCSEMaps(U);
3367
3368    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3369         I != E; ++I)
3370      if (I->Val == From) {
3371        const SDOperand &ToOp = To[I->ResNo];
3372        From->removeUser(U);
3373        *I = ToOp;
3374        ToOp.Val->addUser(U);
3375      }
3376
3377    // Now that we have modified U, add it back to the CSE maps.  If it already
3378    // exists there, recursively merge the results together.
3379    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3380      ReplaceAllUsesWith(U, Existing, UpdateListener);
3381      // U is now dead.  Inform the listener if it exists and delete it.
3382      if (UpdateListener)
3383        UpdateListener->NodeDeleted(U);
3384      DeleteNodeNotInCSEMaps(U);
3385    } else {
3386      // If the node doesn't already exist, we updated it.  Inform a listener if
3387      // it exists.
3388      if (UpdateListener)
3389        UpdateListener->NodeUpdated(U);
3390    }
3391  }
3392}
3393
3394namespace {
3395  /// ChainedSetUpdaterListener - This class is a DAGUpdateListener that removes
3396  /// any deleted nodes from the set passed into its constructor and recursively
3397  /// notifies another update listener if specified.
3398  class ChainedSetUpdaterListener :
3399  public SelectionDAG::DAGUpdateListener {
3400    SmallSetVector<SDNode*, 16> &Set;
3401    SelectionDAG::DAGUpdateListener *Chain;
3402  public:
3403    ChainedSetUpdaterListener(SmallSetVector<SDNode*, 16> &set,
3404                              SelectionDAG::DAGUpdateListener *chain)
3405      : Set(set), Chain(chain) {}
3406
3407    virtual void NodeDeleted(SDNode *N) {
3408      Set.remove(N);
3409      if (Chain) Chain->NodeDeleted(N);
3410    }
3411    virtual void NodeUpdated(SDNode *N) {
3412      if (Chain) Chain->NodeUpdated(N);
3413    }
3414  };
3415}
3416
3417/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3418/// uses of other values produced by From.Val alone.  The Deleted vector is
3419/// handled the same way as for ReplaceAllUsesWith.
3420void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3421                                             DAGUpdateListener *UpdateListener){
3422  assert(From != To && "Cannot replace a value with itself");
3423
3424  // Handle the simple, trivial, case efficiently.
3425  if (From.Val->getNumValues() == 1) {
3426    ReplaceAllUsesWith(From, To, UpdateListener);
3427    return;
3428  }
3429
3430  if (From.use_empty()) return;
3431
3432  // Get all of the users of From.Val.  We want these in a nice,
3433  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3434  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3435
3436  // When one of the recursive merges deletes nodes from the graph, we need to
3437  // make sure that UpdateListener is notified *and* that the node is removed
3438  // from Users if present.  CSUL does this.
3439  ChainedSetUpdaterListener CSUL(Users, UpdateListener);
3440
3441  while (!Users.empty()) {
3442    // We know that this user uses some value of From.  If it is the right
3443    // value, update it.
3444    SDNode *User = Users.back();
3445    Users.pop_back();
3446
3447    // Scan for an operand that matches From.
3448    SDOperand *Op = User->OperandList, *E = User->OperandList+User->NumOperands;
3449    for (; Op != E; ++Op)
3450      if (*Op == From) break;
3451
3452    // If there are no matches, the user must use some other result of From.
3453    if (Op == E) continue;
3454
3455    // Okay, we know this user needs to be updated.  Remove its old self
3456    // from the CSE maps.
3457    RemoveNodeFromCSEMaps(User);
3458
3459    // Update all operands that match "From" in case there are multiple uses.
3460    for (; Op != E; ++Op) {
3461      if (*Op == From) {
3462        From.Val->removeUser(User);
3463        *Op = To;
3464        To.Val->addUser(User);
3465      }
3466    }
3467
3468    // Now that we have modified User, add it back to the CSE maps.  If it
3469    // already exists there, recursively merge the results together.
3470    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3471    if (!Existing) {
3472      if (UpdateListener) UpdateListener->NodeUpdated(User);
3473      continue;  // Continue on to next user.
3474    }
3475
3476    // If there was already an existing matching node, use ReplaceAllUsesWith
3477    // to replace the dead one with the existing one.  This can cause
3478    // recursive merging of other unrelated nodes down the line.  The merging
3479    // can cause deletion of nodes that used the old value.  To handle this, we
3480    // use CSUL to remove them from the Users set.
3481    ReplaceAllUsesWith(User, Existing, &CSUL);
3482
3483    // User is now dead.  Notify a listener if present.
3484    if (UpdateListener) UpdateListener->NodeDeleted(User);
3485    DeleteNodeNotInCSEMaps(User);
3486  }
3487}
3488
3489
3490/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3491/// their allnodes order. It returns the maximum id.
3492unsigned SelectionDAG::AssignNodeIds() {
3493  unsigned Id = 0;
3494  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3495    SDNode *N = I;
3496    N->setNodeId(Id++);
3497  }
3498  return Id;
3499}
3500
3501/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3502/// based on their topological order. It returns the maximum id and a vector
3503/// of the SDNodes* in assigned order by reference.
3504unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3505  unsigned DAGSize = AllNodes.size();
3506  std::vector<unsigned> InDegree(DAGSize);
3507  std::vector<SDNode*> Sources;
3508
3509  // Use a two pass approach to avoid using a std::map which is slow.
3510  unsigned Id = 0;
3511  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3512    SDNode *N = I;
3513    N->setNodeId(Id++);
3514    unsigned Degree = N->use_size();
3515    InDegree[N->getNodeId()] = Degree;
3516    if (Degree == 0)
3517      Sources.push_back(N);
3518  }
3519
3520  TopOrder.clear();
3521  while (!Sources.empty()) {
3522    SDNode *N = Sources.back();
3523    Sources.pop_back();
3524    TopOrder.push_back(N);
3525    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3526      SDNode *P = I->Val;
3527      unsigned Degree = --InDegree[P->getNodeId()];
3528      if (Degree == 0)
3529        Sources.push_back(P);
3530    }
3531  }
3532
3533  // Second pass, assign the actual topological order as node ids.
3534  Id = 0;
3535  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3536       TI != TE; ++TI)
3537    (*TI)->setNodeId(Id++);
3538
3539  return Id;
3540}
3541
3542
3543
3544//===----------------------------------------------------------------------===//
3545//                              SDNode Class
3546//===----------------------------------------------------------------------===//
3547
3548// Out-of-line virtual method to give class a home.
3549void SDNode::ANCHOR() {}
3550void UnarySDNode::ANCHOR() {}
3551void BinarySDNode::ANCHOR() {}
3552void TernarySDNode::ANCHOR() {}
3553void HandleSDNode::ANCHOR() {}
3554void StringSDNode::ANCHOR() {}
3555void ConstantSDNode::ANCHOR() {}
3556void ConstantFPSDNode::ANCHOR() {}
3557void GlobalAddressSDNode::ANCHOR() {}
3558void FrameIndexSDNode::ANCHOR() {}
3559void JumpTableSDNode::ANCHOR() {}
3560void ConstantPoolSDNode::ANCHOR() {}
3561void BasicBlockSDNode::ANCHOR() {}
3562void SrcValueSDNode::ANCHOR() {}
3563void MemOperandSDNode::ANCHOR() {}
3564void RegisterSDNode::ANCHOR() {}
3565void ExternalSymbolSDNode::ANCHOR() {}
3566void CondCodeSDNode::ANCHOR() {}
3567void VTSDNode::ANCHOR() {}
3568void LoadSDNode::ANCHOR() {}
3569void StoreSDNode::ANCHOR() {}
3570
3571HandleSDNode::~HandleSDNode() {
3572  SDVTList VTs = { 0, 0 };
3573  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3574}
3575
3576GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3577                                         MVT::ValueType VT, int o)
3578  : SDNode(isa<GlobalVariable>(GA) &&
3579           cast<GlobalVariable>(GA)->isThreadLocal() ?
3580           // Thread Local
3581           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3582           // Non Thread Local
3583           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3584           getSDVTList(VT)), Offset(o) {
3585  TheGlobal = const_cast<GlobalValue*>(GA);
3586}
3587
3588/// getMemOperand - Return a MemOperand object describing the memory
3589/// reference performed by this load or store.
3590MemOperand LSBaseSDNode::getMemOperand() const {
3591  int Size = (MVT::getSizeInBits(getMemoryVT()) + 7) >> 3;
3592  int Flags =
3593    getOpcode() == ISD::LOAD ? MemOperand::MOLoad : MemOperand::MOStore;
3594  if (IsVolatile) Flags |= MemOperand::MOVolatile;
3595
3596  // Check if the load references a frame index, and does not have
3597  // an SV attached.
3598  const FrameIndexSDNode *FI =
3599    dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
3600  if (!getSrcValue() && FI)
3601    return MemOperand(PseudoSourceValue::getFixedStack(), Flags,
3602                      FI->getIndex(), Size, Alignment);
3603  else
3604    return MemOperand(getSrcValue(), Flags,
3605                      getSrcValueOffset(), Size, Alignment);
3606}
3607
3608/// Profile - Gather unique data for the node.
3609///
3610void SDNode::Profile(FoldingSetNodeID &ID) {
3611  AddNodeIDNode(ID, this);
3612}
3613
3614/// getValueTypeList - Return a pointer to the specified value type.
3615///
3616const MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3617  if (MVT::isExtendedVT(VT)) {
3618    static std::set<MVT::ValueType> EVTs;
3619    return &(*EVTs.insert(VT).first);
3620  } else {
3621    static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3622    VTs[VT] = VT;
3623    return &VTs[VT];
3624  }
3625}
3626
3627/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3628/// indicated value.  This method ignores uses of other values defined by this
3629/// operation.
3630bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3631  assert(Value < getNumValues() && "Bad value!");
3632
3633  // If there is only one value, this is easy.
3634  if (getNumValues() == 1)
3635    return use_size() == NUses;
3636  if (use_size() < NUses) return false;
3637
3638  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3639
3640  SmallPtrSet<SDNode*, 32> UsersHandled;
3641
3642  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3643    SDNode *User = *UI;
3644    if (User->getNumOperands() == 1 ||
3645        UsersHandled.insert(User))     // First time we've seen this?
3646      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3647        if (User->getOperand(i) == TheValue) {
3648          if (NUses == 0)
3649            return false;   // too many uses
3650          --NUses;
3651        }
3652  }
3653
3654  // Found exactly the right number of uses?
3655  return NUses == 0;
3656}
3657
3658
3659/// hasAnyUseOfValue - Return true if there are any use of the indicated
3660/// value. This method ignores uses of other values defined by this operation.
3661bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3662  assert(Value < getNumValues() && "Bad value!");
3663
3664  if (use_empty()) return false;
3665
3666  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3667
3668  SmallPtrSet<SDNode*, 32> UsersHandled;
3669
3670  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3671    SDNode *User = *UI;
3672    if (User->getNumOperands() == 1 ||
3673        UsersHandled.insert(User))     // First time we've seen this?
3674      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3675        if (User->getOperand(i) == TheValue) {
3676          return true;
3677        }
3678  }
3679
3680  return false;
3681}
3682
3683
3684/// isOnlyUse - Return true if this node is the only use of N.
3685///
3686bool SDNode::isOnlyUse(SDNode *N) const {
3687  bool Seen = false;
3688  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3689    SDNode *User = *I;
3690    if (User == this)
3691      Seen = true;
3692    else
3693      return false;
3694  }
3695
3696  return Seen;
3697}
3698
3699/// isOperand - Return true if this node is an operand of N.
3700///
3701bool SDOperand::isOperand(SDNode *N) const {
3702  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3703    if (*this == N->getOperand(i))
3704      return true;
3705  return false;
3706}
3707
3708bool SDNode::isOperand(SDNode *N) const {
3709  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3710    if (this == N->OperandList[i].Val)
3711      return true;
3712  return false;
3713}
3714
3715/// reachesChainWithoutSideEffects - Return true if this operand (which must
3716/// be a chain) reaches the specified operand without crossing any
3717/// side-effecting instructions.  In practice, this looks through token
3718/// factors and non-volatile loads.  In order to remain efficient, this only
3719/// looks a couple of nodes in, it does not do an exhaustive search.
3720bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
3721                                               unsigned Depth) const {
3722  if (*this == Dest) return true;
3723
3724  // Don't search too deeply, we just want to be able to see through
3725  // TokenFactor's etc.
3726  if (Depth == 0) return false;
3727
3728  // If this is a token factor, all inputs to the TF happen in parallel.  If any
3729  // of the operands of the TF reach dest, then we can do the xform.
3730  if (getOpcode() == ISD::TokenFactor) {
3731    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3732      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
3733        return true;
3734    return false;
3735  }
3736
3737  // Loads don't have side effects, look through them.
3738  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
3739    if (!Ld->isVolatile())
3740      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
3741  }
3742  return false;
3743}
3744
3745
3746static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3747                            SmallPtrSet<SDNode *, 32> &Visited) {
3748  if (found || !Visited.insert(N))
3749    return;
3750
3751  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3752    SDNode *Op = N->getOperand(i).Val;
3753    if (Op == P) {
3754      found = true;
3755      return;
3756    }
3757    findPredecessor(Op, P, found, Visited);
3758  }
3759}
3760
3761/// isPredecessor - Return true if this node is a predecessor of N. This node
3762/// is either an operand of N or it can be reached by recursively traversing
3763/// up the operands.
3764/// NOTE: this is an expensive method. Use it carefully.
3765bool SDNode::isPredecessor(SDNode *N) const {
3766  SmallPtrSet<SDNode *, 32> Visited;
3767  bool found = false;
3768  findPredecessor(N, this, found, Visited);
3769  return found;
3770}
3771
3772uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3773  assert(Num < NumOperands && "Invalid child # of SDNode!");
3774  return cast<ConstantSDNode>(OperandList[Num])->getValue();
3775}
3776
3777std::string SDNode::getOperationName(const SelectionDAG *G) const {
3778  switch (getOpcode()) {
3779  default:
3780    if (getOpcode() < ISD::BUILTIN_OP_END)
3781      return "<<Unknown DAG Node>>";
3782    else {
3783      if (G) {
3784        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3785          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3786            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
3787
3788        TargetLowering &TLI = G->getTargetLoweringInfo();
3789        const char *Name =
3790          TLI.getTargetNodeName(getOpcode());
3791        if (Name) return Name;
3792      }
3793
3794      return "<<Unknown Target Node>>";
3795    }
3796
3797  case ISD::PCMARKER:      return "PCMarker";
3798  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3799  case ISD::SRCVALUE:      return "SrcValue";
3800  case ISD::MEMOPERAND:    return "MemOperand";
3801  case ISD::EntryToken:    return "EntryToken";
3802  case ISD::TokenFactor:   return "TokenFactor";
3803  case ISD::AssertSext:    return "AssertSext";
3804  case ISD::AssertZext:    return "AssertZext";
3805
3806  case ISD::STRING:        return "String";
3807  case ISD::BasicBlock:    return "BasicBlock";
3808  case ISD::VALUETYPE:     return "ValueType";
3809  case ISD::Register:      return "Register";
3810
3811  case ISD::Constant:      return "Constant";
3812  case ISD::ConstantFP:    return "ConstantFP";
3813  case ISD::GlobalAddress: return "GlobalAddress";
3814  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3815  case ISD::FrameIndex:    return "FrameIndex";
3816  case ISD::JumpTable:     return "JumpTable";
3817  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3818  case ISD::RETURNADDR: return "RETURNADDR";
3819  case ISD::FRAMEADDR: return "FRAMEADDR";
3820  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3821  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3822  case ISD::EHSELECTION: return "EHSELECTION";
3823  case ISD::EH_RETURN: return "EH_RETURN";
3824  case ISD::ConstantPool:  return "ConstantPool";
3825  case ISD::ExternalSymbol: return "ExternalSymbol";
3826  case ISD::INTRINSIC_WO_CHAIN: {
3827    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3828    return Intrinsic::getName((Intrinsic::ID)IID);
3829  }
3830  case ISD::INTRINSIC_VOID:
3831  case ISD::INTRINSIC_W_CHAIN: {
3832    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3833    return Intrinsic::getName((Intrinsic::ID)IID);
3834  }
3835
3836  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
3837  case ISD::TargetConstant: return "TargetConstant";
3838  case ISD::TargetConstantFP:return "TargetConstantFP";
3839  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3840  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3841  case ISD::TargetFrameIndex: return "TargetFrameIndex";
3842  case ISD::TargetJumpTable:  return "TargetJumpTable";
3843  case ISD::TargetConstantPool:  return "TargetConstantPool";
3844  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3845
3846  case ISD::CopyToReg:     return "CopyToReg";
3847  case ISD::CopyFromReg:   return "CopyFromReg";
3848  case ISD::UNDEF:         return "undef";
3849  case ISD::MERGE_VALUES:  return "merge_values";
3850  case ISD::INLINEASM:     return "inlineasm";
3851  case ISD::LABEL:         return "label";
3852  case ISD::DECLARE:       return "declare";
3853  case ISD::HANDLENODE:    return "handlenode";
3854  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3855  case ISD::CALL:          return "call";
3856
3857  // Unary operators
3858  case ISD::FABS:   return "fabs";
3859  case ISD::FNEG:   return "fneg";
3860  case ISD::FSQRT:  return "fsqrt";
3861  case ISD::FSIN:   return "fsin";
3862  case ISD::FCOS:   return "fcos";
3863  case ISD::FPOWI:  return "fpowi";
3864  case ISD::FPOW:   return "fpow";
3865
3866  // Binary operators
3867  case ISD::ADD:    return "add";
3868  case ISD::SUB:    return "sub";
3869  case ISD::MUL:    return "mul";
3870  case ISD::MULHU:  return "mulhu";
3871  case ISD::MULHS:  return "mulhs";
3872  case ISD::SDIV:   return "sdiv";
3873  case ISD::UDIV:   return "udiv";
3874  case ISD::SREM:   return "srem";
3875  case ISD::UREM:   return "urem";
3876  case ISD::SMUL_LOHI:  return "smul_lohi";
3877  case ISD::UMUL_LOHI:  return "umul_lohi";
3878  case ISD::SDIVREM:    return "sdivrem";
3879  case ISD::UDIVREM:    return "divrem";
3880  case ISD::AND:    return "and";
3881  case ISD::OR:     return "or";
3882  case ISD::XOR:    return "xor";
3883  case ISD::SHL:    return "shl";
3884  case ISD::SRA:    return "sra";
3885  case ISD::SRL:    return "srl";
3886  case ISD::ROTL:   return "rotl";
3887  case ISD::ROTR:   return "rotr";
3888  case ISD::FADD:   return "fadd";
3889  case ISD::FSUB:   return "fsub";
3890  case ISD::FMUL:   return "fmul";
3891  case ISD::FDIV:   return "fdiv";
3892  case ISD::FREM:   return "frem";
3893  case ISD::FCOPYSIGN: return "fcopysign";
3894  case ISD::FGETSIGN:  return "fgetsign";
3895
3896  case ISD::SETCC:       return "setcc";
3897  case ISD::SELECT:      return "select";
3898  case ISD::SELECT_CC:   return "select_cc";
3899  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
3900  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
3901  case ISD::CONCAT_VECTORS:      return "concat_vectors";
3902  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
3903  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
3904  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
3905  case ISD::CARRY_FALSE:         return "carry_false";
3906  case ISD::ADDC:        return "addc";
3907  case ISD::ADDE:        return "adde";
3908  case ISD::SUBC:        return "subc";
3909  case ISD::SUBE:        return "sube";
3910  case ISD::SHL_PARTS:   return "shl_parts";
3911  case ISD::SRA_PARTS:   return "sra_parts";
3912  case ISD::SRL_PARTS:   return "srl_parts";
3913
3914  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
3915  case ISD::INSERT_SUBREG:      return "insert_subreg";
3916
3917  // Conversion operators.
3918  case ISD::SIGN_EXTEND: return "sign_extend";
3919  case ISD::ZERO_EXTEND: return "zero_extend";
3920  case ISD::ANY_EXTEND:  return "any_extend";
3921  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3922  case ISD::TRUNCATE:    return "truncate";
3923  case ISD::FP_ROUND:    return "fp_round";
3924  case ISD::FLT_ROUNDS_: return "flt_rounds";
3925  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3926  case ISD::FP_EXTEND:   return "fp_extend";
3927
3928  case ISD::SINT_TO_FP:  return "sint_to_fp";
3929  case ISD::UINT_TO_FP:  return "uint_to_fp";
3930  case ISD::FP_TO_SINT:  return "fp_to_sint";
3931  case ISD::FP_TO_UINT:  return "fp_to_uint";
3932  case ISD::BIT_CONVERT: return "bit_convert";
3933
3934    // Control flow instructions
3935  case ISD::BR:      return "br";
3936  case ISD::BRIND:   return "brind";
3937  case ISD::BR_JT:   return "br_jt";
3938  case ISD::BRCOND:  return "brcond";
3939  case ISD::BR_CC:   return "br_cc";
3940  case ISD::RET:     return "ret";
3941  case ISD::CALLSEQ_START:  return "callseq_start";
3942  case ISD::CALLSEQ_END:    return "callseq_end";
3943
3944    // Other operators
3945  case ISD::LOAD:               return "load";
3946  case ISD::STORE:              return "store";
3947  case ISD::VAARG:              return "vaarg";
3948  case ISD::VACOPY:             return "vacopy";
3949  case ISD::VAEND:              return "vaend";
3950  case ISD::VASTART:            return "vastart";
3951  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3952  case ISD::EXTRACT_ELEMENT:    return "extract_element";
3953  case ISD::BUILD_PAIR:         return "build_pair";
3954  case ISD::STACKSAVE:          return "stacksave";
3955  case ISD::STACKRESTORE:       return "stackrestore";
3956  case ISD::TRAP:               return "trap";
3957
3958  // Block memory operations.
3959  case ISD::MEMSET:  return "memset";
3960  case ISD::MEMCPY:  return "memcpy";
3961  case ISD::MEMMOVE: return "memmove";
3962
3963  // Bit manipulation
3964  case ISD::BSWAP:   return "bswap";
3965  case ISD::CTPOP:   return "ctpop";
3966  case ISD::CTTZ:    return "cttz";
3967  case ISD::CTLZ:    return "ctlz";
3968
3969  // Debug info
3970  case ISD::LOCATION: return "location";
3971  case ISD::DEBUG_LOC: return "debug_loc";
3972
3973  // Trampolines
3974  case ISD::TRAMPOLINE: return "trampoline";
3975
3976  case ISD::CONDCODE:
3977    switch (cast<CondCodeSDNode>(this)->get()) {
3978    default: assert(0 && "Unknown setcc condition!");
3979    case ISD::SETOEQ:  return "setoeq";
3980    case ISD::SETOGT:  return "setogt";
3981    case ISD::SETOGE:  return "setoge";
3982    case ISD::SETOLT:  return "setolt";
3983    case ISD::SETOLE:  return "setole";
3984    case ISD::SETONE:  return "setone";
3985
3986    case ISD::SETO:    return "seto";
3987    case ISD::SETUO:   return "setuo";
3988    case ISD::SETUEQ:  return "setue";
3989    case ISD::SETUGT:  return "setugt";
3990    case ISD::SETUGE:  return "setuge";
3991    case ISD::SETULT:  return "setult";
3992    case ISD::SETULE:  return "setule";
3993    case ISD::SETUNE:  return "setune";
3994
3995    case ISD::SETEQ:   return "seteq";
3996    case ISD::SETGT:   return "setgt";
3997    case ISD::SETGE:   return "setge";
3998    case ISD::SETLT:   return "setlt";
3999    case ISD::SETLE:   return "setle";
4000    case ISD::SETNE:   return "setne";
4001    }
4002  }
4003}
4004
4005const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
4006  switch (AM) {
4007  default:
4008    return "";
4009  case ISD::PRE_INC:
4010    return "<pre-inc>";
4011  case ISD::PRE_DEC:
4012    return "<pre-dec>";
4013  case ISD::POST_INC:
4014    return "<post-inc>";
4015  case ISD::POST_DEC:
4016    return "<post-dec>";
4017  }
4018}
4019
4020void SDNode::dump() const { dump(0); }
4021void SDNode::dump(const SelectionDAG *G) const {
4022  cerr << (void*)this << ": ";
4023
4024  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
4025    if (i) cerr << ",";
4026    if (getValueType(i) == MVT::Other)
4027      cerr << "ch";
4028    else
4029      cerr << MVT::getValueTypeString(getValueType(i));
4030  }
4031  cerr << " = " << getOperationName(G);
4032
4033  cerr << " ";
4034  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
4035    if (i) cerr << ", ";
4036    cerr << (void*)getOperand(i).Val;
4037    if (unsigned RN = getOperand(i).ResNo)
4038      cerr << ":" << RN;
4039  }
4040
4041  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
4042    SDNode *Mask = getOperand(2).Val;
4043    cerr << "<";
4044    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
4045      if (i) cerr << ",";
4046      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
4047        cerr << "u";
4048      else
4049        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
4050    }
4051    cerr << ">";
4052  }
4053
4054  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
4055    cerr << "<" << CSDN->getValue() << ">";
4056  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
4057    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
4058      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
4059    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
4060      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
4061    else {
4062      cerr << "<APFloat(";
4063      CSDN->getValueAPF().convertToAPInt().dump();
4064      cerr << ")>";
4065    }
4066  } else if (const GlobalAddressSDNode *GADN =
4067             dyn_cast<GlobalAddressSDNode>(this)) {
4068    int offset = GADN->getOffset();
4069    cerr << "<";
4070    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
4071    if (offset > 0)
4072      cerr << " + " << offset;
4073    else
4074      cerr << " " << offset;
4075  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
4076    cerr << "<" << FIDN->getIndex() << ">";
4077  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
4078    cerr << "<" << JTDN->getIndex() << ">";
4079  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
4080    int offset = CP->getOffset();
4081    if (CP->isMachineConstantPoolEntry())
4082      cerr << "<" << *CP->getMachineCPVal() << ">";
4083    else
4084      cerr << "<" << *CP->getConstVal() << ">";
4085    if (offset > 0)
4086      cerr << " + " << offset;
4087    else
4088      cerr << " " << offset;
4089  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
4090    cerr << "<";
4091    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
4092    if (LBB)
4093      cerr << LBB->getName() << " ";
4094    cerr << (const void*)BBDN->getBasicBlock() << ">";
4095  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
4096    if (G && R->getReg() &&
4097        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
4098      cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
4099    } else {
4100      cerr << " #" << R->getReg();
4101    }
4102  } else if (const ExternalSymbolSDNode *ES =
4103             dyn_cast<ExternalSymbolSDNode>(this)) {
4104    cerr << "'" << ES->getSymbol() << "'";
4105  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
4106    if (M->getValue())
4107      cerr << "<" << M->getValue() << ">";
4108    else
4109      cerr << "<null>";
4110  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
4111    if (M->MO.getValue())
4112      cerr << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
4113    else
4114      cerr << "<null:" << M->MO.getOffset() << ">";
4115  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
4116    cerr << ":" << MVT::getValueTypeString(N->getVT());
4117  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
4118    const Value *SrcValue = LD->getSrcValue();
4119    int SrcOffset = LD->getSrcValueOffset();
4120    cerr << " <";
4121    if (SrcValue)
4122      cerr << SrcValue;
4123    else
4124      cerr << "null";
4125    cerr << ":" << SrcOffset << ">";
4126
4127    bool doExt = true;
4128    switch (LD->getExtensionType()) {
4129    default: doExt = false; break;
4130    case ISD::EXTLOAD:
4131      cerr << " <anyext ";
4132      break;
4133    case ISD::SEXTLOAD:
4134      cerr << " <sext ";
4135      break;
4136    case ISD::ZEXTLOAD:
4137      cerr << " <zext ";
4138      break;
4139    }
4140    if (doExt)
4141      cerr << MVT::getValueTypeString(LD->getMemoryVT()) << ">";
4142
4143    const char *AM = getIndexedModeName(LD->getAddressingMode());
4144    if (*AM)
4145      cerr << " " << AM;
4146    if (LD->isVolatile())
4147      cerr << " <volatile>";
4148    cerr << " alignment=" << LD->getAlignment();
4149  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
4150    const Value *SrcValue = ST->getSrcValue();
4151    int SrcOffset = ST->getSrcValueOffset();
4152    cerr << " <";
4153    if (SrcValue)
4154      cerr << SrcValue;
4155    else
4156      cerr << "null";
4157    cerr << ":" << SrcOffset << ">";
4158
4159    if (ST->isTruncatingStore())
4160      cerr << " <trunc "
4161           << MVT::getValueTypeString(ST->getMemoryVT()) << ">";
4162
4163    const char *AM = getIndexedModeName(ST->getAddressingMode());
4164    if (*AM)
4165      cerr << " " << AM;
4166    if (ST->isVolatile())
4167      cerr << " <volatile>";
4168    cerr << " alignment=" << ST->getAlignment();
4169  }
4170}
4171
4172static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4173  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4174    if (N->getOperand(i).Val->hasOneUse())
4175      DumpNodes(N->getOperand(i).Val, indent+2, G);
4176    else
4177      cerr << "\n" << std::string(indent+2, ' ')
4178           << (void*)N->getOperand(i).Val << ": <multiple use>";
4179
4180
4181  cerr << "\n" << std::string(indent, ' ');
4182  N->dump(G);
4183}
4184
4185void SelectionDAG::dump() const {
4186  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4187  std::vector<const SDNode*> Nodes;
4188  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4189       I != E; ++I)
4190    Nodes.push_back(I);
4191
4192  std::sort(Nodes.begin(), Nodes.end());
4193
4194  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4195    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4196      DumpNodes(Nodes[i], 2, this);
4197  }
4198
4199  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4200
4201  cerr << "\n\n";
4202}
4203
4204const Type *ConstantPoolSDNode::getType() const {
4205  if (isMachineConstantPoolEntry())
4206    return Val.MachineCPVal->getType();
4207  return Val.ConstVal->getType();
4208}
4209