SelectionDAG.cpp revision decc2671516e6c52ee2f29f7746f8d02753845ea
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/ValueTracking.h"
19#include "llvm/Function.h"
20#include "llvm/GlobalAlias.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Intrinsics.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Assembly/Writer.h"
25#include "llvm/CallingConv.h"
26#include "llvm/CodeGen/MachineBasicBlock.h"
27#include "llvm/CodeGen/MachineConstantPool.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/PseudoSourceValue.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Target/TargetFrameInfo.h"
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetIntrinsicInfo.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/ManagedStatic.h"
43#include "llvm/Support/MathExtras.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/System/Mutex.h"
46#include "llvm/ADT/SetVector.h"
47#include "llvm/ADT/SmallPtrSet.h"
48#include "llvm/ADT/SmallSet.h"
49#include "llvm/ADT/SmallVector.h"
50#include "llvm/ADT/StringExtras.h"
51#include <algorithm>
52#include <cmath>
53using namespace llvm;
54
55/// makeVTList - Return an instance of the SDVTList struct initialized with the
56/// specified members.
57static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
58  SDVTList Res = {VTs, NumVTs};
59  return Res;
60}
61
62static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
63  switch (VT.getSimpleVT().SimpleTy) {
64  default: llvm_unreachable("Unknown FP format");
65  case MVT::f32:     return &APFloat::IEEEsingle;
66  case MVT::f64:     return &APFloat::IEEEdouble;
67  case MVT::f80:     return &APFloat::x87DoubleExtended;
68  case MVT::f128:    return &APFloat::IEEEquad;
69  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
70  }
71}
72
73SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
74
75//===----------------------------------------------------------------------===//
76//                              ConstantFPSDNode Class
77//===----------------------------------------------------------------------===//
78
79/// isExactlyValue - We don't rely on operator== working on double values, as
80/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
81/// As such, this method can be used to do an exact bit-for-bit comparison of
82/// two floating point values.
83bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
84  return getValueAPF().bitwiseIsEqual(V);
85}
86
87bool ConstantFPSDNode::isValueValidForType(EVT VT,
88                                           const APFloat& Val) {
89  assert(VT.isFloatingPoint() && "Can only convert between FP types");
90
91  // PPC long double cannot be converted to any other type.
92  if (VT == MVT::ppcf128 ||
93      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
94    return false;
95
96  // convert modifies in place, so make a copy.
97  APFloat Val2 = APFloat(Val);
98  bool losesInfo;
99  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
100                      &losesInfo);
101  return !losesInfo;
102}
103
104//===----------------------------------------------------------------------===//
105//                              ISD Namespace
106//===----------------------------------------------------------------------===//
107
108/// isBuildVectorAllOnes - Return true if the specified node is a
109/// BUILD_VECTOR where all of the elements are ~0 or undef.
110bool ISD::isBuildVectorAllOnes(const SDNode *N) {
111  // Look through a bit convert.
112  if (N->getOpcode() == ISD::BIT_CONVERT)
113    N = N->getOperand(0).getNode();
114
115  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
116
117  unsigned i = 0, e = N->getNumOperands();
118
119  // Skip over all of the undef values.
120  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
121    ++i;
122
123  // Do not accept an all-undef vector.
124  if (i == e) return false;
125
126  // Do not accept build_vectors that aren't all constants or which have non-~0
127  // elements.
128  SDValue NotZero = N->getOperand(i);
129  if (isa<ConstantSDNode>(NotZero)) {
130    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
131      return false;
132  } else if (isa<ConstantFPSDNode>(NotZero)) {
133    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
134                bitcastToAPInt().isAllOnesValue())
135      return false;
136  } else
137    return false;
138
139  // Okay, we have at least one ~0 value, check to see if the rest match or are
140  // undefs.
141  for (++i; i != e; ++i)
142    if (N->getOperand(i) != NotZero &&
143        N->getOperand(i).getOpcode() != ISD::UNDEF)
144      return false;
145  return true;
146}
147
148
149/// isBuildVectorAllZeros - Return true if the specified node is a
150/// BUILD_VECTOR where all of the elements are 0 or undef.
151bool ISD::isBuildVectorAllZeros(const SDNode *N) {
152  // Look through a bit convert.
153  if (N->getOpcode() == ISD::BIT_CONVERT)
154    N = N->getOperand(0).getNode();
155
156  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
157
158  unsigned i = 0, e = N->getNumOperands();
159
160  // Skip over all of the undef values.
161  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
162    ++i;
163
164  // Do not accept an all-undef vector.
165  if (i == e) return false;
166
167  // Do not accept build_vectors that aren't all constants or which have non-0
168  // elements.
169  SDValue Zero = N->getOperand(i);
170  if (isa<ConstantSDNode>(Zero)) {
171    if (!cast<ConstantSDNode>(Zero)->isNullValue())
172      return false;
173  } else if (isa<ConstantFPSDNode>(Zero)) {
174    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
175      return false;
176  } else
177    return false;
178
179  // Okay, we have at least one 0 value, check to see if the rest match or are
180  // undefs.
181  for (++i; i != e; ++i)
182    if (N->getOperand(i) != Zero &&
183        N->getOperand(i).getOpcode() != ISD::UNDEF)
184      return false;
185  return true;
186}
187
188/// isScalarToVector - Return true if the specified node is a
189/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
190/// element is not an undef.
191bool ISD::isScalarToVector(const SDNode *N) {
192  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
193    return true;
194
195  if (N->getOpcode() != ISD::BUILD_VECTOR)
196    return false;
197  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
198    return false;
199  unsigned NumElems = N->getNumOperands();
200  for (unsigned i = 1; i < NumElems; ++i) {
201    SDValue V = N->getOperand(i);
202    if (V.getOpcode() != ISD::UNDEF)
203      return false;
204  }
205  return true;
206}
207
208/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
209/// when given the operation for (X op Y).
210ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
211  // To perform this operation, we just need to swap the L and G bits of the
212  // operation.
213  unsigned OldL = (Operation >> 2) & 1;
214  unsigned OldG = (Operation >> 1) & 1;
215  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
216                       (OldL << 1) |       // New G bit
217                       (OldG << 2));       // New L bit.
218}
219
220/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
221/// 'op' is a valid SetCC operation.
222ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
223  unsigned Operation = Op;
224  if (isInteger)
225    Operation ^= 7;   // Flip L, G, E bits, but not U.
226  else
227    Operation ^= 15;  // Flip all of the condition bits.
228
229  if (Operation > ISD::SETTRUE2)
230    Operation &= ~8;  // Don't let N and U bits get set.
231
232  return ISD::CondCode(Operation);
233}
234
235
236/// isSignedOp - For an integer comparison, return 1 if the comparison is a
237/// signed operation and 2 if the result is an unsigned comparison.  Return zero
238/// if the operation does not depend on the sign of the input (setne and seteq).
239static int isSignedOp(ISD::CondCode Opcode) {
240  switch (Opcode) {
241  default: llvm_unreachable("Illegal integer setcc operation!");
242  case ISD::SETEQ:
243  case ISD::SETNE: return 0;
244  case ISD::SETLT:
245  case ISD::SETLE:
246  case ISD::SETGT:
247  case ISD::SETGE: return 1;
248  case ISD::SETULT:
249  case ISD::SETULE:
250  case ISD::SETUGT:
251  case ISD::SETUGE: return 2;
252  }
253}
254
255/// getSetCCOrOperation - Return the result of a logical OR between different
256/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
257/// returns SETCC_INVALID if it is not possible to represent the resultant
258/// comparison.
259ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
260                                       bool isInteger) {
261  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
262    // Cannot fold a signed integer setcc with an unsigned integer setcc.
263    return ISD::SETCC_INVALID;
264
265  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
266
267  // If the N and U bits get set then the resultant comparison DOES suddenly
268  // care about orderedness, and is true when ordered.
269  if (Op > ISD::SETTRUE2)
270    Op &= ~16;     // Clear the U bit if the N bit is set.
271
272  // Canonicalize illegal integer setcc's.
273  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
274    Op = ISD::SETNE;
275
276  return ISD::CondCode(Op);
277}
278
279/// getSetCCAndOperation - Return the result of a logical AND between different
280/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
281/// function returns zero if it is not possible to represent the resultant
282/// comparison.
283ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
284                                        bool isInteger) {
285  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
286    // Cannot fold a signed setcc with an unsigned setcc.
287    return ISD::SETCC_INVALID;
288
289  // Combine all of the condition bits.
290  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
291
292  // Canonicalize illegal integer setcc's.
293  if (isInteger) {
294    switch (Result) {
295    default: break;
296    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
297    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
298    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
299    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
300    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
301    }
302  }
303
304  return Result;
305}
306
307const TargetMachine &SelectionDAG::getTarget() const {
308  return MF->getTarget();
309}
310
311//===----------------------------------------------------------------------===//
312//                           SDNode Profile Support
313//===----------------------------------------------------------------------===//
314
315/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
316///
317static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
318  ID.AddInteger(OpC);
319}
320
321/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
322/// solely with their pointer.
323static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
324  ID.AddPointer(VTList.VTs);
325}
326
327/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
328///
329static void AddNodeIDOperands(FoldingSetNodeID &ID,
330                              const SDValue *Ops, unsigned NumOps) {
331  for (; NumOps; --NumOps, ++Ops) {
332    ID.AddPointer(Ops->getNode());
333    ID.AddInteger(Ops->getResNo());
334  }
335}
336
337/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
338///
339static void AddNodeIDOperands(FoldingSetNodeID &ID,
340                              const SDUse *Ops, unsigned NumOps) {
341  for (; NumOps; --NumOps, ++Ops) {
342    ID.AddPointer(Ops->getNode());
343    ID.AddInteger(Ops->getResNo());
344  }
345}
346
347static void AddNodeIDNode(FoldingSetNodeID &ID,
348                          unsigned short OpC, SDVTList VTList,
349                          const SDValue *OpList, unsigned N) {
350  AddNodeIDOpcode(ID, OpC);
351  AddNodeIDValueTypes(ID, VTList);
352  AddNodeIDOperands(ID, OpList, N);
353}
354
355/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
356/// the NodeID data.
357static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
358  switch (N->getOpcode()) {
359  case ISD::TargetExternalSymbol:
360  case ISD::ExternalSymbol:
361    llvm_unreachable("Should only be used on nodes with operands");
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::TargetConstant:
364  case ISD::Constant:
365    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
366    break;
367  case ISD::TargetConstantFP:
368  case ISD::ConstantFP: {
369    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
370    break;
371  }
372  case ISD::TargetGlobalAddress:
373  case ISD::GlobalAddress:
374  case ISD::TargetGlobalTLSAddress:
375  case ISD::GlobalTLSAddress: {
376    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
377    ID.AddPointer(GA->getGlobal());
378    ID.AddInteger(GA->getOffset());
379    ID.AddInteger(GA->getTargetFlags());
380    break;
381  }
382  case ISD::BasicBlock:
383    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
384    break;
385  case ISD::Register:
386    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
387    break;
388
389  case ISD::SRCVALUE:
390    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
391    break;
392  case ISD::FrameIndex:
393  case ISD::TargetFrameIndex:
394    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
395    break;
396  case ISD::JumpTable:
397  case ISD::TargetJumpTable:
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
399    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
400    break;
401  case ISD::ConstantPool:
402  case ISD::TargetConstantPool: {
403    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
404    ID.AddInteger(CP->getAlignment());
405    ID.AddInteger(CP->getOffset());
406    if (CP->isMachineConstantPoolEntry())
407      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
408    else
409      ID.AddPointer(CP->getConstVal());
410    ID.AddInteger(CP->getTargetFlags());
411    break;
412  }
413  case ISD::LOAD: {
414    const LoadSDNode *LD = cast<LoadSDNode>(N);
415    ID.AddInteger(LD->getMemoryVT().getRawBits());
416    ID.AddInteger(LD->getRawSubclassData());
417    break;
418  }
419  case ISD::STORE: {
420    const StoreSDNode *ST = cast<StoreSDNode>(N);
421    ID.AddInteger(ST->getMemoryVT().getRawBits());
422    ID.AddInteger(ST->getRawSubclassData());
423    break;
424  }
425  case ISD::ATOMIC_CMP_SWAP:
426  case ISD::ATOMIC_SWAP:
427  case ISD::ATOMIC_LOAD_ADD:
428  case ISD::ATOMIC_LOAD_SUB:
429  case ISD::ATOMIC_LOAD_AND:
430  case ISD::ATOMIC_LOAD_OR:
431  case ISD::ATOMIC_LOAD_XOR:
432  case ISD::ATOMIC_LOAD_NAND:
433  case ISD::ATOMIC_LOAD_MIN:
434  case ISD::ATOMIC_LOAD_MAX:
435  case ISD::ATOMIC_LOAD_UMIN:
436  case ISD::ATOMIC_LOAD_UMAX: {
437    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
438    ID.AddInteger(AT->getMemoryVT().getRawBits());
439    ID.AddInteger(AT->getRawSubclassData());
440    break;
441  }
442  case ISD::VECTOR_SHUFFLE: {
443    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
444    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
445         i != e; ++i)
446      ID.AddInteger(SVN->getMaskElt(i));
447    break;
448  }
449  case ISD::TargetBlockAddress:
450  case ISD::BlockAddress: {
451    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
452    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
453    break;
454  }
455  } // end switch (N->getOpcode())
456}
457
458/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
459/// data.
460static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
461  AddNodeIDOpcode(ID, N->getOpcode());
462  // Add the return value info.
463  AddNodeIDValueTypes(ID, N->getVTList());
464  // Add the operand info.
465  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
466
467  // Handle SDNode leafs with special info.
468  AddNodeIDCustom(ID, N);
469}
470
471/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
472/// the CSE map that carries volatility, temporalness, indexing mode, and
473/// extension/truncation information.
474///
475static inline unsigned
476encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
477                     bool isNonTemporal) {
478  assert((ConvType & 3) == ConvType &&
479         "ConvType may not require more than 2 bits!");
480  assert((AM & 7) == AM &&
481         "AM may not require more than 3 bits!");
482  return ConvType |
483         (AM << 2) |
484         (isVolatile << 5) |
485         (isNonTemporal << 6);
486}
487
488//===----------------------------------------------------------------------===//
489//                              SelectionDAG Class
490//===----------------------------------------------------------------------===//
491
492/// doNotCSE - Return true if CSE should not be performed for this node.
493static bool doNotCSE(SDNode *N) {
494  if (N->getValueType(0) == MVT::Flag)
495    return true; // Never CSE anything that produces a flag.
496
497  switch (N->getOpcode()) {
498  default: break;
499  case ISD::HANDLENODE:
500  case ISD::EH_LABEL:
501    return true;   // Never CSE these nodes.
502  }
503
504  // Check that remaining values produced are not flags.
505  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
506    if (N->getValueType(i) == MVT::Flag)
507      return true; // Never CSE anything that produces a flag.
508
509  return false;
510}
511
512/// RemoveDeadNodes - This method deletes all unreachable nodes in the
513/// SelectionDAG.
514void SelectionDAG::RemoveDeadNodes() {
515  // Create a dummy node (which is not added to allnodes), that adds a reference
516  // to the root node, preventing it from being deleted.
517  HandleSDNode Dummy(getRoot());
518
519  SmallVector<SDNode*, 128> DeadNodes;
520
521  // Add all obviously-dead nodes to the DeadNodes worklist.
522  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
523    if (I->use_empty())
524      DeadNodes.push_back(I);
525
526  RemoveDeadNodes(DeadNodes);
527
528  // If the root changed (e.g. it was a dead load, update the root).
529  setRoot(Dummy.getValue());
530}
531
532/// RemoveDeadNodes - This method deletes the unreachable nodes in the
533/// given list, and any nodes that become unreachable as a result.
534void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
535                                   DAGUpdateListener *UpdateListener) {
536
537  // Process the worklist, deleting the nodes and adding their uses to the
538  // worklist.
539  while (!DeadNodes.empty()) {
540    SDNode *N = DeadNodes.pop_back_val();
541
542    if (UpdateListener)
543      UpdateListener->NodeDeleted(N, 0);
544
545    // Take the node out of the appropriate CSE map.
546    RemoveNodeFromCSEMaps(N);
547
548    // Next, brutally remove the operand list.  This is safe to do, as there are
549    // no cycles in the graph.
550    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
551      SDUse &Use = *I++;
552      SDNode *Operand = Use.getNode();
553      Use.set(SDValue());
554
555      // Now that we removed this operand, see if there are no uses of it left.
556      if (Operand->use_empty())
557        DeadNodes.push_back(Operand);
558    }
559
560    DeallocateNode(N);
561  }
562}
563
564void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
565  SmallVector<SDNode*, 16> DeadNodes(1, N);
566  RemoveDeadNodes(DeadNodes, UpdateListener);
567}
568
569void SelectionDAG::DeleteNode(SDNode *N) {
570  // First take this out of the appropriate CSE map.
571  RemoveNodeFromCSEMaps(N);
572
573  // Finally, remove uses due to operands of this node, remove from the
574  // AllNodes list, and delete the node.
575  DeleteNodeNotInCSEMaps(N);
576}
577
578void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
579  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
580  assert(N->use_empty() && "Cannot delete a node that is not dead!");
581
582  // Drop all of the operands and decrement used node's use counts.
583  N->DropOperands();
584
585  DeallocateNode(N);
586}
587
588void SelectionDAG::DeallocateNode(SDNode *N) {
589  if (N->OperandsNeedDelete)
590    delete[] N->OperandList;
591
592  // Set the opcode to DELETED_NODE to help catch bugs when node
593  // memory is reallocated.
594  N->NodeType = ISD::DELETED_NODE;
595
596  NodeAllocator.Deallocate(AllNodes.remove(N));
597
598  // Remove the ordering of this node.
599  Ordering->remove(N);
600
601  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
602  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
603  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
604    DbgVals[i]->setIsInvalidated();
605}
606
607/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
608/// correspond to it.  This is useful when we're about to delete or repurpose
609/// the node.  We don't want future request for structurally identical nodes
610/// to return N anymore.
611bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
612  bool Erased = false;
613  switch (N->getOpcode()) {
614  case ISD::EntryToken:
615    llvm_unreachable("EntryToken should not be in CSEMaps!");
616    return false;
617  case ISD::HANDLENODE: return false;  // noop.
618  case ISD::CONDCODE:
619    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
620           "Cond code doesn't exist!");
621    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
622    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
623    break;
624  case ISD::ExternalSymbol:
625    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
626    break;
627  case ISD::TargetExternalSymbol: {
628    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
629    Erased = TargetExternalSymbols.erase(
630               std::pair<std::string,unsigned char>(ESN->getSymbol(),
631                                                    ESN->getTargetFlags()));
632    break;
633  }
634  case ISD::VALUETYPE: {
635    EVT VT = cast<VTSDNode>(N)->getVT();
636    if (VT.isExtended()) {
637      Erased = ExtendedValueTypeNodes.erase(VT);
638    } else {
639      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
640      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
641    }
642    break;
643  }
644  default:
645    // Remove it from the CSE Map.
646    Erased = CSEMap.RemoveNode(N);
647    break;
648  }
649#ifndef NDEBUG
650  // Verify that the node was actually in one of the CSE maps, unless it has a
651  // flag result (which cannot be CSE'd) or is one of the special cases that are
652  // not subject to CSE.
653  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
654      !N->isMachineOpcode() && !doNotCSE(N)) {
655    N->dump(this);
656    dbgs() << "\n";
657    llvm_unreachable("Node is not in map!");
658  }
659#endif
660  return Erased;
661}
662
663/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
664/// maps and modified in place. Add it back to the CSE maps, unless an identical
665/// node already exists, in which case transfer all its users to the existing
666/// node. This transfer can potentially trigger recursive merging.
667///
668void
669SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
670                                       DAGUpdateListener *UpdateListener) {
671  // For node types that aren't CSE'd, just act as if no identical node
672  // already exists.
673  if (!doNotCSE(N)) {
674    SDNode *Existing = CSEMap.GetOrInsertNode(N);
675    if (Existing != N) {
676      // If there was already an existing matching node, use ReplaceAllUsesWith
677      // to replace the dead one with the existing one.  This can cause
678      // recursive merging of other unrelated nodes down the line.
679      ReplaceAllUsesWith(N, Existing, UpdateListener);
680
681      // N is now dead.  Inform the listener if it exists and delete it.
682      if (UpdateListener)
683        UpdateListener->NodeDeleted(N, Existing);
684      DeleteNodeNotInCSEMaps(N);
685      return;
686    }
687  }
688
689  // If the node doesn't already exist, we updated it.  Inform a listener if
690  // it exists.
691  if (UpdateListener)
692    UpdateListener->NodeUpdated(N);
693}
694
695/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
696/// were replaced with those specified.  If this node is never memoized,
697/// return null, otherwise return a pointer to the slot it would take.  If a
698/// node already exists with these operands, the slot will be non-null.
699SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
700                                           void *&InsertPos) {
701  if (doNotCSE(N))
702    return 0;
703
704  SDValue Ops[] = { Op };
705  FoldingSetNodeID ID;
706  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
707  AddNodeIDCustom(ID, N);
708  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
709  return Node;
710}
711
712/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
713/// were replaced with those specified.  If this node is never memoized,
714/// return null, otherwise return a pointer to the slot it would take.  If a
715/// node already exists with these operands, the slot will be non-null.
716SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
717                                           SDValue Op1, SDValue Op2,
718                                           void *&InsertPos) {
719  if (doNotCSE(N))
720    return 0;
721
722  SDValue Ops[] = { Op1, Op2 };
723  FoldingSetNodeID ID;
724  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
725  AddNodeIDCustom(ID, N);
726  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
727  return Node;
728}
729
730
731/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
732/// were replaced with those specified.  If this node is never memoized,
733/// return null, otherwise return a pointer to the slot it would take.  If a
734/// node already exists with these operands, the slot will be non-null.
735SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
736                                           const SDValue *Ops,unsigned NumOps,
737                                           void *&InsertPos) {
738  if (doNotCSE(N))
739    return 0;
740
741  FoldingSetNodeID ID;
742  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
743  AddNodeIDCustom(ID, N);
744  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
745  return Node;
746}
747
748/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
749void SelectionDAG::VerifyNode(SDNode *N) {
750  switch (N->getOpcode()) {
751  default:
752    break;
753  case ISD::BUILD_PAIR: {
754    EVT VT = N->getValueType(0);
755    assert(N->getNumValues() == 1 && "Too many results!");
756    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
757           "Wrong return type!");
758    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
759    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
760           "Mismatched operand types!");
761    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
762           "Wrong operand type!");
763    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
764           "Wrong return type size");
765    break;
766  }
767  case ISD::BUILD_VECTOR: {
768    assert(N->getNumValues() == 1 && "Too many results!");
769    assert(N->getValueType(0).isVector() && "Wrong return type!");
770    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
771           "Wrong number of operands!");
772    EVT EltVT = N->getValueType(0).getVectorElementType();
773    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
774      assert((I->getValueType() == EltVT ||
775             (EltVT.isInteger() && I->getValueType().isInteger() &&
776              EltVT.bitsLE(I->getValueType()))) &&
777            "Wrong operand type!");
778    break;
779  }
780  }
781}
782
783/// getEVTAlignment - Compute the default alignment value for the
784/// given type.
785///
786unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
787  const Type *Ty = VT == MVT::iPTR ?
788                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
789                   VT.getTypeForEVT(*getContext());
790
791  return TLI.getTargetData()->getABITypeAlignment(Ty);
792}
793
794// EntryNode could meaningfully have debug info if we can find it...
795SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
796  : TLI(tli), FLI(fli),
797    EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
798    Root(getEntryNode()), Ordering(0) {
799  AllNodes.push_back(&EntryNode);
800  Ordering = new SDNodeOrdering();
801  DbgInfo = new SDDbgInfo();
802}
803
804void SelectionDAG::init(MachineFunction &mf) {
805  MF = &mf;
806  Context = &mf.getFunction()->getContext();
807}
808
809SelectionDAG::~SelectionDAG() {
810  allnodes_clear();
811  delete Ordering;
812  DbgInfo->clear();
813  delete DbgInfo;
814}
815
816void SelectionDAG::allnodes_clear() {
817  assert(&*AllNodes.begin() == &EntryNode);
818  AllNodes.remove(AllNodes.begin());
819  while (!AllNodes.empty())
820    DeallocateNode(AllNodes.begin());
821}
822
823void SelectionDAG::clear() {
824  allnodes_clear();
825  OperandAllocator.Reset();
826  CSEMap.clear();
827
828  ExtendedValueTypeNodes.clear();
829  ExternalSymbols.clear();
830  TargetExternalSymbols.clear();
831  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
832            static_cast<CondCodeSDNode*>(0));
833  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
834            static_cast<SDNode*>(0));
835
836  EntryNode.UseList = 0;
837  AllNodes.push_back(&EntryNode);
838  Root = getEntryNode();
839  delete Ordering;
840  Ordering = new SDNodeOrdering();
841  DbgInfo->clear();
842  delete DbgInfo;
843  DbgInfo = new SDDbgInfo();
844}
845
846SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
847  return VT.bitsGT(Op.getValueType()) ?
848    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
849    getNode(ISD::TRUNCATE, DL, VT, Op);
850}
851
852SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
853  return VT.bitsGT(Op.getValueType()) ?
854    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
855    getNode(ISD::TRUNCATE, DL, VT, Op);
856}
857
858SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
859  assert(!VT.isVector() &&
860         "getZeroExtendInReg should use the vector element type instead of "
861         "the vector type!");
862  if (Op.getValueType() == VT) return Op;
863  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
864  APInt Imm = APInt::getLowBitsSet(BitWidth,
865                                   VT.getSizeInBits());
866  return getNode(ISD::AND, DL, Op.getValueType(), Op,
867                 getConstant(Imm, Op.getValueType()));
868}
869
870/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
871///
872SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
873  EVT EltVT = VT.getScalarType();
874  SDValue NegOne =
875    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
876  return getNode(ISD::XOR, DL, VT, Val, NegOne);
877}
878
879SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
880  EVT EltVT = VT.getScalarType();
881  assert((EltVT.getSizeInBits() >= 64 ||
882         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
883         "getConstant with a uint64_t value that doesn't fit in the type!");
884  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
885}
886
887SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
888  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
889}
890
891SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
892  assert(VT.isInteger() && "Cannot create FP integer constant!");
893
894  EVT EltVT = VT.getScalarType();
895  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
896         "APInt size does not match type size!");
897
898  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
899  FoldingSetNodeID ID;
900  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
901  ID.AddPointer(&Val);
902  void *IP = 0;
903  SDNode *N = NULL;
904  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
905    if (!VT.isVector())
906      return SDValue(N, 0);
907
908  if (!N) {
909    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
910    CSEMap.InsertNode(N, IP);
911    AllNodes.push_back(N);
912  }
913
914  SDValue Result(N, 0);
915  if (VT.isVector()) {
916    SmallVector<SDValue, 8> Ops;
917    Ops.assign(VT.getVectorNumElements(), Result);
918    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
919  }
920  return Result;
921}
922
923SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
924  return getConstant(Val, TLI.getPointerTy(), isTarget);
925}
926
927
928SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
929  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
930}
931
932SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
933  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
934
935  EVT EltVT = VT.getScalarType();
936
937  // Do the map lookup using the actual bit pattern for the floating point
938  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
939  // we don't have issues with SNANs.
940  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
941  FoldingSetNodeID ID;
942  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
943  ID.AddPointer(&V);
944  void *IP = 0;
945  SDNode *N = NULL;
946  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
947    if (!VT.isVector())
948      return SDValue(N, 0);
949
950  if (!N) {
951    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
952    CSEMap.InsertNode(N, IP);
953    AllNodes.push_back(N);
954  }
955
956  SDValue Result(N, 0);
957  if (VT.isVector()) {
958    SmallVector<SDValue, 8> Ops;
959    Ops.assign(VT.getVectorNumElements(), Result);
960    // FIXME DebugLoc info might be appropriate here
961    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
962  }
963  return Result;
964}
965
966SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
967  EVT EltVT = VT.getScalarType();
968  if (EltVT==MVT::f32)
969    return getConstantFP(APFloat((float)Val), VT, isTarget);
970  else
971    return getConstantFP(APFloat(Val), VT, isTarget);
972}
973
974SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
975                                       EVT VT, int64_t Offset,
976                                       bool isTargetGA,
977                                       unsigned char TargetFlags) {
978  assert((TargetFlags == 0 || isTargetGA) &&
979         "Cannot set target flags on target-independent globals");
980
981  // Truncate (with sign-extension) the offset value to the pointer size.
982  EVT PTy = TLI.getPointerTy();
983  unsigned BitWidth = PTy.getSizeInBits();
984  if (BitWidth < 64)
985    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
986
987  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
988  if (!GVar) {
989    // If GV is an alias then use the aliasee for determining thread-localness.
990    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
991      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
992  }
993
994  unsigned Opc;
995  if (GVar && GVar->isThreadLocal())
996    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
997  else
998    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
999
1000  FoldingSetNodeID ID;
1001  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1002  ID.AddPointer(GV);
1003  ID.AddInteger(Offset);
1004  ID.AddInteger(TargetFlags);
1005  void *IP = 0;
1006  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1007    return SDValue(E, 0);
1008
1009  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, GV, VT,
1010                                                      Offset, TargetFlags);
1011  CSEMap.InsertNode(N, IP);
1012  AllNodes.push_back(N);
1013  return SDValue(N, 0);
1014}
1015
1016SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1017  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1018  FoldingSetNodeID ID;
1019  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1020  ID.AddInteger(FI);
1021  void *IP = 0;
1022  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1023    return SDValue(E, 0);
1024
1025  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1026  CSEMap.InsertNode(N, IP);
1027  AllNodes.push_back(N);
1028  return SDValue(N, 0);
1029}
1030
1031SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1032                                   unsigned char TargetFlags) {
1033  assert((TargetFlags == 0 || isTarget) &&
1034         "Cannot set target flags on target-independent jump tables");
1035  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1036  FoldingSetNodeID ID;
1037  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1038  ID.AddInteger(JTI);
1039  ID.AddInteger(TargetFlags);
1040  void *IP = 0;
1041  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1042    return SDValue(E, 0);
1043
1044  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1045                                                  TargetFlags);
1046  CSEMap.InsertNode(N, IP);
1047  AllNodes.push_back(N);
1048  return SDValue(N, 0);
1049}
1050
1051SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1052                                      unsigned Alignment, int Offset,
1053                                      bool isTarget,
1054                                      unsigned char TargetFlags) {
1055  assert((TargetFlags == 0 || isTarget) &&
1056         "Cannot set target flags on target-independent globals");
1057  if (Alignment == 0)
1058    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1059  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1060  FoldingSetNodeID ID;
1061  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1062  ID.AddInteger(Alignment);
1063  ID.AddInteger(Offset);
1064  ID.AddPointer(C);
1065  ID.AddInteger(TargetFlags);
1066  void *IP = 0;
1067  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1068    return SDValue(E, 0);
1069
1070  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1071                                                     Alignment, TargetFlags);
1072  CSEMap.InsertNode(N, IP);
1073  AllNodes.push_back(N);
1074  return SDValue(N, 0);
1075}
1076
1077
1078SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1079                                      unsigned Alignment, int Offset,
1080                                      bool isTarget,
1081                                      unsigned char TargetFlags) {
1082  assert((TargetFlags == 0 || isTarget) &&
1083         "Cannot set target flags on target-independent globals");
1084  if (Alignment == 0)
1085    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1086  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1087  FoldingSetNodeID ID;
1088  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1089  ID.AddInteger(Alignment);
1090  ID.AddInteger(Offset);
1091  C->AddSelectionDAGCSEId(ID);
1092  ID.AddInteger(TargetFlags);
1093  void *IP = 0;
1094  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1095    return SDValue(E, 0);
1096
1097  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1098                                                     Alignment, TargetFlags);
1099  CSEMap.InsertNode(N, IP);
1100  AllNodes.push_back(N);
1101  return SDValue(N, 0);
1102}
1103
1104SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1105  FoldingSetNodeID ID;
1106  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1107  ID.AddPointer(MBB);
1108  void *IP = 0;
1109  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1110    return SDValue(E, 0);
1111
1112  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1113  CSEMap.InsertNode(N, IP);
1114  AllNodes.push_back(N);
1115  return SDValue(N, 0);
1116}
1117
1118SDValue SelectionDAG::getValueType(EVT VT) {
1119  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1120      ValueTypeNodes.size())
1121    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1122
1123  SDNode *&N = VT.isExtended() ?
1124    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1125
1126  if (N) return SDValue(N, 0);
1127  N = new (NodeAllocator) VTSDNode(VT);
1128  AllNodes.push_back(N);
1129  return SDValue(N, 0);
1130}
1131
1132SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1133  SDNode *&N = ExternalSymbols[Sym];
1134  if (N) return SDValue(N, 0);
1135  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1136  AllNodes.push_back(N);
1137  return SDValue(N, 0);
1138}
1139
1140SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1141                                              unsigned char TargetFlags) {
1142  SDNode *&N =
1143    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1144                                                               TargetFlags)];
1145  if (N) return SDValue(N, 0);
1146  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1147  AllNodes.push_back(N);
1148  return SDValue(N, 0);
1149}
1150
1151SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1152  if ((unsigned)Cond >= CondCodeNodes.size())
1153    CondCodeNodes.resize(Cond+1);
1154
1155  if (CondCodeNodes[Cond] == 0) {
1156    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1157    CondCodeNodes[Cond] = N;
1158    AllNodes.push_back(N);
1159  }
1160
1161  return SDValue(CondCodeNodes[Cond], 0);
1162}
1163
1164// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1165// the shuffle mask M that point at N1 to point at N2, and indices that point
1166// N2 to point at N1.
1167static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1168  std::swap(N1, N2);
1169  int NElts = M.size();
1170  for (int i = 0; i != NElts; ++i) {
1171    if (M[i] >= NElts)
1172      M[i] -= NElts;
1173    else if (M[i] >= 0)
1174      M[i] += NElts;
1175  }
1176}
1177
1178SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1179                                       SDValue N2, const int *Mask) {
1180  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1181  assert(VT.isVector() && N1.getValueType().isVector() &&
1182         "Vector Shuffle VTs must be a vectors");
1183  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1184         && "Vector Shuffle VTs must have same element type");
1185
1186  // Canonicalize shuffle undef, undef -> undef
1187  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1188    return getUNDEF(VT);
1189
1190  // Validate that all indices in Mask are within the range of the elements
1191  // input to the shuffle.
1192  unsigned NElts = VT.getVectorNumElements();
1193  SmallVector<int, 8> MaskVec;
1194  for (unsigned i = 0; i != NElts; ++i) {
1195    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1196    MaskVec.push_back(Mask[i]);
1197  }
1198
1199  // Canonicalize shuffle v, v -> v, undef
1200  if (N1 == N2) {
1201    N2 = getUNDEF(VT);
1202    for (unsigned i = 0; i != NElts; ++i)
1203      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1204  }
1205
1206  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1207  if (N1.getOpcode() == ISD::UNDEF)
1208    commuteShuffle(N1, N2, MaskVec);
1209
1210  // Canonicalize all index into lhs, -> shuffle lhs, undef
1211  // Canonicalize all index into rhs, -> shuffle rhs, undef
1212  bool AllLHS = true, AllRHS = true;
1213  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1214  for (unsigned i = 0; i != NElts; ++i) {
1215    if (MaskVec[i] >= (int)NElts) {
1216      if (N2Undef)
1217        MaskVec[i] = -1;
1218      else
1219        AllLHS = false;
1220    } else if (MaskVec[i] >= 0) {
1221      AllRHS = false;
1222    }
1223  }
1224  if (AllLHS && AllRHS)
1225    return getUNDEF(VT);
1226  if (AllLHS && !N2Undef)
1227    N2 = getUNDEF(VT);
1228  if (AllRHS) {
1229    N1 = getUNDEF(VT);
1230    commuteShuffle(N1, N2, MaskVec);
1231  }
1232
1233  // If Identity shuffle, or all shuffle in to undef, return that node.
1234  bool AllUndef = true;
1235  bool Identity = true;
1236  for (unsigned i = 0; i != NElts; ++i) {
1237    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1238    if (MaskVec[i] >= 0) AllUndef = false;
1239  }
1240  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1241    return N1;
1242  if (AllUndef)
1243    return getUNDEF(VT);
1244
1245  FoldingSetNodeID ID;
1246  SDValue Ops[2] = { N1, N2 };
1247  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1248  for (unsigned i = 0; i != NElts; ++i)
1249    ID.AddInteger(MaskVec[i]);
1250
1251  void* IP = 0;
1252  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1253    return SDValue(E, 0);
1254
1255  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1256  // SDNode doesn't have access to it.  This memory will be "leaked" when
1257  // the node is deallocated, but recovered when the NodeAllocator is released.
1258  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1259  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1260
1261  ShuffleVectorSDNode *N =
1262    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1263  CSEMap.InsertNode(N, IP);
1264  AllNodes.push_back(N);
1265  return SDValue(N, 0);
1266}
1267
1268SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1269                                       SDValue Val, SDValue DTy,
1270                                       SDValue STy, SDValue Rnd, SDValue Sat,
1271                                       ISD::CvtCode Code) {
1272  // If the src and dest types are the same and the conversion is between
1273  // integer types of the same sign or two floats, no conversion is necessary.
1274  if (DTy == STy &&
1275      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1276    return Val;
1277
1278  FoldingSetNodeID ID;
1279  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1280  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1281  void* IP = 0;
1282  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1283    return SDValue(E, 0);
1284
1285  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1286                                                           Code);
1287  CSEMap.InsertNode(N, IP);
1288  AllNodes.push_back(N);
1289  return SDValue(N, 0);
1290}
1291
1292SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1293  FoldingSetNodeID ID;
1294  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1295  ID.AddInteger(RegNo);
1296  void *IP = 0;
1297  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1298    return SDValue(E, 0);
1299
1300  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1301  CSEMap.InsertNode(N, IP);
1302  AllNodes.push_back(N);
1303  return SDValue(N, 0);
1304}
1305
1306SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1307  FoldingSetNodeID ID;
1308  SDValue Ops[] = { Root };
1309  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1310  ID.AddPointer(Label);
1311  void *IP = 0;
1312  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1313    return SDValue(E, 0);
1314
1315  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1316  CSEMap.InsertNode(N, IP);
1317  AllNodes.push_back(N);
1318  return SDValue(N, 0);
1319}
1320
1321
1322SDValue SelectionDAG::getBlockAddress(BlockAddress *BA, EVT VT,
1323                                      bool isTarget,
1324                                      unsigned char TargetFlags) {
1325  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1326
1327  FoldingSetNodeID ID;
1328  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1329  ID.AddPointer(BA);
1330  ID.AddInteger(TargetFlags);
1331  void *IP = 0;
1332  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1333    return SDValue(E, 0);
1334
1335  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1336  CSEMap.InsertNode(N, IP);
1337  AllNodes.push_back(N);
1338  return SDValue(N, 0);
1339}
1340
1341SDValue SelectionDAG::getSrcValue(const Value *V) {
1342  assert((!V || V->getType()->isPointerTy()) &&
1343         "SrcValue is not a pointer?");
1344
1345  FoldingSetNodeID ID;
1346  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1347  ID.AddPointer(V);
1348
1349  void *IP = 0;
1350  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1351    return SDValue(E, 0);
1352
1353  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1354  CSEMap.InsertNode(N, IP);
1355  AllNodes.push_back(N);
1356  return SDValue(N, 0);
1357}
1358
1359/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1360SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1361  FoldingSetNodeID ID;
1362  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1363  ID.AddPointer(MD);
1364
1365  void *IP = 0;
1366  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1367    return SDValue(E, 0);
1368
1369  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1370  CSEMap.InsertNode(N, IP);
1371  AllNodes.push_back(N);
1372  return SDValue(N, 0);
1373}
1374
1375
1376/// getShiftAmountOperand - Return the specified value casted to
1377/// the target's desired shift amount type.
1378SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1379  EVT OpTy = Op.getValueType();
1380  MVT ShTy = TLI.getShiftAmountTy();
1381  if (OpTy == ShTy || OpTy.isVector()) return Op;
1382
1383  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1384  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1385}
1386
1387/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1388/// specified value type.
1389SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1390  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1391  unsigned ByteSize = VT.getStoreSize();
1392  const Type *Ty = VT.getTypeForEVT(*getContext());
1393  unsigned StackAlign =
1394  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1395
1396  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1397  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1398}
1399
1400/// CreateStackTemporary - Create a stack temporary suitable for holding
1401/// either of the specified value types.
1402SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1403  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1404                            VT2.getStoreSizeInBits())/8;
1405  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1406  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1407  const TargetData *TD = TLI.getTargetData();
1408  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1409                            TD->getPrefTypeAlignment(Ty2));
1410
1411  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1412  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1413  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1414}
1415
1416SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1417                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1418  // These setcc operations always fold.
1419  switch (Cond) {
1420  default: break;
1421  case ISD::SETFALSE:
1422  case ISD::SETFALSE2: return getConstant(0, VT);
1423  case ISD::SETTRUE:
1424  case ISD::SETTRUE2:  return getConstant(1, VT);
1425
1426  case ISD::SETOEQ:
1427  case ISD::SETOGT:
1428  case ISD::SETOGE:
1429  case ISD::SETOLT:
1430  case ISD::SETOLE:
1431  case ISD::SETONE:
1432  case ISD::SETO:
1433  case ISD::SETUO:
1434  case ISD::SETUEQ:
1435  case ISD::SETUNE:
1436    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1437    break;
1438  }
1439
1440  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1441    const APInt &C2 = N2C->getAPIntValue();
1442    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1443      const APInt &C1 = N1C->getAPIntValue();
1444
1445      switch (Cond) {
1446      default: llvm_unreachable("Unknown integer setcc!");
1447      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1448      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1449      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1450      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1451      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1452      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1453      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1454      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1455      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1456      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1457      }
1458    }
1459  }
1460  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1461    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1462      // No compile time operations on this type yet.
1463      if (N1C->getValueType(0) == MVT::ppcf128)
1464        return SDValue();
1465
1466      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1467      switch (Cond) {
1468      default: break;
1469      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1470                          return getUNDEF(VT);
1471                        // fall through
1472      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1473      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1474                          return getUNDEF(VT);
1475                        // fall through
1476      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1477                                           R==APFloat::cmpLessThan, VT);
1478      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1479                          return getUNDEF(VT);
1480                        // fall through
1481      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1482      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1483                          return getUNDEF(VT);
1484                        // fall through
1485      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1486      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1487                          return getUNDEF(VT);
1488                        // fall through
1489      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1490                                           R==APFloat::cmpEqual, VT);
1491      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1492                          return getUNDEF(VT);
1493                        // fall through
1494      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1495                                           R==APFloat::cmpEqual, VT);
1496      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1497      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1498      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1499                                           R==APFloat::cmpEqual, VT);
1500      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1501      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1502                                           R==APFloat::cmpLessThan, VT);
1503      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1504                                           R==APFloat::cmpUnordered, VT);
1505      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1506      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1507      }
1508    } else {
1509      // Ensure that the constant occurs on the RHS.
1510      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1511    }
1512  }
1513
1514  // Could not fold it.
1515  return SDValue();
1516}
1517
1518/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1519/// use this predicate to simplify operations downstream.
1520bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1521  // This predicate is not safe for vector operations.
1522  if (Op.getValueType().isVector())
1523    return false;
1524
1525  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1526  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1527}
1528
1529/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1530/// this predicate to simplify operations downstream.  Mask is known to be zero
1531/// for bits that V cannot have.
1532bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1533                                     unsigned Depth) const {
1534  APInt KnownZero, KnownOne;
1535  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1536  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1537  return (KnownZero & Mask) == Mask;
1538}
1539
1540/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1541/// known to be either zero or one and return them in the KnownZero/KnownOne
1542/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1543/// processing.
1544void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1545                                     APInt &KnownZero, APInt &KnownOne,
1546                                     unsigned Depth) const {
1547  unsigned BitWidth = Mask.getBitWidth();
1548  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1549         "Mask size mismatches value type size!");
1550
1551  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1552  if (Depth == 6 || Mask == 0)
1553    return;  // Limit search depth.
1554
1555  APInt KnownZero2, KnownOne2;
1556
1557  switch (Op.getOpcode()) {
1558  case ISD::Constant:
1559    // We know all of the bits for a constant!
1560    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1561    KnownZero = ~KnownOne & Mask;
1562    return;
1563  case ISD::AND:
1564    // If either the LHS or the RHS are Zero, the result is zero.
1565    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1566    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1567                      KnownZero2, KnownOne2, Depth+1);
1568    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1569    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1570
1571    // Output known-1 bits are only known if set in both the LHS & RHS.
1572    KnownOne &= KnownOne2;
1573    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1574    KnownZero |= KnownZero2;
1575    return;
1576  case ISD::OR:
1577    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1578    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1579                      KnownZero2, KnownOne2, Depth+1);
1580    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1581    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1582
1583    // Output known-0 bits are only known if clear in both the LHS & RHS.
1584    KnownZero &= KnownZero2;
1585    // Output known-1 are known to be set if set in either the LHS | RHS.
1586    KnownOne |= KnownOne2;
1587    return;
1588  case ISD::XOR: {
1589    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1590    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1591    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1592    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1593
1594    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1595    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1596    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1597    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1598    KnownZero = KnownZeroOut;
1599    return;
1600  }
1601  case ISD::MUL: {
1602    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1603    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1604    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1605    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1606    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1607
1608    // If low bits are zero in either operand, output low known-0 bits.
1609    // Also compute a conserative estimate for high known-0 bits.
1610    // More trickiness is possible, but this is sufficient for the
1611    // interesting case of alignment computation.
1612    KnownOne.clear();
1613    unsigned TrailZ = KnownZero.countTrailingOnes() +
1614                      KnownZero2.countTrailingOnes();
1615    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1616                               KnownZero2.countLeadingOnes(),
1617                               BitWidth) - BitWidth;
1618
1619    TrailZ = std::min(TrailZ, BitWidth);
1620    LeadZ = std::min(LeadZ, BitWidth);
1621    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1622                APInt::getHighBitsSet(BitWidth, LeadZ);
1623    KnownZero &= Mask;
1624    return;
1625  }
1626  case ISD::UDIV: {
1627    // For the purposes of computing leading zeros we can conservatively
1628    // treat a udiv as a logical right shift by the power of 2 known to
1629    // be less than the denominator.
1630    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1631    ComputeMaskedBits(Op.getOperand(0),
1632                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1633    unsigned LeadZ = KnownZero2.countLeadingOnes();
1634
1635    KnownOne2.clear();
1636    KnownZero2.clear();
1637    ComputeMaskedBits(Op.getOperand(1),
1638                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1639    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1640    if (RHSUnknownLeadingOnes != BitWidth)
1641      LeadZ = std::min(BitWidth,
1642                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1643
1644    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1645    return;
1646  }
1647  case ISD::SELECT:
1648    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1649    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1650    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1651    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1652
1653    // Only known if known in both the LHS and RHS.
1654    KnownOne &= KnownOne2;
1655    KnownZero &= KnownZero2;
1656    return;
1657  case ISD::SELECT_CC:
1658    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1659    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1660    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1661    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1662
1663    // Only known if known in both the LHS and RHS.
1664    KnownOne &= KnownOne2;
1665    KnownZero &= KnownZero2;
1666    return;
1667  case ISD::SADDO:
1668  case ISD::UADDO:
1669  case ISD::SSUBO:
1670  case ISD::USUBO:
1671  case ISD::SMULO:
1672  case ISD::UMULO:
1673    if (Op.getResNo() != 1)
1674      return;
1675    // The boolean result conforms to getBooleanContents.  Fall through.
1676  case ISD::SETCC:
1677    // If we know the result of a setcc has the top bits zero, use this info.
1678    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1679        BitWidth > 1)
1680      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1681    return;
1682  case ISD::SHL:
1683    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1684    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1685      unsigned ShAmt = SA->getZExtValue();
1686
1687      // If the shift count is an invalid immediate, don't do anything.
1688      if (ShAmt >= BitWidth)
1689        return;
1690
1691      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1692                        KnownZero, KnownOne, Depth+1);
1693      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1694      KnownZero <<= ShAmt;
1695      KnownOne  <<= ShAmt;
1696      // low bits known zero.
1697      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1698    }
1699    return;
1700  case ISD::SRL:
1701    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1702    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1703      unsigned ShAmt = SA->getZExtValue();
1704
1705      // If the shift count is an invalid immediate, don't do anything.
1706      if (ShAmt >= BitWidth)
1707        return;
1708
1709      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1710                        KnownZero, KnownOne, Depth+1);
1711      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1712      KnownZero = KnownZero.lshr(ShAmt);
1713      KnownOne  = KnownOne.lshr(ShAmt);
1714
1715      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1716      KnownZero |= HighBits;  // High bits known zero.
1717    }
1718    return;
1719  case ISD::SRA:
1720    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1721      unsigned ShAmt = SA->getZExtValue();
1722
1723      // If the shift count is an invalid immediate, don't do anything.
1724      if (ShAmt >= BitWidth)
1725        return;
1726
1727      APInt InDemandedMask = (Mask << ShAmt);
1728      // If any of the demanded bits are produced by the sign extension, we also
1729      // demand the input sign bit.
1730      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1731      if (HighBits.getBoolValue())
1732        InDemandedMask |= APInt::getSignBit(BitWidth);
1733
1734      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1735                        Depth+1);
1736      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1737      KnownZero = KnownZero.lshr(ShAmt);
1738      KnownOne  = KnownOne.lshr(ShAmt);
1739
1740      // Handle the sign bits.
1741      APInt SignBit = APInt::getSignBit(BitWidth);
1742      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1743
1744      if (KnownZero.intersects(SignBit)) {
1745        KnownZero |= HighBits;  // New bits are known zero.
1746      } else if (KnownOne.intersects(SignBit)) {
1747        KnownOne  |= HighBits;  // New bits are known one.
1748      }
1749    }
1750    return;
1751  case ISD::SIGN_EXTEND_INREG: {
1752    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1753    unsigned EBits = EVT.getScalarType().getSizeInBits();
1754
1755    // Sign extension.  Compute the demanded bits in the result that are not
1756    // present in the input.
1757    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1758
1759    APInt InSignBit = APInt::getSignBit(EBits);
1760    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1761
1762    // If the sign extended bits are demanded, we know that the sign
1763    // bit is demanded.
1764    InSignBit.zext(BitWidth);
1765    if (NewBits.getBoolValue())
1766      InputDemandedBits |= InSignBit;
1767
1768    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1769                      KnownZero, KnownOne, Depth+1);
1770    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1771
1772    // If the sign bit of the input is known set or clear, then we know the
1773    // top bits of the result.
1774    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1775      KnownZero |= NewBits;
1776      KnownOne  &= ~NewBits;
1777    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1778      KnownOne  |= NewBits;
1779      KnownZero &= ~NewBits;
1780    } else {                              // Input sign bit unknown
1781      KnownZero &= ~NewBits;
1782      KnownOne  &= ~NewBits;
1783    }
1784    return;
1785  }
1786  case ISD::CTTZ:
1787  case ISD::CTLZ:
1788  case ISD::CTPOP: {
1789    unsigned LowBits = Log2_32(BitWidth)+1;
1790    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1791    KnownOne.clear();
1792    return;
1793  }
1794  case ISD::LOAD: {
1795    if (ISD::isZEXTLoad(Op.getNode())) {
1796      LoadSDNode *LD = cast<LoadSDNode>(Op);
1797      EVT VT = LD->getMemoryVT();
1798      unsigned MemBits = VT.getScalarType().getSizeInBits();
1799      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1800    }
1801    return;
1802  }
1803  case ISD::ZERO_EXTEND: {
1804    EVT InVT = Op.getOperand(0).getValueType();
1805    unsigned InBits = InVT.getScalarType().getSizeInBits();
1806    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1807    APInt InMask    = Mask;
1808    InMask.trunc(InBits);
1809    KnownZero.trunc(InBits);
1810    KnownOne.trunc(InBits);
1811    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1812    KnownZero.zext(BitWidth);
1813    KnownOne.zext(BitWidth);
1814    KnownZero |= NewBits;
1815    return;
1816  }
1817  case ISD::SIGN_EXTEND: {
1818    EVT InVT = Op.getOperand(0).getValueType();
1819    unsigned InBits = InVT.getScalarType().getSizeInBits();
1820    APInt InSignBit = APInt::getSignBit(InBits);
1821    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1822    APInt InMask = Mask;
1823    InMask.trunc(InBits);
1824
1825    // If any of the sign extended bits are demanded, we know that the sign
1826    // bit is demanded. Temporarily set this bit in the mask for our callee.
1827    if (NewBits.getBoolValue())
1828      InMask |= InSignBit;
1829
1830    KnownZero.trunc(InBits);
1831    KnownOne.trunc(InBits);
1832    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1833
1834    // Note if the sign bit is known to be zero or one.
1835    bool SignBitKnownZero = KnownZero.isNegative();
1836    bool SignBitKnownOne  = KnownOne.isNegative();
1837    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1838           "Sign bit can't be known to be both zero and one!");
1839
1840    // If the sign bit wasn't actually demanded by our caller, we don't
1841    // want it set in the KnownZero and KnownOne result values. Reset the
1842    // mask and reapply it to the result values.
1843    InMask = Mask;
1844    InMask.trunc(InBits);
1845    KnownZero &= InMask;
1846    KnownOne  &= InMask;
1847
1848    KnownZero.zext(BitWidth);
1849    KnownOne.zext(BitWidth);
1850
1851    // If the sign bit is known zero or one, the top bits match.
1852    if (SignBitKnownZero)
1853      KnownZero |= NewBits;
1854    else if (SignBitKnownOne)
1855      KnownOne  |= NewBits;
1856    return;
1857  }
1858  case ISD::ANY_EXTEND: {
1859    EVT InVT = Op.getOperand(0).getValueType();
1860    unsigned InBits = InVT.getScalarType().getSizeInBits();
1861    APInt InMask = Mask;
1862    InMask.trunc(InBits);
1863    KnownZero.trunc(InBits);
1864    KnownOne.trunc(InBits);
1865    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1866    KnownZero.zext(BitWidth);
1867    KnownOne.zext(BitWidth);
1868    return;
1869  }
1870  case ISD::TRUNCATE: {
1871    EVT InVT = Op.getOperand(0).getValueType();
1872    unsigned InBits = InVT.getScalarType().getSizeInBits();
1873    APInt InMask = Mask;
1874    InMask.zext(InBits);
1875    KnownZero.zext(InBits);
1876    KnownOne.zext(InBits);
1877    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1878    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1879    KnownZero.trunc(BitWidth);
1880    KnownOne.trunc(BitWidth);
1881    break;
1882  }
1883  case ISD::AssertZext: {
1884    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1885    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1886    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1887                      KnownOne, Depth+1);
1888    KnownZero |= (~InMask) & Mask;
1889    return;
1890  }
1891  case ISD::FGETSIGN:
1892    // All bits are zero except the low bit.
1893    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1894    return;
1895
1896  case ISD::SUB: {
1897    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1898      // We know that the top bits of C-X are clear if X contains less bits
1899      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1900      // positive if we can prove that X is >= 0 and < 16.
1901      if (CLHS->getAPIntValue().isNonNegative()) {
1902        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1903        // NLZ can't be BitWidth with no sign bit
1904        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1905        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1906                          Depth+1);
1907
1908        // If all of the MaskV bits are known to be zero, then we know the
1909        // output top bits are zero, because we now know that the output is
1910        // from [0-C].
1911        if ((KnownZero2 & MaskV) == MaskV) {
1912          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1913          // Top bits known zero.
1914          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1915        }
1916      }
1917    }
1918  }
1919  // fall through
1920  case ISD::ADD: {
1921    // Output known-0 bits are known if clear or set in both the low clear bits
1922    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1923    // low 3 bits clear.
1924    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1925    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1926    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1927    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1928
1929    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1930    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1931    KnownZeroOut = std::min(KnownZeroOut,
1932                            KnownZero2.countTrailingOnes());
1933
1934    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1935    return;
1936  }
1937  case ISD::SREM:
1938    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1939      const APInt &RA = Rem->getAPIntValue().abs();
1940      if (RA.isPowerOf2()) {
1941        APInt LowBits = RA - 1;
1942        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1943        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1944
1945        // The low bits of the first operand are unchanged by the srem.
1946        KnownZero = KnownZero2 & LowBits;
1947        KnownOne = KnownOne2 & LowBits;
1948
1949        // If the first operand is non-negative or has all low bits zero, then
1950        // the upper bits are all zero.
1951        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1952          KnownZero |= ~LowBits;
1953
1954        // If the first operand is negative and not all low bits are zero, then
1955        // the upper bits are all one.
1956        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1957          KnownOne |= ~LowBits;
1958
1959        KnownZero &= Mask;
1960        KnownOne &= Mask;
1961
1962        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1963      }
1964    }
1965    return;
1966  case ISD::UREM: {
1967    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1968      const APInt &RA = Rem->getAPIntValue();
1969      if (RA.isPowerOf2()) {
1970        APInt LowBits = (RA - 1);
1971        APInt Mask2 = LowBits & Mask;
1972        KnownZero |= ~LowBits & Mask;
1973        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1974        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1975        break;
1976      }
1977    }
1978
1979    // Since the result is less than or equal to either operand, any leading
1980    // zero bits in either operand must also exist in the result.
1981    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1982    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1983                      Depth+1);
1984    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1985                      Depth+1);
1986
1987    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1988                                KnownZero2.countLeadingOnes());
1989    KnownOne.clear();
1990    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1991    return;
1992  }
1993  default:
1994    // Allow the target to implement this method for its nodes.
1995    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1996  case ISD::INTRINSIC_WO_CHAIN:
1997  case ISD::INTRINSIC_W_CHAIN:
1998  case ISD::INTRINSIC_VOID:
1999      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
2000                                         Depth);
2001    }
2002    return;
2003  }
2004}
2005
2006/// ComputeNumSignBits - Return the number of times the sign bit of the
2007/// register is replicated into the other bits.  We know that at least 1 bit
2008/// is always equal to the sign bit (itself), but other cases can give us
2009/// information.  For example, immediately after an "SRA X, 2", we know that
2010/// the top 3 bits are all equal to each other, so we return 3.
2011unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2012  EVT VT = Op.getValueType();
2013  assert(VT.isInteger() && "Invalid VT!");
2014  unsigned VTBits = VT.getScalarType().getSizeInBits();
2015  unsigned Tmp, Tmp2;
2016  unsigned FirstAnswer = 1;
2017
2018  if (Depth == 6)
2019    return 1;  // Limit search depth.
2020
2021  switch (Op.getOpcode()) {
2022  default: break;
2023  case ISD::AssertSext:
2024    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2025    return VTBits-Tmp+1;
2026  case ISD::AssertZext:
2027    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2028    return VTBits-Tmp;
2029
2030  case ISD::Constant: {
2031    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2032    // If negative, return # leading ones.
2033    if (Val.isNegative())
2034      return Val.countLeadingOnes();
2035
2036    // Return # leading zeros.
2037    return Val.countLeadingZeros();
2038  }
2039
2040  case ISD::SIGN_EXTEND:
2041    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2042    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2043
2044  case ISD::SIGN_EXTEND_INREG:
2045    // Max of the input and what this extends.
2046    Tmp =
2047      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2048    Tmp = VTBits-Tmp+1;
2049
2050    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2051    return std::max(Tmp, Tmp2);
2052
2053  case ISD::SRA:
2054    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2055    // SRA X, C   -> adds C sign bits.
2056    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2057      Tmp += C->getZExtValue();
2058      if (Tmp > VTBits) Tmp = VTBits;
2059    }
2060    return Tmp;
2061  case ISD::SHL:
2062    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2063      // shl destroys sign bits.
2064      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2065      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2066          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2067      return Tmp - C->getZExtValue();
2068    }
2069    break;
2070  case ISD::AND:
2071  case ISD::OR:
2072  case ISD::XOR:    // NOT is handled here.
2073    // Logical binary ops preserve the number of sign bits at the worst.
2074    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2075    if (Tmp != 1) {
2076      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2077      FirstAnswer = std::min(Tmp, Tmp2);
2078      // We computed what we know about the sign bits as our first
2079      // answer. Now proceed to the generic code that uses
2080      // ComputeMaskedBits, and pick whichever answer is better.
2081    }
2082    break;
2083
2084  case ISD::SELECT:
2085    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2086    if (Tmp == 1) return 1;  // Early out.
2087    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2088    return std::min(Tmp, Tmp2);
2089
2090  case ISD::SADDO:
2091  case ISD::UADDO:
2092  case ISD::SSUBO:
2093  case ISD::USUBO:
2094  case ISD::SMULO:
2095  case ISD::UMULO:
2096    if (Op.getResNo() != 1)
2097      break;
2098    // The boolean result conforms to getBooleanContents.  Fall through.
2099  case ISD::SETCC:
2100    // If setcc returns 0/-1, all bits are sign bits.
2101    if (TLI.getBooleanContents() ==
2102        TargetLowering::ZeroOrNegativeOneBooleanContent)
2103      return VTBits;
2104    break;
2105  case ISD::ROTL:
2106  case ISD::ROTR:
2107    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2108      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2109
2110      // Handle rotate right by N like a rotate left by 32-N.
2111      if (Op.getOpcode() == ISD::ROTR)
2112        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2113
2114      // If we aren't rotating out all of the known-in sign bits, return the
2115      // number that are left.  This handles rotl(sext(x), 1) for example.
2116      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2117      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2118    }
2119    break;
2120  case ISD::ADD:
2121    // Add can have at most one carry bit.  Thus we know that the output
2122    // is, at worst, one more bit than the inputs.
2123    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2124    if (Tmp == 1) return 1;  // Early out.
2125
2126    // Special case decrementing a value (ADD X, -1):
2127    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2128      if (CRHS->isAllOnesValue()) {
2129        APInt KnownZero, KnownOne;
2130        APInt Mask = APInt::getAllOnesValue(VTBits);
2131        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2132
2133        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2134        // sign bits set.
2135        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2136          return VTBits;
2137
2138        // If we are subtracting one from a positive number, there is no carry
2139        // out of the result.
2140        if (KnownZero.isNegative())
2141          return Tmp;
2142      }
2143
2144    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2145    if (Tmp2 == 1) return 1;
2146      return std::min(Tmp, Tmp2)-1;
2147    break;
2148
2149  case ISD::SUB:
2150    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2151    if (Tmp2 == 1) return 1;
2152
2153    // Handle NEG.
2154    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2155      if (CLHS->isNullValue()) {
2156        APInt KnownZero, KnownOne;
2157        APInt Mask = APInt::getAllOnesValue(VTBits);
2158        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2159        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2160        // sign bits set.
2161        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2162          return VTBits;
2163
2164        // If the input is known to be positive (the sign bit is known clear),
2165        // the output of the NEG has the same number of sign bits as the input.
2166        if (KnownZero.isNegative())
2167          return Tmp2;
2168
2169        // Otherwise, we treat this like a SUB.
2170      }
2171
2172    // Sub can have at most one carry bit.  Thus we know that the output
2173    // is, at worst, one more bit than the inputs.
2174    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2175    if (Tmp == 1) return 1;  // Early out.
2176      return std::min(Tmp, Tmp2)-1;
2177    break;
2178  case ISD::TRUNCATE:
2179    // FIXME: it's tricky to do anything useful for this, but it is an important
2180    // case for targets like X86.
2181    break;
2182  }
2183
2184  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2185  if (Op.getOpcode() == ISD::LOAD) {
2186    LoadSDNode *LD = cast<LoadSDNode>(Op);
2187    unsigned ExtType = LD->getExtensionType();
2188    switch (ExtType) {
2189    default: break;
2190    case ISD::SEXTLOAD:    // '17' bits known
2191      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2192      return VTBits-Tmp+1;
2193    case ISD::ZEXTLOAD:    // '16' bits known
2194      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2195      return VTBits-Tmp;
2196    }
2197  }
2198
2199  // Allow the target to implement this method for its nodes.
2200  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2201      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2202      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2203      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2204    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2205    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2206  }
2207
2208  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2209  // use this information.
2210  APInt KnownZero, KnownOne;
2211  APInt Mask = APInt::getAllOnesValue(VTBits);
2212  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2213
2214  if (KnownZero.isNegative()) {        // sign bit is 0
2215    Mask = KnownZero;
2216  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2217    Mask = KnownOne;
2218  } else {
2219    // Nothing known.
2220    return FirstAnswer;
2221  }
2222
2223  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2224  // the number of identical bits in the top of the input value.
2225  Mask = ~Mask;
2226  Mask <<= Mask.getBitWidth()-VTBits;
2227  // Return # leading zeros.  We use 'min' here in case Val was zero before
2228  // shifting.  We don't want to return '64' as for an i32 "0".
2229  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2230}
2231
2232bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2233  // If we're told that NaNs won't happen, assume they won't.
2234  if (FiniteOnlyFPMath())
2235    return true;
2236
2237  // If the value is a constant, we can obviously see if it is a NaN or not.
2238  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2239    return !C->getValueAPF().isNaN();
2240
2241  // TODO: Recognize more cases here.
2242
2243  return false;
2244}
2245
2246bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2247  // If the value is a constant, we can obviously see if it is a zero or not.
2248  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2249    return !C->isZero();
2250
2251  // TODO: Recognize more cases here.
2252
2253  return false;
2254}
2255
2256bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2257  // Check the obvious case.
2258  if (A == B) return true;
2259
2260  // For for negative and positive zero.
2261  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2262    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2263      if (CA->isZero() && CB->isZero()) return true;
2264
2265  // Otherwise they may not be equal.
2266  return false;
2267}
2268
2269bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2270  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2271  if (!GA) return false;
2272  if (GA->getOffset() != 0) return false;
2273  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2274  if (!GV) return false;
2275  return MF->getMMI().hasDebugInfo();
2276}
2277
2278
2279/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2280/// element of the result of the vector shuffle.
2281SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2282                                          unsigned i) {
2283  EVT VT = N->getValueType(0);
2284  DebugLoc dl = N->getDebugLoc();
2285  if (N->getMaskElt(i) < 0)
2286    return getUNDEF(VT.getVectorElementType());
2287  unsigned Index = N->getMaskElt(i);
2288  unsigned NumElems = VT.getVectorNumElements();
2289  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2290  Index %= NumElems;
2291
2292  if (V.getOpcode() == ISD::BIT_CONVERT) {
2293    V = V.getOperand(0);
2294    EVT VVT = V.getValueType();
2295    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2296      return SDValue();
2297  }
2298  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2299    return (Index == 0) ? V.getOperand(0)
2300                      : getUNDEF(VT.getVectorElementType());
2301  if (V.getOpcode() == ISD::BUILD_VECTOR)
2302    return V.getOperand(Index);
2303  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2304    return getShuffleScalarElt(SVN, Index);
2305  return SDValue();
2306}
2307
2308
2309/// getNode - Gets or creates the specified node.
2310///
2311SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2312  FoldingSetNodeID ID;
2313  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2314  void *IP = 0;
2315  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2316    return SDValue(E, 0);
2317
2318  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2319  CSEMap.InsertNode(N, IP);
2320
2321  AllNodes.push_back(N);
2322#ifndef NDEBUG
2323  VerifyNode(N);
2324#endif
2325  return SDValue(N, 0);
2326}
2327
2328SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2329                              EVT VT, SDValue Operand) {
2330  // Constant fold unary operations with an integer constant operand.
2331  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2332    const APInt &Val = C->getAPIntValue();
2333    switch (Opcode) {
2334    default: break;
2335    case ISD::SIGN_EXTEND:
2336      return getConstant(APInt(Val).sextOrTrunc(VT.getSizeInBits()), VT);
2337    case ISD::ANY_EXTEND:
2338    case ISD::ZERO_EXTEND:
2339    case ISD::TRUNCATE:
2340      return getConstant(APInt(Val).zextOrTrunc(VT.getSizeInBits()), VT);
2341    case ISD::UINT_TO_FP:
2342    case ISD::SINT_TO_FP: {
2343      const uint64_t zero[] = {0, 0};
2344      // No compile time operations on ppcf128.
2345      if (VT == MVT::ppcf128) break;
2346      APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2347      (void)apf.convertFromAPInt(Val,
2348                                 Opcode==ISD::SINT_TO_FP,
2349                                 APFloat::rmNearestTiesToEven);
2350      return getConstantFP(apf, VT);
2351    }
2352    case ISD::BIT_CONVERT:
2353      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2354        return getConstantFP(Val.bitsToFloat(), VT);
2355      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2356        return getConstantFP(Val.bitsToDouble(), VT);
2357      break;
2358    case ISD::BSWAP:
2359      return getConstant(Val.byteSwap(), VT);
2360    case ISD::CTPOP:
2361      return getConstant(Val.countPopulation(), VT);
2362    case ISD::CTLZ:
2363      return getConstant(Val.countLeadingZeros(), VT);
2364    case ISD::CTTZ:
2365      return getConstant(Val.countTrailingZeros(), VT);
2366    }
2367  }
2368
2369  // Constant fold unary operations with a floating point constant operand.
2370  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2371    APFloat V = C->getValueAPF();    // make copy
2372    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2373      switch (Opcode) {
2374      case ISD::FNEG:
2375        V.changeSign();
2376        return getConstantFP(V, VT);
2377      case ISD::FABS:
2378        V.clearSign();
2379        return getConstantFP(V, VT);
2380      case ISD::FP_ROUND:
2381      case ISD::FP_EXTEND: {
2382        bool ignored;
2383        // This can return overflow, underflow, or inexact; we don't care.
2384        // FIXME need to be more flexible about rounding mode.
2385        (void)V.convert(*EVTToAPFloatSemantics(VT),
2386                        APFloat::rmNearestTiesToEven, &ignored);
2387        return getConstantFP(V, VT);
2388      }
2389      case ISD::FP_TO_SINT:
2390      case ISD::FP_TO_UINT: {
2391        integerPart x[2];
2392        bool ignored;
2393        assert(integerPartWidth >= 64);
2394        // FIXME need to be more flexible about rounding mode.
2395        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2396                              Opcode==ISD::FP_TO_SINT,
2397                              APFloat::rmTowardZero, &ignored);
2398        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2399          break;
2400        APInt api(VT.getSizeInBits(), 2, x);
2401        return getConstant(api, VT);
2402      }
2403      case ISD::BIT_CONVERT:
2404        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2405          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2406        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2407          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2408        break;
2409      }
2410    }
2411  }
2412
2413  unsigned OpOpcode = Operand.getNode()->getOpcode();
2414  switch (Opcode) {
2415  case ISD::TokenFactor:
2416  case ISD::MERGE_VALUES:
2417  case ISD::CONCAT_VECTORS:
2418    return Operand;         // Factor, merge or concat of one node?  No need.
2419  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2420  case ISD::FP_EXTEND:
2421    assert(VT.isFloatingPoint() &&
2422           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2423    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2424    assert((!VT.isVector() ||
2425            VT.getVectorNumElements() ==
2426            Operand.getValueType().getVectorNumElements()) &&
2427           "Vector element count mismatch!");
2428    if (Operand.getOpcode() == ISD::UNDEF)
2429      return getUNDEF(VT);
2430    break;
2431  case ISD::SIGN_EXTEND:
2432    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2433           "Invalid SIGN_EXTEND!");
2434    if (Operand.getValueType() == VT) return Operand;   // noop extension
2435    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2436           "Invalid sext node, dst < src!");
2437    assert((!VT.isVector() ||
2438            VT.getVectorNumElements() ==
2439            Operand.getValueType().getVectorNumElements()) &&
2440           "Vector element count mismatch!");
2441    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2442      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2443    break;
2444  case ISD::ZERO_EXTEND:
2445    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2446           "Invalid ZERO_EXTEND!");
2447    if (Operand.getValueType() == VT) return Operand;   // noop extension
2448    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2449           "Invalid zext node, dst < src!");
2450    assert((!VT.isVector() ||
2451            VT.getVectorNumElements() ==
2452            Operand.getValueType().getVectorNumElements()) &&
2453           "Vector element count mismatch!");
2454    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2455      return getNode(ISD::ZERO_EXTEND, DL, VT,
2456                     Operand.getNode()->getOperand(0));
2457    break;
2458  case ISD::ANY_EXTEND:
2459    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2460           "Invalid ANY_EXTEND!");
2461    if (Operand.getValueType() == VT) return Operand;   // noop extension
2462    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2463           "Invalid anyext node, dst < src!");
2464    assert((!VT.isVector() ||
2465            VT.getVectorNumElements() ==
2466            Operand.getValueType().getVectorNumElements()) &&
2467           "Vector element count mismatch!");
2468    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2469      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2470      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2471    break;
2472  case ISD::TRUNCATE:
2473    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2474           "Invalid TRUNCATE!");
2475    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2476    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2477           "Invalid truncate node, src < dst!");
2478    assert((!VT.isVector() ||
2479            VT.getVectorNumElements() ==
2480            Operand.getValueType().getVectorNumElements()) &&
2481           "Vector element count mismatch!");
2482    if (OpOpcode == ISD::TRUNCATE)
2483      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2484    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2485             OpOpcode == ISD::ANY_EXTEND) {
2486      // If the source is smaller than the dest, we still need an extend.
2487      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2488            .bitsLT(VT.getScalarType()))
2489        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2490      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2491        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2492      else
2493        return Operand.getNode()->getOperand(0);
2494    }
2495    break;
2496  case ISD::BIT_CONVERT:
2497    // Basic sanity checking.
2498    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2499           && "Cannot BIT_CONVERT between types of different sizes!");
2500    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2501    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2502      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2503    if (OpOpcode == ISD::UNDEF)
2504      return getUNDEF(VT);
2505    break;
2506  case ISD::SCALAR_TO_VECTOR:
2507    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2508           (VT.getVectorElementType() == Operand.getValueType() ||
2509            (VT.getVectorElementType().isInteger() &&
2510             Operand.getValueType().isInteger() &&
2511             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2512           "Illegal SCALAR_TO_VECTOR node!");
2513    if (OpOpcode == ISD::UNDEF)
2514      return getUNDEF(VT);
2515    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2516    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2517        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2518        Operand.getConstantOperandVal(1) == 0 &&
2519        Operand.getOperand(0).getValueType() == VT)
2520      return Operand.getOperand(0);
2521    break;
2522  case ISD::FNEG:
2523    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2524    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2525      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2526                     Operand.getNode()->getOperand(0));
2527    if (OpOpcode == ISD::FNEG)  // --X -> X
2528      return Operand.getNode()->getOperand(0);
2529    break;
2530  case ISD::FABS:
2531    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2532      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2533    break;
2534  }
2535
2536  SDNode *N;
2537  SDVTList VTs = getVTList(VT);
2538  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2539    FoldingSetNodeID ID;
2540    SDValue Ops[1] = { Operand };
2541    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2542    void *IP = 0;
2543    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2544      return SDValue(E, 0);
2545
2546    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2547    CSEMap.InsertNode(N, IP);
2548  } else {
2549    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2550  }
2551
2552  AllNodes.push_back(N);
2553#ifndef NDEBUG
2554  VerifyNode(N);
2555#endif
2556  return SDValue(N, 0);
2557}
2558
2559SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2560                                             EVT VT,
2561                                             ConstantSDNode *Cst1,
2562                                             ConstantSDNode *Cst2) {
2563  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2564
2565  switch (Opcode) {
2566  case ISD::ADD:  return getConstant(C1 + C2, VT);
2567  case ISD::SUB:  return getConstant(C1 - C2, VT);
2568  case ISD::MUL:  return getConstant(C1 * C2, VT);
2569  case ISD::UDIV:
2570    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2571    break;
2572  case ISD::UREM:
2573    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2574    break;
2575  case ISD::SDIV:
2576    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2577    break;
2578  case ISD::SREM:
2579    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2580    break;
2581  case ISD::AND:  return getConstant(C1 & C2, VT);
2582  case ISD::OR:   return getConstant(C1 | C2, VT);
2583  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2584  case ISD::SHL:  return getConstant(C1 << C2, VT);
2585  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2586  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2587  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2588  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2589  default: break;
2590  }
2591
2592  return SDValue();
2593}
2594
2595SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2596                              SDValue N1, SDValue N2) {
2597  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2598  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2599  switch (Opcode) {
2600  default: break;
2601  case ISD::TokenFactor:
2602    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2603           N2.getValueType() == MVT::Other && "Invalid token factor!");
2604    // Fold trivial token factors.
2605    if (N1.getOpcode() == ISD::EntryToken) return N2;
2606    if (N2.getOpcode() == ISD::EntryToken) return N1;
2607    if (N1 == N2) return N1;
2608    break;
2609  case ISD::CONCAT_VECTORS:
2610    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2611    // one big BUILD_VECTOR.
2612    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2613        N2.getOpcode() == ISD::BUILD_VECTOR) {
2614      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2615      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2616      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2617    }
2618    break;
2619  case ISD::AND:
2620    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2621           N1.getValueType() == VT && "Binary operator types must match!");
2622    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2623    // worth handling here.
2624    if (N2C && N2C->isNullValue())
2625      return N2;
2626    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2627      return N1;
2628    break;
2629  case ISD::OR:
2630  case ISD::XOR:
2631  case ISD::ADD:
2632  case ISD::SUB:
2633    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2634           N1.getValueType() == VT && "Binary operator types must match!");
2635    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2636    // it's worth handling here.
2637    if (N2C && N2C->isNullValue())
2638      return N1;
2639    break;
2640  case ISD::UDIV:
2641  case ISD::UREM:
2642  case ISD::MULHU:
2643  case ISD::MULHS:
2644  case ISD::MUL:
2645  case ISD::SDIV:
2646  case ISD::SREM:
2647    assert(VT.isInteger() && "This operator does not apply to FP types!");
2648    // fall through
2649  case ISD::FADD:
2650  case ISD::FSUB:
2651  case ISD::FMUL:
2652  case ISD::FDIV:
2653  case ISD::FREM:
2654    if (UnsafeFPMath) {
2655      if (Opcode == ISD::FADD) {
2656        // 0+x --> x
2657        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2658          if (CFP->getValueAPF().isZero())
2659            return N2;
2660        // x+0 --> x
2661        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2662          if (CFP->getValueAPF().isZero())
2663            return N1;
2664      } else if (Opcode == ISD::FSUB) {
2665        // x-0 --> x
2666        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2667          if (CFP->getValueAPF().isZero())
2668            return N1;
2669      }
2670    }
2671    assert(N1.getValueType() == N2.getValueType() &&
2672           N1.getValueType() == VT && "Binary operator types must match!");
2673    break;
2674  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2675    assert(N1.getValueType() == VT &&
2676           N1.getValueType().isFloatingPoint() &&
2677           N2.getValueType().isFloatingPoint() &&
2678           "Invalid FCOPYSIGN!");
2679    break;
2680  case ISD::SHL:
2681  case ISD::SRA:
2682  case ISD::SRL:
2683  case ISD::ROTL:
2684  case ISD::ROTR:
2685    assert(VT == N1.getValueType() &&
2686           "Shift operators return type must be the same as their first arg");
2687    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2688           "Shifts only work on integers");
2689
2690    // Always fold shifts of i1 values so the code generator doesn't need to
2691    // handle them.  Since we know the size of the shift has to be less than the
2692    // size of the value, the shift/rotate count is guaranteed to be zero.
2693    if (VT == MVT::i1)
2694      return N1;
2695    if (N2C && N2C->isNullValue())
2696      return N1;
2697    break;
2698  case ISD::FP_ROUND_INREG: {
2699    EVT EVT = cast<VTSDNode>(N2)->getVT();
2700    assert(VT == N1.getValueType() && "Not an inreg round!");
2701    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2702           "Cannot FP_ROUND_INREG integer types");
2703    assert(EVT.isVector() == VT.isVector() &&
2704           "FP_ROUND_INREG type should be vector iff the operand "
2705           "type is vector!");
2706    assert((!EVT.isVector() ||
2707            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2708           "Vector element counts must match in FP_ROUND_INREG");
2709    assert(EVT.bitsLE(VT) && "Not rounding down!");
2710    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2711    break;
2712  }
2713  case ISD::FP_ROUND:
2714    assert(VT.isFloatingPoint() &&
2715           N1.getValueType().isFloatingPoint() &&
2716           VT.bitsLE(N1.getValueType()) &&
2717           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2718    if (N1.getValueType() == VT) return N1;  // noop conversion.
2719    break;
2720  case ISD::AssertSext:
2721  case ISD::AssertZext: {
2722    EVT EVT = cast<VTSDNode>(N2)->getVT();
2723    assert(VT == N1.getValueType() && "Not an inreg extend!");
2724    assert(VT.isInteger() && EVT.isInteger() &&
2725           "Cannot *_EXTEND_INREG FP types");
2726    assert(!EVT.isVector() &&
2727           "AssertSExt/AssertZExt type should be the vector element type "
2728           "rather than the vector type!");
2729    assert(EVT.bitsLE(VT) && "Not extending!");
2730    if (VT == EVT) return N1; // noop assertion.
2731    break;
2732  }
2733  case ISD::SIGN_EXTEND_INREG: {
2734    EVT EVT = cast<VTSDNode>(N2)->getVT();
2735    assert(VT == N1.getValueType() && "Not an inreg extend!");
2736    assert(VT.isInteger() && EVT.isInteger() &&
2737           "Cannot *_EXTEND_INREG FP types");
2738    assert(EVT.isVector() == VT.isVector() &&
2739           "SIGN_EXTEND_INREG type should be vector iff the operand "
2740           "type is vector!");
2741    assert((!EVT.isVector() ||
2742            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2743           "Vector element counts must match in SIGN_EXTEND_INREG");
2744    assert(EVT.bitsLE(VT) && "Not extending!");
2745    if (EVT == VT) return N1;  // Not actually extending
2746
2747    if (N1C) {
2748      APInt Val = N1C->getAPIntValue();
2749      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2750      Val <<= Val.getBitWidth()-FromBits;
2751      Val = Val.ashr(Val.getBitWidth()-FromBits);
2752      return getConstant(Val, VT);
2753    }
2754    break;
2755  }
2756  case ISD::EXTRACT_VECTOR_ELT:
2757    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2758    if (N1.getOpcode() == ISD::UNDEF)
2759      return getUNDEF(VT);
2760
2761    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2762    // expanding copies of large vectors from registers.
2763    if (N2C &&
2764        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2765        N1.getNumOperands() > 0) {
2766      unsigned Factor =
2767        N1.getOperand(0).getValueType().getVectorNumElements();
2768      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2769                     N1.getOperand(N2C->getZExtValue() / Factor),
2770                     getConstant(N2C->getZExtValue() % Factor,
2771                                 N2.getValueType()));
2772    }
2773
2774    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2775    // expanding large vector constants.
2776    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2777      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2778      EVT VEltTy = N1.getValueType().getVectorElementType();
2779      if (Elt.getValueType() != VEltTy) {
2780        // If the vector element type is not legal, the BUILD_VECTOR operands
2781        // are promoted and implicitly truncated.  Make that explicit here.
2782        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2783      }
2784      if (VT != VEltTy) {
2785        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2786        // result is implicitly extended.
2787        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2788      }
2789      return Elt;
2790    }
2791
2792    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2793    // operations are lowered to scalars.
2794    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2795      // If the indices are the same, return the inserted element else
2796      // if the indices are known different, extract the element from
2797      // the original vector.
2798      if (N1.getOperand(2) == N2) {
2799        if (VT == N1.getOperand(1).getValueType())
2800          return N1.getOperand(1);
2801        else
2802          return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2803      } else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2804                 isa<ConstantSDNode>(N2))
2805        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2806    }
2807    break;
2808  case ISD::EXTRACT_ELEMENT:
2809    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2810    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2811           (N1.getValueType().isInteger() == VT.isInteger()) &&
2812           "Wrong types for EXTRACT_ELEMENT!");
2813
2814    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2815    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2816    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2817    if (N1.getOpcode() == ISD::BUILD_PAIR)
2818      return N1.getOperand(N2C->getZExtValue());
2819
2820    // EXTRACT_ELEMENT of a constant int is also very common.
2821    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2822      unsigned ElementSize = VT.getSizeInBits();
2823      unsigned Shift = ElementSize * N2C->getZExtValue();
2824      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2825      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2826    }
2827    break;
2828  case ISD::EXTRACT_SUBVECTOR:
2829    if (N1.getValueType() == VT) // Trivial extraction.
2830      return N1;
2831    break;
2832  }
2833
2834  if (N1C) {
2835    if (N2C) {
2836      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2837      if (SV.getNode()) return SV;
2838    } else {      // Cannonicalize constant to RHS if commutative
2839      if (isCommutativeBinOp(Opcode)) {
2840        std::swap(N1C, N2C);
2841        std::swap(N1, N2);
2842      }
2843    }
2844  }
2845
2846  // Constant fold FP operations.
2847  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2848  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2849  if (N1CFP) {
2850    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2851      // Cannonicalize constant to RHS if commutative
2852      std::swap(N1CFP, N2CFP);
2853      std::swap(N1, N2);
2854    } else if (N2CFP && VT != MVT::ppcf128) {
2855      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2856      APFloat::opStatus s;
2857      switch (Opcode) {
2858      case ISD::FADD:
2859        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2860        if (s != APFloat::opInvalidOp)
2861          return getConstantFP(V1, VT);
2862        break;
2863      case ISD::FSUB:
2864        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2865        if (s!=APFloat::opInvalidOp)
2866          return getConstantFP(V1, VT);
2867        break;
2868      case ISD::FMUL:
2869        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2870        if (s!=APFloat::opInvalidOp)
2871          return getConstantFP(V1, VT);
2872        break;
2873      case ISD::FDIV:
2874        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2875        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2876          return getConstantFP(V1, VT);
2877        break;
2878      case ISD::FREM :
2879        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2880        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2881          return getConstantFP(V1, VT);
2882        break;
2883      case ISD::FCOPYSIGN:
2884        V1.copySign(V2);
2885        return getConstantFP(V1, VT);
2886      default: break;
2887      }
2888    }
2889  }
2890
2891  // Canonicalize an UNDEF to the RHS, even over a constant.
2892  if (N1.getOpcode() == ISD::UNDEF) {
2893    if (isCommutativeBinOp(Opcode)) {
2894      std::swap(N1, N2);
2895    } else {
2896      switch (Opcode) {
2897      case ISD::FP_ROUND_INREG:
2898      case ISD::SIGN_EXTEND_INREG:
2899      case ISD::SUB:
2900      case ISD::FSUB:
2901      case ISD::FDIV:
2902      case ISD::FREM:
2903      case ISD::SRA:
2904        return N1;     // fold op(undef, arg2) -> undef
2905      case ISD::UDIV:
2906      case ISD::SDIV:
2907      case ISD::UREM:
2908      case ISD::SREM:
2909      case ISD::SRL:
2910      case ISD::SHL:
2911        if (!VT.isVector())
2912          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2913        // For vectors, we can't easily build an all zero vector, just return
2914        // the LHS.
2915        return N2;
2916      }
2917    }
2918  }
2919
2920  // Fold a bunch of operators when the RHS is undef.
2921  if (N2.getOpcode() == ISD::UNDEF) {
2922    switch (Opcode) {
2923    case ISD::XOR:
2924      if (N1.getOpcode() == ISD::UNDEF)
2925        // Handle undef ^ undef -> 0 special case. This is a common
2926        // idiom (misuse).
2927        return getConstant(0, VT);
2928      // fallthrough
2929    case ISD::ADD:
2930    case ISD::ADDC:
2931    case ISD::ADDE:
2932    case ISD::SUB:
2933    case ISD::UDIV:
2934    case ISD::SDIV:
2935    case ISD::UREM:
2936    case ISD::SREM:
2937      return N2;       // fold op(arg1, undef) -> undef
2938    case ISD::FADD:
2939    case ISD::FSUB:
2940    case ISD::FMUL:
2941    case ISD::FDIV:
2942    case ISD::FREM:
2943      if (UnsafeFPMath)
2944        return N2;
2945      break;
2946    case ISD::MUL:
2947    case ISD::AND:
2948    case ISD::SRL:
2949    case ISD::SHL:
2950      if (!VT.isVector())
2951        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2952      // For vectors, we can't easily build an all zero vector, just return
2953      // the LHS.
2954      return N1;
2955    case ISD::OR:
2956      if (!VT.isVector())
2957        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2958      // For vectors, we can't easily build an all one vector, just return
2959      // the LHS.
2960      return N1;
2961    case ISD::SRA:
2962      return N1;
2963    }
2964  }
2965
2966  // Memoize this node if possible.
2967  SDNode *N;
2968  SDVTList VTs = getVTList(VT);
2969  if (VT != MVT::Flag) {
2970    SDValue Ops[] = { N1, N2 };
2971    FoldingSetNodeID ID;
2972    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2973    void *IP = 0;
2974    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2975      return SDValue(E, 0);
2976
2977    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2978    CSEMap.InsertNode(N, IP);
2979  } else {
2980    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2981  }
2982
2983  AllNodes.push_back(N);
2984#ifndef NDEBUG
2985  VerifyNode(N);
2986#endif
2987  return SDValue(N, 0);
2988}
2989
2990SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2991                              SDValue N1, SDValue N2, SDValue N3) {
2992  // Perform various simplifications.
2993  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2994  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2995  switch (Opcode) {
2996  case ISD::CONCAT_VECTORS:
2997    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2998    // one big BUILD_VECTOR.
2999    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3000        N2.getOpcode() == ISD::BUILD_VECTOR &&
3001        N3.getOpcode() == ISD::BUILD_VECTOR) {
3002      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
3003      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
3004      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
3005      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3006    }
3007    break;
3008  case ISD::SETCC: {
3009    // Use FoldSetCC to simplify SETCC's.
3010    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3011    if (Simp.getNode()) return Simp;
3012    break;
3013  }
3014  case ISD::SELECT:
3015    if (N1C) {
3016     if (N1C->getZExtValue())
3017        return N2;             // select true, X, Y -> X
3018      else
3019        return N3;             // select false, X, Y -> Y
3020    }
3021
3022    if (N2 == N3) return N2;   // select C, X, X -> X
3023    break;
3024  case ISD::BRCOND:
3025    if (N2C) {
3026      if (N2C->getZExtValue()) // Unconditional branch
3027        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
3028      else
3029        return N1;         // Never-taken branch
3030    }
3031    break;
3032  case ISD::VECTOR_SHUFFLE:
3033    llvm_unreachable("should use getVectorShuffle constructor!");
3034    break;
3035  case ISD::BIT_CONVERT:
3036    // Fold bit_convert nodes from a type to themselves.
3037    if (N1.getValueType() == VT)
3038      return N1;
3039    break;
3040  }
3041
3042  // Memoize node if it doesn't produce a flag.
3043  SDNode *N;
3044  SDVTList VTs = getVTList(VT);
3045  if (VT != MVT::Flag) {
3046    SDValue Ops[] = { N1, N2, N3 };
3047    FoldingSetNodeID ID;
3048    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3049    void *IP = 0;
3050    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3051      return SDValue(E, 0);
3052
3053    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3054    CSEMap.InsertNode(N, IP);
3055  } else {
3056    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3057  }
3058
3059  AllNodes.push_back(N);
3060#ifndef NDEBUG
3061  VerifyNode(N);
3062#endif
3063  return SDValue(N, 0);
3064}
3065
3066SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3067                              SDValue N1, SDValue N2, SDValue N3,
3068                              SDValue N4) {
3069  SDValue Ops[] = { N1, N2, N3, N4 };
3070  return getNode(Opcode, DL, VT, Ops, 4);
3071}
3072
3073SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3074                              SDValue N1, SDValue N2, SDValue N3,
3075                              SDValue N4, SDValue N5) {
3076  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3077  return getNode(Opcode, DL, VT, Ops, 5);
3078}
3079
3080/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3081/// the incoming stack arguments to be loaded from the stack.
3082SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3083  SmallVector<SDValue, 8> ArgChains;
3084
3085  // Include the original chain at the beginning of the list. When this is
3086  // used by target LowerCall hooks, this helps legalize find the
3087  // CALLSEQ_BEGIN node.
3088  ArgChains.push_back(Chain);
3089
3090  // Add a chain value for each stack argument.
3091  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3092       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3093    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3094      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3095        if (FI->getIndex() < 0)
3096          ArgChains.push_back(SDValue(L, 1));
3097
3098  // Build a tokenfactor for all the chains.
3099  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3100                 &ArgChains[0], ArgChains.size());
3101}
3102
3103/// getMemsetValue - Vectorized representation of the memset value
3104/// operand.
3105static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3106                              DebugLoc dl) {
3107  assert(Value.getOpcode() != ISD::UNDEF);
3108
3109  unsigned NumBits = VT.getScalarType().getSizeInBits();
3110  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3111    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3112    unsigned Shift = 8;
3113    for (unsigned i = NumBits; i > 8; i >>= 1) {
3114      Val = (Val << Shift) | Val;
3115      Shift <<= 1;
3116    }
3117    if (VT.isInteger())
3118      return DAG.getConstant(Val, VT);
3119    return DAG.getConstantFP(APFloat(Val), VT);
3120  }
3121
3122  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3123  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3124  unsigned Shift = 8;
3125  for (unsigned i = NumBits; i > 8; i >>= 1) {
3126    Value = DAG.getNode(ISD::OR, dl, VT,
3127                        DAG.getNode(ISD::SHL, dl, VT, Value,
3128                                    DAG.getConstant(Shift,
3129                                                    TLI.getShiftAmountTy())),
3130                        Value);
3131    Shift <<= 1;
3132  }
3133
3134  return Value;
3135}
3136
3137/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3138/// used when a memcpy is turned into a memset when the source is a constant
3139/// string ptr.
3140static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3141                                  const TargetLowering &TLI,
3142                                  std::string &Str, unsigned Offset) {
3143  // Handle vector with all elements zero.
3144  if (Str.empty()) {
3145    if (VT.isInteger())
3146      return DAG.getConstant(0, VT);
3147    else if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
3148             VT.getSimpleVT().SimpleTy == MVT::f64)
3149      return DAG.getConstantFP(0.0, VT);
3150    else if (VT.isVector()) {
3151      unsigned NumElts = VT.getVectorNumElements();
3152      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3153      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3154                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3155                                                             EltVT, NumElts)));
3156    } else
3157      llvm_unreachable("Expected type!");
3158  }
3159
3160  assert(!VT.isVector() && "Can't handle vector type here!");
3161  unsigned NumBits = VT.getSizeInBits();
3162  unsigned MSB = NumBits / 8;
3163  uint64_t Val = 0;
3164  if (TLI.isLittleEndian())
3165    Offset = Offset + MSB - 1;
3166  for (unsigned i = 0; i != MSB; ++i) {
3167    Val = (Val << 8) | (unsigned char)Str[Offset];
3168    Offset += TLI.isLittleEndian() ? -1 : 1;
3169  }
3170  return DAG.getConstant(Val, VT);
3171}
3172
3173/// getMemBasePlusOffset - Returns base and offset node for the
3174///
3175static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3176                                      SelectionDAG &DAG) {
3177  EVT VT = Base.getValueType();
3178  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3179                     VT, Base, DAG.getConstant(Offset, VT));
3180}
3181
3182/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3183///
3184static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3185  unsigned SrcDelta = 0;
3186  GlobalAddressSDNode *G = NULL;
3187  if (Src.getOpcode() == ISD::GlobalAddress)
3188    G = cast<GlobalAddressSDNode>(Src);
3189  else if (Src.getOpcode() == ISD::ADD &&
3190           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3191           Src.getOperand(1).getOpcode() == ISD::Constant) {
3192    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3193    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3194  }
3195  if (!G)
3196    return false;
3197
3198  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3199  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3200    return true;
3201
3202  return false;
3203}
3204
3205/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3206/// to replace the memset / memcpy. Return true if the number of memory ops
3207/// is below the threshold. It returns the types of the sequence of
3208/// memory ops to perform memset / memcpy by reference.
3209static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3210                                     unsigned Limit, uint64_t Size,
3211                                     unsigned DstAlign, unsigned SrcAlign,
3212                                     bool NonScalarIntSafe,
3213                                     SelectionDAG &DAG,
3214                                     const TargetLowering &TLI) {
3215  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3216         "Expecting memcpy / memset source to meet alignment requirement!");
3217  // If 'SrcAlign' is zero, that means the memory operation does not need load
3218  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3219  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3220  // specified alignment of the memory operation. If it is zero, that means
3221  // it's possible to change the alignment of the destination.
3222  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3223                                   NonScalarIntSafe, DAG);
3224
3225  if (VT == MVT::Other) {
3226    if (DstAlign >= TLI.getTargetData()->getPointerPrefAlignment() ||
3227        TLI.allowsUnalignedMemoryAccesses(VT)) {
3228      VT = TLI.getPointerTy();
3229    } else {
3230      switch (DstAlign & 7) {
3231      case 0:  VT = MVT::i64; break;
3232      case 4:  VT = MVT::i32; break;
3233      case 2:  VT = MVT::i16; break;
3234      default: VT = MVT::i8;  break;
3235      }
3236    }
3237
3238    MVT LVT = MVT::i64;
3239    while (!TLI.isTypeLegal(LVT))
3240      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3241    assert(LVT.isInteger());
3242
3243    if (VT.bitsGT(LVT))
3244      VT = LVT;
3245  }
3246
3247  unsigned NumMemOps = 0;
3248  while (Size != 0) {
3249    unsigned VTSize = VT.getSizeInBits() / 8;
3250    while (VTSize > Size) {
3251      // For now, only use non-vector load / store's for the left-over pieces.
3252      if (VT.isVector() || VT.isFloatingPoint()) {
3253        VT = MVT::i64;
3254        while (!TLI.isTypeLegal(VT))
3255          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3256        VTSize = VT.getSizeInBits() / 8;
3257      } else {
3258        // This can result in a type that is not legal on the target, e.g.
3259        // 1 or 2 bytes on PPC.
3260        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3261        VTSize >>= 1;
3262      }
3263    }
3264
3265    if (++NumMemOps > Limit)
3266      return false;
3267    MemOps.push_back(VT);
3268    Size -= VTSize;
3269  }
3270
3271  return true;
3272}
3273
3274static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3275                                       SDValue Chain, SDValue Dst,
3276                                       SDValue Src, uint64_t Size,
3277                                       unsigned Align, bool isVol,
3278                                       bool AlwaysInline,
3279                                       const Value *DstSV, uint64_t DstSVOff,
3280                                       const Value *SrcSV, uint64_t SrcSVOff) {
3281  // Turn a memcpy of undef to nop.
3282  if (Src.getOpcode() == ISD::UNDEF)
3283    return Chain;
3284
3285  // Expand memcpy to a series of load and store ops if the size operand falls
3286  // below a certain threshold.
3287  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3288  std::vector<EVT> MemOps;
3289  uint64_t Limit = -1ULL;
3290  if (!AlwaysInline)
3291    Limit = TLI.getMaxStoresPerMemcpy();
3292  bool DstAlignCanChange = false;
3293  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3294  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3295  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3296    DstAlignCanChange = true;
3297  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3298  if (Align > SrcAlign)
3299    SrcAlign = Align;
3300  std::string Str;
3301  bool CopyFromStr = isMemSrcFromString(Src, Str);
3302  bool isZeroStr = CopyFromStr && Str.empty();
3303  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3304                                (DstAlignCanChange ? 0 : Align),
3305                                (isZeroStr ? 0 : SrcAlign), true, DAG, TLI))
3306    return SDValue();
3307
3308  if (DstAlignCanChange) {
3309    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3310    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3311    if (NewAlign > Align) {
3312      // Give the stack frame object a larger alignment if needed.
3313      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3314        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3315      Align = NewAlign;
3316    }
3317  }
3318
3319  SmallVector<SDValue, 8> OutChains;
3320  unsigned NumMemOps = MemOps.size();
3321  uint64_t SrcOff = 0, DstOff = 0;
3322  for (unsigned i = 0; i != NumMemOps; ++i) {
3323    EVT VT = MemOps[i];
3324    unsigned VTSize = VT.getSizeInBits() / 8;
3325    SDValue Value, Store;
3326
3327    if (CopyFromStr &&
3328        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3329      // It's unlikely a store of a vector immediate can be done in a single
3330      // instruction. It would require a load from a constantpool first.
3331      // We only handle zero vectors here.
3332      // FIXME: Handle other cases where store of vector immediate is done in
3333      // a single instruction.
3334      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3335      Store = DAG.getStore(Chain, dl, Value,
3336                           getMemBasePlusOffset(Dst, DstOff, DAG),
3337                           DstSV, DstSVOff + DstOff, isVol, false, Align);
3338    } else {
3339      // The type might not be legal for the target.  This should only happen
3340      // if the type is smaller than a legal type, as on PPC, so the right
3341      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3342      // to Load/Store if NVT==VT.
3343      // FIXME does the case above also need this?
3344      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3345      assert(NVT.bitsGE(VT));
3346      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3347                             getMemBasePlusOffset(Src, SrcOff, DAG),
3348                             SrcSV, SrcSVOff + SrcOff, VT, isVol, false,
3349                             MinAlign(SrcAlign, SrcOff));
3350      Store = DAG.getTruncStore(Chain, dl, Value,
3351                                getMemBasePlusOffset(Dst, DstOff, DAG),
3352                                DstSV, DstSVOff + DstOff, VT, isVol, false,
3353                                Align);
3354    }
3355    OutChains.push_back(Store);
3356    SrcOff += VTSize;
3357    DstOff += VTSize;
3358  }
3359
3360  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3361                     &OutChains[0], OutChains.size());
3362}
3363
3364static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3365                                        SDValue Chain, SDValue Dst,
3366                                        SDValue Src, uint64_t Size,
3367                                        unsigned Align,  bool isVol,
3368                                        bool AlwaysInline,
3369                                        const Value *DstSV, uint64_t DstSVOff,
3370                                        const Value *SrcSV, uint64_t SrcSVOff) {
3371  // Turn a memmove of undef to nop.
3372  if (Src.getOpcode() == ISD::UNDEF)
3373    return Chain;
3374
3375  // Expand memmove to a series of load and store ops if the size operand falls
3376  // below a certain threshold.
3377  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3378  std::vector<EVT> MemOps;
3379  uint64_t Limit = -1ULL;
3380  if (!AlwaysInline)
3381    Limit = TLI.getMaxStoresPerMemmove();
3382  bool DstAlignCanChange = false;
3383  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3384  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3385  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3386    DstAlignCanChange = true;
3387  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3388  if (Align > SrcAlign)
3389    SrcAlign = Align;
3390
3391  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3392                                (DstAlignCanChange ? 0 : Align),
3393                                SrcAlign, true, DAG, TLI))
3394    return SDValue();
3395
3396  if (DstAlignCanChange) {
3397    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3398    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3399    if (NewAlign > Align) {
3400      // Give the stack frame object a larger alignment if needed.
3401      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3402        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3403      Align = NewAlign;
3404    }
3405  }
3406
3407  uint64_t SrcOff = 0, DstOff = 0;
3408  SmallVector<SDValue, 8> LoadValues;
3409  SmallVector<SDValue, 8> LoadChains;
3410  SmallVector<SDValue, 8> OutChains;
3411  unsigned NumMemOps = MemOps.size();
3412  for (unsigned i = 0; i < NumMemOps; i++) {
3413    EVT VT = MemOps[i];
3414    unsigned VTSize = VT.getSizeInBits() / 8;
3415    SDValue Value, Store;
3416
3417    Value = DAG.getLoad(VT, dl, Chain,
3418                        getMemBasePlusOffset(Src, SrcOff, DAG),
3419                        SrcSV, SrcSVOff + SrcOff, isVol, false, SrcAlign);
3420    LoadValues.push_back(Value);
3421    LoadChains.push_back(Value.getValue(1));
3422    SrcOff += VTSize;
3423  }
3424  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3425                      &LoadChains[0], LoadChains.size());
3426  OutChains.clear();
3427  for (unsigned i = 0; i < NumMemOps; i++) {
3428    EVT VT = MemOps[i];
3429    unsigned VTSize = VT.getSizeInBits() / 8;
3430    SDValue Value, Store;
3431
3432    Store = DAG.getStore(Chain, dl, LoadValues[i],
3433                         getMemBasePlusOffset(Dst, DstOff, DAG),
3434                         DstSV, DstSVOff + DstOff, isVol, false, Align);
3435    OutChains.push_back(Store);
3436    DstOff += VTSize;
3437  }
3438
3439  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3440                     &OutChains[0], OutChains.size());
3441}
3442
3443static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3444                               SDValue Chain, SDValue Dst,
3445                               SDValue Src, uint64_t Size,
3446                               unsigned Align, bool isVol,
3447                               const Value *DstSV, uint64_t DstSVOff) {
3448  // Turn a memset of undef to nop.
3449  if (Src.getOpcode() == ISD::UNDEF)
3450    return Chain;
3451
3452  // Expand memset to a series of load/store ops if the size operand
3453  // falls below a certain threshold.
3454  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3455  std::vector<EVT> MemOps;
3456  bool DstAlignCanChange = false;
3457  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3458  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3459  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3460    DstAlignCanChange = true;
3461  bool NonScalarIntSafe =
3462    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3463  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(),
3464                                Size, (DstAlignCanChange ? 0 : Align), 0,
3465                                NonScalarIntSafe, DAG, TLI))
3466    return SDValue();
3467
3468  if (DstAlignCanChange) {
3469    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3470    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3471    if (NewAlign > Align) {
3472      // Give the stack frame object a larger alignment if needed.
3473      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3474        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3475      Align = NewAlign;
3476    }
3477  }
3478
3479  SmallVector<SDValue, 8> OutChains;
3480  uint64_t DstOff = 0;
3481  unsigned NumMemOps = MemOps.size();
3482  for (unsigned i = 0; i < NumMemOps; i++) {
3483    EVT VT = MemOps[i];
3484    unsigned VTSize = VT.getSizeInBits() / 8;
3485    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3486    SDValue Store = DAG.getStore(Chain, dl, Value,
3487                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3488                                 DstSV, DstSVOff + DstOff, isVol, false, 0);
3489    OutChains.push_back(Store);
3490    DstOff += VTSize;
3491  }
3492
3493  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3494                     &OutChains[0], OutChains.size());
3495}
3496
3497SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3498                                SDValue Src, SDValue Size,
3499                                unsigned Align, bool isVol, bool AlwaysInline,
3500                                const Value *DstSV, uint64_t DstSVOff,
3501                                const Value *SrcSV, uint64_t SrcSVOff) {
3502
3503  // Check to see if we should lower the memcpy to loads and stores first.
3504  // For cases within the target-specified limits, this is the best choice.
3505  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3506  if (ConstantSize) {
3507    // Memcpy with size zero? Just return the original chain.
3508    if (ConstantSize->isNullValue())
3509      return Chain;
3510
3511    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3512                                             ConstantSize->getZExtValue(),Align,
3513                                isVol, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3514    if (Result.getNode())
3515      return Result;
3516  }
3517
3518  // Then check to see if we should lower the memcpy with target-specific
3519  // code. If the target chooses to do this, this is the next best.
3520  SDValue Result =
3521    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3522                                isVol, AlwaysInline,
3523                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3524  if (Result.getNode())
3525    return Result;
3526
3527  // If we really need inline code and the target declined to provide it,
3528  // use a (potentially long) sequence of loads and stores.
3529  if (AlwaysInline) {
3530    assert(ConstantSize && "AlwaysInline requires a constant size!");
3531    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3532                                   ConstantSize->getZExtValue(), Align, isVol,
3533                                   true, DstSV, DstSVOff, SrcSV, SrcSVOff);
3534  }
3535
3536  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3537  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3538  // respect volatile, so they may do things like read or write memory
3539  // beyond the given memory regions. But fixing this isn't easy, and most
3540  // people don't care.
3541
3542  // Emit a library call.
3543  TargetLowering::ArgListTy Args;
3544  TargetLowering::ArgListEntry Entry;
3545  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3546  Entry.Node = Dst; Args.push_back(Entry);
3547  Entry.Node = Src; Args.push_back(Entry);
3548  Entry.Node = Size; Args.push_back(Entry);
3549  // FIXME: pass in DebugLoc
3550  std::pair<SDValue,SDValue> CallResult =
3551    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3552                    false, false, false, false, 0,
3553                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3554                    /*isReturnValueUsed=*/false,
3555                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3556                                      TLI.getPointerTy()),
3557                    Args, *this, dl);
3558  return CallResult.second;
3559}
3560
3561SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3562                                 SDValue Src, SDValue Size,
3563                                 unsigned Align, bool isVol,
3564                                 const Value *DstSV, uint64_t DstSVOff,
3565                                 const Value *SrcSV, uint64_t SrcSVOff) {
3566
3567  // Check to see if we should lower the memmove to loads and stores first.
3568  // For cases within the target-specified limits, this is the best choice.
3569  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3570  if (ConstantSize) {
3571    // Memmove with size zero? Just return the original chain.
3572    if (ConstantSize->isNullValue())
3573      return Chain;
3574
3575    SDValue Result =
3576      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3577                               ConstantSize->getZExtValue(), Align, isVol,
3578                               false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3579    if (Result.getNode())
3580      return Result;
3581  }
3582
3583  // Then check to see if we should lower the memmove with target-specific
3584  // code. If the target chooses to do this, this is the next best.
3585  SDValue Result =
3586    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3587                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3588  if (Result.getNode())
3589    return Result;
3590
3591  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3592  // not be safe.  See memcpy above for more details.
3593
3594  // Emit a library call.
3595  TargetLowering::ArgListTy Args;
3596  TargetLowering::ArgListEntry Entry;
3597  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3598  Entry.Node = Dst; Args.push_back(Entry);
3599  Entry.Node = Src; Args.push_back(Entry);
3600  Entry.Node = Size; Args.push_back(Entry);
3601  // FIXME:  pass in DebugLoc
3602  std::pair<SDValue,SDValue> CallResult =
3603    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3604                    false, false, false, false, 0,
3605                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3606                    /*isReturnValueUsed=*/false,
3607                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3608                                      TLI.getPointerTy()),
3609                    Args, *this, dl);
3610  return CallResult.second;
3611}
3612
3613SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3614                                SDValue Src, SDValue Size,
3615                                unsigned Align, bool isVol,
3616                                const Value *DstSV, uint64_t DstSVOff) {
3617
3618  // Check to see if we should lower the memset to stores first.
3619  // For cases within the target-specified limits, this is the best choice.
3620  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3621  if (ConstantSize) {
3622    // Memset with size zero? Just return the original chain.
3623    if (ConstantSize->isNullValue())
3624      return Chain;
3625
3626    SDValue Result =
3627      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3628                      Align, isVol, DstSV, DstSVOff);
3629
3630    if (Result.getNode())
3631      return Result;
3632  }
3633
3634  // Then check to see if we should lower the memset with target-specific
3635  // code. If the target chooses to do this, this is the next best.
3636  SDValue Result =
3637    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3638                                DstSV, DstSVOff);
3639  if (Result.getNode())
3640    return Result;
3641
3642  // Emit a library call.
3643  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3644  TargetLowering::ArgListTy Args;
3645  TargetLowering::ArgListEntry Entry;
3646  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3647  Args.push_back(Entry);
3648  // Extend or truncate the argument to be an i32 value for the call.
3649  if (Src.getValueType().bitsGT(MVT::i32))
3650    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3651  else
3652    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3653  Entry.Node = Src;
3654  Entry.Ty = Type::getInt32Ty(*getContext());
3655  Entry.isSExt = true;
3656  Args.push_back(Entry);
3657  Entry.Node = Size;
3658  Entry.Ty = IntPtrTy;
3659  Entry.isSExt = false;
3660  Args.push_back(Entry);
3661  // FIXME: pass in DebugLoc
3662  std::pair<SDValue,SDValue> CallResult =
3663    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3664                    false, false, false, false, 0,
3665                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3666                    /*isReturnValueUsed=*/false,
3667                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3668                                      TLI.getPointerTy()),
3669                    Args, *this, dl);
3670  return CallResult.second;
3671}
3672
3673SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3674                                SDValue Chain,
3675                                SDValue Ptr, SDValue Cmp,
3676                                SDValue Swp, const Value* PtrVal,
3677                                unsigned Alignment) {
3678  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3679    Alignment = getEVTAlignment(MemVT);
3680
3681  // Check if the memory reference references a frame index
3682  if (!PtrVal)
3683    if (const FrameIndexSDNode *FI =
3684          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3685      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3686
3687  MachineFunction &MF = getMachineFunction();
3688  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3689
3690  // For now, atomics are considered to be volatile always.
3691  Flags |= MachineMemOperand::MOVolatile;
3692
3693  MachineMemOperand *MMO =
3694    MF.getMachineMemOperand(PtrVal, Flags, 0,
3695                            MemVT.getStoreSize(), Alignment);
3696
3697  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3698}
3699
3700SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3701                                SDValue Chain,
3702                                SDValue Ptr, SDValue Cmp,
3703                                SDValue Swp, MachineMemOperand *MMO) {
3704  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3705  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3706
3707  EVT VT = Cmp.getValueType();
3708
3709  SDVTList VTs = getVTList(VT, MVT::Other);
3710  FoldingSetNodeID ID;
3711  ID.AddInteger(MemVT.getRawBits());
3712  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3713  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3714  void* IP = 0;
3715  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3716    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3717    return SDValue(E, 0);
3718  }
3719  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3720                                               Ptr, Cmp, Swp, MMO);
3721  CSEMap.InsertNode(N, IP);
3722  AllNodes.push_back(N);
3723  return SDValue(N, 0);
3724}
3725
3726SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3727                                SDValue Chain,
3728                                SDValue Ptr, SDValue Val,
3729                                const Value* PtrVal,
3730                                unsigned Alignment) {
3731  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3732    Alignment = getEVTAlignment(MemVT);
3733
3734  // Check if the memory reference references a frame index
3735  if (!PtrVal)
3736    if (const FrameIndexSDNode *FI =
3737          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3738      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3739
3740  MachineFunction &MF = getMachineFunction();
3741  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3742
3743  // For now, atomics are considered to be volatile always.
3744  Flags |= MachineMemOperand::MOVolatile;
3745
3746  MachineMemOperand *MMO =
3747    MF.getMachineMemOperand(PtrVal, Flags, 0,
3748                            MemVT.getStoreSize(), Alignment);
3749
3750  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3751}
3752
3753SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3754                                SDValue Chain,
3755                                SDValue Ptr, SDValue Val,
3756                                MachineMemOperand *MMO) {
3757  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3758          Opcode == ISD::ATOMIC_LOAD_SUB ||
3759          Opcode == ISD::ATOMIC_LOAD_AND ||
3760          Opcode == ISD::ATOMIC_LOAD_OR ||
3761          Opcode == ISD::ATOMIC_LOAD_XOR ||
3762          Opcode == ISD::ATOMIC_LOAD_NAND ||
3763          Opcode == ISD::ATOMIC_LOAD_MIN ||
3764          Opcode == ISD::ATOMIC_LOAD_MAX ||
3765          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3766          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3767          Opcode == ISD::ATOMIC_SWAP) &&
3768         "Invalid Atomic Op");
3769
3770  EVT VT = Val.getValueType();
3771
3772  SDVTList VTs = getVTList(VT, MVT::Other);
3773  FoldingSetNodeID ID;
3774  ID.AddInteger(MemVT.getRawBits());
3775  SDValue Ops[] = {Chain, Ptr, Val};
3776  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3777  void* IP = 0;
3778  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3779    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3780    return SDValue(E, 0);
3781  }
3782  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3783                                               Ptr, Val, MMO);
3784  CSEMap.InsertNode(N, IP);
3785  AllNodes.push_back(N);
3786  return SDValue(N, 0);
3787}
3788
3789/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3790/// Allowed to return something different (and simpler) if Simplify is true.
3791SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3792                                     DebugLoc dl) {
3793  if (NumOps == 1)
3794    return Ops[0];
3795
3796  SmallVector<EVT, 4> VTs;
3797  VTs.reserve(NumOps);
3798  for (unsigned i = 0; i < NumOps; ++i)
3799    VTs.push_back(Ops[i].getValueType());
3800  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3801                 Ops, NumOps);
3802}
3803
3804SDValue
3805SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3806                                  const EVT *VTs, unsigned NumVTs,
3807                                  const SDValue *Ops, unsigned NumOps,
3808                                  EVT MemVT, const Value *srcValue, int SVOff,
3809                                  unsigned Align, bool Vol,
3810                                  bool ReadMem, bool WriteMem) {
3811  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3812                             MemVT, srcValue, SVOff, Align, Vol,
3813                             ReadMem, WriteMem);
3814}
3815
3816SDValue
3817SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3818                                  const SDValue *Ops, unsigned NumOps,
3819                                  EVT MemVT, const Value *srcValue, int SVOff,
3820                                  unsigned Align, bool Vol,
3821                                  bool ReadMem, bool WriteMem) {
3822  if (Align == 0)  // Ensure that codegen never sees alignment 0
3823    Align = getEVTAlignment(MemVT);
3824
3825  MachineFunction &MF = getMachineFunction();
3826  unsigned Flags = 0;
3827  if (WriteMem)
3828    Flags |= MachineMemOperand::MOStore;
3829  if (ReadMem)
3830    Flags |= MachineMemOperand::MOLoad;
3831  if (Vol)
3832    Flags |= MachineMemOperand::MOVolatile;
3833  MachineMemOperand *MMO =
3834    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3835                            MemVT.getStoreSize(), Align);
3836
3837  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3838}
3839
3840SDValue
3841SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3842                                  const SDValue *Ops, unsigned NumOps,
3843                                  EVT MemVT, MachineMemOperand *MMO) {
3844  assert((Opcode == ISD::INTRINSIC_VOID ||
3845          Opcode == ISD::INTRINSIC_W_CHAIN ||
3846          (Opcode <= INT_MAX &&
3847           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3848         "Opcode is not a memory-accessing opcode!");
3849
3850  // Memoize the node unless it returns a flag.
3851  MemIntrinsicSDNode *N;
3852  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3853    FoldingSetNodeID ID;
3854    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3855    void *IP = 0;
3856    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3857      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3858      return SDValue(E, 0);
3859    }
3860
3861    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3862                                               MemVT, MMO);
3863    CSEMap.InsertNode(N, IP);
3864  } else {
3865    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3866                                               MemVT, MMO);
3867  }
3868  AllNodes.push_back(N);
3869  return SDValue(N, 0);
3870}
3871
3872SDValue
3873SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3874                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3875                      SDValue Ptr, SDValue Offset,
3876                      const Value *SV, int SVOffset, EVT MemVT,
3877                      bool isVolatile, bool isNonTemporal,
3878                      unsigned Alignment) {
3879  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3880    Alignment = getEVTAlignment(VT);
3881
3882  // Check if the memory reference references a frame index
3883  if (!SV)
3884    if (const FrameIndexSDNode *FI =
3885          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3886      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3887
3888  MachineFunction &MF = getMachineFunction();
3889  unsigned Flags = MachineMemOperand::MOLoad;
3890  if (isVolatile)
3891    Flags |= MachineMemOperand::MOVolatile;
3892  if (isNonTemporal)
3893    Flags |= MachineMemOperand::MONonTemporal;
3894  MachineMemOperand *MMO =
3895    MF.getMachineMemOperand(SV, Flags, SVOffset,
3896                            MemVT.getStoreSize(), Alignment);
3897  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3898}
3899
3900SDValue
3901SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3902                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3903                      SDValue Ptr, SDValue Offset, EVT MemVT,
3904                      MachineMemOperand *MMO) {
3905  if (VT == MemVT) {
3906    ExtType = ISD::NON_EXTLOAD;
3907  } else if (ExtType == ISD::NON_EXTLOAD) {
3908    assert(VT == MemVT && "Non-extending load from different memory type!");
3909  } else {
3910    // Extending load.
3911    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3912           "Should only be an extending load, not truncating!");
3913    assert(VT.isInteger() == MemVT.isInteger() &&
3914           "Cannot convert from FP to Int or Int -> FP!");
3915    assert(VT.isVector() == MemVT.isVector() &&
3916           "Cannot use trunc store to convert to or from a vector!");
3917    assert((!VT.isVector() ||
3918            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3919           "Cannot use trunc store to change the number of vector elements!");
3920  }
3921
3922  bool Indexed = AM != ISD::UNINDEXED;
3923  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3924         "Unindexed load with an offset!");
3925
3926  SDVTList VTs = Indexed ?
3927    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3928  SDValue Ops[] = { Chain, Ptr, Offset };
3929  FoldingSetNodeID ID;
3930  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3931  ID.AddInteger(MemVT.getRawBits());
3932  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3933                                     MMO->isNonTemporal()));
3934  void *IP = 0;
3935  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3936    cast<LoadSDNode>(E)->refineAlignment(MMO);
3937    return SDValue(E, 0);
3938  }
3939  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
3940                                             MemVT, MMO);
3941  CSEMap.InsertNode(N, IP);
3942  AllNodes.push_back(N);
3943  return SDValue(N, 0);
3944}
3945
3946SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3947                              SDValue Chain, SDValue Ptr,
3948                              const Value *SV, int SVOffset,
3949                              bool isVolatile, bool isNonTemporal,
3950                              unsigned Alignment) {
3951  SDValue Undef = getUNDEF(Ptr.getValueType());
3952  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3953                 SV, SVOffset, VT, isVolatile, isNonTemporal, Alignment);
3954}
3955
3956SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3957                                 SDValue Chain, SDValue Ptr,
3958                                 const Value *SV,
3959                                 int SVOffset, EVT MemVT,
3960                                 bool isVolatile, bool isNonTemporal,
3961                                 unsigned Alignment) {
3962  SDValue Undef = getUNDEF(Ptr.getValueType());
3963  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3964                 SV, SVOffset, MemVT, isVolatile, isNonTemporal, Alignment);
3965}
3966
3967SDValue
3968SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3969                             SDValue Offset, ISD::MemIndexedMode AM) {
3970  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3971  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3972         "Load is already a indexed load!");
3973  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3974                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3975                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3976                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
3977}
3978
3979SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3980                               SDValue Ptr, const Value *SV, int SVOffset,
3981                               bool isVolatile, bool isNonTemporal,
3982                               unsigned Alignment) {
3983  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3984    Alignment = getEVTAlignment(Val.getValueType());
3985
3986  // Check if the memory reference references a frame index
3987  if (!SV)
3988    if (const FrameIndexSDNode *FI =
3989          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3990      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3991
3992  MachineFunction &MF = getMachineFunction();
3993  unsigned Flags = MachineMemOperand::MOStore;
3994  if (isVolatile)
3995    Flags |= MachineMemOperand::MOVolatile;
3996  if (isNonTemporal)
3997    Flags |= MachineMemOperand::MONonTemporal;
3998  MachineMemOperand *MMO =
3999    MF.getMachineMemOperand(SV, Flags, SVOffset,
4000                            Val.getValueType().getStoreSize(), Alignment);
4001
4002  return getStore(Chain, dl, Val, Ptr, MMO);
4003}
4004
4005SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4006                               SDValue Ptr, MachineMemOperand *MMO) {
4007  EVT VT = Val.getValueType();
4008  SDVTList VTs = getVTList(MVT::Other);
4009  SDValue Undef = getUNDEF(Ptr.getValueType());
4010  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4011  FoldingSetNodeID ID;
4012  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4013  ID.AddInteger(VT.getRawBits());
4014  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4015                                     MMO->isNonTemporal()));
4016  void *IP = 0;
4017  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4018    cast<StoreSDNode>(E)->refineAlignment(MMO);
4019    return SDValue(E, 0);
4020  }
4021  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4022                                              false, VT, MMO);
4023  CSEMap.InsertNode(N, IP);
4024  AllNodes.push_back(N);
4025  return SDValue(N, 0);
4026}
4027
4028SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4029                                    SDValue Ptr, const Value *SV,
4030                                    int SVOffset, EVT SVT,
4031                                    bool isVolatile, bool isNonTemporal,
4032                                    unsigned Alignment) {
4033  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4034    Alignment = getEVTAlignment(SVT);
4035
4036  // Check if the memory reference references a frame index
4037  if (!SV)
4038    if (const FrameIndexSDNode *FI =
4039          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
4040      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
4041
4042  MachineFunction &MF = getMachineFunction();
4043  unsigned Flags = MachineMemOperand::MOStore;
4044  if (isVolatile)
4045    Flags |= MachineMemOperand::MOVolatile;
4046  if (isNonTemporal)
4047    Flags |= MachineMemOperand::MONonTemporal;
4048  MachineMemOperand *MMO =
4049    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
4050
4051  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4052}
4053
4054SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4055                                    SDValue Ptr, EVT SVT,
4056                                    MachineMemOperand *MMO) {
4057  EVT VT = Val.getValueType();
4058
4059  if (VT == SVT)
4060    return getStore(Chain, dl, Val, Ptr, MMO);
4061
4062  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4063         "Should only be a truncating store, not extending!");
4064  assert(VT.isInteger() == SVT.isInteger() &&
4065         "Can't do FP-INT conversion!");
4066  assert(VT.isVector() == SVT.isVector() &&
4067         "Cannot use trunc store to convert to or from a vector!");
4068  assert((!VT.isVector() ||
4069          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4070         "Cannot use trunc store to change the number of vector elements!");
4071
4072  SDVTList VTs = getVTList(MVT::Other);
4073  SDValue Undef = getUNDEF(Ptr.getValueType());
4074  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4075  FoldingSetNodeID ID;
4076  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4077  ID.AddInteger(SVT.getRawBits());
4078  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4079                                     MMO->isNonTemporal()));
4080  void *IP = 0;
4081  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4082    cast<StoreSDNode>(E)->refineAlignment(MMO);
4083    return SDValue(E, 0);
4084  }
4085  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4086                                              true, SVT, MMO);
4087  CSEMap.InsertNode(N, IP);
4088  AllNodes.push_back(N);
4089  return SDValue(N, 0);
4090}
4091
4092SDValue
4093SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4094                              SDValue Offset, ISD::MemIndexedMode AM) {
4095  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4096  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4097         "Store is already a indexed store!");
4098  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4099  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4100  FoldingSetNodeID ID;
4101  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4102  ID.AddInteger(ST->getMemoryVT().getRawBits());
4103  ID.AddInteger(ST->getRawSubclassData());
4104  void *IP = 0;
4105  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4106    return SDValue(E, 0);
4107
4108  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4109                                              ST->isTruncatingStore(),
4110                                              ST->getMemoryVT(),
4111                                              ST->getMemOperand());
4112  CSEMap.InsertNode(N, IP);
4113  AllNodes.push_back(N);
4114  return SDValue(N, 0);
4115}
4116
4117SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4118                               SDValue Chain, SDValue Ptr,
4119                               SDValue SV) {
4120  SDValue Ops[] = { Chain, Ptr, SV };
4121  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4122}
4123
4124SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4125                              const SDUse *Ops, unsigned NumOps) {
4126  switch (NumOps) {
4127  case 0: return getNode(Opcode, DL, VT);
4128  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4129  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4130  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4131  default: break;
4132  }
4133
4134  // Copy from an SDUse array into an SDValue array for use with
4135  // the regular getNode logic.
4136  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4137  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4138}
4139
4140SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4141                              const SDValue *Ops, unsigned NumOps) {
4142  switch (NumOps) {
4143  case 0: return getNode(Opcode, DL, VT);
4144  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4145  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4146  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4147  default: break;
4148  }
4149
4150  switch (Opcode) {
4151  default: break;
4152  case ISD::SELECT_CC: {
4153    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4154    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4155           "LHS and RHS of condition must have same type!");
4156    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4157           "True and False arms of SelectCC must have same type!");
4158    assert(Ops[2].getValueType() == VT &&
4159           "select_cc node must be of same type as true and false value!");
4160    break;
4161  }
4162  case ISD::BR_CC: {
4163    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4164    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4165           "LHS/RHS of comparison should match types!");
4166    break;
4167  }
4168  }
4169
4170  // Memoize nodes.
4171  SDNode *N;
4172  SDVTList VTs = getVTList(VT);
4173
4174  if (VT != MVT::Flag) {
4175    FoldingSetNodeID ID;
4176    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4177    void *IP = 0;
4178
4179    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4180      return SDValue(E, 0);
4181
4182    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4183    CSEMap.InsertNode(N, IP);
4184  } else {
4185    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4186  }
4187
4188  AllNodes.push_back(N);
4189#ifndef NDEBUG
4190  VerifyNode(N);
4191#endif
4192  return SDValue(N, 0);
4193}
4194
4195SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4196                              const std::vector<EVT> &ResultTys,
4197                              const SDValue *Ops, unsigned NumOps) {
4198  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4199                 Ops, NumOps);
4200}
4201
4202SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4203                              const EVT *VTs, unsigned NumVTs,
4204                              const SDValue *Ops, unsigned NumOps) {
4205  if (NumVTs == 1)
4206    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4207  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4208}
4209
4210SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4211                              const SDValue *Ops, unsigned NumOps) {
4212  if (VTList.NumVTs == 1)
4213    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4214
4215#if 0
4216  switch (Opcode) {
4217  // FIXME: figure out how to safely handle things like
4218  // int foo(int x) { return 1 << (x & 255); }
4219  // int bar() { return foo(256); }
4220  case ISD::SRA_PARTS:
4221  case ISD::SRL_PARTS:
4222  case ISD::SHL_PARTS:
4223    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4224        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4225      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4226    else if (N3.getOpcode() == ISD::AND)
4227      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4228        // If the and is only masking out bits that cannot effect the shift,
4229        // eliminate the and.
4230        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4231        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4232          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4233      }
4234    break;
4235  }
4236#endif
4237
4238  // Memoize the node unless it returns a flag.
4239  SDNode *N;
4240  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4241    FoldingSetNodeID ID;
4242    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4243    void *IP = 0;
4244    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4245      return SDValue(E, 0);
4246
4247    if (NumOps == 1) {
4248      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4249    } else if (NumOps == 2) {
4250      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4251    } else if (NumOps == 3) {
4252      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4253                                            Ops[2]);
4254    } else {
4255      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4256    }
4257    CSEMap.InsertNode(N, IP);
4258  } else {
4259    if (NumOps == 1) {
4260      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4261    } else if (NumOps == 2) {
4262      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4263    } else if (NumOps == 3) {
4264      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4265                                            Ops[2]);
4266    } else {
4267      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4268    }
4269  }
4270  AllNodes.push_back(N);
4271#ifndef NDEBUG
4272  VerifyNode(N);
4273#endif
4274  return SDValue(N, 0);
4275}
4276
4277SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4278  return getNode(Opcode, DL, VTList, 0, 0);
4279}
4280
4281SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4282                              SDValue N1) {
4283  SDValue Ops[] = { N1 };
4284  return getNode(Opcode, DL, VTList, Ops, 1);
4285}
4286
4287SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4288                              SDValue N1, SDValue N2) {
4289  SDValue Ops[] = { N1, N2 };
4290  return getNode(Opcode, DL, VTList, Ops, 2);
4291}
4292
4293SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4294                              SDValue N1, SDValue N2, SDValue N3) {
4295  SDValue Ops[] = { N1, N2, N3 };
4296  return getNode(Opcode, DL, VTList, Ops, 3);
4297}
4298
4299SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4300                              SDValue N1, SDValue N2, SDValue N3,
4301                              SDValue N4) {
4302  SDValue Ops[] = { N1, N2, N3, N4 };
4303  return getNode(Opcode, DL, VTList, Ops, 4);
4304}
4305
4306SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4307                              SDValue N1, SDValue N2, SDValue N3,
4308                              SDValue N4, SDValue N5) {
4309  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4310  return getNode(Opcode, DL, VTList, Ops, 5);
4311}
4312
4313SDVTList SelectionDAG::getVTList(EVT VT) {
4314  return makeVTList(SDNode::getValueTypeList(VT), 1);
4315}
4316
4317SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4318  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4319       E = VTList.rend(); I != E; ++I)
4320    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4321      return *I;
4322
4323  EVT *Array = Allocator.Allocate<EVT>(2);
4324  Array[0] = VT1;
4325  Array[1] = VT2;
4326  SDVTList Result = makeVTList(Array, 2);
4327  VTList.push_back(Result);
4328  return Result;
4329}
4330
4331SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4332  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4333       E = VTList.rend(); I != E; ++I)
4334    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4335                          I->VTs[2] == VT3)
4336      return *I;
4337
4338  EVT *Array = Allocator.Allocate<EVT>(3);
4339  Array[0] = VT1;
4340  Array[1] = VT2;
4341  Array[2] = VT3;
4342  SDVTList Result = makeVTList(Array, 3);
4343  VTList.push_back(Result);
4344  return Result;
4345}
4346
4347SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4348  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4349       E = VTList.rend(); I != E; ++I)
4350    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4351                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4352      return *I;
4353
4354  EVT *Array = Allocator.Allocate<EVT>(4);
4355  Array[0] = VT1;
4356  Array[1] = VT2;
4357  Array[2] = VT3;
4358  Array[3] = VT4;
4359  SDVTList Result = makeVTList(Array, 4);
4360  VTList.push_back(Result);
4361  return Result;
4362}
4363
4364SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4365  switch (NumVTs) {
4366    case 0: llvm_unreachable("Cannot have nodes without results!");
4367    case 1: return getVTList(VTs[0]);
4368    case 2: return getVTList(VTs[0], VTs[1]);
4369    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4370    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4371    default: break;
4372  }
4373
4374  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4375       E = VTList.rend(); I != E; ++I) {
4376    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4377      continue;
4378
4379    bool NoMatch = false;
4380    for (unsigned i = 2; i != NumVTs; ++i)
4381      if (VTs[i] != I->VTs[i]) {
4382        NoMatch = true;
4383        break;
4384      }
4385    if (!NoMatch)
4386      return *I;
4387  }
4388
4389  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4390  std::copy(VTs, VTs+NumVTs, Array);
4391  SDVTList Result = makeVTList(Array, NumVTs);
4392  VTList.push_back(Result);
4393  return Result;
4394}
4395
4396
4397/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4398/// specified operands.  If the resultant node already exists in the DAG,
4399/// this does not modify the specified node, instead it returns the node that
4400/// already exists.  If the resultant node does not exist in the DAG, the
4401/// input node is returned.  As a degenerate case, if you specify the same
4402/// input operands as the node already has, the input node is returned.
4403SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4404  SDNode *N = InN.getNode();
4405  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4406
4407  // Check to see if there is no change.
4408  if (Op == N->getOperand(0)) return InN;
4409
4410  // See if the modified node already exists.
4411  void *InsertPos = 0;
4412  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4413    return SDValue(Existing, InN.getResNo());
4414
4415  // Nope it doesn't.  Remove the node from its current place in the maps.
4416  if (InsertPos)
4417    if (!RemoveNodeFromCSEMaps(N))
4418      InsertPos = 0;
4419
4420  // Now we update the operands.
4421  N->OperandList[0].set(Op);
4422
4423  // If this gets put into a CSE map, add it.
4424  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4425  return InN;
4426}
4427
4428SDValue SelectionDAG::
4429UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4430  SDNode *N = InN.getNode();
4431  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4432
4433  // Check to see if there is no change.
4434  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4435    return InN;   // No operands changed, just return the input node.
4436
4437  // See if the modified node already exists.
4438  void *InsertPos = 0;
4439  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4440    return SDValue(Existing, InN.getResNo());
4441
4442  // Nope it doesn't.  Remove the node from its current place in the maps.
4443  if (InsertPos)
4444    if (!RemoveNodeFromCSEMaps(N))
4445      InsertPos = 0;
4446
4447  // Now we update the operands.
4448  if (N->OperandList[0] != Op1)
4449    N->OperandList[0].set(Op1);
4450  if (N->OperandList[1] != Op2)
4451    N->OperandList[1].set(Op2);
4452
4453  // If this gets put into a CSE map, add it.
4454  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4455  return InN;
4456}
4457
4458SDValue SelectionDAG::
4459UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4460  SDValue Ops[] = { Op1, Op2, Op3 };
4461  return UpdateNodeOperands(N, Ops, 3);
4462}
4463
4464SDValue SelectionDAG::
4465UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4466                   SDValue Op3, SDValue Op4) {
4467  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4468  return UpdateNodeOperands(N, Ops, 4);
4469}
4470
4471SDValue SelectionDAG::
4472UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4473                   SDValue Op3, SDValue Op4, SDValue Op5) {
4474  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4475  return UpdateNodeOperands(N, Ops, 5);
4476}
4477
4478SDValue SelectionDAG::
4479UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4480  SDNode *N = InN.getNode();
4481  assert(N->getNumOperands() == NumOps &&
4482         "Update with wrong number of operands");
4483
4484  // Check to see if there is no change.
4485  bool AnyChange = false;
4486  for (unsigned i = 0; i != NumOps; ++i) {
4487    if (Ops[i] != N->getOperand(i)) {
4488      AnyChange = true;
4489      break;
4490    }
4491  }
4492
4493  // No operands changed, just return the input node.
4494  if (!AnyChange) return InN;
4495
4496  // See if the modified node already exists.
4497  void *InsertPos = 0;
4498  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4499    return SDValue(Existing, InN.getResNo());
4500
4501  // Nope it doesn't.  Remove the node from its current place in the maps.
4502  if (InsertPos)
4503    if (!RemoveNodeFromCSEMaps(N))
4504      InsertPos = 0;
4505
4506  // Now we update the operands.
4507  for (unsigned i = 0; i != NumOps; ++i)
4508    if (N->OperandList[i] != Ops[i])
4509      N->OperandList[i].set(Ops[i]);
4510
4511  // If this gets put into a CSE map, add it.
4512  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4513  return InN;
4514}
4515
4516/// DropOperands - Release the operands and set this node to have
4517/// zero operands.
4518void SDNode::DropOperands() {
4519  // Unlike the code in MorphNodeTo that does this, we don't need to
4520  // watch for dead nodes here.
4521  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4522    SDUse &Use = *I++;
4523    Use.set(SDValue());
4524  }
4525}
4526
4527/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4528/// machine opcode.
4529///
4530SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4531                                   EVT VT) {
4532  SDVTList VTs = getVTList(VT);
4533  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4534}
4535
4536SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4537                                   EVT VT, SDValue Op1) {
4538  SDVTList VTs = getVTList(VT);
4539  SDValue Ops[] = { Op1 };
4540  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4541}
4542
4543SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4544                                   EVT VT, SDValue Op1,
4545                                   SDValue Op2) {
4546  SDVTList VTs = getVTList(VT);
4547  SDValue Ops[] = { Op1, Op2 };
4548  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4549}
4550
4551SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4552                                   EVT VT, SDValue Op1,
4553                                   SDValue Op2, SDValue Op3) {
4554  SDVTList VTs = getVTList(VT);
4555  SDValue Ops[] = { Op1, Op2, Op3 };
4556  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4557}
4558
4559SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4560                                   EVT VT, const SDValue *Ops,
4561                                   unsigned NumOps) {
4562  SDVTList VTs = getVTList(VT);
4563  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4564}
4565
4566SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4567                                   EVT VT1, EVT VT2, const SDValue *Ops,
4568                                   unsigned NumOps) {
4569  SDVTList VTs = getVTList(VT1, VT2);
4570  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4571}
4572
4573SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4574                                   EVT VT1, EVT VT2) {
4575  SDVTList VTs = getVTList(VT1, VT2);
4576  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4577}
4578
4579SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4580                                   EVT VT1, EVT VT2, EVT VT3,
4581                                   const SDValue *Ops, unsigned NumOps) {
4582  SDVTList VTs = getVTList(VT1, VT2, VT3);
4583  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4584}
4585
4586SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4587                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4588                                   const SDValue *Ops, unsigned NumOps) {
4589  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4590  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4591}
4592
4593SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4594                                   EVT VT1, EVT VT2,
4595                                   SDValue Op1) {
4596  SDVTList VTs = getVTList(VT1, VT2);
4597  SDValue Ops[] = { Op1 };
4598  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4599}
4600
4601SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4602                                   EVT VT1, EVT VT2,
4603                                   SDValue Op1, SDValue Op2) {
4604  SDVTList VTs = getVTList(VT1, VT2);
4605  SDValue Ops[] = { Op1, Op2 };
4606  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4607}
4608
4609SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4610                                   EVT VT1, EVT VT2,
4611                                   SDValue Op1, SDValue Op2,
4612                                   SDValue Op3) {
4613  SDVTList VTs = getVTList(VT1, VT2);
4614  SDValue Ops[] = { Op1, Op2, Op3 };
4615  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4616}
4617
4618SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4619                                   EVT VT1, EVT VT2, EVT VT3,
4620                                   SDValue Op1, SDValue Op2,
4621                                   SDValue Op3) {
4622  SDVTList VTs = getVTList(VT1, VT2, VT3);
4623  SDValue Ops[] = { Op1, Op2, Op3 };
4624  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4625}
4626
4627SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4628                                   SDVTList VTs, const SDValue *Ops,
4629                                   unsigned NumOps) {
4630  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4631  // Reset the NodeID to -1.
4632  N->setNodeId(-1);
4633  return N;
4634}
4635
4636/// MorphNodeTo - This *mutates* the specified node to have the specified
4637/// return type, opcode, and operands.
4638///
4639/// Note that MorphNodeTo returns the resultant node.  If there is already a
4640/// node of the specified opcode and operands, it returns that node instead of
4641/// the current one.  Note that the DebugLoc need not be the same.
4642///
4643/// Using MorphNodeTo is faster than creating a new node and swapping it in
4644/// with ReplaceAllUsesWith both because it often avoids allocating a new
4645/// node, and because it doesn't require CSE recalculation for any of
4646/// the node's users.
4647///
4648SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4649                                  SDVTList VTs, const SDValue *Ops,
4650                                  unsigned NumOps) {
4651  // If an identical node already exists, use it.
4652  void *IP = 0;
4653  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4654    FoldingSetNodeID ID;
4655    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4656    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4657      return ON;
4658  }
4659
4660  if (!RemoveNodeFromCSEMaps(N))
4661    IP = 0;
4662
4663  // Start the morphing.
4664  N->NodeType = Opc;
4665  N->ValueList = VTs.VTs;
4666  N->NumValues = VTs.NumVTs;
4667
4668  // Clear the operands list, updating used nodes to remove this from their
4669  // use list.  Keep track of any operands that become dead as a result.
4670  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4671  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4672    SDUse &Use = *I++;
4673    SDNode *Used = Use.getNode();
4674    Use.set(SDValue());
4675    if (Used->use_empty())
4676      DeadNodeSet.insert(Used);
4677  }
4678
4679  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4680    // Initialize the memory references information.
4681    MN->setMemRefs(0, 0);
4682    // If NumOps is larger than the # of operands we can have in a
4683    // MachineSDNode, reallocate the operand list.
4684    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4685      if (MN->OperandsNeedDelete)
4686        delete[] MN->OperandList;
4687      if (NumOps > array_lengthof(MN->LocalOperands))
4688        // We're creating a final node that will live unmorphed for the
4689        // remainder of the current SelectionDAG iteration, so we can allocate
4690        // the operands directly out of a pool with no recycling metadata.
4691        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4692                         Ops, NumOps);
4693      else
4694        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4695      MN->OperandsNeedDelete = false;
4696    } else
4697      MN->InitOperands(MN->OperandList, Ops, NumOps);
4698  } else {
4699    // If NumOps is larger than the # of operands we currently have, reallocate
4700    // the operand list.
4701    if (NumOps > N->NumOperands) {
4702      if (N->OperandsNeedDelete)
4703        delete[] N->OperandList;
4704      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4705      N->OperandsNeedDelete = true;
4706    } else
4707      N->InitOperands(N->OperandList, Ops, NumOps);
4708  }
4709
4710  // Delete any nodes that are still dead after adding the uses for the
4711  // new operands.
4712  if (!DeadNodeSet.empty()) {
4713    SmallVector<SDNode *, 16> DeadNodes;
4714    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4715         E = DeadNodeSet.end(); I != E; ++I)
4716      if ((*I)->use_empty())
4717        DeadNodes.push_back(*I);
4718    RemoveDeadNodes(DeadNodes);
4719  }
4720
4721  if (IP)
4722    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4723  return N;
4724}
4725
4726
4727/// getMachineNode - These are used for target selectors to create a new node
4728/// with specified return type(s), MachineInstr opcode, and operands.
4729///
4730/// Note that getMachineNode returns the resultant node.  If there is already a
4731/// node of the specified opcode and operands, it returns that node instead of
4732/// the current one.
4733MachineSDNode *
4734SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4735  SDVTList VTs = getVTList(VT);
4736  return getMachineNode(Opcode, dl, VTs, 0, 0);
4737}
4738
4739MachineSDNode *
4740SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4741  SDVTList VTs = getVTList(VT);
4742  SDValue Ops[] = { Op1 };
4743  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4744}
4745
4746MachineSDNode *
4747SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4748                             SDValue Op1, SDValue Op2) {
4749  SDVTList VTs = getVTList(VT);
4750  SDValue Ops[] = { Op1, Op2 };
4751  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4752}
4753
4754MachineSDNode *
4755SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4756                             SDValue Op1, SDValue Op2, SDValue Op3) {
4757  SDVTList VTs = getVTList(VT);
4758  SDValue Ops[] = { Op1, Op2, Op3 };
4759  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4760}
4761
4762MachineSDNode *
4763SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4764                             const SDValue *Ops, unsigned NumOps) {
4765  SDVTList VTs = getVTList(VT);
4766  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4767}
4768
4769MachineSDNode *
4770SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4771  SDVTList VTs = getVTList(VT1, VT2);
4772  return getMachineNode(Opcode, dl, VTs, 0, 0);
4773}
4774
4775MachineSDNode *
4776SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4777                             EVT VT1, EVT VT2, SDValue Op1) {
4778  SDVTList VTs = getVTList(VT1, VT2);
4779  SDValue Ops[] = { Op1 };
4780  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4781}
4782
4783MachineSDNode *
4784SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4785                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4786  SDVTList VTs = getVTList(VT1, VT2);
4787  SDValue Ops[] = { Op1, Op2 };
4788  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4789}
4790
4791MachineSDNode *
4792SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4793                             EVT VT1, EVT VT2, SDValue Op1,
4794                             SDValue Op2, SDValue Op3) {
4795  SDVTList VTs = getVTList(VT1, VT2);
4796  SDValue Ops[] = { Op1, Op2, Op3 };
4797  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4798}
4799
4800MachineSDNode *
4801SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4802                             EVT VT1, EVT VT2,
4803                             const SDValue *Ops, unsigned NumOps) {
4804  SDVTList VTs = getVTList(VT1, VT2);
4805  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4806}
4807
4808MachineSDNode *
4809SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4810                             EVT VT1, EVT VT2, EVT VT3,
4811                             SDValue Op1, SDValue Op2) {
4812  SDVTList VTs = getVTList(VT1, VT2, VT3);
4813  SDValue Ops[] = { Op1, Op2 };
4814  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4815}
4816
4817MachineSDNode *
4818SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4819                             EVT VT1, EVT VT2, EVT VT3,
4820                             SDValue Op1, SDValue Op2, SDValue Op3) {
4821  SDVTList VTs = getVTList(VT1, VT2, VT3);
4822  SDValue Ops[] = { Op1, Op2, Op3 };
4823  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4824}
4825
4826MachineSDNode *
4827SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4828                             EVT VT1, EVT VT2, EVT VT3,
4829                             const SDValue *Ops, unsigned NumOps) {
4830  SDVTList VTs = getVTList(VT1, VT2, VT3);
4831  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4832}
4833
4834MachineSDNode *
4835SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4836                             EVT VT2, EVT VT3, EVT VT4,
4837                             const SDValue *Ops, unsigned NumOps) {
4838  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4839  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4840}
4841
4842MachineSDNode *
4843SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4844                             const std::vector<EVT> &ResultTys,
4845                             const SDValue *Ops, unsigned NumOps) {
4846  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4847  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4848}
4849
4850MachineSDNode *
4851SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4852                             const SDValue *Ops, unsigned NumOps) {
4853  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4854  MachineSDNode *N;
4855  void *IP;
4856
4857  if (DoCSE) {
4858    FoldingSetNodeID ID;
4859    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4860    IP = 0;
4861    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4862      return cast<MachineSDNode>(E);
4863  }
4864
4865  // Allocate a new MachineSDNode.
4866  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
4867
4868  // Initialize the operands list.
4869  if (NumOps > array_lengthof(N->LocalOperands))
4870    // We're creating a final node that will live unmorphed for the
4871    // remainder of the current SelectionDAG iteration, so we can allocate
4872    // the operands directly out of a pool with no recycling metadata.
4873    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4874                    Ops, NumOps);
4875  else
4876    N->InitOperands(N->LocalOperands, Ops, NumOps);
4877  N->OperandsNeedDelete = false;
4878
4879  if (DoCSE)
4880    CSEMap.InsertNode(N, IP);
4881
4882  AllNodes.push_back(N);
4883#ifndef NDEBUG
4884  VerifyNode(N);
4885#endif
4886  return N;
4887}
4888
4889/// getTargetExtractSubreg - A convenience function for creating
4890/// TargetOpcode::EXTRACT_SUBREG nodes.
4891SDValue
4892SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4893                                     SDValue Operand) {
4894  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4895  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4896                                  VT, Operand, SRIdxVal);
4897  return SDValue(Subreg, 0);
4898}
4899
4900/// getTargetInsertSubreg - A convenience function for creating
4901/// TargetOpcode::INSERT_SUBREG nodes.
4902SDValue
4903SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4904                                    SDValue Operand, SDValue Subreg) {
4905  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4906  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4907                                  VT, Operand, Subreg, SRIdxVal);
4908  return SDValue(Result, 0);
4909}
4910
4911/// getNodeIfExists - Get the specified node if it's already available, or
4912/// else return NULL.
4913SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4914                                      const SDValue *Ops, unsigned NumOps) {
4915  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4916    FoldingSetNodeID ID;
4917    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4918    void *IP = 0;
4919    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4920      return E;
4921  }
4922  return NULL;
4923}
4924
4925/// getDbgValue - Creates a SDDbgValue node.
4926///
4927SDDbgValue *
4928SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
4929                          DebugLoc DL, unsigned O) {
4930  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
4931}
4932
4933SDDbgValue *
4934SelectionDAG::getDbgValue(MDNode *MDPtr, Value *C, uint64_t Off,
4935                          DebugLoc DL, unsigned O) {
4936  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
4937}
4938
4939SDDbgValue *
4940SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
4941                          DebugLoc DL, unsigned O) {
4942  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
4943}
4944
4945namespace {
4946
4947/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
4948/// pointed to by a use iterator is deleted, increment the use iterator
4949/// so that it doesn't dangle.
4950///
4951/// This class also manages a "downlink" DAGUpdateListener, to forward
4952/// messages to ReplaceAllUsesWith's callers.
4953///
4954class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
4955  SelectionDAG::DAGUpdateListener *DownLink;
4956  SDNode::use_iterator &UI;
4957  SDNode::use_iterator &UE;
4958
4959  virtual void NodeDeleted(SDNode *N, SDNode *E) {
4960    // Increment the iterator as needed.
4961    while (UI != UE && N == *UI)
4962      ++UI;
4963
4964    // Then forward the message.
4965    if (DownLink) DownLink->NodeDeleted(N, E);
4966  }
4967
4968  virtual void NodeUpdated(SDNode *N) {
4969    // Just forward the message.
4970    if (DownLink) DownLink->NodeUpdated(N);
4971  }
4972
4973public:
4974  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
4975                     SDNode::use_iterator &ui,
4976                     SDNode::use_iterator &ue)
4977    : DownLink(dl), UI(ui), UE(ue) {}
4978};
4979
4980}
4981
4982/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4983/// This can cause recursive merging of nodes in the DAG.
4984///
4985/// This version assumes From has a single result value.
4986///
4987void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4988                                      DAGUpdateListener *UpdateListener) {
4989  SDNode *From = FromN.getNode();
4990  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4991         "Cannot replace with this method!");
4992  assert(From != To.getNode() && "Cannot replace uses of with self");
4993
4994  // Iterate over all the existing uses of From. New uses will be added
4995  // to the beginning of the use list, which we avoid visiting.
4996  // This specifically avoids visiting uses of From that arise while the
4997  // replacement is happening, because any such uses would be the result
4998  // of CSE: If an existing node looks like From after one of its operands
4999  // is replaced by To, we don't want to replace of all its users with To
5000  // too. See PR3018 for more info.
5001  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5002  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5003  while (UI != UE) {
5004    SDNode *User = *UI;
5005
5006    // This node is about to morph, remove its old self from the CSE maps.
5007    RemoveNodeFromCSEMaps(User);
5008
5009    // A user can appear in a use list multiple times, and when this
5010    // happens the uses are usually next to each other in the list.
5011    // To help reduce the number of CSE recomputations, process all
5012    // the uses of this user that we can find this way.
5013    do {
5014      SDUse &Use = UI.getUse();
5015      ++UI;
5016      Use.set(To);
5017    } while (UI != UE && *UI == User);
5018
5019    // Now that we have modified User, add it back to the CSE maps.  If it
5020    // already exists there, recursively merge the results together.
5021    AddModifiedNodeToCSEMaps(User, &Listener);
5022  }
5023}
5024
5025/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5026/// This can cause recursive merging of nodes in the DAG.
5027///
5028/// This version assumes that for each value of From, there is a
5029/// corresponding value in To in the same position with the same type.
5030///
5031void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5032                                      DAGUpdateListener *UpdateListener) {
5033#ifndef NDEBUG
5034  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5035    assert((!From->hasAnyUseOfValue(i) ||
5036            From->getValueType(i) == To->getValueType(i)) &&
5037           "Cannot use this version of ReplaceAllUsesWith!");
5038#endif
5039
5040  // Handle the trivial case.
5041  if (From == To)
5042    return;
5043
5044  // Iterate over just the existing users of From. See the comments in
5045  // the ReplaceAllUsesWith above.
5046  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5047  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5048  while (UI != UE) {
5049    SDNode *User = *UI;
5050
5051    // This node is about to morph, remove its old self from the CSE maps.
5052    RemoveNodeFromCSEMaps(User);
5053
5054    // A user can appear in a use list multiple times, and when this
5055    // happens the uses are usually next to each other in the list.
5056    // To help reduce the number of CSE recomputations, process all
5057    // the uses of this user that we can find this way.
5058    do {
5059      SDUse &Use = UI.getUse();
5060      ++UI;
5061      Use.setNode(To);
5062    } while (UI != UE && *UI == User);
5063
5064    // Now that we have modified User, add it back to the CSE maps.  If it
5065    // already exists there, recursively merge the results together.
5066    AddModifiedNodeToCSEMaps(User, &Listener);
5067  }
5068}
5069
5070/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5071/// This can cause recursive merging of nodes in the DAG.
5072///
5073/// This version can replace From with any result values.  To must match the
5074/// number and types of values returned by From.
5075void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5076                                      const SDValue *To,
5077                                      DAGUpdateListener *UpdateListener) {
5078  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5079    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5080
5081  // Iterate over just the existing users of From. See the comments in
5082  // the ReplaceAllUsesWith above.
5083  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5084  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5085  while (UI != UE) {
5086    SDNode *User = *UI;
5087
5088    // This node is about to morph, remove its old self from the CSE maps.
5089    RemoveNodeFromCSEMaps(User);
5090
5091    // A user can appear in a use list multiple times, and when this
5092    // happens the uses are usually next to each other in the list.
5093    // To help reduce the number of CSE recomputations, process all
5094    // the uses of this user that we can find this way.
5095    do {
5096      SDUse &Use = UI.getUse();
5097      const SDValue &ToOp = To[Use.getResNo()];
5098      ++UI;
5099      Use.set(ToOp);
5100    } while (UI != UE && *UI == User);
5101
5102    // Now that we have modified User, add it back to the CSE maps.  If it
5103    // already exists there, recursively merge the results together.
5104    AddModifiedNodeToCSEMaps(User, &Listener);
5105  }
5106}
5107
5108/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5109/// uses of other values produced by From.getNode() alone.  The Deleted
5110/// vector is handled the same way as for ReplaceAllUsesWith.
5111void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5112                                             DAGUpdateListener *UpdateListener){
5113  // Handle the really simple, really trivial case efficiently.
5114  if (From == To) return;
5115
5116  // Handle the simple, trivial, case efficiently.
5117  if (From.getNode()->getNumValues() == 1) {
5118    ReplaceAllUsesWith(From, To, UpdateListener);
5119    return;
5120  }
5121
5122  // Iterate over just the existing users of From. See the comments in
5123  // the ReplaceAllUsesWith above.
5124  SDNode::use_iterator UI = From.getNode()->use_begin(),
5125                       UE = From.getNode()->use_end();
5126  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5127  while (UI != UE) {
5128    SDNode *User = *UI;
5129    bool UserRemovedFromCSEMaps = false;
5130
5131    // A user can appear in a use list multiple times, and when this
5132    // happens the uses are usually next to each other in the list.
5133    // To help reduce the number of CSE recomputations, process all
5134    // the uses of this user that we can find this way.
5135    do {
5136      SDUse &Use = UI.getUse();
5137
5138      // Skip uses of different values from the same node.
5139      if (Use.getResNo() != From.getResNo()) {
5140        ++UI;
5141        continue;
5142      }
5143
5144      // If this node hasn't been modified yet, it's still in the CSE maps,
5145      // so remove its old self from the CSE maps.
5146      if (!UserRemovedFromCSEMaps) {
5147        RemoveNodeFromCSEMaps(User);
5148        UserRemovedFromCSEMaps = true;
5149      }
5150
5151      ++UI;
5152      Use.set(To);
5153    } while (UI != UE && *UI == User);
5154
5155    // We are iterating over all uses of the From node, so if a use
5156    // doesn't use the specific value, no changes are made.
5157    if (!UserRemovedFromCSEMaps)
5158      continue;
5159
5160    // Now that we have modified User, add it back to the CSE maps.  If it
5161    // already exists there, recursively merge the results together.
5162    AddModifiedNodeToCSEMaps(User, &Listener);
5163  }
5164}
5165
5166namespace {
5167  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5168  /// to record information about a use.
5169  struct UseMemo {
5170    SDNode *User;
5171    unsigned Index;
5172    SDUse *Use;
5173  };
5174
5175  /// operator< - Sort Memos by User.
5176  bool operator<(const UseMemo &L, const UseMemo &R) {
5177    return (intptr_t)L.User < (intptr_t)R.User;
5178  }
5179}
5180
5181/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5182/// uses of other values produced by From.getNode() alone.  The same value
5183/// may appear in both the From and To list.  The Deleted vector is
5184/// handled the same way as for ReplaceAllUsesWith.
5185void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5186                                              const SDValue *To,
5187                                              unsigned Num,
5188                                              DAGUpdateListener *UpdateListener){
5189  // Handle the simple, trivial case efficiently.
5190  if (Num == 1)
5191    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5192
5193  // Read up all the uses and make records of them. This helps
5194  // processing new uses that are introduced during the
5195  // replacement process.
5196  SmallVector<UseMemo, 4> Uses;
5197  for (unsigned i = 0; i != Num; ++i) {
5198    unsigned FromResNo = From[i].getResNo();
5199    SDNode *FromNode = From[i].getNode();
5200    for (SDNode::use_iterator UI = FromNode->use_begin(),
5201         E = FromNode->use_end(); UI != E; ++UI) {
5202      SDUse &Use = UI.getUse();
5203      if (Use.getResNo() == FromResNo) {
5204        UseMemo Memo = { *UI, i, &Use };
5205        Uses.push_back(Memo);
5206      }
5207    }
5208  }
5209
5210  // Sort the uses, so that all the uses from a given User are together.
5211  std::sort(Uses.begin(), Uses.end());
5212
5213  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5214       UseIndex != UseIndexEnd; ) {
5215    // We know that this user uses some value of From.  If it is the right
5216    // value, update it.
5217    SDNode *User = Uses[UseIndex].User;
5218
5219    // This node is about to morph, remove its old self from the CSE maps.
5220    RemoveNodeFromCSEMaps(User);
5221
5222    // The Uses array is sorted, so all the uses for a given User
5223    // are next to each other in the list.
5224    // To help reduce the number of CSE recomputations, process all
5225    // the uses of this user that we can find this way.
5226    do {
5227      unsigned i = Uses[UseIndex].Index;
5228      SDUse &Use = *Uses[UseIndex].Use;
5229      ++UseIndex;
5230
5231      Use.set(To[i]);
5232    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5233
5234    // Now that we have modified User, add it back to the CSE maps.  If it
5235    // already exists there, recursively merge the results together.
5236    AddModifiedNodeToCSEMaps(User, UpdateListener);
5237  }
5238}
5239
5240/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5241/// based on their topological order. It returns the maximum id and a vector
5242/// of the SDNodes* in assigned order by reference.
5243unsigned SelectionDAG::AssignTopologicalOrder() {
5244
5245  unsigned DAGSize = 0;
5246
5247  // SortedPos tracks the progress of the algorithm. Nodes before it are
5248  // sorted, nodes after it are unsorted. When the algorithm completes
5249  // it is at the end of the list.
5250  allnodes_iterator SortedPos = allnodes_begin();
5251
5252  // Visit all the nodes. Move nodes with no operands to the front of
5253  // the list immediately. Annotate nodes that do have operands with their
5254  // operand count. Before we do this, the Node Id fields of the nodes
5255  // may contain arbitrary values. After, the Node Id fields for nodes
5256  // before SortedPos will contain the topological sort index, and the
5257  // Node Id fields for nodes At SortedPos and after will contain the
5258  // count of outstanding operands.
5259  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5260    SDNode *N = I++;
5261    checkForCycles(N);
5262    unsigned Degree = N->getNumOperands();
5263    if (Degree == 0) {
5264      // A node with no uses, add it to the result array immediately.
5265      N->setNodeId(DAGSize++);
5266      allnodes_iterator Q = N;
5267      if (Q != SortedPos)
5268        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5269      assert(SortedPos != AllNodes.end() && "Overran node list");
5270      ++SortedPos;
5271    } else {
5272      // Temporarily use the Node Id as scratch space for the degree count.
5273      N->setNodeId(Degree);
5274    }
5275  }
5276
5277  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5278  // such that by the time the end is reached all nodes will be sorted.
5279  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5280    SDNode *N = I;
5281    checkForCycles(N);
5282    // N is in sorted position, so all its uses have one less operand
5283    // that needs to be sorted.
5284    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5285         UI != UE; ++UI) {
5286      SDNode *P = *UI;
5287      unsigned Degree = P->getNodeId();
5288      assert(Degree != 0 && "Invalid node degree");
5289      --Degree;
5290      if (Degree == 0) {
5291        // All of P's operands are sorted, so P may sorted now.
5292        P->setNodeId(DAGSize++);
5293        if (P != SortedPos)
5294          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5295        assert(SortedPos != AllNodes.end() && "Overran node list");
5296        ++SortedPos;
5297      } else {
5298        // Update P's outstanding operand count.
5299        P->setNodeId(Degree);
5300      }
5301    }
5302    if (I == SortedPos) {
5303#ifndef NDEBUG
5304      SDNode *S = ++I;
5305      dbgs() << "Overran sorted position:\n";
5306      S->dumprFull();
5307#endif
5308      llvm_unreachable(0);
5309    }
5310  }
5311
5312  assert(SortedPos == AllNodes.end() &&
5313         "Topological sort incomplete!");
5314  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5315         "First node in topological sort is not the entry token!");
5316  assert(AllNodes.front().getNodeId() == 0 &&
5317         "First node in topological sort has non-zero id!");
5318  assert(AllNodes.front().getNumOperands() == 0 &&
5319         "First node in topological sort has operands!");
5320  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5321         "Last node in topologic sort has unexpected id!");
5322  assert(AllNodes.back().use_empty() &&
5323         "Last node in topologic sort has users!");
5324  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5325  return DAGSize;
5326}
5327
5328/// AssignOrdering - Assign an order to the SDNode.
5329void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5330  assert(SD && "Trying to assign an order to a null node!");
5331  Ordering->add(SD, Order);
5332}
5333
5334/// GetOrdering - Get the order for the SDNode.
5335unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5336  assert(SD && "Trying to get the order of a null node!");
5337  return Ordering->getOrder(SD);
5338}
5339
5340/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5341/// value is produced by SD.
5342void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD) {
5343  DbgInfo->add(DB, SD);
5344  if (SD)
5345    SD->setHasDebugValue(true);
5346}
5347
5348//===----------------------------------------------------------------------===//
5349//                              SDNode Class
5350//===----------------------------------------------------------------------===//
5351
5352HandleSDNode::~HandleSDNode() {
5353  DropOperands();
5354}
5355
5356GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5357                                         EVT VT, int64_t o, unsigned char TF)
5358  : SDNode(Opc, DebugLoc(), getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5359  TheGlobal = const_cast<GlobalValue*>(GA);
5360}
5361
5362MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5363                     MachineMemOperand *mmo)
5364 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5365  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5366                                      MMO->isNonTemporal());
5367  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5368  assert(isNonTemporal() == MMO->isNonTemporal() &&
5369         "Non-temporal encoding error!");
5370  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5371}
5372
5373MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5374                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5375                     MachineMemOperand *mmo)
5376   : SDNode(Opc, dl, VTs, Ops, NumOps),
5377     MemoryVT(memvt), MMO(mmo) {
5378  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5379                                      MMO->isNonTemporal());
5380  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5381  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5382}
5383
5384/// Profile - Gather unique data for the node.
5385///
5386void SDNode::Profile(FoldingSetNodeID &ID) const {
5387  AddNodeIDNode(ID, this);
5388}
5389
5390namespace {
5391  struct EVTArray {
5392    std::vector<EVT> VTs;
5393
5394    EVTArray() {
5395      VTs.reserve(MVT::LAST_VALUETYPE);
5396      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5397        VTs.push_back(MVT((MVT::SimpleValueType)i));
5398    }
5399  };
5400}
5401
5402static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5403static ManagedStatic<EVTArray> SimpleVTArray;
5404static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5405
5406/// getValueTypeList - Return a pointer to the specified value type.
5407///
5408const EVT *SDNode::getValueTypeList(EVT VT) {
5409  if (VT.isExtended()) {
5410    sys::SmartScopedLock<true> Lock(*VTMutex);
5411    return &(*EVTs->insert(VT).first);
5412  } else {
5413    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5414  }
5415}
5416
5417/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5418/// indicated value.  This method ignores uses of other values defined by this
5419/// operation.
5420bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5421  assert(Value < getNumValues() && "Bad value!");
5422
5423  // TODO: Only iterate over uses of a given value of the node
5424  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5425    if (UI.getUse().getResNo() == Value) {
5426      if (NUses == 0)
5427        return false;
5428      --NUses;
5429    }
5430  }
5431
5432  // Found exactly the right number of uses?
5433  return NUses == 0;
5434}
5435
5436
5437/// hasAnyUseOfValue - Return true if there are any use of the indicated
5438/// value. This method ignores uses of other values defined by this operation.
5439bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5440  assert(Value < getNumValues() && "Bad value!");
5441
5442  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5443    if (UI.getUse().getResNo() == Value)
5444      return true;
5445
5446  return false;
5447}
5448
5449
5450/// isOnlyUserOf - Return true if this node is the only use of N.
5451///
5452bool SDNode::isOnlyUserOf(SDNode *N) const {
5453  bool Seen = false;
5454  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5455    SDNode *User = *I;
5456    if (User == this)
5457      Seen = true;
5458    else
5459      return false;
5460  }
5461
5462  return Seen;
5463}
5464
5465/// isOperand - Return true if this node is an operand of N.
5466///
5467bool SDValue::isOperandOf(SDNode *N) const {
5468  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5469    if (*this == N->getOperand(i))
5470      return true;
5471  return false;
5472}
5473
5474bool SDNode::isOperandOf(SDNode *N) const {
5475  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5476    if (this == N->OperandList[i].getNode())
5477      return true;
5478  return false;
5479}
5480
5481/// reachesChainWithoutSideEffects - Return true if this operand (which must
5482/// be a chain) reaches the specified operand without crossing any
5483/// side-effecting instructions.  In practice, this looks through token
5484/// factors and non-volatile loads.  In order to remain efficient, this only
5485/// looks a couple of nodes in, it does not do an exhaustive search.
5486bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5487                                               unsigned Depth) const {
5488  if (*this == Dest) return true;
5489
5490  // Don't search too deeply, we just want to be able to see through
5491  // TokenFactor's etc.
5492  if (Depth == 0) return false;
5493
5494  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5495  // of the operands of the TF reach dest, then we can do the xform.
5496  if (getOpcode() == ISD::TokenFactor) {
5497    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5498      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5499        return true;
5500    return false;
5501  }
5502
5503  // Loads don't have side effects, look through them.
5504  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5505    if (!Ld->isVolatile())
5506      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5507  }
5508  return false;
5509}
5510
5511/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5512/// is either an operand of N or it can be reached by traversing up the operands.
5513/// NOTE: this is an expensive method. Use it carefully.
5514bool SDNode::isPredecessorOf(SDNode *N) const {
5515  SmallPtrSet<SDNode *, 32> Visited;
5516  SmallVector<SDNode *, 16> Worklist;
5517  Worklist.push_back(N);
5518
5519  do {
5520    N = Worklist.pop_back_val();
5521    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5522      SDNode *Op = N->getOperand(i).getNode();
5523      if (Op == this)
5524        return true;
5525      if (Visited.insert(Op))
5526        Worklist.push_back(Op);
5527    }
5528  } while (!Worklist.empty());
5529
5530  return false;
5531}
5532
5533uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5534  assert(Num < NumOperands && "Invalid child # of SDNode!");
5535  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5536}
5537
5538std::string SDNode::getOperationName(const SelectionDAG *G) const {
5539  switch (getOpcode()) {
5540  default:
5541    if (getOpcode() < ISD::BUILTIN_OP_END)
5542      return "<<Unknown DAG Node>>";
5543    if (isMachineOpcode()) {
5544      if (G)
5545        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5546          if (getMachineOpcode() < TII->getNumOpcodes())
5547            return TII->get(getMachineOpcode()).getName();
5548      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5549    }
5550    if (G) {
5551      const TargetLowering &TLI = G->getTargetLoweringInfo();
5552      const char *Name = TLI.getTargetNodeName(getOpcode());
5553      if (Name) return Name;
5554      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5555    }
5556    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5557
5558#ifndef NDEBUG
5559  case ISD::DELETED_NODE:
5560    return "<<Deleted Node!>>";
5561#endif
5562  case ISD::PREFETCH:      return "Prefetch";
5563  case ISD::MEMBARRIER:    return "MemBarrier";
5564  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5565  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5566  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5567  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5568  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5569  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5570  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5571  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5572  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5573  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5574  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5575  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5576  case ISD::PCMARKER:      return "PCMarker";
5577  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5578  case ISD::SRCVALUE:      return "SrcValue";
5579  case ISD::MDNODE_SDNODE: return "MDNode";
5580  case ISD::EntryToken:    return "EntryToken";
5581  case ISD::TokenFactor:   return "TokenFactor";
5582  case ISD::AssertSext:    return "AssertSext";
5583  case ISD::AssertZext:    return "AssertZext";
5584
5585  case ISD::BasicBlock:    return "BasicBlock";
5586  case ISD::VALUETYPE:     return "ValueType";
5587  case ISD::Register:      return "Register";
5588
5589  case ISD::Constant:      return "Constant";
5590  case ISD::ConstantFP:    return "ConstantFP";
5591  case ISD::GlobalAddress: return "GlobalAddress";
5592  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5593  case ISD::FrameIndex:    return "FrameIndex";
5594  case ISD::JumpTable:     return "JumpTable";
5595  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5596  case ISD::RETURNADDR: return "RETURNADDR";
5597  case ISD::FRAMEADDR: return "FRAMEADDR";
5598  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5599  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5600  case ISD::LSDAADDR: return "LSDAADDR";
5601  case ISD::EHSELECTION: return "EHSELECTION";
5602  case ISD::EH_RETURN: return "EH_RETURN";
5603  case ISD::ConstantPool:  return "ConstantPool";
5604  case ISD::ExternalSymbol: return "ExternalSymbol";
5605  case ISD::BlockAddress:  return "BlockAddress";
5606  case ISD::INTRINSIC_WO_CHAIN:
5607  case ISD::INTRINSIC_VOID:
5608  case ISD::INTRINSIC_W_CHAIN: {
5609    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5610    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5611    if (IID < Intrinsic::num_intrinsics)
5612      return Intrinsic::getName((Intrinsic::ID)IID);
5613    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5614      return TII->getName(IID);
5615    llvm_unreachable("Invalid intrinsic ID");
5616  }
5617
5618  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5619  case ISD::TargetConstant: return "TargetConstant";
5620  case ISD::TargetConstantFP:return "TargetConstantFP";
5621  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5622  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5623  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5624  case ISD::TargetJumpTable:  return "TargetJumpTable";
5625  case ISD::TargetConstantPool:  return "TargetConstantPool";
5626  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5627  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5628
5629  case ISD::CopyToReg:     return "CopyToReg";
5630  case ISD::CopyFromReg:   return "CopyFromReg";
5631  case ISD::UNDEF:         return "undef";
5632  case ISD::MERGE_VALUES:  return "merge_values";
5633  case ISD::INLINEASM:     return "inlineasm";
5634  case ISD::EH_LABEL:      return "eh_label";
5635  case ISD::HANDLENODE:    return "handlenode";
5636
5637  // Unary operators
5638  case ISD::FABS:   return "fabs";
5639  case ISD::FNEG:   return "fneg";
5640  case ISD::FSQRT:  return "fsqrt";
5641  case ISD::FSIN:   return "fsin";
5642  case ISD::FCOS:   return "fcos";
5643  case ISD::FPOWI:  return "fpowi";
5644  case ISD::FPOW:   return "fpow";
5645  case ISD::FTRUNC: return "ftrunc";
5646  case ISD::FFLOOR: return "ffloor";
5647  case ISD::FCEIL:  return "fceil";
5648  case ISD::FRINT:  return "frint";
5649  case ISD::FNEARBYINT: return "fnearbyint";
5650
5651  // Binary operators
5652  case ISD::ADD:    return "add";
5653  case ISD::SUB:    return "sub";
5654  case ISD::MUL:    return "mul";
5655  case ISD::MULHU:  return "mulhu";
5656  case ISD::MULHS:  return "mulhs";
5657  case ISD::SDIV:   return "sdiv";
5658  case ISD::UDIV:   return "udiv";
5659  case ISD::SREM:   return "srem";
5660  case ISD::UREM:   return "urem";
5661  case ISD::SMUL_LOHI:  return "smul_lohi";
5662  case ISD::UMUL_LOHI:  return "umul_lohi";
5663  case ISD::SDIVREM:    return "sdivrem";
5664  case ISD::UDIVREM:    return "udivrem";
5665  case ISD::AND:    return "and";
5666  case ISD::OR:     return "or";
5667  case ISD::XOR:    return "xor";
5668  case ISD::SHL:    return "shl";
5669  case ISD::SRA:    return "sra";
5670  case ISD::SRL:    return "srl";
5671  case ISD::ROTL:   return "rotl";
5672  case ISD::ROTR:   return "rotr";
5673  case ISD::FADD:   return "fadd";
5674  case ISD::FSUB:   return "fsub";
5675  case ISD::FMUL:   return "fmul";
5676  case ISD::FDIV:   return "fdiv";
5677  case ISD::FREM:   return "frem";
5678  case ISD::FCOPYSIGN: return "fcopysign";
5679  case ISD::FGETSIGN:  return "fgetsign";
5680
5681  case ISD::SETCC:       return "setcc";
5682  case ISD::VSETCC:      return "vsetcc";
5683  case ISD::SELECT:      return "select";
5684  case ISD::SELECT_CC:   return "select_cc";
5685  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5686  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5687  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5688  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5689  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5690  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5691  case ISD::CARRY_FALSE:         return "carry_false";
5692  case ISD::ADDC:        return "addc";
5693  case ISD::ADDE:        return "adde";
5694  case ISD::SADDO:       return "saddo";
5695  case ISD::UADDO:       return "uaddo";
5696  case ISD::SSUBO:       return "ssubo";
5697  case ISD::USUBO:       return "usubo";
5698  case ISD::SMULO:       return "smulo";
5699  case ISD::UMULO:       return "umulo";
5700  case ISD::SUBC:        return "subc";
5701  case ISD::SUBE:        return "sube";
5702  case ISD::SHL_PARTS:   return "shl_parts";
5703  case ISD::SRA_PARTS:   return "sra_parts";
5704  case ISD::SRL_PARTS:   return "srl_parts";
5705
5706  // Conversion operators.
5707  case ISD::SIGN_EXTEND: return "sign_extend";
5708  case ISD::ZERO_EXTEND: return "zero_extend";
5709  case ISD::ANY_EXTEND:  return "any_extend";
5710  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5711  case ISD::TRUNCATE:    return "truncate";
5712  case ISD::FP_ROUND:    return "fp_round";
5713  case ISD::FLT_ROUNDS_: return "flt_rounds";
5714  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5715  case ISD::FP_EXTEND:   return "fp_extend";
5716
5717  case ISD::SINT_TO_FP:  return "sint_to_fp";
5718  case ISD::UINT_TO_FP:  return "uint_to_fp";
5719  case ISD::FP_TO_SINT:  return "fp_to_sint";
5720  case ISD::FP_TO_UINT:  return "fp_to_uint";
5721  case ISD::BIT_CONVERT: return "bit_convert";
5722  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5723  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5724
5725  case ISD::CONVERT_RNDSAT: {
5726    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5727    default: llvm_unreachable("Unknown cvt code!");
5728    case ISD::CVT_FF:  return "cvt_ff";
5729    case ISD::CVT_FS:  return "cvt_fs";
5730    case ISD::CVT_FU:  return "cvt_fu";
5731    case ISD::CVT_SF:  return "cvt_sf";
5732    case ISD::CVT_UF:  return "cvt_uf";
5733    case ISD::CVT_SS:  return "cvt_ss";
5734    case ISD::CVT_SU:  return "cvt_su";
5735    case ISD::CVT_US:  return "cvt_us";
5736    case ISD::CVT_UU:  return "cvt_uu";
5737    }
5738  }
5739
5740    // Control flow instructions
5741  case ISD::BR:      return "br";
5742  case ISD::BRIND:   return "brind";
5743  case ISD::BR_JT:   return "br_jt";
5744  case ISD::BRCOND:  return "brcond";
5745  case ISD::BR_CC:   return "br_cc";
5746  case ISD::CALLSEQ_START:  return "callseq_start";
5747  case ISD::CALLSEQ_END:    return "callseq_end";
5748
5749    // Other operators
5750  case ISD::LOAD:               return "load";
5751  case ISD::STORE:              return "store";
5752  case ISD::VAARG:              return "vaarg";
5753  case ISD::VACOPY:             return "vacopy";
5754  case ISD::VAEND:              return "vaend";
5755  case ISD::VASTART:            return "vastart";
5756  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5757  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5758  case ISD::BUILD_PAIR:         return "build_pair";
5759  case ISD::STACKSAVE:          return "stacksave";
5760  case ISD::STACKRESTORE:       return "stackrestore";
5761  case ISD::TRAP:               return "trap";
5762
5763  // Bit manipulation
5764  case ISD::BSWAP:   return "bswap";
5765  case ISD::CTPOP:   return "ctpop";
5766  case ISD::CTTZ:    return "cttz";
5767  case ISD::CTLZ:    return "ctlz";
5768
5769  // Trampolines
5770  case ISD::TRAMPOLINE: return "trampoline";
5771
5772  case ISD::CONDCODE:
5773    switch (cast<CondCodeSDNode>(this)->get()) {
5774    default: llvm_unreachable("Unknown setcc condition!");
5775    case ISD::SETOEQ:  return "setoeq";
5776    case ISD::SETOGT:  return "setogt";
5777    case ISD::SETOGE:  return "setoge";
5778    case ISD::SETOLT:  return "setolt";
5779    case ISD::SETOLE:  return "setole";
5780    case ISD::SETONE:  return "setone";
5781
5782    case ISD::SETO:    return "seto";
5783    case ISD::SETUO:   return "setuo";
5784    case ISD::SETUEQ:  return "setue";
5785    case ISD::SETUGT:  return "setugt";
5786    case ISD::SETUGE:  return "setuge";
5787    case ISD::SETULT:  return "setult";
5788    case ISD::SETULE:  return "setule";
5789    case ISD::SETUNE:  return "setune";
5790
5791    case ISD::SETEQ:   return "seteq";
5792    case ISD::SETGT:   return "setgt";
5793    case ISD::SETGE:   return "setge";
5794    case ISD::SETLT:   return "setlt";
5795    case ISD::SETLE:   return "setle";
5796    case ISD::SETNE:   return "setne";
5797    }
5798  }
5799}
5800
5801const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5802  switch (AM) {
5803  default:
5804    return "";
5805  case ISD::PRE_INC:
5806    return "<pre-inc>";
5807  case ISD::PRE_DEC:
5808    return "<pre-dec>";
5809  case ISD::POST_INC:
5810    return "<post-inc>";
5811  case ISD::POST_DEC:
5812    return "<post-dec>";
5813  }
5814}
5815
5816std::string ISD::ArgFlagsTy::getArgFlagsString() {
5817  std::string S = "< ";
5818
5819  if (isZExt())
5820    S += "zext ";
5821  if (isSExt())
5822    S += "sext ";
5823  if (isInReg())
5824    S += "inreg ";
5825  if (isSRet())
5826    S += "sret ";
5827  if (isByVal())
5828    S += "byval ";
5829  if (isNest())
5830    S += "nest ";
5831  if (getByValAlign())
5832    S += "byval-align:" + utostr(getByValAlign()) + " ";
5833  if (getOrigAlign())
5834    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5835  if (getByValSize())
5836    S += "byval-size:" + utostr(getByValSize()) + " ";
5837  return S + ">";
5838}
5839
5840void SDNode::dump() const { dump(0); }
5841void SDNode::dump(const SelectionDAG *G) const {
5842  print(dbgs(), G);
5843}
5844
5845void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5846  OS << (void*)this << ": ";
5847
5848  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5849    if (i) OS << ",";
5850    if (getValueType(i) == MVT::Other)
5851      OS << "ch";
5852    else
5853      OS << getValueType(i).getEVTString();
5854  }
5855  OS << " = " << getOperationName(G);
5856}
5857
5858void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5859  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5860    if (!MN->memoperands_empty()) {
5861      OS << "<";
5862      OS << "Mem:";
5863      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5864           e = MN->memoperands_end(); i != e; ++i) {
5865        OS << **i;
5866        if (next(i) != e)
5867          OS << " ";
5868      }
5869      OS << ">";
5870    }
5871  } else if (const ShuffleVectorSDNode *SVN =
5872               dyn_cast<ShuffleVectorSDNode>(this)) {
5873    OS << "<";
5874    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5875      int Idx = SVN->getMaskElt(i);
5876      if (i) OS << ",";
5877      if (Idx < 0)
5878        OS << "u";
5879      else
5880        OS << Idx;
5881    }
5882    OS << ">";
5883  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5884    OS << '<' << CSDN->getAPIntValue() << '>';
5885  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5886    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5887      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5888    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5889      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5890    else {
5891      OS << "<APFloat(";
5892      CSDN->getValueAPF().bitcastToAPInt().dump();
5893      OS << ")>";
5894    }
5895  } else if (const GlobalAddressSDNode *GADN =
5896             dyn_cast<GlobalAddressSDNode>(this)) {
5897    int64_t offset = GADN->getOffset();
5898    OS << '<';
5899    WriteAsOperand(OS, GADN->getGlobal());
5900    OS << '>';
5901    if (offset > 0)
5902      OS << " + " << offset;
5903    else
5904      OS << " " << offset;
5905    if (unsigned int TF = GADN->getTargetFlags())
5906      OS << " [TF=" << TF << ']';
5907  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5908    OS << "<" << FIDN->getIndex() << ">";
5909  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5910    OS << "<" << JTDN->getIndex() << ">";
5911    if (unsigned int TF = JTDN->getTargetFlags())
5912      OS << " [TF=" << TF << ']';
5913  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5914    int offset = CP->getOffset();
5915    if (CP->isMachineConstantPoolEntry())
5916      OS << "<" << *CP->getMachineCPVal() << ">";
5917    else
5918      OS << "<" << *CP->getConstVal() << ">";
5919    if (offset > 0)
5920      OS << " + " << offset;
5921    else
5922      OS << " " << offset;
5923    if (unsigned int TF = CP->getTargetFlags())
5924      OS << " [TF=" << TF << ']';
5925  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5926    OS << "<";
5927    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5928    if (LBB)
5929      OS << LBB->getName() << " ";
5930    OS << (const void*)BBDN->getBasicBlock() << ">";
5931  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5932    if (G && R->getReg() &&
5933        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5934      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5935    } else {
5936      OS << " %reg" << R->getReg();
5937    }
5938  } else if (const ExternalSymbolSDNode *ES =
5939             dyn_cast<ExternalSymbolSDNode>(this)) {
5940    OS << "'" << ES->getSymbol() << "'";
5941    if (unsigned int TF = ES->getTargetFlags())
5942      OS << " [TF=" << TF << ']';
5943  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5944    if (M->getValue())
5945      OS << "<" << M->getValue() << ">";
5946    else
5947      OS << "<null>";
5948  } else if (const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(this)) {
5949    if (MD->getMD())
5950      OS << "<" << MD->getMD() << ">";
5951    else
5952      OS << "<null>";
5953  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5954    OS << ":" << N->getVT().getEVTString();
5955  }
5956  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5957    OS << "<" << *LD->getMemOperand();
5958
5959    bool doExt = true;
5960    switch (LD->getExtensionType()) {
5961    default: doExt = false; break;
5962    case ISD::EXTLOAD: OS << ", anyext"; break;
5963    case ISD::SEXTLOAD: OS << ", sext"; break;
5964    case ISD::ZEXTLOAD: OS << ", zext"; break;
5965    }
5966    if (doExt)
5967      OS << " from " << LD->getMemoryVT().getEVTString();
5968
5969    const char *AM = getIndexedModeName(LD->getAddressingMode());
5970    if (*AM)
5971      OS << ", " << AM;
5972
5973    OS << ">";
5974  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5975    OS << "<" << *ST->getMemOperand();
5976
5977    if (ST->isTruncatingStore())
5978      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5979
5980    const char *AM = getIndexedModeName(ST->getAddressingMode());
5981    if (*AM)
5982      OS << ", " << AM;
5983
5984    OS << ">";
5985  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5986    OS << "<" << *M->getMemOperand() << ">";
5987  } else if (const BlockAddressSDNode *BA =
5988               dyn_cast<BlockAddressSDNode>(this)) {
5989    OS << "<";
5990    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5991    OS << ", ";
5992    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
5993    OS << ">";
5994    if (unsigned int TF = BA->getTargetFlags())
5995      OS << " [TF=" << TF << ']';
5996  }
5997
5998  if (G)
5999    if (unsigned Order = G->GetOrdering(this))
6000      OS << " [ORD=" << Order << ']';
6001
6002  if (getNodeId() != -1)
6003    OS << " [ID=" << getNodeId() << ']';
6004}
6005
6006void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
6007  print_types(OS, G);
6008  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
6009    if (i) OS << ", "; else OS << " ";
6010    OS << (void*)getOperand(i).getNode();
6011    if (unsigned RN = getOperand(i).getResNo())
6012      OS << ":" << RN;
6013  }
6014  print_details(OS, G);
6015}
6016
6017static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
6018                                  const SelectionDAG *G, unsigned depth,
6019                                  unsigned indent)
6020{
6021  if (depth == 0)
6022    return;
6023
6024  OS.indent(indent);
6025
6026  N->print(OS, G);
6027
6028  if (depth < 1)
6029    return;
6030
6031  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6032    OS << '\n';
6033    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6034  }
6035}
6036
6037void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6038                            unsigned depth) const {
6039  printrWithDepthHelper(OS, this, G, depth, 0);
6040}
6041
6042void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6043  // Don't print impossibly deep things.
6044  printrWithDepth(OS, G, 100);
6045}
6046
6047void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6048  printrWithDepth(dbgs(), G, depth);
6049}
6050
6051void SDNode::dumprFull(const SelectionDAG *G) const {
6052  // Don't print impossibly deep things.
6053  dumprWithDepth(G, 100);
6054}
6055
6056static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6057  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6058    if (N->getOperand(i).getNode()->hasOneUse())
6059      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6060    else
6061      dbgs() << "\n" << std::string(indent+2, ' ')
6062           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6063
6064
6065  dbgs() << "\n";
6066  dbgs().indent(indent);
6067  N->dump(G);
6068}
6069
6070SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6071  assert(N->getNumValues() == 1 &&
6072         "Can't unroll a vector with multiple results!");
6073
6074  EVT VT = N->getValueType(0);
6075  unsigned NE = VT.getVectorNumElements();
6076  EVT EltVT = VT.getVectorElementType();
6077  DebugLoc dl = N->getDebugLoc();
6078
6079  SmallVector<SDValue, 8> Scalars;
6080  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6081
6082  // If ResNE is 0, fully unroll the vector op.
6083  if (ResNE == 0)
6084    ResNE = NE;
6085  else if (NE > ResNE)
6086    NE = ResNE;
6087
6088  unsigned i;
6089  for (i= 0; i != NE; ++i) {
6090    for (unsigned j = 0; j != N->getNumOperands(); ++j) {
6091      SDValue Operand = N->getOperand(j);
6092      EVT OperandVT = Operand.getValueType();
6093      if (OperandVT.isVector()) {
6094        // A vector operand; extract a single element.
6095        EVT OperandEltVT = OperandVT.getVectorElementType();
6096        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6097                              OperandEltVT,
6098                              Operand,
6099                              getConstant(i, MVT::i32));
6100      } else {
6101        // A scalar operand; just use it as is.
6102        Operands[j] = Operand;
6103      }
6104    }
6105
6106    switch (N->getOpcode()) {
6107    default:
6108      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6109                                &Operands[0], Operands.size()));
6110      break;
6111    case ISD::SHL:
6112    case ISD::SRA:
6113    case ISD::SRL:
6114    case ISD::ROTL:
6115    case ISD::ROTR:
6116      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6117                                getShiftAmountOperand(Operands[1])));
6118      break;
6119    case ISD::SIGN_EXTEND_INREG:
6120    case ISD::FP_ROUND_INREG: {
6121      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6122      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6123                                Operands[0],
6124                                getValueType(ExtVT)));
6125    }
6126    }
6127  }
6128
6129  for (; i < ResNE; ++i)
6130    Scalars.push_back(getUNDEF(EltVT));
6131
6132  return getNode(ISD::BUILD_VECTOR, dl,
6133                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6134                 &Scalars[0], Scalars.size());
6135}
6136
6137
6138/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6139/// location that is 'Dist' units away from the location that the 'Base' load
6140/// is loading from.
6141bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6142                                     unsigned Bytes, int Dist) const {
6143  if (LD->getChain() != Base->getChain())
6144    return false;
6145  EVT VT = LD->getValueType(0);
6146  if (VT.getSizeInBits() / 8 != Bytes)
6147    return false;
6148
6149  SDValue Loc = LD->getOperand(1);
6150  SDValue BaseLoc = Base->getOperand(1);
6151  if (Loc.getOpcode() == ISD::FrameIndex) {
6152    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6153      return false;
6154    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6155    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6156    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6157    int FS  = MFI->getObjectSize(FI);
6158    int BFS = MFI->getObjectSize(BFI);
6159    if (FS != BFS || FS != (int)Bytes) return false;
6160    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6161  }
6162  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6163    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6164    if (V && (V->getSExtValue() == Dist*Bytes))
6165      return true;
6166  }
6167
6168  GlobalValue *GV1 = NULL;
6169  GlobalValue *GV2 = NULL;
6170  int64_t Offset1 = 0;
6171  int64_t Offset2 = 0;
6172  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6173  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6174  if (isGA1 && isGA2 && GV1 == GV2)
6175    return Offset1 == (Offset2 + Dist*Bytes);
6176  return false;
6177}
6178
6179
6180/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6181/// it cannot be inferred.
6182unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6183  // If this is a GlobalAddress + cst, return the alignment.
6184  GlobalValue *GV;
6185  int64_t GVOffset = 0;
6186  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6187    // If GV has specified alignment, then use it. Otherwise, use the preferred
6188    // alignment.
6189    unsigned Align = GV->getAlignment();
6190    if (!Align) {
6191      if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6192        if (GVar->hasInitializer()) {
6193          const TargetData *TD = TLI.getTargetData();
6194          Align = TD->getPreferredAlignment(GVar);
6195        }
6196      }
6197    }
6198    return MinAlign(Align, GVOffset);
6199  }
6200
6201  // If this is a direct reference to a stack slot, use information about the
6202  // stack slot's alignment.
6203  int FrameIdx = 1 << 31;
6204  int64_t FrameOffset = 0;
6205  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6206    FrameIdx = FI->getIndex();
6207  } else if (Ptr.getOpcode() == ISD::ADD &&
6208             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6209             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6210    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6211    FrameOffset = Ptr.getConstantOperandVal(1);
6212  }
6213
6214  if (FrameIdx != (1 << 31)) {
6215    // FIXME: Handle FI+CST.
6216    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6217    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6218                                    FrameOffset);
6219    if (MFI.isFixedObjectIndex(FrameIdx)) {
6220      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6221
6222      // The alignment of the frame index can be determined from its offset from
6223      // the incoming frame position.  If the frame object is at offset 32 and
6224      // the stack is guaranteed to be 16-byte aligned, then we know that the
6225      // object is 16-byte aligned.
6226      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6227      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6228
6229      // Finally, the frame object itself may have a known alignment.  Factor
6230      // the alignment + offset into a new alignment.  For example, if we know
6231      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6232      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6233      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6234      return std::max(Align, FIInfoAlign);
6235    }
6236    return FIInfoAlign;
6237  }
6238
6239  return 0;
6240}
6241
6242void SelectionDAG::dump() const {
6243  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6244
6245  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6246       I != E; ++I) {
6247    const SDNode *N = I;
6248    if (!N->hasOneUse() && N != getRoot().getNode())
6249      DumpNodes(N, 2, this);
6250  }
6251
6252  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6253
6254  dbgs() << "\n\n";
6255}
6256
6257void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6258  print_types(OS, G);
6259  print_details(OS, G);
6260}
6261
6262typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6263static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6264                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6265  if (!once.insert(N))          // If we've been here before, return now.
6266    return;
6267
6268  // Dump the current SDNode, but don't end the line yet.
6269  OS << std::string(indent, ' ');
6270  N->printr(OS, G);
6271
6272  // Having printed this SDNode, walk the children:
6273  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6274    const SDNode *child = N->getOperand(i).getNode();
6275
6276    if (i) OS << ",";
6277    OS << " ";
6278
6279    if (child->getNumOperands() == 0) {
6280      // This child has no grandchildren; print it inline right here.
6281      child->printr(OS, G);
6282      once.insert(child);
6283    } else {         // Just the address. FIXME: also print the child's opcode.
6284      OS << (void*)child;
6285      if (unsigned RN = N->getOperand(i).getResNo())
6286        OS << ":" << RN;
6287    }
6288  }
6289
6290  OS << "\n";
6291
6292  // Dump children that have grandchildren on their own line(s).
6293  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6294    const SDNode *child = N->getOperand(i).getNode();
6295    DumpNodesr(OS, child, indent+2, G, once);
6296  }
6297}
6298
6299void SDNode::dumpr() const {
6300  VisitedSDNodeSet once;
6301  DumpNodesr(dbgs(), this, 0, 0, once);
6302}
6303
6304void SDNode::dumpr(const SelectionDAG *G) const {
6305  VisitedSDNodeSet once;
6306  DumpNodesr(dbgs(), this, 0, G, once);
6307}
6308
6309
6310// getAddressSpace - Return the address space this GlobalAddress belongs to.
6311unsigned GlobalAddressSDNode::getAddressSpace() const {
6312  return getGlobal()->getType()->getAddressSpace();
6313}
6314
6315
6316const Type *ConstantPoolSDNode::getType() const {
6317  if (isMachineConstantPoolEntry())
6318    return Val.MachineCPVal->getType();
6319  return Val.ConstVal->getType();
6320}
6321
6322bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6323                                        APInt &SplatUndef,
6324                                        unsigned &SplatBitSize,
6325                                        bool &HasAnyUndefs,
6326                                        unsigned MinSplatBits,
6327                                        bool isBigEndian) {
6328  EVT VT = getValueType(0);
6329  assert(VT.isVector() && "Expected a vector type");
6330  unsigned sz = VT.getSizeInBits();
6331  if (MinSplatBits > sz)
6332    return false;
6333
6334  SplatValue = APInt(sz, 0);
6335  SplatUndef = APInt(sz, 0);
6336
6337  // Get the bits.  Bits with undefined values (when the corresponding element
6338  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6339  // in SplatValue.  If any of the values are not constant, give up and return
6340  // false.
6341  unsigned int nOps = getNumOperands();
6342  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6343  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6344
6345  for (unsigned j = 0; j < nOps; ++j) {
6346    unsigned i = isBigEndian ? nOps-1-j : j;
6347    SDValue OpVal = getOperand(i);
6348    unsigned BitPos = j * EltBitSize;
6349
6350    if (OpVal.getOpcode() == ISD::UNDEF)
6351      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6352    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6353      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6354                     zextOrTrunc(sz) << BitPos);
6355    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6356      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6357     else
6358      return false;
6359  }
6360
6361  // The build_vector is all constants or undefs.  Find the smallest element
6362  // size that splats the vector.
6363
6364  HasAnyUndefs = (SplatUndef != 0);
6365  while (sz > 8) {
6366
6367    unsigned HalfSize = sz / 2;
6368    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6369    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6370    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6371    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6372
6373    // If the two halves do not match (ignoring undef bits), stop here.
6374    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6375        MinSplatBits > HalfSize)
6376      break;
6377
6378    SplatValue = HighValue | LowValue;
6379    SplatUndef = HighUndef & LowUndef;
6380
6381    sz = HalfSize;
6382  }
6383
6384  SplatBitSize = sz;
6385  return true;
6386}
6387
6388bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6389  // Find the first non-undef value in the shuffle mask.
6390  unsigned i, e;
6391  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6392    /* search */;
6393
6394  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6395
6396  // Make sure all remaining elements are either undef or the same as the first
6397  // non-undef value.
6398  for (int Idx = Mask[i]; i != e; ++i)
6399    if (Mask[i] >= 0 && Mask[i] != Idx)
6400      return false;
6401  return true;
6402}
6403
6404#ifdef XDEBUG
6405static void checkForCyclesHelper(const SDNode *N,
6406                                 SmallPtrSet<const SDNode*, 32> &Visited,
6407                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6408  // If this node has already been checked, don't check it again.
6409  if (Checked.count(N))
6410    return;
6411
6412  // If a node has already been visited on this depth-first walk, reject it as
6413  // a cycle.
6414  if (!Visited.insert(N)) {
6415    dbgs() << "Offending node:\n";
6416    N->dumprFull();
6417    errs() << "Detected cycle in SelectionDAG\n";
6418    abort();
6419  }
6420
6421  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6422    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6423
6424  Checked.insert(N);
6425  Visited.erase(N);
6426}
6427#endif
6428
6429void llvm::checkForCycles(const llvm::SDNode *N) {
6430#ifdef XDEBUG
6431  assert(N && "Checking nonexistant SDNode");
6432  SmallPtrSet<const SDNode*, 32> visited;
6433  SmallPtrSet<const SDNode*, 32> checked;
6434  checkForCyclesHelper(N, visited, checked);
6435#endif
6436}
6437
6438void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6439  checkForCycles(DAG->getRoot().getNode());
6440}
6441