SelectionDAG.cpp revision dc458cfef568772046cf0c1a508f0621c3a6a4fe
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineModuleInfo.h"
24#include "llvm/CodeGen/PseudoSourceValue.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Target/MRegisterInfo.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Target/TargetLowering.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/ADT/SetVector.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallSet.h"
34#include "llvm/ADT/SmallVector.h"
35#include "llvm/ADT/StringExtras.h"
36#include <algorithm>
37#include <cmath>
38using namespace llvm;
39
40/// makeVTList - Return an instance of the SDVTList struct initialized with the
41/// specified members.
42static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
43  SDVTList Res = {VTs, NumVTs};
44  return Res;
45}
46
47SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
48
49//===----------------------------------------------------------------------===//
50//                              ConstantFPSDNode Class
51//===----------------------------------------------------------------------===//
52
53/// isExactlyValue - We don't rely on operator== working on double values, as
54/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
55/// As such, this method can be used to do an exact bit-for-bit comparison of
56/// two floating point values.
57bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
58  return Value.bitwiseIsEqual(V);
59}
60
61bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
62                                           const APFloat& Val) {
63  // convert modifies in place, so make a copy.
64  APFloat Val2 = APFloat(Val);
65  switch (VT) {
66  default:
67    return false;         // These can't be represented as floating point!
68
69  // FIXME rounding mode needs to be more flexible
70  case MVT::f32:
71    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
72           Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==
73              APFloat::opOK;
74  case MVT::f64:
75    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
76           &Val2.getSemantics() == &APFloat::IEEEdouble ||
77           Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==
78             APFloat::opOK;
79  // TODO: Figure out how to test if we can use a shorter type instead!
80  case MVT::f80:
81  case MVT::f128:
82  case MVT::ppcf128:
83    return true;
84  }
85}
86
87//===----------------------------------------------------------------------===//
88//                              ISD Namespace
89//===----------------------------------------------------------------------===//
90
91/// isBuildVectorAllOnes - Return true if the specified node is a
92/// BUILD_VECTOR where all of the elements are ~0 or undef.
93bool ISD::isBuildVectorAllOnes(const SDNode *N) {
94  // Look through a bit convert.
95  if (N->getOpcode() == ISD::BIT_CONVERT)
96    N = N->getOperand(0).Val;
97
98  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
99
100  unsigned i = 0, e = N->getNumOperands();
101
102  // Skip over all of the undef values.
103  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
104    ++i;
105
106  // Do not accept an all-undef vector.
107  if (i == e) return false;
108
109  // Do not accept build_vectors that aren't all constants or which have non-~0
110  // elements.
111  SDOperand NotZero = N->getOperand(i);
112  if (isa<ConstantSDNode>(NotZero)) {
113    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
114      return false;
115  } else if (isa<ConstantFPSDNode>(NotZero)) {
116    MVT::ValueType VT = NotZero.getValueType();
117    if (VT== MVT::f64) {
118      if (((cast<ConstantFPSDNode>(NotZero)->getValueAPF().
119                  convertToAPInt().getZExtValue())) != (uint64_t)-1)
120        return false;
121    } else {
122      if ((uint32_t)cast<ConstantFPSDNode>(NotZero)->
123                      getValueAPF().convertToAPInt().getZExtValue() !=
124          (uint32_t)-1)
125        return false;
126    }
127  } else
128    return false;
129
130  // Okay, we have at least one ~0 value, check to see if the rest match or are
131  // undefs.
132  for (++i; i != e; ++i)
133    if (N->getOperand(i) != NotZero &&
134        N->getOperand(i).getOpcode() != ISD::UNDEF)
135      return false;
136  return true;
137}
138
139
140/// isBuildVectorAllZeros - Return true if the specified node is a
141/// BUILD_VECTOR where all of the elements are 0 or undef.
142bool ISD::isBuildVectorAllZeros(const SDNode *N) {
143  // Look through a bit convert.
144  if (N->getOpcode() == ISD::BIT_CONVERT)
145    N = N->getOperand(0).Val;
146
147  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
148
149  unsigned i = 0, e = N->getNumOperands();
150
151  // Skip over all of the undef values.
152  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
153    ++i;
154
155  // Do not accept an all-undef vector.
156  if (i == e) return false;
157
158  // Do not accept build_vectors that aren't all constants or which have non-~0
159  // elements.
160  SDOperand Zero = N->getOperand(i);
161  if (isa<ConstantSDNode>(Zero)) {
162    if (!cast<ConstantSDNode>(Zero)->isNullValue())
163      return false;
164  } else if (isa<ConstantFPSDNode>(Zero)) {
165    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
166      return false;
167  } else
168    return false;
169
170  // Okay, we have at least one ~0 value, check to see if the rest match or are
171  // undefs.
172  for (++i; i != e; ++i)
173    if (N->getOperand(i) != Zero &&
174        N->getOperand(i).getOpcode() != ISD::UNDEF)
175      return false;
176  return true;
177}
178
179/// isDebugLabel - Return true if the specified node represents a debug
180/// label (i.e. ISD::LABEL or TargetInstrInfo::LABEL node and third operand
181/// is 0).
182bool ISD::isDebugLabel(const SDNode *N) {
183  SDOperand Zero;
184  if (N->getOpcode() == ISD::LABEL)
185    Zero = N->getOperand(2);
186  else if (N->isTargetOpcode() &&
187           N->getTargetOpcode() == TargetInstrInfo::LABEL)
188    // Chain moved to last operand.
189    Zero = N->getOperand(1);
190  else
191    return false;
192  return isa<ConstantSDNode>(Zero) && cast<ConstantSDNode>(Zero)->isNullValue();
193}
194
195/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
196/// when given the operation for (X op Y).
197ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
198  // To perform this operation, we just need to swap the L and G bits of the
199  // operation.
200  unsigned OldL = (Operation >> 2) & 1;
201  unsigned OldG = (Operation >> 1) & 1;
202  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
203                       (OldL << 1) |       // New G bit
204                       (OldG << 2));        // New L bit.
205}
206
207/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
208/// 'op' is a valid SetCC operation.
209ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
210  unsigned Operation = Op;
211  if (isInteger)
212    Operation ^= 7;   // Flip L, G, E bits, but not U.
213  else
214    Operation ^= 15;  // Flip all of the condition bits.
215  if (Operation > ISD::SETTRUE2)
216    Operation &= ~8;     // Don't let N and U bits get set.
217  return ISD::CondCode(Operation);
218}
219
220
221/// isSignedOp - For an integer comparison, return 1 if the comparison is a
222/// signed operation and 2 if the result is an unsigned comparison.  Return zero
223/// if the operation does not depend on the sign of the input (setne and seteq).
224static int isSignedOp(ISD::CondCode Opcode) {
225  switch (Opcode) {
226  default: assert(0 && "Illegal integer setcc operation!");
227  case ISD::SETEQ:
228  case ISD::SETNE: return 0;
229  case ISD::SETLT:
230  case ISD::SETLE:
231  case ISD::SETGT:
232  case ISD::SETGE: return 1;
233  case ISD::SETULT:
234  case ISD::SETULE:
235  case ISD::SETUGT:
236  case ISD::SETUGE: return 2;
237  }
238}
239
240/// getSetCCOrOperation - Return the result of a logical OR between different
241/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
242/// returns SETCC_INVALID if it is not possible to represent the resultant
243/// comparison.
244ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
245                                       bool isInteger) {
246  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
247    // Cannot fold a signed integer setcc with an unsigned integer setcc.
248    return ISD::SETCC_INVALID;
249
250  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
251
252  // If the N and U bits get set then the resultant comparison DOES suddenly
253  // care about orderedness, and is true when ordered.
254  if (Op > ISD::SETTRUE2)
255    Op &= ~16;     // Clear the U bit if the N bit is set.
256
257  // Canonicalize illegal integer setcc's.
258  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
259    Op = ISD::SETNE;
260
261  return ISD::CondCode(Op);
262}
263
264/// getSetCCAndOperation - Return the result of a logical AND between different
265/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
266/// function returns zero if it is not possible to represent the resultant
267/// comparison.
268ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
269                                        bool isInteger) {
270  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
271    // Cannot fold a signed setcc with an unsigned setcc.
272    return ISD::SETCC_INVALID;
273
274  // Combine all of the condition bits.
275  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
276
277  // Canonicalize illegal integer setcc's.
278  if (isInteger) {
279    switch (Result) {
280    default: break;
281    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
282    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
283    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
284    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
285    }
286  }
287
288  return Result;
289}
290
291const TargetMachine &SelectionDAG::getTarget() const {
292  return TLI.getTargetMachine();
293}
294
295//===----------------------------------------------------------------------===//
296//                           SDNode Profile Support
297//===----------------------------------------------------------------------===//
298
299/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
300///
301static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
302  ID.AddInteger(OpC);
303}
304
305/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
306/// solely with their pointer.
307void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
308  ID.AddPointer(VTList.VTs);
309}
310
311/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
312///
313static void AddNodeIDOperands(FoldingSetNodeID &ID,
314                              const SDOperand *Ops, unsigned NumOps) {
315  for (; NumOps; --NumOps, ++Ops) {
316    ID.AddPointer(Ops->Val);
317    ID.AddInteger(Ops->ResNo);
318  }
319}
320
321static void AddNodeIDNode(FoldingSetNodeID &ID,
322                          unsigned short OpC, SDVTList VTList,
323                          const SDOperand *OpList, unsigned N) {
324  AddNodeIDOpcode(ID, OpC);
325  AddNodeIDValueTypes(ID, VTList);
326  AddNodeIDOperands(ID, OpList, N);
327}
328
329/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
330/// data.
331static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
332  AddNodeIDOpcode(ID, N->getOpcode());
333  // Add the return value info.
334  AddNodeIDValueTypes(ID, N->getVTList());
335  // Add the operand info.
336  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
337
338  // Handle SDNode leafs with special info.
339  switch (N->getOpcode()) {
340  default: break;  // Normal nodes don't need extra info.
341  case ISD::TargetConstant:
342  case ISD::Constant:
343    ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
344    break;
345  case ISD::TargetConstantFP:
346  case ISD::ConstantFP: {
347    ID.AddAPFloat(cast<ConstantFPSDNode>(N)->getValueAPF());
348    break;
349  }
350  case ISD::TargetGlobalAddress:
351  case ISD::GlobalAddress:
352  case ISD::TargetGlobalTLSAddress:
353  case ISD::GlobalTLSAddress: {
354    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
355    ID.AddPointer(GA->getGlobal());
356    ID.AddInteger(GA->getOffset());
357    break;
358  }
359  case ISD::BasicBlock:
360    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
361    break;
362  case ISD::Register:
363    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
364    break;
365  case ISD::SRCVALUE:
366    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
367    break;
368  case ISD::MEMOPERAND: {
369    const MemOperand &MO = cast<MemOperandSDNode>(N)->MO;
370    ID.AddPointer(MO.getValue());
371    ID.AddInteger(MO.getFlags());
372    ID.AddInteger(MO.getOffset());
373    ID.AddInteger(MO.getSize());
374    ID.AddInteger(MO.getAlignment());
375    break;
376  }
377  case ISD::FrameIndex:
378  case ISD::TargetFrameIndex:
379    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
380    break;
381  case ISD::JumpTable:
382  case ISD::TargetJumpTable:
383    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
384    break;
385  case ISD::ConstantPool:
386  case ISD::TargetConstantPool: {
387    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
388    ID.AddInteger(CP->getAlignment());
389    ID.AddInteger(CP->getOffset());
390    if (CP->isMachineConstantPoolEntry())
391      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
392    else
393      ID.AddPointer(CP->getConstVal());
394    break;
395  }
396  case ISD::LOAD: {
397    LoadSDNode *LD = cast<LoadSDNode>(N);
398    ID.AddInteger(LD->getAddressingMode());
399    ID.AddInteger(LD->getExtensionType());
400    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
401    ID.AddInteger(LD->getAlignment());
402    ID.AddInteger(LD->isVolatile());
403    break;
404  }
405  case ISD::STORE: {
406    StoreSDNode *ST = cast<StoreSDNode>(N);
407    ID.AddInteger(ST->getAddressingMode());
408    ID.AddInteger(ST->isTruncatingStore());
409    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
410    ID.AddInteger(ST->getAlignment());
411    ID.AddInteger(ST->isVolatile());
412    break;
413  }
414  }
415}
416
417//===----------------------------------------------------------------------===//
418//                              SelectionDAG Class
419//===----------------------------------------------------------------------===//
420
421/// RemoveDeadNodes - This method deletes all unreachable nodes in the
422/// SelectionDAG.
423void SelectionDAG::RemoveDeadNodes() {
424  // Create a dummy node (which is not added to allnodes), that adds a reference
425  // to the root node, preventing it from being deleted.
426  HandleSDNode Dummy(getRoot());
427
428  SmallVector<SDNode*, 128> DeadNodes;
429
430  // Add all obviously-dead nodes to the DeadNodes worklist.
431  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
432    if (I->use_empty())
433      DeadNodes.push_back(I);
434
435  // Process the worklist, deleting the nodes and adding their uses to the
436  // worklist.
437  while (!DeadNodes.empty()) {
438    SDNode *N = DeadNodes.back();
439    DeadNodes.pop_back();
440
441    // Take the node out of the appropriate CSE map.
442    RemoveNodeFromCSEMaps(N);
443
444    // Next, brutally remove the operand list.  This is safe to do, as there are
445    // no cycles in the graph.
446    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
447      SDNode *Operand = I->Val;
448      Operand->removeUser(N);
449
450      // Now that we removed this operand, see if there are no uses of it left.
451      if (Operand->use_empty())
452        DeadNodes.push_back(Operand);
453    }
454    if (N->OperandsNeedDelete)
455      delete[] N->OperandList;
456    N->OperandList = 0;
457    N->NumOperands = 0;
458
459    // Finally, remove N itself.
460    AllNodes.erase(N);
461  }
462
463  // If the root changed (e.g. it was a dead load, update the root).
464  setRoot(Dummy.getValue());
465}
466
467void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
468  SmallVector<SDNode*, 16> DeadNodes;
469  DeadNodes.push_back(N);
470
471  // Process the worklist, deleting the nodes and adding their uses to the
472  // worklist.
473  while (!DeadNodes.empty()) {
474    SDNode *N = DeadNodes.back();
475    DeadNodes.pop_back();
476
477    if (UpdateListener)
478      UpdateListener->NodeDeleted(N);
479
480    // Take the node out of the appropriate CSE map.
481    RemoveNodeFromCSEMaps(N);
482
483    // Next, brutally remove the operand list.  This is safe to do, as there are
484    // no cycles in the graph.
485    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
486      SDNode *Operand = I->Val;
487      Operand->removeUser(N);
488
489      // Now that we removed this operand, see if there are no uses of it left.
490      if (Operand->use_empty())
491        DeadNodes.push_back(Operand);
492    }
493    if (N->OperandsNeedDelete)
494      delete[] N->OperandList;
495    N->OperandList = 0;
496    N->NumOperands = 0;
497
498    // Finally, remove N itself.
499    AllNodes.erase(N);
500  }
501}
502
503void SelectionDAG::DeleteNode(SDNode *N) {
504  assert(N->use_empty() && "Cannot delete a node that is not dead!");
505
506  // First take this out of the appropriate CSE map.
507  RemoveNodeFromCSEMaps(N);
508
509  // Finally, remove uses due to operands of this node, remove from the
510  // AllNodes list, and delete the node.
511  DeleteNodeNotInCSEMaps(N);
512}
513
514void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
515
516  // Remove it from the AllNodes list.
517  AllNodes.remove(N);
518
519  // Drop all of the operands and decrement used nodes use counts.
520  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
521    I->Val->removeUser(N);
522  if (N->OperandsNeedDelete)
523    delete[] N->OperandList;
524  N->OperandList = 0;
525  N->NumOperands = 0;
526
527  delete N;
528}
529
530/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
531/// correspond to it.  This is useful when we're about to delete or repurpose
532/// the node.  We don't want future request for structurally identical nodes
533/// to return N anymore.
534void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
535  bool Erased = false;
536  switch (N->getOpcode()) {
537  case ISD::HANDLENODE: return;  // noop.
538  case ISD::STRING:
539    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
540    break;
541  case ISD::CONDCODE:
542    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
543           "Cond code doesn't exist!");
544    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
545    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
546    break;
547  case ISD::ExternalSymbol:
548    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
549    break;
550  case ISD::TargetExternalSymbol:
551    Erased =
552      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
553    break;
554  case ISD::VALUETYPE: {
555    MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
556    if (MVT::isExtendedVT(VT)) {
557      Erased = ExtendedValueTypeNodes.erase(VT);
558    } else {
559      Erased = ValueTypeNodes[VT] != 0;
560      ValueTypeNodes[VT] = 0;
561    }
562    break;
563  }
564  default:
565    // Remove it from the CSE Map.
566    Erased = CSEMap.RemoveNode(N);
567    break;
568  }
569#ifndef NDEBUG
570  // Verify that the node was actually in one of the CSE maps, unless it has a
571  // flag result (which cannot be CSE'd) or is one of the special cases that are
572  // not subject to CSE.
573  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
574      !N->isTargetOpcode()) {
575    N->dump(this);
576    cerr << "\n";
577    assert(0 && "Node is not in map!");
578  }
579#endif
580}
581
582/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
583/// has been taken out and modified in some way.  If the specified node already
584/// exists in the CSE maps, do not modify the maps, but return the existing node
585/// instead.  If it doesn't exist, add it and return null.
586///
587SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
588  assert(N->getNumOperands() && "This is a leaf node!");
589  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
590    return 0;    // Never add these nodes.
591
592  // Check that remaining values produced are not flags.
593  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
594    if (N->getValueType(i) == MVT::Flag)
595      return 0;   // Never CSE anything that produces a flag.
596
597  SDNode *New = CSEMap.GetOrInsertNode(N);
598  if (New != N) return New;  // Node already existed.
599  return 0;
600}
601
602/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
603/// were replaced with those specified.  If this node is never memoized,
604/// return null, otherwise return a pointer to the slot it would take.  If a
605/// node already exists with these operands, the slot will be non-null.
606SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
607                                           void *&InsertPos) {
608  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
609    return 0;    // Never add these nodes.
610
611  // Check that remaining values produced are not flags.
612  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
613    if (N->getValueType(i) == MVT::Flag)
614      return 0;   // Never CSE anything that produces a flag.
615
616  SDOperand Ops[] = { Op };
617  FoldingSetNodeID ID;
618  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
619  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
620}
621
622/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
623/// were replaced with those specified.  If this node is never memoized,
624/// return null, otherwise return a pointer to the slot it would take.  If a
625/// node already exists with these operands, the slot will be non-null.
626SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
627                                           SDOperand Op1, SDOperand Op2,
628                                           void *&InsertPos) {
629  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
630    return 0;    // Never add these nodes.
631
632  // Check that remaining values produced are not flags.
633  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
634    if (N->getValueType(i) == MVT::Flag)
635      return 0;   // Never CSE anything that produces a flag.
636
637  SDOperand Ops[] = { Op1, Op2 };
638  FoldingSetNodeID ID;
639  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
640  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
641}
642
643
644/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
645/// were replaced with those specified.  If this node is never memoized,
646/// return null, otherwise return a pointer to the slot it would take.  If a
647/// node already exists with these operands, the slot will be non-null.
648SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
649                                           const SDOperand *Ops,unsigned NumOps,
650                                           void *&InsertPos) {
651  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
652    return 0;    // Never add these nodes.
653
654  // Check that remaining values produced are not flags.
655  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
656    if (N->getValueType(i) == MVT::Flag)
657      return 0;   // Never CSE anything that produces a flag.
658
659  FoldingSetNodeID ID;
660  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
661
662  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
663    ID.AddInteger(LD->getAddressingMode());
664    ID.AddInteger(LD->getExtensionType());
665    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
666    ID.AddInteger(LD->getAlignment());
667    ID.AddInteger(LD->isVolatile());
668  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
669    ID.AddInteger(ST->getAddressingMode());
670    ID.AddInteger(ST->isTruncatingStore());
671    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
672    ID.AddInteger(ST->getAlignment());
673    ID.AddInteger(ST->isVolatile());
674  }
675
676  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
677}
678
679
680SelectionDAG::~SelectionDAG() {
681  while (!AllNodes.empty()) {
682    SDNode *N = AllNodes.begin();
683    N->SetNextInBucket(0);
684    if (N->OperandsNeedDelete)
685      delete [] N->OperandList;
686    N->OperandList = 0;
687    N->NumOperands = 0;
688    AllNodes.pop_front();
689  }
690}
691
692SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
693  if (Op.getValueType() == VT) return Op;
694  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
695  return getNode(ISD::AND, Op.getValueType(), Op,
696                 getConstant(Imm, Op.getValueType()));
697}
698
699SDOperand SelectionDAG::getString(const std::string &Val) {
700  StringSDNode *&N = StringNodes[Val];
701  if (!N) {
702    N = new StringSDNode(Val);
703    AllNodes.push_back(N);
704  }
705  return SDOperand(N, 0);
706}
707
708SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
709  MVT::ValueType EltVT =
710    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
711
712  return getConstant(APInt(MVT::getSizeInBits(EltVT), Val), VT, isT);
713}
714
715SDOperand SelectionDAG::getConstant(const APInt &Val, MVT::ValueType VT, bool isT) {
716  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
717
718  MVT::ValueType EltVT =
719    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
720
721  assert(Val.getBitWidth() == MVT::getSizeInBits(EltVT) &&
722         "APInt size does not match type size!");
723
724  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
725  FoldingSetNodeID ID;
726  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
727  ID.AddAPInt(Val);
728  void *IP = 0;
729  SDNode *N = NULL;
730  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
731    if (!MVT::isVector(VT))
732      return SDOperand(N, 0);
733  if (!N) {
734    N = new ConstantSDNode(isT, Val, EltVT);
735    CSEMap.InsertNode(N, IP);
736    AllNodes.push_back(N);
737  }
738
739  SDOperand Result(N, 0);
740  if (MVT::isVector(VT)) {
741    SmallVector<SDOperand, 8> Ops;
742    Ops.assign(MVT::getVectorNumElements(VT), Result);
743    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
744  }
745  return Result;
746}
747
748SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
749  return getConstant(Val, TLI.getPointerTy(), isTarget);
750}
751
752
753SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
754                                      bool isTarget) {
755  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
756
757  MVT::ValueType EltVT =
758    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
759
760  // Do the map lookup using the actual bit pattern for the floating point
761  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
762  // we don't have issues with SNANs.
763  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
764  FoldingSetNodeID ID;
765  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
766  ID.AddAPFloat(V);
767  void *IP = 0;
768  SDNode *N = NULL;
769  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
770    if (!MVT::isVector(VT))
771      return SDOperand(N, 0);
772  if (!N) {
773    N = new ConstantFPSDNode(isTarget, V, EltVT);
774    CSEMap.InsertNode(N, IP);
775    AllNodes.push_back(N);
776  }
777
778  SDOperand Result(N, 0);
779  if (MVT::isVector(VT)) {
780    SmallVector<SDOperand, 8> Ops;
781    Ops.assign(MVT::getVectorNumElements(VT), Result);
782    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
783  }
784  return Result;
785}
786
787SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
788                                      bool isTarget) {
789  MVT::ValueType EltVT =
790    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
791  if (EltVT==MVT::f32)
792    return getConstantFP(APFloat((float)Val), VT, isTarget);
793  else
794    return getConstantFP(APFloat(Val), VT, isTarget);
795}
796
797SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
798                                         MVT::ValueType VT, int Offset,
799                                         bool isTargetGA) {
800  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
801  unsigned Opc;
802  if (GVar && GVar->isThreadLocal())
803    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
804  else
805    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
806  FoldingSetNodeID ID;
807  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
808  ID.AddPointer(GV);
809  ID.AddInteger(Offset);
810  void *IP = 0;
811  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
812   return SDOperand(E, 0);
813  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
814  CSEMap.InsertNode(N, IP);
815  AllNodes.push_back(N);
816  return SDOperand(N, 0);
817}
818
819SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
820                                      bool isTarget) {
821  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
822  FoldingSetNodeID ID;
823  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
824  ID.AddInteger(FI);
825  void *IP = 0;
826  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
827    return SDOperand(E, 0);
828  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
829  CSEMap.InsertNode(N, IP);
830  AllNodes.push_back(N);
831  return SDOperand(N, 0);
832}
833
834SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
835  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
836  FoldingSetNodeID ID;
837  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
838  ID.AddInteger(JTI);
839  void *IP = 0;
840  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
841    return SDOperand(E, 0);
842  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
843  CSEMap.InsertNode(N, IP);
844  AllNodes.push_back(N);
845  return SDOperand(N, 0);
846}
847
848SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
849                                        unsigned Alignment, int Offset,
850                                        bool isTarget) {
851  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
852  FoldingSetNodeID ID;
853  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
854  ID.AddInteger(Alignment);
855  ID.AddInteger(Offset);
856  ID.AddPointer(C);
857  void *IP = 0;
858  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
859    return SDOperand(E, 0);
860  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
861  CSEMap.InsertNode(N, IP);
862  AllNodes.push_back(N);
863  return SDOperand(N, 0);
864}
865
866
867SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
868                                        MVT::ValueType VT,
869                                        unsigned Alignment, int Offset,
870                                        bool isTarget) {
871  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
872  FoldingSetNodeID ID;
873  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
874  ID.AddInteger(Alignment);
875  ID.AddInteger(Offset);
876  C->AddSelectionDAGCSEId(ID);
877  void *IP = 0;
878  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
879    return SDOperand(E, 0);
880  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
881  CSEMap.InsertNode(N, IP);
882  AllNodes.push_back(N);
883  return SDOperand(N, 0);
884}
885
886
887SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
888  FoldingSetNodeID ID;
889  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
890  ID.AddPointer(MBB);
891  void *IP = 0;
892  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
893    return SDOperand(E, 0);
894  SDNode *N = new BasicBlockSDNode(MBB);
895  CSEMap.InsertNode(N, IP);
896  AllNodes.push_back(N);
897  return SDOperand(N, 0);
898}
899
900SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
901  if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
902    ValueTypeNodes.resize(VT+1);
903
904  SDNode *&N = MVT::isExtendedVT(VT) ?
905    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
906
907  if (N) return SDOperand(N, 0);
908  N = new VTSDNode(VT);
909  AllNodes.push_back(N);
910  return SDOperand(N, 0);
911}
912
913SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
914  SDNode *&N = ExternalSymbols[Sym];
915  if (N) return SDOperand(N, 0);
916  N = new ExternalSymbolSDNode(false, Sym, VT);
917  AllNodes.push_back(N);
918  return SDOperand(N, 0);
919}
920
921SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
922                                                MVT::ValueType VT) {
923  SDNode *&N = TargetExternalSymbols[Sym];
924  if (N) return SDOperand(N, 0);
925  N = new ExternalSymbolSDNode(true, Sym, VT);
926  AllNodes.push_back(N);
927  return SDOperand(N, 0);
928}
929
930SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
931  if ((unsigned)Cond >= CondCodeNodes.size())
932    CondCodeNodes.resize(Cond+1);
933
934  if (CondCodeNodes[Cond] == 0) {
935    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
936    AllNodes.push_back(CondCodeNodes[Cond]);
937  }
938  return SDOperand(CondCodeNodes[Cond], 0);
939}
940
941SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
942  FoldingSetNodeID ID;
943  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
944  ID.AddInteger(RegNo);
945  void *IP = 0;
946  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
947    return SDOperand(E, 0);
948  SDNode *N = new RegisterSDNode(RegNo, VT);
949  CSEMap.InsertNode(N, IP);
950  AllNodes.push_back(N);
951  return SDOperand(N, 0);
952}
953
954SDOperand SelectionDAG::getSrcValue(const Value *V) {
955  assert((!V || isa<PointerType>(V->getType())) &&
956         "SrcValue is not a pointer?");
957
958  FoldingSetNodeID ID;
959  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
960  ID.AddPointer(V);
961
962  void *IP = 0;
963  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
964    return SDOperand(E, 0);
965
966  SDNode *N = new SrcValueSDNode(V);
967  CSEMap.InsertNode(N, IP);
968  AllNodes.push_back(N);
969  return SDOperand(N, 0);
970}
971
972SDOperand SelectionDAG::getMemOperand(const MemOperand &MO) {
973  const Value *v = MO.getValue();
974  assert((!v || isa<PointerType>(v->getType())) &&
975         "SrcValue is not a pointer?");
976
977  FoldingSetNodeID ID;
978  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
979  ID.AddPointer(v);
980  ID.AddInteger(MO.getFlags());
981  ID.AddInteger(MO.getOffset());
982  ID.AddInteger(MO.getSize());
983  ID.AddInteger(MO.getAlignment());
984
985  void *IP = 0;
986  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
987    return SDOperand(E, 0);
988
989  SDNode *N = new MemOperandSDNode(MO);
990  CSEMap.InsertNode(N, IP);
991  AllNodes.push_back(N);
992  return SDOperand(N, 0);
993}
994
995/// CreateStackTemporary - Create a stack temporary, suitable for holding the
996/// specified value type.
997SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
998  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
999  unsigned ByteSize = MVT::getSizeInBits(VT)/8;
1000  const Type *Ty = MVT::getTypeForValueType(VT);
1001  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
1002  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1003  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1004}
1005
1006
1007SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
1008                                  SDOperand N2, ISD::CondCode Cond) {
1009  // These setcc operations always fold.
1010  switch (Cond) {
1011  default: break;
1012  case ISD::SETFALSE:
1013  case ISD::SETFALSE2: return getConstant(0, VT);
1014  case ISD::SETTRUE:
1015  case ISD::SETTRUE2:  return getConstant(1, VT);
1016
1017  case ISD::SETOEQ:
1018  case ISD::SETOGT:
1019  case ISD::SETOGE:
1020  case ISD::SETOLT:
1021  case ISD::SETOLE:
1022  case ISD::SETONE:
1023  case ISD::SETO:
1024  case ISD::SETUO:
1025  case ISD::SETUEQ:
1026  case ISD::SETUNE:
1027    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
1028    break;
1029  }
1030
1031  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
1032    uint64_t C2 = N2C->getValue();
1033    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1034      uint64_t C1 = N1C->getValue();
1035
1036      // Sign extend the operands if required
1037      if (ISD::isSignedIntSetCC(Cond)) {
1038        C1 = N1C->getSignExtended();
1039        C2 = N2C->getSignExtended();
1040      }
1041
1042      switch (Cond) {
1043      default: assert(0 && "Unknown integer setcc!");
1044      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1045      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1046      case ISD::SETULT: return getConstant(C1 <  C2, VT);
1047      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
1048      case ISD::SETULE: return getConstant(C1 <= C2, VT);
1049      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
1050      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
1051      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
1052      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
1053      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
1054      }
1055    }
1056  }
1057  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
1058    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1059      // No compile time operations on this type yet.
1060      if (N1C->getValueType(0) == MVT::ppcf128)
1061        return SDOperand();
1062
1063      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1064      switch (Cond) {
1065      default: break;
1066      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1067                          return getNode(ISD::UNDEF, VT);
1068                        // fall through
1069      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1070      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1071                          return getNode(ISD::UNDEF, VT);
1072                        // fall through
1073      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1074                                           R==APFloat::cmpLessThan, VT);
1075      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1076                          return getNode(ISD::UNDEF, VT);
1077                        // fall through
1078      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1079      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1080                          return getNode(ISD::UNDEF, VT);
1081                        // fall through
1082      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1083      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1084                          return getNode(ISD::UNDEF, VT);
1085                        // fall through
1086      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1087                                           R==APFloat::cmpEqual, VT);
1088      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1089                          return getNode(ISD::UNDEF, VT);
1090                        // fall through
1091      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1092                                           R==APFloat::cmpEqual, VT);
1093      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1094      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1095      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1096                                           R==APFloat::cmpEqual, VT);
1097      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1098      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1099                                           R==APFloat::cmpLessThan, VT);
1100      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1101                                           R==APFloat::cmpUnordered, VT);
1102      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1103      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1104      }
1105    } else {
1106      // Ensure that the constant occurs on the RHS.
1107      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1108    }
1109
1110  // Could not fold it.
1111  return SDOperand();
1112}
1113
1114/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1115/// this predicate to simplify operations downstream.  Mask is known to be zero
1116/// for bits that V cannot have.
1117bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
1118                                     unsigned Depth) const {
1119  // The masks are not wide enough to represent this type!  Should use APInt.
1120  if (Op.getValueType() == MVT::i128)
1121    return false;
1122
1123  uint64_t KnownZero, KnownOne;
1124  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1125  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1126  return (KnownZero & Mask) == Mask;
1127}
1128
1129/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1130/// known to be either zero or one and return them in the KnownZero/KnownOne
1131/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1132/// processing.
1133void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
1134                                     uint64_t &KnownZero, uint64_t &KnownOne,
1135                                     unsigned Depth) const {
1136  KnownZero = KnownOne = 0;   // Don't know anything.
1137  if (Depth == 6 || Mask == 0)
1138    return;  // Limit search depth.
1139
1140  // The masks are not wide enough to represent this type!  Should use APInt.
1141  if (Op.getValueType() == MVT::i128)
1142    return;
1143
1144  uint64_t KnownZero2, KnownOne2;
1145
1146  switch (Op.getOpcode()) {
1147  case ISD::Constant:
1148    // We know all of the bits for a constant!
1149    KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
1150    KnownZero = ~KnownOne & Mask;
1151    return;
1152  case ISD::AND:
1153    // If either the LHS or the RHS are Zero, the result is zero.
1154    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1155    Mask &= ~KnownZero;
1156    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1157    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1158    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1159
1160    // Output known-1 bits are only known if set in both the LHS & RHS.
1161    KnownOne &= KnownOne2;
1162    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1163    KnownZero |= KnownZero2;
1164    return;
1165  case ISD::OR:
1166    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1167    Mask &= ~KnownOne;
1168    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1169    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1170    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1171
1172    // Output known-0 bits are only known if clear in both the LHS & RHS.
1173    KnownZero &= KnownZero2;
1174    // Output known-1 are known to be set if set in either the LHS | RHS.
1175    KnownOne |= KnownOne2;
1176    return;
1177  case ISD::XOR: {
1178    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1179    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1180    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1181    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1182
1183    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1184    uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1185    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1186    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1187    KnownZero = KnownZeroOut;
1188    return;
1189  }
1190  case ISD::SELECT:
1191    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1192    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1193    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1194    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1195
1196    // Only known if known in both the LHS and RHS.
1197    KnownOne &= KnownOne2;
1198    KnownZero &= KnownZero2;
1199    return;
1200  case ISD::SELECT_CC:
1201    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1202    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1203    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1204    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1205
1206    // Only known if known in both the LHS and RHS.
1207    KnownOne &= KnownOne2;
1208    KnownZero &= KnownZero2;
1209    return;
1210  case ISD::SETCC:
1211    // If we know the result of a setcc has the top bits zero, use this info.
1212    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
1213      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
1214    return;
1215  case ISD::SHL:
1216    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1217    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1218      ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
1219                        KnownZero, KnownOne, Depth+1);
1220      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1221      KnownZero <<= SA->getValue();
1222      KnownOne  <<= SA->getValue();
1223      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
1224    }
1225    return;
1226  case ISD::SRL:
1227    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1228    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1229      MVT::ValueType VT = Op.getValueType();
1230      unsigned ShAmt = SA->getValue();
1231
1232      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1233      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
1234                        KnownZero, KnownOne, Depth+1);
1235      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1236      KnownZero &= TypeMask;
1237      KnownOne  &= TypeMask;
1238      KnownZero >>= ShAmt;
1239      KnownOne  >>= ShAmt;
1240
1241      uint64_t HighBits = (1ULL << ShAmt)-1;
1242      HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
1243      KnownZero |= HighBits;  // High bits known zero.
1244    }
1245    return;
1246  case ISD::SRA:
1247    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1248      MVT::ValueType VT = Op.getValueType();
1249      unsigned ShAmt = SA->getValue();
1250
1251      // Compute the new bits that are at the top now.
1252      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1253
1254      uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
1255      // If any of the demanded bits are produced by the sign extension, we also
1256      // demand the input sign bit.
1257      uint64_t HighBits = (1ULL << ShAmt)-1;
1258      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
1259      if (HighBits & Mask)
1260        InDemandedMask |= MVT::getIntVTSignBit(VT);
1261
1262      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1263                        Depth+1);
1264      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1265      KnownZero &= TypeMask;
1266      KnownOne  &= TypeMask;
1267      KnownZero >>= ShAmt;
1268      KnownOne  >>= ShAmt;
1269
1270      // Handle the sign bits.
1271      uint64_t SignBit = MVT::getIntVTSignBit(VT);
1272      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
1273
1274      if (KnownZero & SignBit) {
1275        KnownZero |= HighBits;  // New bits are known zero.
1276      } else if (KnownOne & SignBit) {
1277        KnownOne  |= HighBits;  // New bits are known one.
1278      }
1279    }
1280    return;
1281  case ISD::SIGN_EXTEND_INREG: {
1282    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1283
1284    // Sign extension.  Compute the demanded bits in the result that are not
1285    // present in the input.
1286    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
1287
1288    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
1289    int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
1290
1291    // If the sign extended bits are demanded, we know that the sign
1292    // bit is demanded.
1293    if (NewBits)
1294      InputDemandedBits |= InSignBit;
1295
1296    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1297                      KnownZero, KnownOne, Depth+1);
1298    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1299
1300    // If the sign bit of the input is known set or clear, then we know the
1301    // top bits of the result.
1302    if (KnownZero & InSignBit) {          // Input sign bit known clear
1303      KnownZero |= NewBits;
1304      KnownOne  &= ~NewBits;
1305    } else if (KnownOne & InSignBit) {    // Input sign bit known set
1306      KnownOne  |= NewBits;
1307      KnownZero &= ~NewBits;
1308    } else {                              // Input sign bit unknown
1309      KnownZero &= ~NewBits;
1310      KnownOne  &= ~NewBits;
1311    }
1312    return;
1313  }
1314  case ISD::CTTZ:
1315  case ISD::CTLZ:
1316  case ISD::CTPOP: {
1317    MVT::ValueType VT = Op.getValueType();
1318    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
1319    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
1320    KnownOne  = 0;
1321    return;
1322  }
1323  case ISD::LOAD: {
1324    if (ISD::isZEXTLoad(Op.Val)) {
1325      LoadSDNode *LD = cast<LoadSDNode>(Op);
1326      MVT::ValueType VT = LD->getMemoryVT();
1327      KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
1328    }
1329    return;
1330  }
1331  case ISD::ZERO_EXTEND: {
1332    uint64_t InMask  = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
1333    uint64_t NewBits = (~InMask) & Mask;
1334    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1335                      KnownOne, Depth+1);
1336    KnownZero |= NewBits & Mask;
1337    KnownOne  &= ~NewBits;
1338    return;
1339  }
1340  case ISD::SIGN_EXTEND: {
1341    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1342    unsigned InBits    = MVT::getSizeInBits(InVT);
1343    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
1344    uint64_t InSignBit = 1ULL << (InBits-1);
1345    uint64_t NewBits   = (~InMask) & Mask;
1346    uint64_t InDemandedBits = Mask & InMask;
1347
1348    // If any of the sign extended bits are demanded, we know that the sign
1349    // bit is demanded.
1350    if (NewBits & Mask)
1351      InDemandedBits |= InSignBit;
1352
1353    ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1354                      KnownOne, Depth+1);
1355    // If the sign bit is known zero or one, the  top bits match.
1356    if (KnownZero & InSignBit) {
1357      KnownZero |= NewBits;
1358      KnownOne  &= ~NewBits;
1359    } else if (KnownOne & InSignBit) {
1360      KnownOne  |= NewBits;
1361      KnownZero &= ~NewBits;
1362    } else {   // Otherwise, top bits aren't known.
1363      KnownOne  &= ~NewBits;
1364      KnownZero &= ~NewBits;
1365    }
1366    return;
1367  }
1368  case ISD::ANY_EXTEND: {
1369    MVT::ValueType VT = Op.getOperand(0).getValueType();
1370    ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
1371                      KnownZero, KnownOne, Depth+1);
1372    return;
1373  }
1374  case ISD::TRUNCATE: {
1375    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1376    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1377    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
1378    KnownZero &= OutMask;
1379    KnownOne &= OutMask;
1380    break;
1381  }
1382  case ISD::AssertZext: {
1383    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1384    uint64_t InMask = MVT::getIntVTBitMask(VT);
1385    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1386                      KnownOne, Depth+1);
1387    KnownZero |= (~InMask) & Mask;
1388    return;
1389  }
1390  case ISD::FGETSIGN:
1391    // All bits are zero except the low bit.
1392    KnownZero = MVT::getIntVTBitMask(Op.getValueType()) ^ 1;
1393    return;
1394
1395  case ISD::ADD: {
1396    // If either the LHS or the RHS are Zero, the result is zero.
1397    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1398    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1399    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1400    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1401
1402    // Output known-0 bits are known if clear or set in both the low clear bits
1403    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1404    // low 3 bits clear.
1405    uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
1406                                     CountTrailingZeros_64(~KnownZero2));
1407
1408    KnownZero = (1ULL << KnownZeroOut) - 1;
1409    KnownOne = 0;
1410    return;
1411  }
1412  case ISD::SUB: {
1413    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1414    if (!CLHS) return;
1415
1416    // We know that the top bits of C-X are clear if X contains less bits
1417    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1418    // positive if we can prove that X is >= 0 and < 16.
1419    MVT::ValueType VT = CLHS->getValueType(0);
1420    if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) {  // sign bit clear
1421      unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
1422      uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
1423      MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
1424      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1425
1426      // If all of the MaskV bits are known to be zero, then we know the output
1427      // top bits are zero, because we now know that the output is from [0-C].
1428      if ((KnownZero & MaskV) == MaskV) {
1429        unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
1430        KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask;  // Top bits known zero.
1431        KnownOne = 0;   // No one bits known.
1432      } else {
1433        KnownZero = KnownOne = 0;  // Otherwise, nothing known.
1434      }
1435    }
1436    return;
1437  }
1438  default:
1439    // Allow the target to implement this method for its nodes.
1440    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1441  case ISD::INTRINSIC_WO_CHAIN:
1442  case ISD::INTRINSIC_W_CHAIN:
1443  case ISD::INTRINSIC_VOID:
1444      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1445    }
1446    return;
1447  }
1448}
1449
1450/// ComputeNumSignBits - Return the number of times the sign bit of the
1451/// register is replicated into the other bits.  We know that at least 1 bit
1452/// is always equal to the sign bit (itself), but other cases can give us
1453/// information.  For example, immediately after an "SRA X, 2", we know that
1454/// the top 3 bits are all equal to each other, so we return 3.
1455unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1456  MVT::ValueType VT = Op.getValueType();
1457  assert(MVT::isInteger(VT) && "Invalid VT!");
1458  unsigned VTBits = MVT::getSizeInBits(VT);
1459  unsigned Tmp, Tmp2;
1460
1461  if (Depth == 6)
1462    return 1;  // Limit search depth.
1463
1464  switch (Op.getOpcode()) {
1465  default: break;
1466  case ISD::AssertSext:
1467    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1468    return VTBits-Tmp+1;
1469  case ISD::AssertZext:
1470    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1471    return VTBits-Tmp;
1472
1473  case ISD::Constant: {
1474    uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1475    // If negative, invert the bits, then look at it.
1476    if (Val & MVT::getIntVTSignBit(VT))
1477      Val = ~Val;
1478
1479    // Shift the bits so they are the leading bits in the int64_t.
1480    Val <<= 64-VTBits;
1481
1482    // Return # leading zeros.  We use 'min' here in case Val was zero before
1483    // shifting.  We don't want to return '64' as for an i32 "0".
1484    return std::min(VTBits, CountLeadingZeros_64(Val));
1485  }
1486
1487  case ISD::SIGN_EXTEND:
1488    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1489    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1490
1491  case ISD::SIGN_EXTEND_INREG:
1492    // Max of the input and what this extends.
1493    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1494    Tmp = VTBits-Tmp+1;
1495
1496    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1497    return std::max(Tmp, Tmp2);
1498
1499  case ISD::SRA:
1500    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1501    // SRA X, C   -> adds C sign bits.
1502    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1503      Tmp += C->getValue();
1504      if (Tmp > VTBits) Tmp = VTBits;
1505    }
1506    return Tmp;
1507  case ISD::SHL:
1508    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1509      // shl destroys sign bits.
1510      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1511      if (C->getValue() >= VTBits ||      // Bad shift.
1512          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1513      return Tmp - C->getValue();
1514    }
1515    break;
1516  case ISD::AND:
1517  case ISD::OR:
1518  case ISD::XOR:    // NOT is handled here.
1519    // Logical binary ops preserve the number of sign bits.
1520    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1521    if (Tmp == 1) return 1;  // Early out.
1522    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1523    return std::min(Tmp, Tmp2);
1524
1525  case ISD::SELECT:
1526    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1527    if (Tmp == 1) return 1;  // Early out.
1528    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1529    return std::min(Tmp, Tmp2);
1530
1531  case ISD::SETCC:
1532    // If setcc returns 0/-1, all bits are sign bits.
1533    if (TLI.getSetCCResultContents() ==
1534        TargetLowering::ZeroOrNegativeOneSetCCResult)
1535      return VTBits;
1536    break;
1537  case ISD::ROTL:
1538  case ISD::ROTR:
1539    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1540      unsigned RotAmt = C->getValue() & (VTBits-1);
1541
1542      // Handle rotate right by N like a rotate left by 32-N.
1543      if (Op.getOpcode() == ISD::ROTR)
1544        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1545
1546      // If we aren't rotating out all of the known-in sign bits, return the
1547      // number that are left.  This handles rotl(sext(x), 1) for example.
1548      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1549      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1550    }
1551    break;
1552  case ISD::ADD:
1553    // Add can have at most one carry bit.  Thus we know that the output
1554    // is, at worst, one more bit than the inputs.
1555    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1556    if (Tmp == 1) return 1;  // Early out.
1557
1558    // Special case decrementing a value (ADD X, -1):
1559    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1560      if (CRHS->isAllOnesValue()) {
1561        uint64_t KnownZero, KnownOne;
1562        uint64_t Mask = MVT::getIntVTBitMask(VT);
1563        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1564
1565        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1566        // sign bits set.
1567        if ((KnownZero|1) == Mask)
1568          return VTBits;
1569
1570        // If we are subtracting one from a positive number, there is no carry
1571        // out of the result.
1572        if (KnownZero & MVT::getIntVTSignBit(VT))
1573          return Tmp;
1574      }
1575
1576    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1577    if (Tmp2 == 1) return 1;
1578      return std::min(Tmp, Tmp2)-1;
1579    break;
1580
1581  case ISD::SUB:
1582    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1583    if (Tmp2 == 1) return 1;
1584
1585    // Handle NEG.
1586    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1587      if (CLHS->getValue() == 0) {
1588        uint64_t KnownZero, KnownOne;
1589        uint64_t Mask = MVT::getIntVTBitMask(VT);
1590        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1591        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1592        // sign bits set.
1593        if ((KnownZero|1) == Mask)
1594          return VTBits;
1595
1596        // If the input is known to be positive (the sign bit is known clear),
1597        // the output of the NEG has the same number of sign bits as the input.
1598        if (KnownZero & MVT::getIntVTSignBit(VT))
1599          return Tmp2;
1600
1601        // Otherwise, we treat this like a SUB.
1602      }
1603
1604    // Sub can have at most one carry bit.  Thus we know that the output
1605    // is, at worst, one more bit than the inputs.
1606    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1607    if (Tmp == 1) return 1;  // Early out.
1608      return std::min(Tmp, Tmp2)-1;
1609    break;
1610  case ISD::TRUNCATE:
1611    // FIXME: it's tricky to do anything useful for this, but it is an important
1612    // case for targets like X86.
1613    break;
1614  }
1615
1616  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1617  if (Op.getOpcode() == ISD::LOAD) {
1618    LoadSDNode *LD = cast<LoadSDNode>(Op);
1619    unsigned ExtType = LD->getExtensionType();
1620    switch (ExtType) {
1621    default: break;
1622    case ISD::SEXTLOAD:    // '17' bits known
1623      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1624      return VTBits-Tmp+1;
1625    case ISD::ZEXTLOAD:    // '16' bits known
1626      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1627      return VTBits-Tmp;
1628    }
1629  }
1630
1631  // Allow the target to implement this method for its nodes.
1632  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1633      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1634      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1635      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1636    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1637    if (NumBits > 1) return NumBits;
1638  }
1639
1640  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1641  // use this information.
1642  uint64_t KnownZero, KnownOne;
1643  uint64_t Mask = MVT::getIntVTBitMask(VT);
1644  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1645
1646  uint64_t SignBit = MVT::getIntVTSignBit(VT);
1647  if (KnownZero & SignBit) {        // SignBit is 0
1648    Mask = KnownZero;
1649  } else if (KnownOne & SignBit) {  // SignBit is 1;
1650    Mask = KnownOne;
1651  } else {
1652    // Nothing known.
1653    return 1;
1654  }
1655
1656  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1657  // the number of identical bits in the top of the input value.
1658  Mask ^= ~0ULL;
1659  Mask <<= 64-VTBits;
1660  // Return # leading zeros.  We use 'min' here in case Val was zero before
1661  // shifting.  We don't want to return '64' as for an i32 "0".
1662  return std::min(VTBits, CountLeadingZeros_64(Mask));
1663}
1664
1665
1666bool SelectionDAG::isVerifiedDebugInfoDesc(SDOperand Op) const {
1667  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1668  if (!GA) return false;
1669  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
1670  if (!GV) return false;
1671  MachineModuleInfo *MMI = getMachineModuleInfo();
1672  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
1673}
1674
1675
1676/// getNode - Gets or creates the specified node.
1677///
1678SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1679  FoldingSetNodeID ID;
1680  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1681  void *IP = 0;
1682  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1683    return SDOperand(E, 0);
1684  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1685  CSEMap.InsertNode(N, IP);
1686
1687  AllNodes.push_back(N);
1688  return SDOperand(N, 0);
1689}
1690
1691SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1692                                SDOperand Operand) {
1693  unsigned Tmp1;
1694  // Constant fold unary operations with an integer constant operand.
1695  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1696    uint64_t Val = C->getValue();
1697    switch (Opcode) {
1698    default: break;
1699    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1700    case ISD::ANY_EXTEND:
1701    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1702    case ISD::TRUNCATE:    return getConstant(Val, VT);
1703    case ISD::UINT_TO_FP:
1704    case ISD::SINT_TO_FP: {
1705      const uint64_t zero[] = {0, 0};
1706      // No compile time operations on this type.
1707      if (VT==MVT::ppcf128)
1708        break;
1709      APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero));
1710      (void)apf.convertFromZeroExtendedInteger(&Val,
1711                               MVT::getSizeInBits(Operand.getValueType()),
1712                               Opcode==ISD::SINT_TO_FP,
1713                               APFloat::rmNearestTiesToEven);
1714      return getConstantFP(apf, VT);
1715    }
1716    case ISD::BIT_CONVERT:
1717      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1718        return getConstantFP(BitsToFloat(Val), VT);
1719      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1720        return getConstantFP(BitsToDouble(Val), VT);
1721      break;
1722    case ISD::BSWAP:
1723      switch(VT) {
1724      default: assert(0 && "Invalid bswap!"); break;
1725      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1726      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1727      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1728      }
1729      break;
1730    case ISD::CTPOP:
1731      switch(VT) {
1732      default: assert(0 && "Invalid ctpop!"); break;
1733      case MVT::i1: return getConstant(Val != 0, VT);
1734      case MVT::i8:
1735        Tmp1 = (unsigned)Val & 0xFF;
1736        return getConstant(CountPopulation_32(Tmp1), VT);
1737      case MVT::i16:
1738        Tmp1 = (unsigned)Val & 0xFFFF;
1739        return getConstant(CountPopulation_32(Tmp1), VT);
1740      case MVT::i32:
1741        return getConstant(CountPopulation_32((unsigned)Val), VT);
1742      case MVT::i64:
1743        return getConstant(CountPopulation_64(Val), VT);
1744      }
1745    case ISD::CTLZ:
1746      switch(VT) {
1747      default: assert(0 && "Invalid ctlz!"); break;
1748      case MVT::i1: return getConstant(Val == 0, VT);
1749      case MVT::i8:
1750        Tmp1 = (unsigned)Val & 0xFF;
1751        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1752      case MVT::i16:
1753        Tmp1 = (unsigned)Val & 0xFFFF;
1754        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1755      case MVT::i32:
1756        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1757      case MVT::i64:
1758        return getConstant(CountLeadingZeros_64(Val), VT);
1759      }
1760    case ISD::CTTZ:
1761      switch(VT) {
1762      default: assert(0 && "Invalid cttz!"); break;
1763      case MVT::i1: return getConstant(Val == 0, VT);
1764      case MVT::i8:
1765        Tmp1 = (unsigned)Val | 0x100;
1766        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1767      case MVT::i16:
1768        Tmp1 = (unsigned)Val | 0x10000;
1769        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1770      case MVT::i32:
1771        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1772      case MVT::i64:
1773        return getConstant(CountTrailingZeros_64(Val), VT);
1774      }
1775    }
1776  }
1777
1778  // Constant fold unary operations with a floating point constant operand.
1779  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1780    APFloat V = C->getValueAPF();    // make copy
1781    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
1782      switch (Opcode) {
1783      case ISD::FNEG:
1784        V.changeSign();
1785        return getConstantFP(V, VT);
1786      case ISD::FABS:
1787        V.clearSign();
1788        return getConstantFP(V, VT);
1789      case ISD::FP_ROUND:
1790      case ISD::FP_EXTEND:
1791        // This can return overflow, underflow, or inexact; we don't care.
1792        // FIXME need to be more flexible about rounding mode.
1793        (void) V.convert(VT==MVT::f32 ? APFloat::IEEEsingle :
1794                         VT==MVT::f64 ? APFloat::IEEEdouble :
1795                         VT==MVT::f80 ? APFloat::x87DoubleExtended :
1796                         VT==MVT::f128 ? APFloat::IEEEquad :
1797                         APFloat::Bogus,
1798                         APFloat::rmNearestTiesToEven);
1799        return getConstantFP(V, VT);
1800      case ISD::FP_TO_SINT:
1801      case ISD::FP_TO_UINT: {
1802        integerPart x;
1803        assert(integerPartWidth >= 64);
1804        // FIXME need to be more flexible about rounding mode.
1805        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1806                              Opcode==ISD::FP_TO_SINT,
1807                              APFloat::rmTowardZero);
1808        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1809          break;
1810        return getConstant(x, VT);
1811      }
1812      case ISD::BIT_CONVERT:
1813        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1814          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1815        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1816          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1817        break;
1818      }
1819    }
1820  }
1821
1822  unsigned OpOpcode = Operand.Val->getOpcode();
1823  switch (Opcode) {
1824  case ISD::TokenFactor:
1825    return Operand;         // Factor of one node?  No factor.
1826  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
1827  case ISD::FP_EXTEND:
1828    assert(MVT::isFloatingPoint(VT) &&
1829           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1830    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
1831    break;
1832    case ISD::SIGN_EXTEND:
1833    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1834           "Invalid SIGN_EXTEND!");
1835    if (Operand.getValueType() == VT) return Operand;   // noop extension
1836    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1837           && "Invalid sext node, dst < src!");
1838    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1839      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1840    break;
1841  case ISD::ZERO_EXTEND:
1842    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1843           "Invalid ZERO_EXTEND!");
1844    if (Operand.getValueType() == VT) return Operand;   // noop extension
1845    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1846           && "Invalid zext node, dst < src!");
1847    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1848      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1849    break;
1850  case ISD::ANY_EXTEND:
1851    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1852           "Invalid ANY_EXTEND!");
1853    if (Operand.getValueType() == VT) return Operand;   // noop extension
1854    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1855           && "Invalid anyext node, dst < src!");
1856    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1857      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1858      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1859    break;
1860  case ISD::TRUNCATE:
1861    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1862           "Invalid TRUNCATE!");
1863    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1864    assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
1865           && "Invalid truncate node, src < dst!");
1866    if (OpOpcode == ISD::TRUNCATE)
1867      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1868    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1869             OpOpcode == ISD::ANY_EXTEND) {
1870      // If the source is smaller than the dest, we still need an extend.
1871      if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1872          < MVT::getSizeInBits(VT))
1873        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1874      else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1875               > MVT::getSizeInBits(VT))
1876        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1877      else
1878        return Operand.Val->getOperand(0);
1879    }
1880    break;
1881  case ISD::BIT_CONVERT:
1882    // Basic sanity checking.
1883    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1884           && "Cannot BIT_CONVERT between types of different sizes!");
1885    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1886    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1887      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1888    if (OpOpcode == ISD::UNDEF)
1889      return getNode(ISD::UNDEF, VT);
1890    break;
1891  case ISD::SCALAR_TO_VECTOR:
1892    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1893           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1894           "Illegal SCALAR_TO_VECTOR node!");
1895    break;
1896  case ISD::FNEG:
1897    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1898      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1899                     Operand.Val->getOperand(0));
1900    if (OpOpcode == ISD::FNEG)  // --X -> X
1901      return Operand.Val->getOperand(0);
1902    break;
1903  case ISD::FABS:
1904    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1905      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1906    break;
1907  }
1908
1909  SDNode *N;
1910  SDVTList VTs = getVTList(VT);
1911  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1912    FoldingSetNodeID ID;
1913    SDOperand Ops[1] = { Operand };
1914    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1915    void *IP = 0;
1916    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1917      return SDOperand(E, 0);
1918    N = new UnarySDNode(Opcode, VTs, Operand);
1919    CSEMap.InsertNode(N, IP);
1920  } else {
1921    N = new UnarySDNode(Opcode, VTs, Operand);
1922  }
1923  AllNodes.push_back(N);
1924  return SDOperand(N, 0);
1925}
1926
1927
1928
1929SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1930                                SDOperand N1, SDOperand N2) {
1931  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1932  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1933  switch (Opcode) {
1934  default: break;
1935  case ISD::TokenFactor:
1936    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1937           N2.getValueType() == MVT::Other && "Invalid token factor!");
1938    // Fold trivial token factors.
1939    if (N1.getOpcode() == ISD::EntryToken) return N2;
1940    if (N2.getOpcode() == ISD::EntryToken) return N1;
1941    break;
1942  case ISD::AND:
1943    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1944           N1.getValueType() == VT && "Binary operator types must match!");
1945    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
1946    // worth handling here.
1947    if (N2C && N2C->getValue() == 0)
1948      return N2;
1949    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
1950      return N1;
1951    break;
1952  case ISD::OR:
1953  case ISD::XOR:
1954    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1955           N1.getValueType() == VT && "Binary operator types must match!");
1956    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
1957    // worth handling here.
1958    if (N2C && N2C->getValue() == 0)
1959      return N1;
1960    break;
1961  case ISD::UDIV:
1962  case ISD::UREM:
1963  case ISD::MULHU:
1964  case ISD::MULHS:
1965    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1966    // fall through
1967  case ISD::ADD:
1968  case ISD::SUB:
1969  case ISD::MUL:
1970  case ISD::SDIV:
1971  case ISD::SREM:
1972  case ISD::FADD:
1973  case ISD::FSUB:
1974  case ISD::FMUL:
1975  case ISD::FDIV:
1976  case ISD::FREM:
1977    assert(N1.getValueType() == N2.getValueType() &&
1978           N1.getValueType() == VT && "Binary operator types must match!");
1979    break;
1980  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1981    assert(N1.getValueType() == VT &&
1982           MVT::isFloatingPoint(N1.getValueType()) &&
1983           MVT::isFloatingPoint(N2.getValueType()) &&
1984           "Invalid FCOPYSIGN!");
1985    break;
1986  case ISD::SHL:
1987  case ISD::SRA:
1988  case ISD::SRL:
1989  case ISD::ROTL:
1990  case ISD::ROTR:
1991    assert(VT == N1.getValueType() &&
1992           "Shift operators return type must be the same as their first arg");
1993    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1994           VT != MVT::i1 && "Shifts only work on integers");
1995    break;
1996  case ISD::FP_ROUND_INREG: {
1997    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1998    assert(VT == N1.getValueType() && "Not an inreg round!");
1999    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
2000           "Cannot FP_ROUND_INREG integer types");
2001    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2002           "Not rounding down!");
2003    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2004    break;
2005  }
2006  case ISD::FP_ROUND:
2007    assert(MVT::isFloatingPoint(VT) &&
2008           MVT::isFloatingPoint(N1.getValueType()) &&
2009           MVT::getSizeInBits(VT) <= MVT::getSizeInBits(N1.getValueType()) &&
2010           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2011    if (N1.getValueType() == VT) return N1;  // noop conversion.
2012    break;
2013  case ISD::AssertSext:
2014  case ISD::AssertZext: {
2015    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2016    assert(VT == N1.getValueType() && "Not an inreg extend!");
2017    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2018           "Cannot *_EXTEND_INREG FP types");
2019    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2020           "Not extending!");
2021    break;
2022  }
2023  case ISD::SIGN_EXTEND_INREG: {
2024    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2025    assert(VT == N1.getValueType() && "Not an inreg extend!");
2026    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2027           "Cannot *_EXTEND_INREG FP types");
2028    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2029           "Not extending!");
2030    if (EVT == VT) return N1;  // Not actually extending
2031
2032    if (N1C) {
2033      int64_t Val = N1C->getValue();
2034      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
2035      Val <<= 64-FromBits;
2036      Val >>= 64-FromBits;
2037      return getConstant(Val, VT);
2038    }
2039    break;
2040  }
2041  case ISD::EXTRACT_VECTOR_ELT:
2042    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2043
2044    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2045    // expanding copies of large vectors from registers.
2046    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2047        N1.getNumOperands() > 0) {
2048      unsigned Factor =
2049        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2050      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2051                     N1.getOperand(N2C->getValue() / Factor),
2052                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2053    }
2054
2055    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2056    // expanding large vector constants.
2057    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2058      return N1.getOperand(N2C->getValue());
2059
2060    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2061    // operations are lowered to scalars.
2062    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2063      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2064        if (IEC == N2C)
2065          return N1.getOperand(1);
2066        else
2067          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2068      }
2069    break;
2070  case ISD::EXTRACT_ELEMENT:
2071    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2072
2073    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2074    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2075    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2076    if (N1.getOpcode() == ISD::BUILD_PAIR)
2077      return N1.getOperand(N2C->getValue());
2078
2079    // EXTRACT_ELEMENT of a constant int is also very common.
2080    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2081      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2082      return getConstant(C->getValue() >> Shift, VT);
2083    }
2084    break;
2085  }
2086
2087  if (N1C) {
2088    if (N2C) {
2089      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
2090      switch (Opcode) {
2091      case ISD::ADD: return getConstant(C1 + C2, VT);
2092      case ISD::SUB: return getConstant(C1 - C2, VT);
2093      case ISD::MUL: return getConstant(C1 * C2, VT);
2094      case ISD::UDIV:
2095        if (C2) return getConstant(C1 / C2, VT);
2096        break;
2097      case ISD::UREM :
2098        if (C2) return getConstant(C1 % C2, VT);
2099        break;
2100      case ISD::SDIV :
2101        if (C2) return getConstant(N1C->getSignExtended() /
2102                                   N2C->getSignExtended(), VT);
2103        break;
2104      case ISD::SREM :
2105        if (C2) return getConstant(N1C->getSignExtended() %
2106                                   N2C->getSignExtended(), VT);
2107        break;
2108      case ISD::AND  : return getConstant(C1 & C2, VT);
2109      case ISD::OR   : return getConstant(C1 | C2, VT);
2110      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2111      case ISD::SHL  : return getConstant(C1 << C2, VT);
2112      case ISD::SRL  : return getConstant(C1 >> C2, VT);
2113      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
2114      case ISD::ROTL :
2115        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
2116                           VT);
2117      case ISD::ROTR :
2118        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
2119                           VT);
2120      default: break;
2121      }
2122    } else {      // Cannonicalize constant to RHS if commutative
2123      if (isCommutativeBinOp(Opcode)) {
2124        std::swap(N1C, N2C);
2125        std::swap(N1, N2);
2126      }
2127    }
2128  }
2129
2130  // Constant fold FP operations.
2131  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2132  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2133  if (N1CFP) {
2134    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2135      // Cannonicalize constant to RHS if commutative
2136      std::swap(N1CFP, N2CFP);
2137      std::swap(N1, N2);
2138    } else if (N2CFP && VT != MVT::ppcf128) {
2139      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2140      APFloat::opStatus s;
2141      switch (Opcode) {
2142      case ISD::FADD:
2143        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2144        if (s != APFloat::opInvalidOp)
2145          return getConstantFP(V1, VT);
2146        break;
2147      case ISD::FSUB:
2148        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2149        if (s!=APFloat::opInvalidOp)
2150          return getConstantFP(V1, VT);
2151        break;
2152      case ISD::FMUL:
2153        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2154        if (s!=APFloat::opInvalidOp)
2155          return getConstantFP(V1, VT);
2156        break;
2157      case ISD::FDIV:
2158        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2159        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2160          return getConstantFP(V1, VT);
2161        break;
2162      case ISD::FREM :
2163        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2164        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2165          return getConstantFP(V1, VT);
2166        break;
2167      case ISD::FCOPYSIGN:
2168        V1.copySign(V2);
2169        return getConstantFP(V1, VT);
2170      default: break;
2171      }
2172    }
2173  }
2174
2175  // Canonicalize an UNDEF to the RHS, even over a constant.
2176  if (N1.getOpcode() == ISD::UNDEF) {
2177    if (isCommutativeBinOp(Opcode)) {
2178      std::swap(N1, N2);
2179    } else {
2180      switch (Opcode) {
2181      case ISD::FP_ROUND_INREG:
2182      case ISD::SIGN_EXTEND_INREG:
2183      case ISD::SUB:
2184      case ISD::FSUB:
2185      case ISD::FDIV:
2186      case ISD::FREM:
2187      case ISD::SRA:
2188        return N1;     // fold op(undef, arg2) -> undef
2189      case ISD::UDIV:
2190      case ISD::SDIV:
2191      case ISD::UREM:
2192      case ISD::SREM:
2193      case ISD::SRL:
2194      case ISD::SHL:
2195        if (!MVT::isVector(VT))
2196          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2197        // For vectors, we can't easily build an all zero vector, just return
2198        // the LHS.
2199        return N2;
2200      }
2201    }
2202  }
2203
2204  // Fold a bunch of operators when the RHS is undef.
2205  if (N2.getOpcode() == ISD::UNDEF) {
2206    switch (Opcode) {
2207    case ISD::ADD:
2208    case ISD::ADDC:
2209    case ISD::ADDE:
2210    case ISD::SUB:
2211    case ISD::FADD:
2212    case ISD::FSUB:
2213    case ISD::FMUL:
2214    case ISD::FDIV:
2215    case ISD::FREM:
2216    case ISD::UDIV:
2217    case ISD::SDIV:
2218    case ISD::UREM:
2219    case ISD::SREM:
2220    case ISD::XOR:
2221      return N2;       // fold op(arg1, undef) -> undef
2222    case ISD::MUL:
2223    case ISD::AND:
2224    case ISD::SRL:
2225    case ISD::SHL:
2226      if (!MVT::isVector(VT))
2227        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2228      // For vectors, we can't easily build an all zero vector, just return
2229      // the LHS.
2230      return N1;
2231    case ISD::OR:
2232      if (!MVT::isVector(VT))
2233        return getConstant(MVT::getIntVTBitMask(VT), VT);
2234      // For vectors, we can't easily build an all one vector, just return
2235      // the LHS.
2236      return N1;
2237    case ISD::SRA:
2238      return N1;
2239    }
2240  }
2241
2242  // Memoize this node if possible.
2243  SDNode *N;
2244  SDVTList VTs = getVTList(VT);
2245  if (VT != MVT::Flag) {
2246    SDOperand Ops[] = { N1, N2 };
2247    FoldingSetNodeID ID;
2248    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2249    void *IP = 0;
2250    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2251      return SDOperand(E, 0);
2252    N = new BinarySDNode(Opcode, VTs, N1, N2);
2253    CSEMap.InsertNode(N, IP);
2254  } else {
2255    N = new BinarySDNode(Opcode, VTs, N1, N2);
2256  }
2257
2258  AllNodes.push_back(N);
2259  return SDOperand(N, 0);
2260}
2261
2262SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2263                                SDOperand N1, SDOperand N2, SDOperand N3) {
2264  // Perform various simplifications.
2265  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2266  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2267  switch (Opcode) {
2268  case ISD::SETCC: {
2269    // Use FoldSetCC to simplify SETCC's.
2270    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2271    if (Simp.Val) return Simp;
2272    break;
2273  }
2274  case ISD::SELECT:
2275    if (N1C)
2276      if (N1C->getValue())
2277        return N2;             // select true, X, Y -> X
2278      else
2279        return N3;             // select false, X, Y -> Y
2280
2281    if (N2 == N3) return N2;   // select C, X, X -> X
2282    break;
2283  case ISD::BRCOND:
2284    if (N2C)
2285      if (N2C->getValue()) // Unconditional branch
2286        return getNode(ISD::BR, MVT::Other, N1, N3);
2287      else
2288        return N1;         // Never-taken branch
2289    break;
2290  case ISD::VECTOR_SHUFFLE:
2291    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2292           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2293           N3.getOpcode() == ISD::BUILD_VECTOR &&
2294           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2295           "Illegal VECTOR_SHUFFLE node!");
2296    break;
2297  case ISD::BIT_CONVERT:
2298    // Fold bit_convert nodes from a type to themselves.
2299    if (N1.getValueType() == VT)
2300      return N1;
2301    break;
2302  }
2303
2304  // Memoize node if it doesn't produce a flag.
2305  SDNode *N;
2306  SDVTList VTs = getVTList(VT);
2307  if (VT != MVT::Flag) {
2308    SDOperand Ops[] = { N1, N2, N3 };
2309    FoldingSetNodeID ID;
2310    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2311    void *IP = 0;
2312    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2313      return SDOperand(E, 0);
2314    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2315    CSEMap.InsertNode(N, IP);
2316  } else {
2317    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2318  }
2319  AllNodes.push_back(N);
2320  return SDOperand(N, 0);
2321}
2322
2323SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2324                                SDOperand N1, SDOperand N2, SDOperand N3,
2325                                SDOperand N4) {
2326  SDOperand Ops[] = { N1, N2, N3, N4 };
2327  return getNode(Opcode, VT, Ops, 4);
2328}
2329
2330SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2331                                SDOperand N1, SDOperand N2, SDOperand N3,
2332                                SDOperand N4, SDOperand N5) {
2333  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2334  return getNode(Opcode, VT, Ops, 5);
2335}
2336
2337SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dest,
2338                                  SDOperand Src, SDOperand Size,
2339                                  SDOperand Align,
2340                                  SDOperand AlwaysInline) {
2341  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2342  return getNode(ISD::MEMCPY, MVT::Other, Ops, 6);
2343}
2344
2345SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dest,
2346                                  SDOperand Src, SDOperand Size,
2347                                  SDOperand Align,
2348                                  SDOperand AlwaysInline) {
2349  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2350  return getNode(ISD::MEMMOVE, MVT::Other, Ops, 6);
2351}
2352
2353SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dest,
2354                                  SDOperand Src, SDOperand Size,
2355                                  SDOperand Align,
2356                                  SDOperand AlwaysInline) {
2357  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2358  return getNode(ISD::MEMSET, MVT::Other, Ops, 6);
2359}
2360
2361SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2362                                SDOperand Chain, SDOperand Ptr,
2363                                const Value *SV, int SVOffset,
2364                                bool isVolatile, unsigned Alignment) {
2365  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2366    const Type *Ty = 0;
2367    if (VT != MVT::iPTR) {
2368      Ty = MVT::getTypeForValueType(VT);
2369    } else if (SV) {
2370      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2371      assert(PT && "Value for load must be a pointer");
2372      Ty = PT->getElementType();
2373    }
2374    assert(Ty && "Could not get type information for load");
2375    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2376  }
2377  SDVTList VTs = getVTList(VT, MVT::Other);
2378  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2379  SDOperand Ops[] = { Chain, Ptr, Undef };
2380  FoldingSetNodeID ID;
2381  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2382  ID.AddInteger(ISD::UNINDEXED);
2383  ID.AddInteger(ISD::NON_EXTLOAD);
2384  ID.AddInteger((unsigned int)VT);
2385  ID.AddInteger(Alignment);
2386  ID.AddInteger(isVolatile);
2387  void *IP = 0;
2388  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2389    return SDOperand(E, 0);
2390  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2391                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2392                             isVolatile);
2393  CSEMap.InsertNode(N, IP);
2394  AllNodes.push_back(N);
2395  return SDOperand(N, 0);
2396}
2397
2398SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2399                                   SDOperand Chain, SDOperand Ptr,
2400                                   const Value *SV,
2401                                   int SVOffset, MVT::ValueType EVT,
2402                                   bool isVolatile, unsigned Alignment) {
2403  // If they are asking for an extending load from/to the same thing, return a
2404  // normal load.
2405  if (VT == EVT)
2406    return getLoad(VT, Chain, Ptr, SV, SVOffset, isVolatile, Alignment);
2407
2408  if (MVT::isVector(VT))
2409    assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2410  else
2411    assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
2412           "Should only be an extending load, not truncating!");
2413  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2414         "Cannot sign/zero extend a FP/Vector load!");
2415  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2416         "Cannot convert from FP to Int or Int -> FP!");
2417
2418  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2419    const Type *Ty = 0;
2420    if (VT != MVT::iPTR) {
2421      Ty = MVT::getTypeForValueType(VT);
2422    } else if (SV) {
2423      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2424      assert(PT && "Value for load must be a pointer");
2425      Ty = PT->getElementType();
2426    }
2427    assert(Ty && "Could not get type information for load");
2428    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2429  }
2430  SDVTList VTs = getVTList(VT, MVT::Other);
2431  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2432  SDOperand Ops[] = { Chain, Ptr, Undef };
2433  FoldingSetNodeID ID;
2434  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2435  ID.AddInteger(ISD::UNINDEXED);
2436  ID.AddInteger(ExtType);
2437  ID.AddInteger((unsigned int)EVT);
2438  ID.AddInteger(Alignment);
2439  ID.AddInteger(isVolatile);
2440  void *IP = 0;
2441  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2442    return SDOperand(E, 0);
2443  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2444                             SV, SVOffset, Alignment, isVolatile);
2445  CSEMap.InsertNode(N, IP);
2446  AllNodes.push_back(N);
2447  return SDOperand(N, 0);
2448}
2449
2450SDOperand
2451SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2452                             SDOperand Offset, ISD::MemIndexedMode AM) {
2453  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2454  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2455         "Load is already a indexed load!");
2456  MVT::ValueType VT = OrigLoad.getValueType();
2457  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2458  SDOperand Ops[] = { LD->getChain(), Base, Offset };
2459  FoldingSetNodeID ID;
2460  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2461  ID.AddInteger(AM);
2462  ID.AddInteger(LD->getExtensionType());
2463  ID.AddInteger((unsigned int)(LD->getMemoryVT()));
2464  ID.AddInteger(LD->getAlignment());
2465  ID.AddInteger(LD->isVolatile());
2466  void *IP = 0;
2467  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2468    return SDOperand(E, 0);
2469  SDNode *N = new LoadSDNode(Ops, VTs, AM,
2470                             LD->getExtensionType(), LD->getMemoryVT(),
2471                             LD->getSrcValue(), LD->getSrcValueOffset(),
2472                             LD->getAlignment(), LD->isVolatile());
2473  CSEMap.InsertNode(N, IP);
2474  AllNodes.push_back(N);
2475  return SDOperand(N, 0);
2476}
2477
2478SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2479                                 SDOperand Ptr, const Value *SV, int SVOffset,
2480                                 bool isVolatile, unsigned Alignment) {
2481  MVT::ValueType VT = Val.getValueType();
2482
2483  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2484    const Type *Ty = 0;
2485    if (VT != MVT::iPTR) {
2486      Ty = MVT::getTypeForValueType(VT);
2487    } else if (SV) {
2488      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2489      assert(PT && "Value for store must be a pointer");
2490      Ty = PT->getElementType();
2491    }
2492    assert(Ty && "Could not get type information for store");
2493    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2494  }
2495  SDVTList VTs = getVTList(MVT::Other);
2496  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2497  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2498  FoldingSetNodeID ID;
2499  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2500  ID.AddInteger(ISD::UNINDEXED);
2501  ID.AddInteger(false);
2502  ID.AddInteger((unsigned int)VT);
2503  ID.AddInteger(Alignment);
2504  ID.AddInteger(isVolatile);
2505  void *IP = 0;
2506  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2507    return SDOperand(E, 0);
2508  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2509                              VT, SV, SVOffset, Alignment, isVolatile);
2510  CSEMap.InsertNode(N, IP);
2511  AllNodes.push_back(N);
2512  return SDOperand(N, 0);
2513}
2514
2515SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2516                                      SDOperand Ptr, const Value *SV,
2517                                      int SVOffset, MVT::ValueType SVT,
2518                                      bool isVolatile, unsigned Alignment) {
2519  MVT::ValueType VT = Val.getValueType();
2520
2521  if (VT == SVT)
2522    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
2523
2524  assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
2525         "Not a truncation?");
2526  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2527         "Can't do FP-INT conversion!");
2528
2529  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2530    const Type *Ty = 0;
2531    if (VT != MVT::iPTR) {
2532      Ty = MVT::getTypeForValueType(VT);
2533    } else if (SV) {
2534      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2535      assert(PT && "Value for store must be a pointer");
2536      Ty = PT->getElementType();
2537    }
2538    assert(Ty && "Could not get type information for store");
2539    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2540  }
2541  SDVTList VTs = getVTList(MVT::Other);
2542  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2543  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2544  FoldingSetNodeID ID;
2545  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2546  ID.AddInteger(ISD::UNINDEXED);
2547  ID.AddInteger(1);
2548  ID.AddInteger((unsigned int)SVT);
2549  ID.AddInteger(Alignment);
2550  ID.AddInteger(isVolatile);
2551  void *IP = 0;
2552  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2553    return SDOperand(E, 0);
2554  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
2555                              SVT, SV, SVOffset, Alignment, isVolatile);
2556  CSEMap.InsertNode(N, IP);
2557  AllNodes.push_back(N);
2558  return SDOperand(N, 0);
2559}
2560
2561SDOperand
2562SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2563                              SDOperand Offset, ISD::MemIndexedMode AM) {
2564  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2565  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2566         "Store is already a indexed store!");
2567  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2568  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2569  FoldingSetNodeID ID;
2570  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2571  ID.AddInteger(AM);
2572  ID.AddInteger(ST->isTruncatingStore());
2573  ID.AddInteger((unsigned int)(ST->getMemoryVT()));
2574  ID.AddInteger(ST->getAlignment());
2575  ID.AddInteger(ST->isVolatile());
2576  void *IP = 0;
2577  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2578    return SDOperand(E, 0);
2579  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2580                              ST->isTruncatingStore(), ST->getMemoryVT(),
2581                              ST->getSrcValue(), ST->getSrcValueOffset(),
2582                              ST->getAlignment(), ST->isVolatile());
2583  CSEMap.InsertNode(N, IP);
2584  AllNodes.push_back(N);
2585  return SDOperand(N, 0);
2586}
2587
2588SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2589                                 SDOperand Chain, SDOperand Ptr,
2590                                 SDOperand SV) {
2591  SDOperand Ops[] = { Chain, Ptr, SV };
2592  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2593}
2594
2595SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2596                                const SDOperand *Ops, unsigned NumOps) {
2597  switch (NumOps) {
2598  case 0: return getNode(Opcode, VT);
2599  case 1: return getNode(Opcode, VT, Ops[0]);
2600  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2601  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2602  default: break;
2603  }
2604
2605  switch (Opcode) {
2606  default: break;
2607  case ISD::SELECT_CC: {
2608    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2609    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2610           "LHS and RHS of condition must have same type!");
2611    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2612           "True and False arms of SelectCC must have same type!");
2613    assert(Ops[2].getValueType() == VT &&
2614           "select_cc node must be of same type as true and false value!");
2615    break;
2616  }
2617  case ISD::BR_CC: {
2618    assert(NumOps == 5 && "BR_CC takes 5 operands!");
2619    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2620           "LHS/RHS of comparison should match types!");
2621    break;
2622  }
2623  }
2624
2625  // Memoize nodes.
2626  SDNode *N;
2627  SDVTList VTs = getVTList(VT);
2628  if (VT != MVT::Flag) {
2629    FoldingSetNodeID ID;
2630    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2631    void *IP = 0;
2632    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2633      return SDOperand(E, 0);
2634    N = new SDNode(Opcode, VTs, Ops, NumOps);
2635    CSEMap.InsertNode(N, IP);
2636  } else {
2637    N = new SDNode(Opcode, VTs, Ops, NumOps);
2638  }
2639  AllNodes.push_back(N);
2640  return SDOperand(N, 0);
2641}
2642
2643SDOperand SelectionDAG::getNode(unsigned Opcode,
2644                                std::vector<MVT::ValueType> &ResultTys,
2645                                const SDOperand *Ops, unsigned NumOps) {
2646  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2647                 Ops, NumOps);
2648}
2649
2650SDOperand SelectionDAG::getNode(unsigned Opcode,
2651                                const MVT::ValueType *VTs, unsigned NumVTs,
2652                                const SDOperand *Ops, unsigned NumOps) {
2653  if (NumVTs == 1)
2654    return getNode(Opcode, VTs[0], Ops, NumOps);
2655  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2656}
2657
2658SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2659                                const SDOperand *Ops, unsigned NumOps) {
2660  if (VTList.NumVTs == 1)
2661    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2662
2663  switch (Opcode) {
2664  // FIXME: figure out how to safely handle things like
2665  // int foo(int x) { return 1 << (x & 255); }
2666  // int bar() { return foo(256); }
2667#if 0
2668  case ISD::SRA_PARTS:
2669  case ISD::SRL_PARTS:
2670  case ISD::SHL_PARTS:
2671    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2672        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2673      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2674    else if (N3.getOpcode() == ISD::AND)
2675      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2676        // If the and is only masking out bits that cannot effect the shift,
2677        // eliminate the and.
2678        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2679        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2680          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2681      }
2682    break;
2683#endif
2684  }
2685
2686  // Memoize the node unless it returns a flag.
2687  SDNode *N;
2688  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2689    FoldingSetNodeID ID;
2690    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2691    void *IP = 0;
2692    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2693      return SDOperand(E, 0);
2694    if (NumOps == 1)
2695      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2696    else if (NumOps == 2)
2697      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2698    else if (NumOps == 3)
2699      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2700    else
2701      N = new SDNode(Opcode, VTList, Ops, NumOps);
2702    CSEMap.InsertNode(N, IP);
2703  } else {
2704    if (NumOps == 1)
2705      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2706    else if (NumOps == 2)
2707      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2708    else if (NumOps == 3)
2709      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2710    else
2711      N = new SDNode(Opcode, VTList, Ops, NumOps);
2712  }
2713  AllNodes.push_back(N);
2714  return SDOperand(N, 0);
2715}
2716
2717SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
2718  return getNode(Opcode, VTList, 0, 0);
2719}
2720
2721SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2722                                SDOperand N1) {
2723  SDOperand Ops[] = { N1 };
2724  return getNode(Opcode, VTList, Ops, 1);
2725}
2726
2727SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2728                                SDOperand N1, SDOperand N2) {
2729  SDOperand Ops[] = { N1, N2 };
2730  return getNode(Opcode, VTList, Ops, 2);
2731}
2732
2733SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2734                                SDOperand N1, SDOperand N2, SDOperand N3) {
2735  SDOperand Ops[] = { N1, N2, N3 };
2736  return getNode(Opcode, VTList, Ops, 3);
2737}
2738
2739SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2740                                SDOperand N1, SDOperand N2, SDOperand N3,
2741                                SDOperand N4) {
2742  SDOperand Ops[] = { N1, N2, N3, N4 };
2743  return getNode(Opcode, VTList, Ops, 4);
2744}
2745
2746SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2747                                SDOperand N1, SDOperand N2, SDOperand N3,
2748                                SDOperand N4, SDOperand N5) {
2749  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2750  return getNode(Opcode, VTList, Ops, 5);
2751}
2752
2753SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2754  return makeVTList(SDNode::getValueTypeList(VT), 1);
2755}
2756
2757SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2758  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2759       E = VTList.end(); I != E; ++I) {
2760    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2761      return makeVTList(&(*I)[0], 2);
2762  }
2763  std::vector<MVT::ValueType> V;
2764  V.push_back(VT1);
2765  V.push_back(VT2);
2766  VTList.push_front(V);
2767  return makeVTList(&(*VTList.begin())[0], 2);
2768}
2769SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2770                                 MVT::ValueType VT3) {
2771  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2772       E = VTList.end(); I != E; ++I) {
2773    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2774        (*I)[2] == VT3)
2775      return makeVTList(&(*I)[0], 3);
2776  }
2777  std::vector<MVT::ValueType> V;
2778  V.push_back(VT1);
2779  V.push_back(VT2);
2780  V.push_back(VT3);
2781  VTList.push_front(V);
2782  return makeVTList(&(*VTList.begin())[0], 3);
2783}
2784
2785SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2786  switch (NumVTs) {
2787    case 0: assert(0 && "Cannot have nodes without results!");
2788    case 1: return getVTList(VTs[0]);
2789    case 2: return getVTList(VTs[0], VTs[1]);
2790    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2791    default: break;
2792  }
2793
2794  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2795       E = VTList.end(); I != E; ++I) {
2796    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2797
2798    bool NoMatch = false;
2799    for (unsigned i = 2; i != NumVTs; ++i)
2800      if (VTs[i] != (*I)[i]) {
2801        NoMatch = true;
2802        break;
2803      }
2804    if (!NoMatch)
2805      return makeVTList(&*I->begin(), NumVTs);
2806  }
2807
2808  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2809  return makeVTList(&*VTList.begin()->begin(), NumVTs);
2810}
2811
2812
2813/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2814/// specified operands.  If the resultant node already exists in the DAG,
2815/// this does not modify the specified node, instead it returns the node that
2816/// already exists.  If the resultant node does not exist in the DAG, the
2817/// input node is returned.  As a degenerate case, if you specify the same
2818/// input operands as the node already has, the input node is returned.
2819SDOperand SelectionDAG::
2820UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2821  SDNode *N = InN.Val;
2822  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2823
2824  // Check to see if there is no change.
2825  if (Op == N->getOperand(0)) return InN;
2826
2827  // See if the modified node already exists.
2828  void *InsertPos = 0;
2829  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2830    return SDOperand(Existing, InN.ResNo);
2831
2832  // Nope it doesn't.  Remove the node from it's current place in the maps.
2833  if (InsertPos)
2834    RemoveNodeFromCSEMaps(N);
2835
2836  // Now we update the operands.
2837  N->OperandList[0].Val->removeUser(N);
2838  Op.Val->addUser(N);
2839  N->OperandList[0] = Op;
2840
2841  // If this gets put into a CSE map, add it.
2842  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2843  return InN;
2844}
2845
2846SDOperand SelectionDAG::
2847UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2848  SDNode *N = InN.Val;
2849  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2850
2851  // Check to see if there is no change.
2852  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2853    return InN;   // No operands changed, just return the input node.
2854
2855  // See if the modified node already exists.
2856  void *InsertPos = 0;
2857  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2858    return SDOperand(Existing, InN.ResNo);
2859
2860  // Nope it doesn't.  Remove the node from it's current place in the maps.
2861  if (InsertPos)
2862    RemoveNodeFromCSEMaps(N);
2863
2864  // Now we update the operands.
2865  if (N->OperandList[0] != Op1) {
2866    N->OperandList[0].Val->removeUser(N);
2867    Op1.Val->addUser(N);
2868    N->OperandList[0] = Op1;
2869  }
2870  if (N->OperandList[1] != Op2) {
2871    N->OperandList[1].Val->removeUser(N);
2872    Op2.Val->addUser(N);
2873    N->OperandList[1] = Op2;
2874  }
2875
2876  // If this gets put into a CSE map, add it.
2877  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2878  return InN;
2879}
2880
2881SDOperand SelectionDAG::
2882UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2883  SDOperand Ops[] = { Op1, Op2, Op3 };
2884  return UpdateNodeOperands(N, Ops, 3);
2885}
2886
2887SDOperand SelectionDAG::
2888UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2889                   SDOperand Op3, SDOperand Op4) {
2890  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2891  return UpdateNodeOperands(N, Ops, 4);
2892}
2893
2894SDOperand SelectionDAG::
2895UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2896                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2897  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2898  return UpdateNodeOperands(N, Ops, 5);
2899}
2900
2901
2902SDOperand SelectionDAG::
2903UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2904  SDNode *N = InN.Val;
2905  assert(N->getNumOperands() == NumOps &&
2906         "Update with wrong number of operands");
2907
2908  // Check to see if there is no change.
2909  bool AnyChange = false;
2910  for (unsigned i = 0; i != NumOps; ++i) {
2911    if (Ops[i] != N->getOperand(i)) {
2912      AnyChange = true;
2913      break;
2914    }
2915  }
2916
2917  // No operands changed, just return the input node.
2918  if (!AnyChange) return InN;
2919
2920  // See if the modified node already exists.
2921  void *InsertPos = 0;
2922  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2923    return SDOperand(Existing, InN.ResNo);
2924
2925  // Nope it doesn't.  Remove the node from it's current place in the maps.
2926  if (InsertPos)
2927    RemoveNodeFromCSEMaps(N);
2928
2929  // Now we update the operands.
2930  for (unsigned i = 0; i != NumOps; ++i) {
2931    if (N->OperandList[i] != Ops[i]) {
2932      N->OperandList[i].Val->removeUser(N);
2933      Ops[i].Val->addUser(N);
2934      N->OperandList[i] = Ops[i];
2935    }
2936  }
2937
2938  // If this gets put into a CSE map, add it.
2939  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2940  return InN;
2941}
2942
2943
2944/// MorphNodeTo - This frees the operands of the current node, resets the
2945/// opcode, types, and operands to the specified value.  This should only be
2946/// used by the SelectionDAG class.
2947void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2948                         const SDOperand *Ops, unsigned NumOps) {
2949  NodeType = Opc;
2950  ValueList = L.VTs;
2951  NumValues = L.NumVTs;
2952
2953  // Clear the operands list, updating used nodes to remove this from their
2954  // use list.
2955  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2956    I->Val->removeUser(this);
2957
2958  // If NumOps is larger than the # of operands we currently have, reallocate
2959  // the operand list.
2960  if (NumOps > NumOperands) {
2961    if (OperandsNeedDelete)
2962      delete [] OperandList;
2963    OperandList = new SDOperand[NumOps];
2964    OperandsNeedDelete = true;
2965  }
2966
2967  // Assign the new operands.
2968  NumOperands = NumOps;
2969
2970  for (unsigned i = 0, e = NumOps; i != e; ++i) {
2971    OperandList[i] = Ops[i];
2972    SDNode *N = OperandList[i].Val;
2973    N->Uses.push_back(this);
2974  }
2975}
2976
2977/// SelectNodeTo - These are used for target selectors to *mutate* the
2978/// specified node to have the specified return type, Target opcode, and
2979/// operands.  Note that target opcodes are stored as
2980/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2981///
2982/// Note that SelectNodeTo returns the resultant node.  If there is already a
2983/// node of the specified opcode and operands, it returns that node instead of
2984/// the current one.
2985SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2986                                   MVT::ValueType VT) {
2987  SDVTList VTs = getVTList(VT);
2988  FoldingSetNodeID ID;
2989  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2990  void *IP = 0;
2991  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2992    return ON;
2993
2994  RemoveNodeFromCSEMaps(N);
2995
2996  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2997
2998  CSEMap.InsertNode(N, IP);
2999  return N;
3000}
3001
3002SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3003                                   MVT::ValueType VT, SDOperand Op1) {
3004  // If an identical node already exists, use it.
3005  SDVTList VTs = getVTList(VT);
3006  SDOperand Ops[] = { Op1 };
3007
3008  FoldingSetNodeID ID;
3009  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3010  void *IP = 0;
3011  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3012    return ON;
3013
3014  RemoveNodeFromCSEMaps(N);
3015  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3016  CSEMap.InsertNode(N, IP);
3017  return N;
3018}
3019
3020SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3021                                   MVT::ValueType VT, SDOperand Op1,
3022                                   SDOperand Op2) {
3023  // If an identical node already exists, use it.
3024  SDVTList VTs = getVTList(VT);
3025  SDOperand Ops[] = { Op1, Op2 };
3026
3027  FoldingSetNodeID ID;
3028  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3029  void *IP = 0;
3030  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3031    return ON;
3032
3033  RemoveNodeFromCSEMaps(N);
3034
3035  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3036
3037  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3038  return N;
3039}
3040
3041SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3042                                   MVT::ValueType VT, SDOperand Op1,
3043                                   SDOperand Op2, SDOperand Op3) {
3044  // If an identical node already exists, use it.
3045  SDVTList VTs = getVTList(VT);
3046  SDOperand Ops[] = { Op1, Op2, Op3 };
3047  FoldingSetNodeID ID;
3048  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3049  void *IP = 0;
3050  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3051    return ON;
3052
3053  RemoveNodeFromCSEMaps(N);
3054
3055  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3056
3057  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3058  return N;
3059}
3060
3061SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3062                                   MVT::ValueType VT, const SDOperand *Ops,
3063                                   unsigned NumOps) {
3064  // If an identical node already exists, use it.
3065  SDVTList VTs = getVTList(VT);
3066  FoldingSetNodeID ID;
3067  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3068  void *IP = 0;
3069  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3070    return ON;
3071
3072  RemoveNodeFromCSEMaps(N);
3073  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3074
3075  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3076  return N;
3077}
3078
3079SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3080                                   MVT::ValueType VT1, MVT::ValueType VT2,
3081                                   SDOperand Op1, SDOperand Op2) {
3082  SDVTList VTs = getVTList(VT1, VT2);
3083  FoldingSetNodeID ID;
3084  SDOperand Ops[] = { Op1, Op2 };
3085  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3086  void *IP = 0;
3087  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3088    return ON;
3089
3090  RemoveNodeFromCSEMaps(N);
3091  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3092  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3093  return N;
3094}
3095
3096SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3097                                   MVT::ValueType VT1, MVT::ValueType VT2,
3098                                   SDOperand Op1, SDOperand Op2,
3099                                   SDOperand Op3) {
3100  // If an identical node already exists, use it.
3101  SDVTList VTs = getVTList(VT1, VT2);
3102  SDOperand Ops[] = { Op1, Op2, Op3 };
3103  FoldingSetNodeID ID;
3104  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3105  void *IP = 0;
3106  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3107    return ON;
3108
3109  RemoveNodeFromCSEMaps(N);
3110
3111  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3112  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3113  return N;
3114}
3115
3116
3117/// getTargetNode - These are used for target selectors to create a new node
3118/// with specified return type(s), target opcode, and operands.
3119///
3120/// Note that getTargetNode returns the resultant node.  If there is already a
3121/// node of the specified opcode and operands, it returns that node instead of
3122/// the current one.
3123SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3124  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3125}
3126SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3127                                    SDOperand Op1) {
3128  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3129}
3130SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3131                                    SDOperand Op1, SDOperand Op2) {
3132  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3133}
3134SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3135                                    SDOperand Op1, SDOperand Op2,
3136                                    SDOperand Op3) {
3137  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3138}
3139SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3140                                    const SDOperand *Ops, unsigned NumOps) {
3141  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3142}
3143SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3144                                    MVT::ValueType VT2) {
3145  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3146  SDOperand Op;
3147  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3148}
3149SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3150                                    MVT::ValueType VT2, SDOperand Op1) {
3151  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3152  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3153}
3154SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3155                                    MVT::ValueType VT2, SDOperand Op1,
3156                                    SDOperand Op2) {
3157  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3158  SDOperand Ops[] = { Op1, Op2 };
3159  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3160}
3161SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3162                                    MVT::ValueType VT2, SDOperand Op1,
3163                                    SDOperand Op2, SDOperand Op3) {
3164  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3165  SDOperand Ops[] = { Op1, Op2, Op3 };
3166  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3167}
3168SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3169                                    MVT::ValueType VT2,
3170                                    const SDOperand *Ops, unsigned NumOps) {
3171  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3172  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3173}
3174SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3175                                    MVT::ValueType VT2, MVT::ValueType VT3,
3176                                    SDOperand Op1, SDOperand Op2) {
3177  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3178  SDOperand Ops[] = { Op1, Op2 };
3179  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3180}
3181SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3182                                    MVT::ValueType VT2, MVT::ValueType VT3,
3183                                    SDOperand Op1, SDOperand Op2,
3184                                    SDOperand Op3) {
3185  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3186  SDOperand Ops[] = { Op1, Op2, Op3 };
3187  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3188}
3189SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3190                                    MVT::ValueType VT2, MVT::ValueType VT3,
3191                                    const SDOperand *Ops, unsigned NumOps) {
3192  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3193  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3194}
3195SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3196                                    MVT::ValueType VT2, MVT::ValueType VT3,
3197                                    MVT::ValueType VT4,
3198                                    const SDOperand *Ops, unsigned NumOps) {
3199  std::vector<MVT::ValueType> VTList;
3200  VTList.push_back(VT1);
3201  VTList.push_back(VT2);
3202  VTList.push_back(VT3);
3203  VTList.push_back(VT4);
3204  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3205  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3206}
3207SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3208                                    std::vector<MVT::ValueType> &ResultTys,
3209                                    const SDOperand *Ops, unsigned NumOps) {
3210  const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3211  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3212                 Ops, NumOps).Val;
3213}
3214
3215
3216/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3217/// This can cause recursive merging of nodes in the DAG.
3218///
3219/// This version assumes From has a single result value.
3220///
3221void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand To,
3222                                      DAGUpdateListener *UpdateListener) {
3223  SDNode *From = FromN.Val;
3224  assert(From->getNumValues() == 1 && FromN.ResNo == 0 &&
3225         "Cannot replace with this method!");
3226  assert(From != To.Val && "Cannot replace uses of with self");
3227
3228  while (!From->use_empty()) {
3229    // Process users until they are all gone.
3230    SDNode *U = *From->use_begin();
3231
3232    // This node is about to morph, remove its old self from the CSE maps.
3233    RemoveNodeFromCSEMaps(U);
3234
3235    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3236         I != E; ++I)
3237      if (I->Val == From) {
3238        From->removeUser(U);
3239        *I = To;
3240        To.Val->addUser(U);
3241      }
3242
3243    // Now that we have modified U, add it back to the CSE maps.  If it already
3244    // exists there, recursively merge the results together.
3245    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3246      ReplaceAllUsesWith(U, Existing, UpdateListener);
3247      // U is now dead.  Inform the listener if it exists and delete it.
3248      if (UpdateListener)
3249        UpdateListener->NodeDeleted(U);
3250      DeleteNodeNotInCSEMaps(U);
3251    } else {
3252      // If the node doesn't already exist, we updated it.  Inform a listener if
3253      // it exists.
3254      if (UpdateListener)
3255        UpdateListener->NodeUpdated(U);
3256    }
3257  }
3258}
3259
3260/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3261/// This can cause recursive merging of nodes in the DAG.
3262///
3263/// This version assumes From/To have matching types and numbers of result
3264/// values.
3265///
3266void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3267                                      DAGUpdateListener *UpdateListener) {
3268  assert(From != To && "Cannot replace uses of with self");
3269  assert(From->getNumValues() == To->getNumValues() &&
3270         "Cannot use this version of ReplaceAllUsesWith!");
3271  if (From->getNumValues() == 1)   // If possible, use the faster version.
3272    return ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0),
3273                              UpdateListener);
3274
3275  while (!From->use_empty()) {
3276    // Process users until they are all gone.
3277    SDNode *U = *From->use_begin();
3278
3279    // This node is about to morph, remove its old self from the CSE maps.
3280    RemoveNodeFromCSEMaps(U);
3281
3282    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3283         I != E; ++I)
3284      if (I->Val == From) {
3285        From->removeUser(U);
3286        I->Val = To;
3287        To->addUser(U);
3288      }
3289
3290    // Now that we have modified U, add it back to the CSE maps.  If it already
3291    // exists there, recursively merge the results together.
3292    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3293      ReplaceAllUsesWith(U, Existing, UpdateListener);
3294      // U is now dead.  Inform the listener if it exists and delete it.
3295      if (UpdateListener)
3296        UpdateListener->NodeDeleted(U);
3297      DeleteNodeNotInCSEMaps(U);
3298    } else {
3299      // If the node doesn't already exist, we updated it.  Inform a listener if
3300      // it exists.
3301      if (UpdateListener)
3302        UpdateListener->NodeUpdated(U);
3303    }
3304  }
3305}
3306
3307/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3308/// This can cause recursive merging of nodes in the DAG.
3309///
3310/// This version can replace From with any result values.  To must match the
3311/// number and types of values returned by From.
3312void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3313                                      const SDOperand *To,
3314                                      DAGUpdateListener *UpdateListener) {
3315  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
3316    return ReplaceAllUsesWith(SDOperand(From, 0), To[0], UpdateListener);
3317
3318  while (!From->use_empty()) {
3319    // Process users until they are all gone.
3320    SDNode *U = *From->use_begin();
3321
3322    // This node is about to morph, remove its old self from the CSE maps.
3323    RemoveNodeFromCSEMaps(U);
3324
3325    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3326         I != E; ++I)
3327      if (I->Val == From) {
3328        const SDOperand &ToOp = To[I->ResNo];
3329        From->removeUser(U);
3330        *I = ToOp;
3331        ToOp.Val->addUser(U);
3332      }
3333
3334    // Now that we have modified U, add it back to the CSE maps.  If it already
3335    // exists there, recursively merge the results together.
3336    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3337      ReplaceAllUsesWith(U, Existing, UpdateListener);
3338      // U is now dead.  Inform the listener if it exists and delete it.
3339      if (UpdateListener)
3340        UpdateListener->NodeDeleted(U);
3341      DeleteNodeNotInCSEMaps(U);
3342    } else {
3343      // If the node doesn't already exist, we updated it.  Inform a listener if
3344      // it exists.
3345      if (UpdateListener)
3346        UpdateListener->NodeUpdated(U);
3347    }
3348  }
3349}
3350
3351namespace {
3352  /// ChainedSetUpdaterListener - This class is a DAGUpdateListener that removes
3353  /// any deleted nodes from the set passed into its constructor and recursively
3354  /// notifies another update listener if specified.
3355  class ChainedSetUpdaterListener :
3356  public SelectionDAG::DAGUpdateListener {
3357    SmallSetVector<SDNode*, 16> &Set;
3358    SelectionDAG::DAGUpdateListener *Chain;
3359  public:
3360    ChainedSetUpdaterListener(SmallSetVector<SDNode*, 16> &set,
3361                              SelectionDAG::DAGUpdateListener *chain)
3362      : Set(set), Chain(chain) {}
3363
3364    virtual void NodeDeleted(SDNode *N) {
3365      Set.remove(N);
3366      if (Chain) Chain->NodeDeleted(N);
3367    }
3368    virtual void NodeUpdated(SDNode *N) {
3369      if (Chain) Chain->NodeUpdated(N);
3370    }
3371  };
3372}
3373
3374/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3375/// uses of other values produced by From.Val alone.  The Deleted vector is
3376/// handled the same way as for ReplaceAllUsesWith.
3377void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3378                                             DAGUpdateListener *UpdateListener){
3379  assert(From != To && "Cannot replace a value with itself");
3380
3381  // Handle the simple, trivial, case efficiently.
3382  if (From.Val->getNumValues() == 1) {
3383    ReplaceAllUsesWith(From, To, UpdateListener);
3384    return;
3385  }
3386
3387  if (From.use_empty()) return;
3388
3389  // Get all of the users of From.Val.  We want these in a nice,
3390  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3391  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3392
3393  // When one of the recursive merges deletes nodes from the graph, we need to
3394  // make sure that UpdateListener is notified *and* that the node is removed
3395  // from Users if present.  CSUL does this.
3396  ChainedSetUpdaterListener CSUL(Users, UpdateListener);
3397
3398  while (!Users.empty()) {
3399    // We know that this user uses some value of From.  If it is the right
3400    // value, update it.
3401    SDNode *User = Users.back();
3402    Users.pop_back();
3403
3404    // Scan for an operand that matches From.
3405    SDOperand *Op = User->OperandList, *E = User->OperandList+User->NumOperands;
3406    for (; Op != E; ++Op)
3407      if (*Op == From) break;
3408
3409    // If there are no matches, the user must use some other result of From.
3410    if (Op == E) continue;
3411
3412    // Okay, we know this user needs to be updated.  Remove its old self
3413    // from the CSE maps.
3414    RemoveNodeFromCSEMaps(User);
3415
3416    // Update all operands that match "From" in case there are multiple uses.
3417    for (; Op != E; ++Op) {
3418      if (*Op == From) {
3419        From.Val->removeUser(User);
3420        *Op = To;
3421        To.Val->addUser(User);
3422      }
3423    }
3424
3425    // Now that we have modified User, add it back to the CSE maps.  If it
3426    // already exists there, recursively merge the results together.
3427    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3428    if (!Existing) {
3429      if (UpdateListener) UpdateListener->NodeUpdated(User);
3430      continue;  // Continue on to next user.
3431    }
3432
3433    // If there was already an existing matching node, use ReplaceAllUsesWith
3434    // to replace the dead one with the existing one.  This can cause
3435    // recursive merging of other unrelated nodes down the line.  The merging
3436    // can cause deletion of nodes that used the old value.  To handle this, we
3437    // use CSUL to remove them from the Users set.
3438    ReplaceAllUsesWith(User, Existing, &CSUL);
3439
3440    // User is now dead.  Notify a listener if present.
3441    if (UpdateListener) UpdateListener->NodeDeleted(User);
3442    DeleteNodeNotInCSEMaps(User);
3443  }
3444}
3445
3446
3447/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3448/// their allnodes order. It returns the maximum id.
3449unsigned SelectionDAG::AssignNodeIds() {
3450  unsigned Id = 0;
3451  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3452    SDNode *N = I;
3453    N->setNodeId(Id++);
3454  }
3455  return Id;
3456}
3457
3458/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3459/// based on their topological order. It returns the maximum id and a vector
3460/// of the SDNodes* in assigned order by reference.
3461unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3462  unsigned DAGSize = AllNodes.size();
3463  std::vector<unsigned> InDegree(DAGSize);
3464  std::vector<SDNode*> Sources;
3465
3466  // Use a two pass approach to avoid using a std::map which is slow.
3467  unsigned Id = 0;
3468  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3469    SDNode *N = I;
3470    N->setNodeId(Id++);
3471    unsigned Degree = N->use_size();
3472    InDegree[N->getNodeId()] = Degree;
3473    if (Degree == 0)
3474      Sources.push_back(N);
3475  }
3476
3477  TopOrder.clear();
3478  while (!Sources.empty()) {
3479    SDNode *N = Sources.back();
3480    Sources.pop_back();
3481    TopOrder.push_back(N);
3482    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3483      SDNode *P = I->Val;
3484      unsigned Degree = --InDegree[P->getNodeId()];
3485      if (Degree == 0)
3486        Sources.push_back(P);
3487    }
3488  }
3489
3490  // Second pass, assign the actual topological order as node ids.
3491  Id = 0;
3492  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3493       TI != TE; ++TI)
3494    (*TI)->setNodeId(Id++);
3495
3496  return Id;
3497}
3498
3499
3500
3501//===----------------------------------------------------------------------===//
3502//                              SDNode Class
3503//===----------------------------------------------------------------------===//
3504
3505// Out-of-line virtual method to give class a home.
3506void SDNode::ANCHOR() {}
3507void UnarySDNode::ANCHOR() {}
3508void BinarySDNode::ANCHOR() {}
3509void TernarySDNode::ANCHOR() {}
3510void HandleSDNode::ANCHOR() {}
3511void StringSDNode::ANCHOR() {}
3512void ConstantSDNode::ANCHOR() {}
3513void ConstantFPSDNode::ANCHOR() {}
3514void GlobalAddressSDNode::ANCHOR() {}
3515void FrameIndexSDNode::ANCHOR() {}
3516void JumpTableSDNode::ANCHOR() {}
3517void ConstantPoolSDNode::ANCHOR() {}
3518void BasicBlockSDNode::ANCHOR() {}
3519void SrcValueSDNode::ANCHOR() {}
3520void MemOperandSDNode::ANCHOR() {}
3521void RegisterSDNode::ANCHOR() {}
3522void ExternalSymbolSDNode::ANCHOR() {}
3523void CondCodeSDNode::ANCHOR() {}
3524void VTSDNode::ANCHOR() {}
3525void LoadSDNode::ANCHOR() {}
3526void StoreSDNode::ANCHOR() {}
3527
3528HandleSDNode::~HandleSDNode() {
3529  SDVTList VTs = { 0, 0 };
3530  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3531}
3532
3533GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3534                                         MVT::ValueType VT, int o)
3535  : SDNode(isa<GlobalVariable>(GA) &&
3536           cast<GlobalVariable>(GA)->isThreadLocal() ?
3537           // Thread Local
3538           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3539           // Non Thread Local
3540           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3541           getSDVTList(VT)), Offset(o) {
3542  TheGlobal = const_cast<GlobalValue*>(GA);
3543}
3544
3545/// getMemOperand - Return a MemOperand object describing the memory
3546/// reference performed by this load or store.
3547MemOperand LSBaseSDNode::getMemOperand() const {
3548  int Size = (MVT::getSizeInBits(getMemoryVT()) + 7) >> 3;
3549  int Flags =
3550    getOpcode() == ISD::LOAD ? MemOperand::MOLoad : MemOperand::MOStore;
3551  if (IsVolatile) Flags |= MemOperand::MOVolatile;
3552
3553  // Check if the load references a frame index, and does not have
3554  // an SV attached.
3555  const FrameIndexSDNode *FI =
3556    dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
3557  if (!getSrcValue() && FI)
3558    return MemOperand(PseudoSourceValue::getFixedStack(), Flags,
3559                      FI->getIndex(), Size, Alignment);
3560  else
3561    return MemOperand(getSrcValue(), Flags,
3562                      getSrcValueOffset(), Size, Alignment);
3563}
3564
3565/// Profile - Gather unique data for the node.
3566///
3567void SDNode::Profile(FoldingSetNodeID &ID) {
3568  AddNodeIDNode(ID, this);
3569}
3570
3571/// getValueTypeList - Return a pointer to the specified value type.
3572///
3573const MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3574  if (MVT::isExtendedVT(VT)) {
3575    static std::set<MVT::ValueType> EVTs;
3576    return &(*EVTs.insert(VT).first);
3577  } else {
3578    static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3579    VTs[VT] = VT;
3580    return &VTs[VT];
3581  }
3582}
3583
3584/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3585/// indicated value.  This method ignores uses of other values defined by this
3586/// operation.
3587bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3588  assert(Value < getNumValues() && "Bad value!");
3589
3590  // If there is only one value, this is easy.
3591  if (getNumValues() == 1)
3592    return use_size() == NUses;
3593  if (use_size() < NUses) return false;
3594
3595  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3596
3597  SmallPtrSet<SDNode*, 32> UsersHandled;
3598
3599  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3600    SDNode *User = *UI;
3601    if (User->getNumOperands() == 1 ||
3602        UsersHandled.insert(User))     // First time we've seen this?
3603      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3604        if (User->getOperand(i) == TheValue) {
3605          if (NUses == 0)
3606            return false;   // too many uses
3607          --NUses;
3608        }
3609  }
3610
3611  // Found exactly the right number of uses?
3612  return NUses == 0;
3613}
3614
3615
3616/// hasAnyUseOfValue - Return true if there are any use of the indicated
3617/// value. This method ignores uses of other values defined by this operation.
3618bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3619  assert(Value < getNumValues() && "Bad value!");
3620
3621  if (use_empty()) return false;
3622
3623  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3624
3625  SmallPtrSet<SDNode*, 32> UsersHandled;
3626
3627  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3628    SDNode *User = *UI;
3629    if (User->getNumOperands() == 1 ||
3630        UsersHandled.insert(User))     // First time we've seen this?
3631      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3632        if (User->getOperand(i) == TheValue) {
3633          return true;
3634        }
3635  }
3636
3637  return false;
3638}
3639
3640
3641/// isOnlyUse - Return true if this node is the only use of N.
3642///
3643bool SDNode::isOnlyUse(SDNode *N) const {
3644  bool Seen = false;
3645  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3646    SDNode *User = *I;
3647    if (User == this)
3648      Seen = true;
3649    else
3650      return false;
3651  }
3652
3653  return Seen;
3654}
3655
3656/// isOperand - Return true if this node is an operand of N.
3657///
3658bool SDOperand::isOperand(SDNode *N) const {
3659  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3660    if (*this == N->getOperand(i))
3661      return true;
3662  return false;
3663}
3664
3665bool SDNode::isOperand(SDNode *N) const {
3666  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3667    if (this == N->OperandList[i].Val)
3668      return true;
3669  return false;
3670}
3671
3672/// reachesChainWithoutSideEffects - Return true if this operand (which must
3673/// be a chain) reaches the specified operand without crossing any
3674/// side-effecting instructions.  In practice, this looks through token
3675/// factors and non-volatile loads.  In order to remain efficient, this only
3676/// looks a couple of nodes in, it does not do an exhaustive search.
3677bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
3678                                               unsigned Depth) const {
3679  if (*this == Dest) return true;
3680
3681  // Don't search too deeply, we just want to be able to see through
3682  // TokenFactor's etc.
3683  if (Depth == 0) return false;
3684
3685  // If this is a token factor, all inputs to the TF happen in parallel.  If any
3686  // of the operands of the TF reach dest, then we can do the xform.
3687  if (getOpcode() == ISD::TokenFactor) {
3688    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3689      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
3690        return true;
3691    return false;
3692  }
3693
3694  // Loads don't have side effects, look through them.
3695  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
3696    if (!Ld->isVolatile())
3697      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
3698  }
3699  return false;
3700}
3701
3702
3703static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3704                            SmallPtrSet<SDNode *, 32> &Visited) {
3705  if (found || !Visited.insert(N))
3706    return;
3707
3708  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3709    SDNode *Op = N->getOperand(i).Val;
3710    if (Op == P) {
3711      found = true;
3712      return;
3713    }
3714    findPredecessor(Op, P, found, Visited);
3715  }
3716}
3717
3718/// isPredecessor - Return true if this node is a predecessor of N. This node
3719/// is either an operand of N or it can be reached by recursively traversing
3720/// up the operands.
3721/// NOTE: this is an expensive method. Use it carefully.
3722bool SDNode::isPredecessor(SDNode *N) const {
3723  SmallPtrSet<SDNode *, 32> Visited;
3724  bool found = false;
3725  findPredecessor(N, this, found, Visited);
3726  return found;
3727}
3728
3729uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3730  assert(Num < NumOperands && "Invalid child # of SDNode!");
3731  return cast<ConstantSDNode>(OperandList[Num])->getValue();
3732}
3733
3734std::string SDNode::getOperationName(const SelectionDAG *G) const {
3735  switch (getOpcode()) {
3736  default:
3737    if (getOpcode() < ISD::BUILTIN_OP_END)
3738      return "<<Unknown DAG Node>>";
3739    else {
3740      if (G) {
3741        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3742          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3743            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
3744
3745        TargetLowering &TLI = G->getTargetLoweringInfo();
3746        const char *Name =
3747          TLI.getTargetNodeName(getOpcode());
3748        if (Name) return Name;
3749      }
3750
3751      return "<<Unknown Target Node>>";
3752    }
3753
3754  case ISD::PCMARKER:      return "PCMarker";
3755  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3756  case ISD::SRCVALUE:      return "SrcValue";
3757  case ISD::MEMOPERAND:    return "MemOperand";
3758  case ISD::EntryToken:    return "EntryToken";
3759  case ISD::TokenFactor:   return "TokenFactor";
3760  case ISD::AssertSext:    return "AssertSext";
3761  case ISD::AssertZext:    return "AssertZext";
3762
3763  case ISD::STRING:        return "String";
3764  case ISD::BasicBlock:    return "BasicBlock";
3765  case ISD::VALUETYPE:     return "ValueType";
3766  case ISD::Register:      return "Register";
3767
3768  case ISD::Constant:      return "Constant";
3769  case ISD::ConstantFP:    return "ConstantFP";
3770  case ISD::GlobalAddress: return "GlobalAddress";
3771  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3772  case ISD::FrameIndex:    return "FrameIndex";
3773  case ISD::JumpTable:     return "JumpTable";
3774  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3775  case ISD::RETURNADDR: return "RETURNADDR";
3776  case ISD::FRAMEADDR: return "FRAMEADDR";
3777  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3778  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3779  case ISD::EHSELECTION: return "EHSELECTION";
3780  case ISD::EH_RETURN: return "EH_RETURN";
3781  case ISD::ConstantPool:  return "ConstantPool";
3782  case ISD::ExternalSymbol: return "ExternalSymbol";
3783  case ISD::INTRINSIC_WO_CHAIN: {
3784    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3785    return Intrinsic::getName((Intrinsic::ID)IID);
3786  }
3787  case ISD::INTRINSIC_VOID:
3788  case ISD::INTRINSIC_W_CHAIN: {
3789    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3790    return Intrinsic::getName((Intrinsic::ID)IID);
3791  }
3792
3793  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
3794  case ISD::TargetConstant: return "TargetConstant";
3795  case ISD::TargetConstantFP:return "TargetConstantFP";
3796  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3797  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3798  case ISD::TargetFrameIndex: return "TargetFrameIndex";
3799  case ISD::TargetJumpTable:  return "TargetJumpTable";
3800  case ISD::TargetConstantPool:  return "TargetConstantPool";
3801  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3802
3803  case ISD::CopyToReg:     return "CopyToReg";
3804  case ISD::CopyFromReg:   return "CopyFromReg";
3805  case ISD::UNDEF:         return "undef";
3806  case ISD::MERGE_VALUES:  return "merge_values";
3807  case ISD::INLINEASM:     return "inlineasm";
3808  case ISD::LABEL:         return "label";
3809  case ISD::DECLARE:       return "declare";
3810  case ISD::HANDLENODE:    return "handlenode";
3811  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3812  case ISD::CALL:          return "call";
3813
3814  // Unary operators
3815  case ISD::FABS:   return "fabs";
3816  case ISD::FNEG:   return "fneg";
3817  case ISD::FSQRT:  return "fsqrt";
3818  case ISD::FSIN:   return "fsin";
3819  case ISD::FCOS:   return "fcos";
3820  case ISD::FPOWI:  return "fpowi";
3821  case ISD::FPOW:   return "fpow";
3822
3823  // Binary operators
3824  case ISD::ADD:    return "add";
3825  case ISD::SUB:    return "sub";
3826  case ISD::MUL:    return "mul";
3827  case ISD::MULHU:  return "mulhu";
3828  case ISD::MULHS:  return "mulhs";
3829  case ISD::SDIV:   return "sdiv";
3830  case ISD::UDIV:   return "udiv";
3831  case ISD::SREM:   return "srem";
3832  case ISD::UREM:   return "urem";
3833  case ISD::SMUL_LOHI:  return "smul_lohi";
3834  case ISD::UMUL_LOHI:  return "umul_lohi";
3835  case ISD::SDIVREM:    return "sdivrem";
3836  case ISD::UDIVREM:    return "divrem";
3837  case ISD::AND:    return "and";
3838  case ISD::OR:     return "or";
3839  case ISD::XOR:    return "xor";
3840  case ISD::SHL:    return "shl";
3841  case ISD::SRA:    return "sra";
3842  case ISD::SRL:    return "srl";
3843  case ISD::ROTL:   return "rotl";
3844  case ISD::ROTR:   return "rotr";
3845  case ISD::FADD:   return "fadd";
3846  case ISD::FSUB:   return "fsub";
3847  case ISD::FMUL:   return "fmul";
3848  case ISD::FDIV:   return "fdiv";
3849  case ISD::FREM:   return "frem";
3850  case ISD::FCOPYSIGN: return "fcopysign";
3851  case ISD::FGETSIGN:  return "fgetsign";
3852
3853  case ISD::SETCC:       return "setcc";
3854  case ISD::SELECT:      return "select";
3855  case ISD::SELECT_CC:   return "select_cc";
3856  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
3857  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
3858  case ISD::CONCAT_VECTORS:      return "concat_vectors";
3859  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
3860  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
3861  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
3862  case ISD::CARRY_FALSE:         return "carry_false";
3863  case ISD::ADDC:        return "addc";
3864  case ISD::ADDE:        return "adde";
3865  case ISD::SUBC:        return "subc";
3866  case ISD::SUBE:        return "sube";
3867  case ISD::SHL_PARTS:   return "shl_parts";
3868  case ISD::SRA_PARTS:   return "sra_parts";
3869  case ISD::SRL_PARTS:   return "srl_parts";
3870
3871  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
3872  case ISD::INSERT_SUBREG:      return "insert_subreg";
3873
3874  // Conversion operators.
3875  case ISD::SIGN_EXTEND: return "sign_extend";
3876  case ISD::ZERO_EXTEND: return "zero_extend";
3877  case ISD::ANY_EXTEND:  return "any_extend";
3878  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3879  case ISD::TRUNCATE:    return "truncate";
3880  case ISD::FP_ROUND:    return "fp_round";
3881  case ISD::FLT_ROUNDS_: return "flt_rounds";
3882  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3883  case ISD::FP_EXTEND:   return "fp_extend";
3884
3885  case ISD::SINT_TO_FP:  return "sint_to_fp";
3886  case ISD::UINT_TO_FP:  return "uint_to_fp";
3887  case ISD::FP_TO_SINT:  return "fp_to_sint";
3888  case ISD::FP_TO_UINT:  return "fp_to_uint";
3889  case ISD::BIT_CONVERT: return "bit_convert";
3890
3891    // Control flow instructions
3892  case ISD::BR:      return "br";
3893  case ISD::BRIND:   return "brind";
3894  case ISD::BR_JT:   return "br_jt";
3895  case ISD::BRCOND:  return "brcond";
3896  case ISD::BR_CC:   return "br_cc";
3897  case ISD::RET:     return "ret";
3898  case ISD::CALLSEQ_START:  return "callseq_start";
3899  case ISD::CALLSEQ_END:    return "callseq_end";
3900
3901    // Other operators
3902  case ISD::LOAD:               return "load";
3903  case ISD::STORE:              return "store";
3904  case ISD::VAARG:              return "vaarg";
3905  case ISD::VACOPY:             return "vacopy";
3906  case ISD::VAEND:              return "vaend";
3907  case ISD::VASTART:            return "vastart";
3908  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3909  case ISD::EXTRACT_ELEMENT:    return "extract_element";
3910  case ISD::BUILD_PAIR:         return "build_pair";
3911  case ISD::STACKSAVE:          return "stacksave";
3912  case ISD::STACKRESTORE:       return "stackrestore";
3913  case ISD::TRAP:               return "trap";
3914
3915  // Block memory operations.
3916  case ISD::MEMSET:  return "memset";
3917  case ISD::MEMCPY:  return "memcpy";
3918  case ISD::MEMMOVE: return "memmove";
3919
3920  // Bit manipulation
3921  case ISD::BSWAP:   return "bswap";
3922  case ISD::CTPOP:   return "ctpop";
3923  case ISD::CTTZ:    return "cttz";
3924  case ISD::CTLZ:    return "ctlz";
3925
3926  // Debug info
3927  case ISD::LOCATION: return "location";
3928  case ISD::DEBUG_LOC: return "debug_loc";
3929
3930  // Trampolines
3931  case ISD::TRAMPOLINE: return "trampoline";
3932
3933  case ISD::CONDCODE:
3934    switch (cast<CondCodeSDNode>(this)->get()) {
3935    default: assert(0 && "Unknown setcc condition!");
3936    case ISD::SETOEQ:  return "setoeq";
3937    case ISD::SETOGT:  return "setogt";
3938    case ISD::SETOGE:  return "setoge";
3939    case ISD::SETOLT:  return "setolt";
3940    case ISD::SETOLE:  return "setole";
3941    case ISD::SETONE:  return "setone";
3942
3943    case ISD::SETO:    return "seto";
3944    case ISD::SETUO:   return "setuo";
3945    case ISD::SETUEQ:  return "setue";
3946    case ISD::SETUGT:  return "setugt";
3947    case ISD::SETUGE:  return "setuge";
3948    case ISD::SETULT:  return "setult";
3949    case ISD::SETULE:  return "setule";
3950    case ISD::SETUNE:  return "setune";
3951
3952    case ISD::SETEQ:   return "seteq";
3953    case ISD::SETGT:   return "setgt";
3954    case ISD::SETGE:   return "setge";
3955    case ISD::SETLT:   return "setlt";
3956    case ISD::SETLE:   return "setle";
3957    case ISD::SETNE:   return "setne";
3958    }
3959  }
3960}
3961
3962const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
3963  switch (AM) {
3964  default:
3965    return "";
3966  case ISD::PRE_INC:
3967    return "<pre-inc>";
3968  case ISD::PRE_DEC:
3969    return "<pre-dec>";
3970  case ISD::POST_INC:
3971    return "<post-inc>";
3972  case ISD::POST_DEC:
3973    return "<post-dec>";
3974  }
3975}
3976
3977void SDNode::dump() const { dump(0); }
3978void SDNode::dump(const SelectionDAG *G) const {
3979  cerr << (void*)this << ": ";
3980
3981  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
3982    if (i) cerr << ",";
3983    if (getValueType(i) == MVT::Other)
3984      cerr << "ch";
3985    else
3986      cerr << MVT::getValueTypeString(getValueType(i));
3987  }
3988  cerr << " = " << getOperationName(G);
3989
3990  cerr << " ";
3991  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3992    if (i) cerr << ", ";
3993    cerr << (void*)getOperand(i).Val;
3994    if (unsigned RN = getOperand(i).ResNo)
3995      cerr << ":" << RN;
3996  }
3997
3998  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
3999    SDNode *Mask = getOperand(2).Val;
4000    cerr << "<";
4001    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
4002      if (i) cerr << ",";
4003      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
4004        cerr << "u";
4005      else
4006        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
4007    }
4008    cerr << ">";
4009  }
4010
4011  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
4012    cerr << "<" << CSDN->getValue() << ">";
4013  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
4014    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
4015      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
4016    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
4017      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
4018    else {
4019      cerr << "<APFloat(";
4020      CSDN->getValueAPF().convertToAPInt().dump();
4021      cerr << ")>";
4022    }
4023  } else if (const GlobalAddressSDNode *GADN =
4024             dyn_cast<GlobalAddressSDNode>(this)) {
4025    int offset = GADN->getOffset();
4026    cerr << "<";
4027    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
4028    if (offset > 0)
4029      cerr << " + " << offset;
4030    else
4031      cerr << " " << offset;
4032  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
4033    cerr << "<" << FIDN->getIndex() << ">";
4034  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
4035    cerr << "<" << JTDN->getIndex() << ">";
4036  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
4037    int offset = CP->getOffset();
4038    if (CP->isMachineConstantPoolEntry())
4039      cerr << "<" << *CP->getMachineCPVal() << ">";
4040    else
4041      cerr << "<" << *CP->getConstVal() << ">";
4042    if (offset > 0)
4043      cerr << " + " << offset;
4044    else
4045      cerr << " " << offset;
4046  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
4047    cerr << "<";
4048    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
4049    if (LBB)
4050      cerr << LBB->getName() << " ";
4051    cerr << (const void*)BBDN->getBasicBlock() << ">";
4052  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
4053    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
4054      cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
4055    } else {
4056      cerr << " #" << R->getReg();
4057    }
4058  } else if (const ExternalSymbolSDNode *ES =
4059             dyn_cast<ExternalSymbolSDNode>(this)) {
4060    cerr << "'" << ES->getSymbol() << "'";
4061  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
4062    if (M->getValue())
4063      cerr << "<" << M->getValue() << ">";
4064    else
4065      cerr << "<null>";
4066  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
4067    if (M->MO.getValue())
4068      cerr << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
4069    else
4070      cerr << "<null:" << M->MO.getOffset() << ">";
4071  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
4072    cerr << ":" << MVT::getValueTypeString(N->getVT());
4073  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
4074    const Value *SrcValue = LD->getSrcValue();
4075    int SrcOffset = LD->getSrcValueOffset();
4076    cerr << " <";
4077    if (SrcValue)
4078      cerr << SrcValue;
4079    else
4080      cerr << "null";
4081    cerr << ":" << SrcOffset << ">";
4082
4083    bool doExt = true;
4084    switch (LD->getExtensionType()) {
4085    default: doExt = false; break;
4086    case ISD::EXTLOAD:
4087      cerr << " <anyext ";
4088      break;
4089    case ISD::SEXTLOAD:
4090      cerr << " <sext ";
4091      break;
4092    case ISD::ZEXTLOAD:
4093      cerr << " <zext ";
4094      break;
4095    }
4096    if (doExt)
4097      cerr << MVT::getValueTypeString(LD->getMemoryVT()) << ">";
4098
4099    const char *AM = getIndexedModeName(LD->getAddressingMode());
4100    if (*AM)
4101      cerr << " " << AM;
4102    if (LD->isVolatile())
4103      cerr << " <volatile>";
4104    cerr << " alignment=" << LD->getAlignment();
4105  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
4106    const Value *SrcValue = ST->getSrcValue();
4107    int SrcOffset = ST->getSrcValueOffset();
4108    cerr << " <";
4109    if (SrcValue)
4110      cerr << SrcValue;
4111    else
4112      cerr << "null";
4113    cerr << ":" << SrcOffset << ">";
4114
4115    if (ST->isTruncatingStore())
4116      cerr << " <trunc "
4117           << MVT::getValueTypeString(ST->getMemoryVT()) << ">";
4118
4119    const char *AM = getIndexedModeName(ST->getAddressingMode());
4120    if (*AM)
4121      cerr << " " << AM;
4122    if (ST->isVolatile())
4123      cerr << " <volatile>";
4124    cerr << " alignment=" << ST->getAlignment();
4125  }
4126}
4127
4128static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4129  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4130    if (N->getOperand(i).Val->hasOneUse())
4131      DumpNodes(N->getOperand(i).Val, indent+2, G);
4132    else
4133      cerr << "\n" << std::string(indent+2, ' ')
4134           << (void*)N->getOperand(i).Val << ": <multiple use>";
4135
4136
4137  cerr << "\n" << std::string(indent, ' ');
4138  N->dump(G);
4139}
4140
4141void SelectionDAG::dump() const {
4142  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4143  std::vector<const SDNode*> Nodes;
4144  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4145       I != E; ++I)
4146    Nodes.push_back(I);
4147
4148  std::sort(Nodes.begin(), Nodes.end());
4149
4150  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4151    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4152      DumpNodes(Nodes[i], 2, this);
4153  }
4154
4155  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4156
4157  cerr << "\n\n";
4158}
4159
4160const Type *ConstantPoolSDNode::getType() const {
4161  if (isMachineConstantPoolEntry())
4162    return Val.MachineCPVal->getType();
4163  return Val.ConstVal->getType();
4164}
4165