SelectionDAG.cpp revision e95e6c2b9690abed80c74de593f537d230318a98
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/Function.h"
17#include "llvm/GlobalAlias.h"
18#include "llvm/GlobalVariable.h"
19#include "llvm/Intrinsics.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Assembly/Writer.h"
22#include "llvm/CallingConv.h"
23#include "llvm/CodeGen/MachineBasicBlock.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineModuleInfo.h"
27#include "llvm/CodeGen/PseudoSourceValue.h"
28#include "llvm/Target/TargetRegisterInfo.h"
29#include "llvm/Target/TargetData.h"
30#include "llvm/Target/TargetFrameInfo.h"
31#include "llvm/Target/TargetLowering.h"
32#include "llvm/Target/TargetOptions.h"
33#include "llvm/Target/TargetInstrInfo.h"
34#include "llvm/Target/TargetIntrinsicInfo.h"
35#include "llvm/Target/TargetMachine.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/ErrorHandling.h"
38#include "llvm/Support/ManagedStatic.h"
39#include "llvm/Support/MathExtras.h"
40#include "llvm/Support/raw_ostream.h"
41#include "llvm/System/Mutex.h"
42#include "llvm/ADT/SetVector.h"
43#include "llvm/ADT/SmallPtrSet.h"
44#include "llvm/ADT/SmallSet.h"
45#include "llvm/ADT/SmallVector.h"
46#include "llvm/ADT/StringExtras.h"
47#include <algorithm>
48#include <cmath>
49using namespace llvm;
50
51/// makeVTList - Return an instance of the SDVTList struct initialized with the
52/// specified members.
53static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
54  SDVTList Res = {VTs, NumVTs};
55  return Res;
56}
57
58static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
59  switch (VT.getSimpleVT().SimpleTy) {
60  default: llvm_unreachable("Unknown FP format");
61  case MVT::f32:     return &APFloat::IEEEsingle;
62  case MVT::f64:     return &APFloat::IEEEdouble;
63  case MVT::f80:     return &APFloat::x87DoubleExtended;
64  case MVT::f128:    return &APFloat::IEEEquad;
65  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
66  }
67}
68
69SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
70
71//===----------------------------------------------------------------------===//
72//                              ConstantFPSDNode Class
73//===----------------------------------------------------------------------===//
74
75/// isExactlyValue - We don't rely on operator== working on double values, as
76/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
77/// As such, this method can be used to do an exact bit-for-bit comparison of
78/// two floating point values.
79bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
80  return getValueAPF().bitwiseIsEqual(V);
81}
82
83bool ConstantFPSDNode::isValueValidForType(EVT VT,
84                                           const APFloat& Val) {
85  assert(VT.isFloatingPoint() && "Can only convert between FP types");
86
87  // PPC long double cannot be converted to any other type.
88  if (VT == MVT::ppcf128 ||
89      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
90    return false;
91
92  // convert modifies in place, so make a copy.
93  APFloat Val2 = APFloat(Val);
94  bool losesInfo;
95  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
96                      &losesInfo);
97  return !losesInfo;
98}
99
100//===----------------------------------------------------------------------===//
101//                              ISD Namespace
102//===----------------------------------------------------------------------===//
103
104/// isBuildVectorAllOnes - Return true if the specified node is a
105/// BUILD_VECTOR where all of the elements are ~0 or undef.
106bool ISD::isBuildVectorAllOnes(const SDNode *N) {
107  // Look through a bit convert.
108  if (N->getOpcode() == ISD::BIT_CONVERT)
109    N = N->getOperand(0).getNode();
110
111  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
112
113  unsigned i = 0, e = N->getNumOperands();
114
115  // Skip over all of the undef values.
116  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
117    ++i;
118
119  // Do not accept an all-undef vector.
120  if (i == e) return false;
121
122  // Do not accept build_vectors that aren't all constants or which have non-~0
123  // elements.
124  SDValue NotZero = N->getOperand(i);
125  if (isa<ConstantSDNode>(NotZero)) {
126    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
127      return false;
128  } else if (isa<ConstantFPSDNode>(NotZero)) {
129    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
130                bitcastToAPInt().isAllOnesValue())
131      return false;
132  } else
133    return false;
134
135  // Okay, we have at least one ~0 value, check to see if the rest match or are
136  // undefs.
137  for (++i; i != e; ++i)
138    if (N->getOperand(i) != NotZero &&
139        N->getOperand(i).getOpcode() != ISD::UNDEF)
140      return false;
141  return true;
142}
143
144
145/// isBuildVectorAllZeros - Return true if the specified node is a
146/// BUILD_VECTOR where all of the elements are 0 or undef.
147bool ISD::isBuildVectorAllZeros(const SDNode *N) {
148  // Look through a bit convert.
149  if (N->getOpcode() == ISD::BIT_CONVERT)
150    N = N->getOperand(0).getNode();
151
152  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
153
154  unsigned i = 0, e = N->getNumOperands();
155
156  // Skip over all of the undef values.
157  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
158    ++i;
159
160  // Do not accept an all-undef vector.
161  if (i == e) return false;
162
163  // Do not accept build_vectors that aren't all constants or which have non-0
164  // elements.
165  SDValue Zero = N->getOperand(i);
166  if (isa<ConstantSDNode>(Zero)) {
167    if (!cast<ConstantSDNode>(Zero)->isNullValue())
168      return false;
169  } else if (isa<ConstantFPSDNode>(Zero)) {
170    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
171      return false;
172  } else
173    return false;
174
175  // Okay, we have at least one 0 value, check to see if the rest match or are
176  // undefs.
177  for (++i; i != e; ++i)
178    if (N->getOperand(i) != Zero &&
179        N->getOperand(i).getOpcode() != ISD::UNDEF)
180      return false;
181  return true;
182}
183
184/// isScalarToVector - Return true if the specified node is a
185/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
186/// element is not an undef.
187bool ISD::isScalarToVector(const SDNode *N) {
188  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
189    return true;
190
191  if (N->getOpcode() != ISD::BUILD_VECTOR)
192    return false;
193  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
194    return false;
195  unsigned NumElems = N->getNumOperands();
196  for (unsigned i = 1; i < NumElems; ++i) {
197    SDValue V = N->getOperand(i);
198    if (V.getOpcode() != ISD::UNDEF)
199      return false;
200  }
201  return true;
202}
203
204/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
205/// when given the operation for (X op Y).
206ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
207  // To perform this operation, we just need to swap the L and G bits of the
208  // operation.
209  unsigned OldL = (Operation >> 2) & 1;
210  unsigned OldG = (Operation >> 1) & 1;
211  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
212                       (OldL << 1) |       // New G bit
213                       (OldG << 2));       // New L bit.
214}
215
216/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
217/// 'op' is a valid SetCC operation.
218ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
219  unsigned Operation = Op;
220  if (isInteger)
221    Operation ^= 7;   // Flip L, G, E bits, but not U.
222  else
223    Operation ^= 15;  // Flip all of the condition bits.
224
225  if (Operation > ISD::SETTRUE2)
226    Operation &= ~8;  // Don't let N and U bits get set.
227
228  return ISD::CondCode(Operation);
229}
230
231
232/// isSignedOp - For an integer comparison, return 1 if the comparison is a
233/// signed operation and 2 if the result is an unsigned comparison.  Return zero
234/// if the operation does not depend on the sign of the input (setne and seteq).
235static int isSignedOp(ISD::CondCode Opcode) {
236  switch (Opcode) {
237  default: llvm_unreachable("Illegal integer setcc operation!");
238  case ISD::SETEQ:
239  case ISD::SETNE: return 0;
240  case ISD::SETLT:
241  case ISD::SETLE:
242  case ISD::SETGT:
243  case ISD::SETGE: return 1;
244  case ISD::SETULT:
245  case ISD::SETULE:
246  case ISD::SETUGT:
247  case ISD::SETUGE: return 2;
248  }
249}
250
251/// getSetCCOrOperation - Return the result of a logical OR between different
252/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
253/// returns SETCC_INVALID if it is not possible to represent the resultant
254/// comparison.
255ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
256                                       bool isInteger) {
257  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
258    // Cannot fold a signed integer setcc with an unsigned integer setcc.
259    return ISD::SETCC_INVALID;
260
261  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
262
263  // If the N and U bits get set then the resultant comparison DOES suddenly
264  // care about orderedness, and is true when ordered.
265  if (Op > ISD::SETTRUE2)
266    Op &= ~16;     // Clear the U bit if the N bit is set.
267
268  // Canonicalize illegal integer setcc's.
269  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
270    Op = ISD::SETNE;
271
272  return ISD::CondCode(Op);
273}
274
275/// getSetCCAndOperation - Return the result of a logical AND between different
276/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
277/// function returns zero if it is not possible to represent the resultant
278/// comparison.
279ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
280                                        bool isInteger) {
281  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
282    // Cannot fold a signed setcc with an unsigned setcc.
283    return ISD::SETCC_INVALID;
284
285  // Combine all of the condition bits.
286  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
287
288  // Canonicalize illegal integer setcc's.
289  if (isInteger) {
290    switch (Result) {
291    default: break;
292    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
293    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
294    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
295    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
296    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
297    }
298  }
299
300  return Result;
301}
302
303const TargetMachine &SelectionDAG::getTarget() const {
304  return MF->getTarget();
305}
306
307//===----------------------------------------------------------------------===//
308//                           SDNode Profile Support
309//===----------------------------------------------------------------------===//
310
311/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
312///
313static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
314  ID.AddInteger(OpC);
315}
316
317/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
318/// solely with their pointer.
319static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
320  ID.AddPointer(VTList.VTs);
321}
322
323/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
324///
325static void AddNodeIDOperands(FoldingSetNodeID &ID,
326                              const SDValue *Ops, unsigned NumOps) {
327  for (; NumOps; --NumOps, ++Ops) {
328    ID.AddPointer(Ops->getNode());
329    ID.AddInteger(Ops->getResNo());
330  }
331}
332
333/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
334///
335static void AddNodeIDOperands(FoldingSetNodeID &ID,
336                              const SDUse *Ops, unsigned NumOps) {
337  for (; NumOps; --NumOps, ++Ops) {
338    ID.AddPointer(Ops->getNode());
339    ID.AddInteger(Ops->getResNo());
340  }
341}
342
343static void AddNodeIDNode(FoldingSetNodeID &ID,
344                          unsigned short OpC, SDVTList VTList,
345                          const SDValue *OpList, unsigned N) {
346  AddNodeIDOpcode(ID, OpC);
347  AddNodeIDValueTypes(ID, VTList);
348  AddNodeIDOperands(ID, OpList, N);
349}
350
351/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
352/// the NodeID data.
353static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
354  switch (N->getOpcode()) {
355  case ISD::TargetExternalSymbol:
356  case ISD::ExternalSymbol:
357    llvm_unreachable("Should only be used on nodes with operands");
358  default: break;  // Normal nodes don't need extra info.
359  case ISD::TargetConstant:
360  case ISD::Constant:
361    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
362    break;
363  case ISD::TargetConstantFP:
364  case ISD::ConstantFP: {
365    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
366    break;
367  }
368  case ISD::TargetGlobalAddress:
369  case ISD::GlobalAddress:
370  case ISD::TargetGlobalTLSAddress:
371  case ISD::GlobalTLSAddress: {
372    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
373    ID.AddPointer(GA->getGlobal());
374    ID.AddInteger(GA->getOffset());
375    ID.AddInteger(GA->getTargetFlags());
376    break;
377  }
378  case ISD::BasicBlock:
379    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
380    break;
381  case ISD::Register:
382    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
383    break;
384
385  case ISD::SRCVALUE:
386    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
387    break;
388  case ISD::FrameIndex:
389  case ISD::TargetFrameIndex:
390    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
391    break;
392  case ISD::JumpTable:
393  case ISD::TargetJumpTable:
394    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
395    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
396    break;
397  case ISD::ConstantPool:
398  case ISD::TargetConstantPool: {
399    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
400    ID.AddInteger(CP->getAlignment());
401    ID.AddInteger(CP->getOffset());
402    if (CP->isMachineConstantPoolEntry())
403      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
404    else
405      ID.AddPointer(CP->getConstVal());
406    ID.AddInteger(CP->getTargetFlags());
407    break;
408  }
409  case ISD::LOAD: {
410    const LoadSDNode *LD = cast<LoadSDNode>(N);
411    ID.AddInteger(LD->getMemoryVT().getRawBits());
412    ID.AddInteger(LD->getRawSubclassData());
413    break;
414  }
415  case ISD::STORE: {
416    const StoreSDNode *ST = cast<StoreSDNode>(N);
417    ID.AddInteger(ST->getMemoryVT().getRawBits());
418    ID.AddInteger(ST->getRawSubclassData());
419    break;
420  }
421  case ISD::ATOMIC_CMP_SWAP:
422  case ISD::ATOMIC_SWAP:
423  case ISD::ATOMIC_LOAD_ADD:
424  case ISD::ATOMIC_LOAD_SUB:
425  case ISD::ATOMIC_LOAD_AND:
426  case ISD::ATOMIC_LOAD_OR:
427  case ISD::ATOMIC_LOAD_XOR:
428  case ISD::ATOMIC_LOAD_NAND:
429  case ISD::ATOMIC_LOAD_MIN:
430  case ISD::ATOMIC_LOAD_MAX:
431  case ISD::ATOMIC_LOAD_UMIN:
432  case ISD::ATOMIC_LOAD_UMAX: {
433    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
434    ID.AddInteger(AT->getMemoryVT().getRawBits());
435    ID.AddInteger(AT->getRawSubclassData());
436    break;
437  }
438  case ISD::VECTOR_SHUFFLE: {
439    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
440    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
441         i != e; ++i)
442      ID.AddInteger(SVN->getMaskElt(i));
443    break;
444  }
445  case ISD::TargetBlockAddress:
446  case ISD::BlockAddress: {
447    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
448    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
449    break;
450  }
451  } // end switch (N->getOpcode())
452}
453
454/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
455/// data.
456static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
457  AddNodeIDOpcode(ID, N->getOpcode());
458  // Add the return value info.
459  AddNodeIDValueTypes(ID, N->getVTList());
460  // Add the operand info.
461  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
462
463  // Handle SDNode leafs with special info.
464  AddNodeIDCustom(ID, N);
465}
466
467/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
468/// the CSE map that carries volatility, indexing mode, and
469/// extension/truncation information.
470///
471static inline unsigned
472encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile) {
473  assert((ConvType & 3) == ConvType &&
474         "ConvType may not require more than 2 bits!");
475  assert((AM & 7) == AM &&
476         "AM may not require more than 3 bits!");
477  return ConvType |
478         (AM << 2) |
479         (isVolatile << 5);
480}
481
482//===----------------------------------------------------------------------===//
483//                              SelectionDAG Class
484//===----------------------------------------------------------------------===//
485
486/// doNotCSE - Return true if CSE should not be performed for this node.
487static bool doNotCSE(SDNode *N) {
488  if (N->getValueType(0) == MVT::Flag)
489    return true; // Never CSE anything that produces a flag.
490
491  switch (N->getOpcode()) {
492  default: break;
493  case ISD::HANDLENODE:
494  case ISD::EH_LABEL:
495    return true;   // Never CSE these nodes.
496  }
497
498  // Check that remaining values produced are not flags.
499  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
500    if (N->getValueType(i) == MVT::Flag)
501      return true; // Never CSE anything that produces a flag.
502
503  return false;
504}
505
506/// RemoveDeadNodes - This method deletes all unreachable nodes in the
507/// SelectionDAG.
508void SelectionDAG::RemoveDeadNodes() {
509  // Create a dummy node (which is not added to allnodes), that adds a reference
510  // to the root node, preventing it from being deleted.
511  HandleSDNode Dummy(getRoot());
512
513  SmallVector<SDNode*, 128> DeadNodes;
514
515  // Add all obviously-dead nodes to the DeadNodes worklist.
516  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
517    if (I->use_empty())
518      DeadNodes.push_back(I);
519
520  RemoveDeadNodes(DeadNodes);
521
522  // If the root changed (e.g. it was a dead load, update the root).
523  setRoot(Dummy.getValue());
524}
525
526/// RemoveDeadNodes - This method deletes the unreachable nodes in the
527/// given list, and any nodes that become unreachable as a result.
528void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
529                                   DAGUpdateListener *UpdateListener) {
530
531  // Process the worklist, deleting the nodes and adding their uses to the
532  // worklist.
533  while (!DeadNodes.empty()) {
534    SDNode *N = DeadNodes.pop_back_val();
535
536    if (UpdateListener)
537      UpdateListener->NodeDeleted(N, 0);
538
539    // Take the node out of the appropriate CSE map.
540    RemoveNodeFromCSEMaps(N);
541
542    // Next, brutally remove the operand list.  This is safe to do, as there are
543    // no cycles in the graph.
544    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
545      SDUse &Use = *I++;
546      SDNode *Operand = Use.getNode();
547      Use.set(SDValue());
548
549      // Now that we removed this operand, see if there are no uses of it left.
550      if (Operand->use_empty())
551        DeadNodes.push_back(Operand);
552    }
553
554    DeallocateNode(N);
555  }
556}
557
558void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
559  SmallVector<SDNode*, 16> DeadNodes(1, N);
560  RemoveDeadNodes(DeadNodes, UpdateListener);
561}
562
563void SelectionDAG::DeleteNode(SDNode *N) {
564  // First take this out of the appropriate CSE map.
565  RemoveNodeFromCSEMaps(N);
566
567  // Finally, remove uses due to operands of this node, remove from the
568  // AllNodes list, and delete the node.
569  DeleteNodeNotInCSEMaps(N);
570}
571
572void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
573  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
574  assert(N->use_empty() && "Cannot delete a node that is not dead!");
575
576  // Drop all of the operands and decrement used node's use counts.
577  N->DropOperands();
578
579  DeallocateNode(N);
580}
581
582void SelectionDAG::DeallocateNode(SDNode *N) {
583  if (N->OperandsNeedDelete)
584    delete[] N->OperandList;
585
586  // Set the opcode to DELETED_NODE to help catch bugs when node
587  // memory is reallocated.
588  N->NodeType = ISD::DELETED_NODE;
589
590  NodeAllocator.Deallocate(AllNodes.remove(N));
591}
592
593/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
594/// correspond to it.  This is useful when we're about to delete or repurpose
595/// the node.  We don't want future request for structurally identical nodes
596/// to return N anymore.
597bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
598  bool Erased = false;
599  switch (N->getOpcode()) {
600  case ISD::EntryToken:
601    llvm_unreachable("EntryToken should not be in CSEMaps!");
602    return false;
603  case ISD::HANDLENODE: return false;  // noop.
604  case ISD::CONDCODE:
605    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
606           "Cond code doesn't exist!");
607    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
608    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
609    break;
610  case ISD::ExternalSymbol:
611    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
612    break;
613  case ISD::TargetExternalSymbol: {
614    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
615    Erased = TargetExternalSymbols.erase(
616               std::pair<std::string,unsigned char>(ESN->getSymbol(),
617                                                    ESN->getTargetFlags()));
618    break;
619  }
620  case ISD::VALUETYPE: {
621    EVT VT = cast<VTSDNode>(N)->getVT();
622    if (VT.isExtended()) {
623      Erased = ExtendedValueTypeNodes.erase(VT);
624    } else {
625      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
626      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
627    }
628    break;
629  }
630  default:
631    // Remove it from the CSE Map.
632    Erased = CSEMap.RemoveNode(N);
633    break;
634  }
635#ifndef NDEBUG
636  // Verify that the node was actually in one of the CSE maps, unless it has a
637  // flag result (which cannot be CSE'd) or is one of the special cases that are
638  // not subject to CSE.
639  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
640      !N->isMachineOpcode() && !doNotCSE(N)) {
641    N->dump(this);
642    errs() << "\n";
643    llvm_unreachable("Node is not in map!");
644  }
645#endif
646  return Erased;
647}
648
649/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
650/// maps and modified in place. Add it back to the CSE maps, unless an identical
651/// node already exists, in which case transfer all its users to the existing
652/// node. This transfer can potentially trigger recursive merging.
653///
654void
655SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
656                                       DAGUpdateListener *UpdateListener) {
657  // For node types that aren't CSE'd, just act as if no identical node
658  // already exists.
659  if (!doNotCSE(N)) {
660    SDNode *Existing = CSEMap.GetOrInsertNode(N);
661    if (Existing != N) {
662      // If there was already an existing matching node, use ReplaceAllUsesWith
663      // to replace the dead one with the existing one.  This can cause
664      // recursive merging of other unrelated nodes down the line.
665      ReplaceAllUsesWith(N, Existing, UpdateListener);
666
667      // N is now dead.  Inform the listener if it exists and delete it.
668      if (UpdateListener)
669        UpdateListener->NodeDeleted(N, Existing);
670      DeleteNodeNotInCSEMaps(N);
671      return;
672    }
673  }
674
675  // If the node doesn't already exist, we updated it.  Inform a listener if
676  // it exists.
677  if (UpdateListener)
678    UpdateListener->NodeUpdated(N);
679}
680
681/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
682/// were replaced with those specified.  If this node is never memoized,
683/// return null, otherwise return a pointer to the slot it would take.  If a
684/// node already exists with these operands, the slot will be non-null.
685SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
686                                           void *&InsertPos) {
687  if (doNotCSE(N))
688    return 0;
689
690  SDValue Ops[] = { Op };
691  FoldingSetNodeID ID;
692  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
693  AddNodeIDCustom(ID, N);
694  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
695}
696
697/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
698/// were replaced with those specified.  If this node is never memoized,
699/// return null, otherwise return a pointer to the slot it would take.  If a
700/// node already exists with these operands, the slot will be non-null.
701SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
702                                           SDValue Op1, SDValue Op2,
703                                           void *&InsertPos) {
704  if (doNotCSE(N))
705    return 0;
706
707  SDValue Ops[] = { Op1, Op2 };
708  FoldingSetNodeID ID;
709  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
710  AddNodeIDCustom(ID, N);
711  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
712}
713
714
715/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
716/// were replaced with those specified.  If this node is never memoized,
717/// return null, otherwise return a pointer to the slot it would take.  If a
718/// node already exists with these operands, the slot will be non-null.
719SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
720                                           const SDValue *Ops,unsigned NumOps,
721                                           void *&InsertPos) {
722  if (doNotCSE(N))
723    return 0;
724
725  FoldingSetNodeID ID;
726  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
727  AddNodeIDCustom(ID, N);
728  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
729}
730
731/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
732void SelectionDAG::VerifyNode(SDNode *N) {
733  switch (N->getOpcode()) {
734  default:
735    break;
736  case ISD::BUILD_PAIR: {
737    EVT VT = N->getValueType(0);
738    assert(N->getNumValues() == 1 && "Too many results!");
739    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
740           "Wrong return type!");
741    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
742    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
743           "Mismatched operand types!");
744    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
745           "Wrong operand type!");
746    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
747           "Wrong return type size");
748    break;
749  }
750  case ISD::BUILD_VECTOR: {
751    assert(N->getNumValues() == 1 && "Too many results!");
752    assert(N->getValueType(0).isVector() && "Wrong return type!");
753    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
754           "Wrong number of operands!");
755    EVT EltVT = N->getValueType(0).getVectorElementType();
756    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
757      assert((I->getValueType() == EltVT ||
758             (EltVT.isInteger() && I->getValueType().isInteger() &&
759              EltVT.bitsLE(I->getValueType()))) &&
760            "Wrong operand type!");
761    break;
762  }
763  }
764}
765
766/// getEVTAlignment - Compute the default alignment value for the
767/// given type.
768///
769unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
770  const Type *Ty = VT == MVT::iPTR ?
771                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
772                   VT.getTypeForEVT(*getContext());
773
774  return TLI.getTargetData()->getABITypeAlignment(Ty);
775}
776
777// EntryNode could meaningfully have debug info if we can find it...
778SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
779  : TLI(tli), FLI(fli), DW(0),
780    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
781    getVTList(MVT::Other)), Root(getEntryNode()) {
782  AllNodes.push_back(&EntryNode);
783}
784
785void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
786                        DwarfWriter *dw) {
787  MF = &mf;
788  MMI = mmi;
789  DW = dw;
790  Context = &mf.getFunction()->getContext();
791}
792
793SelectionDAG::~SelectionDAG() {
794  allnodes_clear();
795}
796
797void SelectionDAG::allnodes_clear() {
798  assert(&*AllNodes.begin() == &EntryNode);
799  AllNodes.remove(AllNodes.begin());
800  while (!AllNodes.empty())
801    DeallocateNode(AllNodes.begin());
802}
803
804void SelectionDAG::clear() {
805  allnodes_clear();
806  OperandAllocator.Reset();
807  CSEMap.clear();
808
809  ExtendedValueTypeNodes.clear();
810  ExternalSymbols.clear();
811  TargetExternalSymbols.clear();
812  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
813            static_cast<CondCodeSDNode*>(0));
814  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
815            static_cast<SDNode*>(0));
816
817  EntryNode.UseList = 0;
818  AllNodes.push_back(&EntryNode);
819  Root = getEntryNode();
820}
821
822SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
823  return VT.bitsGT(Op.getValueType()) ?
824    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
825    getNode(ISD::TRUNCATE, DL, VT, Op);
826}
827
828SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
829  return VT.bitsGT(Op.getValueType()) ?
830    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
831    getNode(ISD::TRUNCATE, DL, VT, Op);
832}
833
834SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
835  assert(!VT.isVector() &&
836         "getZeroExtendInReg should use the vector element type instead of "
837         "the vector type!");
838  if (Op.getValueType() == VT) return Op;
839  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
840  APInt Imm = APInt::getLowBitsSet(BitWidth,
841                                   VT.getSizeInBits());
842  return getNode(ISD::AND, DL, Op.getValueType(), Op,
843                 getConstant(Imm, Op.getValueType()));
844}
845
846/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
847///
848SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
849  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
850  SDValue NegOne =
851    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
852  return getNode(ISD::XOR, DL, VT, Val, NegOne);
853}
854
855SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
856  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
857  assert((EltVT.getSizeInBits() >= 64 ||
858         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
859         "getConstant with a uint64_t value that doesn't fit in the type!");
860  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
861}
862
863SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
864  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
865}
866
867SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
868  assert(VT.isInteger() && "Cannot create FP integer constant!");
869
870  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
871  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
872         "APInt size does not match type size!");
873
874  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
875  FoldingSetNodeID ID;
876  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
877  ID.AddPointer(&Val);
878  void *IP = 0;
879  SDNode *N = NULL;
880  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
881    if (!VT.isVector())
882      return SDValue(N, 0);
883  if (!N) {
884    N = NodeAllocator.Allocate<ConstantSDNode>();
885    new (N) ConstantSDNode(isT, &Val, EltVT);
886    CSEMap.InsertNode(N, IP);
887    AllNodes.push_back(N);
888  }
889
890  SDValue Result(N, 0);
891  if (VT.isVector()) {
892    SmallVector<SDValue, 8> Ops;
893    Ops.assign(VT.getVectorNumElements(), Result);
894    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
895                     VT, &Ops[0], Ops.size());
896  }
897  return Result;
898}
899
900SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
901  return getConstant(Val, TLI.getPointerTy(), isTarget);
902}
903
904
905SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
906  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
907}
908
909SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
910  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
911
912  EVT EltVT =
913    VT.isVector() ? VT.getVectorElementType() : VT;
914
915  // Do the map lookup using the actual bit pattern for the floating point
916  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
917  // we don't have issues with SNANs.
918  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
919  FoldingSetNodeID ID;
920  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
921  ID.AddPointer(&V);
922  void *IP = 0;
923  SDNode *N = NULL;
924  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
925    if (!VT.isVector())
926      return SDValue(N, 0);
927  if (!N) {
928    N = NodeAllocator.Allocate<ConstantFPSDNode>();
929    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
930    CSEMap.InsertNode(N, IP);
931    AllNodes.push_back(N);
932  }
933
934  SDValue Result(N, 0);
935  if (VT.isVector()) {
936    SmallVector<SDValue, 8> Ops;
937    Ops.assign(VT.getVectorNumElements(), Result);
938    // FIXME DebugLoc info might be appropriate here
939    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
940                     VT, &Ops[0], Ops.size());
941  }
942  return Result;
943}
944
945SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
946  EVT EltVT =
947    VT.isVector() ? VT.getVectorElementType() : VT;
948  if (EltVT==MVT::f32)
949    return getConstantFP(APFloat((float)Val), VT, isTarget);
950  else
951    return getConstantFP(APFloat(Val), VT, isTarget);
952}
953
954SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
955                                       EVT VT, int64_t Offset,
956                                       bool isTargetGA,
957                                       unsigned char TargetFlags) {
958  assert((TargetFlags == 0 || isTargetGA) &&
959         "Cannot set target flags on target-independent globals");
960
961  // Truncate (with sign-extension) the offset value to the pointer size.
962  EVT PTy = TLI.getPointerTy();
963  unsigned BitWidth = PTy.getSizeInBits();
964  if (BitWidth < 64)
965    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
966
967  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
968  if (!GVar) {
969    // If GV is an alias then use the aliasee for determining thread-localness.
970    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
971      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
972  }
973
974  unsigned Opc;
975  if (GVar && GVar->isThreadLocal())
976    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
977  else
978    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
979
980  FoldingSetNodeID ID;
981  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
982  ID.AddPointer(GV);
983  ID.AddInteger(Offset);
984  ID.AddInteger(TargetFlags);
985  void *IP = 0;
986  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
987    return SDValue(E, 0);
988  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
989  new (N) GlobalAddressSDNode(Opc, GV, VT, Offset, TargetFlags);
990  CSEMap.InsertNode(N, IP);
991  AllNodes.push_back(N);
992  return SDValue(N, 0);
993}
994
995SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
996  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
997  FoldingSetNodeID ID;
998  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
999  ID.AddInteger(FI);
1000  void *IP = 0;
1001  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1002    return SDValue(E, 0);
1003  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1004  new (N) FrameIndexSDNode(FI, VT, isTarget);
1005  CSEMap.InsertNode(N, IP);
1006  AllNodes.push_back(N);
1007  return SDValue(N, 0);
1008}
1009
1010SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1011                                   unsigned char TargetFlags) {
1012  assert((TargetFlags == 0 || isTarget) &&
1013         "Cannot set target flags on target-independent jump tables");
1014  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1015  FoldingSetNodeID ID;
1016  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1017  ID.AddInteger(JTI);
1018  ID.AddInteger(TargetFlags);
1019  void *IP = 0;
1020  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1021    return SDValue(E, 0);
1022  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1023  new (N) JumpTableSDNode(JTI, VT, isTarget, TargetFlags);
1024  CSEMap.InsertNode(N, IP);
1025  AllNodes.push_back(N);
1026  return SDValue(N, 0);
1027}
1028
1029SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1030                                      unsigned Alignment, int Offset,
1031                                      bool isTarget,
1032                                      unsigned char TargetFlags) {
1033  assert((TargetFlags == 0 || isTarget) &&
1034         "Cannot set target flags on target-independent globals");
1035  if (Alignment == 0)
1036    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1037  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1038  FoldingSetNodeID ID;
1039  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1040  ID.AddInteger(Alignment);
1041  ID.AddInteger(Offset);
1042  ID.AddPointer(C);
1043  ID.AddInteger(TargetFlags);
1044  void *IP = 0;
1045  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1046    return SDValue(E, 0);
1047  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1048  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1049  CSEMap.InsertNode(N, IP);
1050  AllNodes.push_back(N);
1051  return SDValue(N, 0);
1052}
1053
1054
1055SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1056                                      unsigned Alignment, int Offset,
1057                                      bool isTarget,
1058                                      unsigned char TargetFlags) {
1059  assert((TargetFlags == 0 || isTarget) &&
1060         "Cannot set target flags on target-independent globals");
1061  if (Alignment == 0)
1062    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1063  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1064  FoldingSetNodeID ID;
1065  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1066  ID.AddInteger(Alignment);
1067  ID.AddInteger(Offset);
1068  C->AddSelectionDAGCSEId(ID);
1069  ID.AddInteger(TargetFlags);
1070  void *IP = 0;
1071  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1072    return SDValue(E, 0);
1073  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1074  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1075  CSEMap.InsertNode(N, IP);
1076  AllNodes.push_back(N);
1077  return SDValue(N, 0);
1078}
1079
1080SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1081  FoldingSetNodeID ID;
1082  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1083  ID.AddPointer(MBB);
1084  void *IP = 0;
1085  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1086    return SDValue(E, 0);
1087  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1088  new (N) BasicBlockSDNode(MBB);
1089  CSEMap.InsertNode(N, IP);
1090  AllNodes.push_back(N);
1091  return SDValue(N, 0);
1092}
1093
1094SDValue SelectionDAG::getValueType(EVT VT) {
1095  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1096      ValueTypeNodes.size())
1097    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1098
1099  SDNode *&N = VT.isExtended() ?
1100    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1101
1102  if (N) return SDValue(N, 0);
1103  N = NodeAllocator.Allocate<VTSDNode>();
1104  new (N) VTSDNode(VT);
1105  AllNodes.push_back(N);
1106  return SDValue(N, 0);
1107}
1108
1109SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1110  SDNode *&N = ExternalSymbols[Sym];
1111  if (N) return SDValue(N, 0);
1112  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1113  new (N) ExternalSymbolSDNode(false, Sym, 0, VT);
1114  AllNodes.push_back(N);
1115  return SDValue(N, 0);
1116}
1117
1118SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1119                                              unsigned char TargetFlags) {
1120  SDNode *&N =
1121    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1122                                                               TargetFlags)];
1123  if (N) return SDValue(N, 0);
1124  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1125  new (N) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1126  AllNodes.push_back(N);
1127  return SDValue(N, 0);
1128}
1129
1130SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1131  if ((unsigned)Cond >= CondCodeNodes.size())
1132    CondCodeNodes.resize(Cond+1);
1133
1134  if (CondCodeNodes[Cond] == 0) {
1135    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1136    new (N) CondCodeSDNode(Cond);
1137    CondCodeNodes[Cond] = N;
1138    AllNodes.push_back(N);
1139  }
1140  return SDValue(CondCodeNodes[Cond], 0);
1141}
1142
1143// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1144// the shuffle mask M that point at N1 to point at N2, and indices that point
1145// N2 to point at N1.
1146static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1147  std::swap(N1, N2);
1148  int NElts = M.size();
1149  for (int i = 0; i != NElts; ++i) {
1150    if (M[i] >= NElts)
1151      M[i] -= NElts;
1152    else if (M[i] >= 0)
1153      M[i] += NElts;
1154  }
1155}
1156
1157SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1158                                       SDValue N2, const int *Mask) {
1159  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1160  assert(VT.isVector() && N1.getValueType().isVector() &&
1161         "Vector Shuffle VTs must be a vectors");
1162  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1163         && "Vector Shuffle VTs must have same element type");
1164
1165  // Canonicalize shuffle undef, undef -> undef
1166  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1167    return getUNDEF(VT);
1168
1169  // Validate that all indices in Mask are within the range of the elements
1170  // input to the shuffle.
1171  unsigned NElts = VT.getVectorNumElements();
1172  SmallVector<int, 8> MaskVec;
1173  for (unsigned i = 0; i != NElts; ++i) {
1174    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1175    MaskVec.push_back(Mask[i]);
1176  }
1177
1178  // Canonicalize shuffle v, v -> v, undef
1179  if (N1 == N2) {
1180    N2 = getUNDEF(VT);
1181    for (unsigned i = 0; i != NElts; ++i)
1182      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1183  }
1184
1185  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1186  if (N1.getOpcode() == ISD::UNDEF)
1187    commuteShuffle(N1, N2, MaskVec);
1188
1189  // Canonicalize all index into lhs, -> shuffle lhs, undef
1190  // Canonicalize all index into rhs, -> shuffle rhs, undef
1191  bool AllLHS = true, AllRHS = true;
1192  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1193  for (unsigned i = 0; i != NElts; ++i) {
1194    if (MaskVec[i] >= (int)NElts) {
1195      if (N2Undef)
1196        MaskVec[i] = -1;
1197      else
1198        AllLHS = false;
1199    } else if (MaskVec[i] >= 0) {
1200      AllRHS = false;
1201    }
1202  }
1203  if (AllLHS && AllRHS)
1204    return getUNDEF(VT);
1205  if (AllLHS && !N2Undef)
1206    N2 = getUNDEF(VT);
1207  if (AllRHS) {
1208    N1 = getUNDEF(VT);
1209    commuteShuffle(N1, N2, MaskVec);
1210  }
1211
1212  // If Identity shuffle, or all shuffle in to undef, return that node.
1213  bool AllUndef = true;
1214  bool Identity = true;
1215  for (unsigned i = 0; i != NElts; ++i) {
1216    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1217    if (MaskVec[i] >= 0) AllUndef = false;
1218  }
1219  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1220    return N1;
1221  if (AllUndef)
1222    return getUNDEF(VT);
1223
1224  FoldingSetNodeID ID;
1225  SDValue Ops[2] = { N1, N2 };
1226  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1227  for (unsigned i = 0; i != NElts; ++i)
1228    ID.AddInteger(MaskVec[i]);
1229
1230  void* IP = 0;
1231  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1232    return SDValue(E, 0);
1233
1234  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1235  // SDNode doesn't have access to it.  This memory will be "leaked" when
1236  // the node is deallocated, but recovered when the NodeAllocator is released.
1237  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1238  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1239
1240  ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1241  new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1242  CSEMap.InsertNode(N, IP);
1243  AllNodes.push_back(N);
1244  return SDValue(N, 0);
1245}
1246
1247SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1248                                       SDValue Val, SDValue DTy,
1249                                       SDValue STy, SDValue Rnd, SDValue Sat,
1250                                       ISD::CvtCode Code) {
1251  // If the src and dest types are the same and the conversion is between
1252  // integer types of the same sign or two floats, no conversion is necessary.
1253  if (DTy == STy &&
1254      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1255    return Val;
1256
1257  FoldingSetNodeID ID;
1258  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1259  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1260  void* IP = 0;
1261  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1262    return SDValue(E, 0);
1263  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1264  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1265  CSEMap.InsertNode(N, IP);
1266  AllNodes.push_back(N);
1267  return SDValue(N, 0);
1268}
1269
1270SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1271  FoldingSetNodeID ID;
1272  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1273  ID.AddInteger(RegNo);
1274  void *IP = 0;
1275  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1276    return SDValue(E, 0);
1277  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1278  new (N) RegisterSDNode(RegNo, VT);
1279  CSEMap.InsertNode(N, IP);
1280  AllNodes.push_back(N);
1281  return SDValue(N, 0);
1282}
1283
1284SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1285                               SDValue Root,
1286                               unsigned LabelID) {
1287  FoldingSetNodeID ID;
1288  SDValue Ops[] = { Root };
1289  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1290  ID.AddInteger(LabelID);
1291  void *IP = 0;
1292  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1293    return SDValue(E, 0);
1294  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1295  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1296  CSEMap.InsertNode(N, IP);
1297  AllNodes.push_back(N);
1298  return SDValue(N, 0);
1299}
1300
1301SDValue SelectionDAG::getBlockAddress(BlockAddress *BA, EVT VT,
1302                                      bool isTarget,
1303                                      unsigned char TargetFlags) {
1304  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1305
1306  FoldingSetNodeID ID;
1307  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1308  ID.AddPointer(BA);
1309  ID.AddInteger(TargetFlags);
1310  void *IP = 0;
1311  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1312    return SDValue(E, 0);
1313  SDNode *N = NodeAllocator.Allocate<BlockAddressSDNode>();
1314  new (N) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1315  CSEMap.InsertNode(N, IP);
1316  AllNodes.push_back(N);
1317  return SDValue(N, 0);
1318}
1319
1320SDValue SelectionDAG::getSrcValue(const Value *V) {
1321  assert((!V || isa<PointerType>(V->getType())) &&
1322         "SrcValue is not a pointer?");
1323
1324  FoldingSetNodeID ID;
1325  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1326  ID.AddPointer(V);
1327
1328  void *IP = 0;
1329  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1330    return SDValue(E, 0);
1331
1332  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1333  new (N) SrcValueSDNode(V);
1334  CSEMap.InsertNode(N, IP);
1335  AllNodes.push_back(N);
1336  return SDValue(N, 0);
1337}
1338
1339/// getShiftAmountOperand - Return the specified value casted to
1340/// the target's desired shift amount type.
1341SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1342  EVT OpTy = Op.getValueType();
1343  MVT ShTy = TLI.getShiftAmountTy();
1344  if (OpTy == ShTy || OpTy.isVector()) return Op;
1345
1346  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1347  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1348}
1349
1350/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1351/// specified value type.
1352SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1353  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1354  unsigned ByteSize = VT.getStoreSize();
1355  const Type *Ty = VT.getTypeForEVT(*getContext());
1356  unsigned StackAlign =
1357  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1358
1359  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1360  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1361}
1362
1363/// CreateStackTemporary - Create a stack temporary suitable for holding
1364/// either of the specified value types.
1365SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1366  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1367                            VT2.getStoreSizeInBits())/8;
1368  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1369  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1370  const TargetData *TD = TLI.getTargetData();
1371  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1372                            TD->getPrefTypeAlignment(Ty2));
1373
1374  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1375  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1376  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1377}
1378
1379SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1380                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1381  // These setcc operations always fold.
1382  switch (Cond) {
1383  default: break;
1384  case ISD::SETFALSE:
1385  case ISD::SETFALSE2: return getConstant(0, VT);
1386  case ISD::SETTRUE:
1387  case ISD::SETTRUE2:  return getConstant(1, VT);
1388
1389  case ISD::SETOEQ:
1390  case ISD::SETOGT:
1391  case ISD::SETOGE:
1392  case ISD::SETOLT:
1393  case ISD::SETOLE:
1394  case ISD::SETONE:
1395  case ISD::SETO:
1396  case ISD::SETUO:
1397  case ISD::SETUEQ:
1398  case ISD::SETUNE:
1399    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1400    break;
1401  }
1402
1403  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1404    const APInt &C2 = N2C->getAPIntValue();
1405    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1406      const APInt &C1 = N1C->getAPIntValue();
1407
1408      switch (Cond) {
1409      default: llvm_unreachable("Unknown integer setcc!");
1410      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1411      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1412      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1413      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1414      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1415      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1416      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1417      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1418      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1419      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1420      }
1421    }
1422  }
1423  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1424    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1425      // No compile time operations on this type yet.
1426      if (N1C->getValueType(0) == MVT::ppcf128)
1427        return SDValue();
1428
1429      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1430      switch (Cond) {
1431      default: break;
1432      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1433                          return getUNDEF(VT);
1434                        // fall through
1435      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1436      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1437                          return getUNDEF(VT);
1438                        // fall through
1439      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1440                                           R==APFloat::cmpLessThan, VT);
1441      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1442                          return getUNDEF(VT);
1443                        // fall through
1444      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1445      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1446                          return getUNDEF(VT);
1447                        // fall through
1448      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1449      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1450                          return getUNDEF(VT);
1451                        // fall through
1452      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1453                                           R==APFloat::cmpEqual, VT);
1454      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1455                          return getUNDEF(VT);
1456                        // fall through
1457      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1458                                           R==APFloat::cmpEqual, VT);
1459      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1460      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1461      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1462                                           R==APFloat::cmpEqual, VT);
1463      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1464      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1465                                           R==APFloat::cmpLessThan, VT);
1466      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1467                                           R==APFloat::cmpUnordered, VT);
1468      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1469      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1470      }
1471    } else {
1472      // Ensure that the constant occurs on the RHS.
1473      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1474    }
1475  }
1476
1477  // Could not fold it.
1478  return SDValue();
1479}
1480
1481/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1482/// use this predicate to simplify operations downstream.
1483bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1484  // This predicate is not safe for vector operations.
1485  if (Op.getValueType().isVector())
1486    return false;
1487
1488  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1489  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1490}
1491
1492/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1493/// this predicate to simplify operations downstream.  Mask is known to be zero
1494/// for bits that V cannot have.
1495bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1496                                     unsigned Depth) const {
1497  APInt KnownZero, KnownOne;
1498  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1499  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1500  return (KnownZero & Mask) == Mask;
1501}
1502
1503/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1504/// known to be either zero or one and return them in the KnownZero/KnownOne
1505/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1506/// processing.
1507void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1508                                     APInt &KnownZero, APInt &KnownOne,
1509                                     unsigned Depth) const {
1510  unsigned BitWidth = Mask.getBitWidth();
1511  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1512         "Mask size mismatches value type size!");
1513
1514  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1515  if (Depth == 6 || Mask == 0)
1516    return;  // Limit search depth.
1517
1518  APInt KnownZero2, KnownOne2;
1519
1520  switch (Op.getOpcode()) {
1521  case ISD::Constant:
1522    // We know all of the bits for a constant!
1523    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1524    KnownZero = ~KnownOne & Mask;
1525    return;
1526  case ISD::AND:
1527    // If either the LHS or the RHS are Zero, the result is zero.
1528    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1529    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1530                      KnownZero2, KnownOne2, Depth+1);
1531    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1532    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1533
1534    // Output known-1 bits are only known if set in both the LHS & RHS.
1535    KnownOne &= KnownOne2;
1536    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1537    KnownZero |= KnownZero2;
1538    return;
1539  case ISD::OR:
1540    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1541    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1542                      KnownZero2, KnownOne2, Depth+1);
1543    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1544    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1545
1546    // Output known-0 bits are only known if clear in both the LHS & RHS.
1547    KnownZero &= KnownZero2;
1548    // Output known-1 are known to be set if set in either the LHS | RHS.
1549    KnownOne |= KnownOne2;
1550    return;
1551  case ISD::XOR: {
1552    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1553    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1554    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1555    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1556
1557    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1558    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1559    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1560    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1561    KnownZero = KnownZeroOut;
1562    return;
1563  }
1564  case ISD::MUL: {
1565    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1566    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1567    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1568    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1569    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1570
1571    // If low bits are zero in either operand, output low known-0 bits.
1572    // Also compute a conserative estimate for high known-0 bits.
1573    // More trickiness is possible, but this is sufficient for the
1574    // interesting case of alignment computation.
1575    KnownOne.clear();
1576    unsigned TrailZ = KnownZero.countTrailingOnes() +
1577                      KnownZero2.countTrailingOnes();
1578    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1579                               KnownZero2.countLeadingOnes(),
1580                               BitWidth) - BitWidth;
1581
1582    TrailZ = std::min(TrailZ, BitWidth);
1583    LeadZ = std::min(LeadZ, BitWidth);
1584    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1585                APInt::getHighBitsSet(BitWidth, LeadZ);
1586    KnownZero &= Mask;
1587    return;
1588  }
1589  case ISD::UDIV: {
1590    // For the purposes of computing leading zeros we can conservatively
1591    // treat a udiv as a logical right shift by the power of 2 known to
1592    // be less than the denominator.
1593    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1594    ComputeMaskedBits(Op.getOperand(0),
1595                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1596    unsigned LeadZ = KnownZero2.countLeadingOnes();
1597
1598    KnownOne2.clear();
1599    KnownZero2.clear();
1600    ComputeMaskedBits(Op.getOperand(1),
1601                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1602    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1603    if (RHSUnknownLeadingOnes != BitWidth)
1604      LeadZ = std::min(BitWidth,
1605                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1606
1607    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1608    return;
1609  }
1610  case ISD::SELECT:
1611    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1612    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1613    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1614    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1615
1616    // Only known if known in both the LHS and RHS.
1617    KnownOne &= KnownOne2;
1618    KnownZero &= KnownZero2;
1619    return;
1620  case ISD::SELECT_CC:
1621    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1622    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1623    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1624    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1625
1626    // Only known if known in both the LHS and RHS.
1627    KnownOne &= KnownOne2;
1628    KnownZero &= KnownZero2;
1629    return;
1630  case ISD::SADDO:
1631  case ISD::UADDO:
1632  case ISD::SSUBO:
1633  case ISD::USUBO:
1634  case ISD::SMULO:
1635  case ISD::UMULO:
1636    if (Op.getResNo() != 1)
1637      return;
1638    // The boolean result conforms to getBooleanContents.  Fall through.
1639  case ISD::SETCC:
1640    // If we know the result of a setcc has the top bits zero, use this info.
1641    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1642        BitWidth > 1)
1643      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1644    return;
1645  case ISD::SHL:
1646    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1647    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1648      unsigned ShAmt = SA->getZExtValue();
1649
1650      // If the shift count is an invalid immediate, don't do anything.
1651      if (ShAmt >= BitWidth)
1652        return;
1653
1654      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1655                        KnownZero, KnownOne, Depth+1);
1656      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1657      KnownZero <<= ShAmt;
1658      KnownOne  <<= ShAmt;
1659      // low bits known zero.
1660      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1661    }
1662    return;
1663  case ISD::SRL:
1664    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1665    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1666      unsigned ShAmt = SA->getZExtValue();
1667
1668      // If the shift count is an invalid immediate, don't do anything.
1669      if (ShAmt >= BitWidth)
1670        return;
1671
1672      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1673                        KnownZero, KnownOne, Depth+1);
1674      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1675      KnownZero = KnownZero.lshr(ShAmt);
1676      KnownOne  = KnownOne.lshr(ShAmt);
1677
1678      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1679      KnownZero |= HighBits;  // High bits known zero.
1680    }
1681    return;
1682  case ISD::SRA:
1683    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1684      unsigned ShAmt = SA->getZExtValue();
1685
1686      // If the shift count is an invalid immediate, don't do anything.
1687      if (ShAmt >= BitWidth)
1688        return;
1689
1690      APInt InDemandedMask = (Mask << ShAmt);
1691      // If any of the demanded bits are produced by the sign extension, we also
1692      // demand the input sign bit.
1693      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1694      if (HighBits.getBoolValue())
1695        InDemandedMask |= APInt::getSignBit(BitWidth);
1696
1697      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1698                        Depth+1);
1699      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1700      KnownZero = KnownZero.lshr(ShAmt);
1701      KnownOne  = KnownOne.lshr(ShAmt);
1702
1703      // Handle the sign bits.
1704      APInt SignBit = APInt::getSignBit(BitWidth);
1705      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1706
1707      if (KnownZero.intersects(SignBit)) {
1708        KnownZero |= HighBits;  // New bits are known zero.
1709      } else if (KnownOne.intersects(SignBit)) {
1710        KnownOne  |= HighBits;  // New bits are known one.
1711      }
1712    }
1713    return;
1714  case ISD::SIGN_EXTEND_INREG: {
1715    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1716    unsigned EBits = EVT.getSizeInBits();
1717
1718    // Sign extension.  Compute the demanded bits in the result that are not
1719    // present in the input.
1720    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1721
1722    APInt InSignBit = APInt::getSignBit(EBits);
1723    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1724
1725    // If the sign extended bits are demanded, we know that the sign
1726    // bit is demanded.
1727    InSignBit.zext(BitWidth);
1728    if (NewBits.getBoolValue())
1729      InputDemandedBits |= InSignBit;
1730
1731    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1732                      KnownZero, KnownOne, Depth+1);
1733    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1734
1735    // If the sign bit of the input is known set or clear, then we know the
1736    // top bits of the result.
1737    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1738      KnownZero |= NewBits;
1739      KnownOne  &= ~NewBits;
1740    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1741      KnownOne  |= NewBits;
1742      KnownZero &= ~NewBits;
1743    } else {                              // Input sign bit unknown
1744      KnownZero &= ~NewBits;
1745      KnownOne  &= ~NewBits;
1746    }
1747    return;
1748  }
1749  case ISD::CTTZ:
1750  case ISD::CTLZ:
1751  case ISD::CTPOP: {
1752    unsigned LowBits = Log2_32(BitWidth)+1;
1753    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1754    KnownOne.clear();
1755    return;
1756  }
1757  case ISD::LOAD: {
1758    if (ISD::isZEXTLoad(Op.getNode())) {
1759      LoadSDNode *LD = cast<LoadSDNode>(Op);
1760      EVT VT = LD->getMemoryVT();
1761      unsigned MemBits = VT.getSizeInBits();
1762      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1763    }
1764    return;
1765  }
1766  case ISD::ZERO_EXTEND: {
1767    EVT InVT = Op.getOperand(0).getValueType();
1768    unsigned InBits = InVT.getScalarType().getSizeInBits();
1769    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1770    APInt InMask    = Mask;
1771    InMask.trunc(InBits);
1772    KnownZero.trunc(InBits);
1773    KnownOne.trunc(InBits);
1774    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1775    KnownZero.zext(BitWidth);
1776    KnownOne.zext(BitWidth);
1777    KnownZero |= NewBits;
1778    return;
1779  }
1780  case ISD::SIGN_EXTEND: {
1781    EVT InVT = Op.getOperand(0).getValueType();
1782    unsigned InBits = InVT.getScalarType().getSizeInBits();
1783    APInt InSignBit = APInt::getSignBit(InBits);
1784    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1785    APInt InMask = Mask;
1786    InMask.trunc(InBits);
1787
1788    // If any of the sign extended bits are demanded, we know that the sign
1789    // bit is demanded. Temporarily set this bit in the mask for our callee.
1790    if (NewBits.getBoolValue())
1791      InMask |= InSignBit;
1792
1793    KnownZero.trunc(InBits);
1794    KnownOne.trunc(InBits);
1795    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1796
1797    // Note if the sign bit is known to be zero or one.
1798    bool SignBitKnownZero = KnownZero.isNegative();
1799    bool SignBitKnownOne  = KnownOne.isNegative();
1800    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1801           "Sign bit can't be known to be both zero and one!");
1802
1803    // If the sign bit wasn't actually demanded by our caller, we don't
1804    // want it set in the KnownZero and KnownOne result values. Reset the
1805    // mask and reapply it to the result values.
1806    InMask = Mask;
1807    InMask.trunc(InBits);
1808    KnownZero &= InMask;
1809    KnownOne  &= InMask;
1810
1811    KnownZero.zext(BitWidth);
1812    KnownOne.zext(BitWidth);
1813
1814    // If the sign bit is known zero or one, the top bits match.
1815    if (SignBitKnownZero)
1816      KnownZero |= NewBits;
1817    else if (SignBitKnownOne)
1818      KnownOne  |= NewBits;
1819    return;
1820  }
1821  case ISD::ANY_EXTEND: {
1822    EVT InVT = Op.getOperand(0).getValueType();
1823    unsigned InBits = InVT.getScalarType().getSizeInBits();
1824    APInt InMask = Mask;
1825    InMask.trunc(InBits);
1826    KnownZero.trunc(InBits);
1827    KnownOne.trunc(InBits);
1828    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1829    KnownZero.zext(BitWidth);
1830    KnownOne.zext(BitWidth);
1831    return;
1832  }
1833  case ISD::TRUNCATE: {
1834    EVT InVT = Op.getOperand(0).getValueType();
1835    unsigned InBits = InVT.getScalarType().getSizeInBits();
1836    APInt InMask = Mask;
1837    InMask.zext(InBits);
1838    KnownZero.zext(InBits);
1839    KnownOne.zext(InBits);
1840    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1841    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1842    KnownZero.trunc(BitWidth);
1843    KnownOne.trunc(BitWidth);
1844    break;
1845  }
1846  case ISD::AssertZext: {
1847    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1848    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1849    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1850                      KnownOne, Depth+1);
1851    KnownZero |= (~InMask) & Mask;
1852    return;
1853  }
1854  case ISD::FGETSIGN:
1855    // All bits are zero except the low bit.
1856    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1857    return;
1858
1859  case ISD::SUB: {
1860    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1861      // We know that the top bits of C-X are clear if X contains less bits
1862      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1863      // positive if we can prove that X is >= 0 and < 16.
1864      if (CLHS->getAPIntValue().isNonNegative()) {
1865        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1866        // NLZ can't be BitWidth with no sign bit
1867        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1868        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1869                          Depth+1);
1870
1871        // If all of the MaskV bits are known to be zero, then we know the
1872        // output top bits are zero, because we now know that the output is
1873        // from [0-C].
1874        if ((KnownZero2 & MaskV) == MaskV) {
1875          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1876          // Top bits known zero.
1877          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1878        }
1879      }
1880    }
1881  }
1882  // fall through
1883  case ISD::ADD: {
1884    // Output known-0 bits are known if clear or set in both the low clear bits
1885    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1886    // low 3 bits clear.
1887    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1888    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1889    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1890    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1891
1892    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1893    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1894    KnownZeroOut = std::min(KnownZeroOut,
1895                            KnownZero2.countTrailingOnes());
1896
1897    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1898    return;
1899  }
1900  case ISD::SREM:
1901    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1902      const APInt &RA = Rem->getAPIntValue();
1903      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1904        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1905        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1906        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1907
1908        // If the sign bit of the first operand is zero, the sign bit of
1909        // the result is zero. If the first operand has no one bits below
1910        // the second operand's single 1 bit, its sign will be zero.
1911        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1912          KnownZero2 |= ~LowBits;
1913
1914        KnownZero |= KnownZero2 & Mask;
1915
1916        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1917      }
1918    }
1919    return;
1920  case ISD::UREM: {
1921    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1922      const APInt &RA = Rem->getAPIntValue();
1923      if (RA.isPowerOf2()) {
1924        APInt LowBits = (RA - 1);
1925        APInt Mask2 = LowBits & Mask;
1926        KnownZero |= ~LowBits & Mask;
1927        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1928        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1929        break;
1930      }
1931    }
1932
1933    // Since the result is less than or equal to either operand, any leading
1934    // zero bits in either operand must also exist in the result.
1935    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1936    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1937                      Depth+1);
1938    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1939                      Depth+1);
1940
1941    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1942                                KnownZero2.countLeadingOnes());
1943    KnownOne.clear();
1944    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1945    return;
1946  }
1947  default:
1948    // Allow the target to implement this method for its nodes.
1949    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1950  case ISD::INTRINSIC_WO_CHAIN:
1951  case ISD::INTRINSIC_W_CHAIN:
1952  case ISD::INTRINSIC_VOID:
1953      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1954                                         Depth);
1955    }
1956    return;
1957  }
1958}
1959
1960/// ComputeNumSignBits - Return the number of times the sign bit of the
1961/// register is replicated into the other bits.  We know that at least 1 bit
1962/// is always equal to the sign bit (itself), but other cases can give us
1963/// information.  For example, immediately after an "SRA X, 2", we know that
1964/// the top 3 bits are all equal to each other, so we return 3.
1965unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1966  EVT VT = Op.getValueType();
1967  assert(VT.isInteger() && "Invalid VT!");
1968  unsigned VTBits = VT.getScalarType().getSizeInBits();
1969  unsigned Tmp, Tmp2;
1970  unsigned FirstAnswer = 1;
1971
1972  if (Depth == 6)
1973    return 1;  // Limit search depth.
1974
1975  switch (Op.getOpcode()) {
1976  default: break;
1977  case ISD::AssertSext:
1978    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1979    return VTBits-Tmp+1;
1980  case ISD::AssertZext:
1981    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1982    return VTBits-Tmp;
1983
1984  case ISD::Constant: {
1985    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1986    // If negative, return # leading ones.
1987    if (Val.isNegative())
1988      return Val.countLeadingOnes();
1989
1990    // Return # leading zeros.
1991    return Val.countLeadingZeros();
1992  }
1993
1994  case ISD::SIGN_EXTEND:
1995    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1996    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1997
1998  case ISD::SIGN_EXTEND_INREG:
1999    // Max of the input and what this extends.
2000    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2001    Tmp = VTBits-Tmp+1;
2002
2003    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2004    return std::max(Tmp, Tmp2);
2005
2006  case ISD::SRA:
2007    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2008    // SRA X, C   -> adds C sign bits.
2009    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2010      Tmp += C->getZExtValue();
2011      if (Tmp > VTBits) Tmp = VTBits;
2012    }
2013    return Tmp;
2014  case ISD::SHL:
2015    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2016      // shl destroys sign bits.
2017      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2018      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2019          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2020      return Tmp - C->getZExtValue();
2021    }
2022    break;
2023  case ISD::AND:
2024  case ISD::OR:
2025  case ISD::XOR:    // NOT is handled here.
2026    // Logical binary ops preserve the number of sign bits at the worst.
2027    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2028    if (Tmp != 1) {
2029      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2030      FirstAnswer = std::min(Tmp, Tmp2);
2031      // We computed what we know about the sign bits as our first
2032      // answer. Now proceed to the generic code that uses
2033      // ComputeMaskedBits, and pick whichever answer is better.
2034    }
2035    break;
2036
2037  case ISD::SELECT:
2038    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2039    if (Tmp == 1) return 1;  // Early out.
2040    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2041    return std::min(Tmp, Tmp2);
2042
2043  case ISD::SADDO:
2044  case ISD::UADDO:
2045  case ISD::SSUBO:
2046  case ISD::USUBO:
2047  case ISD::SMULO:
2048  case ISD::UMULO:
2049    if (Op.getResNo() != 1)
2050      break;
2051    // The boolean result conforms to getBooleanContents.  Fall through.
2052  case ISD::SETCC:
2053    // If setcc returns 0/-1, all bits are sign bits.
2054    if (TLI.getBooleanContents() ==
2055        TargetLowering::ZeroOrNegativeOneBooleanContent)
2056      return VTBits;
2057    break;
2058  case ISD::ROTL:
2059  case ISD::ROTR:
2060    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2061      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2062
2063      // Handle rotate right by N like a rotate left by 32-N.
2064      if (Op.getOpcode() == ISD::ROTR)
2065        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2066
2067      // If we aren't rotating out all of the known-in sign bits, return the
2068      // number that are left.  This handles rotl(sext(x), 1) for example.
2069      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2070      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2071    }
2072    break;
2073  case ISD::ADD:
2074    // Add can have at most one carry bit.  Thus we know that the output
2075    // is, at worst, one more bit than the inputs.
2076    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2077    if (Tmp == 1) return 1;  // Early out.
2078
2079    // Special case decrementing a value (ADD X, -1):
2080    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2081      if (CRHS->isAllOnesValue()) {
2082        APInt KnownZero, KnownOne;
2083        APInt Mask = APInt::getAllOnesValue(VTBits);
2084        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2085
2086        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2087        // sign bits set.
2088        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2089          return VTBits;
2090
2091        // If we are subtracting one from a positive number, there is no carry
2092        // out of the result.
2093        if (KnownZero.isNegative())
2094          return Tmp;
2095      }
2096
2097    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2098    if (Tmp2 == 1) return 1;
2099      return std::min(Tmp, Tmp2)-1;
2100    break;
2101
2102  case ISD::SUB:
2103    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2104    if (Tmp2 == 1) return 1;
2105
2106    // Handle NEG.
2107    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2108      if (CLHS->isNullValue()) {
2109        APInt KnownZero, KnownOne;
2110        APInt Mask = APInt::getAllOnesValue(VTBits);
2111        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2112        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2113        // sign bits set.
2114        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2115          return VTBits;
2116
2117        // If the input is known to be positive (the sign bit is known clear),
2118        // the output of the NEG has the same number of sign bits as the input.
2119        if (KnownZero.isNegative())
2120          return Tmp2;
2121
2122        // Otherwise, we treat this like a SUB.
2123      }
2124
2125    // Sub can have at most one carry bit.  Thus we know that the output
2126    // is, at worst, one more bit than the inputs.
2127    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2128    if (Tmp == 1) return 1;  // Early out.
2129      return std::min(Tmp, Tmp2)-1;
2130    break;
2131  case ISD::TRUNCATE:
2132    // FIXME: it's tricky to do anything useful for this, but it is an important
2133    // case for targets like X86.
2134    break;
2135  }
2136
2137  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2138  if (Op.getOpcode() == ISD::LOAD) {
2139    LoadSDNode *LD = cast<LoadSDNode>(Op);
2140    unsigned ExtType = LD->getExtensionType();
2141    switch (ExtType) {
2142    default: break;
2143    case ISD::SEXTLOAD:    // '17' bits known
2144      Tmp = LD->getMemoryVT().getSizeInBits();
2145      return VTBits-Tmp+1;
2146    case ISD::ZEXTLOAD:    // '16' bits known
2147      Tmp = LD->getMemoryVT().getSizeInBits();
2148      return VTBits-Tmp;
2149    }
2150  }
2151
2152  // Allow the target to implement this method for its nodes.
2153  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2154      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2155      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2156      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2157    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2158    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2159  }
2160
2161  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2162  // use this information.
2163  APInt KnownZero, KnownOne;
2164  APInt Mask = APInt::getAllOnesValue(VTBits);
2165  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2166
2167  if (KnownZero.isNegative()) {        // sign bit is 0
2168    Mask = KnownZero;
2169  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2170    Mask = KnownOne;
2171  } else {
2172    // Nothing known.
2173    return FirstAnswer;
2174  }
2175
2176  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2177  // the number of identical bits in the top of the input value.
2178  Mask = ~Mask;
2179  Mask <<= Mask.getBitWidth()-VTBits;
2180  // Return # leading zeros.  We use 'min' here in case Val was zero before
2181  // shifting.  We don't want to return '64' as for an i32 "0".
2182  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2183}
2184
2185bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2186  // If we're told that NaNs won't happen, assume they won't.
2187  if (FiniteOnlyFPMath())
2188    return true;
2189
2190  // If the value is a constant, we can obviously see if it is a NaN or not.
2191  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2192    return !C->getValueAPF().isNaN();
2193
2194  // TODO: Recognize more cases here.
2195
2196  return false;
2197}
2198
2199bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2200  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2201  if (!GA) return false;
2202  if (GA->getOffset() != 0) return false;
2203  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2204  if (!GV) return false;
2205  MachineModuleInfo *MMI = getMachineModuleInfo();
2206  return MMI && MMI->hasDebugInfo();
2207}
2208
2209
2210/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2211/// element of the result of the vector shuffle.
2212SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2213                                          unsigned i) {
2214  EVT VT = N->getValueType(0);
2215  DebugLoc dl = N->getDebugLoc();
2216  if (N->getMaskElt(i) < 0)
2217    return getUNDEF(VT.getVectorElementType());
2218  unsigned Index = N->getMaskElt(i);
2219  unsigned NumElems = VT.getVectorNumElements();
2220  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2221  Index %= NumElems;
2222
2223  if (V.getOpcode() == ISD::BIT_CONVERT) {
2224    V = V.getOperand(0);
2225    EVT VVT = V.getValueType();
2226    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2227      return SDValue();
2228  }
2229  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2230    return (Index == 0) ? V.getOperand(0)
2231                      : getUNDEF(VT.getVectorElementType());
2232  if (V.getOpcode() == ISD::BUILD_VECTOR)
2233    return V.getOperand(Index);
2234  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2235    return getShuffleScalarElt(SVN, Index);
2236  return SDValue();
2237}
2238
2239
2240/// getNode - Gets or creates the specified node.
2241///
2242SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2243  FoldingSetNodeID ID;
2244  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2245  void *IP = 0;
2246  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2247    return SDValue(E, 0);
2248  SDNode *N = NodeAllocator.Allocate<SDNode>();
2249  new (N) SDNode(Opcode, DL, getVTList(VT));
2250  CSEMap.InsertNode(N, IP);
2251
2252  AllNodes.push_back(N);
2253#ifndef NDEBUG
2254  VerifyNode(N);
2255#endif
2256  return SDValue(N, 0);
2257}
2258
2259SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2260                              EVT VT, SDValue Operand) {
2261  // Constant fold unary operations with an integer constant operand.
2262  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2263    const APInt &Val = C->getAPIntValue();
2264    unsigned BitWidth = VT.getSizeInBits();
2265    switch (Opcode) {
2266    default: break;
2267    case ISD::SIGN_EXTEND:
2268      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2269    case ISD::ANY_EXTEND:
2270    case ISD::ZERO_EXTEND:
2271    case ISD::TRUNCATE:
2272      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2273    case ISD::UINT_TO_FP:
2274    case ISD::SINT_TO_FP: {
2275      const uint64_t zero[] = {0, 0};
2276      // No compile time operations on this type.
2277      if (VT==MVT::ppcf128)
2278        break;
2279      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2280      (void)apf.convertFromAPInt(Val,
2281                                 Opcode==ISD::SINT_TO_FP,
2282                                 APFloat::rmNearestTiesToEven);
2283      return getConstantFP(apf, VT);
2284    }
2285    case ISD::BIT_CONVERT:
2286      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2287        return getConstantFP(Val.bitsToFloat(), VT);
2288      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2289        return getConstantFP(Val.bitsToDouble(), VT);
2290      break;
2291    case ISD::BSWAP:
2292      return getConstant(Val.byteSwap(), VT);
2293    case ISD::CTPOP:
2294      return getConstant(Val.countPopulation(), VT);
2295    case ISD::CTLZ:
2296      return getConstant(Val.countLeadingZeros(), VT);
2297    case ISD::CTTZ:
2298      return getConstant(Val.countTrailingZeros(), VT);
2299    }
2300  }
2301
2302  // Constant fold unary operations with a floating point constant operand.
2303  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2304    APFloat V = C->getValueAPF();    // make copy
2305    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2306      switch (Opcode) {
2307      case ISD::FNEG:
2308        V.changeSign();
2309        return getConstantFP(V, VT);
2310      case ISD::FABS:
2311        V.clearSign();
2312        return getConstantFP(V, VT);
2313      case ISD::FP_ROUND:
2314      case ISD::FP_EXTEND: {
2315        bool ignored;
2316        // This can return overflow, underflow, or inexact; we don't care.
2317        // FIXME need to be more flexible about rounding mode.
2318        (void)V.convert(*EVTToAPFloatSemantics(VT),
2319                        APFloat::rmNearestTiesToEven, &ignored);
2320        return getConstantFP(V, VT);
2321      }
2322      case ISD::FP_TO_SINT:
2323      case ISD::FP_TO_UINT: {
2324        integerPart x[2];
2325        bool ignored;
2326        assert(integerPartWidth >= 64);
2327        // FIXME need to be more flexible about rounding mode.
2328        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2329                              Opcode==ISD::FP_TO_SINT,
2330                              APFloat::rmTowardZero, &ignored);
2331        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2332          break;
2333        APInt api(VT.getSizeInBits(), 2, x);
2334        return getConstant(api, VT);
2335      }
2336      case ISD::BIT_CONVERT:
2337        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2338          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2339        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2340          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2341        break;
2342      }
2343    }
2344  }
2345
2346  unsigned OpOpcode = Operand.getNode()->getOpcode();
2347  switch (Opcode) {
2348  case ISD::TokenFactor:
2349  case ISD::MERGE_VALUES:
2350  case ISD::CONCAT_VECTORS:
2351    return Operand;         // Factor, merge or concat of one node?  No need.
2352  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2353  case ISD::FP_EXTEND:
2354    assert(VT.isFloatingPoint() &&
2355           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2356    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2357    assert((!VT.isVector() ||
2358            VT.getVectorNumElements() ==
2359            Operand.getValueType().getVectorNumElements()) &&
2360           "Vector element count mismatch!");
2361    if (Operand.getOpcode() == ISD::UNDEF)
2362      return getUNDEF(VT);
2363    break;
2364  case ISD::SIGN_EXTEND:
2365    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2366           "Invalid SIGN_EXTEND!");
2367    if (Operand.getValueType() == VT) return Operand;   // noop extension
2368    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2369           "Invalid sext node, dst < src!");
2370    assert((!VT.isVector() ||
2371            VT.getVectorNumElements() ==
2372            Operand.getValueType().getVectorNumElements()) &&
2373           "Vector element count mismatch!");
2374    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2375      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2376    break;
2377  case ISD::ZERO_EXTEND:
2378    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2379           "Invalid ZERO_EXTEND!");
2380    if (Operand.getValueType() == VT) return Operand;   // noop extension
2381    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2382           "Invalid zext node, dst < src!");
2383    assert((!VT.isVector() ||
2384            VT.getVectorNumElements() ==
2385            Operand.getValueType().getVectorNumElements()) &&
2386           "Vector element count mismatch!");
2387    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2388      return getNode(ISD::ZERO_EXTEND, DL, VT,
2389                     Operand.getNode()->getOperand(0));
2390    break;
2391  case ISD::ANY_EXTEND:
2392    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2393           "Invalid ANY_EXTEND!");
2394    if (Operand.getValueType() == VT) return Operand;   // noop extension
2395    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2396           "Invalid anyext node, dst < src!");
2397    assert((!VT.isVector() ||
2398            VT.getVectorNumElements() ==
2399            Operand.getValueType().getVectorNumElements()) &&
2400           "Vector element count mismatch!");
2401    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2402      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2403      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2404    break;
2405  case ISD::TRUNCATE:
2406    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2407           "Invalid TRUNCATE!");
2408    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2409    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2410           "Invalid truncate node, src < dst!");
2411    assert((!VT.isVector() ||
2412            VT.getVectorNumElements() ==
2413            Operand.getValueType().getVectorNumElements()) &&
2414           "Vector element count mismatch!");
2415    if (OpOpcode == ISD::TRUNCATE)
2416      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2417    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2418             OpOpcode == ISD::ANY_EXTEND) {
2419      // If the source is smaller than the dest, we still need an extend.
2420      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2421            .bitsLT(VT.getScalarType()))
2422        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2423      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2424        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2425      else
2426        return Operand.getNode()->getOperand(0);
2427    }
2428    break;
2429  case ISD::BIT_CONVERT:
2430    // Basic sanity checking.
2431    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2432           && "Cannot BIT_CONVERT between types of different sizes!");
2433    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2434    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2435      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2436    if (OpOpcode == ISD::UNDEF)
2437      return getUNDEF(VT);
2438    break;
2439  case ISD::SCALAR_TO_VECTOR:
2440    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2441           (VT.getVectorElementType() == Operand.getValueType() ||
2442            (VT.getVectorElementType().isInteger() &&
2443             Operand.getValueType().isInteger() &&
2444             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2445           "Illegal SCALAR_TO_VECTOR node!");
2446    if (OpOpcode == ISD::UNDEF)
2447      return getUNDEF(VT);
2448    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2449    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2450        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2451        Operand.getConstantOperandVal(1) == 0 &&
2452        Operand.getOperand(0).getValueType() == VT)
2453      return Operand.getOperand(0);
2454    break;
2455  case ISD::FNEG:
2456    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2457    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2458      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2459                     Operand.getNode()->getOperand(0));
2460    if (OpOpcode == ISD::FNEG)  // --X -> X
2461      return Operand.getNode()->getOperand(0);
2462    break;
2463  case ISD::FABS:
2464    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2465      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2466    break;
2467  }
2468
2469  SDNode *N;
2470  SDVTList VTs = getVTList(VT);
2471  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2472    FoldingSetNodeID ID;
2473    SDValue Ops[1] = { Operand };
2474    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2475    void *IP = 0;
2476    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2477      return SDValue(E, 0);
2478    N = NodeAllocator.Allocate<UnarySDNode>();
2479    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2480    CSEMap.InsertNode(N, IP);
2481  } else {
2482    N = NodeAllocator.Allocate<UnarySDNode>();
2483    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2484  }
2485
2486  AllNodes.push_back(N);
2487#ifndef NDEBUG
2488  VerifyNode(N);
2489#endif
2490  return SDValue(N, 0);
2491}
2492
2493SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2494                                             EVT VT,
2495                                             ConstantSDNode *Cst1,
2496                                             ConstantSDNode *Cst2) {
2497  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2498
2499  switch (Opcode) {
2500  case ISD::ADD:  return getConstant(C1 + C2, VT);
2501  case ISD::SUB:  return getConstant(C1 - C2, VT);
2502  case ISD::MUL:  return getConstant(C1 * C2, VT);
2503  case ISD::UDIV:
2504    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2505    break;
2506  case ISD::UREM:
2507    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2508    break;
2509  case ISD::SDIV:
2510    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2511    break;
2512  case ISD::SREM:
2513    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2514    break;
2515  case ISD::AND:  return getConstant(C1 & C2, VT);
2516  case ISD::OR:   return getConstant(C1 | C2, VT);
2517  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2518  case ISD::SHL:  return getConstant(C1 << C2, VT);
2519  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2520  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2521  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2522  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2523  default: break;
2524  }
2525
2526  return SDValue();
2527}
2528
2529SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2530                              SDValue N1, SDValue N2) {
2531  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2532  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2533  switch (Opcode) {
2534  default: break;
2535  case ISD::TokenFactor:
2536    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2537           N2.getValueType() == MVT::Other && "Invalid token factor!");
2538    // Fold trivial token factors.
2539    if (N1.getOpcode() == ISD::EntryToken) return N2;
2540    if (N2.getOpcode() == ISD::EntryToken) return N1;
2541    if (N1 == N2) return N1;
2542    break;
2543  case ISD::CONCAT_VECTORS:
2544    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2545    // one big BUILD_VECTOR.
2546    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2547        N2.getOpcode() == ISD::BUILD_VECTOR) {
2548      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2549      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2550      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2551    }
2552    break;
2553  case ISD::AND:
2554    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2555           N1.getValueType() == VT && "Binary operator types must match!");
2556    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2557    // worth handling here.
2558    if (N2C && N2C->isNullValue())
2559      return N2;
2560    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2561      return N1;
2562    break;
2563  case ISD::OR:
2564  case ISD::XOR:
2565  case ISD::ADD:
2566  case ISD::SUB:
2567    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2568           N1.getValueType() == VT && "Binary operator types must match!");
2569    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2570    // it's worth handling here.
2571    if (N2C && N2C->isNullValue())
2572      return N1;
2573    break;
2574  case ISD::UDIV:
2575  case ISD::UREM:
2576  case ISD::MULHU:
2577  case ISD::MULHS:
2578  case ISD::MUL:
2579  case ISD::SDIV:
2580  case ISD::SREM:
2581    assert(VT.isInteger() && "This operator does not apply to FP types!");
2582    // fall through
2583  case ISD::FADD:
2584  case ISD::FSUB:
2585  case ISD::FMUL:
2586  case ISD::FDIV:
2587  case ISD::FREM:
2588    if (UnsafeFPMath) {
2589      if (Opcode == ISD::FADD) {
2590        // 0+x --> x
2591        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2592          if (CFP->getValueAPF().isZero())
2593            return N2;
2594        // x+0 --> x
2595        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2596          if (CFP->getValueAPF().isZero())
2597            return N1;
2598      } else if (Opcode == ISD::FSUB) {
2599        // x-0 --> x
2600        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2601          if (CFP->getValueAPF().isZero())
2602            return N1;
2603      }
2604    }
2605    assert(N1.getValueType() == N2.getValueType() &&
2606           N1.getValueType() == VT && "Binary operator types must match!");
2607    break;
2608  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2609    assert(N1.getValueType() == VT &&
2610           N1.getValueType().isFloatingPoint() &&
2611           N2.getValueType().isFloatingPoint() &&
2612           "Invalid FCOPYSIGN!");
2613    break;
2614  case ISD::SHL:
2615  case ISD::SRA:
2616  case ISD::SRL:
2617  case ISD::ROTL:
2618  case ISD::ROTR:
2619    assert(VT == N1.getValueType() &&
2620           "Shift operators return type must be the same as their first arg");
2621    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2622           "Shifts only work on integers");
2623
2624    // Always fold shifts of i1 values so the code generator doesn't need to
2625    // handle them.  Since we know the size of the shift has to be less than the
2626    // size of the value, the shift/rotate count is guaranteed to be zero.
2627    if (VT == MVT::i1)
2628      return N1;
2629    break;
2630  case ISD::FP_ROUND_INREG: {
2631    EVT EVT = cast<VTSDNode>(N2)->getVT();
2632    assert(VT == N1.getValueType() && "Not an inreg round!");
2633    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2634           "Cannot FP_ROUND_INREG integer types");
2635    assert(EVT.bitsLE(VT) && "Not rounding down!");
2636    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2637    break;
2638  }
2639  case ISD::FP_ROUND:
2640    assert(VT.isFloatingPoint() &&
2641           N1.getValueType().isFloatingPoint() &&
2642           VT.bitsLE(N1.getValueType()) &&
2643           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2644    if (N1.getValueType() == VT) return N1;  // noop conversion.
2645    break;
2646  case ISD::AssertSext:
2647  case ISD::AssertZext: {
2648    EVT EVT = cast<VTSDNode>(N2)->getVT();
2649    assert(VT == N1.getValueType() && "Not an inreg extend!");
2650    assert(VT.isInteger() && EVT.isInteger() &&
2651           "Cannot *_EXTEND_INREG FP types");
2652    assert(!EVT.isVector() &&
2653           "AssertSExt/AssertZExt type should be the vector element type "
2654           "rather than the vector type!");
2655    assert(EVT.bitsLE(VT) && "Not extending!");
2656    if (VT == EVT) return N1; // noop assertion.
2657    break;
2658  }
2659  case ISD::SIGN_EXTEND_INREG: {
2660    EVT EVT = cast<VTSDNode>(N2)->getVT();
2661    assert(VT == N1.getValueType() && "Not an inreg extend!");
2662    assert(VT.isInteger() && EVT.isInteger() &&
2663           "Cannot *_EXTEND_INREG FP types");
2664    assert(!EVT.isVector() &&
2665           "SIGN_EXTEND_INREG type should be the vector element type rather "
2666           "than the vector type!");
2667    assert(EVT.bitsLE(VT.getScalarType()) && "Not extending!");
2668    if (EVT == VT) return N1;  // Not actually extending
2669
2670    if (N1C) {
2671      APInt Val = N1C->getAPIntValue();
2672      unsigned FromBits = EVT.getSizeInBits();
2673      Val <<= Val.getBitWidth()-FromBits;
2674      Val = Val.ashr(Val.getBitWidth()-FromBits);
2675      return getConstant(Val, VT);
2676    }
2677    break;
2678  }
2679  case ISD::EXTRACT_VECTOR_ELT:
2680    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2681    if (N1.getOpcode() == ISD::UNDEF)
2682      return getUNDEF(VT);
2683
2684    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2685    // expanding copies of large vectors from registers.
2686    if (N2C &&
2687        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2688        N1.getNumOperands() > 0) {
2689      unsigned Factor =
2690        N1.getOperand(0).getValueType().getVectorNumElements();
2691      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2692                     N1.getOperand(N2C->getZExtValue() / Factor),
2693                     getConstant(N2C->getZExtValue() % Factor,
2694                                 N2.getValueType()));
2695    }
2696
2697    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2698    // expanding large vector constants.
2699    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2700      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2701      EVT VEltTy = N1.getValueType().getVectorElementType();
2702      if (Elt.getValueType() != VEltTy) {
2703        // If the vector element type is not legal, the BUILD_VECTOR operands
2704        // are promoted and implicitly truncated.  Make that explicit here.
2705        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2706      }
2707      if (VT != VEltTy) {
2708        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2709        // result is implicitly extended.
2710        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2711      }
2712      return Elt;
2713    }
2714
2715    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2716    // operations are lowered to scalars.
2717    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2718      // If the indices are the same, return the inserted element.
2719      if (N1.getOperand(2) == N2)
2720        return N1.getOperand(1);
2721      // If the indices are known different, extract the element from
2722      // the original vector.
2723      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2724               isa<ConstantSDNode>(N2))
2725        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2726    }
2727    break;
2728  case ISD::EXTRACT_ELEMENT:
2729    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2730    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2731           (N1.getValueType().isInteger() == VT.isInteger()) &&
2732           "Wrong types for EXTRACT_ELEMENT!");
2733
2734    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2735    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2736    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2737    if (N1.getOpcode() == ISD::BUILD_PAIR)
2738      return N1.getOperand(N2C->getZExtValue());
2739
2740    // EXTRACT_ELEMENT of a constant int is also very common.
2741    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2742      unsigned ElementSize = VT.getSizeInBits();
2743      unsigned Shift = ElementSize * N2C->getZExtValue();
2744      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2745      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2746    }
2747    break;
2748  case ISD::EXTRACT_SUBVECTOR:
2749    if (N1.getValueType() == VT) // Trivial extraction.
2750      return N1;
2751    break;
2752  }
2753
2754  if (N1C) {
2755    if (N2C) {
2756      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2757      if (SV.getNode()) return SV;
2758    } else {      // Cannonicalize constant to RHS if commutative
2759      if (isCommutativeBinOp(Opcode)) {
2760        std::swap(N1C, N2C);
2761        std::swap(N1, N2);
2762      }
2763    }
2764  }
2765
2766  // Constant fold FP operations.
2767  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2768  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2769  if (N1CFP) {
2770    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2771      // Cannonicalize constant to RHS if commutative
2772      std::swap(N1CFP, N2CFP);
2773      std::swap(N1, N2);
2774    } else if (N2CFP && VT != MVT::ppcf128) {
2775      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2776      APFloat::opStatus s;
2777      switch (Opcode) {
2778      case ISD::FADD:
2779        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2780        if (s != APFloat::opInvalidOp)
2781          return getConstantFP(V1, VT);
2782        break;
2783      case ISD::FSUB:
2784        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2785        if (s!=APFloat::opInvalidOp)
2786          return getConstantFP(V1, VT);
2787        break;
2788      case ISD::FMUL:
2789        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2790        if (s!=APFloat::opInvalidOp)
2791          return getConstantFP(V1, VT);
2792        break;
2793      case ISD::FDIV:
2794        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2795        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2796          return getConstantFP(V1, VT);
2797        break;
2798      case ISD::FREM :
2799        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2800        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2801          return getConstantFP(V1, VT);
2802        break;
2803      case ISD::FCOPYSIGN:
2804        V1.copySign(V2);
2805        return getConstantFP(V1, VT);
2806      default: break;
2807      }
2808    }
2809  }
2810
2811  // Canonicalize an UNDEF to the RHS, even over a constant.
2812  if (N1.getOpcode() == ISD::UNDEF) {
2813    if (isCommutativeBinOp(Opcode)) {
2814      std::swap(N1, N2);
2815    } else {
2816      switch (Opcode) {
2817      case ISD::FP_ROUND_INREG:
2818      case ISD::SIGN_EXTEND_INREG:
2819      case ISD::SUB:
2820      case ISD::FSUB:
2821      case ISD::FDIV:
2822      case ISD::FREM:
2823      case ISD::SRA:
2824        return N1;     // fold op(undef, arg2) -> undef
2825      case ISD::UDIV:
2826      case ISD::SDIV:
2827      case ISD::UREM:
2828      case ISD::SREM:
2829      case ISD::SRL:
2830      case ISD::SHL:
2831        if (!VT.isVector())
2832          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2833        // For vectors, we can't easily build an all zero vector, just return
2834        // the LHS.
2835        return N2;
2836      }
2837    }
2838  }
2839
2840  // Fold a bunch of operators when the RHS is undef.
2841  if (N2.getOpcode() == ISD::UNDEF) {
2842    switch (Opcode) {
2843    case ISD::XOR:
2844      if (N1.getOpcode() == ISD::UNDEF)
2845        // Handle undef ^ undef -> 0 special case. This is a common
2846        // idiom (misuse).
2847        return getConstant(0, VT);
2848      // fallthrough
2849    case ISD::ADD:
2850    case ISD::ADDC:
2851    case ISD::ADDE:
2852    case ISD::SUB:
2853    case ISD::UDIV:
2854    case ISD::SDIV:
2855    case ISD::UREM:
2856    case ISD::SREM:
2857      return N2;       // fold op(arg1, undef) -> undef
2858    case ISD::FADD:
2859    case ISD::FSUB:
2860    case ISD::FMUL:
2861    case ISD::FDIV:
2862    case ISD::FREM:
2863      if (UnsafeFPMath)
2864        return N2;
2865      break;
2866    case ISD::MUL:
2867    case ISD::AND:
2868    case ISD::SRL:
2869    case ISD::SHL:
2870      if (!VT.isVector())
2871        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2872      // For vectors, we can't easily build an all zero vector, just return
2873      // the LHS.
2874      return N1;
2875    case ISD::OR:
2876      if (!VT.isVector())
2877        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2878      // For vectors, we can't easily build an all one vector, just return
2879      // the LHS.
2880      return N1;
2881    case ISD::SRA:
2882      return N1;
2883    }
2884  }
2885
2886  // Memoize this node if possible.
2887  SDNode *N;
2888  SDVTList VTs = getVTList(VT);
2889  if (VT != MVT::Flag) {
2890    SDValue Ops[] = { N1, N2 };
2891    FoldingSetNodeID ID;
2892    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2893    void *IP = 0;
2894    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2895      return SDValue(E, 0);
2896    N = NodeAllocator.Allocate<BinarySDNode>();
2897    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2898    CSEMap.InsertNode(N, IP);
2899  } else {
2900    N = NodeAllocator.Allocate<BinarySDNode>();
2901    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2902  }
2903
2904  AllNodes.push_back(N);
2905#ifndef NDEBUG
2906  VerifyNode(N);
2907#endif
2908  return SDValue(N, 0);
2909}
2910
2911SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2912                              SDValue N1, SDValue N2, SDValue N3) {
2913  // Perform various simplifications.
2914  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2915  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2916  switch (Opcode) {
2917  case ISD::CONCAT_VECTORS:
2918    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2919    // one big BUILD_VECTOR.
2920    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2921        N2.getOpcode() == ISD::BUILD_VECTOR &&
2922        N3.getOpcode() == ISD::BUILD_VECTOR) {
2923      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2924      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2925      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2926      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2927    }
2928    break;
2929  case ISD::SETCC: {
2930    // Use FoldSetCC to simplify SETCC's.
2931    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2932    if (Simp.getNode()) return Simp;
2933    break;
2934  }
2935  case ISD::SELECT:
2936    if (N1C) {
2937     if (N1C->getZExtValue())
2938        return N2;             // select true, X, Y -> X
2939      else
2940        return N3;             // select false, X, Y -> Y
2941    }
2942
2943    if (N2 == N3) return N2;   // select C, X, X -> X
2944    break;
2945  case ISD::BRCOND:
2946    if (N2C) {
2947      if (N2C->getZExtValue()) // Unconditional branch
2948        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2949      else
2950        return N1;         // Never-taken branch
2951    }
2952    break;
2953  case ISD::VECTOR_SHUFFLE:
2954    llvm_unreachable("should use getVectorShuffle constructor!");
2955    break;
2956  case ISD::BIT_CONVERT:
2957    // Fold bit_convert nodes from a type to themselves.
2958    if (N1.getValueType() == VT)
2959      return N1;
2960    break;
2961  }
2962
2963  // Memoize node if it doesn't produce a flag.
2964  SDNode *N;
2965  SDVTList VTs = getVTList(VT);
2966  if (VT != MVT::Flag) {
2967    SDValue Ops[] = { N1, N2, N3 };
2968    FoldingSetNodeID ID;
2969    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2970    void *IP = 0;
2971    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2972      return SDValue(E, 0);
2973    N = NodeAllocator.Allocate<TernarySDNode>();
2974    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2975    CSEMap.InsertNode(N, IP);
2976  } else {
2977    N = NodeAllocator.Allocate<TernarySDNode>();
2978    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2979  }
2980  AllNodes.push_back(N);
2981#ifndef NDEBUG
2982  VerifyNode(N);
2983#endif
2984  return SDValue(N, 0);
2985}
2986
2987SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2988                              SDValue N1, SDValue N2, SDValue N3,
2989                              SDValue N4) {
2990  SDValue Ops[] = { N1, N2, N3, N4 };
2991  return getNode(Opcode, DL, VT, Ops, 4);
2992}
2993
2994SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2995                              SDValue N1, SDValue N2, SDValue N3,
2996                              SDValue N4, SDValue N5) {
2997  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2998  return getNode(Opcode, DL, VT, Ops, 5);
2999}
3000
3001/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3002/// the incoming stack arguments to be loaded from the stack.
3003SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3004  SmallVector<SDValue, 8> ArgChains;
3005
3006  // Include the original chain at the beginning of the list. When this is
3007  // used by target LowerCall hooks, this helps legalize find the
3008  // CALLSEQ_BEGIN node.
3009  ArgChains.push_back(Chain);
3010
3011  // Add a chain value for each stack argument.
3012  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3013       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3014    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3015      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3016        if (FI->getIndex() < 0)
3017          ArgChains.push_back(SDValue(L, 1));
3018
3019  // Build a tokenfactor for all the chains.
3020  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3021                 &ArgChains[0], ArgChains.size());
3022}
3023
3024/// getMemsetValue - Vectorized representation of the memset value
3025/// operand.
3026static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3027                              DebugLoc dl) {
3028  unsigned NumBits = VT.isVector() ?
3029    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
3030  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3031    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3032    unsigned Shift = 8;
3033    for (unsigned i = NumBits; i > 8; i >>= 1) {
3034      Val = (Val << Shift) | Val;
3035      Shift <<= 1;
3036    }
3037    if (VT.isInteger())
3038      return DAG.getConstant(Val, VT);
3039    return DAG.getConstantFP(APFloat(Val), VT);
3040  }
3041
3042  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3043  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3044  unsigned Shift = 8;
3045  for (unsigned i = NumBits; i > 8; i >>= 1) {
3046    Value = DAG.getNode(ISD::OR, dl, VT,
3047                        DAG.getNode(ISD::SHL, dl, VT, Value,
3048                                    DAG.getConstant(Shift,
3049                                                    TLI.getShiftAmountTy())),
3050                        Value);
3051    Shift <<= 1;
3052  }
3053
3054  return Value;
3055}
3056
3057/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3058/// used when a memcpy is turned into a memset when the source is a constant
3059/// string ptr.
3060static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3061                                  const TargetLowering &TLI,
3062                                  std::string &Str, unsigned Offset) {
3063  // Handle vector with all elements zero.
3064  if (Str.empty()) {
3065    if (VT.isInteger())
3066      return DAG.getConstant(0, VT);
3067    unsigned NumElts = VT.getVectorNumElements();
3068    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3069    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3070                       DAG.getConstant(0,
3071                       EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts)));
3072  }
3073
3074  assert(!VT.isVector() && "Can't handle vector type here!");
3075  unsigned NumBits = VT.getSizeInBits();
3076  unsigned MSB = NumBits / 8;
3077  uint64_t Val = 0;
3078  if (TLI.isLittleEndian())
3079    Offset = Offset + MSB - 1;
3080  for (unsigned i = 0; i != MSB; ++i) {
3081    Val = (Val << 8) | (unsigned char)Str[Offset];
3082    Offset += TLI.isLittleEndian() ? -1 : 1;
3083  }
3084  return DAG.getConstant(Val, VT);
3085}
3086
3087/// getMemBasePlusOffset - Returns base and offset node for the
3088///
3089static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3090                                      SelectionDAG &DAG) {
3091  EVT VT = Base.getValueType();
3092  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3093                     VT, Base, DAG.getConstant(Offset, VT));
3094}
3095
3096/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3097///
3098static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3099  unsigned SrcDelta = 0;
3100  GlobalAddressSDNode *G = NULL;
3101  if (Src.getOpcode() == ISD::GlobalAddress)
3102    G = cast<GlobalAddressSDNode>(Src);
3103  else if (Src.getOpcode() == ISD::ADD &&
3104           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3105           Src.getOperand(1).getOpcode() == ISD::Constant) {
3106    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3107    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3108  }
3109  if (!G)
3110    return false;
3111
3112  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3113  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3114    return true;
3115
3116  return false;
3117}
3118
3119/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3120/// to replace the memset / memcpy is below the threshold. It also returns the
3121/// types of the sequence of memory ops to perform memset / memcpy.
3122static
3123bool MeetsMaxMemopRequirement(std::vector<EVT> &MemOps,
3124                              SDValue Dst, SDValue Src,
3125                              unsigned Limit, uint64_t Size, unsigned &Align,
3126                              std::string &Str, bool &isSrcStr,
3127                              SelectionDAG &DAG,
3128                              const TargetLowering &TLI) {
3129  isSrcStr = isMemSrcFromString(Src, Str);
3130  bool isSrcConst = isa<ConstantSDNode>(Src);
3131  EVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
3132  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses(VT);
3133  if (VT != MVT::iAny) {
3134    const Type *Ty = VT.getTypeForEVT(*DAG.getContext());
3135    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3136    // If source is a string constant, this will require an unaligned load.
3137    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3138      if (Dst.getOpcode() != ISD::FrameIndex) {
3139        // Can't change destination alignment. It requires a unaligned store.
3140        if (AllowUnalign)
3141          VT = MVT::iAny;
3142      } else {
3143        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3144        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3145        if (MFI->isFixedObjectIndex(FI)) {
3146          // Can't change destination alignment. It requires a unaligned store.
3147          if (AllowUnalign)
3148            VT = MVT::iAny;
3149        } else {
3150          // Give the stack frame object a larger alignment if needed.
3151          if (MFI->getObjectAlignment(FI) < NewAlign)
3152            MFI->setObjectAlignment(FI, NewAlign);
3153          Align = NewAlign;
3154        }
3155      }
3156    }
3157  }
3158
3159  if (VT == MVT::iAny) {
3160    if (TLI.allowsUnalignedMemoryAccesses(MVT::i64)) {
3161      VT = MVT::i64;
3162    } else {
3163      switch (Align & 7) {
3164      case 0:  VT = MVT::i64; break;
3165      case 4:  VT = MVT::i32; break;
3166      case 2:  VT = MVT::i16; break;
3167      default: VT = MVT::i8;  break;
3168      }
3169    }
3170
3171    MVT LVT = MVT::i64;
3172    while (!TLI.isTypeLegal(LVT))
3173      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3174    assert(LVT.isInteger());
3175
3176    if (VT.bitsGT(LVT))
3177      VT = LVT;
3178  }
3179
3180  unsigned NumMemOps = 0;
3181  while (Size != 0) {
3182    unsigned VTSize = VT.getSizeInBits() / 8;
3183    while (VTSize > Size) {
3184      // For now, only use non-vector load / store's for the left-over pieces.
3185      if (VT.isVector()) {
3186        VT = MVT::i64;
3187        while (!TLI.isTypeLegal(VT))
3188          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3189        VTSize = VT.getSizeInBits() / 8;
3190      } else {
3191        // This can result in a type that is not legal on the target, e.g.
3192        // 1 or 2 bytes on PPC.
3193        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3194        VTSize >>= 1;
3195      }
3196    }
3197
3198    if (++NumMemOps > Limit)
3199      return false;
3200    MemOps.push_back(VT);
3201    Size -= VTSize;
3202  }
3203
3204  return true;
3205}
3206
3207static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3208                                         SDValue Chain, SDValue Dst,
3209                                         SDValue Src, uint64_t Size,
3210                                         unsigned Align, bool AlwaysInline,
3211                                         const Value *DstSV, uint64_t DstSVOff,
3212                                         const Value *SrcSV, uint64_t SrcSVOff){
3213  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3214
3215  // Expand memcpy to a series of load and store ops if the size operand falls
3216  // below a certain threshold.
3217  std::vector<EVT> MemOps;
3218  uint64_t Limit = -1ULL;
3219  if (!AlwaysInline)
3220    Limit = TLI.getMaxStoresPerMemcpy();
3221  unsigned DstAlign = Align;  // Destination alignment can change.
3222  std::string Str;
3223  bool CopyFromStr;
3224  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3225                                Str, CopyFromStr, DAG, TLI))
3226    return SDValue();
3227
3228
3229  bool isZeroStr = CopyFromStr && Str.empty();
3230  SmallVector<SDValue, 8> OutChains;
3231  unsigned NumMemOps = MemOps.size();
3232  uint64_t SrcOff = 0, DstOff = 0;
3233  for (unsigned i = 0; i != NumMemOps; ++i) {
3234    EVT VT = MemOps[i];
3235    unsigned VTSize = VT.getSizeInBits() / 8;
3236    SDValue Value, Store;
3237
3238    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3239      // It's unlikely a store of a vector immediate can be done in a single
3240      // instruction. It would require a load from a constantpool first.
3241      // We also handle store a vector with all zero's.
3242      // FIXME: Handle other cases where store of vector immediate is done in
3243      // a single instruction.
3244      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3245      Store = DAG.getStore(Chain, dl, Value,
3246                           getMemBasePlusOffset(Dst, DstOff, DAG),
3247                           DstSV, DstSVOff + DstOff, false, DstAlign);
3248    } else {
3249      // The type might not be legal for the target.  This should only happen
3250      // if the type is smaller than a legal type, as on PPC, so the right
3251      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3252      // to Load/Store if NVT==VT.
3253      // FIXME does the case above also need this?
3254      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3255      assert(NVT.bitsGE(VT));
3256      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3257                             getMemBasePlusOffset(Src, SrcOff, DAG),
3258                             SrcSV, SrcSVOff + SrcOff, VT, false, Align);
3259      Store = DAG.getTruncStore(Chain, dl, Value,
3260                             getMemBasePlusOffset(Dst, DstOff, DAG),
3261                             DstSV, DstSVOff + DstOff, VT, false, DstAlign);
3262    }
3263    OutChains.push_back(Store);
3264    SrcOff += VTSize;
3265    DstOff += VTSize;
3266  }
3267
3268  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3269                     &OutChains[0], OutChains.size());
3270}
3271
3272static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3273                                          SDValue Chain, SDValue Dst,
3274                                          SDValue Src, uint64_t Size,
3275                                          unsigned Align, bool AlwaysInline,
3276                                          const Value *DstSV, uint64_t DstSVOff,
3277                                          const Value *SrcSV, uint64_t SrcSVOff){
3278  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3279
3280  // Expand memmove to a series of load and store ops if the size operand falls
3281  // below a certain threshold.
3282  std::vector<EVT> MemOps;
3283  uint64_t Limit = -1ULL;
3284  if (!AlwaysInline)
3285    Limit = TLI.getMaxStoresPerMemmove();
3286  unsigned DstAlign = Align;  // Destination alignment can change.
3287  std::string Str;
3288  bool CopyFromStr;
3289  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3290                                Str, CopyFromStr, DAG, TLI))
3291    return SDValue();
3292
3293  uint64_t SrcOff = 0, DstOff = 0;
3294
3295  SmallVector<SDValue, 8> LoadValues;
3296  SmallVector<SDValue, 8> LoadChains;
3297  SmallVector<SDValue, 8> OutChains;
3298  unsigned NumMemOps = MemOps.size();
3299  for (unsigned i = 0; i < NumMemOps; i++) {
3300    EVT VT = MemOps[i];
3301    unsigned VTSize = VT.getSizeInBits() / 8;
3302    SDValue Value, Store;
3303
3304    Value = DAG.getLoad(VT, dl, Chain,
3305                        getMemBasePlusOffset(Src, SrcOff, DAG),
3306                        SrcSV, SrcSVOff + SrcOff, false, Align);
3307    LoadValues.push_back(Value);
3308    LoadChains.push_back(Value.getValue(1));
3309    SrcOff += VTSize;
3310  }
3311  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3312                      &LoadChains[0], LoadChains.size());
3313  OutChains.clear();
3314  for (unsigned i = 0; i < NumMemOps; i++) {
3315    EVT VT = MemOps[i];
3316    unsigned VTSize = VT.getSizeInBits() / 8;
3317    SDValue Value, Store;
3318
3319    Store = DAG.getStore(Chain, dl, LoadValues[i],
3320                         getMemBasePlusOffset(Dst, DstOff, DAG),
3321                         DstSV, DstSVOff + DstOff, false, DstAlign);
3322    OutChains.push_back(Store);
3323    DstOff += VTSize;
3324  }
3325
3326  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3327                     &OutChains[0], OutChains.size());
3328}
3329
3330static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3331                                 SDValue Chain, SDValue Dst,
3332                                 SDValue Src, uint64_t Size,
3333                                 unsigned Align,
3334                                 const Value *DstSV, uint64_t DstSVOff) {
3335  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3336
3337  // Expand memset to a series of load/store ops if the size operand
3338  // falls below a certain threshold.
3339  std::vector<EVT> MemOps;
3340  std::string Str;
3341  bool CopyFromStr;
3342  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3343                                Size, Align, Str, CopyFromStr, DAG, TLI))
3344    return SDValue();
3345
3346  SmallVector<SDValue, 8> OutChains;
3347  uint64_t DstOff = 0;
3348
3349  unsigned NumMemOps = MemOps.size();
3350  for (unsigned i = 0; i < NumMemOps; i++) {
3351    EVT VT = MemOps[i];
3352    unsigned VTSize = VT.getSizeInBits() / 8;
3353    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3354    SDValue Store = DAG.getStore(Chain, dl, Value,
3355                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3356                                 DstSV, DstSVOff + DstOff);
3357    OutChains.push_back(Store);
3358    DstOff += VTSize;
3359  }
3360
3361  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3362                     &OutChains[0], OutChains.size());
3363}
3364
3365SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3366                                SDValue Src, SDValue Size,
3367                                unsigned Align, bool AlwaysInline,
3368                                const Value *DstSV, uint64_t DstSVOff,
3369                                const Value *SrcSV, uint64_t SrcSVOff) {
3370
3371  // Check to see if we should lower the memcpy to loads and stores first.
3372  // For cases within the target-specified limits, this is the best choice.
3373  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3374  if (ConstantSize) {
3375    // Memcpy with size zero? Just return the original chain.
3376    if (ConstantSize->isNullValue())
3377      return Chain;
3378
3379    SDValue Result =
3380      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3381                              ConstantSize->getZExtValue(),
3382                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3383    if (Result.getNode())
3384      return Result;
3385  }
3386
3387  // Then check to see if we should lower the memcpy with target-specific
3388  // code. If the target chooses to do this, this is the next best.
3389  SDValue Result =
3390    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3391                                AlwaysInline,
3392                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3393  if (Result.getNode())
3394    return Result;
3395
3396  // If we really need inline code and the target declined to provide it,
3397  // use a (potentially long) sequence of loads and stores.
3398  if (AlwaysInline) {
3399    assert(ConstantSize && "AlwaysInline requires a constant size!");
3400    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3401                                   ConstantSize->getZExtValue(), Align, true,
3402                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3403  }
3404
3405  // Emit a library call.
3406  TargetLowering::ArgListTy Args;
3407  TargetLowering::ArgListEntry Entry;
3408  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3409  Entry.Node = Dst; Args.push_back(Entry);
3410  Entry.Node = Src; Args.push_back(Entry);
3411  Entry.Node = Size; Args.push_back(Entry);
3412  // FIXME: pass in DebugLoc
3413  std::pair<SDValue,SDValue> CallResult =
3414    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3415                    false, false, false, false, 0,
3416                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3417                    /*isReturnValueUsed=*/false,
3418                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3419                                      TLI.getPointerTy()),
3420                    Args, *this, dl);
3421  return CallResult.second;
3422}
3423
3424SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3425                                 SDValue Src, SDValue Size,
3426                                 unsigned Align,
3427                                 const Value *DstSV, uint64_t DstSVOff,
3428                                 const Value *SrcSV, uint64_t SrcSVOff) {
3429
3430  // Check to see if we should lower the memmove to loads and stores first.
3431  // For cases within the target-specified limits, this is the best choice.
3432  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3433  if (ConstantSize) {
3434    // Memmove with size zero? Just return the original chain.
3435    if (ConstantSize->isNullValue())
3436      return Chain;
3437
3438    SDValue Result =
3439      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3440                               ConstantSize->getZExtValue(),
3441                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3442    if (Result.getNode())
3443      return Result;
3444  }
3445
3446  // Then check to see if we should lower the memmove with target-specific
3447  // code. If the target chooses to do this, this is the next best.
3448  SDValue Result =
3449    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3450                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3451  if (Result.getNode())
3452    return Result;
3453
3454  // Emit a library call.
3455  TargetLowering::ArgListTy Args;
3456  TargetLowering::ArgListEntry Entry;
3457  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3458  Entry.Node = Dst; Args.push_back(Entry);
3459  Entry.Node = Src; Args.push_back(Entry);
3460  Entry.Node = Size; Args.push_back(Entry);
3461  // FIXME:  pass in DebugLoc
3462  std::pair<SDValue,SDValue> CallResult =
3463    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3464                    false, false, false, false, 0,
3465                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3466                    /*isReturnValueUsed=*/false,
3467                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3468                                      TLI.getPointerTy()),
3469                    Args, *this, dl);
3470  return CallResult.second;
3471}
3472
3473SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3474                                SDValue Src, SDValue Size,
3475                                unsigned Align,
3476                                const Value *DstSV, uint64_t DstSVOff) {
3477
3478  // Check to see if we should lower the memset to stores first.
3479  // For cases within the target-specified limits, this is the best choice.
3480  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3481  if (ConstantSize) {
3482    // Memset with size zero? Just return the original chain.
3483    if (ConstantSize->isNullValue())
3484      return Chain;
3485
3486    SDValue Result =
3487      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3488                      Align, DstSV, DstSVOff);
3489    if (Result.getNode())
3490      return Result;
3491  }
3492
3493  // Then check to see if we should lower the memset with target-specific
3494  // code. If the target chooses to do this, this is the next best.
3495  SDValue Result =
3496    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3497                                DstSV, DstSVOff);
3498  if (Result.getNode())
3499    return Result;
3500
3501  // Emit a library call.
3502  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3503  TargetLowering::ArgListTy Args;
3504  TargetLowering::ArgListEntry Entry;
3505  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3506  Args.push_back(Entry);
3507  // Extend or truncate the argument to be an i32 value for the call.
3508  if (Src.getValueType().bitsGT(MVT::i32))
3509    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3510  else
3511    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3512  Entry.Node = Src;
3513  Entry.Ty = Type::getInt32Ty(*getContext());
3514  Entry.isSExt = true;
3515  Args.push_back(Entry);
3516  Entry.Node = Size;
3517  Entry.Ty = IntPtrTy;
3518  Entry.isSExt = false;
3519  Args.push_back(Entry);
3520  // FIXME: pass in DebugLoc
3521  std::pair<SDValue,SDValue> CallResult =
3522    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3523                    false, false, false, false, 0,
3524                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3525                    /*isReturnValueUsed=*/false,
3526                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3527                                      TLI.getPointerTy()),
3528                    Args, *this, dl);
3529  return CallResult.second;
3530}
3531
3532SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3533                                SDValue Chain,
3534                                SDValue Ptr, SDValue Cmp,
3535                                SDValue Swp, const Value* PtrVal,
3536                                unsigned Alignment) {
3537  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3538    Alignment = getEVTAlignment(MemVT);
3539
3540  // Check if the memory reference references a frame index
3541  if (!PtrVal)
3542    if (const FrameIndexSDNode *FI =
3543          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3544      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3545
3546  MachineFunction &MF = getMachineFunction();
3547  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3548
3549  // For now, atomics are considered to be volatile always.
3550  Flags |= MachineMemOperand::MOVolatile;
3551
3552  MachineMemOperand *MMO =
3553    MF.getMachineMemOperand(PtrVal, Flags, 0,
3554                            MemVT.getStoreSize(), Alignment);
3555
3556  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3557}
3558
3559SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3560                                SDValue Chain,
3561                                SDValue Ptr, SDValue Cmp,
3562                                SDValue Swp, MachineMemOperand *MMO) {
3563  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3564  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3565
3566  EVT VT = Cmp.getValueType();
3567
3568  SDVTList VTs = getVTList(VT, MVT::Other);
3569  FoldingSetNodeID ID;
3570  ID.AddInteger(MemVT.getRawBits());
3571  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3572  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3573  void* IP = 0;
3574  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3575    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3576    return SDValue(E, 0);
3577  }
3578  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3579  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3580  CSEMap.InsertNode(N, IP);
3581  AllNodes.push_back(N);
3582  return SDValue(N, 0);
3583}
3584
3585SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3586                                SDValue Chain,
3587                                SDValue Ptr, SDValue Val,
3588                                const Value* PtrVal,
3589                                unsigned Alignment) {
3590  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3591    Alignment = getEVTAlignment(MemVT);
3592
3593  // Check if the memory reference references a frame index
3594  if (!PtrVal)
3595    if (const FrameIndexSDNode *FI =
3596          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3597      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3598
3599  MachineFunction &MF = getMachineFunction();
3600  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3601
3602  // For now, atomics are considered to be volatile always.
3603  Flags |= MachineMemOperand::MOVolatile;
3604
3605  MachineMemOperand *MMO =
3606    MF.getMachineMemOperand(PtrVal, Flags, 0,
3607                            MemVT.getStoreSize(), Alignment);
3608
3609  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3610}
3611
3612SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3613                                SDValue Chain,
3614                                SDValue Ptr, SDValue Val,
3615                                MachineMemOperand *MMO) {
3616  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3617          Opcode == ISD::ATOMIC_LOAD_SUB ||
3618          Opcode == ISD::ATOMIC_LOAD_AND ||
3619          Opcode == ISD::ATOMIC_LOAD_OR ||
3620          Opcode == ISD::ATOMIC_LOAD_XOR ||
3621          Opcode == ISD::ATOMIC_LOAD_NAND ||
3622          Opcode == ISD::ATOMIC_LOAD_MIN ||
3623          Opcode == ISD::ATOMIC_LOAD_MAX ||
3624          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3625          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3626          Opcode == ISD::ATOMIC_SWAP) &&
3627         "Invalid Atomic Op");
3628
3629  EVT VT = Val.getValueType();
3630
3631  SDVTList VTs = getVTList(VT, MVT::Other);
3632  FoldingSetNodeID ID;
3633  ID.AddInteger(MemVT.getRawBits());
3634  SDValue Ops[] = {Chain, Ptr, Val};
3635  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3636  void* IP = 0;
3637  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3638    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3639    return SDValue(E, 0);
3640  }
3641  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3642  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Val, MMO);
3643  CSEMap.InsertNode(N, IP);
3644  AllNodes.push_back(N);
3645  return SDValue(N, 0);
3646}
3647
3648/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3649/// Allowed to return something different (and simpler) if Simplify is true.
3650SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3651                                     DebugLoc dl) {
3652  if (NumOps == 1)
3653    return Ops[0];
3654
3655  SmallVector<EVT, 4> VTs;
3656  VTs.reserve(NumOps);
3657  for (unsigned i = 0; i < NumOps; ++i)
3658    VTs.push_back(Ops[i].getValueType());
3659  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3660                 Ops, NumOps);
3661}
3662
3663SDValue
3664SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3665                                  const EVT *VTs, unsigned NumVTs,
3666                                  const SDValue *Ops, unsigned NumOps,
3667                                  EVT MemVT, const Value *srcValue, int SVOff,
3668                                  unsigned Align, bool Vol,
3669                                  bool ReadMem, bool WriteMem) {
3670  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3671                             MemVT, srcValue, SVOff, Align, Vol,
3672                             ReadMem, WriteMem);
3673}
3674
3675SDValue
3676SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3677                                  const SDValue *Ops, unsigned NumOps,
3678                                  EVT MemVT, const Value *srcValue, int SVOff,
3679                                  unsigned Align, bool Vol,
3680                                  bool ReadMem, bool WriteMem) {
3681  if (Align == 0)  // Ensure that codegen never sees alignment 0
3682    Align = getEVTAlignment(MemVT);
3683
3684  MachineFunction &MF = getMachineFunction();
3685  unsigned Flags = 0;
3686  if (WriteMem)
3687    Flags |= MachineMemOperand::MOStore;
3688  if (ReadMem)
3689    Flags |= MachineMemOperand::MOLoad;
3690  if (Vol)
3691    Flags |= MachineMemOperand::MOVolatile;
3692  MachineMemOperand *MMO =
3693    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3694                            MemVT.getStoreSize(), Align);
3695
3696  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3697}
3698
3699SDValue
3700SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3701                                  const SDValue *Ops, unsigned NumOps,
3702                                  EVT MemVT, MachineMemOperand *MMO) {
3703  assert((Opcode == ISD::INTRINSIC_VOID ||
3704          Opcode == ISD::INTRINSIC_W_CHAIN ||
3705          (Opcode <= INT_MAX &&
3706           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3707         "Opcode is not a memory-accessing opcode!");
3708
3709  // Memoize the node unless it returns a flag.
3710  MemIntrinsicSDNode *N;
3711  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3712    FoldingSetNodeID ID;
3713    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3714    void *IP = 0;
3715    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3716      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3717      return SDValue(E, 0);
3718    }
3719
3720    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3721    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3722    CSEMap.InsertNode(N, IP);
3723  } else {
3724    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3725    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3726  }
3727  AllNodes.push_back(N);
3728  return SDValue(N, 0);
3729}
3730
3731SDValue
3732SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3733                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3734                      SDValue Ptr, SDValue Offset,
3735                      const Value *SV, int SVOffset, EVT MemVT,
3736                      bool isVolatile, unsigned Alignment) {
3737  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3738    Alignment = getEVTAlignment(VT);
3739
3740  // Check if the memory reference references a frame index
3741  if (!SV)
3742    if (const FrameIndexSDNode *FI =
3743          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3744      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3745
3746  MachineFunction &MF = getMachineFunction();
3747  unsigned Flags = MachineMemOperand::MOLoad;
3748  if (isVolatile)
3749    Flags |= MachineMemOperand::MOVolatile;
3750  MachineMemOperand *MMO =
3751    MF.getMachineMemOperand(SV, Flags, SVOffset,
3752                            MemVT.getStoreSize(), Alignment);
3753  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3754}
3755
3756SDValue
3757SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3758                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3759                      SDValue Ptr, SDValue Offset, EVT MemVT,
3760                      MachineMemOperand *MMO) {
3761  if (VT == MemVT) {
3762    ExtType = ISD::NON_EXTLOAD;
3763  } else if (ExtType == ISD::NON_EXTLOAD) {
3764    assert(VT == MemVT && "Non-extending load from different memory type!");
3765  } else {
3766    // Extending load.
3767    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3768           "Should only be an extending load, not truncating!");
3769    assert(VT.isInteger() == MemVT.isInteger() &&
3770           "Cannot convert from FP to Int or Int -> FP!");
3771    assert(VT.isVector() == MemVT.isVector() &&
3772           "Cannot use trunc store to convert to or from a vector!");
3773    assert((!VT.isVector() ||
3774            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3775           "Cannot use trunc store to change the number of vector elements!");
3776  }
3777
3778  bool Indexed = AM != ISD::UNINDEXED;
3779  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3780         "Unindexed load with an offset!");
3781
3782  SDVTList VTs = Indexed ?
3783    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3784  SDValue Ops[] = { Chain, Ptr, Offset };
3785  FoldingSetNodeID ID;
3786  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3787  ID.AddInteger(MemVT.getRawBits());
3788  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile()));
3789  void *IP = 0;
3790  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3791    cast<LoadSDNode>(E)->refineAlignment(MMO);
3792    return SDValue(E, 0);
3793  }
3794  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3795  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, MemVT, MMO);
3796  CSEMap.InsertNode(N, IP);
3797  AllNodes.push_back(N);
3798  return SDValue(N, 0);
3799}
3800
3801SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3802                              SDValue Chain, SDValue Ptr,
3803                              const Value *SV, int SVOffset,
3804                              bool isVolatile, unsigned Alignment) {
3805  SDValue Undef = getUNDEF(Ptr.getValueType());
3806  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3807                 SV, SVOffset, VT, isVolatile, Alignment);
3808}
3809
3810SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3811                                 SDValue Chain, SDValue Ptr,
3812                                 const Value *SV,
3813                                 int SVOffset, EVT MemVT,
3814                                 bool isVolatile, unsigned Alignment) {
3815  SDValue Undef = getUNDEF(Ptr.getValueType());
3816  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3817                 SV, SVOffset, MemVT, isVolatile, Alignment);
3818}
3819
3820SDValue
3821SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3822                             SDValue Offset, ISD::MemIndexedMode AM) {
3823  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3824  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3825         "Load is already a indexed load!");
3826  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3827                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3828                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3829                 LD->isVolatile(), LD->getAlignment());
3830}
3831
3832SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3833                               SDValue Ptr, const Value *SV, int SVOffset,
3834                               bool isVolatile, unsigned Alignment) {
3835  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3836    Alignment = getEVTAlignment(Val.getValueType());
3837
3838  // Check if the memory reference references a frame index
3839  if (!SV)
3840    if (const FrameIndexSDNode *FI =
3841          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3842      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3843
3844  MachineFunction &MF = getMachineFunction();
3845  unsigned Flags = MachineMemOperand::MOStore;
3846  if (isVolatile)
3847    Flags |= MachineMemOperand::MOVolatile;
3848  MachineMemOperand *MMO =
3849    MF.getMachineMemOperand(SV, Flags, SVOffset,
3850                            Val.getValueType().getStoreSize(), Alignment);
3851
3852  return getStore(Chain, dl, Val, Ptr, MMO);
3853}
3854
3855SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3856                               SDValue Ptr, MachineMemOperand *MMO) {
3857  EVT VT = Val.getValueType();
3858  SDVTList VTs = getVTList(MVT::Other);
3859  SDValue Undef = getUNDEF(Ptr.getValueType());
3860  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3861  FoldingSetNodeID ID;
3862  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3863  ID.AddInteger(VT.getRawBits());
3864  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile()));
3865  void *IP = 0;
3866  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3867    cast<StoreSDNode>(E)->refineAlignment(MMO);
3868    return SDValue(E, 0);
3869  }
3870  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3871  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false, VT, MMO);
3872  CSEMap.InsertNode(N, IP);
3873  AllNodes.push_back(N);
3874  return SDValue(N, 0);
3875}
3876
3877SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3878                                    SDValue Ptr, const Value *SV,
3879                                    int SVOffset, EVT SVT,
3880                                    bool isVolatile, unsigned Alignment) {
3881  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3882    Alignment = getEVTAlignment(SVT);
3883
3884  // Check if the memory reference references a frame index
3885  if (!SV)
3886    if (const FrameIndexSDNode *FI =
3887          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3888      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3889
3890  MachineFunction &MF = getMachineFunction();
3891  unsigned Flags = MachineMemOperand::MOStore;
3892  if (isVolatile)
3893    Flags |= MachineMemOperand::MOVolatile;
3894  MachineMemOperand *MMO =
3895    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
3896
3897  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
3898}
3899
3900SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3901                                    SDValue Ptr, EVT SVT,
3902                                    MachineMemOperand *MMO) {
3903  EVT VT = Val.getValueType();
3904
3905  if (VT == SVT)
3906    return getStore(Chain, dl, Val, Ptr, MMO);
3907
3908  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
3909         "Should only be a truncating store, not extending!");
3910  assert(VT.isInteger() == SVT.isInteger() &&
3911         "Can't do FP-INT conversion!");
3912  assert(VT.isVector() == SVT.isVector() &&
3913         "Cannot use trunc store to convert to or from a vector!");
3914  assert((!VT.isVector() ||
3915          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
3916         "Cannot use trunc store to change the number of vector elements!");
3917
3918  SDVTList VTs = getVTList(MVT::Other);
3919  SDValue Undef = getUNDEF(Ptr.getValueType());
3920  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3921  FoldingSetNodeID ID;
3922  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3923  ID.AddInteger(SVT.getRawBits());
3924  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile()));
3925  void *IP = 0;
3926  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3927    cast<StoreSDNode>(E)->refineAlignment(MMO);
3928    return SDValue(E, 0);
3929  }
3930  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3931  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true, SVT, MMO);
3932  CSEMap.InsertNode(N, IP);
3933  AllNodes.push_back(N);
3934  return SDValue(N, 0);
3935}
3936
3937SDValue
3938SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3939                              SDValue Offset, ISD::MemIndexedMode AM) {
3940  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3941  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3942         "Store is already a indexed store!");
3943  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3944  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3945  FoldingSetNodeID ID;
3946  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3947  ID.AddInteger(ST->getMemoryVT().getRawBits());
3948  ID.AddInteger(ST->getRawSubclassData());
3949  void *IP = 0;
3950  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3951    return SDValue(E, 0);
3952  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3953  new (N) StoreSDNode(Ops, dl, VTs, AM,
3954                      ST->isTruncatingStore(), ST->getMemoryVT(),
3955                      ST->getMemOperand());
3956  CSEMap.InsertNode(N, IP);
3957  AllNodes.push_back(N);
3958  return SDValue(N, 0);
3959}
3960
3961SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
3962                               SDValue Chain, SDValue Ptr,
3963                               SDValue SV) {
3964  SDValue Ops[] = { Chain, Ptr, SV };
3965  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
3966}
3967
3968SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3969                              const SDUse *Ops, unsigned NumOps) {
3970  switch (NumOps) {
3971  case 0: return getNode(Opcode, DL, VT);
3972  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3973  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3974  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3975  default: break;
3976  }
3977
3978  // Copy from an SDUse array into an SDValue array for use with
3979  // the regular getNode logic.
3980  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3981  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
3982}
3983
3984SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3985                              const SDValue *Ops, unsigned NumOps) {
3986  switch (NumOps) {
3987  case 0: return getNode(Opcode, DL, VT);
3988  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3989  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3990  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3991  default: break;
3992  }
3993
3994  switch (Opcode) {
3995  default: break;
3996  case ISD::SELECT_CC: {
3997    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3998    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3999           "LHS and RHS of condition must have same type!");
4000    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4001           "True and False arms of SelectCC must have same type!");
4002    assert(Ops[2].getValueType() == VT &&
4003           "select_cc node must be of same type as true and false value!");
4004    break;
4005  }
4006  case ISD::BR_CC: {
4007    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4008    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4009           "LHS/RHS of comparison should match types!");
4010    break;
4011  }
4012  }
4013
4014  // Memoize nodes.
4015  SDNode *N;
4016  SDVTList VTs = getVTList(VT);
4017
4018  if (VT != MVT::Flag) {
4019    FoldingSetNodeID ID;
4020    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4021    void *IP = 0;
4022
4023    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4024      return SDValue(E, 0);
4025
4026    N = NodeAllocator.Allocate<SDNode>();
4027    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4028    CSEMap.InsertNode(N, IP);
4029  } else {
4030    N = NodeAllocator.Allocate<SDNode>();
4031    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4032  }
4033
4034  AllNodes.push_back(N);
4035#ifndef NDEBUG
4036  VerifyNode(N);
4037#endif
4038  return SDValue(N, 0);
4039}
4040
4041SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4042                              const std::vector<EVT> &ResultTys,
4043                              const SDValue *Ops, unsigned NumOps) {
4044  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4045                 Ops, NumOps);
4046}
4047
4048SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4049                              const EVT *VTs, unsigned NumVTs,
4050                              const SDValue *Ops, unsigned NumOps) {
4051  if (NumVTs == 1)
4052    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4053  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4054}
4055
4056SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4057                              const SDValue *Ops, unsigned NumOps) {
4058  if (VTList.NumVTs == 1)
4059    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4060
4061#if 0
4062  switch (Opcode) {
4063  // FIXME: figure out how to safely handle things like
4064  // int foo(int x) { return 1 << (x & 255); }
4065  // int bar() { return foo(256); }
4066  case ISD::SRA_PARTS:
4067  case ISD::SRL_PARTS:
4068  case ISD::SHL_PARTS:
4069    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4070        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4071      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4072    else if (N3.getOpcode() == ISD::AND)
4073      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4074        // If the and is only masking out bits that cannot effect the shift,
4075        // eliminate the and.
4076        unsigned NumBits = VT.getSizeInBits()*2;
4077        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4078          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4079      }
4080    break;
4081  }
4082#endif
4083
4084  // Memoize the node unless it returns a flag.
4085  SDNode *N;
4086  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4087    FoldingSetNodeID ID;
4088    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4089    void *IP = 0;
4090    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4091      return SDValue(E, 0);
4092    if (NumOps == 1) {
4093      N = NodeAllocator.Allocate<UnarySDNode>();
4094      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4095    } else if (NumOps == 2) {
4096      N = NodeAllocator.Allocate<BinarySDNode>();
4097      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4098    } else if (NumOps == 3) {
4099      N = NodeAllocator.Allocate<TernarySDNode>();
4100      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4101    } else {
4102      N = NodeAllocator.Allocate<SDNode>();
4103      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4104    }
4105    CSEMap.InsertNode(N, IP);
4106  } else {
4107    if (NumOps == 1) {
4108      N = NodeAllocator.Allocate<UnarySDNode>();
4109      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4110    } else if (NumOps == 2) {
4111      N = NodeAllocator.Allocate<BinarySDNode>();
4112      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4113    } else if (NumOps == 3) {
4114      N = NodeAllocator.Allocate<TernarySDNode>();
4115      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4116    } else {
4117      N = NodeAllocator.Allocate<SDNode>();
4118      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4119    }
4120  }
4121  AllNodes.push_back(N);
4122#ifndef NDEBUG
4123  VerifyNode(N);
4124#endif
4125  return SDValue(N, 0);
4126}
4127
4128SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4129  return getNode(Opcode, DL, VTList, 0, 0);
4130}
4131
4132SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4133                              SDValue N1) {
4134  SDValue Ops[] = { N1 };
4135  return getNode(Opcode, DL, VTList, Ops, 1);
4136}
4137
4138SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4139                              SDValue N1, SDValue N2) {
4140  SDValue Ops[] = { N1, N2 };
4141  return getNode(Opcode, DL, VTList, Ops, 2);
4142}
4143
4144SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4145                              SDValue N1, SDValue N2, SDValue N3) {
4146  SDValue Ops[] = { N1, N2, N3 };
4147  return getNode(Opcode, DL, VTList, Ops, 3);
4148}
4149
4150SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4151                              SDValue N1, SDValue N2, SDValue N3,
4152                              SDValue N4) {
4153  SDValue Ops[] = { N1, N2, N3, N4 };
4154  return getNode(Opcode, DL, VTList, Ops, 4);
4155}
4156
4157SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4158                              SDValue N1, SDValue N2, SDValue N3,
4159                              SDValue N4, SDValue N5) {
4160  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4161  return getNode(Opcode, DL, VTList, Ops, 5);
4162}
4163
4164SDVTList SelectionDAG::getVTList(EVT VT) {
4165  return makeVTList(SDNode::getValueTypeList(VT), 1);
4166}
4167
4168SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4169  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4170       E = VTList.rend(); I != E; ++I)
4171    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4172      return *I;
4173
4174  EVT *Array = Allocator.Allocate<EVT>(2);
4175  Array[0] = VT1;
4176  Array[1] = VT2;
4177  SDVTList Result = makeVTList(Array, 2);
4178  VTList.push_back(Result);
4179  return Result;
4180}
4181
4182SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4183  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4184       E = VTList.rend(); I != E; ++I)
4185    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4186                          I->VTs[2] == VT3)
4187      return *I;
4188
4189  EVT *Array = Allocator.Allocate<EVT>(3);
4190  Array[0] = VT1;
4191  Array[1] = VT2;
4192  Array[2] = VT3;
4193  SDVTList Result = makeVTList(Array, 3);
4194  VTList.push_back(Result);
4195  return Result;
4196}
4197
4198SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4199  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4200       E = VTList.rend(); I != E; ++I)
4201    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4202                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4203      return *I;
4204
4205  EVT *Array = Allocator.Allocate<EVT>(4);
4206  Array[0] = VT1;
4207  Array[1] = VT2;
4208  Array[2] = VT3;
4209  Array[3] = VT4;
4210  SDVTList Result = makeVTList(Array, 4);
4211  VTList.push_back(Result);
4212  return Result;
4213}
4214
4215SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4216  switch (NumVTs) {
4217    case 0: llvm_unreachable("Cannot have nodes without results!");
4218    case 1: return getVTList(VTs[0]);
4219    case 2: return getVTList(VTs[0], VTs[1]);
4220    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4221    default: break;
4222  }
4223
4224  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4225       E = VTList.rend(); I != E; ++I) {
4226    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4227      continue;
4228
4229    bool NoMatch = false;
4230    for (unsigned i = 2; i != NumVTs; ++i)
4231      if (VTs[i] != I->VTs[i]) {
4232        NoMatch = true;
4233        break;
4234      }
4235    if (!NoMatch)
4236      return *I;
4237  }
4238
4239  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4240  std::copy(VTs, VTs+NumVTs, Array);
4241  SDVTList Result = makeVTList(Array, NumVTs);
4242  VTList.push_back(Result);
4243  return Result;
4244}
4245
4246
4247/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4248/// specified operands.  If the resultant node already exists in the DAG,
4249/// this does not modify the specified node, instead it returns the node that
4250/// already exists.  If the resultant node does not exist in the DAG, the
4251/// input node is returned.  As a degenerate case, if you specify the same
4252/// input operands as the node already has, the input node is returned.
4253SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4254  SDNode *N = InN.getNode();
4255  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4256
4257  // Check to see if there is no change.
4258  if (Op == N->getOperand(0)) return InN;
4259
4260  // See if the modified node already exists.
4261  void *InsertPos = 0;
4262  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4263    return SDValue(Existing, InN.getResNo());
4264
4265  // Nope it doesn't.  Remove the node from its current place in the maps.
4266  if (InsertPos)
4267    if (!RemoveNodeFromCSEMaps(N))
4268      InsertPos = 0;
4269
4270  // Now we update the operands.
4271  N->OperandList[0].set(Op);
4272
4273  // If this gets put into a CSE map, add it.
4274  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4275  return InN;
4276}
4277
4278SDValue SelectionDAG::
4279UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4280  SDNode *N = InN.getNode();
4281  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4282
4283  // Check to see if there is no change.
4284  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4285    return InN;   // No operands changed, just return the input node.
4286
4287  // See if the modified node already exists.
4288  void *InsertPos = 0;
4289  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4290    return SDValue(Existing, InN.getResNo());
4291
4292  // Nope it doesn't.  Remove the node from its current place in the maps.
4293  if (InsertPos)
4294    if (!RemoveNodeFromCSEMaps(N))
4295      InsertPos = 0;
4296
4297  // Now we update the operands.
4298  if (N->OperandList[0] != Op1)
4299    N->OperandList[0].set(Op1);
4300  if (N->OperandList[1] != Op2)
4301    N->OperandList[1].set(Op2);
4302
4303  // If this gets put into a CSE map, add it.
4304  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4305  return InN;
4306}
4307
4308SDValue SelectionDAG::
4309UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4310  SDValue Ops[] = { Op1, Op2, Op3 };
4311  return UpdateNodeOperands(N, Ops, 3);
4312}
4313
4314SDValue SelectionDAG::
4315UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4316                   SDValue Op3, SDValue Op4) {
4317  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4318  return UpdateNodeOperands(N, Ops, 4);
4319}
4320
4321SDValue SelectionDAG::
4322UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4323                   SDValue Op3, SDValue Op4, SDValue Op5) {
4324  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4325  return UpdateNodeOperands(N, Ops, 5);
4326}
4327
4328SDValue SelectionDAG::
4329UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4330  SDNode *N = InN.getNode();
4331  assert(N->getNumOperands() == NumOps &&
4332         "Update with wrong number of operands");
4333
4334  // Check to see if there is no change.
4335  bool AnyChange = false;
4336  for (unsigned i = 0; i != NumOps; ++i) {
4337    if (Ops[i] != N->getOperand(i)) {
4338      AnyChange = true;
4339      break;
4340    }
4341  }
4342
4343  // No operands changed, just return the input node.
4344  if (!AnyChange) return InN;
4345
4346  // See if the modified node already exists.
4347  void *InsertPos = 0;
4348  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4349    return SDValue(Existing, InN.getResNo());
4350
4351  // Nope it doesn't.  Remove the node from its current place in the maps.
4352  if (InsertPos)
4353    if (!RemoveNodeFromCSEMaps(N))
4354      InsertPos = 0;
4355
4356  // Now we update the operands.
4357  for (unsigned i = 0; i != NumOps; ++i)
4358    if (N->OperandList[i] != Ops[i])
4359      N->OperandList[i].set(Ops[i]);
4360
4361  // If this gets put into a CSE map, add it.
4362  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4363  return InN;
4364}
4365
4366/// DropOperands - Release the operands and set this node to have
4367/// zero operands.
4368void SDNode::DropOperands() {
4369  // Unlike the code in MorphNodeTo that does this, we don't need to
4370  // watch for dead nodes here.
4371  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4372    SDUse &Use = *I++;
4373    Use.set(SDValue());
4374  }
4375}
4376
4377/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4378/// machine opcode.
4379///
4380SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4381                                   EVT VT) {
4382  SDVTList VTs = getVTList(VT);
4383  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4384}
4385
4386SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4387                                   EVT VT, SDValue Op1) {
4388  SDVTList VTs = getVTList(VT);
4389  SDValue Ops[] = { Op1 };
4390  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4391}
4392
4393SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4394                                   EVT VT, SDValue Op1,
4395                                   SDValue Op2) {
4396  SDVTList VTs = getVTList(VT);
4397  SDValue Ops[] = { Op1, Op2 };
4398  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4399}
4400
4401SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4402                                   EVT VT, SDValue Op1,
4403                                   SDValue Op2, SDValue Op3) {
4404  SDVTList VTs = getVTList(VT);
4405  SDValue Ops[] = { Op1, Op2, Op3 };
4406  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4407}
4408
4409SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4410                                   EVT VT, const SDValue *Ops,
4411                                   unsigned NumOps) {
4412  SDVTList VTs = getVTList(VT);
4413  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4414}
4415
4416SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4417                                   EVT VT1, EVT VT2, const SDValue *Ops,
4418                                   unsigned NumOps) {
4419  SDVTList VTs = getVTList(VT1, VT2);
4420  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4421}
4422
4423SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4424                                   EVT VT1, EVT VT2) {
4425  SDVTList VTs = getVTList(VT1, VT2);
4426  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4427}
4428
4429SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4430                                   EVT VT1, EVT VT2, EVT VT3,
4431                                   const SDValue *Ops, unsigned NumOps) {
4432  SDVTList VTs = getVTList(VT1, VT2, VT3);
4433  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4434}
4435
4436SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4437                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4438                                   const SDValue *Ops, unsigned NumOps) {
4439  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4440  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4441}
4442
4443SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4444                                   EVT VT1, EVT VT2,
4445                                   SDValue Op1) {
4446  SDVTList VTs = getVTList(VT1, VT2);
4447  SDValue Ops[] = { Op1 };
4448  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4449}
4450
4451SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4452                                   EVT VT1, EVT VT2,
4453                                   SDValue Op1, SDValue Op2) {
4454  SDVTList VTs = getVTList(VT1, VT2);
4455  SDValue Ops[] = { Op1, Op2 };
4456  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4457}
4458
4459SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4460                                   EVT VT1, EVT VT2,
4461                                   SDValue Op1, SDValue Op2,
4462                                   SDValue Op3) {
4463  SDVTList VTs = getVTList(VT1, VT2);
4464  SDValue Ops[] = { Op1, Op2, Op3 };
4465  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4466}
4467
4468SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4469                                   EVT VT1, EVT VT2, EVT VT3,
4470                                   SDValue Op1, SDValue Op2,
4471                                   SDValue Op3) {
4472  SDVTList VTs = getVTList(VT1, VT2, VT3);
4473  SDValue Ops[] = { Op1, Op2, Op3 };
4474  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4475}
4476
4477SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4478                                   SDVTList VTs, const SDValue *Ops,
4479                                   unsigned NumOps) {
4480  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4481}
4482
4483SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4484                                  EVT VT) {
4485  SDVTList VTs = getVTList(VT);
4486  return MorphNodeTo(N, Opc, VTs, 0, 0);
4487}
4488
4489SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4490                                  EVT VT, SDValue Op1) {
4491  SDVTList VTs = getVTList(VT);
4492  SDValue Ops[] = { Op1 };
4493  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4494}
4495
4496SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4497                                  EVT VT, SDValue Op1,
4498                                  SDValue Op2) {
4499  SDVTList VTs = getVTList(VT);
4500  SDValue Ops[] = { Op1, Op2 };
4501  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4502}
4503
4504SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4505                                  EVT VT, SDValue Op1,
4506                                  SDValue Op2, SDValue Op3) {
4507  SDVTList VTs = getVTList(VT);
4508  SDValue Ops[] = { Op1, Op2, Op3 };
4509  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4510}
4511
4512SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4513                                  EVT VT, const SDValue *Ops,
4514                                  unsigned NumOps) {
4515  SDVTList VTs = getVTList(VT);
4516  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4517}
4518
4519SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4520                                  EVT VT1, EVT VT2, const SDValue *Ops,
4521                                  unsigned NumOps) {
4522  SDVTList VTs = getVTList(VT1, VT2);
4523  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4524}
4525
4526SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4527                                  EVT VT1, EVT VT2) {
4528  SDVTList VTs = getVTList(VT1, VT2);
4529  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4530}
4531
4532SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4533                                  EVT VT1, EVT VT2, EVT VT3,
4534                                  const SDValue *Ops, unsigned NumOps) {
4535  SDVTList VTs = getVTList(VT1, VT2, VT3);
4536  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4537}
4538
4539SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4540                                  EVT VT1, EVT VT2,
4541                                  SDValue Op1) {
4542  SDVTList VTs = getVTList(VT1, VT2);
4543  SDValue Ops[] = { Op1 };
4544  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4545}
4546
4547SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4548                                  EVT VT1, EVT VT2,
4549                                  SDValue Op1, SDValue Op2) {
4550  SDVTList VTs = getVTList(VT1, VT2);
4551  SDValue Ops[] = { Op1, Op2 };
4552  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4553}
4554
4555SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4556                                  EVT VT1, EVT VT2,
4557                                  SDValue Op1, SDValue Op2,
4558                                  SDValue Op3) {
4559  SDVTList VTs = getVTList(VT1, VT2);
4560  SDValue Ops[] = { Op1, Op2, Op3 };
4561  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4562}
4563
4564/// MorphNodeTo - These *mutate* the specified node to have the specified
4565/// return type, opcode, and operands.
4566///
4567/// Note that MorphNodeTo returns the resultant node.  If there is already a
4568/// node of the specified opcode and operands, it returns that node instead of
4569/// the current one.  Note that the DebugLoc need not be the same.
4570///
4571/// Using MorphNodeTo is faster than creating a new node and swapping it in
4572/// with ReplaceAllUsesWith both because it often avoids allocating a new
4573/// node, and because it doesn't require CSE recalculation for any of
4574/// the node's users.
4575///
4576SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4577                                  SDVTList VTs, const SDValue *Ops,
4578                                  unsigned NumOps) {
4579  // If an identical node already exists, use it.
4580  void *IP = 0;
4581  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4582    FoldingSetNodeID ID;
4583    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4584    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4585      return ON;
4586  }
4587
4588  if (!RemoveNodeFromCSEMaps(N))
4589    IP = 0;
4590
4591  // Start the morphing.
4592  N->NodeType = Opc;
4593  N->ValueList = VTs.VTs;
4594  N->NumValues = VTs.NumVTs;
4595
4596  // Clear the operands list, updating used nodes to remove this from their
4597  // use list.  Keep track of any operands that become dead as a result.
4598  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4599  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4600    SDUse &Use = *I++;
4601    SDNode *Used = Use.getNode();
4602    Use.set(SDValue());
4603    if (Used->use_empty())
4604      DeadNodeSet.insert(Used);
4605  }
4606
4607  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4608    // Initialize the memory references information.
4609    MN->setMemRefs(0, 0);
4610    // If NumOps is larger than the # of operands we can have in a
4611    // MachineSDNode, reallocate the operand list.
4612    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4613      if (MN->OperandsNeedDelete)
4614        delete[] MN->OperandList;
4615      if (NumOps > array_lengthof(MN->LocalOperands))
4616        // We're creating a final node that will live unmorphed for the
4617        // remainder of the current SelectionDAG iteration, so we can allocate
4618        // the operands directly out of a pool with no recycling metadata.
4619        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4620                        Ops, NumOps);
4621      else
4622        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4623      MN->OperandsNeedDelete = false;
4624    } else
4625      MN->InitOperands(MN->OperandList, Ops, NumOps);
4626  } else {
4627    // If NumOps is larger than the # of operands we currently have, reallocate
4628    // the operand list.
4629    if (NumOps > N->NumOperands) {
4630      if (N->OperandsNeedDelete)
4631        delete[] N->OperandList;
4632      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4633      N->OperandsNeedDelete = true;
4634    } else
4635      N->InitOperands(N->OperandList, Ops, NumOps);
4636  }
4637
4638  // Delete any nodes that are still dead after adding the uses for the
4639  // new operands.
4640  SmallVector<SDNode *, 16> DeadNodes;
4641  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4642       E = DeadNodeSet.end(); I != E; ++I)
4643    if ((*I)->use_empty())
4644      DeadNodes.push_back(*I);
4645  RemoveDeadNodes(DeadNodes);
4646
4647  if (IP)
4648    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4649  return N;
4650}
4651
4652
4653/// getMachineNode - These are used for target selectors to create a new node
4654/// with specified return type(s), MachineInstr opcode, and operands.
4655///
4656/// Note that getMachineNode returns the resultant node.  If there is already a
4657/// node of the specified opcode and operands, it returns that node instead of
4658/// the current one.
4659MachineSDNode *
4660SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4661  SDVTList VTs = getVTList(VT);
4662  return getMachineNode(Opcode, dl, VTs, 0, 0);
4663}
4664
4665MachineSDNode *
4666SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4667  SDVTList VTs = getVTList(VT);
4668  SDValue Ops[] = { Op1 };
4669  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4670}
4671
4672MachineSDNode *
4673SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4674                             SDValue Op1, SDValue Op2) {
4675  SDVTList VTs = getVTList(VT);
4676  SDValue Ops[] = { Op1, Op2 };
4677  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4678}
4679
4680MachineSDNode *
4681SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4682                             SDValue Op1, SDValue Op2, SDValue Op3) {
4683  SDVTList VTs = getVTList(VT);
4684  SDValue Ops[] = { Op1, Op2, Op3 };
4685  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4686}
4687
4688MachineSDNode *
4689SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4690                             const SDValue *Ops, unsigned NumOps) {
4691  SDVTList VTs = getVTList(VT);
4692  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4693}
4694
4695MachineSDNode *
4696SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4697  SDVTList VTs = getVTList(VT1, VT2);
4698  return getMachineNode(Opcode, dl, VTs, 0, 0);
4699}
4700
4701MachineSDNode *
4702SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4703                             EVT VT1, EVT VT2, SDValue Op1) {
4704  SDVTList VTs = getVTList(VT1, VT2);
4705  SDValue Ops[] = { Op1 };
4706  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4707}
4708
4709MachineSDNode *
4710SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4711                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4712  SDVTList VTs = getVTList(VT1, VT2);
4713  SDValue Ops[] = { Op1, Op2 };
4714  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4715}
4716
4717MachineSDNode *
4718SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4719                             EVT VT1, EVT VT2, SDValue Op1,
4720                             SDValue Op2, SDValue Op3) {
4721  SDVTList VTs = getVTList(VT1, VT2);
4722  SDValue Ops[] = { Op1, Op2, Op3 };
4723  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4724}
4725
4726MachineSDNode *
4727SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4728                             EVT VT1, EVT VT2,
4729                             const SDValue *Ops, unsigned NumOps) {
4730  SDVTList VTs = getVTList(VT1, VT2);
4731  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4732}
4733
4734MachineSDNode *
4735SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4736                             EVT VT1, EVT VT2, EVT VT3,
4737                             SDValue Op1, SDValue Op2) {
4738  SDVTList VTs = getVTList(VT1, VT2, VT3);
4739  SDValue Ops[] = { Op1, Op2 };
4740  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4741}
4742
4743MachineSDNode *
4744SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4745                             EVT VT1, EVT VT2, EVT VT3,
4746                             SDValue Op1, SDValue Op2, SDValue Op3) {
4747  SDVTList VTs = getVTList(VT1, VT2, VT3);
4748  SDValue Ops[] = { Op1, Op2, Op3 };
4749  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4750}
4751
4752MachineSDNode *
4753SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4754                             EVT VT1, EVT VT2, EVT VT3,
4755                             const SDValue *Ops, unsigned NumOps) {
4756  SDVTList VTs = getVTList(VT1, VT2, VT3);
4757  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4758}
4759
4760MachineSDNode *
4761SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4762                             EVT VT2, EVT VT3, EVT VT4,
4763                             const SDValue *Ops, unsigned NumOps) {
4764  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4765  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4766}
4767
4768MachineSDNode *
4769SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4770                             const std::vector<EVT> &ResultTys,
4771                             const SDValue *Ops, unsigned NumOps) {
4772  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4773  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4774}
4775
4776MachineSDNode *
4777SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4778                             const SDValue *Ops, unsigned NumOps) {
4779  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4780  MachineSDNode *N;
4781  void *IP;
4782
4783  if (DoCSE) {
4784    FoldingSetNodeID ID;
4785    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4786    IP = 0;
4787    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4788      return cast<MachineSDNode>(E);
4789  }
4790
4791  // Allocate a new MachineSDNode.
4792  N = NodeAllocator.Allocate<MachineSDNode>();
4793  new (N) MachineSDNode(~Opcode, DL, VTs);
4794
4795  // Initialize the operands list.
4796  if (NumOps > array_lengthof(N->LocalOperands))
4797    // We're creating a final node that will live unmorphed for the
4798    // remainder of the current SelectionDAG iteration, so we can allocate
4799    // the operands directly out of a pool with no recycling metadata.
4800    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4801                    Ops, NumOps);
4802  else
4803    N->InitOperands(N->LocalOperands, Ops, NumOps);
4804  N->OperandsNeedDelete = false;
4805
4806  if (DoCSE)
4807    CSEMap.InsertNode(N, IP);
4808
4809  AllNodes.push_back(N);
4810#ifndef NDEBUG
4811  VerifyNode(N);
4812#endif
4813  return N;
4814}
4815
4816/// getTargetExtractSubreg - A convenience function for creating
4817/// TargetInstrInfo::EXTRACT_SUBREG nodes.
4818SDValue
4819SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4820                                     SDValue Operand) {
4821  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4822  SDNode *Subreg = getMachineNode(TargetInstrInfo::EXTRACT_SUBREG, DL,
4823                                  VT, Operand, SRIdxVal);
4824  return SDValue(Subreg, 0);
4825}
4826
4827/// getTargetInsertSubreg - A convenience function for creating
4828/// TargetInstrInfo::INSERT_SUBREG nodes.
4829SDValue
4830SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4831                                    SDValue Operand, SDValue Subreg) {
4832  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4833  SDNode *Result = getMachineNode(TargetInstrInfo::INSERT_SUBREG, DL,
4834                                  VT, Operand, Subreg, SRIdxVal);
4835  return SDValue(Result, 0);
4836}
4837
4838/// getNodeIfExists - Get the specified node if it's already available, or
4839/// else return NULL.
4840SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4841                                      const SDValue *Ops, unsigned NumOps) {
4842  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4843    FoldingSetNodeID ID;
4844    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4845    void *IP = 0;
4846    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4847      return E;
4848  }
4849  return NULL;
4850}
4851
4852/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4853/// This can cause recursive merging of nodes in the DAG.
4854///
4855/// This version assumes From has a single result value.
4856///
4857void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4858                                      DAGUpdateListener *UpdateListener) {
4859  SDNode *From = FromN.getNode();
4860  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4861         "Cannot replace with this method!");
4862  assert(From != To.getNode() && "Cannot replace uses of with self");
4863
4864  // Iterate over all the existing uses of From. New uses will be added
4865  // to the beginning of the use list, which we avoid visiting.
4866  // This specifically avoids visiting uses of From that arise while the
4867  // replacement is happening, because any such uses would be the result
4868  // of CSE: If an existing node looks like From after one of its operands
4869  // is replaced by To, we don't want to replace of all its users with To
4870  // too. See PR3018 for more info.
4871  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4872  while (UI != UE) {
4873    SDNode *User = *UI;
4874
4875    // This node is about to morph, remove its old self from the CSE maps.
4876    RemoveNodeFromCSEMaps(User);
4877
4878    // A user can appear in a use list multiple times, and when this
4879    // happens the uses are usually next to each other in the list.
4880    // To help reduce the number of CSE recomputations, process all
4881    // the uses of this user that we can find this way.
4882    do {
4883      SDUse &Use = UI.getUse();
4884      ++UI;
4885      Use.set(To);
4886    } while (UI != UE && *UI == User);
4887
4888    // Now that we have modified User, add it back to the CSE maps.  If it
4889    // already exists there, recursively merge the results together.
4890    AddModifiedNodeToCSEMaps(User, UpdateListener);
4891  }
4892}
4893
4894/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4895/// This can cause recursive merging of nodes in the DAG.
4896///
4897/// This version assumes that for each value of From, there is a
4898/// corresponding value in To in the same position with the same type.
4899///
4900void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4901                                      DAGUpdateListener *UpdateListener) {
4902#ifndef NDEBUG
4903  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4904    assert((!From->hasAnyUseOfValue(i) ||
4905            From->getValueType(i) == To->getValueType(i)) &&
4906           "Cannot use this version of ReplaceAllUsesWith!");
4907#endif
4908
4909  // Handle the trivial case.
4910  if (From == To)
4911    return;
4912
4913  // Iterate over just the existing users of From. See the comments in
4914  // the ReplaceAllUsesWith above.
4915  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4916  while (UI != UE) {
4917    SDNode *User = *UI;
4918
4919    // This node is about to morph, remove its old self from the CSE maps.
4920    RemoveNodeFromCSEMaps(User);
4921
4922    // A user can appear in a use list multiple times, and when this
4923    // happens the uses are usually next to each other in the list.
4924    // To help reduce the number of CSE recomputations, process all
4925    // the uses of this user that we can find this way.
4926    do {
4927      SDUse &Use = UI.getUse();
4928      ++UI;
4929      Use.setNode(To);
4930    } while (UI != UE && *UI == User);
4931
4932    // Now that we have modified User, add it back to the CSE maps.  If it
4933    // already exists there, recursively merge the results together.
4934    AddModifiedNodeToCSEMaps(User, UpdateListener);
4935  }
4936}
4937
4938/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4939/// This can cause recursive merging of nodes in the DAG.
4940///
4941/// This version can replace From with any result values.  To must match the
4942/// number and types of values returned by From.
4943void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4944                                      const SDValue *To,
4945                                      DAGUpdateListener *UpdateListener) {
4946  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4947    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4948
4949  // Iterate over just the existing users of From. See the comments in
4950  // the ReplaceAllUsesWith above.
4951  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4952  while (UI != UE) {
4953    SDNode *User = *UI;
4954
4955    // This node is about to morph, remove its old self from the CSE maps.
4956    RemoveNodeFromCSEMaps(User);
4957
4958    // A user can appear in a use list multiple times, and when this
4959    // happens the uses are usually next to each other in the list.
4960    // To help reduce the number of CSE recomputations, process all
4961    // the uses of this user that we can find this way.
4962    do {
4963      SDUse &Use = UI.getUse();
4964      const SDValue &ToOp = To[Use.getResNo()];
4965      ++UI;
4966      Use.set(ToOp);
4967    } while (UI != UE && *UI == User);
4968
4969    // Now that we have modified User, add it back to the CSE maps.  If it
4970    // already exists there, recursively merge the results together.
4971    AddModifiedNodeToCSEMaps(User, UpdateListener);
4972  }
4973}
4974
4975/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4976/// uses of other values produced by From.getNode() alone.  The Deleted
4977/// vector is handled the same way as for ReplaceAllUsesWith.
4978void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4979                                             DAGUpdateListener *UpdateListener){
4980  // Handle the really simple, really trivial case efficiently.
4981  if (From == To) return;
4982
4983  // Handle the simple, trivial, case efficiently.
4984  if (From.getNode()->getNumValues() == 1) {
4985    ReplaceAllUsesWith(From, To, UpdateListener);
4986    return;
4987  }
4988
4989  // Iterate over just the existing users of From. See the comments in
4990  // the ReplaceAllUsesWith above.
4991  SDNode::use_iterator UI = From.getNode()->use_begin(),
4992                       UE = From.getNode()->use_end();
4993  while (UI != UE) {
4994    SDNode *User = *UI;
4995    bool UserRemovedFromCSEMaps = false;
4996
4997    // A user can appear in a use list multiple times, and when this
4998    // happens the uses are usually next to each other in the list.
4999    // To help reduce the number of CSE recomputations, process all
5000    // the uses of this user that we can find this way.
5001    do {
5002      SDUse &Use = UI.getUse();
5003
5004      // Skip uses of different values from the same node.
5005      if (Use.getResNo() != From.getResNo()) {
5006        ++UI;
5007        continue;
5008      }
5009
5010      // If this node hasn't been modified yet, it's still in the CSE maps,
5011      // so remove its old self from the CSE maps.
5012      if (!UserRemovedFromCSEMaps) {
5013        RemoveNodeFromCSEMaps(User);
5014        UserRemovedFromCSEMaps = true;
5015      }
5016
5017      ++UI;
5018      Use.set(To);
5019    } while (UI != UE && *UI == User);
5020
5021    // We are iterating over all uses of the From node, so if a use
5022    // doesn't use the specific value, no changes are made.
5023    if (!UserRemovedFromCSEMaps)
5024      continue;
5025
5026    // Now that we have modified User, add it back to the CSE maps.  If it
5027    // already exists there, recursively merge the results together.
5028    AddModifiedNodeToCSEMaps(User, UpdateListener);
5029  }
5030}
5031
5032namespace {
5033  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5034  /// to record information about a use.
5035  struct UseMemo {
5036    SDNode *User;
5037    unsigned Index;
5038    SDUse *Use;
5039  };
5040
5041  /// operator< - Sort Memos by User.
5042  bool operator<(const UseMemo &L, const UseMemo &R) {
5043    return (intptr_t)L.User < (intptr_t)R.User;
5044  }
5045}
5046
5047/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5048/// uses of other values produced by From.getNode() alone.  The same value
5049/// may appear in both the From and To list.  The Deleted vector is
5050/// handled the same way as for ReplaceAllUsesWith.
5051void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5052                                              const SDValue *To,
5053                                              unsigned Num,
5054                                              DAGUpdateListener *UpdateListener){
5055  // Handle the simple, trivial case efficiently.
5056  if (Num == 1)
5057    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5058
5059  // Read up all the uses and make records of them. This helps
5060  // processing new uses that are introduced during the
5061  // replacement process.
5062  SmallVector<UseMemo, 4> Uses;
5063  for (unsigned i = 0; i != Num; ++i) {
5064    unsigned FromResNo = From[i].getResNo();
5065    SDNode *FromNode = From[i].getNode();
5066    for (SDNode::use_iterator UI = FromNode->use_begin(),
5067         E = FromNode->use_end(); UI != E; ++UI) {
5068      SDUse &Use = UI.getUse();
5069      if (Use.getResNo() == FromResNo) {
5070        UseMemo Memo = { *UI, i, &Use };
5071        Uses.push_back(Memo);
5072      }
5073    }
5074  }
5075
5076  // Sort the uses, so that all the uses from a given User are together.
5077  std::sort(Uses.begin(), Uses.end());
5078
5079  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5080       UseIndex != UseIndexEnd; ) {
5081    // We know that this user uses some value of From.  If it is the right
5082    // value, update it.
5083    SDNode *User = Uses[UseIndex].User;
5084
5085    // This node is about to morph, remove its old self from the CSE maps.
5086    RemoveNodeFromCSEMaps(User);
5087
5088    // The Uses array is sorted, so all the uses for a given User
5089    // are next to each other in the list.
5090    // To help reduce the number of CSE recomputations, process all
5091    // the uses of this user that we can find this way.
5092    do {
5093      unsigned i = Uses[UseIndex].Index;
5094      SDUse &Use = *Uses[UseIndex].Use;
5095      ++UseIndex;
5096
5097      Use.set(To[i]);
5098    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5099
5100    // Now that we have modified User, add it back to the CSE maps.  If it
5101    // already exists there, recursively merge the results together.
5102    AddModifiedNodeToCSEMaps(User, UpdateListener);
5103  }
5104}
5105
5106/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5107/// based on their topological order. It returns the maximum id and a vector
5108/// of the SDNodes* in assigned order by reference.
5109unsigned SelectionDAG::AssignTopologicalOrder() {
5110
5111  unsigned DAGSize = 0;
5112
5113  // SortedPos tracks the progress of the algorithm. Nodes before it are
5114  // sorted, nodes after it are unsorted. When the algorithm completes
5115  // it is at the end of the list.
5116  allnodes_iterator SortedPos = allnodes_begin();
5117
5118  // Visit all the nodes. Move nodes with no operands to the front of
5119  // the list immediately. Annotate nodes that do have operands with their
5120  // operand count. Before we do this, the Node Id fields of the nodes
5121  // may contain arbitrary values. After, the Node Id fields for nodes
5122  // before SortedPos will contain the topological sort index, and the
5123  // Node Id fields for nodes At SortedPos and after will contain the
5124  // count of outstanding operands.
5125  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5126    SDNode *N = I++;
5127    unsigned Degree = N->getNumOperands();
5128    if (Degree == 0) {
5129      // A node with no uses, add it to the result array immediately.
5130      N->setNodeId(DAGSize++);
5131      allnodes_iterator Q = N;
5132      if (Q != SortedPos)
5133        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5134      ++SortedPos;
5135    } else {
5136      // Temporarily use the Node Id as scratch space for the degree count.
5137      N->setNodeId(Degree);
5138    }
5139  }
5140
5141  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5142  // such that by the time the end is reached all nodes will be sorted.
5143  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5144    SDNode *N = I;
5145    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5146         UI != UE; ++UI) {
5147      SDNode *P = *UI;
5148      unsigned Degree = P->getNodeId();
5149      --Degree;
5150      if (Degree == 0) {
5151        // All of P's operands are sorted, so P may sorted now.
5152        P->setNodeId(DAGSize++);
5153        if (P != SortedPos)
5154          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5155        ++SortedPos;
5156      } else {
5157        // Update P's outstanding operand count.
5158        P->setNodeId(Degree);
5159      }
5160    }
5161  }
5162
5163  assert(SortedPos == AllNodes.end() &&
5164         "Topological sort incomplete!");
5165  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5166         "First node in topological sort is not the entry token!");
5167  assert(AllNodes.front().getNodeId() == 0 &&
5168         "First node in topological sort has non-zero id!");
5169  assert(AllNodes.front().getNumOperands() == 0 &&
5170         "First node in topological sort has operands!");
5171  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5172         "Last node in topologic sort has unexpected id!");
5173  assert(AllNodes.back().use_empty() &&
5174         "Last node in topologic sort has users!");
5175  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5176  return DAGSize;
5177}
5178
5179
5180
5181//===----------------------------------------------------------------------===//
5182//                              SDNode Class
5183//===----------------------------------------------------------------------===//
5184
5185HandleSDNode::~HandleSDNode() {
5186  DropOperands();
5187}
5188
5189GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5190                                         EVT VT, int64_t o, unsigned char TF)
5191  : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
5192    Offset(o), TargetFlags(TF) {
5193  TheGlobal = const_cast<GlobalValue*>(GA);
5194}
5195
5196MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5197                     MachineMemOperand *mmo)
5198 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5199  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
5200  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5201  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5202}
5203
5204MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5205                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5206                     MachineMemOperand *mmo)
5207   : SDNode(Opc, dl, VTs, Ops, NumOps),
5208     MemoryVT(memvt), MMO(mmo) {
5209  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
5210  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5211  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5212}
5213
5214/// Profile - Gather unique data for the node.
5215///
5216void SDNode::Profile(FoldingSetNodeID &ID) const {
5217  AddNodeIDNode(ID, this);
5218}
5219
5220namespace {
5221  struct EVTArray {
5222    std::vector<EVT> VTs;
5223
5224    EVTArray() {
5225      VTs.reserve(MVT::LAST_VALUETYPE);
5226      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5227        VTs.push_back(MVT((MVT::SimpleValueType)i));
5228    }
5229  };
5230}
5231
5232static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5233static ManagedStatic<EVTArray> SimpleVTArray;
5234static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5235
5236/// getValueTypeList - Return a pointer to the specified value type.
5237///
5238const EVT *SDNode::getValueTypeList(EVT VT) {
5239  if (VT.isExtended()) {
5240    sys::SmartScopedLock<true> Lock(*VTMutex);
5241    return &(*EVTs->insert(VT).first);
5242  } else {
5243    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5244  }
5245}
5246
5247/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5248/// indicated value.  This method ignores uses of other values defined by this
5249/// operation.
5250bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5251  assert(Value < getNumValues() && "Bad value!");
5252
5253  // TODO: Only iterate over uses of a given value of the node
5254  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5255    if (UI.getUse().getResNo() == Value) {
5256      if (NUses == 0)
5257        return false;
5258      --NUses;
5259    }
5260  }
5261
5262  // Found exactly the right number of uses?
5263  return NUses == 0;
5264}
5265
5266
5267/// hasAnyUseOfValue - Return true if there are any use of the indicated
5268/// value. This method ignores uses of other values defined by this operation.
5269bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5270  assert(Value < getNumValues() && "Bad value!");
5271
5272  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5273    if (UI.getUse().getResNo() == Value)
5274      return true;
5275
5276  return false;
5277}
5278
5279
5280/// isOnlyUserOf - Return true if this node is the only use of N.
5281///
5282bool SDNode::isOnlyUserOf(SDNode *N) const {
5283  bool Seen = false;
5284  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5285    SDNode *User = *I;
5286    if (User == this)
5287      Seen = true;
5288    else
5289      return false;
5290  }
5291
5292  return Seen;
5293}
5294
5295/// isOperand - Return true if this node is an operand of N.
5296///
5297bool SDValue::isOperandOf(SDNode *N) const {
5298  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5299    if (*this == N->getOperand(i))
5300      return true;
5301  return false;
5302}
5303
5304bool SDNode::isOperandOf(SDNode *N) const {
5305  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5306    if (this == N->OperandList[i].getNode())
5307      return true;
5308  return false;
5309}
5310
5311/// reachesChainWithoutSideEffects - Return true if this operand (which must
5312/// be a chain) reaches the specified operand without crossing any
5313/// side-effecting instructions.  In practice, this looks through token
5314/// factors and non-volatile loads.  In order to remain efficient, this only
5315/// looks a couple of nodes in, it does not do an exhaustive search.
5316bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5317                                               unsigned Depth) const {
5318  if (*this == Dest) return true;
5319
5320  // Don't search too deeply, we just want to be able to see through
5321  // TokenFactor's etc.
5322  if (Depth == 0) return false;
5323
5324  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5325  // of the operands of the TF reach dest, then we can do the xform.
5326  if (getOpcode() == ISD::TokenFactor) {
5327    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5328      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5329        return true;
5330    return false;
5331  }
5332
5333  // Loads don't have side effects, look through them.
5334  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5335    if (!Ld->isVolatile())
5336      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5337  }
5338  return false;
5339}
5340
5341/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5342/// is either an operand of N or it can be reached by traversing up the operands.
5343/// NOTE: this is an expensive method. Use it carefully.
5344bool SDNode::isPredecessorOf(SDNode *N) const {
5345  SmallPtrSet<SDNode *, 32> Visited;
5346  SmallVector<SDNode *, 16> Worklist;
5347  Worklist.push_back(N);
5348
5349  do {
5350    N = Worklist.pop_back_val();
5351    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5352      SDNode *Op = N->getOperand(i).getNode();
5353      if (Op == this)
5354        return true;
5355      if (Visited.insert(Op))
5356        Worklist.push_back(Op);
5357    }
5358  } while (!Worklist.empty());
5359
5360  return false;
5361}
5362
5363uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5364  assert(Num < NumOperands && "Invalid child # of SDNode!");
5365  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5366}
5367
5368std::string SDNode::getOperationName(const SelectionDAG *G) const {
5369  switch (getOpcode()) {
5370  default:
5371    if (getOpcode() < ISD::BUILTIN_OP_END)
5372      return "<<Unknown DAG Node>>";
5373    if (isMachineOpcode()) {
5374      if (G)
5375        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5376          if (getMachineOpcode() < TII->getNumOpcodes())
5377            return TII->get(getMachineOpcode()).getName();
5378      return "<<Unknown Machine Node>>";
5379    }
5380    if (G) {
5381      const TargetLowering &TLI = G->getTargetLoweringInfo();
5382      const char *Name = TLI.getTargetNodeName(getOpcode());
5383      if (Name) return Name;
5384      return "<<Unknown Target Node>>";
5385    }
5386    return "<<Unknown Node>>";
5387
5388#ifndef NDEBUG
5389  case ISD::DELETED_NODE:
5390    return "<<Deleted Node!>>";
5391#endif
5392  case ISD::PREFETCH:      return "Prefetch";
5393  case ISD::MEMBARRIER:    return "MemBarrier";
5394  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5395  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5396  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5397  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5398  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5399  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5400  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5401  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5402  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5403  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5404  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5405  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5406  case ISD::PCMARKER:      return "PCMarker";
5407  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5408  case ISD::SRCVALUE:      return "SrcValue";
5409  case ISD::EntryToken:    return "EntryToken";
5410  case ISD::TokenFactor:   return "TokenFactor";
5411  case ISD::AssertSext:    return "AssertSext";
5412  case ISD::AssertZext:    return "AssertZext";
5413
5414  case ISD::BasicBlock:    return "BasicBlock";
5415  case ISD::VALUETYPE:     return "ValueType";
5416  case ISD::Register:      return "Register";
5417
5418  case ISD::Constant:      return "Constant";
5419  case ISD::ConstantFP:    return "ConstantFP";
5420  case ISD::GlobalAddress: return "GlobalAddress";
5421  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5422  case ISD::FrameIndex:    return "FrameIndex";
5423  case ISD::JumpTable:     return "JumpTable";
5424  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5425  case ISD::RETURNADDR: return "RETURNADDR";
5426  case ISD::FRAMEADDR: return "FRAMEADDR";
5427  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5428  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5429  case ISD::LSDAADDR: return "LSDAADDR";
5430  case ISD::EHSELECTION: return "EHSELECTION";
5431  case ISD::EH_RETURN: return "EH_RETURN";
5432  case ISD::ConstantPool:  return "ConstantPool";
5433  case ISD::ExternalSymbol: return "ExternalSymbol";
5434  case ISD::BlockAddress:  return "BlockAddress";
5435  case ISD::INTRINSIC_WO_CHAIN:
5436  case ISD::INTRINSIC_VOID:
5437  case ISD::INTRINSIC_W_CHAIN: {
5438    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5439    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5440    if (IID < Intrinsic::num_intrinsics)
5441      return Intrinsic::getName((Intrinsic::ID)IID);
5442    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5443      return TII->getName(IID);
5444    llvm_unreachable("Invalid intrinsic ID");
5445  }
5446
5447  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5448  case ISD::TargetConstant: return "TargetConstant";
5449  case ISD::TargetConstantFP:return "TargetConstantFP";
5450  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5451  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5452  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5453  case ISD::TargetJumpTable:  return "TargetJumpTable";
5454  case ISD::TargetConstantPool:  return "TargetConstantPool";
5455  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5456  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5457
5458  case ISD::CopyToReg:     return "CopyToReg";
5459  case ISD::CopyFromReg:   return "CopyFromReg";
5460  case ISD::UNDEF:         return "undef";
5461  case ISD::MERGE_VALUES:  return "merge_values";
5462  case ISD::INLINEASM:     return "inlineasm";
5463  case ISD::EH_LABEL:      return "eh_label";
5464  case ISD::HANDLENODE:    return "handlenode";
5465
5466  // Unary operators
5467  case ISD::FABS:   return "fabs";
5468  case ISD::FNEG:   return "fneg";
5469  case ISD::FSQRT:  return "fsqrt";
5470  case ISD::FSIN:   return "fsin";
5471  case ISD::FCOS:   return "fcos";
5472  case ISD::FPOWI:  return "fpowi";
5473  case ISD::FPOW:   return "fpow";
5474  case ISD::FTRUNC: return "ftrunc";
5475  case ISD::FFLOOR: return "ffloor";
5476  case ISD::FCEIL:  return "fceil";
5477  case ISD::FRINT:  return "frint";
5478  case ISD::FNEARBYINT: return "fnearbyint";
5479
5480  // Binary operators
5481  case ISD::ADD:    return "add";
5482  case ISD::SUB:    return "sub";
5483  case ISD::MUL:    return "mul";
5484  case ISD::MULHU:  return "mulhu";
5485  case ISD::MULHS:  return "mulhs";
5486  case ISD::SDIV:   return "sdiv";
5487  case ISD::UDIV:   return "udiv";
5488  case ISD::SREM:   return "srem";
5489  case ISD::UREM:   return "urem";
5490  case ISD::SMUL_LOHI:  return "smul_lohi";
5491  case ISD::UMUL_LOHI:  return "umul_lohi";
5492  case ISD::SDIVREM:    return "sdivrem";
5493  case ISD::UDIVREM:    return "udivrem";
5494  case ISD::AND:    return "and";
5495  case ISD::OR:     return "or";
5496  case ISD::XOR:    return "xor";
5497  case ISD::SHL:    return "shl";
5498  case ISD::SRA:    return "sra";
5499  case ISD::SRL:    return "srl";
5500  case ISD::ROTL:   return "rotl";
5501  case ISD::ROTR:   return "rotr";
5502  case ISD::FADD:   return "fadd";
5503  case ISD::FSUB:   return "fsub";
5504  case ISD::FMUL:   return "fmul";
5505  case ISD::FDIV:   return "fdiv";
5506  case ISD::FREM:   return "frem";
5507  case ISD::FCOPYSIGN: return "fcopysign";
5508  case ISD::FGETSIGN:  return "fgetsign";
5509
5510  case ISD::SETCC:       return "setcc";
5511  case ISD::VSETCC:      return "vsetcc";
5512  case ISD::SELECT:      return "select";
5513  case ISD::SELECT_CC:   return "select_cc";
5514  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5515  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5516  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5517  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5518  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5519  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5520  case ISD::CARRY_FALSE:         return "carry_false";
5521  case ISD::ADDC:        return "addc";
5522  case ISD::ADDE:        return "adde";
5523  case ISD::SADDO:       return "saddo";
5524  case ISD::UADDO:       return "uaddo";
5525  case ISD::SSUBO:       return "ssubo";
5526  case ISD::USUBO:       return "usubo";
5527  case ISD::SMULO:       return "smulo";
5528  case ISD::UMULO:       return "umulo";
5529  case ISD::SUBC:        return "subc";
5530  case ISD::SUBE:        return "sube";
5531  case ISD::SHL_PARTS:   return "shl_parts";
5532  case ISD::SRA_PARTS:   return "sra_parts";
5533  case ISD::SRL_PARTS:   return "srl_parts";
5534
5535  // Conversion operators.
5536  case ISD::SIGN_EXTEND: return "sign_extend";
5537  case ISD::ZERO_EXTEND: return "zero_extend";
5538  case ISD::ANY_EXTEND:  return "any_extend";
5539  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5540  case ISD::TRUNCATE:    return "truncate";
5541  case ISD::FP_ROUND:    return "fp_round";
5542  case ISD::FLT_ROUNDS_: return "flt_rounds";
5543  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5544  case ISD::FP_EXTEND:   return "fp_extend";
5545
5546  case ISD::SINT_TO_FP:  return "sint_to_fp";
5547  case ISD::UINT_TO_FP:  return "uint_to_fp";
5548  case ISD::FP_TO_SINT:  return "fp_to_sint";
5549  case ISD::FP_TO_UINT:  return "fp_to_uint";
5550  case ISD::BIT_CONVERT: return "bit_convert";
5551
5552  case ISD::CONVERT_RNDSAT: {
5553    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5554    default: llvm_unreachable("Unknown cvt code!");
5555    case ISD::CVT_FF:  return "cvt_ff";
5556    case ISD::CVT_FS:  return "cvt_fs";
5557    case ISD::CVT_FU:  return "cvt_fu";
5558    case ISD::CVT_SF:  return "cvt_sf";
5559    case ISD::CVT_UF:  return "cvt_uf";
5560    case ISD::CVT_SS:  return "cvt_ss";
5561    case ISD::CVT_SU:  return "cvt_su";
5562    case ISD::CVT_US:  return "cvt_us";
5563    case ISD::CVT_UU:  return "cvt_uu";
5564    }
5565  }
5566
5567    // Control flow instructions
5568  case ISD::BR:      return "br";
5569  case ISD::BRIND:   return "brind";
5570  case ISD::BR_JT:   return "br_jt";
5571  case ISD::BRCOND:  return "brcond";
5572  case ISD::BR_CC:   return "br_cc";
5573  case ISD::CALLSEQ_START:  return "callseq_start";
5574  case ISD::CALLSEQ_END:    return "callseq_end";
5575
5576    // Other operators
5577  case ISD::LOAD:               return "load";
5578  case ISD::STORE:              return "store";
5579  case ISD::VAARG:              return "vaarg";
5580  case ISD::VACOPY:             return "vacopy";
5581  case ISD::VAEND:              return "vaend";
5582  case ISD::VASTART:            return "vastart";
5583  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5584  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5585  case ISD::BUILD_PAIR:         return "build_pair";
5586  case ISD::STACKSAVE:          return "stacksave";
5587  case ISD::STACKRESTORE:       return "stackrestore";
5588  case ISD::TRAP:               return "trap";
5589
5590  // Bit manipulation
5591  case ISD::BSWAP:   return "bswap";
5592  case ISD::CTPOP:   return "ctpop";
5593  case ISD::CTTZ:    return "cttz";
5594  case ISD::CTLZ:    return "ctlz";
5595
5596  // Trampolines
5597  case ISD::TRAMPOLINE: return "trampoline";
5598
5599  case ISD::CONDCODE:
5600    switch (cast<CondCodeSDNode>(this)->get()) {
5601    default: llvm_unreachable("Unknown setcc condition!");
5602    case ISD::SETOEQ:  return "setoeq";
5603    case ISD::SETOGT:  return "setogt";
5604    case ISD::SETOGE:  return "setoge";
5605    case ISD::SETOLT:  return "setolt";
5606    case ISD::SETOLE:  return "setole";
5607    case ISD::SETONE:  return "setone";
5608
5609    case ISD::SETO:    return "seto";
5610    case ISD::SETUO:   return "setuo";
5611    case ISD::SETUEQ:  return "setue";
5612    case ISD::SETUGT:  return "setugt";
5613    case ISD::SETUGE:  return "setuge";
5614    case ISD::SETULT:  return "setult";
5615    case ISD::SETULE:  return "setule";
5616    case ISD::SETUNE:  return "setune";
5617
5618    case ISD::SETEQ:   return "seteq";
5619    case ISD::SETGT:   return "setgt";
5620    case ISD::SETGE:   return "setge";
5621    case ISD::SETLT:   return "setlt";
5622    case ISD::SETLE:   return "setle";
5623    case ISD::SETNE:   return "setne";
5624    }
5625  }
5626}
5627
5628const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5629  switch (AM) {
5630  default:
5631    return "";
5632  case ISD::PRE_INC:
5633    return "<pre-inc>";
5634  case ISD::PRE_DEC:
5635    return "<pre-dec>";
5636  case ISD::POST_INC:
5637    return "<post-inc>";
5638  case ISD::POST_DEC:
5639    return "<post-dec>";
5640  }
5641}
5642
5643std::string ISD::ArgFlagsTy::getArgFlagsString() {
5644  std::string S = "< ";
5645
5646  if (isZExt())
5647    S += "zext ";
5648  if (isSExt())
5649    S += "sext ";
5650  if (isInReg())
5651    S += "inreg ";
5652  if (isSRet())
5653    S += "sret ";
5654  if (isByVal())
5655    S += "byval ";
5656  if (isNest())
5657    S += "nest ";
5658  if (getByValAlign())
5659    S += "byval-align:" + utostr(getByValAlign()) + " ";
5660  if (getOrigAlign())
5661    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5662  if (getByValSize())
5663    S += "byval-size:" + utostr(getByValSize()) + " ";
5664  return S + ">";
5665}
5666
5667void SDNode::dump() const { dump(0); }
5668void SDNode::dump(const SelectionDAG *G) const {
5669  print(errs(), G);
5670}
5671
5672void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5673  OS << (void*)this << ": ";
5674
5675  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5676    if (i) OS << ",";
5677    if (getValueType(i) == MVT::Other)
5678      OS << "ch";
5679    else
5680      OS << getValueType(i).getEVTString();
5681  }
5682  OS << " = " << getOperationName(G);
5683}
5684
5685void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5686  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5687    if (!MN->memoperands_empty()) {
5688      OS << "<";
5689      OS << "Mem:";
5690      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5691           e = MN->memoperands_end(); i != e; ++i) {
5692        OS << **i;
5693        if (next(i) != e)
5694          OS << " ";
5695      }
5696      OS << ">";
5697    }
5698  } else if (const ShuffleVectorSDNode *SVN =
5699               dyn_cast<ShuffleVectorSDNode>(this)) {
5700    OS << "<";
5701    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5702      int Idx = SVN->getMaskElt(i);
5703      if (i) OS << ",";
5704      if (Idx < 0)
5705        OS << "u";
5706      else
5707        OS << Idx;
5708    }
5709    OS << ">";
5710  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5711    OS << '<' << CSDN->getAPIntValue() << '>';
5712  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5713    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5714      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5715    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5716      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5717    else {
5718      OS << "<APFloat(";
5719      CSDN->getValueAPF().bitcastToAPInt().dump();
5720      OS << ")>";
5721    }
5722  } else if (const GlobalAddressSDNode *GADN =
5723             dyn_cast<GlobalAddressSDNode>(this)) {
5724    int64_t offset = GADN->getOffset();
5725    OS << '<';
5726    WriteAsOperand(OS, GADN->getGlobal());
5727    OS << '>';
5728    if (offset > 0)
5729      OS << " + " << offset;
5730    else
5731      OS << " " << offset;
5732    if (unsigned int TF = GADN->getTargetFlags())
5733      OS << " [TF=" << TF << ']';
5734  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5735    OS << "<" << FIDN->getIndex() << ">";
5736  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5737    OS << "<" << JTDN->getIndex() << ">";
5738    if (unsigned int TF = JTDN->getTargetFlags())
5739      OS << " [TF=" << TF << ']';
5740  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5741    int offset = CP->getOffset();
5742    if (CP->isMachineConstantPoolEntry())
5743      OS << "<" << *CP->getMachineCPVal() << ">";
5744    else
5745      OS << "<" << *CP->getConstVal() << ">";
5746    if (offset > 0)
5747      OS << " + " << offset;
5748    else
5749      OS << " " << offset;
5750    if (unsigned int TF = CP->getTargetFlags())
5751      OS << " [TF=" << TF << ']';
5752  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5753    OS << "<";
5754    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5755    if (LBB)
5756      OS << LBB->getName() << " ";
5757    OS << (const void*)BBDN->getBasicBlock() << ">";
5758  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5759    if (G && R->getReg() &&
5760        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5761      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5762    } else {
5763      OS << " %reg" << R->getReg();
5764    }
5765  } else if (const ExternalSymbolSDNode *ES =
5766             dyn_cast<ExternalSymbolSDNode>(this)) {
5767    OS << "'" << ES->getSymbol() << "'";
5768    if (unsigned int TF = ES->getTargetFlags())
5769      OS << " [TF=" << TF << ']';
5770  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5771    if (M->getValue())
5772      OS << "<" << M->getValue() << ">";
5773    else
5774      OS << "<null>";
5775  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5776    OS << ":" << N->getVT().getEVTString();
5777  }
5778  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5779    OS << "<" << *LD->getMemOperand();
5780
5781    bool doExt = true;
5782    switch (LD->getExtensionType()) {
5783    default: doExt = false; break;
5784    case ISD::EXTLOAD: OS << ", anyext"; break;
5785    case ISD::SEXTLOAD: OS << ", sext"; break;
5786    case ISD::ZEXTLOAD: OS << ", zext"; break;
5787    }
5788    if (doExt)
5789      OS << " from " << LD->getMemoryVT().getEVTString();
5790
5791    const char *AM = getIndexedModeName(LD->getAddressingMode());
5792    if (*AM)
5793      OS << ", " << AM;
5794
5795    OS << ">";
5796  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5797    OS << "<" << *ST->getMemOperand();
5798
5799    if (ST->isTruncatingStore())
5800      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5801
5802    const char *AM = getIndexedModeName(ST->getAddressingMode());
5803    if (*AM)
5804      OS << ", " << AM;
5805
5806    OS << ">";
5807  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5808    OS << "<" << *M->getMemOperand() << ">";
5809  } else if (const BlockAddressSDNode *BA =
5810               dyn_cast<BlockAddressSDNode>(this)) {
5811    OS << "<";
5812    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5813    OS << ", ";
5814    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
5815    OS << ">";
5816    if (unsigned int TF = BA->getTargetFlags())
5817      OS << " [TF=" << TF << ']';
5818  }
5819}
5820
5821void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5822  print_types(OS, G);
5823  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5824    if (i) OS << ", "; else OS << " ";
5825    OS << (void*)getOperand(i).getNode();
5826    if (unsigned RN = getOperand(i).getResNo())
5827      OS << ":" << RN;
5828  }
5829  print_details(OS, G);
5830}
5831
5832static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5833  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5834    if (N->getOperand(i).getNode()->hasOneUse())
5835      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5836    else
5837      errs() << "\n" << std::string(indent+2, ' ')
5838             << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5839
5840
5841  errs() << "\n";
5842  errs().indent(indent);
5843  N->dump(G);
5844}
5845
5846SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
5847  assert(N->getNumValues() == 1 &&
5848         "Can't unroll a vector with multiple results!");
5849
5850  EVT VT = N->getValueType(0);
5851  unsigned NE = VT.getVectorNumElements();
5852  EVT EltVT = VT.getVectorElementType();
5853  DebugLoc dl = N->getDebugLoc();
5854
5855  SmallVector<SDValue, 8> Scalars;
5856  SmallVector<SDValue, 4> Operands(N->getNumOperands());
5857
5858  // If ResNE is 0, fully unroll the vector op.
5859  if (ResNE == 0)
5860    ResNE = NE;
5861  else if (NE > ResNE)
5862    NE = ResNE;
5863
5864  unsigned i;
5865  for (i= 0; i != NE; ++i) {
5866    for (unsigned j = 0; j != N->getNumOperands(); ++j) {
5867      SDValue Operand = N->getOperand(j);
5868      EVT OperandVT = Operand.getValueType();
5869      if (OperandVT.isVector()) {
5870        // A vector operand; extract a single element.
5871        EVT OperandEltVT = OperandVT.getVectorElementType();
5872        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
5873                              OperandEltVT,
5874                              Operand,
5875                              getConstant(i, MVT::i32));
5876      } else {
5877        // A scalar operand; just use it as is.
5878        Operands[j] = Operand;
5879      }
5880    }
5881
5882    switch (N->getOpcode()) {
5883    default:
5884      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
5885                                &Operands[0], Operands.size()));
5886      break;
5887    case ISD::SHL:
5888    case ISD::SRA:
5889    case ISD::SRL:
5890    case ISD::ROTL:
5891    case ISD::ROTR:
5892      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
5893                                getShiftAmountOperand(Operands[1])));
5894      break;
5895    }
5896  }
5897
5898  for (; i < ResNE; ++i)
5899    Scalars.push_back(getUNDEF(EltVT));
5900
5901  return getNode(ISD::BUILD_VECTOR, dl,
5902                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
5903                 &Scalars[0], Scalars.size());
5904}
5905
5906
5907/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
5908/// location that is 'Dist' units away from the location that the 'Base' load
5909/// is loading from.
5910bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
5911                                     unsigned Bytes, int Dist) const {
5912  if (LD->getChain() != Base->getChain())
5913    return false;
5914  EVT VT = LD->getValueType(0);
5915  if (VT.getSizeInBits() / 8 != Bytes)
5916    return false;
5917
5918  SDValue Loc = LD->getOperand(1);
5919  SDValue BaseLoc = Base->getOperand(1);
5920  if (Loc.getOpcode() == ISD::FrameIndex) {
5921    if (BaseLoc.getOpcode() != ISD::FrameIndex)
5922      return false;
5923    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
5924    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
5925    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
5926    int FS  = MFI->getObjectSize(FI);
5927    int BFS = MFI->getObjectSize(BFI);
5928    if (FS != BFS || FS != (int)Bytes) return false;
5929    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
5930  }
5931  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
5932    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
5933    if (V && (V->getSExtValue() == Dist*Bytes))
5934      return true;
5935  }
5936
5937  GlobalValue *GV1 = NULL;
5938  GlobalValue *GV2 = NULL;
5939  int64_t Offset1 = 0;
5940  int64_t Offset2 = 0;
5941  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
5942  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
5943  if (isGA1 && isGA2 && GV1 == GV2)
5944    return Offset1 == (Offset2 + Dist*Bytes);
5945  return false;
5946}
5947
5948
5949/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
5950/// it cannot be inferred.
5951unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
5952  // If this is a GlobalAddress + cst, return the alignment.
5953  GlobalValue *GV;
5954  int64_t GVOffset = 0;
5955  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset))
5956    return MinAlign(GV->getAlignment(), GVOffset);
5957
5958  // If this is a direct reference to a stack slot, use information about the
5959  // stack slot's alignment.
5960  int FrameIdx = 1 << 31;
5961  int64_t FrameOffset = 0;
5962  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
5963    FrameIdx = FI->getIndex();
5964  } else if (Ptr.getOpcode() == ISD::ADD &&
5965             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
5966             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
5967    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
5968    FrameOffset = Ptr.getConstantOperandVal(1);
5969  }
5970
5971  if (FrameIdx != (1 << 31)) {
5972    // FIXME: Handle FI+CST.
5973    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
5974    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
5975                                    FrameOffset);
5976    if (MFI.isFixedObjectIndex(FrameIdx)) {
5977      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
5978
5979      // The alignment of the frame index can be determined from its offset from
5980      // the incoming frame position.  If the frame object is at offset 32 and
5981      // the stack is guaranteed to be 16-byte aligned, then we know that the
5982      // object is 16-byte aligned.
5983      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
5984      unsigned Align = MinAlign(ObjectOffset, StackAlign);
5985
5986      // Finally, the frame object itself may have a known alignment.  Factor
5987      // the alignment + offset into a new alignment.  For example, if we know
5988      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
5989      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
5990      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
5991      return std::max(Align, FIInfoAlign);
5992    }
5993    return FIInfoAlign;
5994  }
5995
5996  return 0;
5997}
5998
5999void SelectionDAG::dump() const {
6000  errs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6001
6002  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6003       I != E; ++I) {
6004    const SDNode *N = I;
6005    if (!N->hasOneUse() && N != getRoot().getNode())
6006      DumpNodes(N, 2, this);
6007  }
6008
6009  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6010
6011  errs() << "\n\n";
6012}
6013
6014void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6015  print_types(OS, G);
6016  print_details(OS, G);
6017}
6018
6019typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6020static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6021                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6022  if (!once.insert(N))          // If we've been here before, return now.
6023    return;
6024  // Dump the current SDNode, but don't end the line yet.
6025  OS << std::string(indent, ' ');
6026  N->printr(OS, G);
6027  // Having printed this SDNode, walk the children:
6028  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6029    const SDNode *child = N->getOperand(i).getNode();
6030    if (i) OS << ",";
6031    OS << " ";
6032    if (child->getNumOperands() == 0) {
6033      // This child has no grandchildren; print it inline right here.
6034      child->printr(OS, G);
6035      once.insert(child);
6036    } else {          // Just the address.  FIXME: also print the child's opcode
6037      OS << (void*)child;
6038      if (unsigned RN = N->getOperand(i).getResNo())
6039        OS << ":" << RN;
6040    }
6041  }
6042  OS << "\n";
6043  // Dump children that have grandchildren on their own line(s).
6044  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6045    const SDNode *child = N->getOperand(i).getNode();
6046    DumpNodesr(OS, child, indent+2, G, once);
6047  }
6048}
6049
6050void SDNode::dumpr() const {
6051  VisitedSDNodeSet once;
6052  DumpNodesr(errs(), this, 0, 0, once);
6053}
6054
6055void SDNode::dumpr(const SelectionDAG *G) const {
6056  VisitedSDNodeSet once;
6057  DumpNodesr(errs(), this, 0, G, once);
6058}
6059
6060
6061// getAddressSpace - Return the address space this GlobalAddress belongs to.
6062unsigned GlobalAddressSDNode::getAddressSpace() const {
6063  return getGlobal()->getType()->getAddressSpace();
6064}
6065
6066
6067const Type *ConstantPoolSDNode::getType() const {
6068  if (isMachineConstantPoolEntry())
6069    return Val.MachineCPVal->getType();
6070  return Val.ConstVal->getType();
6071}
6072
6073bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6074                                        APInt &SplatUndef,
6075                                        unsigned &SplatBitSize,
6076                                        bool &HasAnyUndefs,
6077                                        unsigned MinSplatBits,
6078                                        bool isBigEndian) {
6079  EVT VT = getValueType(0);
6080  assert(VT.isVector() && "Expected a vector type");
6081  unsigned sz = VT.getSizeInBits();
6082  if (MinSplatBits > sz)
6083    return false;
6084
6085  SplatValue = APInt(sz, 0);
6086  SplatUndef = APInt(sz, 0);
6087
6088  // Get the bits.  Bits with undefined values (when the corresponding element
6089  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6090  // in SplatValue.  If any of the values are not constant, give up and return
6091  // false.
6092  unsigned int nOps = getNumOperands();
6093  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6094  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6095
6096  for (unsigned j = 0; j < nOps; ++j) {
6097    unsigned i = isBigEndian ? nOps-1-j : j;
6098    SDValue OpVal = getOperand(i);
6099    unsigned BitPos = j * EltBitSize;
6100
6101    if (OpVal.getOpcode() == ISD::UNDEF)
6102      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6103    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6104      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6105                     zextOrTrunc(sz) << BitPos);
6106    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6107      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6108     else
6109      return false;
6110  }
6111
6112  // The build_vector is all constants or undefs.  Find the smallest element
6113  // size that splats the vector.
6114
6115  HasAnyUndefs = (SplatUndef != 0);
6116  while (sz > 8) {
6117
6118    unsigned HalfSize = sz / 2;
6119    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6120    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6121    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6122    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6123
6124    // If the two halves do not match (ignoring undef bits), stop here.
6125    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6126        MinSplatBits > HalfSize)
6127      break;
6128
6129    SplatValue = HighValue | LowValue;
6130    SplatUndef = HighUndef & LowUndef;
6131
6132    sz = HalfSize;
6133  }
6134
6135  SplatBitSize = sz;
6136  return true;
6137}
6138
6139bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6140  // Find the first non-undef value in the shuffle mask.
6141  unsigned i, e;
6142  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6143    /* search */;
6144
6145  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6146
6147  // Make sure all remaining elements are either undef or the same as the first
6148  // non-undef value.
6149  for (int Idx = Mask[i]; i != e; ++i)
6150    if (Mask[i] >= 0 && Mask[i] != Idx)
6151      return false;
6152  return true;
6153}
6154
6155