SelectionDAG.cpp revision f28f8bc40eedc6304ab25dd8bed486fa08f51f70
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/Constants.h"
18#include "llvm/Analysis/ValueTracking.h"
19#include "llvm/Function.h"
20#include "llvm/GlobalAlias.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/Intrinsics.h"
23#include "llvm/DerivedTypes.h"
24#include "llvm/Assembly/Writer.h"
25#include "llvm/CallingConv.h"
26#include "llvm/CodeGen/MachineBasicBlock.h"
27#include "llvm/CodeGen/MachineConstantPool.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineModuleInfo.h"
30#include "llvm/CodeGen/PseudoSourceValue.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Target/TargetFrameInfo.h"
34#include "llvm/Target/TargetLowering.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetIntrinsicInfo.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/ManagedStatic.h"
43#include "llvm/Support/MathExtras.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/System/Mutex.h"
46#include "llvm/ADT/SetVector.h"
47#include "llvm/ADT/SmallPtrSet.h"
48#include "llvm/ADT/SmallSet.h"
49#include "llvm/ADT/SmallVector.h"
50#include "llvm/ADT/StringExtras.h"
51#include <algorithm>
52#include <cmath>
53using namespace llvm;
54
55/// makeVTList - Return an instance of the SDVTList struct initialized with the
56/// specified members.
57static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
58  SDVTList Res = {VTs, NumVTs};
59  return Res;
60}
61
62static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
63  switch (VT.getSimpleVT().SimpleTy) {
64  default: llvm_unreachable("Unknown FP format");
65  case MVT::f32:     return &APFloat::IEEEsingle;
66  case MVT::f64:     return &APFloat::IEEEdouble;
67  case MVT::f80:     return &APFloat::x87DoubleExtended;
68  case MVT::f128:    return &APFloat::IEEEquad;
69  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
70  }
71}
72
73SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
74
75//===----------------------------------------------------------------------===//
76//                              ConstantFPSDNode Class
77//===----------------------------------------------------------------------===//
78
79/// isExactlyValue - We don't rely on operator== working on double values, as
80/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
81/// As such, this method can be used to do an exact bit-for-bit comparison of
82/// two floating point values.
83bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
84  return getValueAPF().bitwiseIsEqual(V);
85}
86
87bool ConstantFPSDNode::isValueValidForType(EVT VT,
88                                           const APFloat& Val) {
89  assert(VT.isFloatingPoint() && "Can only convert between FP types");
90
91  // PPC long double cannot be converted to any other type.
92  if (VT == MVT::ppcf128 ||
93      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
94    return false;
95
96  // convert modifies in place, so make a copy.
97  APFloat Val2 = APFloat(Val);
98  bool losesInfo;
99  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
100                      &losesInfo);
101  return !losesInfo;
102}
103
104//===----------------------------------------------------------------------===//
105//                              ISD Namespace
106//===----------------------------------------------------------------------===//
107
108/// isBuildVectorAllOnes - Return true if the specified node is a
109/// BUILD_VECTOR where all of the elements are ~0 or undef.
110bool ISD::isBuildVectorAllOnes(const SDNode *N) {
111  // Look through a bit convert.
112  if (N->getOpcode() == ISD::BIT_CONVERT)
113    N = N->getOperand(0).getNode();
114
115  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
116
117  unsigned i = 0, e = N->getNumOperands();
118
119  // Skip over all of the undef values.
120  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
121    ++i;
122
123  // Do not accept an all-undef vector.
124  if (i == e) return false;
125
126  // Do not accept build_vectors that aren't all constants or which have non-~0
127  // elements.
128  SDValue NotZero = N->getOperand(i);
129  if (isa<ConstantSDNode>(NotZero)) {
130    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
131      return false;
132  } else if (isa<ConstantFPSDNode>(NotZero)) {
133    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
134                bitcastToAPInt().isAllOnesValue())
135      return false;
136  } else
137    return false;
138
139  // Okay, we have at least one ~0 value, check to see if the rest match or are
140  // undefs.
141  for (++i; i != e; ++i)
142    if (N->getOperand(i) != NotZero &&
143        N->getOperand(i).getOpcode() != ISD::UNDEF)
144      return false;
145  return true;
146}
147
148
149/// isBuildVectorAllZeros - Return true if the specified node is a
150/// BUILD_VECTOR where all of the elements are 0 or undef.
151bool ISD::isBuildVectorAllZeros(const SDNode *N) {
152  // Look through a bit convert.
153  if (N->getOpcode() == ISD::BIT_CONVERT)
154    N = N->getOperand(0).getNode();
155
156  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
157
158  unsigned i = 0, e = N->getNumOperands();
159
160  // Skip over all of the undef values.
161  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
162    ++i;
163
164  // Do not accept an all-undef vector.
165  if (i == e) return false;
166
167  // Do not accept build_vectors that aren't all constants or which have non-0
168  // elements.
169  SDValue Zero = N->getOperand(i);
170  if (isa<ConstantSDNode>(Zero)) {
171    if (!cast<ConstantSDNode>(Zero)->isNullValue())
172      return false;
173  } else if (isa<ConstantFPSDNode>(Zero)) {
174    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
175      return false;
176  } else
177    return false;
178
179  // Okay, we have at least one 0 value, check to see if the rest match or are
180  // undefs.
181  for (++i; i != e; ++i)
182    if (N->getOperand(i) != Zero &&
183        N->getOperand(i).getOpcode() != ISD::UNDEF)
184      return false;
185  return true;
186}
187
188/// isScalarToVector - Return true if the specified node is a
189/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
190/// element is not an undef.
191bool ISD::isScalarToVector(const SDNode *N) {
192  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
193    return true;
194
195  if (N->getOpcode() != ISD::BUILD_VECTOR)
196    return false;
197  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
198    return false;
199  unsigned NumElems = N->getNumOperands();
200  for (unsigned i = 1; i < NumElems; ++i) {
201    SDValue V = N->getOperand(i);
202    if (V.getOpcode() != ISD::UNDEF)
203      return false;
204  }
205  return true;
206}
207
208/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
209/// when given the operation for (X op Y).
210ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
211  // To perform this operation, we just need to swap the L and G bits of the
212  // operation.
213  unsigned OldL = (Operation >> 2) & 1;
214  unsigned OldG = (Operation >> 1) & 1;
215  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
216                       (OldL << 1) |       // New G bit
217                       (OldG << 2));       // New L bit.
218}
219
220/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
221/// 'op' is a valid SetCC operation.
222ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
223  unsigned Operation = Op;
224  if (isInteger)
225    Operation ^= 7;   // Flip L, G, E bits, but not U.
226  else
227    Operation ^= 15;  // Flip all of the condition bits.
228
229  if (Operation > ISD::SETTRUE2)
230    Operation &= ~8;  // Don't let N and U bits get set.
231
232  return ISD::CondCode(Operation);
233}
234
235
236/// isSignedOp - For an integer comparison, return 1 if the comparison is a
237/// signed operation and 2 if the result is an unsigned comparison.  Return zero
238/// if the operation does not depend on the sign of the input (setne and seteq).
239static int isSignedOp(ISD::CondCode Opcode) {
240  switch (Opcode) {
241  default: llvm_unreachable("Illegal integer setcc operation!");
242  case ISD::SETEQ:
243  case ISD::SETNE: return 0;
244  case ISD::SETLT:
245  case ISD::SETLE:
246  case ISD::SETGT:
247  case ISD::SETGE: return 1;
248  case ISD::SETULT:
249  case ISD::SETULE:
250  case ISD::SETUGT:
251  case ISD::SETUGE: return 2;
252  }
253}
254
255/// getSetCCOrOperation - Return the result of a logical OR between different
256/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
257/// returns SETCC_INVALID if it is not possible to represent the resultant
258/// comparison.
259ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
260                                       bool isInteger) {
261  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
262    // Cannot fold a signed integer setcc with an unsigned integer setcc.
263    return ISD::SETCC_INVALID;
264
265  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
266
267  // If the N and U bits get set then the resultant comparison DOES suddenly
268  // care about orderedness, and is true when ordered.
269  if (Op > ISD::SETTRUE2)
270    Op &= ~16;     // Clear the U bit if the N bit is set.
271
272  // Canonicalize illegal integer setcc's.
273  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
274    Op = ISD::SETNE;
275
276  return ISD::CondCode(Op);
277}
278
279/// getSetCCAndOperation - Return the result of a logical AND between different
280/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
281/// function returns zero if it is not possible to represent the resultant
282/// comparison.
283ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
284                                        bool isInteger) {
285  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
286    // Cannot fold a signed setcc with an unsigned setcc.
287    return ISD::SETCC_INVALID;
288
289  // Combine all of the condition bits.
290  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
291
292  // Canonicalize illegal integer setcc's.
293  if (isInteger) {
294    switch (Result) {
295    default: break;
296    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
297    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
298    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
299    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
300    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
301    }
302  }
303
304  return Result;
305}
306
307const TargetMachine &SelectionDAG::getTarget() const {
308  return MF->getTarget();
309}
310
311//===----------------------------------------------------------------------===//
312//                           SDNode Profile Support
313//===----------------------------------------------------------------------===//
314
315/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
316///
317static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
318  ID.AddInteger(OpC);
319}
320
321/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
322/// solely with their pointer.
323static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
324  ID.AddPointer(VTList.VTs);
325}
326
327/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
328///
329static void AddNodeIDOperands(FoldingSetNodeID &ID,
330                              const SDValue *Ops, unsigned NumOps) {
331  for (; NumOps; --NumOps, ++Ops) {
332    ID.AddPointer(Ops->getNode());
333    ID.AddInteger(Ops->getResNo());
334  }
335}
336
337/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
338///
339static void AddNodeIDOperands(FoldingSetNodeID &ID,
340                              const SDUse *Ops, unsigned NumOps) {
341  for (; NumOps; --NumOps, ++Ops) {
342    ID.AddPointer(Ops->getNode());
343    ID.AddInteger(Ops->getResNo());
344  }
345}
346
347static void AddNodeIDNode(FoldingSetNodeID &ID,
348                          unsigned short OpC, SDVTList VTList,
349                          const SDValue *OpList, unsigned N) {
350  AddNodeIDOpcode(ID, OpC);
351  AddNodeIDValueTypes(ID, VTList);
352  AddNodeIDOperands(ID, OpList, N);
353}
354
355/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
356/// the NodeID data.
357static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
358  switch (N->getOpcode()) {
359  case ISD::TargetExternalSymbol:
360  case ISD::ExternalSymbol:
361    llvm_unreachable("Should only be used on nodes with operands");
362  default: break;  // Normal nodes don't need extra info.
363  case ISD::TargetConstant:
364  case ISD::Constant:
365    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
366    break;
367  case ISD::TargetConstantFP:
368  case ISD::ConstantFP: {
369    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
370    break;
371  }
372  case ISD::TargetGlobalAddress:
373  case ISD::GlobalAddress:
374  case ISD::TargetGlobalTLSAddress:
375  case ISD::GlobalTLSAddress: {
376    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
377    ID.AddPointer(GA->getGlobal());
378    ID.AddInteger(GA->getOffset());
379    ID.AddInteger(GA->getTargetFlags());
380    break;
381  }
382  case ISD::BasicBlock:
383    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
384    break;
385  case ISD::Register:
386    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
387    break;
388
389  case ISD::SRCVALUE:
390    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
391    break;
392  case ISD::FrameIndex:
393  case ISD::TargetFrameIndex:
394    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
395    break;
396  case ISD::JumpTable:
397  case ISD::TargetJumpTable:
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
399    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
400    break;
401  case ISD::ConstantPool:
402  case ISD::TargetConstantPool: {
403    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
404    ID.AddInteger(CP->getAlignment());
405    ID.AddInteger(CP->getOffset());
406    if (CP->isMachineConstantPoolEntry())
407      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
408    else
409      ID.AddPointer(CP->getConstVal());
410    ID.AddInteger(CP->getTargetFlags());
411    break;
412  }
413  case ISD::LOAD: {
414    const LoadSDNode *LD = cast<LoadSDNode>(N);
415    ID.AddInteger(LD->getMemoryVT().getRawBits());
416    ID.AddInteger(LD->getRawSubclassData());
417    break;
418  }
419  case ISD::STORE: {
420    const StoreSDNode *ST = cast<StoreSDNode>(N);
421    ID.AddInteger(ST->getMemoryVT().getRawBits());
422    ID.AddInteger(ST->getRawSubclassData());
423    break;
424  }
425  case ISD::ATOMIC_CMP_SWAP:
426  case ISD::ATOMIC_SWAP:
427  case ISD::ATOMIC_LOAD_ADD:
428  case ISD::ATOMIC_LOAD_SUB:
429  case ISD::ATOMIC_LOAD_AND:
430  case ISD::ATOMIC_LOAD_OR:
431  case ISD::ATOMIC_LOAD_XOR:
432  case ISD::ATOMIC_LOAD_NAND:
433  case ISD::ATOMIC_LOAD_MIN:
434  case ISD::ATOMIC_LOAD_MAX:
435  case ISD::ATOMIC_LOAD_UMIN:
436  case ISD::ATOMIC_LOAD_UMAX: {
437    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
438    ID.AddInteger(AT->getMemoryVT().getRawBits());
439    ID.AddInteger(AT->getRawSubclassData());
440    break;
441  }
442  case ISD::VECTOR_SHUFFLE: {
443    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
444    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
445         i != e; ++i)
446      ID.AddInteger(SVN->getMaskElt(i));
447    break;
448  }
449  case ISD::TargetBlockAddress:
450  case ISD::BlockAddress: {
451    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
452    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
453    break;
454  }
455  } // end switch (N->getOpcode())
456}
457
458/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
459/// data.
460static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
461  AddNodeIDOpcode(ID, N->getOpcode());
462  // Add the return value info.
463  AddNodeIDValueTypes(ID, N->getVTList());
464  // Add the operand info.
465  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
466
467  // Handle SDNode leafs with special info.
468  AddNodeIDCustom(ID, N);
469}
470
471/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
472/// the CSE map that carries volatility, temporalness, indexing mode, and
473/// extension/truncation information.
474///
475static inline unsigned
476encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
477                     bool isNonTemporal) {
478  assert((ConvType & 3) == ConvType &&
479         "ConvType may not require more than 2 bits!");
480  assert((AM & 7) == AM &&
481         "AM may not require more than 3 bits!");
482  return ConvType |
483         (AM << 2) |
484         (isVolatile << 5) |
485         (isNonTemporal << 6);
486}
487
488//===----------------------------------------------------------------------===//
489//                              SelectionDAG Class
490//===----------------------------------------------------------------------===//
491
492/// doNotCSE - Return true if CSE should not be performed for this node.
493static bool doNotCSE(SDNode *N) {
494  if (N->getValueType(0) == MVT::Flag)
495    return true; // Never CSE anything that produces a flag.
496
497  switch (N->getOpcode()) {
498  default: break;
499  case ISD::HANDLENODE:
500  case ISD::EH_LABEL:
501    return true;   // Never CSE these nodes.
502  }
503
504  // Check that remaining values produced are not flags.
505  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
506    if (N->getValueType(i) == MVT::Flag)
507      return true; // Never CSE anything that produces a flag.
508
509  return false;
510}
511
512/// RemoveDeadNodes - This method deletes all unreachable nodes in the
513/// SelectionDAG.
514void SelectionDAG::RemoveDeadNodes() {
515  // Create a dummy node (which is not added to allnodes), that adds a reference
516  // to the root node, preventing it from being deleted.
517  HandleSDNode Dummy(getRoot());
518
519  SmallVector<SDNode*, 128> DeadNodes;
520
521  // Add all obviously-dead nodes to the DeadNodes worklist.
522  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
523    if (I->use_empty())
524      DeadNodes.push_back(I);
525
526  RemoveDeadNodes(DeadNodes);
527
528  // If the root changed (e.g. it was a dead load, update the root).
529  setRoot(Dummy.getValue());
530}
531
532/// RemoveDeadNodes - This method deletes the unreachable nodes in the
533/// given list, and any nodes that become unreachable as a result.
534void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
535                                   DAGUpdateListener *UpdateListener) {
536
537  // Process the worklist, deleting the nodes and adding their uses to the
538  // worklist.
539  while (!DeadNodes.empty()) {
540    SDNode *N = DeadNodes.pop_back_val();
541
542    if (UpdateListener)
543      UpdateListener->NodeDeleted(N, 0);
544
545    // Take the node out of the appropriate CSE map.
546    RemoveNodeFromCSEMaps(N);
547
548    // Next, brutally remove the operand list.  This is safe to do, as there are
549    // no cycles in the graph.
550    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
551      SDUse &Use = *I++;
552      SDNode *Operand = Use.getNode();
553      Use.set(SDValue());
554
555      // Now that we removed this operand, see if there are no uses of it left.
556      if (Operand->use_empty())
557        DeadNodes.push_back(Operand);
558    }
559
560    DeallocateNode(N);
561  }
562}
563
564void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
565  SmallVector<SDNode*, 16> DeadNodes(1, N);
566  RemoveDeadNodes(DeadNodes, UpdateListener);
567}
568
569void SelectionDAG::DeleteNode(SDNode *N) {
570  // First take this out of the appropriate CSE map.
571  RemoveNodeFromCSEMaps(N);
572
573  // Finally, remove uses due to operands of this node, remove from the
574  // AllNodes list, and delete the node.
575  DeleteNodeNotInCSEMaps(N);
576}
577
578void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
579  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
580  assert(N->use_empty() && "Cannot delete a node that is not dead!");
581
582  // Drop all of the operands and decrement used node's use counts.
583  N->DropOperands();
584
585  DeallocateNode(N);
586}
587
588void SelectionDAG::DeallocateNode(SDNode *N) {
589  if (N->OperandsNeedDelete)
590    delete[] N->OperandList;
591
592  // Set the opcode to DELETED_NODE to help catch bugs when node
593  // memory is reallocated.
594  N->NodeType = ISD::DELETED_NODE;
595
596  NodeAllocator.Deallocate(AllNodes.remove(N));
597
598  // Remove the ordering of this node.
599  Ordering->remove(N);
600
601  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
602  SmallVector<SDDbgValue*, 2> &DbgVals = DbgInfo->getSDDbgValues(N);
603  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
604    DbgVals[i]->setIsInvalidated();
605}
606
607/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
608/// correspond to it.  This is useful when we're about to delete or repurpose
609/// the node.  We don't want future request for structurally identical nodes
610/// to return N anymore.
611bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
612  bool Erased = false;
613  switch (N->getOpcode()) {
614  case ISD::EntryToken:
615    llvm_unreachable("EntryToken should not be in CSEMaps!");
616    return false;
617  case ISD::HANDLENODE: return false;  // noop.
618  case ISD::CONDCODE:
619    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
620           "Cond code doesn't exist!");
621    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
622    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
623    break;
624  case ISD::ExternalSymbol:
625    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
626    break;
627  case ISD::TargetExternalSymbol: {
628    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
629    Erased = TargetExternalSymbols.erase(
630               std::pair<std::string,unsigned char>(ESN->getSymbol(),
631                                                    ESN->getTargetFlags()));
632    break;
633  }
634  case ISD::VALUETYPE: {
635    EVT VT = cast<VTSDNode>(N)->getVT();
636    if (VT.isExtended()) {
637      Erased = ExtendedValueTypeNodes.erase(VT);
638    } else {
639      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
640      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
641    }
642    break;
643  }
644  default:
645    // Remove it from the CSE Map.
646    Erased = CSEMap.RemoveNode(N);
647    break;
648  }
649#ifndef NDEBUG
650  // Verify that the node was actually in one of the CSE maps, unless it has a
651  // flag result (which cannot be CSE'd) or is one of the special cases that are
652  // not subject to CSE.
653  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
654      !N->isMachineOpcode() && !doNotCSE(N)) {
655    N->dump(this);
656    dbgs() << "\n";
657    llvm_unreachable("Node is not in map!");
658  }
659#endif
660  return Erased;
661}
662
663/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
664/// maps and modified in place. Add it back to the CSE maps, unless an identical
665/// node already exists, in which case transfer all its users to the existing
666/// node. This transfer can potentially trigger recursive merging.
667///
668void
669SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
670                                       DAGUpdateListener *UpdateListener) {
671  // For node types that aren't CSE'd, just act as if no identical node
672  // already exists.
673  if (!doNotCSE(N)) {
674    SDNode *Existing = CSEMap.GetOrInsertNode(N);
675    if (Existing != N) {
676      // If there was already an existing matching node, use ReplaceAllUsesWith
677      // to replace the dead one with the existing one.  This can cause
678      // recursive merging of other unrelated nodes down the line.
679      ReplaceAllUsesWith(N, Existing, UpdateListener);
680
681      // N is now dead.  Inform the listener if it exists and delete it.
682      if (UpdateListener)
683        UpdateListener->NodeDeleted(N, Existing);
684      DeleteNodeNotInCSEMaps(N);
685      return;
686    }
687  }
688
689  // If the node doesn't already exist, we updated it.  Inform a listener if
690  // it exists.
691  if (UpdateListener)
692    UpdateListener->NodeUpdated(N);
693}
694
695/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
696/// were replaced with those specified.  If this node is never memoized,
697/// return null, otherwise return a pointer to the slot it would take.  If a
698/// node already exists with these operands, the slot will be non-null.
699SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
700                                           void *&InsertPos) {
701  if (doNotCSE(N))
702    return 0;
703
704  SDValue Ops[] = { Op };
705  FoldingSetNodeID ID;
706  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
707  AddNodeIDCustom(ID, N);
708  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
709  return Node;
710}
711
712/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
713/// were replaced with those specified.  If this node is never memoized,
714/// return null, otherwise return a pointer to the slot it would take.  If a
715/// node already exists with these operands, the slot will be non-null.
716SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
717                                           SDValue Op1, SDValue Op2,
718                                           void *&InsertPos) {
719  if (doNotCSE(N))
720    return 0;
721
722  SDValue Ops[] = { Op1, Op2 };
723  FoldingSetNodeID ID;
724  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
725  AddNodeIDCustom(ID, N);
726  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
727  return Node;
728}
729
730
731/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
732/// were replaced with those specified.  If this node is never memoized,
733/// return null, otherwise return a pointer to the slot it would take.  If a
734/// node already exists with these operands, the slot will be non-null.
735SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
736                                           const SDValue *Ops,unsigned NumOps,
737                                           void *&InsertPos) {
738  if (doNotCSE(N))
739    return 0;
740
741  FoldingSetNodeID ID;
742  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
743  AddNodeIDCustom(ID, N);
744  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
745  return Node;
746}
747
748/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
749void SelectionDAG::VerifyNode(SDNode *N) {
750  switch (N->getOpcode()) {
751  default:
752    break;
753  case ISD::BUILD_PAIR: {
754    EVT VT = N->getValueType(0);
755    assert(N->getNumValues() == 1 && "Too many results!");
756    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
757           "Wrong return type!");
758    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
759    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
760           "Mismatched operand types!");
761    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
762           "Wrong operand type!");
763    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
764           "Wrong return type size");
765    break;
766  }
767  case ISD::BUILD_VECTOR: {
768    assert(N->getNumValues() == 1 && "Too many results!");
769    assert(N->getValueType(0).isVector() && "Wrong return type!");
770    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
771           "Wrong number of operands!");
772    EVT EltVT = N->getValueType(0).getVectorElementType();
773    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
774      assert((I->getValueType() == EltVT ||
775             (EltVT.isInteger() && I->getValueType().isInteger() &&
776              EltVT.bitsLE(I->getValueType()))) &&
777            "Wrong operand type!");
778    break;
779  }
780  }
781}
782
783/// getEVTAlignment - Compute the default alignment value for the
784/// given type.
785///
786unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
787  const Type *Ty = VT == MVT::iPTR ?
788                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
789                   VT.getTypeForEVT(*getContext());
790
791  return TLI.getTargetData()->getABITypeAlignment(Ty);
792}
793
794// EntryNode could meaningfully have debug info if we can find it...
795SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
796  : TLI(tli), FLI(fli), DW(0),
797    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
798              getVTList(MVT::Other)),
799    Root(getEntryNode()), Ordering(0) {
800  AllNodes.push_back(&EntryNode);
801  Ordering = new SDNodeOrdering();
802  DbgInfo = new SDDbgInfo();
803}
804
805void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
806                        DwarfWriter *dw) {
807  MF = &mf;
808  MMI = mmi;
809  DW = dw;
810  Context = &mf.getFunction()->getContext();
811}
812
813SelectionDAG::~SelectionDAG() {
814  allnodes_clear();
815  delete Ordering;
816  DbgInfo->clear();
817  delete DbgInfo;
818}
819
820void SelectionDAG::allnodes_clear() {
821  assert(&*AllNodes.begin() == &EntryNode);
822  AllNodes.remove(AllNodes.begin());
823  while (!AllNodes.empty())
824    DeallocateNode(AllNodes.begin());
825}
826
827void SelectionDAG::clear() {
828  allnodes_clear();
829  OperandAllocator.Reset();
830  CSEMap.clear();
831
832  ExtendedValueTypeNodes.clear();
833  ExternalSymbols.clear();
834  TargetExternalSymbols.clear();
835  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
836            static_cast<CondCodeSDNode*>(0));
837  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
838            static_cast<SDNode*>(0));
839
840  EntryNode.UseList = 0;
841  AllNodes.push_back(&EntryNode);
842  Root = getEntryNode();
843  delete Ordering;
844  Ordering = new SDNodeOrdering();
845  DbgInfo->clear();
846  delete DbgInfo;
847  DbgInfo = new SDDbgInfo();
848}
849
850SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
851  return VT.bitsGT(Op.getValueType()) ?
852    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
853    getNode(ISD::TRUNCATE, DL, VT, Op);
854}
855
856SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
857  return VT.bitsGT(Op.getValueType()) ?
858    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
859    getNode(ISD::TRUNCATE, DL, VT, Op);
860}
861
862SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
863  assert(!VT.isVector() &&
864         "getZeroExtendInReg should use the vector element type instead of "
865         "the vector type!");
866  if (Op.getValueType() == VT) return Op;
867  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
868  APInt Imm = APInt::getLowBitsSet(BitWidth,
869                                   VT.getSizeInBits());
870  return getNode(ISD::AND, DL, Op.getValueType(), Op,
871                 getConstant(Imm, Op.getValueType()));
872}
873
874/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
875///
876SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
877  EVT EltVT = VT.getScalarType();
878  SDValue NegOne =
879    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
880  return getNode(ISD::XOR, DL, VT, Val, NegOne);
881}
882
883SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
884  EVT EltVT = VT.getScalarType();
885  assert((EltVT.getSizeInBits() >= 64 ||
886         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
887         "getConstant with a uint64_t value that doesn't fit in the type!");
888  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
889}
890
891SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
892  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
893}
894
895SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
896  assert(VT.isInteger() && "Cannot create FP integer constant!");
897
898  EVT EltVT = VT.getScalarType();
899  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
900         "APInt size does not match type size!");
901
902  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
903  FoldingSetNodeID ID;
904  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
905  ID.AddPointer(&Val);
906  void *IP = 0;
907  SDNode *N = NULL;
908  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
909    if (!VT.isVector())
910      return SDValue(N, 0);
911
912  if (!N) {
913    N = new (NodeAllocator) ConstantSDNode(isT, &Val, EltVT);
914    CSEMap.InsertNode(N, IP);
915    AllNodes.push_back(N);
916  }
917
918  SDValue Result(N, 0);
919  if (VT.isVector()) {
920    SmallVector<SDValue, 8> Ops;
921    Ops.assign(VT.getVectorNumElements(), Result);
922    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
923                     VT, &Ops[0], Ops.size());
924  }
925  return Result;
926}
927
928SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
929  return getConstant(Val, TLI.getPointerTy(), isTarget);
930}
931
932
933SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
934  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
935}
936
937SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
938  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
939
940  EVT EltVT = VT.getScalarType();
941
942  // Do the map lookup using the actual bit pattern for the floating point
943  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
944  // we don't have issues with SNANs.
945  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
946  FoldingSetNodeID ID;
947  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
948  ID.AddPointer(&V);
949  void *IP = 0;
950  SDNode *N = NULL;
951  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
952    if (!VT.isVector())
953      return SDValue(N, 0);
954
955  if (!N) {
956    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
957    CSEMap.InsertNode(N, IP);
958    AllNodes.push_back(N);
959  }
960
961  SDValue Result(N, 0);
962  if (VT.isVector()) {
963    SmallVector<SDValue, 8> Ops;
964    Ops.assign(VT.getVectorNumElements(), Result);
965    // FIXME DebugLoc info might be appropriate here
966    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
967                     VT, &Ops[0], Ops.size());
968  }
969  return Result;
970}
971
972SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
973  EVT EltVT = VT.getScalarType();
974  if (EltVT==MVT::f32)
975    return getConstantFP(APFloat((float)Val), VT, isTarget);
976  else
977    return getConstantFP(APFloat(Val), VT, isTarget);
978}
979
980SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
981                                       EVT VT, int64_t Offset,
982                                       bool isTargetGA,
983                                       unsigned char TargetFlags) {
984  assert((TargetFlags == 0 || isTargetGA) &&
985         "Cannot set target flags on target-independent globals");
986
987  // Truncate (with sign-extension) the offset value to the pointer size.
988  EVT PTy = TLI.getPointerTy();
989  unsigned BitWidth = PTy.getSizeInBits();
990  if (BitWidth < 64)
991    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
992
993  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
994  if (!GVar) {
995    // If GV is an alias then use the aliasee for determining thread-localness.
996    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
997      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
998  }
999
1000  unsigned Opc;
1001  if (GVar && GVar->isThreadLocal())
1002    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1003  else
1004    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1005
1006  FoldingSetNodeID ID;
1007  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1008  ID.AddPointer(GV);
1009  ID.AddInteger(Offset);
1010  ID.AddInteger(TargetFlags);
1011  void *IP = 0;
1012  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1013    return SDValue(E, 0);
1014
1015  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, GV, VT,
1016                                                      Offset, TargetFlags);
1017  CSEMap.InsertNode(N, IP);
1018  AllNodes.push_back(N);
1019  return SDValue(N, 0);
1020}
1021
1022SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1023  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1024  FoldingSetNodeID ID;
1025  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1026  ID.AddInteger(FI);
1027  void *IP = 0;
1028  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1029    return SDValue(E, 0);
1030
1031  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1032  CSEMap.InsertNode(N, IP);
1033  AllNodes.push_back(N);
1034  return SDValue(N, 0);
1035}
1036
1037SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1038                                   unsigned char TargetFlags) {
1039  assert((TargetFlags == 0 || isTarget) &&
1040         "Cannot set target flags on target-independent jump tables");
1041  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1042  FoldingSetNodeID ID;
1043  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1044  ID.AddInteger(JTI);
1045  ID.AddInteger(TargetFlags);
1046  void *IP = 0;
1047  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1048    return SDValue(E, 0);
1049
1050  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1051                                                  TargetFlags);
1052  CSEMap.InsertNode(N, IP);
1053  AllNodes.push_back(N);
1054  return SDValue(N, 0);
1055}
1056
1057SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1058                                      unsigned Alignment, int Offset,
1059                                      bool isTarget,
1060                                      unsigned char TargetFlags) {
1061  assert((TargetFlags == 0 || isTarget) &&
1062         "Cannot set target flags on target-independent globals");
1063  if (Alignment == 0)
1064    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1065  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1066  FoldingSetNodeID ID;
1067  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1068  ID.AddInteger(Alignment);
1069  ID.AddInteger(Offset);
1070  ID.AddPointer(C);
1071  ID.AddInteger(TargetFlags);
1072  void *IP = 0;
1073  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1074    return SDValue(E, 0);
1075
1076  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1077                                                     Alignment, TargetFlags);
1078  CSEMap.InsertNode(N, IP);
1079  AllNodes.push_back(N);
1080  return SDValue(N, 0);
1081}
1082
1083
1084SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1085                                      unsigned Alignment, int Offset,
1086                                      bool isTarget,
1087                                      unsigned char TargetFlags) {
1088  assert((TargetFlags == 0 || isTarget) &&
1089         "Cannot set target flags on target-independent globals");
1090  if (Alignment == 0)
1091    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1092  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1093  FoldingSetNodeID ID;
1094  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1095  ID.AddInteger(Alignment);
1096  ID.AddInteger(Offset);
1097  C->AddSelectionDAGCSEId(ID);
1098  ID.AddInteger(TargetFlags);
1099  void *IP = 0;
1100  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1101    return SDValue(E, 0);
1102
1103  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1104                                                     Alignment, TargetFlags);
1105  CSEMap.InsertNode(N, IP);
1106  AllNodes.push_back(N);
1107  return SDValue(N, 0);
1108}
1109
1110SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1111  FoldingSetNodeID ID;
1112  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1113  ID.AddPointer(MBB);
1114  void *IP = 0;
1115  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1116    return SDValue(E, 0);
1117
1118  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1119  CSEMap.InsertNode(N, IP);
1120  AllNodes.push_back(N);
1121  return SDValue(N, 0);
1122}
1123
1124SDValue SelectionDAG::getValueType(EVT VT) {
1125  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1126      ValueTypeNodes.size())
1127    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1128
1129  SDNode *&N = VT.isExtended() ?
1130    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1131
1132  if (N) return SDValue(N, 0);
1133  N = new (NodeAllocator) VTSDNode(VT);
1134  AllNodes.push_back(N);
1135  return SDValue(N, 0);
1136}
1137
1138SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1139  SDNode *&N = ExternalSymbols[Sym];
1140  if (N) return SDValue(N, 0);
1141  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1142  AllNodes.push_back(N);
1143  return SDValue(N, 0);
1144}
1145
1146SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1147                                              unsigned char TargetFlags) {
1148  SDNode *&N =
1149    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1150                                                               TargetFlags)];
1151  if (N) return SDValue(N, 0);
1152  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1153  AllNodes.push_back(N);
1154  return SDValue(N, 0);
1155}
1156
1157SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1158  if ((unsigned)Cond >= CondCodeNodes.size())
1159    CondCodeNodes.resize(Cond+1);
1160
1161  if (CondCodeNodes[Cond] == 0) {
1162    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1163    CondCodeNodes[Cond] = N;
1164    AllNodes.push_back(N);
1165  }
1166
1167  return SDValue(CondCodeNodes[Cond], 0);
1168}
1169
1170// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1171// the shuffle mask M that point at N1 to point at N2, and indices that point
1172// N2 to point at N1.
1173static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1174  std::swap(N1, N2);
1175  int NElts = M.size();
1176  for (int i = 0; i != NElts; ++i) {
1177    if (M[i] >= NElts)
1178      M[i] -= NElts;
1179    else if (M[i] >= 0)
1180      M[i] += NElts;
1181  }
1182}
1183
1184SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1185                                       SDValue N2, const int *Mask) {
1186  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1187  assert(VT.isVector() && N1.getValueType().isVector() &&
1188         "Vector Shuffle VTs must be a vectors");
1189  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1190         && "Vector Shuffle VTs must have same element type");
1191
1192  // Canonicalize shuffle undef, undef -> undef
1193  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1194    return getUNDEF(VT);
1195
1196  // Validate that all indices in Mask are within the range of the elements
1197  // input to the shuffle.
1198  unsigned NElts = VT.getVectorNumElements();
1199  SmallVector<int, 8> MaskVec;
1200  for (unsigned i = 0; i != NElts; ++i) {
1201    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1202    MaskVec.push_back(Mask[i]);
1203  }
1204
1205  // Canonicalize shuffle v, v -> v, undef
1206  if (N1 == N2) {
1207    N2 = getUNDEF(VT);
1208    for (unsigned i = 0; i != NElts; ++i)
1209      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1210  }
1211
1212  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1213  if (N1.getOpcode() == ISD::UNDEF)
1214    commuteShuffle(N1, N2, MaskVec);
1215
1216  // Canonicalize all index into lhs, -> shuffle lhs, undef
1217  // Canonicalize all index into rhs, -> shuffle rhs, undef
1218  bool AllLHS = true, AllRHS = true;
1219  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1220  for (unsigned i = 0; i != NElts; ++i) {
1221    if (MaskVec[i] >= (int)NElts) {
1222      if (N2Undef)
1223        MaskVec[i] = -1;
1224      else
1225        AllLHS = false;
1226    } else if (MaskVec[i] >= 0) {
1227      AllRHS = false;
1228    }
1229  }
1230  if (AllLHS && AllRHS)
1231    return getUNDEF(VT);
1232  if (AllLHS && !N2Undef)
1233    N2 = getUNDEF(VT);
1234  if (AllRHS) {
1235    N1 = getUNDEF(VT);
1236    commuteShuffle(N1, N2, MaskVec);
1237  }
1238
1239  // If Identity shuffle, or all shuffle in to undef, return that node.
1240  bool AllUndef = true;
1241  bool Identity = true;
1242  for (unsigned i = 0; i != NElts; ++i) {
1243    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1244    if (MaskVec[i] >= 0) AllUndef = false;
1245  }
1246  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1247    return N1;
1248  if (AllUndef)
1249    return getUNDEF(VT);
1250
1251  FoldingSetNodeID ID;
1252  SDValue Ops[2] = { N1, N2 };
1253  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1254  for (unsigned i = 0; i != NElts; ++i)
1255    ID.AddInteger(MaskVec[i]);
1256
1257  void* IP = 0;
1258  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1259    return SDValue(E, 0);
1260
1261  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1262  // SDNode doesn't have access to it.  This memory will be "leaked" when
1263  // the node is deallocated, but recovered when the NodeAllocator is released.
1264  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1265  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1266
1267  ShuffleVectorSDNode *N =
1268    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1269  CSEMap.InsertNode(N, IP);
1270  AllNodes.push_back(N);
1271  return SDValue(N, 0);
1272}
1273
1274SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1275                                       SDValue Val, SDValue DTy,
1276                                       SDValue STy, SDValue Rnd, SDValue Sat,
1277                                       ISD::CvtCode Code) {
1278  // If the src and dest types are the same and the conversion is between
1279  // integer types of the same sign or two floats, no conversion is necessary.
1280  if (DTy == STy &&
1281      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1282    return Val;
1283
1284  FoldingSetNodeID ID;
1285  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1286  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1287  void* IP = 0;
1288  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1289    return SDValue(E, 0);
1290
1291  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1292                                                           Code);
1293  CSEMap.InsertNode(N, IP);
1294  AllNodes.push_back(N);
1295  return SDValue(N, 0);
1296}
1297
1298SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1299  FoldingSetNodeID ID;
1300  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1301  ID.AddInteger(RegNo);
1302  void *IP = 0;
1303  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1304    return SDValue(E, 0);
1305
1306  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1307  CSEMap.InsertNode(N, IP);
1308  AllNodes.push_back(N);
1309  return SDValue(N, 0);
1310}
1311
1312SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1313  FoldingSetNodeID ID;
1314  SDValue Ops[] = { Root };
1315  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1316  ID.AddPointer(Label);
1317  void *IP = 0;
1318  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1319    return SDValue(E, 0);
1320
1321  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1322  CSEMap.InsertNode(N, IP);
1323  AllNodes.push_back(N);
1324  return SDValue(N, 0);
1325}
1326
1327
1328SDValue SelectionDAG::getBlockAddress(BlockAddress *BA, EVT VT,
1329                                      bool isTarget,
1330                                      unsigned char TargetFlags) {
1331  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1332
1333  FoldingSetNodeID ID;
1334  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1335  ID.AddPointer(BA);
1336  ID.AddInteger(TargetFlags);
1337  void *IP = 0;
1338  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1339    return SDValue(E, 0);
1340
1341  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1342  CSEMap.InsertNode(N, IP);
1343  AllNodes.push_back(N);
1344  return SDValue(N, 0);
1345}
1346
1347SDValue SelectionDAG::getSrcValue(const Value *V) {
1348  assert((!V || V->getType()->isPointerTy()) &&
1349         "SrcValue is not a pointer?");
1350
1351  FoldingSetNodeID ID;
1352  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1353  ID.AddPointer(V);
1354
1355  void *IP = 0;
1356  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1357    return SDValue(E, 0);
1358
1359  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1360  CSEMap.InsertNode(N, IP);
1361  AllNodes.push_back(N);
1362  return SDValue(N, 0);
1363}
1364
1365/// getShiftAmountOperand - Return the specified value casted to
1366/// the target's desired shift amount type.
1367SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1368  EVT OpTy = Op.getValueType();
1369  MVT ShTy = TLI.getShiftAmountTy();
1370  if (OpTy == ShTy || OpTy.isVector()) return Op;
1371
1372  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1373  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1374}
1375
1376/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1377/// specified value type.
1378SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1379  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1380  unsigned ByteSize = VT.getStoreSize();
1381  const Type *Ty = VT.getTypeForEVT(*getContext());
1382  unsigned StackAlign =
1383  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1384
1385  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1386  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1387}
1388
1389/// CreateStackTemporary - Create a stack temporary suitable for holding
1390/// either of the specified value types.
1391SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1392  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1393                            VT2.getStoreSizeInBits())/8;
1394  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1395  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1396  const TargetData *TD = TLI.getTargetData();
1397  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1398                            TD->getPrefTypeAlignment(Ty2));
1399
1400  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1401  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1402  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1403}
1404
1405SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1406                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1407  // These setcc operations always fold.
1408  switch (Cond) {
1409  default: break;
1410  case ISD::SETFALSE:
1411  case ISD::SETFALSE2: return getConstant(0, VT);
1412  case ISD::SETTRUE:
1413  case ISD::SETTRUE2:  return getConstant(1, VT);
1414
1415  case ISD::SETOEQ:
1416  case ISD::SETOGT:
1417  case ISD::SETOGE:
1418  case ISD::SETOLT:
1419  case ISD::SETOLE:
1420  case ISD::SETONE:
1421  case ISD::SETO:
1422  case ISD::SETUO:
1423  case ISD::SETUEQ:
1424  case ISD::SETUNE:
1425    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1426    break;
1427  }
1428
1429  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1430    const APInt &C2 = N2C->getAPIntValue();
1431    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1432      const APInt &C1 = N1C->getAPIntValue();
1433
1434      switch (Cond) {
1435      default: llvm_unreachable("Unknown integer setcc!");
1436      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1437      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1438      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1439      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1440      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1441      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1442      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1443      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1444      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1445      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1446      }
1447    }
1448  }
1449  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1450    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1451      // No compile time operations on this type yet.
1452      if (N1C->getValueType(0) == MVT::ppcf128)
1453        return SDValue();
1454
1455      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1456      switch (Cond) {
1457      default: break;
1458      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1459                          return getUNDEF(VT);
1460                        // fall through
1461      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1462      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1463                          return getUNDEF(VT);
1464                        // fall through
1465      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1466                                           R==APFloat::cmpLessThan, VT);
1467      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1468                          return getUNDEF(VT);
1469                        // fall through
1470      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1471      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1472                          return getUNDEF(VT);
1473                        // fall through
1474      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1475      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1476                          return getUNDEF(VT);
1477                        // fall through
1478      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1479                                           R==APFloat::cmpEqual, VT);
1480      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1481                          return getUNDEF(VT);
1482                        // fall through
1483      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1484                                           R==APFloat::cmpEqual, VT);
1485      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1486      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1487      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1488                                           R==APFloat::cmpEqual, VT);
1489      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1490      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1491                                           R==APFloat::cmpLessThan, VT);
1492      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1493                                           R==APFloat::cmpUnordered, VT);
1494      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1495      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1496      }
1497    } else {
1498      // Ensure that the constant occurs on the RHS.
1499      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1500    }
1501  }
1502
1503  // Could not fold it.
1504  return SDValue();
1505}
1506
1507/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1508/// use this predicate to simplify operations downstream.
1509bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1510  // This predicate is not safe for vector operations.
1511  if (Op.getValueType().isVector())
1512    return false;
1513
1514  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1515  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1516}
1517
1518/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1519/// this predicate to simplify operations downstream.  Mask is known to be zero
1520/// for bits that V cannot have.
1521bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1522                                     unsigned Depth) const {
1523  APInt KnownZero, KnownOne;
1524  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1525  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1526  return (KnownZero & Mask) == Mask;
1527}
1528
1529/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1530/// known to be either zero or one and return them in the KnownZero/KnownOne
1531/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1532/// processing.
1533void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1534                                     APInt &KnownZero, APInt &KnownOne,
1535                                     unsigned Depth) const {
1536  unsigned BitWidth = Mask.getBitWidth();
1537  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1538         "Mask size mismatches value type size!");
1539
1540  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1541  if (Depth == 6 || Mask == 0)
1542    return;  // Limit search depth.
1543
1544  APInt KnownZero2, KnownOne2;
1545
1546  switch (Op.getOpcode()) {
1547  case ISD::Constant:
1548    // We know all of the bits for a constant!
1549    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1550    KnownZero = ~KnownOne & Mask;
1551    return;
1552  case ISD::AND:
1553    // If either the LHS or the RHS are Zero, the result is zero.
1554    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1555    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1556                      KnownZero2, KnownOne2, Depth+1);
1557    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1558    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1559
1560    // Output known-1 bits are only known if set in both the LHS & RHS.
1561    KnownOne &= KnownOne2;
1562    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1563    KnownZero |= KnownZero2;
1564    return;
1565  case ISD::OR:
1566    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1567    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1568                      KnownZero2, KnownOne2, Depth+1);
1569    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1570    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1571
1572    // Output known-0 bits are only known if clear in both the LHS & RHS.
1573    KnownZero &= KnownZero2;
1574    // Output known-1 are known to be set if set in either the LHS | RHS.
1575    KnownOne |= KnownOne2;
1576    return;
1577  case ISD::XOR: {
1578    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1579    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1580    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1581    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1582
1583    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1584    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1585    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1586    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1587    KnownZero = KnownZeroOut;
1588    return;
1589  }
1590  case ISD::MUL: {
1591    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1592    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1593    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1594    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1595    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1596
1597    // If low bits are zero in either operand, output low known-0 bits.
1598    // Also compute a conserative estimate for high known-0 bits.
1599    // More trickiness is possible, but this is sufficient for the
1600    // interesting case of alignment computation.
1601    KnownOne.clear();
1602    unsigned TrailZ = KnownZero.countTrailingOnes() +
1603                      KnownZero2.countTrailingOnes();
1604    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1605                               KnownZero2.countLeadingOnes(),
1606                               BitWidth) - BitWidth;
1607
1608    TrailZ = std::min(TrailZ, BitWidth);
1609    LeadZ = std::min(LeadZ, BitWidth);
1610    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1611                APInt::getHighBitsSet(BitWidth, LeadZ);
1612    KnownZero &= Mask;
1613    return;
1614  }
1615  case ISD::UDIV: {
1616    // For the purposes of computing leading zeros we can conservatively
1617    // treat a udiv as a logical right shift by the power of 2 known to
1618    // be less than the denominator.
1619    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1620    ComputeMaskedBits(Op.getOperand(0),
1621                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1622    unsigned LeadZ = KnownZero2.countLeadingOnes();
1623
1624    KnownOne2.clear();
1625    KnownZero2.clear();
1626    ComputeMaskedBits(Op.getOperand(1),
1627                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1628    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1629    if (RHSUnknownLeadingOnes != BitWidth)
1630      LeadZ = std::min(BitWidth,
1631                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1632
1633    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1634    return;
1635  }
1636  case ISD::SELECT:
1637    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1638    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1639    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1640    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1641
1642    // Only known if known in both the LHS and RHS.
1643    KnownOne &= KnownOne2;
1644    KnownZero &= KnownZero2;
1645    return;
1646  case ISD::SELECT_CC:
1647    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1648    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1649    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1650    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1651
1652    // Only known if known in both the LHS and RHS.
1653    KnownOne &= KnownOne2;
1654    KnownZero &= KnownZero2;
1655    return;
1656  case ISD::SADDO:
1657  case ISD::UADDO:
1658  case ISD::SSUBO:
1659  case ISD::USUBO:
1660  case ISD::SMULO:
1661  case ISD::UMULO:
1662    if (Op.getResNo() != 1)
1663      return;
1664    // The boolean result conforms to getBooleanContents.  Fall through.
1665  case ISD::SETCC:
1666    // If we know the result of a setcc has the top bits zero, use this info.
1667    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1668        BitWidth > 1)
1669      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1670    return;
1671  case ISD::SHL:
1672    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1673    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1674      unsigned ShAmt = SA->getZExtValue();
1675
1676      // If the shift count is an invalid immediate, don't do anything.
1677      if (ShAmt >= BitWidth)
1678        return;
1679
1680      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1681                        KnownZero, KnownOne, Depth+1);
1682      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1683      KnownZero <<= ShAmt;
1684      KnownOne  <<= ShAmt;
1685      // low bits known zero.
1686      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1687    }
1688    return;
1689  case ISD::SRL:
1690    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1691    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1692      unsigned ShAmt = SA->getZExtValue();
1693
1694      // If the shift count is an invalid immediate, don't do anything.
1695      if (ShAmt >= BitWidth)
1696        return;
1697
1698      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1699                        KnownZero, KnownOne, Depth+1);
1700      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1701      KnownZero = KnownZero.lshr(ShAmt);
1702      KnownOne  = KnownOne.lshr(ShAmt);
1703
1704      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1705      KnownZero |= HighBits;  // High bits known zero.
1706    }
1707    return;
1708  case ISD::SRA:
1709    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1710      unsigned ShAmt = SA->getZExtValue();
1711
1712      // If the shift count is an invalid immediate, don't do anything.
1713      if (ShAmt >= BitWidth)
1714        return;
1715
1716      APInt InDemandedMask = (Mask << ShAmt);
1717      // If any of the demanded bits are produced by the sign extension, we also
1718      // demand the input sign bit.
1719      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1720      if (HighBits.getBoolValue())
1721        InDemandedMask |= APInt::getSignBit(BitWidth);
1722
1723      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1724                        Depth+1);
1725      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1726      KnownZero = KnownZero.lshr(ShAmt);
1727      KnownOne  = KnownOne.lshr(ShAmt);
1728
1729      // Handle the sign bits.
1730      APInt SignBit = APInt::getSignBit(BitWidth);
1731      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1732
1733      if (KnownZero.intersects(SignBit)) {
1734        KnownZero |= HighBits;  // New bits are known zero.
1735      } else if (KnownOne.intersects(SignBit)) {
1736        KnownOne  |= HighBits;  // New bits are known one.
1737      }
1738    }
1739    return;
1740  case ISD::SIGN_EXTEND_INREG: {
1741    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1742    unsigned EBits = EVT.getScalarType().getSizeInBits();
1743
1744    // Sign extension.  Compute the demanded bits in the result that are not
1745    // present in the input.
1746    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1747
1748    APInt InSignBit = APInt::getSignBit(EBits);
1749    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1750
1751    // If the sign extended bits are demanded, we know that the sign
1752    // bit is demanded.
1753    InSignBit.zext(BitWidth);
1754    if (NewBits.getBoolValue())
1755      InputDemandedBits |= InSignBit;
1756
1757    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1758                      KnownZero, KnownOne, Depth+1);
1759    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1760
1761    // If the sign bit of the input is known set or clear, then we know the
1762    // top bits of the result.
1763    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1764      KnownZero |= NewBits;
1765      KnownOne  &= ~NewBits;
1766    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1767      KnownOne  |= NewBits;
1768      KnownZero &= ~NewBits;
1769    } else {                              // Input sign bit unknown
1770      KnownZero &= ~NewBits;
1771      KnownOne  &= ~NewBits;
1772    }
1773    return;
1774  }
1775  case ISD::CTTZ:
1776  case ISD::CTLZ:
1777  case ISD::CTPOP: {
1778    unsigned LowBits = Log2_32(BitWidth)+1;
1779    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1780    KnownOne.clear();
1781    return;
1782  }
1783  case ISD::LOAD: {
1784    if (ISD::isZEXTLoad(Op.getNode())) {
1785      LoadSDNode *LD = cast<LoadSDNode>(Op);
1786      EVT VT = LD->getMemoryVT();
1787      unsigned MemBits = VT.getScalarType().getSizeInBits();
1788      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1789    }
1790    return;
1791  }
1792  case ISD::ZERO_EXTEND: {
1793    EVT InVT = Op.getOperand(0).getValueType();
1794    unsigned InBits = InVT.getScalarType().getSizeInBits();
1795    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1796    APInt InMask    = Mask;
1797    InMask.trunc(InBits);
1798    KnownZero.trunc(InBits);
1799    KnownOne.trunc(InBits);
1800    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1801    KnownZero.zext(BitWidth);
1802    KnownOne.zext(BitWidth);
1803    KnownZero |= NewBits;
1804    return;
1805  }
1806  case ISD::SIGN_EXTEND: {
1807    EVT InVT = Op.getOperand(0).getValueType();
1808    unsigned InBits = InVT.getScalarType().getSizeInBits();
1809    APInt InSignBit = APInt::getSignBit(InBits);
1810    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1811    APInt InMask = Mask;
1812    InMask.trunc(InBits);
1813
1814    // If any of the sign extended bits are demanded, we know that the sign
1815    // bit is demanded. Temporarily set this bit in the mask for our callee.
1816    if (NewBits.getBoolValue())
1817      InMask |= InSignBit;
1818
1819    KnownZero.trunc(InBits);
1820    KnownOne.trunc(InBits);
1821    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1822
1823    // Note if the sign bit is known to be zero or one.
1824    bool SignBitKnownZero = KnownZero.isNegative();
1825    bool SignBitKnownOne  = KnownOne.isNegative();
1826    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1827           "Sign bit can't be known to be both zero and one!");
1828
1829    // If the sign bit wasn't actually demanded by our caller, we don't
1830    // want it set in the KnownZero and KnownOne result values. Reset the
1831    // mask and reapply it to the result values.
1832    InMask = Mask;
1833    InMask.trunc(InBits);
1834    KnownZero &= InMask;
1835    KnownOne  &= InMask;
1836
1837    KnownZero.zext(BitWidth);
1838    KnownOne.zext(BitWidth);
1839
1840    // If the sign bit is known zero or one, the top bits match.
1841    if (SignBitKnownZero)
1842      KnownZero |= NewBits;
1843    else if (SignBitKnownOne)
1844      KnownOne  |= NewBits;
1845    return;
1846  }
1847  case ISD::ANY_EXTEND: {
1848    EVT InVT = Op.getOperand(0).getValueType();
1849    unsigned InBits = InVT.getScalarType().getSizeInBits();
1850    APInt InMask = Mask;
1851    InMask.trunc(InBits);
1852    KnownZero.trunc(InBits);
1853    KnownOne.trunc(InBits);
1854    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1855    KnownZero.zext(BitWidth);
1856    KnownOne.zext(BitWidth);
1857    return;
1858  }
1859  case ISD::TRUNCATE: {
1860    EVT InVT = Op.getOperand(0).getValueType();
1861    unsigned InBits = InVT.getScalarType().getSizeInBits();
1862    APInt InMask = Mask;
1863    InMask.zext(InBits);
1864    KnownZero.zext(InBits);
1865    KnownOne.zext(InBits);
1866    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1867    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1868    KnownZero.trunc(BitWidth);
1869    KnownOne.trunc(BitWidth);
1870    break;
1871  }
1872  case ISD::AssertZext: {
1873    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1874    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1875    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1876                      KnownOne, Depth+1);
1877    KnownZero |= (~InMask) & Mask;
1878    return;
1879  }
1880  case ISD::FGETSIGN:
1881    // All bits are zero except the low bit.
1882    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1883    return;
1884
1885  case ISD::SUB: {
1886    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1887      // We know that the top bits of C-X are clear if X contains less bits
1888      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1889      // positive if we can prove that X is >= 0 and < 16.
1890      if (CLHS->getAPIntValue().isNonNegative()) {
1891        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1892        // NLZ can't be BitWidth with no sign bit
1893        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1894        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1895                          Depth+1);
1896
1897        // If all of the MaskV bits are known to be zero, then we know the
1898        // output top bits are zero, because we now know that the output is
1899        // from [0-C].
1900        if ((KnownZero2 & MaskV) == MaskV) {
1901          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1902          // Top bits known zero.
1903          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1904        }
1905      }
1906    }
1907  }
1908  // fall through
1909  case ISD::ADD: {
1910    // Output known-0 bits are known if clear or set in both the low clear bits
1911    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1912    // low 3 bits clear.
1913    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1914    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1915    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1916    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1917
1918    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1919    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1920    KnownZeroOut = std::min(KnownZeroOut,
1921                            KnownZero2.countTrailingOnes());
1922
1923    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1924    return;
1925  }
1926  case ISD::SREM:
1927    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1928      const APInt &RA = Rem->getAPIntValue().abs();
1929      if (RA.isPowerOf2()) {
1930        APInt LowBits = RA - 1;
1931        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1932        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1933
1934        // The low bits of the first operand are unchanged by the srem.
1935        KnownZero = KnownZero2 & LowBits;
1936        KnownOne = KnownOne2 & LowBits;
1937
1938        // If the first operand is non-negative or has all low bits zero, then
1939        // the upper bits are all zero.
1940        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1941          KnownZero |= ~LowBits;
1942
1943        // If the first operand is negative and not all low bits are zero, then
1944        // the upper bits are all one.
1945        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1946          KnownOne |= ~LowBits;
1947
1948        KnownZero &= Mask;
1949        KnownOne &= Mask;
1950
1951        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1952      }
1953    }
1954    return;
1955  case ISD::UREM: {
1956    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1957      const APInt &RA = Rem->getAPIntValue();
1958      if (RA.isPowerOf2()) {
1959        APInt LowBits = (RA - 1);
1960        APInt Mask2 = LowBits & Mask;
1961        KnownZero |= ~LowBits & Mask;
1962        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1963        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1964        break;
1965      }
1966    }
1967
1968    // Since the result is less than or equal to either operand, any leading
1969    // zero bits in either operand must also exist in the result.
1970    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1971    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1972                      Depth+1);
1973    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1974                      Depth+1);
1975
1976    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1977                                KnownZero2.countLeadingOnes());
1978    KnownOne.clear();
1979    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1980    return;
1981  }
1982  default:
1983    // Allow the target to implement this method for its nodes.
1984    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1985  case ISD::INTRINSIC_WO_CHAIN:
1986  case ISD::INTRINSIC_W_CHAIN:
1987  case ISD::INTRINSIC_VOID:
1988      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1989                                         Depth);
1990    }
1991    return;
1992  }
1993}
1994
1995/// ComputeNumSignBits - Return the number of times the sign bit of the
1996/// register is replicated into the other bits.  We know that at least 1 bit
1997/// is always equal to the sign bit (itself), but other cases can give us
1998/// information.  For example, immediately after an "SRA X, 2", we know that
1999/// the top 3 bits are all equal to each other, so we return 3.
2000unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2001  EVT VT = Op.getValueType();
2002  assert(VT.isInteger() && "Invalid VT!");
2003  unsigned VTBits = VT.getScalarType().getSizeInBits();
2004  unsigned Tmp, Tmp2;
2005  unsigned FirstAnswer = 1;
2006
2007  if (Depth == 6)
2008    return 1;  // Limit search depth.
2009
2010  switch (Op.getOpcode()) {
2011  default: break;
2012  case ISD::AssertSext:
2013    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2014    return VTBits-Tmp+1;
2015  case ISD::AssertZext:
2016    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2017    return VTBits-Tmp;
2018
2019  case ISD::Constant: {
2020    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2021    // If negative, return # leading ones.
2022    if (Val.isNegative())
2023      return Val.countLeadingOnes();
2024
2025    // Return # leading zeros.
2026    return Val.countLeadingZeros();
2027  }
2028
2029  case ISD::SIGN_EXTEND:
2030    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2031    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2032
2033  case ISD::SIGN_EXTEND_INREG:
2034    // Max of the input and what this extends.
2035    Tmp =
2036      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2037    Tmp = VTBits-Tmp+1;
2038
2039    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2040    return std::max(Tmp, Tmp2);
2041
2042  case ISD::SRA:
2043    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2044    // SRA X, C   -> adds C sign bits.
2045    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2046      Tmp += C->getZExtValue();
2047      if (Tmp > VTBits) Tmp = VTBits;
2048    }
2049    return Tmp;
2050  case ISD::SHL:
2051    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2052      // shl destroys sign bits.
2053      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2054      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2055          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2056      return Tmp - C->getZExtValue();
2057    }
2058    break;
2059  case ISD::AND:
2060  case ISD::OR:
2061  case ISD::XOR:    // NOT is handled here.
2062    // Logical binary ops preserve the number of sign bits at the worst.
2063    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2064    if (Tmp != 1) {
2065      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2066      FirstAnswer = std::min(Tmp, Tmp2);
2067      // We computed what we know about the sign bits as our first
2068      // answer. Now proceed to the generic code that uses
2069      // ComputeMaskedBits, and pick whichever answer is better.
2070    }
2071    break;
2072
2073  case ISD::SELECT:
2074    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2075    if (Tmp == 1) return 1;  // Early out.
2076    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2077    return std::min(Tmp, Tmp2);
2078
2079  case ISD::SADDO:
2080  case ISD::UADDO:
2081  case ISD::SSUBO:
2082  case ISD::USUBO:
2083  case ISD::SMULO:
2084  case ISD::UMULO:
2085    if (Op.getResNo() != 1)
2086      break;
2087    // The boolean result conforms to getBooleanContents.  Fall through.
2088  case ISD::SETCC:
2089    // If setcc returns 0/-1, all bits are sign bits.
2090    if (TLI.getBooleanContents() ==
2091        TargetLowering::ZeroOrNegativeOneBooleanContent)
2092      return VTBits;
2093    break;
2094  case ISD::ROTL:
2095  case ISD::ROTR:
2096    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2097      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2098
2099      // Handle rotate right by N like a rotate left by 32-N.
2100      if (Op.getOpcode() == ISD::ROTR)
2101        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2102
2103      // If we aren't rotating out all of the known-in sign bits, return the
2104      // number that are left.  This handles rotl(sext(x), 1) for example.
2105      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2106      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2107    }
2108    break;
2109  case ISD::ADD:
2110    // Add can have at most one carry bit.  Thus we know that the output
2111    // is, at worst, one more bit than the inputs.
2112    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2113    if (Tmp == 1) return 1;  // Early out.
2114
2115    // Special case decrementing a value (ADD X, -1):
2116    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2117      if (CRHS->isAllOnesValue()) {
2118        APInt KnownZero, KnownOne;
2119        APInt Mask = APInt::getAllOnesValue(VTBits);
2120        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2121
2122        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2123        // sign bits set.
2124        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2125          return VTBits;
2126
2127        // If we are subtracting one from a positive number, there is no carry
2128        // out of the result.
2129        if (KnownZero.isNegative())
2130          return Tmp;
2131      }
2132
2133    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2134    if (Tmp2 == 1) return 1;
2135      return std::min(Tmp, Tmp2)-1;
2136    break;
2137
2138  case ISD::SUB:
2139    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2140    if (Tmp2 == 1) return 1;
2141
2142    // Handle NEG.
2143    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2144      if (CLHS->isNullValue()) {
2145        APInt KnownZero, KnownOne;
2146        APInt Mask = APInt::getAllOnesValue(VTBits);
2147        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2148        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2149        // sign bits set.
2150        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2151          return VTBits;
2152
2153        // If the input is known to be positive (the sign bit is known clear),
2154        // the output of the NEG has the same number of sign bits as the input.
2155        if (KnownZero.isNegative())
2156          return Tmp2;
2157
2158        // Otherwise, we treat this like a SUB.
2159      }
2160
2161    // Sub can have at most one carry bit.  Thus we know that the output
2162    // is, at worst, one more bit than the inputs.
2163    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2164    if (Tmp == 1) return 1;  // Early out.
2165      return std::min(Tmp, Tmp2)-1;
2166    break;
2167  case ISD::TRUNCATE:
2168    // FIXME: it's tricky to do anything useful for this, but it is an important
2169    // case for targets like X86.
2170    break;
2171  }
2172
2173  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2174  if (Op.getOpcode() == ISD::LOAD) {
2175    LoadSDNode *LD = cast<LoadSDNode>(Op);
2176    unsigned ExtType = LD->getExtensionType();
2177    switch (ExtType) {
2178    default: break;
2179    case ISD::SEXTLOAD:    // '17' bits known
2180      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2181      return VTBits-Tmp+1;
2182    case ISD::ZEXTLOAD:    // '16' bits known
2183      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2184      return VTBits-Tmp;
2185    }
2186  }
2187
2188  // Allow the target to implement this method for its nodes.
2189  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2190      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2191      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2192      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2193    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2194    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2195  }
2196
2197  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2198  // use this information.
2199  APInt KnownZero, KnownOne;
2200  APInt Mask = APInt::getAllOnesValue(VTBits);
2201  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2202
2203  if (KnownZero.isNegative()) {        // sign bit is 0
2204    Mask = KnownZero;
2205  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2206    Mask = KnownOne;
2207  } else {
2208    // Nothing known.
2209    return FirstAnswer;
2210  }
2211
2212  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2213  // the number of identical bits in the top of the input value.
2214  Mask = ~Mask;
2215  Mask <<= Mask.getBitWidth()-VTBits;
2216  // Return # leading zeros.  We use 'min' here in case Val was zero before
2217  // shifting.  We don't want to return '64' as for an i32 "0".
2218  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2219}
2220
2221bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2222  // If we're told that NaNs won't happen, assume they won't.
2223  if (FiniteOnlyFPMath())
2224    return true;
2225
2226  // If the value is a constant, we can obviously see if it is a NaN or not.
2227  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2228    return !C->getValueAPF().isNaN();
2229
2230  // TODO: Recognize more cases here.
2231
2232  return false;
2233}
2234
2235bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2236  // If the value is a constant, we can obviously see if it is a zero or not.
2237  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2238    return !C->isZero();
2239
2240  // TODO: Recognize more cases here.
2241
2242  return false;
2243}
2244
2245bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2246  // Check the obvious case.
2247  if (A == B) return true;
2248
2249  // For for negative and positive zero.
2250  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2251    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2252      if (CA->isZero() && CB->isZero()) return true;
2253
2254  // Otherwise they may not be equal.
2255  return false;
2256}
2257
2258bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2259  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2260  if (!GA) return false;
2261  if (GA->getOffset() != 0) return false;
2262  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2263  if (!GV) return false;
2264  MachineModuleInfo *MMI = getMachineModuleInfo();
2265  return MMI && MMI->hasDebugInfo();
2266}
2267
2268
2269/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2270/// element of the result of the vector shuffle.
2271SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2272                                          unsigned i) {
2273  EVT VT = N->getValueType(0);
2274  DebugLoc dl = N->getDebugLoc();
2275  if (N->getMaskElt(i) < 0)
2276    return getUNDEF(VT.getVectorElementType());
2277  unsigned Index = N->getMaskElt(i);
2278  unsigned NumElems = VT.getVectorNumElements();
2279  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2280  Index %= NumElems;
2281
2282  if (V.getOpcode() == ISD::BIT_CONVERT) {
2283    V = V.getOperand(0);
2284    EVT VVT = V.getValueType();
2285    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2286      return SDValue();
2287  }
2288  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2289    return (Index == 0) ? V.getOperand(0)
2290                      : getUNDEF(VT.getVectorElementType());
2291  if (V.getOpcode() == ISD::BUILD_VECTOR)
2292    return V.getOperand(Index);
2293  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2294    return getShuffleScalarElt(SVN, Index);
2295  return SDValue();
2296}
2297
2298
2299/// getNode - Gets or creates the specified node.
2300///
2301SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2302  FoldingSetNodeID ID;
2303  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2304  void *IP = 0;
2305  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2306    return SDValue(E, 0);
2307
2308  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2309  CSEMap.InsertNode(N, IP);
2310
2311  AllNodes.push_back(N);
2312#ifndef NDEBUG
2313  VerifyNode(N);
2314#endif
2315  return SDValue(N, 0);
2316}
2317
2318SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2319                              EVT VT, SDValue Operand) {
2320  // Constant fold unary operations with an integer constant operand.
2321  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2322    const APInt &Val = C->getAPIntValue();
2323    switch (Opcode) {
2324    default: break;
2325    case ISD::SIGN_EXTEND:
2326      return getConstant(APInt(Val).sextOrTrunc(VT.getSizeInBits()), VT);
2327    case ISD::ANY_EXTEND:
2328    case ISD::ZERO_EXTEND:
2329    case ISD::TRUNCATE:
2330      return getConstant(APInt(Val).zextOrTrunc(VT.getSizeInBits()), VT);
2331    case ISD::UINT_TO_FP:
2332    case ISD::SINT_TO_FP: {
2333      const uint64_t zero[] = {0, 0};
2334      // No compile time operations on ppcf128.
2335      if (VT == MVT::ppcf128) break;
2336      APFloat apf = APFloat(APInt(VT.getSizeInBits(), 2, zero));
2337      (void)apf.convertFromAPInt(Val,
2338                                 Opcode==ISD::SINT_TO_FP,
2339                                 APFloat::rmNearestTiesToEven);
2340      return getConstantFP(apf, VT);
2341    }
2342    case ISD::BIT_CONVERT:
2343      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2344        return getConstantFP(Val.bitsToFloat(), VT);
2345      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2346        return getConstantFP(Val.bitsToDouble(), VT);
2347      break;
2348    case ISD::BSWAP:
2349      return getConstant(Val.byteSwap(), VT);
2350    case ISD::CTPOP:
2351      return getConstant(Val.countPopulation(), VT);
2352    case ISD::CTLZ:
2353      return getConstant(Val.countLeadingZeros(), VT);
2354    case ISD::CTTZ:
2355      return getConstant(Val.countTrailingZeros(), VT);
2356    }
2357  }
2358
2359  // Constant fold unary operations with a floating point constant operand.
2360  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2361    APFloat V = C->getValueAPF();    // make copy
2362    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2363      switch (Opcode) {
2364      case ISD::FNEG:
2365        V.changeSign();
2366        return getConstantFP(V, VT);
2367      case ISD::FABS:
2368        V.clearSign();
2369        return getConstantFP(V, VT);
2370      case ISD::FP_ROUND:
2371      case ISD::FP_EXTEND: {
2372        bool ignored;
2373        // This can return overflow, underflow, or inexact; we don't care.
2374        // FIXME need to be more flexible about rounding mode.
2375        (void)V.convert(*EVTToAPFloatSemantics(VT),
2376                        APFloat::rmNearestTiesToEven, &ignored);
2377        return getConstantFP(V, VT);
2378      }
2379      case ISD::FP_TO_SINT:
2380      case ISD::FP_TO_UINT: {
2381        integerPart x[2];
2382        bool ignored;
2383        assert(integerPartWidth >= 64);
2384        // FIXME need to be more flexible about rounding mode.
2385        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2386                              Opcode==ISD::FP_TO_SINT,
2387                              APFloat::rmTowardZero, &ignored);
2388        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2389          break;
2390        APInt api(VT.getSizeInBits(), 2, x);
2391        return getConstant(api, VT);
2392      }
2393      case ISD::BIT_CONVERT:
2394        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2395          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2396        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2397          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2398        break;
2399      }
2400    }
2401  }
2402
2403  unsigned OpOpcode = Operand.getNode()->getOpcode();
2404  switch (Opcode) {
2405  case ISD::TokenFactor:
2406  case ISD::MERGE_VALUES:
2407  case ISD::CONCAT_VECTORS:
2408    return Operand;         // Factor, merge or concat of one node?  No need.
2409  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2410  case ISD::FP_EXTEND:
2411    assert(VT.isFloatingPoint() &&
2412           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2413    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2414    assert((!VT.isVector() ||
2415            VT.getVectorNumElements() ==
2416            Operand.getValueType().getVectorNumElements()) &&
2417           "Vector element count mismatch!");
2418    if (Operand.getOpcode() == ISD::UNDEF)
2419      return getUNDEF(VT);
2420    break;
2421  case ISD::SIGN_EXTEND:
2422    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2423           "Invalid SIGN_EXTEND!");
2424    if (Operand.getValueType() == VT) return Operand;   // noop extension
2425    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2426           "Invalid sext node, dst < src!");
2427    assert((!VT.isVector() ||
2428            VT.getVectorNumElements() ==
2429            Operand.getValueType().getVectorNumElements()) &&
2430           "Vector element count mismatch!");
2431    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2432      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2433    break;
2434  case ISD::ZERO_EXTEND:
2435    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2436           "Invalid ZERO_EXTEND!");
2437    if (Operand.getValueType() == VT) return Operand;   // noop extension
2438    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2439           "Invalid zext node, dst < src!");
2440    assert((!VT.isVector() ||
2441            VT.getVectorNumElements() ==
2442            Operand.getValueType().getVectorNumElements()) &&
2443           "Vector element count mismatch!");
2444    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2445      return getNode(ISD::ZERO_EXTEND, DL, VT,
2446                     Operand.getNode()->getOperand(0));
2447    break;
2448  case ISD::ANY_EXTEND:
2449    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2450           "Invalid ANY_EXTEND!");
2451    if (Operand.getValueType() == VT) return Operand;   // noop extension
2452    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2453           "Invalid anyext node, dst < src!");
2454    assert((!VT.isVector() ||
2455            VT.getVectorNumElements() ==
2456            Operand.getValueType().getVectorNumElements()) &&
2457           "Vector element count mismatch!");
2458    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2459      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2460      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2461    break;
2462  case ISD::TRUNCATE:
2463    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2464           "Invalid TRUNCATE!");
2465    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2466    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2467           "Invalid truncate node, src < dst!");
2468    assert((!VT.isVector() ||
2469            VT.getVectorNumElements() ==
2470            Operand.getValueType().getVectorNumElements()) &&
2471           "Vector element count mismatch!");
2472    if (OpOpcode == ISD::TRUNCATE)
2473      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2474    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2475             OpOpcode == ISD::ANY_EXTEND) {
2476      // If the source is smaller than the dest, we still need an extend.
2477      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2478            .bitsLT(VT.getScalarType()))
2479        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2480      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2481        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2482      else
2483        return Operand.getNode()->getOperand(0);
2484    }
2485    break;
2486  case ISD::BIT_CONVERT:
2487    // Basic sanity checking.
2488    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2489           && "Cannot BIT_CONVERT between types of different sizes!");
2490    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2491    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2492      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2493    if (OpOpcode == ISD::UNDEF)
2494      return getUNDEF(VT);
2495    break;
2496  case ISD::SCALAR_TO_VECTOR:
2497    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2498           (VT.getVectorElementType() == Operand.getValueType() ||
2499            (VT.getVectorElementType().isInteger() &&
2500             Operand.getValueType().isInteger() &&
2501             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2502           "Illegal SCALAR_TO_VECTOR node!");
2503    if (OpOpcode == ISD::UNDEF)
2504      return getUNDEF(VT);
2505    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2506    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2507        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2508        Operand.getConstantOperandVal(1) == 0 &&
2509        Operand.getOperand(0).getValueType() == VT)
2510      return Operand.getOperand(0);
2511    break;
2512  case ISD::FNEG:
2513    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2514    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2515      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2516                     Operand.getNode()->getOperand(0));
2517    if (OpOpcode == ISD::FNEG)  // --X -> X
2518      return Operand.getNode()->getOperand(0);
2519    break;
2520  case ISD::FABS:
2521    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2522      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2523    break;
2524  }
2525
2526  SDNode *N;
2527  SDVTList VTs = getVTList(VT);
2528  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2529    FoldingSetNodeID ID;
2530    SDValue Ops[1] = { Operand };
2531    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2532    void *IP = 0;
2533    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2534      return SDValue(E, 0);
2535
2536    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2537    CSEMap.InsertNode(N, IP);
2538  } else {
2539    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2540  }
2541
2542  AllNodes.push_back(N);
2543#ifndef NDEBUG
2544  VerifyNode(N);
2545#endif
2546  return SDValue(N, 0);
2547}
2548
2549SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2550                                             EVT VT,
2551                                             ConstantSDNode *Cst1,
2552                                             ConstantSDNode *Cst2) {
2553  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2554
2555  switch (Opcode) {
2556  case ISD::ADD:  return getConstant(C1 + C2, VT);
2557  case ISD::SUB:  return getConstant(C1 - C2, VT);
2558  case ISD::MUL:  return getConstant(C1 * C2, VT);
2559  case ISD::UDIV:
2560    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2561    break;
2562  case ISD::UREM:
2563    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2564    break;
2565  case ISD::SDIV:
2566    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2567    break;
2568  case ISD::SREM:
2569    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2570    break;
2571  case ISD::AND:  return getConstant(C1 & C2, VT);
2572  case ISD::OR:   return getConstant(C1 | C2, VT);
2573  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2574  case ISD::SHL:  return getConstant(C1 << C2, VT);
2575  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2576  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2577  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2578  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2579  default: break;
2580  }
2581
2582  return SDValue();
2583}
2584
2585SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2586                              SDValue N1, SDValue N2) {
2587  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2588  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2589  switch (Opcode) {
2590  default: break;
2591  case ISD::TokenFactor:
2592    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2593           N2.getValueType() == MVT::Other && "Invalid token factor!");
2594    // Fold trivial token factors.
2595    if (N1.getOpcode() == ISD::EntryToken) return N2;
2596    if (N2.getOpcode() == ISD::EntryToken) return N1;
2597    if (N1 == N2) return N1;
2598    break;
2599  case ISD::CONCAT_VECTORS:
2600    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2601    // one big BUILD_VECTOR.
2602    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2603        N2.getOpcode() == ISD::BUILD_VECTOR) {
2604      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2605      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2606      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2607    }
2608    break;
2609  case ISD::AND:
2610    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2611           N1.getValueType() == VT && "Binary operator types must match!");
2612    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2613    // worth handling here.
2614    if (N2C && N2C->isNullValue())
2615      return N2;
2616    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2617      return N1;
2618    break;
2619  case ISD::OR:
2620  case ISD::XOR:
2621  case ISD::ADD:
2622  case ISD::SUB:
2623    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2624           N1.getValueType() == VT && "Binary operator types must match!");
2625    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2626    // it's worth handling here.
2627    if (N2C && N2C->isNullValue())
2628      return N1;
2629    break;
2630  case ISD::UDIV:
2631  case ISD::UREM:
2632  case ISD::MULHU:
2633  case ISD::MULHS:
2634  case ISD::MUL:
2635  case ISD::SDIV:
2636  case ISD::SREM:
2637    assert(VT.isInteger() && "This operator does not apply to FP types!");
2638    // fall through
2639  case ISD::FADD:
2640  case ISD::FSUB:
2641  case ISD::FMUL:
2642  case ISD::FDIV:
2643  case ISD::FREM:
2644    if (UnsafeFPMath) {
2645      if (Opcode == ISD::FADD) {
2646        // 0+x --> x
2647        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2648          if (CFP->getValueAPF().isZero())
2649            return N2;
2650        // x+0 --> x
2651        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2652          if (CFP->getValueAPF().isZero())
2653            return N1;
2654      } else if (Opcode == ISD::FSUB) {
2655        // x-0 --> x
2656        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2657          if (CFP->getValueAPF().isZero())
2658            return N1;
2659      }
2660    }
2661    assert(N1.getValueType() == N2.getValueType() &&
2662           N1.getValueType() == VT && "Binary operator types must match!");
2663    break;
2664  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2665    assert(N1.getValueType() == VT &&
2666           N1.getValueType().isFloatingPoint() &&
2667           N2.getValueType().isFloatingPoint() &&
2668           "Invalid FCOPYSIGN!");
2669    break;
2670  case ISD::SHL:
2671  case ISD::SRA:
2672  case ISD::SRL:
2673  case ISD::ROTL:
2674  case ISD::ROTR:
2675    assert(VT == N1.getValueType() &&
2676           "Shift operators return type must be the same as their first arg");
2677    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2678           "Shifts only work on integers");
2679
2680    // Always fold shifts of i1 values so the code generator doesn't need to
2681    // handle them.  Since we know the size of the shift has to be less than the
2682    // size of the value, the shift/rotate count is guaranteed to be zero.
2683    if (VT == MVT::i1)
2684      return N1;
2685    if (N2C && N2C->isNullValue())
2686      return N1;
2687    break;
2688  case ISD::FP_ROUND_INREG: {
2689    EVT EVT = cast<VTSDNode>(N2)->getVT();
2690    assert(VT == N1.getValueType() && "Not an inreg round!");
2691    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2692           "Cannot FP_ROUND_INREG integer types");
2693    assert(EVT.isVector() == VT.isVector() &&
2694           "FP_ROUND_INREG type should be vector iff the operand "
2695           "type is vector!");
2696    assert((!EVT.isVector() ||
2697            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2698           "Vector element counts must match in FP_ROUND_INREG");
2699    assert(EVT.bitsLE(VT) && "Not rounding down!");
2700    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2701    break;
2702  }
2703  case ISD::FP_ROUND:
2704    assert(VT.isFloatingPoint() &&
2705           N1.getValueType().isFloatingPoint() &&
2706           VT.bitsLE(N1.getValueType()) &&
2707           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2708    if (N1.getValueType() == VT) return N1;  // noop conversion.
2709    break;
2710  case ISD::AssertSext:
2711  case ISD::AssertZext: {
2712    EVT EVT = cast<VTSDNode>(N2)->getVT();
2713    assert(VT == N1.getValueType() && "Not an inreg extend!");
2714    assert(VT.isInteger() && EVT.isInteger() &&
2715           "Cannot *_EXTEND_INREG FP types");
2716    assert(!EVT.isVector() &&
2717           "AssertSExt/AssertZExt type should be the vector element type "
2718           "rather than the vector type!");
2719    assert(EVT.bitsLE(VT) && "Not extending!");
2720    if (VT == EVT) return N1; // noop assertion.
2721    break;
2722  }
2723  case ISD::SIGN_EXTEND_INREG: {
2724    EVT EVT = cast<VTSDNode>(N2)->getVT();
2725    assert(VT == N1.getValueType() && "Not an inreg extend!");
2726    assert(VT.isInteger() && EVT.isInteger() &&
2727           "Cannot *_EXTEND_INREG FP types");
2728    assert(EVT.isVector() == VT.isVector() &&
2729           "SIGN_EXTEND_INREG type should be vector iff the operand "
2730           "type is vector!");
2731    assert((!EVT.isVector() ||
2732            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2733           "Vector element counts must match in SIGN_EXTEND_INREG");
2734    assert(EVT.bitsLE(VT) && "Not extending!");
2735    if (EVT == VT) return N1;  // Not actually extending
2736
2737    if (N1C) {
2738      APInt Val = N1C->getAPIntValue();
2739      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2740      Val <<= Val.getBitWidth()-FromBits;
2741      Val = Val.ashr(Val.getBitWidth()-FromBits);
2742      return getConstant(Val, VT);
2743    }
2744    break;
2745  }
2746  case ISD::EXTRACT_VECTOR_ELT:
2747    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2748    if (N1.getOpcode() == ISD::UNDEF)
2749      return getUNDEF(VT);
2750
2751    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2752    // expanding copies of large vectors from registers.
2753    if (N2C &&
2754        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2755        N1.getNumOperands() > 0) {
2756      unsigned Factor =
2757        N1.getOperand(0).getValueType().getVectorNumElements();
2758      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2759                     N1.getOperand(N2C->getZExtValue() / Factor),
2760                     getConstant(N2C->getZExtValue() % Factor,
2761                                 N2.getValueType()));
2762    }
2763
2764    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2765    // expanding large vector constants.
2766    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2767      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2768      EVT VEltTy = N1.getValueType().getVectorElementType();
2769      if (Elt.getValueType() != VEltTy) {
2770        // If the vector element type is not legal, the BUILD_VECTOR operands
2771        // are promoted and implicitly truncated.  Make that explicit here.
2772        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2773      }
2774      if (VT != VEltTy) {
2775        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2776        // result is implicitly extended.
2777        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2778      }
2779      return Elt;
2780    }
2781
2782    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2783    // operations are lowered to scalars.
2784    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2785      // If the indices are the same, return the inserted element else
2786      // if the indices are known different, extract the element from
2787      // the original vector.
2788      if (N1.getOperand(2) == N2) {
2789        if (VT == N1.getOperand(1).getValueType())
2790          return N1.getOperand(1);
2791        else
2792          return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2793      } else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2794                 isa<ConstantSDNode>(N2))
2795        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2796    }
2797    break;
2798  case ISD::EXTRACT_ELEMENT:
2799    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2800    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2801           (N1.getValueType().isInteger() == VT.isInteger()) &&
2802           "Wrong types for EXTRACT_ELEMENT!");
2803
2804    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2805    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2806    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2807    if (N1.getOpcode() == ISD::BUILD_PAIR)
2808      return N1.getOperand(N2C->getZExtValue());
2809
2810    // EXTRACT_ELEMENT of a constant int is also very common.
2811    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2812      unsigned ElementSize = VT.getSizeInBits();
2813      unsigned Shift = ElementSize * N2C->getZExtValue();
2814      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2815      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2816    }
2817    break;
2818  case ISD::EXTRACT_SUBVECTOR:
2819    if (N1.getValueType() == VT) // Trivial extraction.
2820      return N1;
2821    break;
2822  }
2823
2824  if (N1C) {
2825    if (N2C) {
2826      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2827      if (SV.getNode()) return SV;
2828    } else {      // Cannonicalize constant to RHS if commutative
2829      if (isCommutativeBinOp(Opcode)) {
2830        std::swap(N1C, N2C);
2831        std::swap(N1, N2);
2832      }
2833    }
2834  }
2835
2836  // Constant fold FP operations.
2837  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2838  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2839  if (N1CFP) {
2840    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2841      // Cannonicalize constant to RHS if commutative
2842      std::swap(N1CFP, N2CFP);
2843      std::swap(N1, N2);
2844    } else if (N2CFP && VT != MVT::ppcf128) {
2845      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2846      APFloat::opStatus s;
2847      switch (Opcode) {
2848      case ISD::FADD:
2849        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2850        if (s != APFloat::opInvalidOp)
2851          return getConstantFP(V1, VT);
2852        break;
2853      case ISD::FSUB:
2854        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2855        if (s!=APFloat::opInvalidOp)
2856          return getConstantFP(V1, VT);
2857        break;
2858      case ISD::FMUL:
2859        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2860        if (s!=APFloat::opInvalidOp)
2861          return getConstantFP(V1, VT);
2862        break;
2863      case ISD::FDIV:
2864        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2865        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2866          return getConstantFP(V1, VT);
2867        break;
2868      case ISD::FREM :
2869        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2870        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2871          return getConstantFP(V1, VT);
2872        break;
2873      case ISD::FCOPYSIGN:
2874        V1.copySign(V2);
2875        return getConstantFP(V1, VT);
2876      default: break;
2877      }
2878    }
2879  }
2880
2881  // Canonicalize an UNDEF to the RHS, even over a constant.
2882  if (N1.getOpcode() == ISD::UNDEF) {
2883    if (isCommutativeBinOp(Opcode)) {
2884      std::swap(N1, N2);
2885    } else {
2886      switch (Opcode) {
2887      case ISD::FP_ROUND_INREG:
2888      case ISD::SIGN_EXTEND_INREG:
2889      case ISD::SUB:
2890      case ISD::FSUB:
2891      case ISD::FDIV:
2892      case ISD::FREM:
2893      case ISD::SRA:
2894        return N1;     // fold op(undef, arg2) -> undef
2895      case ISD::UDIV:
2896      case ISD::SDIV:
2897      case ISD::UREM:
2898      case ISD::SREM:
2899      case ISD::SRL:
2900      case ISD::SHL:
2901        if (!VT.isVector())
2902          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2903        // For vectors, we can't easily build an all zero vector, just return
2904        // the LHS.
2905        return N2;
2906      }
2907    }
2908  }
2909
2910  // Fold a bunch of operators when the RHS is undef.
2911  if (N2.getOpcode() == ISD::UNDEF) {
2912    switch (Opcode) {
2913    case ISD::XOR:
2914      if (N1.getOpcode() == ISD::UNDEF)
2915        // Handle undef ^ undef -> 0 special case. This is a common
2916        // idiom (misuse).
2917        return getConstant(0, VT);
2918      // fallthrough
2919    case ISD::ADD:
2920    case ISD::ADDC:
2921    case ISD::ADDE:
2922    case ISD::SUB:
2923    case ISD::UDIV:
2924    case ISD::SDIV:
2925    case ISD::UREM:
2926    case ISD::SREM:
2927      return N2;       // fold op(arg1, undef) -> undef
2928    case ISD::FADD:
2929    case ISD::FSUB:
2930    case ISD::FMUL:
2931    case ISD::FDIV:
2932    case ISD::FREM:
2933      if (UnsafeFPMath)
2934        return N2;
2935      break;
2936    case ISD::MUL:
2937    case ISD::AND:
2938    case ISD::SRL:
2939    case ISD::SHL:
2940      if (!VT.isVector())
2941        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2942      // For vectors, we can't easily build an all zero vector, just return
2943      // the LHS.
2944      return N1;
2945    case ISD::OR:
2946      if (!VT.isVector())
2947        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2948      // For vectors, we can't easily build an all one vector, just return
2949      // the LHS.
2950      return N1;
2951    case ISD::SRA:
2952      return N1;
2953    }
2954  }
2955
2956  // Memoize this node if possible.
2957  SDNode *N;
2958  SDVTList VTs = getVTList(VT);
2959  if (VT != MVT::Flag) {
2960    SDValue Ops[] = { N1, N2 };
2961    FoldingSetNodeID ID;
2962    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2963    void *IP = 0;
2964    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2965      return SDValue(E, 0);
2966
2967    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2968    CSEMap.InsertNode(N, IP);
2969  } else {
2970    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
2971  }
2972
2973  AllNodes.push_back(N);
2974#ifndef NDEBUG
2975  VerifyNode(N);
2976#endif
2977  return SDValue(N, 0);
2978}
2979
2980SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2981                              SDValue N1, SDValue N2, SDValue N3) {
2982  // Perform various simplifications.
2983  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2984  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2985  switch (Opcode) {
2986  case ISD::CONCAT_VECTORS:
2987    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2988    // one big BUILD_VECTOR.
2989    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2990        N2.getOpcode() == ISD::BUILD_VECTOR &&
2991        N3.getOpcode() == ISD::BUILD_VECTOR) {
2992      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2993      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2994      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2995      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2996    }
2997    break;
2998  case ISD::SETCC: {
2999    // Use FoldSetCC to simplify SETCC's.
3000    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3001    if (Simp.getNode()) return Simp;
3002    break;
3003  }
3004  case ISD::SELECT:
3005    if (N1C) {
3006     if (N1C->getZExtValue())
3007        return N2;             // select true, X, Y -> X
3008      else
3009        return N3;             // select false, X, Y -> Y
3010    }
3011
3012    if (N2 == N3) return N2;   // select C, X, X -> X
3013    break;
3014  case ISD::BRCOND:
3015    if (N2C) {
3016      if (N2C->getZExtValue()) // Unconditional branch
3017        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
3018      else
3019        return N1;         // Never-taken branch
3020    }
3021    break;
3022  case ISD::VECTOR_SHUFFLE:
3023    llvm_unreachable("should use getVectorShuffle constructor!");
3024    break;
3025  case ISD::BIT_CONVERT:
3026    // Fold bit_convert nodes from a type to themselves.
3027    if (N1.getValueType() == VT)
3028      return N1;
3029    break;
3030  }
3031
3032  // Memoize node if it doesn't produce a flag.
3033  SDNode *N;
3034  SDVTList VTs = getVTList(VT);
3035  if (VT != MVT::Flag) {
3036    SDValue Ops[] = { N1, N2, N3 };
3037    FoldingSetNodeID ID;
3038    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3039    void *IP = 0;
3040    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3041      return SDValue(E, 0);
3042
3043    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3044    CSEMap.InsertNode(N, IP);
3045  } else {
3046    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3047  }
3048
3049  AllNodes.push_back(N);
3050#ifndef NDEBUG
3051  VerifyNode(N);
3052#endif
3053  return SDValue(N, 0);
3054}
3055
3056SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3057                              SDValue N1, SDValue N2, SDValue N3,
3058                              SDValue N4) {
3059  SDValue Ops[] = { N1, N2, N3, N4 };
3060  return getNode(Opcode, DL, VT, Ops, 4);
3061}
3062
3063SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3064                              SDValue N1, SDValue N2, SDValue N3,
3065                              SDValue N4, SDValue N5) {
3066  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3067  return getNode(Opcode, DL, VT, Ops, 5);
3068}
3069
3070/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3071/// the incoming stack arguments to be loaded from the stack.
3072SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3073  SmallVector<SDValue, 8> ArgChains;
3074
3075  // Include the original chain at the beginning of the list. When this is
3076  // used by target LowerCall hooks, this helps legalize find the
3077  // CALLSEQ_BEGIN node.
3078  ArgChains.push_back(Chain);
3079
3080  // Add a chain value for each stack argument.
3081  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3082       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3083    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3084      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3085        if (FI->getIndex() < 0)
3086          ArgChains.push_back(SDValue(L, 1));
3087
3088  // Build a tokenfactor for all the chains.
3089  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3090                 &ArgChains[0], ArgChains.size());
3091}
3092
3093/// getMemsetValue - Vectorized representation of the memset value
3094/// operand.
3095static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3096                              DebugLoc dl) {
3097  assert(Value.getOpcode() != ISD::UNDEF);
3098
3099  unsigned NumBits = VT.getScalarType().getSizeInBits();
3100  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3101    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3102    unsigned Shift = 8;
3103    for (unsigned i = NumBits; i > 8; i >>= 1) {
3104      Val = (Val << Shift) | Val;
3105      Shift <<= 1;
3106    }
3107    if (VT.isInteger())
3108      return DAG.getConstant(Val, VT);
3109    return DAG.getConstantFP(APFloat(Val), VT);
3110  }
3111
3112  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3113  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3114  unsigned Shift = 8;
3115  for (unsigned i = NumBits; i > 8; i >>= 1) {
3116    Value = DAG.getNode(ISD::OR, dl, VT,
3117                        DAG.getNode(ISD::SHL, dl, VT, Value,
3118                                    DAG.getConstant(Shift,
3119                                                    TLI.getShiftAmountTy())),
3120                        Value);
3121    Shift <<= 1;
3122  }
3123
3124  return Value;
3125}
3126
3127/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3128/// used when a memcpy is turned into a memset when the source is a constant
3129/// string ptr.
3130static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3131                                  const TargetLowering &TLI,
3132                                  std::string &Str, unsigned Offset) {
3133  // Handle vector with all elements zero.
3134  if (Str.empty()) {
3135    if (VT.isInteger())
3136      return DAG.getConstant(0, VT);
3137    else if (VT.getSimpleVT().SimpleTy == MVT::f32 ||
3138             VT.getSimpleVT().SimpleTy == MVT::f64)
3139      return DAG.getConstantFP(0.0, VT);
3140    else if (VT.isVector()) {
3141      unsigned NumElts = VT.getVectorNumElements();
3142      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3143      return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3144                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3145                                                             EltVT, NumElts)));
3146    } else
3147      llvm_unreachable("Expected type!");
3148  }
3149
3150  assert(!VT.isVector() && "Can't handle vector type here!");
3151  unsigned NumBits = VT.getSizeInBits();
3152  unsigned MSB = NumBits / 8;
3153  uint64_t Val = 0;
3154  if (TLI.isLittleEndian())
3155    Offset = Offset + MSB - 1;
3156  for (unsigned i = 0; i != MSB; ++i) {
3157    Val = (Val << 8) | (unsigned char)Str[Offset];
3158    Offset += TLI.isLittleEndian() ? -1 : 1;
3159  }
3160  return DAG.getConstant(Val, VT);
3161}
3162
3163/// getMemBasePlusOffset - Returns base and offset node for the
3164///
3165static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3166                                      SelectionDAG &DAG) {
3167  EVT VT = Base.getValueType();
3168  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3169                     VT, Base, DAG.getConstant(Offset, VT));
3170}
3171
3172/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3173///
3174static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3175  unsigned SrcDelta = 0;
3176  GlobalAddressSDNode *G = NULL;
3177  if (Src.getOpcode() == ISD::GlobalAddress)
3178    G = cast<GlobalAddressSDNode>(Src);
3179  else if (Src.getOpcode() == ISD::ADD &&
3180           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3181           Src.getOperand(1).getOpcode() == ISD::Constant) {
3182    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3183    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3184  }
3185  if (!G)
3186    return false;
3187
3188  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3189  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3190    return true;
3191
3192  return false;
3193}
3194
3195/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3196/// to replace the memset / memcpy. Return true if the number of memory ops
3197/// is below the threshold. It returns the types of the sequence of
3198/// memory ops to perform memset / memcpy by reference.
3199static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3200                                     unsigned Limit, uint64_t Size,
3201                                     unsigned DstAlign, unsigned SrcAlign,
3202                                     bool NonScalarIntSafe,
3203                                     SelectionDAG &DAG,
3204                                     const TargetLowering &TLI) {
3205  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3206         "Expecting memcpy / memset source to meet alignment requirement!");
3207  // If 'SrcAlign' is zero, that means the memory operation does not need load
3208  // the value, i.e. memset or memcpy from constant string. Otherwise, it's
3209  // the inferred alignment of the source. 'DstAlign', on the other hand, is the
3210  // specified alignment of the memory operation. If it is zero, that means
3211  // it's possible to change the alignment of the destination.
3212  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3213                                   NonScalarIntSafe, DAG);
3214
3215  if (VT == MVT::Other) {
3216    VT = TLI.getPointerTy();
3217    const Type *Ty = VT.getTypeForEVT(*DAG.getContext());
3218    if (DstAlign >= TLI.getTargetData()->getABITypeAlignment(Ty) ||
3219        TLI.allowsUnalignedMemoryAccesses(VT)) {
3220      VT = MVT::i64;
3221    } else {
3222      switch (DstAlign & 7) {
3223      case 0:  VT = MVT::i64; break;
3224      case 4:  VT = MVT::i32; break;
3225      case 2:  VT = MVT::i16; break;
3226      default: VT = MVT::i8;  break;
3227      }
3228    }
3229
3230    MVT LVT = MVT::i64;
3231    while (!TLI.isTypeLegal(LVT))
3232      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3233    assert(LVT.isInteger());
3234
3235    if (VT.bitsGT(LVT))
3236      VT = LVT;
3237  }
3238
3239  unsigned NumMemOps = 0;
3240  while (Size != 0) {
3241    unsigned VTSize = VT.getSizeInBits() / 8;
3242    while (VTSize > Size) {
3243      // For now, only use non-vector load / store's for the left-over pieces.
3244      if (VT.isVector() || VT.isFloatingPoint()) {
3245        VT = MVT::i64;
3246        while (!TLI.isTypeLegal(VT))
3247          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3248        VTSize = VT.getSizeInBits() / 8;
3249      } else {
3250        // This can result in a type that is not legal on the target, e.g.
3251        // 1 or 2 bytes on PPC.
3252        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3253        VTSize >>= 1;
3254      }
3255    }
3256
3257    if (++NumMemOps > Limit)
3258      return false;
3259    MemOps.push_back(VT);
3260    Size -= VTSize;
3261  }
3262
3263  return true;
3264}
3265
3266static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3267                                       SDValue Chain, SDValue Dst,
3268                                       SDValue Src, uint64_t Size,
3269                                       unsigned Align, bool AlwaysInline,
3270                                       const Value *DstSV, uint64_t DstSVOff,
3271                                       const Value *SrcSV, uint64_t SrcSVOff) {
3272  // Turn a memcpy of undef to nop.
3273  if (Src.getOpcode() == ISD::UNDEF)
3274    return Chain;
3275
3276  // Expand memcpy to a series of load and store ops if the size operand falls
3277  // below a certain threshold.
3278  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3279  std::vector<EVT> MemOps;
3280  uint64_t Limit = -1ULL;
3281  if (!AlwaysInline)
3282    Limit = TLI.getMaxStoresPerMemcpy();
3283  bool DstAlignCanChange = false;
3284  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3285  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3286  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3287    DstAlignCanChange = true;
3288  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3289  if (Align > SrcAlign)
3290    SrcAlign = Align;
3291  std::string Str;
3292  bool CopyFromStr = isMemSrcFromString(Src, Str);
3293  bool isZeroStr = CopyFromStr && Str.empty();
3294  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3295                                (DstAlignCanChange ? 0 : Align),
3296                                (isZeroStr ? 0 : SrcAlign), true, DAG, TLI))
3297    return SDValue();
3298
3299  if (DstAlignCanChange) {
3300    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3301    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3302    if (NewAlign > Align) {
3303      // Give the stack frame object a larger alignment if needed.
3304      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3305        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3306      Align = NewAlign;
3307    }
3308  }
3309
3310  SmallVector<SDValue, 8> OutChains;
3311  unsigned NumMemOps = MemOps.size();
3312  uint64_t SrcOff = 0, DstOff = 0;
3313  for (unsigned i = 0; i != NumMemOps; ++i) {
3314    EVT VT = MemOps[i];
3315    unsigned VTSize = VT.getSizeInBits() / 8;
3316    SDValue Value, Store;
3317
3318    if (CopyFromStr &&
3319        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3320      // It's unlikely a store of a vector immediate can be done in a single
3321      // instruction. It would require a load from a constantpool first.
3322      // We only handle zero vectors here.
3323      // FIXME: Handle other cases where store of vector immediate is done in
3324      // a single instruction.
3325      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3326      Store = DAG.getStore(Chain, dl, Value,
3327                           getMemBasePlusOffset(Dst, DstOff, DAG),
3328                           DstSV, DstSVOff + DstOff, false, false, Align);
3329    } else {
3330      // The type might not be legal for the target.  This should only happen
3331      // if the type is smaller than a legal type, as on PPC, so the right
3332      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3333      // to Load/Store if NVT==VT.
3334      // FIXME does the case above also need this?
3335      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3336      assert(NVT.bitsGE(VT));
3337      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3338                             getMemBasePlusOffset(Src, SrcOff, DAG),
3339                             SrcSV, SrcSVOff + SrcOff, VT, false, false,
3340                             MinAlign(SrcAlign, SrcOff));
3341      Store = DAG.getTruncStore(Chain, dl, Value,
3342                                getMemBasePlusOffset(Dst, DstOff, DAG),
3343                                DstSV, DstSVOff + DstOff, VT, false, false,
3344                                Align);
3345    }
3346    OutChains.push_back(Store);
3347    SrcOff += VTSize;
3348    DstOff += VTSize;
3349  }
3350
3351  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3352                     &OutChains[0], OutChains.size());
3353}
3354
3355static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3356                                        SDValue Chain, SDValue Dst,
3357                                        SDValue Src, uint64_t Size,
3358                                        unsigned Align,bool AlwaysInline,
3359                                        const Value *DstSV, uint64_t DstSVOff,
3360                                        const Value *SrcSV, uint64_t SrcSVOff) {
3361  // Turn a memmove of undef to nop.
3362  if (Src.getOpcode() == ISD::UNDEF)
3363    return Chain;
3364
3365  // Expand memmove to a series of load and store ops if the size operand falls
3366  // below a certain threshold.
3367  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3368  std::vector<EVT> MemOps;
3369  uint64_t Limit = -1ULL;
3370  if (!AlwaysInline)
3371    Limit = TLI.getMaxStoresPerMemmove();
3372  bool DstAlignCanChange = false;
3373  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3374  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3375  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3376    DstAlignCanChange = true;
3377  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3378  if (Align > SrcAlign)
3379    SrcAlign = Align;
3380
3381  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3382                                (DstAlignCanChange ? 0 : Align),
3383                                SrcAlign, true, DAG, TLI))
3384    return SDValue();
3385
3386  if (DstAlignCanChange) {
3387    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3388    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3389    if (NewAlign > Align) {
3390      // Give the stack frame object a larger alignment if needed.
3391      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3392        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3393      Align = NewAlign;
3394    }
3395  }
3396
3397  uint64_t SrcOff = 0, DstOff = 0;
3398  SmallVector<SDValue, 8> LoadValues;
3399  SmallVector<SDValue, 8> LoadChains;
3400  SmallVector<SDValue, 8> OutChains;
3401  unsigned NumMemOps = MemOps.size();
3402  for (unsigned i = 0; i < NumMemOps; i++) {
3403    EVT VT = MemOps[i];
3404    unsigned VTSize = VT.getSizeInBits() / 8;
3405    SDValue Value, Store;
3406
3407    Value = DAG.getLoad(VT, dl, Chain,
3408                        getMemBasePlusOffset(Src, SrcOff, DAG),
3409                        SrcSV, SrcSVOff + SrcOff, false, false, SrcAlign);
3410    LoadValues.push_back(Value);
3411    LoadChains.push_back(Value.getValue(1));
3412    SrcOff += VTSize;
3413  }
3414  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3415                      &LoadChains[0], LoadChains.size());
3416  OutChains.clear();
3417  for (unsigned i = 0; i < NumMemOps; i++) {
3418    EVT VT = MemOps[i];
3419    unsigned VTSize = VT.getSizeInBits() / 8;
3420    SDValue Value, Store;
3421
3422    Store = DAG.getStore(Chain, dl, LoadValues[i],
3423                         getMemBasePlusOffset(Dst, DstOff, DAG),
3424                         DstSV, DstSVOff + DstOff, false, false, Align);
3425    OutChains.push_back(Store);
3426    DstOff += VTSize;
3427  }
3428
3429  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3430                     &OutChains[0], OutChains.size());
3431}
3432
3433static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3434                               SDValue Chain, SDValue Dst,
3435                               SDValue Src, uint64_t Size,
3436                               unsigned Align,
3437                               const Value *DstSV, uint64_t DstSVOff) {
3438  // Turn a memset of undef to nop.
3439  if (Src.getOpcode() == ISD::UNDEF)
3440    return Chain;
3441
3442  // Expand memset to a series of load/store ops if the size operand
3443  // falls below a certain threshold.
3444  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3445  std::vector<EVT> MemOps;
3446  bool DstAlignCanChange = false;
3447  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3448  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3449  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3450    DstAlignCanChange = true;
3451  bool NonScalarIntSafe =
3452    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3453  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(),
3454                                Size, (DstAlignCanChange ? 0 : Align), 0,
3455                                NonScalarIntSafe, DAG, TLI))
3456    return SDValue();
3457
3458  if (DstAlignCanChange) {
3459    const Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3460    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3461    if (NewAlign > Align) {
3462      // Give the stack frame object a larger alignment if needed.
3463      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3464        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3465      Align = NewAlign;
3466    }
3467  }
3468
3469  SmallVector<SDValue, 8> OutChains;
3470  uint64_t DstOff = 0;
3471  unsigned NumMemOps = MemOps.size();
3472  for (unsigned i = 0; i < NumMemOps; i++) {
3473    EVT VT = MemOps[i];
3474    unsigned VTSize = VT.getSizeInBits() / 8;
3475    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3476    SDValue Store = DAG.getStore(Chain, dl, Value,
3477                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3478                                 DstSV, DstSVOff + DstOff, false, false, 0);
3479    OutChains.push_back(Store);
3480    DstOff += VTSize;
3481  }
3482
3483  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3484                     &OutChains[0], OutChains.size());
3485}
3486
3487SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3488                                SDValue Src, SDValue Size,
3489                                unsigned Align, bool AlwaysInline,
3490                                const Value *DstSV, uint64_t DstSVOff,
3491                                const Value *SrcSV, uint64_t SrcSVOff) {
3492
3493  // Check to see if we should lower the memcpy to loads and stores first.
3494  // For cases within the target-specified limits, this is the best choice.
3495  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3496  if (ConstantSize) {
3497    // Memcpy with size zero? Just return the original chain.
3498    if (ConstantSize->isNullValue())
3499      return Chain;
3500
3501    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3502                                             ConstantSize->getZExtValue(),Align,
3503                                       false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3504    if (Result.getNode())
3505      return Result;
3506  }
3507
3508  // Then check to see if we should lower the memcpy with target-specific
3509  // code. If the target chooses to do this, this is the next best.
3510  SDValue Result =
3511    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3512                                AlwaysInline,
3513                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3514  if (Result.getNode())
3515    return Result;
3516
3517  // If we really need inline code and the target declined to provide it,
3518  // use a (potentially long) sequence of loads and stores.
3519  if (AlwaysInline) {
3520    assert(ConstantSize && "AlwaysInline requires a constant size!");
3521    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3522                                   ConstantSize->getZExtValue(), Align, true,
3523                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3524  }
3525
3526  // Emit a library call.
3527  TargetLowering::ArgListTy Args;
3528  TargetLowering::ArgListEntry Entry;
3529  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3530  Entry.Node = Dst; Args.push_back(Entry);
3531  Entry.Node = Src; Args.push_back(Entry);
3532  Entry.Node = Size; Args.push_back(Entry);
3533  // FIXME: pass in DebugLoc
3534  std::pair<SDValue,SDValue> CallResult =
3535    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3536                    false, false, false, false, 0,
3537                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3538                    /*isReturnValueUsed=*/false,
3539                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3540                                      TLI.getPointerTy()),
3541                    Args, *this, dl);
3542  return CallResult.second;
3543}
3544
3545SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3546                                 SDValue Src, SDValue Size,
3547                                 unsigned Align,
3548                                 const Value *DstSV, uint64_t DstSVOff,
3549                                 const Value *SrcSV, uint64_t SrcSVOff) {
3550
3551  // Check to see if we should lower the memmove to loads and stores first.
3552  // For cases within the target-specified limits, this is the best choice.
3553  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3554  if (ConstantSize) {
3555    // Memmove with size zero? Just return the original chain.
3556    if (ConstantSize->isNullValue())
3557      return Chain;
3558
3559    SDValue Result =
3560      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3561                               ConstantSize->getZExtValue(),
3562                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3563    if (Result.getNode())
3564      return Result;
3565  }
3566
3567  // Then check to see if we should lower the memmove with target-specific
3568  // code. If the target chooses to do this, this is the next best.
3569  SDValue Result =
3570    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3571                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3572  if (Result.getNode())
3573    return Result;
3574
3575  // Emit a library call.
3576  TargetLowering::ArgListTy Args;
3577  TargetLowering::ArgListEntry Entry;
3578  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3579  Entry.Node = Dst; Args.push_back(Entry);
3580  Entry.Node = Src; Args.push_back(Entry);
3581  Entry.Node = Size; Args.push_back(Entry);
3582  // FIXME:  pass in DebugLoc
3583  std::pair<SDValue,SDValue> CallResult =
3584    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3585                    false, false, false, false, 0,
3586                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3587                    /*isReturnValueUsed=*/false,
3588                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3589                                      TLI.getPointerTy()),
3590                    Args, *this, dl);
3591  return CallResult.second;
3592}
3593
3594SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3595                                SDValue Src, SDValue Size,
3596                                unsigned Align,
3597                                const Value *DstSV, uint64_t DstSVOff) {
3598
3599  // Check to see if we should lower the memset to stores first.
3600  // For cases within the target-specified limits, this is the best choice.
3601  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3602  if (ConstantSize) {
3603    // Memset with size zero? Just return the original chain.
3604    if (ConstantSize->isNullValue())
3605      return Chain;
3606
3607    SDValue Result = getMemsetStores(*this, dl, Chain, Dst, Src,
3608                                     ConstantSize->getZExtValue(),
3609                                     Align, DstSV, DstSVOff);
3610    if (Result.getNode())
3611      return Result;
3612  }
3613
3614  // Then check to see if we should lower the memset with target-specific
3615  // code. If the target chooses to do this, this is the next best.
3616  SDValue Result =
3617    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3618                                DstSV, DstSVOff);
3619  if (Result.getNode())
3620    return Result;
3621
3622  // Emit a library call.
3623  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3624  TargetLowering::ArgListTy Args;
3625  TargetLowering::ArgListEntry Entry;
3626  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3627  Args.push_back(Entry);
3628  // Extend or truncate the argument to be an i32 value for the call.
3629  if (Src.getValueType().bitsGT(MVT::i32))
3630    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3631  else
3632    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3633  Entry.Node = Src;
3634  Entry.Ty = Type::getInt32Ty(*getContext());
3635  Entry.isSExt = true;
3636  Args.push_back(Entry);
3637  Entry.Node = Size;
3638  Entry.Ty = IntPtrTy;
3639  Entry.isSExt = false;
3640  Args.push_back(Entry);
3641  // FIXME: pass in DebugLoc
3642  std::pair<SDValue,SDValue> CallResult =
3643    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3644                    false, false, false, false, 0,
3645                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3646                    /*isReturnValueUsed=*/false,
3647                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3648                                      TLI.getPointerTy()),
3649                    Args, *this, dl);
3650  return CallResult.second;
3651}
3652
3653SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3654                                SDValue Chain,
3655                                SDValue Ptr, SDValue Cmp,
3656                                SDValue Swp, const Value* PtrVal,
3657                                unsigned Alignment) {
3658  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3659    Alignment = getEVTAlignment(MemVT);
3660
3661  // Check if the memory reference references a frame index
3662  if (!PtrVal)
3663    if (const FrameIndexSDNode *FI =
3664          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3665      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3666
3667  MachineFunction &MF = getMachineFunction();
3668  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3669
3670  // For now, atomics are considered to be volatile always.
3671  Flags |= MachineMemOperand::MOVolatile;
3672
3673  MachineMemOperand *MMO =
3674    MF.getMachineMemOperand(PtrVal, Flags, 0,
3675                            MemVT.getStoreSize(), Alignment);
3676
3677  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3678}
3679
3680SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3681                                SDValue Chain,
3682                                SDValue Ptr, SDValue Cmp,
3683                                SDValue Swp, MachineMemOperand *MMO) {
3684  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3685  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3686
3687  EVT VT = Cmp.getValueType();
3688
3689  SDVTList VTs = getVTList(VT, MVT::Other);
3690  FoldingSetNodeID ID;
3691  ID.AddInteger(MemVT.getRawBits());
3692  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3693  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3694  void* IP = 0;
3695  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3696    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3697    return SDValue(E, 0);
3698  }
3699  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3700                                               Ptr, Cmp, Swp, MMO);
3701  CSEMap.InsertNode(N, IP);
3702  AllNodes.push_back(N);
3703  return SDValue(N, 0);
3704}
3705
3706SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3707                                SDValue Chain,
3708                                SDValue Ptr, SDValue Val,
3709                                const Value* PtrVal,
3710                                unsigned Alignment) {
3711  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3712    Alignment = getEVTAlignment(MemVT);
3713
3714  // Check if the memory reference references a frame index
3715  if (!PtrVal)
3716    if (const FrameIndexSDNode *FI =
3717          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3718      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3719
3720  MachineFunction &MF = getMachineFunction();
3721  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3722
3723  // For now, atomics are considered to be volatile always.
3724  Flags |= MachineMemOperand::MOVolatile;
3725
3726  MachineMemOperand *MMO =
3727    MF.getMachineMemOperand(PtrVal, Flags, 0,
3728                            MemVT.getStoreSize(), Alignment);
3729
3730  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3731}
3732
3733SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3734                                SDValue Chain,
3735                                SDValue Ptr, SDValue Val,
3736                                MachineMemOperand *MMO) {
3737  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3738          Opcode == ISD::ATOMIC_LOAD_SUB ||
3739          Opcode == ISD::ATOMIC_LOAD_AND ||
3740          Opcode == ISD::ATOMIC_LOAD_OR ||
3741          Opcode == ISD::ATOMIC_LOAD_XOR ||
3742          Opcode == ISD::ATOMIC_LOAD_NAND ||
3743          Opcode == ISD::ATOMIC_LOAD_MIN ||
3744          Opcode == ISD::ATOMIC_LOAD_MAX ||
3745          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3746          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3747          Opcode == ISD::ATOMIC_SWAP) &&
3748         "Invalid Atomic Op");
3749
3750  EVT VT = Val.getValueType();
3751
3752  SDVTList VTs = getVTList(VT, MVT::Other);
3753  FoldingSetNodeID ID;
3754  ID.AddInteger(MemVT.getRawBits());
3755  SDValue Ops[] = {Chain, Ptr, Val};
3756  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3757  void* IP = 0;
3758  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3759    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3760    return SDValue(E, 0);
3761  }
3762  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3763                                               Ptr, Val, MMO);
3764  CSEMap.InsertNode(N, IP);
3765  AllNodes.push_back(N);
3766  return SDValue(N, 0);
3767}
3768
3769/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3770/// Allowed to return something different (and simpler) if Simplify is true.
3771SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3772                                     DebugLoc dl) {
3773  if (NumOps == 1)
3774    return Ops[0];
3775
3776  SmallVector<EVT, 4> VTs;
3777  VTs.reserve(NumOps);
3778  for (unsigned i = 0; i < NumOps; ++i)
3779    VTs.push_back(Ops[i].getValueType());
3780  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3781                 Ops, NumOps);
3782}
3783
3784SDValue
3785SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3786                                  const EVT *VTs, unsigned NumVTs,
3787                                  const SDValue *Ops, unsigned NumOps,
3788                                  EVT MemVT, const Value *srcValue, int SVOff,
3789                                  unsigned Align, bool Vol,
3790                                  bool ReadMem, bool WriteMem) {
3791  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3792                             MemVT, srcValue, SVOff, Align, Vol,
3793                             ReadMem, WriteMem);
3794}
3795
3796SDValue
3797SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3798                                  const SDValue *Ops, unsigned NumOps,
3799                                  EVT MemVT, const Value *srcValue, int SVOff,
3800                                  unsigned Align, bool Vol,
3801                                  bool ReadMem, bool WriteMem) {
3802  if (Align == 0)  // Ensure that codegen never sees alignment 0
3803    Align = getEVTAlignment(MemVT);
3804
3805  MachineFunction &MF = getMachineFunction();
3806  unsigned Flags = 0;
3807  if (WriteMem)
3808    Flags |= MachineMemOperand::MOStore;
3809  if (ReadMem)
3810    Flags |= MachineMemOperand::MOLoad;
3811  if (Vol)
3812    Flags |= MachineMemOperand::MOVolatile;
3813  MachineMemOperand *MMO =
3814    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3815                            MemVT.getStoreSize(), Align);
3816
3817  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3818}
3819
3820SDValue
3821SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3822                                  const SDValue *Ops, unsigned NumOps,
3823                                  EVT MemVT, MachineMemOperand *MMO) {
3824  assert((Opcode == ISD::INTRINSIC_VOID ||
3825          Opcode == ISD::INTRINSIC_W_CHAIN ||
3826          (Opcode <= INT_MAX &&
3827           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3828         "Opcode is not a memory-accessing opcode!");
3829
3830  // Memoize the node unless it returns a flag.
3831  MemIntrinsicSDNode *N;
3832  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3833    FoldingSetNodeID ID;
3834    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3835    void *IP = 0;
3836    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3837      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3838      return SDValue(E, 0);
3839    }
3840
3841    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3842                                               MemVT, MMO);
3843    CSEMap.InsertNode(N, IP);
3844  } else {
3845    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
3846                                               MemVT, MMO);
3847  }
3848  AllNodes.push_back(N);
3849  return SDValue(N, 0);
3850}
3851
3852SDValue
3853SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3854                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3855                      SDValue Ptr, SDValue Offset,
3856                      const Value *SV, int SVOffset, EVT MemVT,
3857                      bool isVolatile, bool isNonTemporal,
3858                      unsigned Alignment) {
3859  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3860    Alignment = getEVTAlignment(VT);
3861
3862  // Check if the memory reference references a frame index
3863  if (!SV)
3864    if (const FrameIndexSDNode *FI =
3865          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3866      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3867
3868  MachineFunction &MF = getMachineFunction();
3869  unsigned Flags = MachineMemOperand::MOLoad;
3870  if (isVolatile)
3871    Flags |= MachineMemOperand::MOVolatile;
3872  if (isNonTemporal)
3873    Flags |= MachineMemOperand::MONonTemporal;
3874  MachineMemOperand *MMO =
3875    MF.getMachineMemOperand(SV, Flags, SVOffset,
3876                            MemVT.getStoreSize(), Alignment);
3877  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3878}
3879
3880SDValue
3881SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3882                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3883                      SDValue Ptr, SDValue Offset, EVT MemVT,
3884                      MachineMemOperand *MMO) {
3885  if (VT == MemVT) {
3886    ExtType = ISD::NON_EXTLOAD;
3887  } else if (ExtType == ISD::NON_EXTLOAD) {
3888    assert(VT == MemVT && "Non-extending load from different memory type!");
3889  } else {
3890    // Extending load.
3891    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3892           "Should only be an extending load, not truncating!");
3893    assert(VT.isInteger() == MemVT.isInteger() &&
3894           "Cannot convert from FP to Int or Int -> FP!");
3895    assert(VT.isVector() == MemVT.isVector() &&
3896           "Cannot use trunc store to convert to or from a vector!");
3897    assert((!VT.isVector() ||
3898            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3899           "Cannot use trunc store to change the number of vector elements!");
3900  }
3901
3902  bool Indexed = AM != ISD::UNINDEXED;
3903  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3904         "Unindexed load with an offset!");
3905
3906  SDVTList VTs = Indexed ?
3907    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3908  SDValue Ops[] = { Chain, Ptr, Offset };
3909  FoldingSetNodeID ID;
3910  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3911  ID.AddInteger(MemVT.getRawBits());
3912  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
3913                                     MMO->isNonTemporal()));
3914  void *IP = 0;
3915  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3916    cast<LoadSDNode>(E)->refineAlignment(MMO);
3917    return SDValue(E, 0);
3918  }
3919  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
3920                                             MemVT, MMO);
3921  CSEMap.InsertNode(N, IP);
3922  AllNodes.push_back(N);
3923  return SDValue(N, 0);
3924}
3925
3926SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3927                              SDValue Chain, SDValue Ptr,
3928                              const Value *SV, int SVOffset,
3929                              bool isVolatile, bool isNonTemporal,
3930                              unsigned Alignment) {
3931  SDValue Undef = getUNDEF(Ptr.getValueType());
3932  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3933                 SV, SVOffset, VT, isVolatile, isNonTemporal, Alignment);
3934}
3935
3936SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3937                                 SDValue Chain, SDValue Ptr,
3938                                 const Value *SV,
3939                                 int SVOffset, EVT MemVT,
3940                                 bool isVolatile, bool isNonTemporal,
3941                                 unsigned Alignment) {
3942  SDValue Undef = getUNDEF(Ptr.getValueType());
3943  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3944                 SV, SVOffset, MemVT, isVolatile, isNonTemporal, Alignment);
3945}
3946
3947SDValue
3948SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3949                             SDValue Offset, ISD::MemIndexedMode AM) {
3950  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3951  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3952         "Load is already a indexed load!");
3953  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3954                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3955                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3956                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
3957}
3958
3959SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3960                               SDValue Ptr, const Value *SV, int SVOffset,
3961                               bool isVolatile, bool isNonTemporal,
3962                               unsigned Alignment) {
3963  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3964    Alignment = getEVTAlignment(Val.getValueType());
3965
3966  // Check if the memory reference references a frame index
3967  if (!SV)
3968    if (const FrameIndexSDNode *FI =
3969          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3970      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3971
3972  MachineFunction &MF = getMachineFunction();
3973  unsigned Flags = MachineMemOperand::MOStore;
3974  if (isVolatile)
3975    Flags |= MachineMemOperand::MOVolatile;
3976  if (isNonTemporal)
3977    Flags |= MachineMemOperand::MONonTemporal;
3978  MachineMemOperand *MMO =
3979    MF.getMachineMemOperand(SV, Flags, SVOffset,
3980                            Val.getValueType().getStoreSize(), Alignment);
3981
3982  return getStore(Chain, dl, Val, Ptr, MMO);
3983}
3984
3985SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3986                               SDValue Ptr, MachineMemOperand *MMO) {
3987  EVT VT = Val.getValueType();
3988  SDVTList VTs = getVTList(MVT::Other);
3989  SDValue Undef = getUNDEF(Ptr.getValueType());
3990  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3991  FoldingSetNodeID ID;
3992  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3993  ID.AddInteger(VT.getRawBits());
3994  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
3995                                     MMO->isNonTemporal()));
3996  void *IP = 0;
3997  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3998    cast<StoreSDNode>(E)->refineAlignment(MMO);
3999    return SDValue(E, 0);
4000  }
4001  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4002                                              false, VT, MMO);
4003  CSEMap.InsertNode(N, IP);
4004  AllNodes.push_back(N);
4005  return SDValue(N, 0);
4006}
4007
4008SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4009                                    SDValue Ptr, const Value *SV,
4010                                    int SVOffset, EVT SVT,
4011                                    bool isVolatile, bool isNonTemporal,
4012                                    unsigned Alignment) {
4013  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4014    Alignment = getEVTAlignment(SVT);
4015
4016  // Check if the memory reference references a frame index
4017  if (!SV)
4018    if (const FrameIndexSDNode *FI =
4019          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
4020      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
4021
4022  MachineFunction &MF = getMachineFunction();
4023  unsigned Flags = MachineMemOperand::MOStore;
4024  if (isVolatile)
4025    Flags |= MachineMemOperand::MOVolatile;
4026  if (isNonTemporal)
4027    Flags |= MachineMemOperand::MONonTemporal;
4028  MachineMemOperand *MMO =
4029    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
4030
4031  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4032}
4033
4034SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4035                                    SDValue Ptr, EVT SVT,
4036                                    MachineMemOperand *MMO) {
4037  EVT VT = Val.getValueType();
4038
4039  if (VT == SVT)
4040    return getStore(Chain, dl, Val, Ptr, MMO);
4041
4042  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4043         "Should only be a truncating store, not extending!");
4044  assert(VT.isInteger() == SVT.isInteger() &&
4045         "Can't do FP-INT conversion!");
4046  assert(VT.isVector() == SVT.isVector() &&
4047         "Cannot use trunc store to convert to or from a vector!");
4048  assert((!VT.isVector() ||
4049          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4050         "Cannot use trunc store to change the number of vector elements!");
4051
4052  SDVTList VTs = getVTList(MVT::Other);
4053  SDValue Undef = getUNDEF(Ptr.getValueType());
4054  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4055  FoldingSetNodeID ID;
4056  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4057  ID.AddInteger(SVT.getRawBits());
4058  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4059                                     MMO->isNonTemporal()));
4060  void *IP = 0;
4061  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4062    cast<StoreSDNode>(E)->refineAlignment(MMO);
4063    return SDValue(E, 0);
4064  }
4065  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4066                                              true, SVT, MMO);
4067  CSEMap.InsertNode(N, IP);
4068  AllNodes.push_back(N);
4069  return SDValue(N, 0);
4070}
4071
4072SDValue
4073SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4074                              SDValue Offset, ISD::MemIndexedMode AM) {
4075  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4076  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4077         "Store is already a indexed store!");
4078  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4079  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4080  FoldingSetNodeID ID;
4081  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4082  ID.AddInteger(ST->getMemoryVT().getRawBits());
4083  ID.AddInteger(ST->getRawSubclassData());
4084  void *IP = 0;
4085  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4086    return SDValue(E, 0);
4087
4088  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4089                                              ST->isTruncatingStore(),
4090                                              ST->getMemoryVT(),
4091                                              ST->getMemOperand());
4092  CSEMap.InsertNode(N, IP);
4093  AllNodes.push_back(N);
4094  return SDValue(N, 0);
4095}
4096
4097SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4098                               SDValue Chain, SDValue Ptr,
4099                               SDValue SV) {
4100  SDValue Ops[] = { Chain, Ptr, SV };
4101  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4102}
4103
4104SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4105                              const SDUse *Ops, unsigned NumOps) {
4106  switch (NumOps) {
4107  case 0: return getNode(Opcode, DL, VT);
4108  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4109  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4110  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4111  default: break;
4112  }
4113
4114  // Copy from an SDUse array into an SDValue array for use with
4115  // the regular getNode logic.
4116  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4117  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4118}
4119
4120SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4121                              const SDValue *Ops, unsigned NumOps) {
4122  switch (NumOps) {
4123  case 0: return getNode(Opcode, DL, VT);
4124  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4125  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4126  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4127  default: break;
4128  }
4129
4130  switch (Opcode) {
4131  default: break;
4132  case ISD::SELECT_CC: {
4133    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4134    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4135           "LHS and RHS of condition must have same type!");
4136    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4137           "True and False arms of SelectCC must have same type!");
4138    assert(Ops[2].getValueType() == VT &&
4139           "select_cc node must be of same type as true and false value!");
4140    break;
4141  }
4142  case ISD::BR_CC: {
4143    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4144    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4145           "LHS/RHS of comparison should match types!");
4146    break;
4147  }
4148  }
4149
4150  // Memoize nodes.
4151  SDNode *N;
4152  SDVTList VTs = getVTList(VT);
4153
4154  if (VT != MVT::Flag) {
4155    FoldingSetNodeID ID;
4156    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4157    void *IP = 0;
4158
4159    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4160      return SDValue(E, 0);
4161
4162    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4163    CSEMap.InsertNode(N, IP);
4164  } else {
4165    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4166  }
4167
4168  AllNodes.push_back(N);
4169#ifndef NDEBUG
4170  VerifyNode(N);
4171#endif
4172  return SDValue(N, 0);
4173}
4174
4175SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4176                              const std::vector<EVT> &ResultTys,
4177                              const SDValue *Ops, unsigned NumOps) {
4178  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4179                 Ops, NumOps);
4180}
4181
4182SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4183                              const EVT *VTs, unsigned NumVTs,
4184                              const SDValue *Ops, unsigned NumOps) {
4185  if (NumVTs == 1)
4186    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4187  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4188}
4189
4190SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4191                              const SDValue *Ops, unsigned NumOps) {
4192  if (VTList.NumVTs == 1)
4193    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4194
4195#if 0
4196  switch (Opcode) {
4197  // FIXME: figure out how to safely handle things like
4198  // int foo(int x) { return 1 << (x & 255); }
4199  // int bar() { return foo(256); }
4200  case ISD::SRA_PARTS:
4201  case ISD::SRL_PARTS:
4202  case ISD::SHL_PARTS:
4203    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4204        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4205      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4206    else if (N3.getOpcode() == ISD::AND)
4207      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4208        // If the and is only masking out bits that cannot effect the shift,
4209        // eliminate the and.
4210        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4211        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4212          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4213      }
4214    break;
4215  }
4216#endif
4217
4218  // Memoize the node unless it returns a flag.
4219  SDNode *N;
4220  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4221    FoldingSetNodeID ID;
4222    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4223    void *IP = 0;
4224    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4225      return SDValue(E, 0);
4226
4227    if (NumOps == 1) {
4228      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4229    } else if (NumOps == 2) {
4230      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4231    } else if (NumOps == 3) {
4232      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4233                                            Ops[2]);
4234    } else {
4235      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4236    }
4237    CSEMap.InsertNode(N, IP);
4238  } else {
4239    if (NumOps == 1) {
4240      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4241    } else if (NumOps == 2) {
4242      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4243    } else if (NumOps == 3) {
4244      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4245                                            Ops[2]);
4246    } else {
4247      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4248    }
4249  }
4250  AllNodes.push_back(N);
4251#ifndef NDEBUG
4252  VerifyNode(N);
4253#endif
4254  return SDValue(N, 0);
4255}
4256
4257SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4258  return getNode(Opcode, DL, VTList, 0, 0);
4259}
4260
4261SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4262                              SDValue N1) {
4263  SDValue Ops[] = { N1 };
4264  return getNode(Opcode, DL, VTList, Ops, 1);
4265}
4266
4267SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4268                              SDValue N1, SDValue N2) {
4269  SDValue Ops[] = { N1, N2 };
4270  return getNode(Opcode, DL, VTList, Ops, 2);
4271}
4272
4273SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4274                              SDValue N1, SDValue N2, SDValue N3) {
4275  SDValue Ops[] = { N1, N2, N3 };
4276  return getNode(Opcode, DL, VTList, Ops, 3);
4277}
4278
4279SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4280                              SDValue N1, SDValue N2, SDValue N3,
4281                              SDValue N4) {
4282  SDValue Ops[] = { N1, N2, N3, N4 };
4283  return getNode(Opcode, DL, VTList, Ops, 4);
4284}
4285
4286SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4287                              SDValue N1, SDValue N2, SDValue N3,
4288                              SDValue N4, SDValue N5) {
4289  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4290  return getNode(Opcode, DL, VTList, Ops, 5);
4291}
4292
4293SDVTList SelectionDAG::getVTList(EVT VT) {
4294  return makeVTList(SDNode::getValueTypeList(VT), 1);
4295}
4296
4297SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4298  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4299       E = VTList.rend(); I != E; ++I)
4300    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4301      return *I;
4302
4303  EVT *Array = Allocator.Allocate<EVT>(2);
4304  Array[0] = VT1;
4305  Array[1] = VT2;
4306  SDVTList Result = makeVTList(Array, 2);
4307  VTList.push_back(Result);
4308  return Result;
4309}
4310
4311SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4312  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4313       E = VTList.rend(); I != E; ++I)
4314    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4315                          I->VTs[2] == VT3)
4316      return *I;
4317
4318  EVT *Array = Allocator.Allocate<EVT>(3);
4319  Array[0] = VT1;
4320  Array[1] = VT2;
4321  Array[2] = VT3;
4322  SDVTList Result = makeVTList(Array, 3);
4323  VTList.push_back(Result);
4324  return Result;
4325}
4326
4327SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4328  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4329       E = VTList.rend(); I != E; ++I)
4330    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4331                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4332      return *I;
4333
4334  EVT *Array = Allocator.Allocate<EVT>(4);
4335  Array[0] = VT1;
4336  Array[1] = VT2;
4337  Array[2] = VT3;
4338  Array[3] = VT4;
4339  SDVTList Result = makeVTList(Array, 4);
4340  VTList.push_back(Result);
4341  return Result;
4342}
4343
4344SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4345  switch (NumVTs) {
4346    case 0: llvm_unreachable("Cannot have nodes without results!");
4347    case 1: return getVTList(VTs[0]);
4348    case 2: return getVTList(VTs[0], VTs[1]);
4349    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4350    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4351    default: break;
4352  }
4353
4354  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4355       E = VTList.rend(); I != E; ++I) {
4356    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4357      continue;
4358
4359    bool NoMatch = false;
4360    for (unsigned i = 2; i != NumVTs; ++i)
4361      if (VTs[i] != I->VTs[i]) {
4362        NoMatch = true;
4363        break;
4364      }
4365    if (!NoMatch)
4366      return *I;
4367  }
4368
4369  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4370  std::copy(VTs, VTs+NumVTs, Array);
4371  SDVTList Result = makeVTList(Array, NumVTs);
4372  VTList.push_back(Result);
4373  return Result;
4374}
4375
4376
4377/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4378/// specified operands.  If the resultant node already exists in the DAG,
4379/// this does not modify the specified node, instead it returns the node that
4380/// already exists.  If the resultant node does not exist in the DAG, the
4381/// input node is returned.  As a degenerate case, if you specify the same
4382/// input operands as the node already has, the input node is returned.
4383SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4384  SDNode *N = InN.getNode();
4385  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4386
4387  // Check to see if there is no change.
4388  if (Op == N->getOperand(0)) return InN;
4389
4390  // See if the modified node already exists.
4391  void *InsertPos = 0;
4392  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4393    return SDValue(Existing, InN.getResNo());
4394
4395  // Nope it doesn't.  Remove the node from its current place in the maps.
4396  if (InsertPos)
4397    if (!RemoveNodeFromCSEMaps(N))
4398      InsertPos = 0;
4399
4400  // Now we update the operands.
4401  N->OperandList[0].set(Op);
4402
4403  // If this gets put into a CSE map, add it.
4404  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4405  return InN;
4406}
4407
4408SDValue SelectionDAG::
4409UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4410  SDNode *N = InN.getNode();
4411  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4412
4413  // Check to see if there is no change.
4414  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4415    return InN;   // No operands changed, just return the input node.
4416
4417  // See if the modified node already exists.
4418  void *InsertPos = 0;
4419  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4420    return SDValue(Existing, InN.getResNo());
4421
4422  // Nope it doesn't.  Remove the node from its current place in the maps.
4423  if (InsertPos)
4424    if (!RemoveNodeFromCSEMaps(N))
4425      InsertPos = 0;
4426
4427  // Now we update the operands.
4428  if (N->OperandList[0] != Op1)
4429    N->OperandList[0].set(Op1);
4430  if (N->OperandList[1] != Op2)
4431    N->OperandList[1].set(Op2);
4432
4433  // If this gets put into a CSE map, add it.
4434  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4435  return InN;
4436}
4437
4438SDValue SelectionDAG::
4439UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4440  SDValue Ops[] = { Op1, Op2, Op3 };
4441  return UpdateNodeOperands(N, Ops, 3);
4442}
4443
4444SDValue SelectionDAG::
4445UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4446                   SDValue Op3, SDValue Op4) {
4447  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4448  return UpdateNodeOperands(N, Ops, 4);
4449}
4450
4451SDValue SelectionDAG::
4452UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4453                   SDValue Op3, SDValue Op4, SDValue Op5) {
4454  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4455  return UpdateNodeOperands(N, Ops, 5);
4456}
4457
4458SDValue SelectionDAG::
4459UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4460  SDNode *N = InN.getNode();
4461  assert(N->getNumOperands() == NumOps &&
4462         "Update with wrong number of operands");
4463
4464  // Check to see if there is no change.
4465  bool AnyChange = false;
4466  for (unsigned i = 0; i != NumOps; ++i) {
4467    if (Ops[i] != N->getOperand(i)) {
4468      AnyChange = true;
4469      break;
4470    }
4471  }
4472
4473  // No operands changed, just return the input node.
4474  if (!AnyChange) return InN;
4475
4476  // See if the modified node already exists.
4477  void *InsertPos = 0;
4478  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4479    return SDValue(Existing, InN.getResNo());
4480
4481  // Nope it doesn't.  Remove the node from its current place in the maps.
4482  if (InsertPos)
4483    if (!RemoveNodeFromCSEMaps(N))
4484      InsertPos = 0;
4485
4486  // Now we update the operands.
4487  for (unsigned i = 0; i != NumOps; ++i)
4488    if (N->OperandList[i] != Ops[i])
4489      N->OperandList[i].set(Ops[i]);
4490
4491  // If this gets put into a CSE map, add it.
4492  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4493  return InN;
4494}
4495
4496/// DropOperands - Release the operands and set this node to have
4497/// zero operands.
4498void SDNode::DropOperands() {
4499  // Unlike the code in MorphNodeTo that does this, we don't need to
4500  // watch for dead nodes here.
4501  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4502    SDUse &Use = *I++;
4503    Use.set(SDValue());
4504  }
4505}
4506
4507/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4508/// machine opcode.
4509///
4510SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4511                                   EVT VT) {
4512  SDVTList VTs = getVTList(VT);
4513  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4514}
4515
4516SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4517                                   EVT VT, SDValue Op1) {
4518  SDVTList VTs = getVTList(VT);
4519  SDValue Ops[] = { Op1 };
4520  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4521}
4522
4523SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4524                                   EVT VT, SDValue Op1,
4525                                   SDValue Op2) {
4526  SDVTList VTs = getVTList(VT);
4527  SDValue Ops[] = { Op1, Op2 };
4528  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4529}
4530
4531SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4532                                   EVT VT, SDValue Op1,
4533                                   SDValue Op2, SDValue Op3) {
4534  SDVTList VTs = getVTList(VT);
4535  SDValue Ops[] = { Op1, Op2, Op3 };
4536  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4537}
4538
4539SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4540                                   EVT VT, const SDValue *Ops,
4541                                   unsigned NumOps) {
4542  SDVTList VTs = getVTList(VT);
4543  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4544}
4545
4546SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4547                                   EVT VT1, EVT VT2, const SDValue *Ops,
4548                                   unsigned NumOps) {
4549  SDVTList VTs = getVTList(VT1, VT2);
4550  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4551}
4552
4553SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4554                                   EVT VT1, EVT VT2) {
4555  SDVTList VTs = getVTList(VT1, VT2);
4556  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4557}
4558
4559SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4560                                   EVT VT1, EVT VT2, EVT VT3,
4561                                   const SDValue *Ops, unsigned NumOps) {
4562  SDVTList VTs = getVTList(VT1, VT2, VT3);
4563  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4564}
4565
4566SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4567                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4568                                   const SDValue *Ops, unsigned NumOps) {
4569  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4570  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4571}
4572
4573SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4574                                   EVT VT1, EVT VT2,
4575                                   SDValue Op1) {
4576  SDVTList VTs = getVTList(VT1, VT2);
4577  SDValue Ops[] = { Op1 };
4578  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4579}
4580
4581SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4582                                   EVT VT1, EVT VT2,
4583                                   SDValue Op1, SDValue Op2) {
4584  SDVTList VTs = getVTList(VT1, VT2);
4585  SDValue Ops[] = { Op1, Op2 };
4586  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4587}
4588
4589SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4590                                   EVT VT1, EVT VT2,
4591                                   SDValue Op1, SDValue Op2,
4592                                   SDValue Op3) {
4593  SDVTList VTs = getVTList(VT1, VT2);
4594  SDValue Ops[] = { Op1, Op2, Op3 };
4595  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4596}
4597
4598SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4599                                   EVT VT1, EVT VT2, EVT VT3,
4600                                   SDValue Op1, SDValue Op2,
4601                                   SDValue Op3) {
4602  SDVTList VTs = getVTList(VT1, VT2, VT3);
4603  SDValue Ops[] = { Op1, Op2, Op3 };
4604  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4605}
4606
4607SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4608                                   SDVTList VTs, const SDValue *Ops,
4609                                   unsigned NumOps) {
4610  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4611  // Reset the NodeID to -1.
4612  N->setNodeId(-1);
4613  return N;
4614}
4615
4616/// MorphNodeTo - This *mutates* the specified node to have the specified
4617/// return type, opcode, and operands.
4618///
4619/// Note that MorphNodeTo returns the resultant node.  If there is already a
4620/// node of the specified opcode and operands, it returns that node instead of
4621/// the current one.  Note that the DebugLoc need not be the same.
4622///
4623/// Using MorphNodeTo is faster than creating a new node and swapping it in
4624/// with ReplaceAllUsesWith both because it often avoids allocating a new
4625/// node, and because it doesn't require CSE recalculation for any of
4626/// the node's users.
4627///
4628SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4629                                  SDVTList VTs, const SDValue *Ops,
4630                                  unsigned NumOps) {
4631  // If an identical node already exists, use it.
4632  void *IP = 0;
4633  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4634    FoldingSetNodeID ID;
4635    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4636    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4637      return ON;
4638  }
4639
4640  if (!RemoveNodeFromCSEMaps(N))
4641    IP = 0;
4642
4643  // Start the morphing.
4644  N->NodeType = Opc;
4645  N->ValueList = VTs.VTs;
4646  N->NumValues = VTs.NumVTs;
4647
4648  // Clear the operands list, updating used nodes to remove this from their
4649  // use list.  Keep track of any operands that become dead as a result.
4650  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4651  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4652    SDUse &Use = *I++;
4653    SDNode *Used = Use.getNode();
4654    Use.set(SDValue());
4655    if (Used->use_empty())
4656      DeadNodeSet.insert(Used);
4657  }
4658
4659  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4660    // Initialize the memory references information.
4661    MN->setMemRefs(0, 0);
4662    // If NumOps is larger than the # of operands we can have in a
4663    // MachineSDNode, reallocate the operand list.
4664    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4665      if (MN->OperandsNeedDelete)
4666        delete[] MN->OperandList;
4667      if (NumOps > array_lengthof(MN->LocalOperands))
4668        // We're creating a final node that will live unmorphed for the
4669        // remainder of the current SelectionDAG iteration, so we can allocate
4670        // the operands directly out of a pool with no recycling metadata.
4671        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4672                         Ops, NumOps);
4673      else
4674        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4675      MN->OperandsNeedDelete = false;
4676    } else
4677      MN->InitOperands(MN->OperandList, Ops, NumOps);
4678  } else {
4679    // If NumOps is larger than the # of operands we currently have, reallocate
4680    // the operand list.
4681    if (NumOps > N->NumOperands) {
4682      if (N->OperandsNeedDelete)
4683        delete[] N->OperandList;
4684      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4685      N->OperandsNeedDelete = true;
4686    } else
4687      N->InitOperands(N->OperandList, Ops, NumOps);
4688  }
4689
4690  // Delete any nodes that are still dead after adding the uses for the
4691  // new operands.
4692  if (!DeadNodeSet.empty()) {
4693    SmallVector<SDNode *, 16> DeadNodes;
4694    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4695         E = DeadNodeSet.end(); I != E; ++I)
4696      if ((*I)->use_empty())
4697        DeadNodes.push_back(*I);
4698    RemoveDeadNodes(DeadNodes);
4699  }
4700
4701  if (IP)
4702    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4703  return N;
4704}
4705
4706
4707/// getMachineNode - These are used for target selectors to create a new node
4708/// with specified return type(s), MachineInstr opcode, and operands.
4709///
4710/// Note that getMachineNode returns the resultant node.  If there is already a
4711/// node of the specified opcode and operands, it returns that node instead of
4712/// the current one.
4713MachineSDNode *
4714SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4715  SDVTList VTs = getVTList(VT);
4716  return getMachineNode(Opcode, dl, VTs, 0, 0);
4717}
4718
4719MachineSDNode *
4720SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4721  SDVTList VTs = getVTList(VT);
4722  SDValue Ops[] = { Op1 };
4723  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4724}
4725
4726MachineSDNode *
4727SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4728                             SDValue Op1, SDValue Op2) {
4729  SDVTList VTs = getVTList(VT);
4730  SDValue Ops[] = { Op1, Op2 };
4731  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4732}
4733
4734MachineSDNode *
4735SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4736                             SDValue Op1, SDValue Op2, SDValue Op3) {
4737  SDVTList VTs = getVTList(VT);
4738  SDValue Ops[] = { Op1, Op2, Op3 };
4739  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4740}
4741
4742MachineSDNode *
4743SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4744                             const SDValue *Ops, unsigned NumOps) {
4745  SDVTList VTs = getVTList(VT);
4746  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4747}
4748
4749MachineSDNode *
4750SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4751  SDVTList VTs = getVTList(VT1, VT2);
4752  return getMachineNode(Opcode, dl, VTs, 0, 0);
4753}
4754
4755MachineSDNode *
4756SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4757                             EVT VT1, EVT VT2, SDValue Op1) {
4758  SDVTList VTs = getVTList(VT1, VT2);
4759  SDValue Ops[] = { Op1 };
4760  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4761}
4762
4763MachineSDNode *
4764SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4765                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4766  SDVTList VTs = getVTList(VT1, VT2);
4767  SDValue Ops[] = { Op1, Op2 };
4768  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4769}
4770
4771MachineSDNode *
4772SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4773                             EVT VT1, EVT VT2, SDValue Op1,
4774                             SDValue Op2, SDValue Op3) {
4775  SDVTList VTs = getVTList(VT1, VT2);
4776  SDValue Ops[] = { Op1, Op2, Op3 };
4777  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4778}
4779
4780MachineSDNode *
4781SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4782                             EVT VT1, EVT VT2,
4783                             const SDValue *Ops, unsigned NumOps) {
4784  SDVTList VTs = getVTList(VT1, VT2);
4785  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4786}
4787
4788MachineSDNode *
4789SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4790                             EVT VT1, EVT VT2, EVT VT3,
4791                             SDValue Op1, SDValue Op2) {
4792  SDVTList VTs = getVTList(VT1, VT2, VT3);
4793  SDValue Ops[] = { Op1, Op2 };
4794  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4795}
4796
4797MachineSDNode *
4798SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4799                             EVT VT1, EVT VT2, EVT VT3,
4800                             SDValue Op1, SDValue Op2, SDValue Op3) {
4801  SDVTList VTs = getVTList(VT1, VT2, VT3);
4802  SDValue Ops[] = { Op1, Op2, Op3 };
4803  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4804}
4805
4806MachineSDNode *
4807SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4808                             EVT VT1, EVT VT2, EVT VT3,
4809                             const SDValue *Ops, unsigned NumOps) {
4810  SDVTList VTs = getVTList(VT1, VT2, VT3);
4811  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4812}
4813
4814MachineSDNode *
4815SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4816                             EVT VT2, EVT VT3, EVT VT4,
4817                             const SDValue *Ops, unsigned NumOps) {
4818  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4819  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4820}
4821
4822MachineSDNode *
4823SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4824                             const std::vector<EVT> &ResultTys,
4825                             const SDValue *Ops, unsigned NumOps) {
4826  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4827  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4828}
4829
4830MachineSDNode *
4831SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4832                             const SDValue *Ops, unsigned NumOps) {
4833  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4834  MachineSDNode *N;
4835  void *IP;
4836
4837  if (DoCSE) {
4838    FoldingSetNodeID ID;
4839    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4840    IP = 0;
4841    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4842      return cast<MachineSDNode>(E);
4843  }
4844
4845  // Allocate a new MachineSDNode.
4846  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
4847
4848  // Initialize the operands list.
4849  if (NumOps > array_lengthof(N->LocalOperands))
4850    // We're creating a final node that will live unmorphed for the
4851    // remainder of the current SelectionDAG iteration, so we can allocate
4852    // the operands directly out of a pool with no recycling metadata.
4853    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4854                    Ops, NumOps);
4855  else
4856    N->InitOperands(N->LocalOperands, Ops, NumOps);
4857  N->OperandsNeedDelete = false;
4858
4859  if (DoCSE)
4860    CSEMap.InsertNode(N, IP);
4861
4862  AllNodes.push_back(N);
4863#ifndef NDEBUG
4864  VerifyNode(N);
4865#endif
4866  return N;
4867}
4868
4869/// getTargetExtractSubreg - A convenience function for creating
4870/// TargetOpcode::EXTRACT_SUBREG nodes.
4871SDValue
4872SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4873                                     SDValue Operand) {
4874  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4875  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4876                                  VT, Operand, SRIdxVal);
4877  return SDValue(Subreg, 0);
4878}
4879
4880/// getTargetInsertSubreg - A convenience function for creating
4881/// TargetOpcode::INSERT_SUBREG nodes.
4882SDValue
4883SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4884                                    SDValue Operand, SDValue Subreg) {
4885  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4886  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4887                                  VT, Operand, Subreg, SRIdxVal);
4888  return SDValue(Result, 0);
4889}
4890
4891/// getNodeIfExists - Get the specified node if it's already available, or
4892/// else return NULL.
4893SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4894                                      const SDValue *Ops, unsigned NumOps) {
4895  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4896    FoldingSetNodeID ID;
4897    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4898    void *IP = 0;
4899    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4900      return E;
4901  }
4902  return NULL;
4903}
4904
4905/// getDbgValue - Creates a SDDbgValue node.
4906///
4907SDDbgValue *
4908SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
4909                          DebugLoc DL, unsigned O) {
4910  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
4911}
4912
4913SDDbgValue *
4914SelectionDAG::getDbgValue(MDNode *MDPtr, Value *C, uint64_t Off,
4915                          DebugLoc DL, unsigned O) {
4916  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
4917}
4918
4919SDDbgValue *
4920SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
4921                          DebugLoc DL, unsigned O) {
4922  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
4923}
4924
4925namespace {
4926
4927/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
4928/// pointed to by a use iterator is deleted, increment the use iterator
4929/// so that it doesn't dangle.
4930///
4931/// This class also manages a "downlink" DAGUpdateListener, to forward
4932/// messages to ReplaceAllUsesWith's callers.
4933///
4934class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
4935  SelectionDAG::DAGUpdateListener *DownLink;
4936  SDNode::use_iterator &UI;
4937  SDNode::use_iterator &UE;
4938
4939  virtual void NodeDeleted(SDNode *N, SDNode *E) {
4940    // Increment the iterator as needed.
4941    while (UI != UE && N == *UI)
4942      ++UI;
4943
4944    // Then forward the message.
4945    if (DownLink) DownLink->NodeDeleted(N, E);
4946  }
4947
4948  virtual void NodeUpdated(SDNode *N) {
4949    // Just forward the message.
4950    if (DownLink) DownLink->NodeUpdated(N);
4951  }
4952
4953public:
4954  RAUWUpdateListener(SelectionDAG::DAGUpdateListener *dl,
4955                     SDNode::use_iterator &ui,
4956                     SDNode::use_iterator &ue)
4957    : DownLink(dl), UI(ui), UE(ue) {}
4958};
4959
4960}
4961
4962/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4963/// This can cause recursive merging of nodes in the DAG.
4964///
4965/// This version assumes From has a single result value.
4966///
4967void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4968                                      DAGUpdateListener *UpdateListener) {
4969  SDNode *From = FromN.getNode();
4970  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4971         "Cannot replace with this method!");
4972  assert(From != To.getNode() && "Cannot replace uses of with self");
4973
4974  // Iterate over all the existing uses of From. New uses will be added
4975  // to the beginning of the use list, which we avoid visiting.
4976  // This specifically avoids visiting uses of From that arise while the
4977  // replacement is happening, because any such uses would be the result
4978  // of CSE: If an existing node looks like From after one of its operands
4979  // is replaced by To, we don't want to replace of all its users with To
4980  // too. See PR3018 for more info.
4981  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4982  RAUWUpdateListener Listener(UpdateListener, UI, UE);
4983  while (UI != UE) {
4984    SDNode *User = *UI;
4985
4986    // This node is about to morph, remove its old self from the CSE maps.
4987    RemoveNodeFromCSEMaps(User);
4988
4989    // A user can appear in a use list multiple times, and when this
4990    // happens the uses are usually next to each other in the list.
4991    // To help reduce the number of CSE recomputations, process all
4992    // the uses of this user that we can find this way.
4993    do {
4994      SDUse &Use = UI.getUse();
4995      ++UI;
4996      Use.set(To);
4997    } while (UI != UE && *UI == User);
4998
4999    // Now that we have modified User, add it back to the CSE maps.  If it
5000    // already exists there, recursively merge the results together.
5001    AddModifiedNodeToCSEMaps(User, &Listener);
5002  }
5003}
5004
5005/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5006/// This can cause recursive merging of nodes in the DAG.
5007///
5008/// This version assumes that for each value of From, there is a
5009/// corresponding value in To in the same position with the same type.
5010///
5011void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
5012                                      DAGUpdateListener *UpdateListener) {
5013#ifndef NDEBUG
5014  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5015    assert((!From->hasAnyUseOfValue(i) ||
5016            From->getValueType(i) == To->getValueType(i)) &&
5017           "Cannot use this version of ReplaceAllUsesWith!");
5018#endif
5019
5020  // Handle the trivial case.
5021  if (From == To)
5022    return;
5023
5024  // Iterate over just the existing users of From. See the comments in
5025  // the ReplaceAllUsesWith above.
5026  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5027  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5028  while (UI != UE) {
5029    SDNode *User = *UI;
5030
5031    // This node is about to morph, remove its old self from the CSE maps.
5032    RemoveNodeFromCSEMaps(User);
5033
5034    // A user can appear in a use list multiple times, and when this
5035    // happens the uses are usually next to each other in the list.
5036    // To help reduce the number of CSE recomputations, process all
5037    // the uses of this user that we can find this way.
5038    do {
5039      SDUse &Use = UI.getUse();
5040      ++UI;
5041      Use.setNode(To);
5042    } while (UI != UE && *UI == User);
5043
5044    // Now that we have modified User, add it back to the CSE maps.  If it
5045    // already exists there, recursively merge the results together.
5046    AddModifiedNodeToCSEMaps(User, &Listener);
5047  }
5048}
5049
5050/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5051/// This can cause recursive merging of nodes in the DAG.
5052///
5053/// This version can replace From with any result values.  To must match the
5054/// number and types of values returned by From.
5055void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5056                                      const SDValue *To,
5057                                      DAGUpdateListener *UpdateListener) {
5058  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5059    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5060
5061  // Iterate over just the existing users of From. See the comments in
5062  // the ReplaceAllUsesWith above.
5063  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5064  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5065  while (UI != UE) {
5066    SDNode *User = *UI;
5067
5068    // This node is about to morph, remove its old self from the CSE maps.
5069    RemoveNodeFromCSEMaps(User);
5070
5071    // A user can appear in a use list multiple times, and when this
5072    // happens the uses are usually next to each other in the list.
5073    // To help reduce the number of CSE recomputations, process all
5074    // the uses of this user that we can find this way.
5075    do {
5076      SDUse &Use = UI.getUse();
5077      const SDValue &ToOp = To[Use.getResNo()];
5078      ++UI;
5079      Use.set(ToOp);
5080    } while (UI != UE && *UI == User);
5081
5082    // Now that we have modified User, add it back to the CSE maps.  If it
5083    // already exists there, recursively merge the results together.
5084    AddModifiedNodeToCSEMaps(User, &Listener);
5085  }
5086}
5087
5088/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5089/// uses of other values produced by From.getNode() alone.  The Deleted
5090/// vector is handled the same way as for ReplaceAllUsesWith.
5091void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5092                                             DAGUpdateListener *UpdateListener){
5093  // Handle the really simple, really trivial case efficiently.
5094  if (From == To) return;
5095
5096  // Handle the simple, trivial, case efficiently.
5097  if (From.getNode()->getNumValues() == 1) {
5098    ReplaceAllUsesWith(From, To, UpdateListener);
5099    return;
5100  }
5101
5102  // Iterate over just the existing users of From. See the comments in
5103  // the ReplaceAllUsesWith above.
5104  SDNode::use_iterator UI = From.getNode()->use_begin(),
5105                       UE = From.getNode()->use_end();
5106  RAUWUpdateListener Listener(UpdateListener, UI, UE);
5107  while (UI != UE) {
5108    SDNode *User = *UI;
5109    bool UserRemovedFromCSEMaps = false;
5110
5111    // A user can appear in a use list multiple times, and when this
5112    // happens the uses are usually next to each other in the list.
5113    // To help reduce the number of CSE recomputations, process all
5114    // the uses of this user that we can find this way.
5115    do {
5116      SDUse &Use = UI.getUse();
5117
5118      // Skip uses of different values from the same node.
5119      if (Use.getResNo() != From.getResNo()) {
5120        ++UI;
5121        continue;
5122      }
5123
5124      // If this node hasn't been modified yet, it's still in the CSE maps,
5125      // so remove its old self from the CSE maps.
5126      if (!UserRemovedFromCSEMaps) {
5127        RemoveNodeFromCSEMaps(User);
5128        UserRemovedFromCSEMaps = true;
5129      }
5130
5131      ++UI;
5132      Use.set(To);
5133    } while (UI != UE && *UI == User);
5134
5135    // We are iterating over all uses of the From node, so if a use
5136    // doesn't use the specific value, no changes are made.
5137    if (!UserRemovedFromCSEMaps)
5138      continue;
5139
5140    // Now that we have modified User, add it back to the CSE maps.  If it
5141    // already exists there, recursively merge the results together.
5142    AddModifiedNodeToCSEMaps(User, &Listener);
5143  }
5144}
5145
5146namespace {
5147  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5148  /// to record information about a use.
5149  struct UseMemo {
5150    SDNode *User;
5151    unsigned Index;
5152    SDUse *Use;
5153  };
5154
5155  /// operator< - Sort Memos by User.
5156  bool operator<(const UseMemo &L, const UseMemo &R) {
5157    return (intptr_t)L.User < (intptr_t)R.User;
5158  }
5159}
5160
5161/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5162/// uses of other values produced by From.getNode() alone.  The same value
5163/// may appear in both the From and To list.  The Deleted vector is
5164/// handled the same way as for ReplaceAllUsesWith.
5165void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5166                                              const SDValue *To,
5167                                              unsigned Num,
5168                                              DAGUpdateListener *UpdateListener){
5169  // Handle the simple, trivial case efficiently.
5170  if (Num == 1)
5171    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5172
5173  // Read up all the uses and make records of them. This helps
5174  // processing new uses that are introduced during the
5175  // replacement process.
5176  SmallVector<UseMemo, 4> Uses;
5177  for (unsigned i = 0; i != Num; ++i) {
5178    unsigned FromResNo = From[i].getResNo();
5179    SDNode *FromNode = From[i].getNode();
5180    for (SDNode::use_iterator UI = FromNode->use_begin(),
5181         E = FromNode->use_end(); UI != E; ++UI) {
5182      SDUse &Use = UI.getUse();
5183      if (Use.getResNo() == FromResNo) {
5184        UseMemo Memo = { *UI, i, &Use };
5185        Uses.push_back(Memo);
5186      }
5187    }
5188  }
5189
5190  // Sort the uses, so that all the uses from a given User are together.
5191  std::sort(Uses.begin(), Uses.end());
5192
5193  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5194       UseIndex != UseIndexEnd; ) {
5195    // We know that this user uses some value of From.  If it is the right
5196    // value, update it.
5197    SDNode *User = Uses[UseIndex].User;
5198
5199    // This node is about to morph, remove its old self from the CSE maps.
5200    RemoveNodeFromCSEMaps(User);
5201
5202    // The Uses array is sorted, so all the uses for a given User
5203    // are next to each other in the list.
5204    // To help reduce the number of CSE recomputations, process all
5205    // the uses of this user that we can find this way.
5206    do {
5207      unsigned i = Uses[UseIndex].Index;
5208      SDUse &Use = *Uses[UseIndex].Use;
5209      ++UseIndex;
5210
5211      Use.set(To[i]);
5212    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5213
5214    // Now that we have modified User, add it back to the CSE maps.  If it
5215    // already exists there, recursively merge the results together.
5216    AddModifiedNodeToCSEMaps(User, UpdateListener);
5217  }
5218}
5219
5220/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5221/// based on their topological order. It returns the maximum id and a vector
5222/// of the SDNodes* in assigned order by reference.
5223unsigned SelectionDAG::AssignTopologicalOrder() {
5224
5225  unsigned DAGSize = 0;
5226
5227  // SortedPos tracks the progress of the algorithm. Nodes before it are
5228  // sorted, nodes after it are unsorted. When the algorithm completes
5229  // it is at the end of the list.
5230  allnodes_iterator SortedPos = allnodes_begin();
5231
5232  // Visit all the nodes. Move nodes with no operands to the front of
5233  // the list immediately. Annotate nodes that do have operands with their
5234  // operand count. Before we do this, the Node Id fields of the nodes
5235  // may contain arbitrary values. After, the Node Id fields for nodes
5236  // before SortedPos will contain the topological sort index, and the
5237  // Node Id fields for nodes At SortedPos and after will contain the
5238  // count of outstanding operands.
5239  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5240    SDNode *N = I++;
5241    checkForCycles(N);
5242    unsigned Degree = N->getNumOperands();
5243    if (Degree == 0) {
5244      // A node with no uses, add it to the result array immediately.
5245      N->setNodeId(DAGSize++);
5246      allnodes_iterator Q = N;
5247      if (Q != SortedPos)
5248        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5249      assert(SortedPos != AllNodes.end() && "Overran node list");
5250      ++SortedPos;
5251    } else {
5252      // Temporarily use the Node Id as scratch space for the degree count.
5253      N->setNodeId(Degree);
5254    }
5255  }
5256
5257  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5258  // such that by the time the end is reached all nodes will be sorted.
5259  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5260    SDNode *N = I;
5261    checkForCycles(N);
5262    // N is in sorted position, so all its uses have one less operand
5263    // that needs to be sorted.
5264    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5265         UI != UE; ++UI) {
5266      SDNode *P = *UI;
5267      unsigned Degree = P->getNodeId();
5268      assert(Degree != 0 && "Invalid node degree");
5269      --Degree;
5270      if (Degree == 0) {
5271        // All of P's operands are sorted, so P may sorted now.
5272        P->setNodeId(DAGSize++);
5273        if (P != SortedPos)
5274          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5275        assert(SortedPos != AllNodes.end() && "Overran node list");
5276        ++SortedPos;
5277      } else {
5278        // Update P's outstanding operand count.
5279        P->setNodeId(Degree);
5280      }
5281    }
5282    if (I == SortedPos) {
5283#ifndef NDEBUG
5284      SDNode *S = ++I;
5285      dbgs() << "Overran sorted position:\n";
5286      S->dumprFull();
5287#endif
5288      llvm_unreachable(0);
5289    }
5290  }
5291
5292  assert(SortedPos == AllNodes.end() &&
5293         "Topological sort incomplete!");
5294  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5295         "First node in topological sort is not the entry token!");
5296  assert(AllNodes.front().getNodeId() == 0 &&
5297         "First node in topological sort has non-zero id!");
5298  assert(AllNodes.front().getNumOperands() == 0 &&
5299         "First node in topological sort has operands!");
5300  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5301         "Last node in topologic sort has unexpected id!");
5302  assert(AllNodes.back().use_empty() &&
5303         "Last node in topologic sort has users!");
5304  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5305  return DAGSize;
5306}
5307
5308/// AssignOrdering - Assign an order to the SDNode.
5309void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5310  assert(SD && "Trying to assign an order to a null node!");
5311  Ordering->add(SD, Order);
5312}
5313
5314/// GetOrdering - Get the order for the SDNode.
5315unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5316  assert(SD && "Trying to get the order of a null node!");
5317  return Ordering->getOrder(SD);
5318}
5319
5320/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5321/// value is produced by SD.
5322void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD) {
5323  DbgInfo->add(DB, SD);
5324  if (SD)
5325    SD->setHasDebugValue(true);
5326}
5327
5328//===----------------------------------------------------------------------===//
5329//                              SDNode Class
5330//===----------------------------------------------------------------------===//
5331
5332HandleSDNode::~HandleSDNode() {
5333  DropOperands();
5334}
5335
5336GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5337                                         EVT VT, int64_t o, unsigned char TF)
5338  : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
5339    Offset(o), TargetFlags(TF) {
5340  TheGlobal = const_cast<GlobalValue*>(GA);
5341}
5342
5343MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5344                     MachineMemOperand *mmo)
5345 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5346  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5347                                      MMO->isNonTemporal());
5348  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5349  assert(isNonTemporal() == MMO->isNonTemporal() &&
5350         "Non-temporal encoding error!");
5351  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5352}
5353
5354MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5355                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5356                     MachineMemOperand *mmo)
5357   : SDNode(Opc, dl, VTs, Ops, NumOps),
5358     MemoryVT(memvt), MMO(mmo) {
5359  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5360                                      MMO->isNonTemporal());
5361  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5362  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5363}
5364
5365/// Profile - Gather unique data for the node.
5366///
5367void SDNode::Profile(FoldingSetNodeID &ID) const {
5368  AddNodeIDNode(ID, this);
5369}
5370
5371namespace {
5372  struct EVTArray {
5373    std::vector<EVT> VTs;
5374
5375    EVTArray() {
5376      VTs.reserve(MVT::LAST_VALUETYPE);
5377      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5378        VTs.push_back(MVT((MVT::SimpleValueType)i));
5379    }
5380  };
5381}
5382
5383static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5384static ManagedStatic<EVTArray> SimpleVTArray;
5385static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5386
5387/// getValueTypeList - Return a pointer to the specified value type.
5388///
5389const EVT *SDNode::getValueTypeList(EVT VT) {
5390  if (VT.isExtended()) {
5391    sys::SmartScopedLock<true> Lock(*VTMutex);
5392    return &(*EVTs->insert(VT).first);
5393  } else {
5394    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5395  }
5396}
5397
5398/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5399/// indicated value.  This method ignores uses of other values defined by this
5400/// operation.
5401bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5402  assert(Value < getNumValues() && "Bad value!");
5403
5404  // TODO: Only iterate over uses of a given value of the node
5405  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5406    if (UI.getUse().getResNo() == Value) {
5407      if (NUses == 0)
5408        return false;
5409      --NUses;
5410    }
5411  }
5412
5413  // Found exactly the right number of uses?
5414  return NUses == 0;
5415}
5416
5417
5418/// hasAnyUseOfValue - Return true if there are any use of the indicated
5419/// value. This method ignores uses of other values defined by this operation.
5420bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5421  assert(Value < getNumValues() && "Bad value!");
5422
5423  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5424    if (UI.getUse().getResNo() == Value)
5425      return true;
5426
5427  return false;
5428}
5429
5430
5431/// isOnlyUserOf - Return true if this node is the only use of N.
5432///
5433bool SDNode::isOnlyUserOf(SDNode *N) const {
5434  bool Seen = false;
5435  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5436    SDNode *User = *I;
5437    if (User == this)
5438      Seen = true;
5439    else
5440      return false;
5441  }
5442
5443  return Seen;
5444}
5445
5446/// isOperand - Return true if this node is an operand of N.
5447///
5448bool SDValue::isOperandOf(SDNode *N) const {
5449  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5450    if (*this == N->getOperand(i))
5451      return true;
5452  return false;
5453}
5454
5455bool SDNode::isOperandOf(SDNode *N) const {
5456  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5457    if (this == N->OperandList[i].getNode())
5458      return true;
5459  return false;
5460}
5461
5462/// reachesChainWithoutSideEffects - Return true if this operand (which must
5463/// be a chain) reaches the specified operand without crossing any
5464/// side-effecting instructions.  In practice, this looks through token
5465/// factors and non-volatile loads.  In order to remain efficient, this only
5466/// looks a couple of nodes in, it does not do an exhaustive search.
5467bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5468                                               unsigned Depth) const {
5469  if (*this == Dest) return true;
5470
5471  // Don't search too deeply, we just want to be able to see through
5472  // TokenFactor's etc.
5473  if (Depth == 0) return false;
5474
5475  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5476  // of the operands of the TF reach dest, then we can do the xform.
5477  if (getOpcode() == ISD::TokenFactor) {
5478    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5479      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5480        return true;
5481    return false;
5482  }
5483
5484  // Loads don't have side effects, look through them.
5485  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5486    if (!Ld->isVolatile())
5487      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5488  }
5489  return false;
5490}
5491
5492/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5493/// is either an operand of N or it can be reached by traversing up the operands.
5494/// NOTE: this is an expensive method. Use it carefully.
5495bool SDNode::isPredecessorOf(SDNode *N) const {
5496  SmallPtrSet<SDNode *, 32> Visited;
5497  SmallVector<SDNode *, 16> Worklist;
5498  Worklist.push_back(N);
5499
5500  do {
5501    N = Worklist.pop_back_val();
5502    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5503      SDNode *Op = N->getOperand(i).getNode();
5504      if (Op == this)
5505        return true;
5506      if (Visited.insert(Op))
5507        Worklist.push_back(Op);
5508    }
5509  } while (!Worklist.empty());
5510
5511  return false;
5512}
5513
5514uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5515  assert(Num < NumOperands && "Invalid child # of SDNode!");
5516  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5517}
5518
5519std::string SDNode::getOperationName(const SelectionDAG *G) const {
5520  switch (getOpcode()) {
5521  default:
5522    if (getOpcode() < ISD::BUILTIN_OP_END)
5523      return "<<Unknown DAG Node>>";
5524    if (isMachineOpcode()) {
5525      if (G)
5526        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5527          if (getMachineOpcode() < TII->getNumOpcodes())
5528            return TII->get(getMachineOpcode()).getName();
5529      return "<<Unknown Machine Node #" + utostr(getOpcode()) + ">>";
5530    }
5531    if (G) {
5532      const TargetLowering &TLI = G->getTargetLoweringInfo();
5533      const char *Name = TLI.getTargetNodeName(getOpcode());
5534      if (Name) return Name;
5535      return "<<Unknown Target Node #" + utostr(getOpcode()) + ">>";
5536    }
5537    return "<<Unknown Node #" + utostr(getOpcode()) + ">>";
5538
5539#ifndef NDEBUG
5540  case ISD::DELETED_NODE:
5541    return "<<Deleted Node!>>";
5542#endif
5543  case ISD::PREFETCH:      return "Prefetch";
5544  case ISD::MEMBARRIER:    return "MemBarrier";
5545  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5546  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5547  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5548  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5549  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5550  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5551  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5552  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5553  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5554  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5555  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5556  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5557  case ISD::PCMARKER:      return "PCMarker";
5558  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5559  case ISD::SRCVALUE:      return "SrcValue";
5560  case ISD::EntryToken:    return "EntryToken";
5561  case ISD::TokenFactor:   return "TokenFactor";
5562  case ISD::AssertSext:    return "AssertSext";
5563  case ISD::AssertZext:    return "AssertZext";
5564
5565  case ISD::BasicBlock:    return "BasicBlock";
5566  case ISD::VALUETYPE:     return "ValueType";
5567  case ISD::Register:      return "Register";
5568
5569  case ISD::Constant:      return "Constant";
5570  case ISD::ConstantFP:    return "ConstantFP";
5571  case ISD::GlobalAddress: return "GlobalAddress";
5572  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5573  case ISD::FrameIndex:    return "FrameIndex";
5574  case ISD::JumpTable:     return "JumpTable";
5575  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5576  case ISD::RETURNADDR: return "RETURNADDR";
5577  case ISD::FRAMEADDR: return "FRAMEADDR";
5578  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5579  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5580  case ISD::LSDAADDR: return "LSDAADDR";
5581  case ISD::EHSELECTION: return "EHSELECTION";
5582  case ISD::EH_RETURN: return "EH_RETURN";
5583  case ISD::ConstantPool:  return "ConstantPool";
5584  case ISD::ExternalSymbol: return "ExternalSymbol";
5585  case ISD::BlockAddress:  return "BlockAddress";
5586  case ISD::INTRINSIC_WO_CHAIN:
5587  case ISD::INTRINSIC_VOID:
5588  case ISD::INTRINSIC_W_CHAIN: {
5589    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5590    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5591    if (IID < Intrinsic::num_intrinsics)
5592      return Intrinsic::getName((Intrinsic::ID)IID);
5593    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5594      return TII->getName(IID);
5595    llvm_unreachable("Invalid intrinsic ID");
5596  }
5597
5598  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5599  case ISD::TargetConstant: return "TargetConstant";
5600  case ISD::TargetConstantFP:return "TargetConstantFP";
5601  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5602  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5603  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5604  case ISD::TargetJumpTable:  return "TargetJumpTable";
5605  case ISD::TargetConstantPool:  return "TargetConstantPool";
5606  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5607  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5608
5609  case ISD::CopyToReg:     return "CopyToReg";
5610  case ISD::CopyFromReg:   return "CopyFromReg";
5611  case ISD::UNDEF:         return "undef";
5612  case ISD::MERGE_VALUES:  return "merge_values";
5613  case ISD::INLINEASM:     return "inlineasm";
5614  case ISD::EH_LABEL:      return "eh_label";
5615  case ISD::HANDLENODE:    return "handlenode";
5616
5617  // Unary operators
5618  case ISD::FABS:   return "fabs";
5619  case ISD::FNEG:   return "fneg";
5620  case ISD::FSQRT:  return "fsqrt";
5621  case ISD::FSIN:   return "fsin";
5622  case ISD::FCOS:   return "fcos";
5623  case ISD::FPOWI:  return "fpowi";
5624  case ISD::FPOW:   return "fpow";
5625  case ISD::FTRUNC: return "ftrunc";
5626  case ISD::FFLOOR: return "ffloor";
5627  case ISD::FCEIL:  return "fceil";
5628  case ISD::FRINT:  return "frint";
5629  case ISD::FNEARBYINT: return "fnearbyint";
5630
5631  // Binary operators
5632  case ISD::ADD:    return "add";
5633  case ISD::SUB:    return "sub";
5634  case ISD::MUL:    return "mul";
5635  case ISD::MULHU:  return "mulhu";
5636  case ISD::MULHS:  return "mulhs";
5637  case ISD::SDIV:   return "sdiv";
5638  case ISD::UDIV:   return "udiv";
5639  case ISD::SREM:   return "srem";
5640  case ISD::UREM:   return "urem";
5641  case ISD::SMUL_LOHI:  return "smul_lohi";
5642  case ISD::UMUL_LOHI:  return "umul_lohi";
5643  case ISD::SDIVREM:    return "sdivrem";
5644  case ISD::UDIVREM:    return "udivrem";
5645  case ISD::AND:    return "and";
5646  case ISD::OR:     return "or";
5647  case ISD::XOR:    return "xor";
5648  case ISD::SHL:    return "shl";
5649  case ISD::SRA:    return "sra";
5650  case ISD::SRL:    return "srl";
5651  case ISD::ROTL:   return "rotl";
5652  case ISD::ROTR:   return "rotr";
5653  case ISD::FADD:   return "fadd";
5654  case ISD::FSUB:   return "fsub";
5655  case ISD::FMUL:   return "fmul";
5656  case ISD::FDIV:   return "fdiv";
5657  case ISD::FREM:   return "frem";
5658  case ISD::FCOPYSIGN: return "fcopysign";
5659  case ISD::FGETSIGN:  return "fgetsign";
5660
5661  case ISD::SETCC:       return "setcc";
5662  case ISD::VSETCC:      return "vsetcc";
5663  case ISD::SELECT:      return "select";
5664  case ISD::SELECT_CC:   return "select_cc";
5665  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5666  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5667  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5668  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5669  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5670  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5671  case ISD::CARRY_FALSE:         return "carry_false";
5672  case ISD::ADDC:        return "addc";
5673  case ISD::ADDE:        return "adde";
5674  case ISD::SADDO:       return "saddo";
5675  case ISD::UADDO:       return "uaddo";
5676  case ISD::SSUBO:       return "ssubo";
5677  case ISD::USUBO:       return "usubo";
5678  case ISD::SMULO:       return "smulo";
5679  case ISD::UMULO:       return "umulo";
5680  case ISD::SUBC:        return "subc";
5681  case ISD::SUBE:        return "sube";
5682  case ISD::SHL_PARTS:   return "shl_parts";
5683  case ISD::SRA_PARTS:   return "sra_parts";
5684  case ISD::SRL_PARTS:   return "srl_parts";
5685
5686  // Conversion operators.
5687  case ISD::SIGN_EXTEND: return "sign_extend";
5688  case ISD::ZERO_EXTEND: return "zero_extend";
5689  case ISD::ANY_EXTEND:  return "any_extend";
5690  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5691  case ISD::TRUNCATE:    return "truncate";
5692  case ISD::FP_ROUND:    return "fp_round";
5693  case ISD::FLT_ROUNDS_: return "flt_rounds";
5694  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5695  case ISD::FP_EXTEND:   return "fp_extend";
5696
5697  case ISD::SINT_TO_FP:  return "sint_to_fp";
5698  case ISD::UINT_TO_FP:  return "uint_to_fp";
5699  case ISD::FP_TO_SINT:  return "fp_to_sint";
5700  case ISD::FP_TO_UINT:  return "fp_to_uint";
5701  case ISD::BIT_CONVERT: return "bit_convert";
5702  case ISD::FP16_TO_FP32: return "fp16_to_fp32";
5703  case ISD::FP32_TO_FP16: return "fp32_to_fp16";
5704
5705  case ISD::CONVERT_RNDSAT: {
5706    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5707    default: llvm_unreachable("Unknown cvt code!");
5708    case ISD::CVT_FF:  return "cvt_ff";
5709    case ISD::CVT_FS:  return "cvt_fs";
5710    case ISD::CVT_FU:  return "cvt_fu";
5711    case ISD::CVT_SF:  return "cvt_sf";
5712    case ISD::CVT_UF:  return "cvt_uf";
5713    case ISD::CVT_SS:  return "cvt_ss";
5714    case ISD::CVT_SU:  return "cvt_su";
5715    case ISD::CVT_US:  return "cvt_us";
5716    case ISD::CVT_UU:  return "cvt_uu";
5717    }
5718  }
5719
5720    // Control flow instructions
5721  case ISD::BR:      return "br";
5722  case ISD::BRIND:   return "brind";
5723  case ISD::BR_JT:   return "br_jt";
5724  case ISD::BRCOND:  return "brcond";
5725  case ISD::BR_CC:   return "br_cc";
5726  case ISD::CALLSEQ_START:  return "callseq_start";
5727  case ISD::CALLSEQ_END:    return "callseq_end";
5728
5729    // Other operators
5730  case ISD::LOAD:               return "load";
5731  case ISD::STORE:              return "store";
5732  case ISD::VAARG:              return "vaarg";
5733  case ISD::VACOPY:             return "vacopy";
5734  case ISD::VAEND:              return "vaend";
5735  case ISD::VASTART:            return "vastart";
5736  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5737  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5738  case ISD::BUILD_PAIR:         return "build_pair";
5739  case ISD::STACKSAVE:          return "stacksave";
5740  case ISD::STACKRESTORE:       return "stackrestore";
5741  case ISD::TRAP:               return "trap";
5742
5743  // Bit manipulation
5744  case ISD::BSWAP:   return "bswap";
5745  case ISD::CTPOP:   return "ctpop";
5746  case ISD::CTTZ:    return "cttz";
5747  case ISD::CTLZ:    return "ctlz";
5748
5749  // Trampolines
5750  case ISD::TRAMPOLINE: return "trampoline";
5751
5752  case ISD::CONDCODE:
5753    switch (cast<CondCodeSDNode>(this)->get()) {
5754    default: llvm_unreachable("Unknown setcc condition!");
5755    case ISD::SETOEQ:  return "setoeq";
5756    case ISD::SETOGT:  return "setogt";
5757    case ISD::SETOGE:  return "setoge";
5758    case ISD::SETOLT:  return "setolt";
5759    case ISD::SETOLE:  return "setole";
5760    case ISD::SETONE:  return "setone";
5761
5762    case ISD::SETO:    return "seto";
5763    case ISD::SETUO:   return "setuo";
5764    case ISD::SETUEQ:  return "setue";
5765    case ISD::SETUGT:  return "setugt";
5766    case ISD::SETUGE:  return "setuge";
5767    case ISD::SETULT:  return "setult";
5768    case ISD::SETULE:  return "setule";
5769    case ISD::SETUNE:  return "setune";
5770
5771    case ISD::SETEQ:   return "seteq";
5772    case ISD::SETGT:   return "setgt";
5773    case ISD::SETGE:   return "setge";
5774    case ISD::SETLT:   return "setlt";
5775    case ISD::SETLE:   return "setle";
5776    case ISD::SETNE:   return "setne";
5777    }
5778  }
5779}
5780
5781const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5782  switch (AM) {
5783  default:
5784    return "";
5785  case ISD::PRE_INC:
5786    return "<pre-inc>";
5787  case ISD::PRE_DEC:
5788    return "<pre-dec>";
5789  case ISD::POST_INC:
5790    return "<post-inc>";
5791  case ISD::POST_DEC:
5792    return "<post-dec>";
5793  }
5794}
5795
5796std::string ISD::ArgFlagsTy::getArgFlagsString() {
5797  std::string S = "< ";
5798
5799  if (isZExt())
5800    S += "zext ";
5801  if (isSExt())
5802    S += "sext ";
5803  if (isInReg())
5804    S += "inreg ";
5805  if (isSRet())
5806    S += "sret ";
5807  if (isByVal())
5808    S += "byval ";
5809  if (isNest())
5810    S += "nest ";
5811  if (getByValAlign())
5812    S += "byval-align:" + utostr(getByValAlign()) + " ";
5813  if (getOrigAlign())
5814    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5815  if (getByValSize())
5816    S += "byval-size:" + utostr(getByValSize()) + " ";
5817  return S + ">";
5818}
5819
5820void SDNode::dump() const { dump(0); }
5821void SDNode::dump(const SelectionDAG *G) const {
5822  print(dbgs(), G);
5823}
5824
5825void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5826  OS << (void*)this << ": ";
5827
5828  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5829    if (i) OS << ",";
5830    if (getValueType(i) == MVT::Other)
5831      OS << "ch";
5832    else
5833      OS << getValueType(i).getEVTString();
5834  }
5835  OS << " = " << getOperationName(G);
5836}
5837
5838void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5839  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5840    if (!MN->memoperands_empty()) {
5841      OS << "<";
5842      OS << "Mem:";
5843      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5844           e = MN->memoperands_end(); i != e; ++i) {
5845        OS << **i;
5846        if (next(i) != e)
5847          OS << " ";
5848      }
5849      OS << ">";
5850    }
5851  } else if (const ShuffleVectorSDNode *SVN =
5852               dyn_cast<ShuffleVectorSDNode>(this)) {
5853    OS << "<";
5854    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5855      int Idx = SVN->getMaskElt(i);
5856      if (i) OS << ",";
5857      if (Idx < 0)
5858        OS << "u";
5859      else
5860        OS << Idx;
5861    }
5862    OS << ">";
5863  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5864    OS << '<' << CSDN->getAPIntValue() << '>';
5865  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5866    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5867      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5868    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5869      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5870    else {
5871      OS << "<APFloat(";
5872      CSDN->getValueAPF().bitcastToAPInt().dump();
5873      OS << ")>";
5874    }
5875  } else if (const GlobalAddressSDNode *GADN =
5876             dyn_cast<GlobalAddressSDNode>(this)) {
5877    int64_t offset = GADN->getOffset();
5878    OS << '<';
5879    WriteAsOperand(OS, GADN->getGlobal());
5880    OS << '>';
5881    if (offset > 0)
5882      OS << " + " << offset;
5883    else
5884      OS << " " << offset;
5885    if (unsigned int TF = GADN->getTargetFlags())
5886      OS << " [TF=" << TF << ']';
5887  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5888    OS << "<" << FIDN->getIndex() << ">";
5889  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5890    OS << "<" << JTDN->getIndex() << ">";
5891    if (unsigned int TF = JTDN->getTargetFlags())
5892      OS << " [TF=" << TF << ']';
5893  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5894    int offset = CP->getOffset();
5895    if (CP->isMachineConstantPoolEntry())
5896      OS << "<" << *CP->getMachineCPVal() << ">";
5897    else
5898      OS << "<" << *CP->getConstVal() << ">";
5899    if (offset > 0)
5900      OS << " + " << offset;
5901    else
5902      OS << " " << offset;
5903    if (unsigned int TF = CP->getTargetFlags())
5904      OS << " [TF=" << TF << ']';
5905  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5906    OS << "<";
5907    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5908    if (LBB)
5909      OS << LBB->getName() << " ";
5910    OS << (const void*)BBDN->getBasicBlock() << ">";
5911  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5912    if (G && R->getReg() &&
5913        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5914      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5915    } else {
5916      OS << " %reg" << R->getReg();
5917    }
5918  } else if (const ExternalSymbolSDNode *ES =
5919             dyn_cast<ExternalSymbolSDNode>(this)) {
5920    OS << "'" << ES->getSymbol() << "'";
5921    if (unsigned int TF = ES->getTargetFlags())
5922      OS << " [TF=" << TF << ']';
5923  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5924    if (M->getValue())
5925      OS << "<" << M->getValue() << ">";
5926    else
5927      OS << "<null>";
5928  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5929    OS << ":" << N->getVT().getEVTString();
5930  }
5931  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5932    OS << "<" << *LD->getMemOperand();
5933
5934    bool doExt = true;
5935    switch (LD->getExtensionType()) {
5936    default: doExt = false; break;
5937    case ISD::EXTLOAD: OS << ", anyext"; break;
5938    case ISD::SEXTLOAD: OS << ", sext"; break;
5939    case ISD::ZEXTLOAD: OS << ", zext"; break;
5940    }
5941    if (doExt)
5942      OS << " from " << LD->getMemoryVT().getEVTString();
5943
5944    const char *AM = getIndexedModeName(LD->getAddressingMode());
5945    if (*AM)
5946      OS << ", " << AM;
5947
5948    OS << ">";
5949  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5950    OS << "<" << *ST->getMemOperand();
5951
5952    if (ST->isTruncatingStore())
5953      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5954
5955    const char *AM = getIndexedModeName(ST->getAddressingMode());
5956    if (*AM)
5957      OS << ", " << AM;
5958
5959    OS << ">";
5960  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5961    OS << "<" << *M->getMemOperand() << ">";
5962  } else if (const BlockAddressSDNode *BA =
5963               dyn_cast<BlockAddressSDNode>(this)) {
5964    OS << "<";
5965    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5966    OS << ", ";
5967    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
5968    OS << ">";
5969    if (unsigned int TF = BA->getTargetFlags())
5970      OS << " [TF=" << TF << ']';
5971  }
5972
5973  if (G)
5974    if (unsigned Order = G->GetOrdering(this))
5975      OS << " [ORD=" << Order << ']';
5976
5977  if (getNodeId() != -1)
5978    OS << " [ID=" << getNodeId() << ']';
5979}
5980
5981void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5982  print_types(OS, G);
5983  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5984    if (i) OS << ", "; else OS << " ";
5985    OS << (void*)getOperand(i).getNode();
5986    if (unsigned RN = getOperand(i).getResNo())
5987      OS << ":" << RN;
5988  }
5989  print_details(OS, G);
5990}
5991
5992static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
5993                                  const SelectionDAG *G, unsigned depth,
5994                                  unsigned indent)
5995{
5996  if (depth == 0)
5997    return;
5998
5999  OS.indent(indent);
6000
6001  N->print(OS, G);
6002
6003  if (depth < 1)
6004    return;
6005
6006  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6007    OS << '\n';
6008    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
6009  }
6010}
6011
6012void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
6013                            unsigned depth) const {
6014  printrWithDepthHelper(OS, this, G, depth, 0);
6015}
6016
6017void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
6018  // Don't print impossibly deep things.
6019  printrWithDepth(OS, G, 100);
6020}
6021
6022void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
6023  printrWithDepth(dbgs(), G, depth);
6024}
6025
6026void SDNode::dumprFull(const SelectionDAG *G) const {
6027  // Don't print impossibly deep things.
6028  dumprWithDepth(G, 100);
6029}
6030
6031static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
6032  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6033    if (N->getOperand(i).getNode()->hasOneUse())
6034      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
6035    else
6036      dbgs() << "\n" << std::string(indent+2, ' ')
6037           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
6038
6039
6040  dbgs() << "\n";
6041  dbgs().indent(indent);
6042  N->dump(G);
6043}
6044
6045SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
6046  assert(N->getNumValues() == 1 &&
6047         "Can't unroll a vector with multiple results!");
6048
6049  EVT VT = N->getValueType(0);
6050  unsigned NE = VT.getVectorNumElements();
6051  EVT EltVT = VT.getVectorElementType();
6052  DebugLoc dl = N->getDebugLoc();
6053
6054  SmallVector<SDValue, 8> Scalars;
6055  SmallVector<SDValue, 4> Operands(N->getNumOperands());
6056
6057  // If ResNE is 0, fully unroll the vector op.
6058  if (ResNE == 0)
6059    ResNE = NE;
6060  else if (NE > ResNE)
6061    NE = ResNE;
6062
6063  unsigned i;
6064  for (i= 0; i != NE; ++i) {
6065    for (unsigned j = 0; j != N->getNumOperands(); ++j) {
6066      SDValue Operand = N->getOperand(j);
6067      EVT OperandVT = Operand.getValueType();
6068      if (OperandVT.isVector()) {
6069        // A vector operand; extract a single element.
6070        EVT OperandEltVT = OperandVT.getVectorElementType();
6071        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6072                              OperandEltVT,
6073                              Operand,
6074                              getConstant(i, MVT::i32));
6075      } else {
6076        // A scalar operand; just use it as is.
6077        Operands[j] = Operand;
6078      }
6079    }
6080
6081    switch (N->getOpcode()) {
6082    default:
6083      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6084                                &Operands[0], Operands.size()));
6085      break;
6086    case ISD::SHL:
6087    case ISD::SRA:
6088    case ISD::SRL:
6089    case ISD::ROTL:
6090    case ISD::ROTR:
6091      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6092                                getShiftAmountOperand(Operands[1])));
6093      break;
6094    case ISD::SIGN_EXTEND_INREG:
6095    case ISD::FP_ROUND_INREG: {
6096      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6097      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6098                                Operands[0],
6099                                getValueType(ExtVT)));
6100    }
6101    }
6102  }
6103
6104  for (; i < ResNE; ++i)
6105    Scalars.push_back(getUNDEF(EltVT));
6106
6107  return getNode(ISD::BUILD_VECTOR, dl,
6108                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6109                 &Scalars[0], Scalars.size());
6110}
6111
6112
6113/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6114/// location that is 'Dist' units away from the location that the 'Base' load
6115/// is loading from.
6116bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6117                                     unsigned Bytes, int Dist) const {
6118  if (LD->getChain() != Base->getChain())
6119    return false;
6120  EVT VT = LD->getValueType(0);
6121  if (VT.getSizeInBits() / 8 != Bytes)
6122    return false;
6123
6124  SDValue Loc = LD->getOperand(1);
6125  SDValue BaseLoc = Base->getOperand(1);
6126  if (Loc.getOpcode() == ISD::FrameIndex) {
6127    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6128      return false;
6129    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6130    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6131    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6132    int FS  = MFI->getObjectSize(FI);
6133    int BFS = MFI->getObjectSize(BFI);
6134    if (FS != BFS || FS != (int)Bytes) return false;
6135    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6136  }
6137  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6138    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6139    if (V && (V->getSExtValue() == Dist*Bytes))
6140      return true;
6141  }
6142
6143  GlobalValue *GV1 = NULL;
6144  GlobalValue *GV2 = NULL;
6145  int64_t Offset1 = 0;
6146  int64_t Offset2 = 0;
6147  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6148  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6149  if (isGA1 && isGA2 && GV1 == GV2)
6150    return Offset1 == (Offset2 + Dist*Bytes);
6151  return false;
6152}
6153
6154
6155/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6156/// it cannot be inferred.
6157unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6158  // If this is a GlobalAddress + cst, return the alignment.
6159  GlobalValue *GV;
6160  int64_t GVOffset = 0;
6161  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6162    // If GV has specified alignment, then use it. Otherwise, use the preferred
6163    // alignment.
6164    unsigned Align = GV->getAlignment();
6165    if (!Align) {
6166      if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
6167        if (GVar->hasInitializer()) {
6168          const TargetData *TD = TLI.getTargetData();
6169          Align = TD->getPreferredAlignment(GVar);
6170        }
6171      }
6172    }
6173    return MinAlign(Align, GVOffset);
6174  }
6175
6176  // If this is a direct reference to a stack slot, use information about the
6177  // stack slot's alignment.
6178  int FrameIdx = 1 << 31;
6179  int64_t FrameOffset = 0;
6180  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6181    FrameIdx = FI->getIndex();
6182  } else if (Ptr.getOpcode() == ISD::ADD &&
6183             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6184             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6185    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6186    FrameOffset = Ptr.getConstantOperandVal(1);
6187  }
6188
6189  if (FrameIdx != (1 << 31)) {
6190    // FIXME: Handle FI+CST.
6191    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6192    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6193                                    FrameOffset);
6194    if (MFI.isFixedObjectIndex(FrameIdx)) {
6195      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6196
6197      // The alignment of the frame index can be determined from its offset from
6198      // the incoming frame position.  If the frame object is at offset 32 and
6199      // the stack is guaranteed to be 16-byte aligned, then we know that the
6200      // object is 16-byte aligned.
6201      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6202      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6203
6204      // Finally, the frame object itself may have a known alignment.  Factor
6205      // the alignment + offset into a new alignment.  For example, if we know
6206      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6207      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6208      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6209      return std::max(Align, FIInfoAlign);
6210    }
6211    return FIInfoAlign;
6212  }
6213
6214  return 0;
6215}
6216
6217void SelectionDAG::dump() const {
6218  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6219
6220  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6221       I != E; ++I) {
6222    const SDNode *N = I;
6223    if (!N->hasOneUse() && N != getRoot().getNode())
6224      DumpNodes(N, 2, this);
6225  }
6226
6227  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6228
6229  dbgs() << "\n\n";
6230}
6231
6232void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6233  print_types(OS, G);
6234  print_details(OS, G);
6235}
6236
6237typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6238static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6239                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6240  if (!once.insert(N))          // If we've been here before, return now.
6241    return;
6242
6243  // Dump the current SDNode, but don't end the line yet.
6244  OS << std::string(indent, ' ');
6245  N->printr(OS, G);
6246
6247  // Having printed this SDNode, walk the children:
6248  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6249    const SDNode *child = N->getOperand(i).getNode();
6250
6251    if (i) OS << ",";
6252    OS << " ";
6253
6254    if (child->getNumOperands() == 0) {
6255      // This child has no grandchildren; print it inline right here.
6256      child->printr(OS, G);
6257      once.insert(child);
6258    } else {         // Just the address. FIXME: also print the child's opcode.
6259      OS << (void*)child;
6260      if (unsigned RN = N->getOperand(i).getResNo())
6261        OS << ":" << RN;
6262    }
6263  }
6264
6265  OS << "\n";
6266
6267  // Dump children that have grandchildren on their own line(s).
6268  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6269    const SDNode *child = N->getOperand(i).getNode();
6270    DumpNodesr(OS, child, indent+2, G, once);
6271  }
6272}
6273
6274void SDNode::dumpr() const {
6275  VisitedSDNodeSet once;
6276  DumpNodesr(dbgs(), this, 0, 0, once);
6277}
6278
6279void SDNode::dumpr(const SelectionDAG *G) const {
6280  VisitedSDNodeSet once;
6281  DumpNodesr(dbgs(), this, 0, G, once);
6282}
6283
6284
6285// getAddressSpace - Return the address space this GlobalAddress belongs to.
6286unsigned GlobalAddressSDNode::getAddressSpace() const {
6287  return getGlobal()->getType()->getAddressSpace();
6288}
6289
6290
6291const Type *ConstantPoolSDNode::getType() const {
6292  if (isMachineConstantPoolEntry())
6293    return Val.MachineCPVal->getType();
6294  return Val.ConstVal->getType();
6295}
6296
6297bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6298                                        APInt &SplatUndef,
6299                                        unsigned &SplatBitSize,
6300                                        bool &HasAnyUndefs,
6301                                        unsigned MinSplatBits,
6302                                        bool isBigEndian) {
6303  EVT VT = getValueType(0);
6304  assert(VT.isVector() && "Expected a vector type");
6305  unsigned sz = VT.getSizeInBits();
6306  if (MinSplatBits > sz)
6307    return false;
6308
6309  SplatValue = APInt(sz, 0);
6310  SplatUndef = APInt(sz, 0);
6311
6312  // Get the bits.  Bits with undefined values (when the corresponding element
6313  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6314  // in SplatValue.  If any of the values are not constant, give up and return
6315  // false.
6316  unsigned int nOps = getNumOperands();
6317  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6318  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6319
6320  for (unsigned j = 0; j < nOps; ++j) {
6321    unsigned i = isBigEndian ? nOps-1-j : j;
6322    SDValue OpVal = getOperand(i);
6323    unsigned BitPos = j * EltBitSize;
6324
6325    if (OpVal.getOpcode() == ISD::UNDEF)
6326      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6327    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6328      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6329                     zextOrTrunc(sz) << BitPos);
6330    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6331      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6332     else
6333      return false;
6334  }
6335
6336  // The build_vector is all constants or undefs.  Find the smallest element
6337  // size that splats the vector.
6338
6339  HasAnyUndefs = (SplatUndef != 0);
6340  while (sz > 8) {
6341
6342    unsigned HalfSize = sz / 2;
6343    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6344    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6345    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6346    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6347
6348    // If the two halves do not match (ignoring undef bits), stop here.
6349    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6350        MinSplatBits > HalfSize)
6351      break;
6352
6353    SplatValue = HighValue | LowValue;
6354    SplatUndef = HighUndef & LowUndef;
6355
6356    sz = HalfSize;
6357  }
6358
6359  SplatBitSize = sz;
6360  return true;
6361}
6362
6363bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6364  // Find the first non-undef value in the shuffle mask.
6365  unsigned i, e;
6366  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6367    /* search */;
6368
6369  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6370
6371  // Make sure all remaining elements are either undef or the same as the first
6372  // non-undef value.
6373  for (int Idx = Mask[i]; i != e; ++i)
6374    if (Mask[i] >= 0 && Mask[i] != Idx)
6375      return false;
6376  return true;
6377}
6378
6379#ifdef XDEBUG
6380static void checkForCyclesHelper(const SDNode *N,
6381                                 SmallPtrSet<const SDNode*, 32> &Visited,
6382                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6383  // If this node has already been checked, don't check it again.
6384  if (Checked.count(N))
6385    return;
6386
6387  // If a node has already been visited on this depth-first walk, reject it as
6388  // a cycle.
6389  if (!Visited.insert(N)) {
6390    dbgs() << "Offending node:\n";
6391    N->dumprFull();
6392    errs() << "Detected cycle in SelectionDAG\n";
6393    abort();
6394  }
6395
6396  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6397    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6398
6399  Checked.insert(N);
6400  Visited.erase(N);
6401}
6402#endif
6403
6404void llvm::checkForCycles(const llvm::SDNode *N) {
6405#ifdef XDEBUG
6406  assert(N && "Checking nonexistant SDNode");
6407  SmallPtrSet<const SDNode*, 32> visited;
6408  SmallPtrSet<const SDNode*, 32> checked;
6409  checkForCyclesHelper(N, visited, checked);
6410#endif
6411}
6412
6413void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6414  checkForCycles(DAG->getRoot().getNode());
6415}
6416