SelectionDAG.cpp revision f3ba434781daa1c2b16f77a91e5209c21ce12428
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineModuleInfo.h"
24#include "llvm/CodeGen/PseudoSourceValue.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Target/TargetRegisterInfo.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Target/TargetLowering.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/ADT/SetVector.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallSet.h"
34#include "llvm/ADT/SmallVector.h"
35#include "llvm/ADT/StringExtras.h"
36#include <algorithm>
37#include <cmath>
38using namespace llvm;
39
40/// makeVTList - Return an instance of the SDVTList struct initialized with the
41/// specified members.
42static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
43  SDVTList Res = {VTs, NumVTs};
44  return Res;
45}
46
47static const fltSemantics *MVTToAPFloatSemantics(MVT::ValueType VT) {
48  switch (VT) {
49  default: assert(0 && "Unknown FP format");
50  case MVT::f32:     return &APFloat::IEEEsingle;
51  case MVT::f64:     return &APFloat::IEEEdouble;
52  case MVT::f80:     return &APFloat::x87DoubleExtended;
53  case MVT::f128:    return &APFloat::IEEEquad;
54  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
55  }
56}
57
58SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
59
60//===----------------------------------------------------------------------===//
61//                              ConstantFPSDNode Class
62//===----------------------------------------------------------------------===//
63
64/// isExactlyValue - We don't rely on operator== working on double values, as
65/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
66/// As such, this method can be used to do an exact bit-for-bit comparison of
67/// two floating point values.
68bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
69  return Value.bitwiseIsEqual(V);
70}
71
72bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
73                                           const APFloat& Val) {
74  assert(MVT::isFloatingPoint(VT) && "Can only convert between FP types");
75
76  // Anything can be extended to ppc long double.
77  if (VT == MVT::ppcf128)
78    return true;
79
80  // PPC long double cannot be shrunk to anything though.
81  if (&Val.getSemantics() == &APFloat::PPCDoubleDouble)
82    return false;
83
84  // convert modifies in place, so make a copy.
85  APFloat Val2 = APFloat(Val);
86  return Val2.convert(*MVTToAPFloatSemantics(VT),
87                      APFloat::rmNearestTiesToEven) == APFloat::opOK;
88}
89
90//===----------------------------------------------------------------------===//
91//                              ISD Namespace
92//===----------------------------------------------------------------------===//
93
94/// isBuildVectorAllOnes - Return true if the specified node is a
95/// BUILD_VECTOR where all of the elements are ~0 or undef.
96bool ISD::isBuildVectorAllOnes(const SDNode *N) {
97  // Look through a bit convert.
98  if (N->getOpcode() == ISD::BIT_CONVERT)
99    N = N->getOperand(0).Val;
100
101  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
102
103  unsigned i = 0, e = N->getNumOperands();
104
105  // Skip over all of the undef values.
106  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
107    ++i;
108
109  // Do not accept an all-undef vector.
110  if (i == e) return false;
111
112  // Do not accept build_vectors that aren't all constants or which have non-~0
113  // elements.
114  SDOperand NotZero = N->getOperand(i);
115  if (isa<ConstantSDNode>(NotZero)) {
116    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
117      return false;
118  } else if (isa<ConstantFPSDNode>(NotZero)) {
119    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
120                convertToAPInt().isAllOnesValue())
121      return false;
122  } else
123    return false;
124
125  // Okay, we have at least one ~0 value, check to see if the rest match or are
126  // undefs.
127  for (++i; i != e; ++i)
128    if (N->getOperand(i) != NotZero &&
129        N->getOperand(i).getOpcode() != ISD::UNDEF)
130      return false;
131  return true;
132}
133
134
135/// isBuildVectorAllZeros - Return true if the specified node is a
136/// BUILD_VECTOR where all of the elements are 0 or undef.
137bool ISD::isBuildVectorAllZeros(const SDNode *N) {
138  // Look through a bit convert.
139  if (N->getOpcode() == ISD::BIT_CONVERT)
140    N = N->getOperand(0).Val;
141
142  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
143
144  unsigned i = 0, e = N->getNumOperands();
145
146  // Skip over all of the undef values.
147  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
148    ++i;
149
150  // Do not accept an all-undef vector.
151  if (i == e) return false;
152
153  // Do not accept build_vectors that aren't all constants or which have non-~0
154  // elements.
155  SDOperand Zero = N->getOperand(i);
156  if (isa<ConstantSDNode>(Zero)) {
157    if (!cast<ConstantSDNode>(Zero)->isNullValue())
158      return false;
159  } else if (isa<ConstantFPSDNode>(Zero)) {
160    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
161      return false;
162  } else
163    return false;
164
165  // Okay, we have at least one ~0 value, check to see if the rest match or are
166  // undefs.
167  for (++i; i != e; ++i)
168    if (N->getOperand(i) != Zero &&
169        N->getOperand(i).getOpcode() != ISD::UNDEF)
170      return false;
171  return true;
172}
173
174/// isScalarToVector - Return true if the specified node is a
175/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
176/// element is not an undef.
177bool ISD::isScalarToVector(const SDNode *N) {
178  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
179    return true;
180
181  if (N->getOpcode() != ISD::BUILD_VECTOR)
182    return false;
183  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
184    return false;
185  unsigned NumElems = N->getNumOperands();
186  for (unsigned i = 1; i < NumElems; ++i) {
187    SDOperand V = N->getOperand(i);
188    if (V.getOpcode() != ISD::UNDEF)
189      return false;
190  }
191  return true;
192}
193
194
195/// isDebugLabel - Return true if the specified node represents a debug
196/// label (i.e. ISD::LABEL or TargetInstrInfo::LABEL node and third operand
197/// is 0).
198bool ISD::isDebugLabel(const SDNode *N) {
199  SDOperand Zero;
200  if (N->getOpcode() == ISD::LABEL)
201    Zero = N->getOperand(2);
202  else if (N->isTargetOpcode() &&
203           N->getTargetOpcode() == TargetInstrInfo::LABEL)
204    // Chain moved to last operand.
205    Zero = N->getOperand(1);
206  else
207    return false;
208  return isa<ConstantSDNode>(Zero) && cast<ConstantSDNode>(Zero)->isNullValue();
209}
210
211/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
212/// when given the operation for (X op Y).
213ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
214  // To perform this operation, we just need to swap the L and G bits of the
215  // operation.
216  unsigned OldL = (Operation >> 2) & 1;
217  unsigned OldG = (Operation >> 1) & 1;
218  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
219                       (OldL << 1) |       // New G bit
220                       (OldG << 2));        // New L bit.
221}
222
223/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
224/// 'op' is a valid SetCC operation.
225ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
226  unsigned Operation = Op;
227  if (isInteger)
228    Operation ^= 7;   // Flip L, G, E bits, but not U.
229  else
230    Operation ^= 15;  // Flip all of the condition bits.
231  if (Operation > ISD::SETTRUE2)
232    Operation &= ~8;     // Don't let N and U bits get set.
233  return ISD::CondCode(Operation);
234}
235
236
237/// isSignedOp - For an integer comparison, return 1 if the comparison is a
238/// signed operation and 2 if the result is an unsigned comparison.  Return zero
239/// if the operation does not depend on the sign of the input (setne and seteq).
240static int isSignedOp(ISD::CondCode Opcode) {
241  switch (Opcode) {
242  default: assert(0 && "Illegal integer setcc operation!");
243  case ISD::SETEQ:
244  case ISD::SETNE: return 0;
245  case ISD::SETLT:
246  case ISD::SETLE:
247  case ISD::SETGT:
248  case ISD::SETGE: return 1;
249  case ISD::SETULT:
250  case ISD::SETULE:
251  case ISD::SETUGT:
252  case ISD::SETUGE: return 2;
253  }
254}
255
256/// getSetCCOrOperation - Return the result of a logical OR between different
257/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
258/// returns SETCC_INVALID if it is not possible to represent the resultant
259/// comparison.
260ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
261                                       bool isInteger) {
262  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
263    // Cannot fold a signed integer setcc with an unsigned integer setcc.
264    return ISD::SETCC_INVALID;
265
266  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
267
268  // If the N and U bits get set then the resultant comparison DOES suddenly
269  // care about orderedness, and is true when ordered.
270  if (Op > ISD::SETTRUE2)
271    Op &= ~16;     // Clear the U bit if the N bit is set.
272
273  // Canonicalize illegal integer setcc's.
274  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
275    Op = ISD::SETNE;
276
277  return ISD::CondCode(Op);
278}
279
280/// getSetCCAndOperation - Return the result of a logical AND between different
281/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
282/// function returns zero if it is not possible to represent the resultant
283/// comparison.
284ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
285                                        bool isInteger) {
286  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
287    // Cannot fold a signed setcc with an unsigned setcc.
288    return ISD::SETCC_INVALID;
289
290  // Combine all of the condition bits.
291  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
292
293  // Canonicalize illegal integer setcc's.
294  if (isInteger) {
295    switch (Result) {
296    default: break;
297    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
298    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
299    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
300    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
301    }
302  }
303
304  return Result;
305}
306
307const TargetMachine &SelectionDAG::getTarget() const {
308  return TLI.getTargetMachine();
309}
310
311//===----------------------------------------------------------------------===//
312//                           SDNode Profile Support
313//===----------------------------------------------------------------------===//
314
315/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
316///
317static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
318  ID.AddInteger(OpC);
319}
320
321/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
322/// solely with their pointer.
323void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
324  ID.AddPointer(VTList.VTs);
325}
326
327/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
328///
329static void AddNodeIDOperands(FoldingSetNodeID &ID,
330                              const SDOperand *Ops, unsigned NumOps) {
331  for (; NumOps; --NumOps, ++Ops) {
332    ID.AddPointer(Ops->Val);
333    ID.AddInteger(Ops->ResNo);
334  }
335}
336
337static void AddNodeIDNode(FoldingSetNodeID &ID,
338                          unsigned short OpC, SDVTList VTList,
339                          const SDOperand *OpList, unsigned N) {
340  AddNodeIDOpcode(ID, OpC);
341  AddNodeIDValueTypes(ID, VTList);
342  AddNodeIDOperands(ID, OpList, N);
343}
344
345/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
346/// data.
347static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
348  AddNodeIDOpcode(ID, N->getOpcode());
349  // Add the return value info.
350  AddNodeIDValueTypes(ID, N->getVTList());
351  // Add the operand info.
352  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
353
354  // Handle SDNode leafs with special info.
355  switch (N->getOpcode()) {
356  default: break;  // Normal nodes don't need extra info.
357  case ISD::TargetConstant:
358  case ISD::Constant:
359    ID.Add(cast<ConstantSDNode>(N)->getAPIntValue());
360    break;
361  case ISD::TargetConstantFP:
362  case ISD::ConstantFP: {
363    ID.Add(cast<ConstantFPSDNode>(N)->getValueAPF());
364    break;
365  }
366  case ISD::TargetGlobalAddress:
367  case ISD::GlobalAddress:
368  case ISD::TargetGlobalTLSAddress:
369  case ISD::GlobalTLSAddress: {
370    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
371    ID.AddPointer(GA->getGlobal());
372    ID.AddInteger(GA->getOffset());
373    break;
374  }
375  case ISD::BasicBlock:
376    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
377    break;
378  case ISD::Register:
379    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
380    break;
381  case ISD::SRCVALUE:
382    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
383    break;
384  case ISD::MEMOPERAND: {
385    const MemOperand &MO = cast<MemOperandSDNode>(N)->MO;
386    ID.AddPointer(MO.getValue());
387    ID.AddInteger(MO.getFlags());
388    ID.AddInteger(MO.getOffset());
389    ID.AddInteger(MO.getSize());
390    ID.AddInteger(MO.getAlignment());
391    break;
392  }
393  case ISD::FrameIndex:
394  case ISD::TargetFrameIndex:
395    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
396    break;
397  case ISD::JumpTable:
398  case ISD::TargetJumpTable:
399    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
400    break;
401  case ISD::ConstantPool:
402  case ISD::TargetConstantPool: {
403    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
404    ID.AddInteger(CP->getAlignment());
405    ID.AddInteger(CP->getOffset());
406    if (CP->isMachineConstantPoolEntry())
407      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
408    else
409      ID.AddPointer(CP->getConstVal());
410    break;
411  }
412  case ISD::LOAD: {
413    LoadSDNode *LD = cast<LoadSDNode>(N);
414    ID.AddInteger(LD->getAddressingMode());
415    ID.AddInteger(LD->getExtensionType());
416    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
417    ID.AddInteger(LD->getAlignment());
418    ID.AddInteger(LD->isVolatile());
419    break;
420  }
421  case ISD::STORE: {
422    StoreSDNode *ST = cast<StoreSDNode>(N);
423    ID.AddInteger(ST->getAddressingMode());
424    ID.AddInteger(ST->isTruncatingStore());
425    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
426    ID.AddInteger(ST->getAlignment());
427    ID.AddInteger(ST->isVolatile());
428    break;
429  }
430  }
431}
432
433//===----------------------------------------------------------------------===//
434//                              SelectionDAG Class
435//===----------------------------------------------------------------------===//
436
437/// RemoveDeadNodes - This method deletes all unreachable nodes in the
438/// SelectionDAG.
439void SelectionDAG::RemoveDeadNodes() {
440  // Create a dummy node (which is not added to allnodes), that adds a reference
441  // to the root node, preventing it from being deleted.
442  HandleSDNode Dummy(getRoot());
443
444  SmallVector<SDNode*, 128> DeadNodes;
445
446  // Add all obviously-dead nodes to the DeadNodes worklist.
447  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
448    if (I->use_empty())
449      DeadNodes.push_back(I);
450
451  // Process the worklist, deleting the nodes and adding their uses to the
452  // worklist.
453  while (!DeadNodes.empty()) {
454    SDNode *N = DeadNodes.back();
455    DeadNodes.pop_back();
456
457    // Take the node out of the appropriate CSE map.
458    RemoveNodeFromCSEMaps(N);
459
460    // Next, brutally remove the operand list.  This is safe to do, as there are
461    // no cycles in the graph.
462    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
463      SDNode *Operand = I->Val;
464      Operand->removeUser(N);
465
466      // Now that we removed this operand, see if there are no uses of it left.
467      if (Operand->use_empty())
468        DeadNodes.push_back(Operand);
469    }
470    if (N->OperandsNeedDelete)
471      delete[] N->OperandList;
472    N->OperandList = 0;
473    N->NumOperands = 0;
474
475    // Finally, remove N itself.
476    AllNodes.erase(N);
477  }
478
479  // If the root changed (e.g. it was a dead load, update the root).
480  setRoot(Dummy.getValue());
481}
482
483void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
484  SmallVector<SDNode*, 16> DeadNodes;
485  DeadNodes.push_back(N);
486
487  // Process the worklist, deleting the nodes and adding their uses to the
488  // worklist.
489  while (!DeadNodes.empty()) {
490    SDNode *N = DeadNodes.back();
491    DeadNodes.pop_back();
492
493    if (UpdateListener)
494      UpdateListener->NodeDeleted(N);
495
496    // Take the node out of the appropriate CSE map.
497    RemoveNodeFromCSEMaps(N);
498
499    // Next, brutally remove the operand list.  This is safe to do, as there are
500    // no cycles in the graph.
501    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
502      SDNode *Operand = I->Val;
503      Operand->removeUser(N);
504
505      // Now that we removed this operand, see if there are no uses of it left.
506      if (Operand->use_empty())
507        DeadNodes.push_back(Operand);
508    }
509    if (N->OperandsNeedDelete)
510      delete[] N->OperandList;
511    N->OperandList = 0;
512    N->NumOperands = 0;
513
514    // Finally, remove N itself.
515    AllNodes.erase(N);
516  }
517}
518
519void SelectionDAG::DeleteNode(SDNode *N) {
520  assert(N->use_empty() && "Cannot delete a node that is not dead!");
521
522  // First take this out of the appropriate CSE map.
523  RemoveNodeFromCSEMaps(N);
524
525  // Finally, remove uses due to operands of this node, remove from the
526  // AllNodes list, and delete the node.
527  DeleteNodeNotInCSEMaps(N);
528}
529
530void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
531
532  // Remove it from the AllNodes list.
533  AllNodes.remove(N);
534
535  // Drop all of the operands and decrement used nodes use counts.
536  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
537    I->Val->removeUser(N);
538  if (N->OperandsNeedDelete)
539    delete[] N->OperandList;
540  N->OperandList = 0;
541  N->NumOperands = 0;
542
543  delete N;
544}
545
546/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
547/// correspond to it.  This is useful when we're about to delete or repurpose
548/// the node.  We don't want future request for structurally identical nodes
549/// to return N anymore.
550void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
551  bool Erased = false;
552  switch (N->getOpcode()) {
553  case ISD::HANDLENODE: return;  // noop.
554  case ISD::STRING:
555    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
556    break;
557  case ISD::CONDCODE:
558    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
559           "Cond code doesn't exist!");
560    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
561    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
562    break;
563  case ISD::ExternalSymbol:
564    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
565    break;
566  case ISD::TargetExternalSymbol:
567    Erased =
568      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
569    break;
570  case ISD::VALUETYPE: {
571    MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
572    if (MVT::isExtendedVT(VT)) {
573      Erased = ExtendedValueTypeNodes.erase(VT);
574    } else {
575      Erased = ValueTypeNodes[VT] != 0;
576      ValueTypeNodes[VT] = 0;
577    }
578    break;
579  }
580  default:
581    // Remove it from the CSE Map.
582    Erased = CSEMap.RemoveNode(N);
583    break;
584  }
585#ifndef NDEBUG
586  // Verify that the node was actually in one of the CSE maps, unless it has a
587  // flag result (which cannot be CSE'd) or is one of the special cases that are
588  // not subject to CSE.
589  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
590      !N->isTargetOpcode()) {
591    N->dump(this);
592    cerr << "\n";
593    assert(0 && "Node is not in map!");
594  }
595#endif
596}
597
598/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
599/// has been taken out and modified in some way.  If the specified node already
600/// exists in the CSE maps, do not modify the maps, but return the existing node
601/// instead.  If it doesn't exist, add it and return null.
602///
603SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
604  assert(N->getNumOperands() && "This is a leaf node!");
605  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
606    return 0;    // Never add these nodes.
607
608  // Check that remaining values produced are not flags.
609  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
610    if (N->getValueType(i) == MVT::Flag)
611      return 0;   // Never CSE anything that produces a flag.
612
613  SDNode *New = CSEMap.GetOrInsertNode(N);
614  if (New != N) return New;  // Node already existed.
615  return 0;
616}
617
618/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
619/// were replaced with those specified.  If this node is never memoized,
620/// return null, otherwise return a pointer to the slot it would take.  If a
621/// node already exists with these operands, the slot will be non-null.
622SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
623                                           void *&InsertPos) {
624  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
625    return 0;    // Never add these nodes.
626
627  // Check that remaining values produced are not flags.
628  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
629    if (N->getValueType(i) == MVT::Flag)
630      return 0;   // Never CSE anything that produces a flag.
631
632  SDOperand Ops[] = { Op };
633  FoldingSetNodeID ID;
634  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
635  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
636}
637
638/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
639/// were replaced with those specified.  If this node is never memoized,
640/// return null, otherwise return a pointer to the slot it would take.  If a
641/// node already exists with these operands, the slot will be non-null.
642SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
643                                           SDOperand Op1, SDOperand Op2,
644                                           void *&InsertPos) {
645  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
646    return 0;    // Never add these nodes.
647
648  // Check that remaining values produced are not flags.
649  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
650    if (N->getValueType(i) == MVT::Flag)
651      return 0;   // Never CSE anything that produces a flag.
652
653  SDOperand Ops[] = { Op1, Op2 };
654  FoldingSetNodeID ID;
655  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
656  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
657}
658
659
660/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
661/// were replaced with those specified.  If this node is never memoized,
662/// return null, otherwise return a pointer to the slot it would take.  If a
663/// node already exists with these operands, the slot will be non-null.
664SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
665                                           const SDOperand *Ops,unsigned NumOps,
666                                           void *&InsertPos) {
667  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
668    return 0;    // Never add these nodes.
669
670  // Check that remaining values produced are not flags.
671  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
672    if (N->getValueType(i) == MVT::Flag)
673      return 0;   // Never CSE anything that produces a flag.
674
675  FoldingSetNodeID ID;
676  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
677
678  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
679    ID.AddInteger(LD->getAddressingMode());
680    ID.AddInteger(LD->getExtensionType());
681    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
682    ID.AddInteger(LD->getAlignment());
683    ID.AddInteger(LD->isVolatile());
684  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
685    ID.AddInteger(ST->getAddressingMode());
686    ID.AddInteger(ST->isTruncatingStore());
687    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
688    ID.AddInteger(ST->getAlignment());
689    ID.AddInteger(ST->isVolatile());
690  }
691
692  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
693}
694
695
696SelectionDAG::~SelectionDAG() {
697  while (!AllNodes.empty()) {
698    SDNode *N = AllNodes.begin();
699    N->SetNextInBucket(0);
700    if (N->OperandsNeedDelete)
701      delete [] N->OperandList;
702    N->OperandList = 0;
703    N->NumOperands = 0;
704    AllNodes.pop_front();
705  }
706}
707
708SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
709  if (Op.getValueType() == VT) return Op;
710  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
711                                   MVT::getSizeInBits(VT));
712  return getNode(ISD::AND, Op.getValueType(), Op,
713                 getConstant(Imm, Op.getValueType()));
714}
715
716SDOperand SelectionDAG::getString(const std::string &Val) {
717  StringSDNode *&N = StringNodes[Val];
718  if (!N) {
719    N = new StringSDNode(Val);
720    AllNodes.push_back(N);
721  }
722  return SDOperand(N, 0);
723}
724
725SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
726  MVT::ValueType EltVT =
727    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
728
729  return getConstant(APInt(MVT::getSizeInBits(EltVT), Val), VT, isT);
730}
731
732SDOperand SelectionDAG::getConstant(const APInt &Val, MVT::ValueType VT, bool isT) {
733  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
734
735  MVT::ValueType EltVT =
736    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
737
738  assert(Val.getBitWidth() == MVT::getSizeInBits(EltVT) &&
739         "APInt size does not match type size!");
740
741  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
742  FoldingSetNodeID ID;
743  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
744  ID.Add(Val);
745  void *IP = 0;
746  SDNode *N = NULL;
747  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
748    if (!MVT::isVector(VT))
749      return SDOperand(N, 0);
750  if (!N) {
751    N = new ConstantSDNode(isT, Val, EltVT);
752    CSEMap.InsertNode(N, IP);
753    AllNodes.push_back(N);
754  }
755
756  SDOperand Result(N, 0);
757  if (MVT::isVector(VT)) {
758    SmallVector<SDOperand, 8> Ops;
759    Ops.assign(MVT::getVectorNumElements(VT), Result);
760    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
761  }
762  return Result;
763}
764
765SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
766  return getConstant(Val, TLI.getPointerTy(), isTarget);
767}
768
769
770SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
771                                      bool isTarget) {
772  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
773
774  MVT::ValueType EltVT =
775    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
776
777  // Do the map lookup using the actual bit pattern for the floating point
778  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
779  // we don't have issues with SNANs.
780  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
781  FoldingSetNodeID ID;
782  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
783  ID.Add(V);
784  void *IP = 0;
785  SDNode *N = NULL;
786  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
787    if (!MVT::isVector(VT))
788      return SDOperand(N, 0);
789  if (!N) {
790    N = new ConstantFPSDNode(isTarget, V, EltVT);
791    CSEMap.InsertNode(N, IP);
792    AllNodes.push_back(N);
793  }
794
795  SDOperand Result(N, 0);
796  if (MVT::isVector(VT)) {
797    SmallVector<SDOperand, 8> Ops;
798    Ops.assign(MVT::getVectorNumElements(VT), Result);
799    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
800  }
801  return Result;
802}
803
804SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
805                                      bool isTarget) {
806  MVT::ValueType EltVT =
807    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
808  if (EltVT==MVT::f32)
809    return getConstantFP(APFloat((float)Val), VT, isTarget);
810  else
811    return getConstantFP(APFloat(Val), VT, isTarget);
812}
813
814SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
815                                         MVT::ValueType VT, int Offset,
816                                         bool isTargetGA) {
817  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
818  unsigned Opc;
819  if (GVar && GVar->isThreadLocal())
820    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
821  else
822    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
823  FoldingSetNodeID ID;
824  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
825  ID.AddPointer(GV);
826  ID.AddInteger(Offset);
827  void *IP = 0;
828  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
829   return SDOperand(E, 0);
830  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
831  CSEMap.InsertNode(N, IP);
832  AllNodes.push_back(N);
833  return SDOperand(N, 0);
834}
835
836SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
837                                      bool isTarget) {
838  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
839  FoldingSetNodeID ID;
840  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
841  ID.AddInteger(FI);
842  void *IP = 0;
843  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
844    return SDOperand(E, 0);
845  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
846  CSEMap.InsertNode(N, IP);
847  AllNodes.push_back(N);
848  return SDOperand(N, 0);
849}
850
851SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
852  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
853  FoldingSetNodeID ID;
854  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
855  ID.AddInteger(JTI);
856  void *IP = 0;
857  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
858    return SDOperand(E, 0);
859  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
860  CSEMap.InsertNode(N, IP);
861  AllNodes.push_back(N);
862  return SDOperand(N, 0);
863}
864
865SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
866                                        unsigned Alignment, int Offset,
867                                        bool isTarget) {
868  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
869  FoldingSetNodeID ID;
870  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
871  ID.AddInteger(Alignment);
872  ID.AddInteger(Offset);
873  ID.AddPointer(C);
874  void *IP = 0;
875  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
876    return SDOperand(E, 0);
877  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
878  CSEMap.InsertNode(N, IP);
879  AllNodes.push_back(N);
880  return SDOperand(N, 0);
881}
882
883
884SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
885                                        MVT::ValueType VT,
886                                        unsigned Alignment, int Offset,
887                                        bool isTarget) {
888  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
889  FoldingSetNodeID ID;
890  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
891  ID.AddInteger(Alignment);
892  ID.AddInteger(Offset);
893  C->AddSelectionDAGCSEId(ID);
894  void *IP = 0;
895  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
896    return SDOperand(E, 0);
897  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
898  CSEMap.InsertNode(N, IP);
899  AllNodes.push_back(N);
900  return SDOperand(N, 0);
901}
902
903
904SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
905  FoldingSetNodeID ID;
906  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
907  ID.AddPointer(MBB);
908  void *IP = 0;
909  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
910    return SDOperand(E, 0);
911  SDNode *N = new BasicBlockSDNode(MBB);
912  CSEMap.InsertNode(N, IP);
913  AllNodes.push_back(N);
914  return SDOperand(N, 0);
915}
916
917SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
918  if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
919    ValueTypeNodes.resize(VT+1);
920
921  SDNode *&N = MVT::isExtendedVT(VT) ?
922    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
923
924  if (N) return SDOperand(N, 0);
925  N = new VTSDNode(VT);
926  AllNodes.push_back(N);
927  return SDOperand(N, 0);
928}
929
930SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
931  SDNode *&N = ExternalSymbols[Sym];
932  if (N) return SDOperand(N, 0);
933  N = new ExternalSymbolSDNode(false, Sym, VT);
934  AllNodes.push_back(N);
935  return SDOperand(N, 0);
936}
937
938SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
939                                                MVT::ValueType VT) {
940  SDNode *&N = TargetExternalSymbols[Sym];
941  if (N) return SDOperand(N, 0);
942  N = new ExternalSymbolSDNode(true, Sym, VT);
943  AllNodes.push_back(N);
944  return SDOperand(N, 0);
945}
946
947SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
948  if ((unsigned)Cond >= CondCodeNodes.size())
949    CondCodeNodes.resize(Cond+1);
950
951  if (CondCodeNodes[Cond] == 0) {
952    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
953    AllNodes.push_back(CondCodeNodes[Cond]);
954  }
955  return SDOperand(CondCodeNodes[Cond], 0);
956}
957
958SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
959  FoldingSetNodeID ID;
960  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
961  ID.AddInteger(RegNo);
962  void *IP = 0;
963  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
964    return SDOperand(E, 0);
965  SDNode *N = new RegisterSDNode(RegNo, VT);
966  CSEMap.InsertNode(N, IP);
967  AllNodes.push_back(N);
968  return SDOperand(N, 0);
969}
970
971SDOperand SelectionDAG::getSrcValue(const Value *V) {
972  assert((!V || isa<PointerType>(V->getType())) &&
973         "SrcValue is not a pointer?");
974
975  FoldingSetNodeID ID;
976  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
977  ID.AddPointer(V);
978
979  void *IP = 0;
980  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
981    return SDOperand(E, 0);
982
983  SDNode *N = new SrcValueSDNode(V);
984  CSEMap.InsertNode(N, IP);
985  AllNodes.push_back(N);
986  return SDOperand(N, 0);
987}
988
989SDOperand SelectionDAG::getMemOperand(const MemOperand &MO) {
990  const Value *v = MO.getValue();
991  assert((!v || isa<PointerType>(v->getType())) &&
992         "SrcValue is not a pointer?");
993
994  FoldingSetNodeID ID;
995  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
996  ID.AddPointer(v);
997  ID.AddInteger(MO.getFlags());
998  ID.AddInteger(MO.getOffset());
999  ID.AddInteger(MO.getSize());
1000  ID.AddInteger(MO.getAlignment());
1001
1002  void *IP = 0;
1003  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1004    return SDOperand(E, 0);
1005
1006  SDNode *N = new MemOperandSDNode(MO);
1007  CSEMap.InsertNode(N, IP);
1008  AllNodes.push_back(N);
1009  return SDOperand(N, 0);
1010}
1011
1012/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1013/// specified value type.
1014SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
1015  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1016  unsigned ByteSize = MVT::getSizeInBits(VT)/8;
1017  const Type *Ty = MVT::getTypeForValueType(VT);
1018  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
1019  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1020  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1021}
1022
1023
1024SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
1025                                  SDOperand N2, ISD::CondCode Cond) {
1026  // These setcc operations always fold.
1027  switch (Cond) {
1028  default: break;
1029  case ISD::SETFALSE:
1030  case ISD::SETFALSE2: return getConstant(0, VT);
1031  case ISD::SETTRUE:
1032  case ISD::SETTRUE2:  return getConstant(1, VT);
1033
1034  case ISD::SETOEQ:
1035  case ISD::SETOGT:
1036  case ISD::SETOGE:
1037  case ISD::SETOLT:
1038  case ISD::SETOLE:
1039  case ISD::SETONE:
1040  case ISD::SETO:
1041  case ISD::SETUO:
1042  case ISD::SETUEQ:
1043  case ISD::SETUNE:
1044    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
1045    break;
1046  }
1047
1048  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
1049    const APInt &C2 = N2C->getAPIntValue();
1050    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1051      const APInt &C1 = N1C->getAPIntValue();
1052
1053      switch (Cond) {
1054      default: assert(0 && "Unknown integer setcc!");
1055      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1056      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1057      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1058      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1059      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1060      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1061      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1062      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1063      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1064      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1065      }
1066    }
1067  }
1068  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1069    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1070      // No compile time operations on this type yet.
1071      if (N1C->getValueType(0) == MVT::ppcf128)
1072        return SDOperand();
1073
1074      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1075      switch (Cond) {
1076      default: break;
1077      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1078                          return getNode(ISD::UNDEF, VT);
1079                        // fall through
1080      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1081      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1082                          return getNode(ISD::UNDEF, VT);
1083                        // fall through
1084      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1085                                           R==APFloat::cmpLessThan, VT);
1086      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1087                          return getNode(ISD::UNDEF, VT);
1088                        // fall through
1089      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1090      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1091                          return getNode(ISD::UNDEF, VT);
1092                        // fall through
1093      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1094      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1095                          return getNode(ISD::UNDEF, VT);
1096                        // fall through
1097      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1098                                           R==APFloat::cmpEqual, VT);
1099      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1100                          return getNode(ISD::UNDEF, VT);
1101                        // fall through
1102      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1103                                           R==APFloat::cmpEqual, VT);
1104      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1105      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1106      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1107                                           R==APFloat::cmpEqual, VT);
1108      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1109      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1110                                           R==APFloat::cmpLessThan, VT);
1111      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1112                                           R==APFloat::cmpUnordered, VT);
1113      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1114      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1115      }
1116    } else {
1117      // Ensure that the constant occurs on the RHS.
1118      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1119    }
1120  }
1121
1122  // Could not fold it.
1123  return SDOperand();
1124}
1125
1126/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1127/// use this predicate to simplify operations downstream.
1128bool SelectionDAG::SignBitIsZero(SDOperand Op, unsigned Depth) const {
1129  unsigned BitWidth = Op.getValueSizeInBits();
1130  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1131}
1132
1133/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1134/// this predicate to simplify operations downstream.  Mask is known to be zero
1135/// for bits that V cannot have.
1136bool SelectionDAG::MaskedValueIsZero(SDOperand Op, const APInt &Mask,
1137                                     unsigned Depth) const {
1138  APInt KnownZero, KnownOne;
1139  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1140  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1141  return (KnownZero & Mask) == Mask;
1142}
1143
1144/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1145/// known to be either zero or one and return them in the KnownZero/KnownOne
1146/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1147/// processing.
1148void SelectionDAG::ComputeMaskedBits(SDOperand Op, const APInt &Mask,
1149                                     APInt &KnownZero, APInt &KnownOne,
1150                                     unsigned Depth) const {
1151  unsigned BitWidth = Mask.getBitWidth();
1152  assert(BitWidth == MVT::getSizeInBits(Op.getValueType()) &&
1153         "Mask size mismatches value type size!");
1154
1155  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1156  if (Depth == 6 || Mask == 0)
1157    return;  // Limit search depth.
1158
1159  APInt KnownZero2, KnownOne2;
1160
1161  switch (Op.getOpcode()) {
1162  case ISD::Constant:
1163    // We know all of the bits for a constant!
1164    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1165    KnownZero = ~KnownOne & Mask;
1166    return;
1167  case ISD::AND:
1168    // If either the LHS or the RHS are Zero, the result is zero.
1169    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1170    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1171                      KnownZero2, KnownOne2, Depth+1);
1172    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1173    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1174
1175    // Output known-1 bits are only known if set in both the LHS & RHS.
1176    KnownOne &= KnownOne2;
1177    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1178    KnownZero |= KnownZero2;
1179    return;
1180  case ISD::OR:
1181    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1182    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1183                      KnownZero2, KnownOne2, Depth+1);
1184    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1185    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1186
1187    // Output known-0 bits are only known if clear in both the LHS & RHS.
1188    KnownZero &= KnownZero2;
1189    // Output known-1 are known to be set if set in either the LHS | RHS.
1190    KnownOne |= KnownOne2;
1191    return;
1192  case ISD::XOR: {
1193    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1194    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1195    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1196    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1197
1198    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1199    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1200    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1201    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1202    KnownZero = KnownZeroOut;
1203    return;
1204  }
1205  case ISD::SELECT:
1206    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1207    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1208    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1209    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1210
1211    // Only known if known in both the LHS and RHS.
1212    KnownOne &= KnownOne2;
1213    KnownZero &= KnownZero2;
1214    return;
1215  case ISD::SELECT_CC:
1216    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1217    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1218    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1219    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1220
1221    // Only known if known in both the LHS and RHS.
1222    KnownOne &= KnownOne2;
1223    KnownZero &= KnownZero2;
1224    return;
1225  case ISD::SETCC:
1226    // If we know the result of a setcc has the top bits zero, use this info.
1227    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1228        BitWidth > 1)
1229      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1230    return;
1231  case ISD::SHL:
1232    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1233    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1234      unsigned ShAmt = SA->getValue();
1235
1236      // If the shift count is an invalid immediate, don't do anything.
1237      if (ShAmt >= BitWidth)
1238        return;
1239
1240      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1241                        KnownZero, KnownOne, Depth+1);
1242      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1243      KnownZero <<= ShAmt;
1244      KnownOne  <<= ShAmt;
1245      // low bits known zero.
1246      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1247    }
1248    return;
1249  case ISD::SRL:
1250    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1251    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1252      unsigned ShAmt = SA->getValue();
1253
1254      // If the shift count is an invalid immediate, don't do anything.
1255      if (ShAmt >= BitWidth)
1256        return;
1257
1258      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1259                        KnownZero, KnownOne, Depth+1);
1260      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1261      KnownZero = KnownZero.lshr(ShAmt);
1262      KnownOne  = KnownOne.lshr(ShAmt);
1263
1264      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1265      KnownZero |= HighBits;  // High bits known zero.
1266    }
1267    return;
1268  case ISD::SRA:
1269    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1270      unsigned ShAmt = SA->getValue();
1271
1272      // If the shift count is an invalid immediate, don't do anything.
1273      if (ShAmt >= BitWidth)
1274        return;
1275
1276      APInt InDemandedMask = (Mask << ShAmt);
1277      // If any of the demanded bits are produced by the sign extension, we also
1278      // demand the input sign bit.
1279      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1280      if (HighBits.getBoolValue())
1281        InDemandedMask |= APInt::getSignBit(BitWidth);
1282
1283      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1284                        Depth+1);
1285      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1286      KnownZero = KnownZero.lshr(ShAmt);
1287      KnownOne  = KnownOne.lshr(ShAmt);
1288
1289      // Handle the sign bits.
1290      APInt SignBit = APInt::getSignBit(BitWidth);
1291      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1292
1293      if (KnownZero.intersects(SignBit)) {
1294        KnownZero |= HighBits;  // New bits are known zero.
1295      } else if (KnownOne.intersects(SignBit)) {
1296        KnownOne  |= HighBits;  // New bits are known one.
1297      }
1298    }
1299    return;
1300  case ISD::SIGN_EXTEND_INREG: {
1301    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1302    unsigned EBits = MVT::getSizeInBits(EVT);
1303
1304    // Sign extension.  Compute the demanded bits in the result that are not
1305    // present in the input.
1306    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1307
1308    APInt InSignBit = APInt::getSignBit(EBits);
1309    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1310
1311    // If the sign extended bits are demanded, we know that the sign
1312    // bit is demanded.
1313    InSignBit.zext(BitWidth);
1314    if (NewBits.getBoolValue())
1315      InputDemandedBits |= InSignBit;
1316
1317    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1318                      KnownZero, KnownOne, Depth+1);
1319    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1320
1321    // If the sign bit of the input is known set or clear, then we know the
1322    // top bits of the result.
1323    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1324      KnownZero |= NewBits;
1325      KnownOne  &= ~NewBits;
1326    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1327      KnownOne  |= NewBits;
1328      KnownZero &= ~NewBits;
1329    } else {                              // Input sign bit unknown
1330      KnownZero &= ~NewBits;
1331      KnownOne  &= ~NewBits;
1332    }
1333    return;
1334  }
1335  case ISD::CTTZ:
1336  case ISD::CTLZ:
1337  case ISD::CTPOP: {
1338    unsigned LowBits = Log2_32(BitWidth)+1;
1339    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1340    KnownOne  = APInt(BitWidth, 0);
1341    return;
1342  }
1343  case ISD::LOAD: {
1344    if (ISD::isZEXTLoad(Op.Val)) {
1345      LoadSDNode *LD = cast<LoadSDNode>(Op);
1346      MVT::ValueType VT = LD->getMemoryVT();
1347      unsigned MemBits = MVT::getSizeInBits(VT);
1348      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1349    }
1350    return;
1351  }
1352  case ISD::ZERO_EXTEND: {
1353    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1354    unsigned InBits = MVT::getSizeInBits(InVT);
1355    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1356    APInt InMask    = Mask;
1357    InMask.trunc(InBits);
1358    KnownZero.trunc(InBits);
1359    KnownOne.trunc(InBits);
1360    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1361    KnownZero.zext(BitWidth);
1362    KnownOne.zext(BitWidth);
1363    KnownZero |= NewBits;
1364    return;
1365  }
1366  case ISD::SIGN_EXTEND: {
1367    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1368    unsigned InBits = MVT::getSizeInBits(InVT);
1369    APInt InSignBit = APInt::getSignBit(InBits);
1370    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1371    APInt InMask = Mask;
1372    InMask.trunc(InBits);
1373
1374    // If any of the sign extended bits are demanded, we know that the sign
1375    // bit is demanded. Temporarily set this bit in the mask for our callee.
1376    if (NewBits.getBoolValue())
1377      InMask |= InSignBit;
1378
1379    KnownZero.trunc(InBits);
1380    KnownOne.trunc(InBits);
1381    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1382
1383    // Note if the sign bit is known to be zero or one.
1384    bool SignBitKnownZero = KnownZero.isNegative();
1385    bool SignBitKnownOne  = KnownOne.isNegative();
1386    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1387           "Sign bit can't be known to be both zero and one!");
1388
1389    // If the sign bit wasn't actually demanded by our caller, we don't
1390    // want it set in the KnownZero and KnownOne result values. Reset the
1391    // mask and reapply it to the result values.
1392    InMask = Mask;
1393    InMask.trunc(InBits);
1394    KnownZero &= InMask;
1395    KnownOne  &= InMask;
1396
1397    KnownZero.zext(BitWidth);
1398    KnownOne.zext(BitWidth);
1399
1400    // If the sign bit is known zero or one, the top bits match.
1401    if (SignBitKnownZero)
1402      KnownZero |= NewBits;
1403    else if (SignBitKnownOne)
1404      KnownOne  |= NewBits;
1405    return;
1406  }
1407  case ISD::ANY_EXTEND: {
1408    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1409    unsigned InBits = MVT::getSizeInBits(InVT);
1410    APInt InMask = Mask;
1411    InMask.trunc(InBits);
1412    KnownZero.trunc(InBits);
1413    KnownOne.trunc(InBits);
1414    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1415    KnownZero.zext(BitWidth);
1416    KnownOne.zext(BitWidth);
1417    return;
1418  }
1419  case ISD::TRUNCATE: {
1420    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1421    unsigned InBits = MVT::getSizeInBits(InVT);
1422    APInt InMask = Mask;
1423    InMask.zext(InBits);
1424    KnownZero.zext(InBits);
1425    KnownOne.zext(InBits);
1426    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1427    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1428    KnownZero.trunc(BitWidth);
1429    KnownOne.trunc(BitWidth);
1430    break;
1431  }
1432  case ISD::AssertZext: {
1433    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1434    APInt InMask = APInt::getLowBitsSet(BitWidth, MVT::getSizeInBits(VT));
1435    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1436                      KnownOne, Depth+1);
1437    KnownZero |= (~InMask) & Mask;
1438    return;
1439  }
1440  case ISD::FGETSIGN:
1441    // All bits are zero except the low bit.
1442    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1443    return;
1444
1445  case ISD::ADD: {
1446    // If either the LHS or the RHS are Zero, the result is zero.
1447    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1448    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1449    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1450    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1451
1452    // Output known-0 bits are known if clear or set in both the low clear bits
1453    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1454    // low 3 bits clear.
1455    unsigned KnownZeroOut = std::min(KnownZero.countTrailingOnes(),
1456                                     KnownZero2.countTrailingOnes());
1457
1458    KnownZero = APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1459    KnownOne = APInt(BitWidth, 0);
1460    return;
1461  }
1462  case ISD::SUB: {
1463    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1464    if (!CLHS) return;
1465
1466    // We know that the top bits of C-X are clear if X contains less bits
1467    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1468    // positive if we can prove that X is >= 0 and < 16.
1469    if (CLHS->getAPIntValue().isNonNegative()) {
1470      unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1471      // NLZ can't be BitWidth with no sign bit
1472      APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1473      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1474
1475      // If all of the MaskV bits are known to be zero, then we know the output
1476      // top bits are zero, because we now know that the output is from [0-C].
1477      if ((KnownZero & MaskV) == MaskV) {
1478        unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1479        // Top bits known zero.
1480        KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1481        KnownOne = APInt(BitWidth, 0);   // No one bits known.
1482      } else {
1483        KnownZero = KnownOne = APInt(BitWidth, 0);  // Otherwise, nothing known.
1484      }
1485    }
1486    return;
1487  }
1488  default:
1489    // Allow the target to implement this method for its nodes.
1490    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1491  case ISD::INTRINSIC_WO_CHAIN:
1492  case ISD::INTRINSIC_W_CHAIN:
1493  case ISD::INTRINSIC_VOID:
1494      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1495    }
1496    return;
1497  }
1498}
1499
1500/// ComputeNumSignBits - Return the number of times the sign bit of the
1501/// register is replicated into the other bits.  We know that at least 1 bit
1502/// is always equal to the sign bit (itself), but other cases can give us
1503/// information.  For example, immediately after an "SRA X, 2", we know that
1504/// the top 3 bits are all equal to each other, so we return 3.
1505unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1506  MVT::ValueType VT = Op.getValueType();
1507  assert(MVT::isInteger(VT) && "Invalid VT!");
1508  unsigned VTBits = MVT::getSizeInBits(VT);
1509  unsigned Tmp, Tmp2;
1510
1511  if (Depth == 6)
1512    return 1;  // Limit search depth.
1513
1514  switch (Op.getOpcode()) {
1515  default: break;
1516  case ISD::AssertSext:
1517    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1518    return VTBits-Tmp+1;
1519  case ISD::AssertZext:
1520    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1521    return VTBits-Tmp;
1522
1523  case ISD::Constant: {
1524    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1525    // If negative, return # leading ones.
1526    if (Val.isNegative())
1527      return Val.countLeadingOnes();
1528
1529    // Return # leading zeros.
1530    return Val.countLeadingZeros();
1531  }
1532
1533  case ISD::SIGN_EXTEND:
1534    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1535    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1536
1537  case ISD::SIGN_EXTEND_INREG:
1538    // Max of the input and what this extends.
1539    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1540    Tmp = VTBits-Tmp+1;
1541
1542    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1543    return std::max(Tmp, Tmp2);
1544
1545  case ISD::SRA:
1546    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1547    // SRA X, C   -> adds C sign bits.
1548    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1549      Tmp += C->getValue();
1550      if (Tmp > VTBits) Tmp = VTBits;
1551    }
1552    return Tmp;
1553  case ISD::SHL:
1554    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1555      // shl destroys sign bits.
1556      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1557      if (C->getValue() >= VTBits ||      // Bad shift.
1558          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1559      return Tmp - C->getValue();
1560    }
1561    break;
1562  case ISD::AND:
1563  case ISD::OR:
1564  case ISD::XOR:    // NOT is handled here.
1565    // Logical binary ops preserve the number of sign bits.
1566    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1567    if (Tmp == 1) return 1;  // Early out.
1568    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1569    return std::min(Tmp, Tmp2);
1570
1571  case ISD::SELECT:
1572    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1573    if (Tmp == 1) return 1;  // Early out.
1574    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1575    return std::min(Tmp, Tmp2);
1576
1577  case ISD::SETCC:
1578    // If setcc returns 0/-1, all bits are sign bits.
1579    if (TLI.getSetCCResultContents() ==
1580        TargetLowering::ZeroOrNegativeOneSetCCResult)
1581      return VTBits;
1582    break;
1583  case ISD::ROTL:
1584  case ISD::ROTR:
1585    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1586      unsigned RotAmt = C->getValue() & (VTBits-1);
1587
1588      // Handle rotate right by N like a rotate left by 32-N.
1589      if (Op.getOpcode() == ISD::ROTR)
1590        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1591
1592      // If we aren't rotating out all of the known-in sign bits, return the
1593      // number that are left.  This handles rotl(sext(x), 1) for example.
1594      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1595      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1596    }
1597    break;
1598  case ISD::ADD:
1599    // Add can have at most one carry bit.  Thus we know that the output
1600    // is, at worst, one more bit than the inputs.
1601    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1602    if (Tmp == 1) return 1;  // Early out.
1603
1604    // Special case decrementing a value (ADD X, -1):
1605    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1606      if (CRHS->isAllOnesValue()) {
1607        APInt KnownZero, KnownOne;
1608        APInt Mask = APInt::getAllOnesValue(VTBits);
1609        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1610
1611        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1612        // sign bits set.
1613        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1614          return VTBits;
1615
1616        // If we are subtracting one from a positive number, there is no carry
1617        // out of the result.
1618        if (KnownZero.isNegative())
1619          return Tmp;
1620      }
1621
1622    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1623    if (Tmp2 == 1) return 1;
1624      return std::min(Tmp, Tmp2)-1;
1625    break;
1626
1627  case ISD::SUB:
1628    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1629    if (Tmp2 == 1) return 1;
1630
1631    // Handle NEG.
1632    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1633      if (CLHS->getValue() == 0) {
1634        APInt KnownZero, KnownOne;
1635        APInt Mask = APInt::getAllOnesValue(VTBits);
1636        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1637        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1638        // sign bits set.
1639        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1640          return VTBits;
1641
1642        // If the input is known to be positive (the sign bit is known clear),
1643        // the output of the NEG has the same number of sign bits as the input.
1644        if (KnownZero.isNegative())
1645          return Tmp2;
1646
1647        // Otherwise, we treat this like a SUB.
1648      }
1649
1650    // Sub can have at most one carry bit.  Thus we know that the output
1651    // is, at worst, one more bit than the inputs.
1652    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1653    if (Tmp == 1) return 1;  // Early out.
1654      return std::min(Tmp, Tmp2)-1;
1655    break;
1656  case ISD::TRUNCATE:
1657    // FIXME: it's tricky to do anything useful for this, but it is an important
1658    // case for targets like X86.
1659    break;
1660  }
1661
1662  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1663  if (Op.getOpcode() == ISD::LOAD) {
1664    LoadSDNode *LD = cast<LoadSDNode>(Op);
1665    unsigned ExtType = LD->getExtensionType();
1666    switch (ExtType) {
1667    default: break;
1668    case ISD::SEXTLOAD:    // '17' bits known
1669      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1670      return VTBits-Tmp+1;
1671    case ISD::ZEXTLOAD:    // '16' bits known
1672      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1673      return VTBits-Tmp;
1674    }
1675  }
1676
1677  // Allow the target to implement this method for its nodes.
1678  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1679      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1680      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1681      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1682    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1683    if (NumBits > 1) return NumBits;
1684  }
1685
1686  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1687  // use this information.
1688  APInt KnownZero, KnownOne;
1689  APInt Mask = APInt::getAllOnesValue(VTBits);
1690  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1691
1692  if (KnownZero.isNegative()) {        // sign bit is 0
1693    Mask = KnownZero;
1694  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1695    Mask = KnownOne;
1696  } else {
1697    // Nothing known.
1698    return 1;
1699  }
1700
1701  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1702  // the number of identical bits in the top of the input value.
1703  Mask = ~Mask;
1704  Mask <<= Mask.getBitWidth()-VTBits;
1705  // Return # leading zeros.  We use 'min' here in case Val was zero before
1706  // shifting.  We don't want to return '64' as for an i32 "0".
1707  return std::min(VTBits, Mask.countLeadingZeros());
1708}
1709
1710
1711bool SelectionDAG::isVerifiedDebugInfoDesc(SDOperand Op) const {
1712  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1713  if (!GA) return false;
1714  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
1715  if (!GV) return false;
1716  MachineModuleInfo *MMI = getMachineModuleInfo();
1717  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
1718}
1719
1720
1721/// getNode - Gets or creates the specified node.
1722///
1723SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1724  FoldingSetNodeID ID;
1725  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1726  void *IP = 0;
1727  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1728    return SDOperand(E, 0);
1729  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1730  CSEMap.InsertNode(N, IP);
1731
1732  AllNodes.push_back(N);
1733  return SDOperand(N, 0);
1734}
1735
1736SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1737                                SDOperand Operand) {
1738  // Constant fold unary operations with an integer constant operand.
1739  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1740    const APInt &Val = C->getAPIntValue();
1741    unsigned BitWidth = MVT::getSizeInBits(VT);
1742    switch (Opcode) {
1743    default: break;
1744    case ISD::SIGN_EXTEND:
1745      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
1746    case ISD::ANY_EXTEND:
1747    case ISD::ZERO_EXTEND:
1748    case ISD::TRUNCATE:
1749      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
1750    case ISD::UINT_TO_FP:
1751    case ISD::SINT_TO_FP: {
1752      const uint64_t zero[] = {0, 0};
1753      // No compile time operations on this type.
1754      if (VT==MVT::ppcf128)
1755        break;
1756      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
1757      (void)apf.convertFromAPInt(Val,
1758                                 Opcode==ISD::SINT_TO_FP,
1759                                 APFloat::rmNearestTiesToEven);
1760      return getConstantFP(apf, VT);
1761    }
1762    case ISD::BIT_CONVERT:
1763      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1764        return getConstantFP(Val.bitsToFloat(), VT);
1765      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1766        return getConstantFP(Val.bitsToDouble(), VT);
1767      break;
1768    case ISD::BSWAP:
1769      return getConstant(Val.byteSwap(), VT);
1770    case ISD::CTPOP:
1771      return getConstant(Val.countPopulation(), VT);
1772    case ISD::CTLZ:
1773      return getConstant(Val.countLeadingZeros(), VT);
1774    case ISD::CTTZ:
1775      return getConstant(Val.countTrailingZeros(), VT);
1776    }
1777  }
1778
1779  // Constant fold unary operations with a floating point constant operand.
1780  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1781    APFloat V = C->getValueAPF();    // make copy
1782    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
1783      switch (Opcode) {
1784      case ISD::FNEG:
1785        V.changeSign();
1786        return getConstantFP(V, VT);
1787      case ISD::FABS:
1788        V.clearSign();
1789        return getConstantFP(V, VT);
1790      case ISD::FP_ROUND:
1791      case ISD::FP_EXTEND:
1792        // This can return overflow, underflow, or inexact; we don't care.
1793        // FIXME need to be more flexible about rounding mode.
1794        (void)V.convert(*MVTToAPFloatSemantics(VT),
1795                        APFloat::rmNearestTiesToEven);
1796        return getConstantFP(V, VT);
1797      case ISD::FP_TO_SINT:
1798      case ISD::FP_TO_UINT: {
1799        integerPart x;
1800        assert(integerPartWidth >= 64);
1801        // FIXME need to be more flexible about rounding mode.
1802        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1803                              Opcode==ISD::FP_TO_SINT,
1804                              APFloat::rmTowardZero);
1805        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1806          break;
1807        return getConstant(x, VT);
1808      }
1809      case ISD::BIT_CONVERT:
1810        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1811          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1812        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1813          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1814        break;
1815      }
1816    }
1817  }
1818
1819  unsigned OpOpcode = Operand.Val->getOpcode();
1820  switch (Opcode) {
1821  case ISD::TokenFactor:
1822    return Operand;         // Factor of one node?  No factor.
1823  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
1824  case ISD::FP_EXTEND:
1825    assert(MVT::isFloatingPoint(VT) &&
1826           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1827    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
1828    break;
1829    case ISD::SIGN_EXTEND:
1830    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1831           "Invalid SIGN_EXTEND!");
1832    if (Operand.getValueType() == VT) return Operand;   // noop extension
1833    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1834           && "Invalid sext node, dst < src!");
1835    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1836      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1837    break;
1838  case ISD::ZERO_EXTEND:
1839    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1840           "Invalid ZERO_EXTEND!");
1841    if (Operand.getValueType() == VT) return Operand;   // noop extension
1842    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1843           && "Invalid zext node, dst < src!");
1844    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1845      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1846    break;
1847  case ISD::ANY_EXTEND:
1848    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1849           "Invalid ANY_EXTEND!");
1850    if (Operand.getValueType() == VT) return Operand;   // noop extension
1851    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1852           && "Invalid anyext node, dst < src!");
1853    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1854      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1855      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1856    break;
1857  case ISD::TRUNCATE:
1858    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1859           "Invalid TRUNCATE!");
1860    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1861    assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
1862           && "Invalid truncate node, src < dst!");
1863    if (OpOpcode == ISD::TRUNCATE)
1864      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1865    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1866             OpOpcode == ISD::ANY_EXTEND) {
1867      // If the source is smaller than the dest, we still need an extend.
1868      if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1869          < MVT::getSizeInBits(VT))
1870        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1871      else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1872               > MVT::getSizeInBits(VT))
1873        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1874      else
1875        return Operand.Val->getOperand(0);
1876    }
1877    break;
1878  case ISD::BIT_CONVERT:
1879    // Basic sanity checking.
1880    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1881           && "Cannot BIT_CONVERT between types of different sizes!");
1882    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1883    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1884      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1885    if (OpOpcode == ISD::UNDEF)
1886      return getNode(ISD::UNDEF, VT);
1887    break;
1888  case ISD::SCALAR_TO_VECTOR:
1889    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1890           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1891           "Illegal SCALAR_TO_VECTOR node!");
1892    if (OpOpcode == ISD::UNDEF)
1893      return getNode(ISD::UNDEF, VT);
1894    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
1895    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
1896        isa<ConstantSDNode>(Operand.getOperand(1)) &&
1897        Operand.getConstantOperandVal(1) == 0 &&
1898        Operand.getOperand(0).getValueType() == VT)
1899      return Operand.getOperand(0);
1900    break;
1901  case ISD::FNEG:
1902    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1903      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1904                     Operand.Val->getOperand(0));
1905    if (OpOpcode == ISD::FNEG)  // --X -> X
1906      return Operand.Val->getOperand(0);
1907    break;
1908  case ISD::FABS:
1909    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1910      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1911    break;
1912  }
1913
1914  SDNode *N;
1915  SDVTList VTs = getVTList(VT);
1916  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1917    FoldingSetNodeID ID;
1918    SDOperand Ops[1] = { Operand };
1919    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1920    void *IP = 0;
1921    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1922      return SDOperand(E, 0);
1923    N = new UnarySDNode(Opcode, VTs, Operand);
1924    CSEMap.InsertNode(N, IP);
1925  } else {
1926    N = new UnarySDNode(Opcode, VTs, Operand);
1927  }
1928  AllNodes.push_back(N);
1929  return SDOperand(N, 0);
1930}
1931
1932
1933
1934SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1935                                SDOperand N1, SDOperand N2) {
1936  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1937  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1938  switch (Opcode) {
1939  default: break;
1940  case ISD::TokenFactor:
1941    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1942           N2.getValueType() == MVT::Other && "Invalid token factor!");
1943    // Fold trivial token factors.
1944    if (N1.getOpcode() == ISD::EntryToken) return N2;
1945    if (N2.getOpcode() == ISD::EntryToken) return N1;
1946    break;
1947  case ISD::AND:
1948    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1949           N1.getValueType() == VT && "Binary operator types must match!");
1950    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
1951    // worth handling here.
1952    if (N2C && N2C->getValue() == 0)
1953      return N2;
1954    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
1955      return N1;
1956    break;
1957  case ISD::OR:
1958  case ISD::XOR:
1959    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1960           N1.getValueType() == VT && "Binary operator types must match!");
1961    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
1962    // worth handling here.
1963    if (N2C && N2C->getValue() == 0)
1964      return N1;
1965    break;
1966  case ISD::UDIV:
1967  case ISD::UREM:
1968  case ISD::MULHU:
1969  case ISD::MULHS:
1970    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1971    // fall through
1972  case ISD::ADD:
1973  case ISD::SUB:
1974  case ISD::MUL:
1975  case ISD::SDIV:
1976  case ISD::SREM:
1977  case ISD::FADD:
1978  case ISD::FSUB:
1979  case ISD::FMUL:
1980  case ISD::FDIV:
1981  case ISD::FREM:
1982    assert(N1.getValueType() == N2.getValueType() &&
1983           N1.getValueType() == VT && "Binary operator types must match!");
1984    break;
1985  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1986    assert(N1.getValueType() == VT &&
1987           MVT::isFloatingPoint(N1.getValueType()) &&
1988           MVT::isFloatingPoint(N2.getValueType()) &&
1989           "Invalid FCOPYSIGN!");
1990    break;
1991  case ISD::SHL:
1992  case ISD::SRA:
1993  case ISD::SRL:
1994  case ISD::ROTL:
1995  case ISD::ROTR:
1996    assert(VT == N1.getValueType() &&
1997           "Shift operators return type must be the same as their first arg");
1998    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1999           VT != MVT::i1 && "Shifts only work on integers");
2000    break;
2001  case ISD::FP_ROUND_INREG: {
2002    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2003    assert(VT == N1.getValueType() && "Not an inreg round!");
2004    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
2005           "Cannot FP_ROUND_INREG integer types");
2006    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2007           "Not rounding down!");
2008    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2009    break;
2010  }
2011  case ISD::FP_ROUND:
2012    assert(MVT::isFloatingPoint(VT) &&
2013           MVT::isFloatingPoint(N1.getValueType()) &&
2014           MVT::getSizeInBits(VT) <= MVT::getSizeInBits(N1.getValueType()) &&
2015           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2016    if (N1.getValueType() == VT) return N1;  // noop conversion.
2017    break;
2018  case ISD::AssertSext:
2019  case ISD::AssertZext: {
2020    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2021    assert(VT == N1.getValueType() && "Not an inreg extend!");
2022    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2023           "Cannot *_EXTEND_INREG FP types");
2024    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2025           "Not extending!");
2026    if (VT == EVT) return N1; // noop assertion.
2027    break;
2028  }
2029  case ISD::SIGN_EXTEND_INREG: {
2030    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2031    assert(VT == N1.getValueType() && "Not an inreg extend!");
2032    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2033           "Cannot *_EXTEND_INREG FP types");
2034    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2035           "Not extending!");
2036    if (EVT == VT) return N1;  // Not actually extending
2037
2038    if (N1C) {
2039      APInt Val = N1C->getAPIntValue();
2040      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
2041      Val <<= Val.getBitWidth()-FromBits;
2042      Val = Val.ashr(Val.getBitWidth()-FromBits);
2043      return getConstant(Val, VT);
2044    }
2045    break;
2046  }
2047  case ISD::EXTRACT_VECTOR_ELT:
2048    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2049
2050    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2051    if (N1.getOpcode() == ISD::UNDEF)
2052      return getNode(ISD::UNDEF, VT);
2053
2054    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2055    // expanding copies of large vectors from registers.
2056    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2057        N1.getNumOperands() > 0) {
2058      unsigned Factor =
2059        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2060      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2061                     N1.getOperand(N2C->getValue() / Factor),
2062                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2063    }
2064
2065    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2066    // expanding large vector constants.
2067    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2068      return N1.getOperand(N2C->getValue());
2069
2070    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2071    // operations are lowered to scalars.
2072    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2073      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2074        if (IEC == N2C)
2075          return N1.getOperand(1);
2076        else
2077          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2078      }
2079    break;
2080  case ISD::EXTRACT_ELEMENT:
2081    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2082
2083    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2084    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2085    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2086    if (N1.getOpcode() == ISD::BUILD_PAIR)
2087      return N1.getOperand(N2C->getValue());
2088
2089    // EXTRACT_ELEMENT of a constant int is also very common.
2090    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2091      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2092      return getConstant(C->getValue() >> Shift, VT);
2093    }
2094    break;
2095  case ISD::EXTRACT_SUBVECTOR:
2096    if (N1.getValueType() == VT) // Trivial extraction.
2097      return N1;
2098    break;
2099  }
2100
2101  if (N1C) {
2102    if (N2C) {
2103      APInt C1 = N1C->getAPIntValue(), C2 = N2C->getAPIntValue();
2104      switch (Opcode) {
2105      case ISD::ADD: return getConstant(C1 + C2, VT);
2106      case ISD::SUB: return getConstant(C1 - C2, VT);
2107      case ISD::MUL: return getConstant(C1 * C2, VT);
2108      case ISD::UDIV:
2109        if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2110        break;
2111      case ISD::UREM :
2112        if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2113        break;
2114      case ISD::SDIV :
2115        if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2116        break;
2117      case ISD::SREM :
2118        if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2119        break;
2120      case ISD::AND  : return getConstant(C1 & C2, VT);
2121      case ISD::OR   : return getConstant(C1 | C2, VT);
2122      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2123      case ISD::SHL  : return getConstant(C1 << C2, VT);
2124      case ISD::SRL  : return getConstant(C1.lshr(C2), VT);
2125      case ISD::SRA  : return getConstant(C1.ashr(C2), VT);
2126      case ISD::ROTL : return getConstant(C1.rotl(C2), VT);
2127      case ISD::ROTR : return getConstant(C1.rotr(C2), VT);
2128      default: break;
2129      }
2130    } else {      // Cannonicalize constant to RHS if commutative
2131      if (isCommutativeBinOp(Opcode)) {
2132        std::swap(N1C, N2C);
2133        std::swap(N1, N2);
2134      }
2135    }
2136  }
2137
2138  // Constant fold FP operations.
2139  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2140  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2141  if (N1CFP) {
2142    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2143      // Cannonicalize constant to RHS if commutative
2144      std::swap(N1CFP, N2CFP);
2145      std::swap(N1, N2);
2146    } else if (N2CFP && VT != MVT::ppcf128) {
2147      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2148      APFloat::opStatus s;
2149      switch (Opcode) {
2150      case ISD::FADD:
2151        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2152        if (s != APFloat::opInvalidOp)
2153          return getConstantFP(V1, VT);
2154        break;
2155      case ISD::FSUB:
2156        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2157        if (s!=APFloat::opInvalidOp)
2158          return getConstantFP(V1, VT);
2159        break;
2160      case ISD::FMUL:
2161        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2162        if (s!=APFloat::opInvalidOp)
2163          return getConstantFP(V1, VT);
2164        break;
2165      case ISD::FDIV:
2166        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2167        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2168          return getConstantFP(V1, VT);
2169        break;
2170      case ISD::FREM :
2171        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2172        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2173          return getConstantFP(V1, VT);
2174        break;
2175      case ISD::FCOPYSIGN:
2176        V1.copySign(V2);
2177        return getConstantFP(V1, VT);
2178      default: break;
2179      }
2180    }
2181  }
2182
2183  // Canonicalize an UNDEF to the RHS, even over a constant.
2184  if (N1.getOpcode() == ISD::UNDEF) {
2185    if (isCommutativeBinOp(Opcode)) {
2186      std::swap(N1, N2);
2187    } else {
2188      switch (Opcode) {
2189      case ISD::FP_ROUND_INREG:
2190      case ISD::SIGN_EXTEND_INREG:
2191      case ISD::SUB:
2192      case ISD::FSUB:
2193      case ISD::FDIV:
2194      case ISD::FREM:
2195      case ISD::SRA:
2196        return N1;     // fold op(undef, arg2) -> undef
2197      case ISD::UDIV:
2198      case ISD::SDIV:
2199      case ISD::UREM:
2200      case ISD::SREM:
2201      case ISD::SRL:
2202      case ISD::SHL:
2203        if (!MVT::isVector(VT))
2204          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2205        // For vectors, we can't easily build an all zero vector, just return
2206        // the LHS.
2207        return N2;
2208      }
2209    }
2210  }
2211
2212  // Fold a bunch of operators when the RHS is undef.
2213  if (N2.getOpcode() == ISD::UNDEF) {
2214    switch (Opcode) {
2215    case ISD::ADD:
2216    case ISD::ADDC:
2217    case ISD::ADDE:
2218    case ISD::SUB:
2219    case ISD::FADD:
2220    case ISD::FSUB:
2221    case ISD::FMUL:
2222    case ISD::FDIV:
2223    case ISD::FREM:
2224    case ISD::UDIV:
2225    case ISD::SDIV:
2226    case ISD::UREM:
2227    case ISD::SREM:
2228    case ISD::XOR:
2229      return N2;       // fold op(arg1, undef) -> undef
2230    case ISD::MUL:
2231    case ISD::AND:
2232    case ISD::SRL:
2233    case ISD::SHL:
2234      if (!MVT::isVector(VT))
2235        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2236      // For vectors, we can't easily build an all zero vector, just return
2237      // the LHS.
2238      return N1;
2239    case ISD::OR:
2240      if (!MVT::isVector(VT))
2241        return getConstant(MVT::getIntVTBitMask(VT), VT);
2242      // For vectors, we can't easily build an all one vector, just return
2243      // the LHS.
2244      return N1;
2245    case ISD::SRA:
2246      return N1;
2247    }
2248  }
2249
2250  // Memoize this node if possible.
2251  SDNode *N;
2252  SDVTList VTs = getVTList(VT);
2253  if (VT != MVT::Flag) {
2254    SDOperand Ops[] = { N1, N2 };
2255    FoldingSetNodeID ID;
2256    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2257    void *IP = 0;
2258    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2259      return SDOperand(E, 0);
2260    N = new BinarySDNode(Opcode, VTs, N1, N2);
2261    CSEMap.InsertNode(N, IP);
2262  } else {
2263    N = new BinarySDNode(Opcode, VTs, N1, N2);
2264  }
2265
2266  AllNodes.push_back(N);
2267  return SDOperand(N, 0);
2268}
2269
2270SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2271                                SDOperand N1, SDOperand N2, SDOperand N3) {
2272  // Perform various simplifications.
2273  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2274  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2275  switch (Opcode) {
2276  case ISD::SETCC: {
2277    // Use FoldSetCC to simplify SETCC's.
2278    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2279    if (Simp.Val) return Simp;
2280    break;
2281  }
2282  case ISD::SELECT:
2283    if (N1C) {
2284     if (N1C->getValue())
2285        return N2;             // select true, X, Y -> X
2286      else
2287        return N3;             // select false, X, Y -> Y
2288    }
2289
2290    if (N2 == N3) return N2;   // select C, X, X -> X
2291    break;
2292  case ISD::BRCOND:
2293    if (N2C) {
2294      if (N2C->getValue()) // Unconditional branch
2295        return getNode(ISD::BR, MVT::Other, N1, N3);
2296      else
2297        return N1;         // Never-taken branch
2298    }
2299    break;
2300  case ISD::VECTOR_SHUFFLE:
2301    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2302           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2303           N3.getOpcode() == ISD::BUILD_VECTOR &&
2304           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2305           "Illegal VECTOR_SHUFFLE node!");
2306    break;
2307  case ISD::BIT_CONVERT:
2308    // Fold bit_convert nodes from a type to themselves.
2309    if (N1.getValueType() == VT)
2310      return N1;
2311    break;
2312  }
2313
2314  // Memoize node if it doesn't produce a flag.
2315  SDNode *N;
2316  SDVTList VTs = getVTList(VT);
2317  if (VT != MVT::Flag) {
2318    SDOperand Ops[] = { N1, N2, N3 };
2319    FoldingSetNodeID ID;
2320    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2321    void *IP = 0;
2322    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2323      return SDOperand(E, 0);
2324    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2325    CSEMap.InsertNode(N, IP);
2326  } else {
2327    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2328  }
2329  AllNodes.push_back(N);
2330  return SDOperand(N, 0);
2331}
2332
2333SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2334                                SDOperand N1, SDOperand N2, SDOperand N3,
2335                                SDOperand N4) {
2336  SDOperand Ops[] = { N1, N2, N3, N4 };
2337  return getNode(Opcode, VT, Ops, 4);
2338}
2339
2340SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2341                                SDOperand N1, SDOperand N2, SDOperand N3,
2342                                SDOperand N4, SDOperand N5) {
2343  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2344  return getNode(Opcode, VT, Ops, 5);
2345}
2346
2347SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dest,
2348                                  SDOperand Src, SDOperand Size,
2349                                  SDOperand Align,
2350                                  SDOperand AlwaysInline) {
2351  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2352  return getNode(ISD::MEMCPY, MVT::Other, Ops, 6);
2353}
2354
2355SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dest,
2356                                  SDOperand Src, SDOperand Size,
2357                                  SDOperand Align,
2358                                  SDOperand AlwaysInline) {
2359  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2360  return getNode(ISD::MEMMOVE, MVT::Other, Ops, 6);
2361}
2362
2363SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dest,
2364                                  SDOperand Src, SDOperand Size,
2365                                  SDOperand Align,
2366                                  SDOperand AlwaysInline) {
2367  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2368  return getNode(ISD::MEMSET, MVT::Other, Ops, 6);
2369}
2370
2371SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2372                                  SDOperand Ptr, SDOperand Cmp,
2373                                  SDOperand Swp, MVT::ValueType VT) {
2374  assert(Opcode == ISD::ATOMIC_LCS && "Invalid Atomic Op");
2375  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
2376  SDVTList VTs = getVTList(Cmp.getValueType(), MVT::Other);
2377  FoldingSetNodeID ID;
2378  SDOperand Ops[] = {Chain, Ptr, Cmp, Swp};
2379  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
2380  ID.AddInteger((unsigned int)VT);
2381  void* IP = 0;
2382  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2383    return SDOperand(E, 0);
2384  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, VT);
2385  CSEMap.InsertNode(N, IP);
2386  AllNodes.push_back(N);
2387  return SDOperand(N, 0);
2388}
2389
2390SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2391                                  SDOperand Ptr, SDOperand Val,
2392                                  MVT::ValueType VT) {
2393  assert((Opcode == ISD::ATOMIC_LAS || Opcode == ISD::ATOMIC_SWAP)
2394         && "Invalid Atomic Op");
2395  SDVTList VTs = getVTList(Val.getValueType(), MVT::Other);
2396  FoldingSetNodeID ID;
2397  SDOperand Ops[] = {Chain, Ptr, Val};
2398  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2399  ID.AddInteger((unsigned int)VT);
2400  void* IP = 0;
2401  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2402    return SDOperand(E, 0);
2403  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, VT);
2404  CSEMap.InsertNode(N, IP);
2405  AllNodes.push_back(N);
2406  return SDOperand(N, 0);
2407}
2408
2409SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2410                                SDOperand Chain, SDOperand Ptr,
2411                                const Value *SV, int SVOffset,
2412                                bool isVolatile, unsigned Alignment) {
2413  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2414    const Type *Ty = 0;
2415    if (VT != MVT::iPTR) {
2416      Ty = MVT::getTypeForValueType(VT);
2417    } else if (SV) {
2418      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2419      assert(PT && "Value for load must be a pointer");
2420      Ty = PT->getElementType();
2421    }
2422    assert(Ty && "Could not get type information for load");
2423    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2424  }
2425  SDVTList VTs = getVTList(VT, MVT::Other);
2426  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2427  SDOperand Ops[] = { Chain, Ptr, Undef };
2428  FoldingSetNodeID ID;
2429  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2430  ID.AddInteger(ISD::UNINDEXED);
2431  ID.AddInteger(ISD::NON_EXTLOAD);
2432  ID.AddInteger((unsigned int)VT);
2433  ID.AddInteger(Alignment);
2434  ID.AddInteger(isVolatile);
2435  void *IP = 0;
2436  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2437    return SDOperand(E, 0);
2438  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2439                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2440                             isVolatile);
2441  CSEMap.InsertNode(N, IP);
2442  AllNodes.push_back(N);
2443  return SDOperand(N, 0);
2444}
2445
2446SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2447                                   SDOperand Chain, SDOperand Ptr,
2448                                   const Value *SV,
2449                                   int SVOffset, MVT::ValueType EVT,
2450                                   bool isVolatile, unsigned Alignment) {
2451  // If they are asking for an extending load from/to the same thing, return a
2452  // normal load.
2453  if (VT == EVT)
2454    return getLoad(VT, Chain, Ptr, SV, SVOffset, isVolatile, Alignment);
2455
2456  if (MVT::isVector(VT))
2457    assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2458  else
2459    assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
2460           "Should only be an extending load, not truncating!");
2461  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2462         "Cannot sign/zero extend a FP/Vector load!");
2463  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2464         "Cannot convert from FP to Int or Int -> FP!");
2465
2466  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2467    const Type *Ty = 0;
2468    if (VT != MVT::iPTR) {
2469      Ty = MVT::getTypeForValueType(VT);
2470    } else if (SV) {
2471      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2472      assert(PT && "Value for load must be a pointer");
2473      Ty = PT->getElementType();
2474    }
2475    assert(Ty && "Could not get type information for load");
2476    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2477  }
2478  SDVTList VTs = getVTList(VT, MVT::Other);
2479  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2480  SDOperand Ops[] = { Chain, Ptr, Undef };
2481  FoldingSetNodeID ID;
2482  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2483  ID.AddInteger(ISD::UNINDEXED);
2484  ID.AddInteger(ExtType);
2485  ID.AddInteger((unsigned int)EVT);
2486  ID.AddInteger(Alignment);
2487  ID.AddInteger(isVolatile);
2488  void *IP = 0;
2489  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2490    return SDOperand(E, 0);
2491  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2492                             SV, SVOffset, Alignment, isVolatile);
2493  CSEMap.InsertNode(N, IP);
2494  AllNodes.push_back(N);
2495  return SDOperand(N, 0);
2496}
2497
2498SDOperand
2499SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2500                             SDOperand Offset, ISD::MemIndexedMode AM) {
2501  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2502  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2503         "Load is already a indexed load!");
2504  MVT::ValueType VT = OrigLoad.getValueType();
2505  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2506  SDOperand Ops[] = { LD->getChain(), Base, Offset };
2507  FoldingSetNodeID ID;
2508  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2509  ID.AddInteger(AM);
2510  ID.AddInteger(LD->getExtensionType());
2511  ID.AddInteger((unsigned int)(LD->getMemoryVT()));
2512  ID.AddInteger(LD->getAlignment());
2513  ID.AddInteger(LD->isVolatile());
2514  void *IP = 0;
2515  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2516    return SDOperand(E, 0);
2517  SDNode *N = new LoadSDNode(Ops, VTs, AM,
2518                             LD->getExtensionType(), LD->getMemoryVT(),
2519                             LD->getSrcValue(), LD->getSrcValueOffset(),
2520                             LD->getAlignment(), LD->isVolatile());
2521  CSEMap.InsertNode(N, IP);
2522  AllNodes.push_back(N);
2523  return SDOperand(N, 0);
2524}
2525
2526SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2527                                 SDOperand Ptr, const Value *SV, int SVOffset,
2528                                 bool isVolatile, unsigned Alignment) {
2529  MVT::ValueType VT = Val.getValueType();
2530
2531  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2532    const Type *Ty = 0;
2533    if (VT != MVT::iPTR) {
2534      Ty = MVT::getTypeForValueType(VT);
2535    } else if (SV) {
2536      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2537      assert(PT && "Value for store must be a pointer");
2538      Ty = PT->getElementType();
2539    }
2540    assert(Ty && "Could not get type information for store");
2541    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2542  }
2543  SDVTList VTs = getVTList(MVT::Other);
2544  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2545  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2546  FoldingSetNodeID ID;
2547  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2548  ID.AddInteger(ISD::UNINDEXED);
2549  ID.AddInteger(false);
2550  ID.AddInteger((unsigned int)VT);
2551  ID.AddInteger(Alignment);
2552  ID.AddInteger(isVolatile);
2553  void *IP = 0;
2554  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2555    return SDOperand(E, 0);
2556  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2557                              VT, SV, SVOffset, Alignment, isVolatile);
2558  CSEMap.InsertNode(N, IP);
2559  AllNodes.push_back(N);
2560  return SDOperand(N, 0);
2561}
2562
2563SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2564                                      SDOperand Ptr, const Value *SV,
2565                                      int SVOffset, MVT::ValueType SVT,
2566                                      bool isVolatile, unsigned Alignment) {
2567  MVT::ValueType VT = Val.getValueType();
2568
2569  if (VT == SVT)
2570    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
2571
2572  assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
2573         "Not a truncation?");
2574  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2575         "Can't do FP-INT conversion!");
2576
2577  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2578    const Type *Ty = 0;
2579    if (VT != MVT::iPTR) {
2580      Ty = MVT::getTypeForValueType(VT);
2581    } else if (SV) {
2582      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2583      assert(PT && "Value for store must be a pointer");
2584      Ty = PT->getElementType();
2585    }
2586    assert(Ty && "Could not get type information for store");
2587    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2588  }
2589  SDVTList VTs = getVTList(MVT::Other);
2590  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2591  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2592  FoldingSetNodeID ID;
2593  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2594  ID.AddInteger(ISD::UNINDEXED);
2595  ID.AddInteger(1);
2596  ID.AddInteger((unsigned int)SVT);
2597  ID.AddInteger(Alignment);
2598  ID.AddInteger(isVolatile);
2599  void *IP = 0;
2600  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2601    return SDOperand(E, 0);
2602  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
2603                              SVT, SV, SVOffset, Alignment, isVolatile);
2604  CSEMap.InsertNode(N, IP);
2605  AllNodes.push_back(N);
2606  return SDOperand(N, 0);
2607}
2608
2609SDOperand
2610SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2611                              SDOperand Offset, ISD::MemIndexedMode AM) {
2612  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2613  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2614         "Store is already a indexed store!");
2615  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2616  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2617  FoldingSetNodeID ID;
2618  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2619  ID.AddInteger(AM);
2620  ID.AddInteger(ST->isTruncatingStore());
2621  ID.AddInteger((unsigned int)(ST->getMemoryVT()));
2622  ID.AddInteger(ST->getAlignment());
2623  ID.AddInteger(ST->isVolatile());
2624  void *IP = 0;
2625  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2626    return SDOperand(E, 0);
2627  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2628                              ST->isTruncatingStore(), ST->getMemoryVT(),
2629                              ST->getSrcValue(), ST->getSrcValueOffset(),
2630                              ST->getAlignment(), ST->isVolatile());
2631  CSEMap.InsertNode(N, IP);
2632  AllNodes.push_back(N);
2633  return SDOperand(N, 0);
2634}
2635
2636SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2637                                 SDOperand Chain, SDOperand Ptr,
2638                                 SDOperand SV) {
2639  SDOperand Ops[] = { Chain, Ptr, SV };
2640  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2641}
2642
2643SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2644                                const SDOperand *Ops, unsigned NumOps) {
2645  switch (NumOps) {
2646  case 0: return getNode(Opcode, VT);
2647  case 1: return getNode(Opcode, VT, Ops[0]);
2648  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2649  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2650  default: break;
2651  }
2652
2653  switch (Opcode) {
2654  default: break;
2655  case ISD::SELECT_CC: {
2656    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2657    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2658           "LHS and RHS of condition must have same type!");
2659    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2660           "True and False arms of SelectCC must have same type!");
2661    assert(Ops[2].getValueType() == VT &&
2662           "select_cc node must be of same type as true and false value!");
2663    break;
2664  }
2665  case ISD::BR_CC: {
2666    assert(NumOps == 5 && "BR_CC takes 5 operands!");
2667    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2668           "LHS/RHS of comparison should match types!");
2669    break;
2670  }
2671  }
2672
2673  // Memoize nodes.
2674  SDNode *N;
2675  SDVTList VTs = getVTList(VT);
2676  if (VT != MVT::Flag) {
2677    FoldingSetNodeID ID;
2678    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2679    void *IP = 0;
2680    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2681      return SDOperand(E, 0);
2682    N = new SDNode(Opcode, VTs, Ops, NumOps);
2683    CSEMap.InsertNode(N, IP);
2684  } else {
2685    N = new SDNode(Opcode, VTs, Ops, NumOps);
2686  }
2687  AllNodes.push_back(N);
2688  return SDOperand(N, 0);
2689}
2690
2691SDOperand SelectionDAG::getNode(unsigned Opcode,
2692                                std::vector<MVT::ValueType> &ResultTys,
2693                                const SDOperand *Ops, unsigned NumOps) {
2694  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2695                 Ops, NumOps);
2696}
2697
2698SDOperand SelectionDAG::getNode(unsigned Opcode,
2699                                const MVT::ValueType *VTs, unsigned NumVTs,
2700                                const SDOperand *Ops, unsigned NumOps) {
2701  if (NumVTs == 1)
2702    return getNode(Opcode, VTs[0], Ops, NumOps);
2703  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2704}
2705
2706SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2707                                const SDOperand *Ops, unsigned NumOps) {
2708  if (VTList.NumVTs == 1)
2709    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2710
2711  switch (Opcode) {
2712  // FIXME: figure out how to safely handle things like
2713  // int foo(int x) { return 1 << (x & 255); }
2714  // int bar() { return foo(256); }
2715#if 0
2716  case ISD::SRA_PARTS:
2717  case ISD::SRL_PARTS:
2718  case ISD::SHL_PARTS:
2719    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2720        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2721      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2722    else if (N3.getOpcode() == ISD::AND)
2723      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2724        // If the and is only masking out bits that cannot effect the shift,
2725        // eliminate the and.
2726        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2727        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2728          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2729      }
2730    break;
2731#endif
2732  }
2733
2734  // Memoize the node unless it returns a flag.
2735  SDNode *N;
2736  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2737    FoldingSetNodeID ID;
2738    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2739    void *IP = 0;
2740    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2741      return SDOperand(E, 0);
2742    if (NumOps == 1)
2743      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2744    else if (NumOps == 2)
2745      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2746    else if (NumOps == 3)
2747      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2748    else
2749      N = new SDNode(Opcode, VTList, Ops, NumOps);
2750    CSEMap.InsertNode(N, IP);
2751  } else {
2752    if (NumOps == 1)
2753      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2754    else if (NumOps == 2)
2755      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2756    else if (NumOps == 3)
2757      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2758    else
2759      N = new SDNode(Opcode, VTList, Ops, NumOps);
2760  }
2761  AllNodes.push_back(N);
2762  return SDOperand(N, 0);
2763}
2764
2765SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
2766  return getNode(Opcode, VTList, 0, 0);
2767}
2768
2769SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2770                                SDOperand N1) {
2771  SDOperand Ops[] = { N1 };
2772  return getNode(Opcode, VTList, Ops, 1);
2773}
2774
2775SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2776                                SDOperand N1, SDOperand N2) {
2777  SDOperand Ops[] = { N1, N2 };
2778  return getNode(Opcode, VTList, Ops, 2);
2779}
2780
2781SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2782                                SDOperand N1, SDOperand N2, SDOperand N3) {
2783  SDOperand Ops[] = { N1, N2, N3 };
2784  return getNode(Opcode, VTList, Ops, 3);
2785}
2786
2787SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2788                                SDOperand N1, SDOperand N2, SDOperand N3,
2789                                SDOperand N4) {
2790  SDOperand Ops[] = { N1, N2, N3, N4 };
2791  return getNode(Opcode, VTList, Ops, 4);
2792}
2793
2794SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2795                                SDOperand N1, SDOperand N2, SDOperand N3,
2796                                SDOperand N4, SDOperand N5) {
2797  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2798  return getNode(Opcode, VTList, Ops, 5);
2799}
2800
2801SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2802  return makeVTList(SDNode::getValueTypeList(VT), 1);
2803}
2804
2805SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2806  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2807       E = VTList.end(); I != E; ++I) {
2808    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2809      return makeVTList(&(*I)[0], 2);
2810  }
2811  std::vector<MVT::ValueType> V;
2812  V.push_back(VT1);
2813  V.push_back(VT2);
2814  VTList.push_front(V);
2815  return makeVTList(&(*VTList.begin())[0], 2);
2816}
2817SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2818                                 MVT::ValueType VT3) {
2819  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2820       E = VTList.end(); I != E; ++I) {
2821    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2822        (*I)[2] == VT3)
2823      return makeVTList(&(*I)[0], 3);
2824  }
2825  std::vector<MVT::ValueType> V;
2826  V.push_back(VT1);
2827  V.push_back(VT2);
2828  V.push_back(VT3);
2829  VTList.push_front(V);
2830  return makeVTList(&(*VTList.begin())[0], 3);
2831}
2832
2833SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2834  switch (NumVTs) {
2835    case 0: assert(0 && "Cannot have nodes without results!");
2836    case 1: return getVTList(VTs[0]);
2837    case 2: return getVTList(VTs[0], VTs[1]);
2838    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2839    default: break;
2840  }
2841
2842  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2843       E = VTList.end(); I != E; ++I) {
2844    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2845
2846    bool NoMatch = false;
2847    for (unsigned i = 2; i != NumVTs; ++i)
2848      if (VTs[i] != (*I)[i]) {
2849        NoMatch = true;
2850        break;
2851      }
2852    if (!NoMatch)
2853      return makeVTList(&*I->begin(), NumVTs);
2854  }
2855
2856  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2857  return makeVTList(&*VTList.begin()->begin(), NumVTs);
2858}
2859
2860
2861/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2862/// specified operands.  If the resultant node already exists in the DAG,
2863/// this does not modify the specified node, instead it returns the node that
2864/// already exists.  If the resultant node does not exist in the DAG, the
2865/// input node is returned.  As a degenerate case, if you specify the same
2866/// input operands as the node already has, the input node is returned.
2867SDOperand SelectionDAG::
2868UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2869  SDNode *N = InN.Val;
2870  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2871
2872  // Check to see if there is no change.
2873  if (Op == N->getOperand(0)) return InN;
2874
2875  // See if the modified node already exists.
2876  void *InsertPos = 0;
2877  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2878    return SDOperand(Existing, InN.ResNo);
2879
2880  // Nope it doesn't.  Remove the node from it's current place in the maps.
2881  if (InsertPos)
2882    RemoveNodeFromCSEMaps(N);
2883
2884  // Now we update the operands.
2885  N->OperandList[0].Val->removeUser(N);
2886  Op.Val->addUser(N);
2887  N->OperandList[0] = Op;
2888
2889  // If this gets put into a CSE map, add it.
2890  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2891  return InN;
2892}
2893
2894SDOperand SelectionDAG::
2895UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2896  SDNode *N = InN.Val;
2897  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2898
2899  // Check to see if there is no change.
2900  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2901    return InN;   // No operands changed, just return the input node.
2902
2903  // See if the modified node already exists.
2904  void *InsertPos = 0;
2905  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2906    return SDOperand(Existing, InN.ResNo);
2907
2908  // Nope it doesn't.  Remove the node from it's current place in the maps.
2909  if (InsertPos)
2910    RemoveNodeFromCSEMaps(N);
2911
2912  // Now we update the operands.
2913  if (N->OperandList[0] != Op1) {
2914    N->OperandList[0].Val->removeUser(N);
2915    Op1.Val->addUser(N);
2916    N->OperandList[0] = Op1;
2917  }
2918  if (N->OperandList[1] != Op2) {
2919    N->OperandList[1].Val->removeUser(N);
2920    Op2.Val->addUser(N);
2921    N->OperandList[1] = Op2;
2922  }
2923
2924  // If this gets put into a CSE map, add it.
2925  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2926  return InN;
2927}
2928
2929SDOperand SelectionDAG::
2930UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2931  SDOperand Ops[] = { Op1, Op2, Op3 };
2932  return UpdateNodeOperands(N, Ops, 3);
2933}
2934
2935SDOperand SelectionDAG::
2936UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2937                   SDOperand Op3, SDOperand Op4) {
2938  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2939  return UpdateNodeOperands(N, Ops, 4);
2940}
2941
2942SDOperand SelectionDAG::
2943UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2944                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2945  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2946  return UpdateNodeOperands(N, Ops, 5);
2947}
2948
2949
2950SDOperand SelectionDAG::
2951UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2952  SDNode *N = InN.Val;
2953  assert(N->getNumOperands() == NumOps &&
2954         "Update with wrong number of operands");
2955
2956  // Check to see if there is no change.
2957  bool AnyChange = false;
2958  for (unsigned i = 0; i != NumOps; ++i) {
2959    if (Ops[i] != N->getOperand(i)) {
2960      AnyChange = true;
2961      break;
2962    }
2963  }
2964
2965  // No operands changed, just return the input node.
2966  if (!AnyChange) return InN;
2967
2968  // See if the modified node already exists.
2969  void *InsertPos = 0;
2970  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2971    return SDOperand(Existing, InN.ResNo);
2972
2973  // Nope it doesn't.  Remove the node from it's current place in the maps.
2974  if (InsertPos)
2975    RemoveNodeFromCSEMaps(N);
2976
2977  // Now we update the operands.
2978  for (unsigned i = 0; i != NumOps; ++i) {
2979    if (N->OperandList[i] != Ops[i]) {
2980      N->OperandList[i].Val->removeUser(N);
2981      Ops[i].Val->addUser(N);
2982      N->OperandList[i] = Ops[i];
2983    }
2984  }
2985
2986  // If this gets put into a CSE map, add it.
2987  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2988  return InN;
2989}
2990
2991
2992/// MorphNodeTo - This frees the operands of the current node, resets the
2993/// opcode, types, and operands to the specified value.  This should only be
2994/// used by the SelectionDAG class.
2995void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2996                         const SDOperand *Ops, unsigned NumOps) {
2997  NodeType = Opc;
2998  ValueList = L.VTs;
2999  NumValues = L.NumVTs;
3000
3001  // Clear the operands list, updating used nodes to remove this from their
3002  // use list.
3003  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3004    I->Val->removeUser(this);
3005
3006  // If NumOps is larger than the # of operands we currently have, reallocate
3007  // the operand list.
3008  if (NumOps > NumOperands) {
3009    if (OperandsNeedDelete)
3010      delete [] OperandList;
3011    OperandList = new SDOperand[NumOps];
3012    OperandsNeedDelete = true;
3013  }
3014
3015  // Assign the new operands.
3016  NumOperands = NumOps;
3017
3018  for (unsigned i = 0, e = NumOps; i != e; ++i) {
3019    OperandList[i] = Ops[i];
3020    SDNode *N = OperandList[i].Val;
3021    N->Uses.push_back(this);
3022  }
3023}
3024
3025/// SelectNodeTo - These are used for target selectors to *mutate* the
3026/// specified node to have the specified return type, Target opcode, and
3027/// operands.  Note that target opcodes are stored as
3028/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
3029///
3030/// Note that SelectNodeTo returns the resultant node.  If there is already a
3031/// node of the specified opcode and operands, it returns that node instead of
3032/// the current one.
3033SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3034                                   MVT::ValueType VT) {
3035  SDVTList VTs = getVTList(VT);
3036  FoldingSetNodeID ID;
3037  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
3038  void *IP = 0;
3039  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3040    return ON;
3041
3042  RemoveNodeFromCSEMaps(N);
3043
3044  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
3045
3046  CSEMap.InsertNode(N, IP);
3047  return N;
3048}
3049
3050SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3051                                   MVT::ValueType VT, SDOperand Op1) {
3052  // If an identical node already exists, use it.
3053  SDVTList VTs = getVTList(VT);
3054  SDOperand Ops[] = { Op1 };
3055
3056  FoldingSetNodeID ID;
3057  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3058  void *IP = 0;
3059  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3060    return ON;
3061
3062  RemoveNodeFromCSEMaps(N);
3063  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3064  CSEMap.InsertNode(N, IP);
3065  return N;
3066}
3067
3068SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3069                                   MVT::ValueType VT, SDOperand Op1,
3070                                   SDOperand Op2) {
3071  // If an identical node already exists, use it.
3072  SDVTList VTs = getVTList(VT);
3073  SDOperand Ops[] = { Op1, Op2 };
3074
3075  FoldingSetNodeID ID;
3076  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3077  void *IP = 0;
3078  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3079    return ON;
3080
3081  RemoveNodeFromCSEMaps(N);
3082
3083  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3084
3085  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3086  return N;
3087}
3088
3089SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3090                                   MVT::ValueType VT, SDOperand Op1,
3091                                   SDOperand Op2, SDOperand Op3) {
3092  // If an identical node already exists, use it.
3093  SDVTList VTs = getVTList(VT);
3094  SDOperand Ops[] = { Op1, Op2, Op3 };
3095  FoldingSetNodeID ID;
3096  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3097  void *IP = 0;
3098  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3099    return ON;
3100
3101  RemoveNodeFromCSEMaps(N);
3102
3103  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3104
3105  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3106  return N;
3107}
3108
3109SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3110                                   MVT::ValueType VT, const SDOperand *Ops,
3111                                   unsigned NumOps) {
3112  // If an identical node already exists, use it.
3113  SDVTList VTs = getVTList(VT);
3114  FoldingSetNodeID ID;
3115  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3116  void *IP = 0;
3117  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3118    return ON;
3119
3120  RemoveNodeFromCSEMaps(N);
3121  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3122
3123  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3124  return N;
3125}
3126
3127SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3128                                   MVT::ValueType VT1, MVT::ValueType VT2,
3129                                   SDOperand Op1, SDOperand Op2) {
3130  SDVTList VTs = getVTList(VT1, VT2);
3131  FoldingSetNodeID ID;
3132  SDOperand Ops[] = { Op1, Op2 };
3133  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3134  void *IP = 0;
3135  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3136    return ON;
3137
3138  RemoveNodeFromCSEMaps(N);
3139  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3140  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3141  return N;
3142}
3143
3144SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3145                                   MVT::ValueType VT1, MVT::ValueType VT2,
3146                                   SDOperand Op1, SDOperand Op2,
3147                                   SDOperand Op3) {
3148  // If an identical node already exists, use it.
3149  SDVTList VTs = getVTList(VT1, VT2);
3150  SDOperand Ops[] = { Op1, Op2, Op3 };
3151  FoldingSetNodeID ID;
3152  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3153  void *IP = 0;
3154  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3155    return ON;
3156
3157  RemoveNodeFromCSEMaps(N);
3158
3159  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3160  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3161  return N;
3162}
3163
3164
3165/// getTargetNode - These are used for target selectors to create a new node
3166/// with specified return type(s), target opcode, and operands.
3167///
3168/// Note that getTargetNode returns the resultant node.  If there is already a
3169/// node of the specified opcode and operands, it returns that node instead of
3170/// the current one.
3171SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3172  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3173}
3174SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3175                                    SDOperand Op1) {
3176  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3177}
3178SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3179                                    SDOperand Op1, SDOperand Op2) {
3180  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3181}
3182SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3183                                    SDOperand Op1, SDOperand Op2,
3184                                    SDOperand Op3) {
3185  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3186}
3187SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3188                                    const SDOperand *Ops, unsigned NumOps) {
3189  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3190}
3191SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3192                                    MVT::ValueType VT2) {
3193  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3194  SDOperand Op;
3195  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3196}
3197SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3198                                    MVT::ValueType VT2, SDOperand Op1) {
3199  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3200  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3201}
3202SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3203                                    MVT::ValueType VT2, SDOperand Op1,
3204                                    SDOperand Op2) {
3205  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3206  SDOperand Ops[] = { Op1, Op2 };
3207  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3208}
3209SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3210                                    MVT::ValueType VT2, SDOperand Op1,
3211                                    SDOperand Op2, SDOperand Op3) {
3212  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3213  SDOperand Ops[] = { Op1, Op2, Op3 };
3214  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3215}
3216SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3217                                    MVT::ValueType VT2,
3218                                    const SDOperand *Ops, unsigned NumOps) {
3219  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3220  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3221}
3222SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3223                                    MVT::ValueType VT2, MVT::ValueType VT3,
3224                                    SDOperand Op1, SDOperand Op2) {
3225  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3226  SDOperand Ops[] = { Op1, Op2 };
3227  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3228}
3229SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3230                                    MVT::ValueType VT2, MVT::ValueType VT3,
3231                                    SDOperand Op1, SDOperand Op2,
3232                                    SDOperand Op3) {
3233  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3234  SDOperand Ops[] = { Op1, Op2, Op3 };
3235  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3236}
3237SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3238                                    MVT::ValueType VT2, MVT::ValueType VT3,
3239                                    const SDOperand *Ops, unsigned NumOps) {
3240  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3241  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3242}
3243SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3244                                    MVT::ValueType VT2, MVT::ValueType VT3,
3245                                    MVT::ValueType VT4,
3246                                    const SDOperand *Ops, unsigned NumOps) {
3247  std::vector<MVT::ValueType> VTList;
3248  VTList.push_back(VT1);
3249  VTList.push_back(VT2);
3250  VTList.push_back(VT3);
3251  VTList.push_back(VT4);
3252  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3253  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3254}
3255SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3256                                    std::vector<MVT::ValueType> &ResultTys,
3257                                    const SDOperand *Ops, unsigned NumOps) {
3258  const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3259  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3260                 Ops, NumOps).Val;
3261}
3262
3263
3264/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3265/// This can cause recursive merging of nodes in the DAG.
3266///
3267/// This version assumes From has a single result value.
3268///
3269void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand To,
3270                                      DAGUpdateListener *UpdateListener) {
3271  SDNode *From = FromN.Val;
3272  assert(From->getNumValues() == 1 && FromN.ResNo == 0 &&
3273         "Cannot replace with this method!");
3274  assert(From != To.Val && "Cannot replace uses of with self");
3275
3276  while (!From->use_empty()) {
3277    // Process users until they are all gone.
3278    SDNode *U = *From->use_begin();
3279
3280    // This node is about to morph, remove its old self from the CSE maps.
3281    RemoveNodeFromCSEMaps(U);
3282
3283    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3284         I != E; ++I)
3285      if (I->Val == From) {
3286        From->removeUser(U);
3287        *I = To;
3288        To.Val->addUser(U);
3289      }
3290
3291    // Now that we have modified U, add it back to the CSE maps.  If it already
3292    // exists there, recursively merge the results together.
3293    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3294      ReplaceAllUsesWith(U, Existing, UpdateListener);
3295      // U is now dead.  Inform the listener if it exists and delete it.
3296      if (UpdateListener)
3297        UpdateListener->NodeDeleted(U);
3298      DeleteNodeNotInCSEMaps(U);
3299    } else {
3300      // If the node doesn't already exist, we updated it.  Inform a listener if
3301      // it exists.
3302      if (UpdateListener)
3303        UpdateListener->NodeUpdated(U);
3304    }
3305  }
3306}
3307
3308/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3309/// This can cause recursive merging of nodes in the DAG.
3310///
3311/// This version assumes From/To have matching types and numbers of result
3312/// values.
3313///
3314void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3315                                      DAGUpdateListener *UpdateListener) {
3316  assert(From != To && "Cannot replace uses of with self");
3317  assert(From->getNumValues() == To->getNumValues() &&
3318         "Cannot use this version of ReplaceAllUsesWith!");
3319  if (From->getNumValues() == 1)   // If possible, use the faster version.
3320    return ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0),
3321                              UpdateListener);
3322
3323  while (!From->use_empty()) {
3324    // Process users until they are all gone.
3325    SDNode *U = *From->use_begin();
3326
3327    // This node is about to morph, remove its old self from the CSE maps.
3328    RemoveNodeFromCSEMaps(U);
3329
3330    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3331         I != E; ++I)
3332      if (I->Val == From) {
3333        From->removeUser(U);
3334        I->Val = To;
3335        To->addUser(U);
3336      }
3337
3338    // Now that we have modified U, add it back to the CSE maps.  If it already
3339    // exists there, recursively merge the results together.
3340    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3341      ReplaceAllUsesWith(U, Existing, UpdateListener);
3342      // U is now dead.  Inform the listener if it exists and delete it.
3343      if (UpdateListener)
3344        UpdateListener->NodeDeleted(U);
3345      DeleteNodeNotInCSEMaps(U);
3346    } else {
3347      // If the node doesn't already exist, we updated it.  Inform a listener if
3348      // it exists.
3349      if (UpdateListener)
3350        UpdateListener->NodeUpdated(U);
3351    }
3352  }
3353}
3354
3355/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3356/// This can cause recursive merging of nodes in the DAG.
3357///
3358/// This version can replace From with any result values.  To must match the
3359/// number and types of values returned by From.
3360void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3361                                      const SDOperand *To,
3362                                      DAGUpdateListener *UpdateListener) {
3363  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
3364    return ReplaceAllUsesWith(SDOperand(From, 0), To[0], UpdateListener);
3365
3366  while (!From->use_empty()) {
3367    // Process users until they are all gone.
3368    SDNode *U = *From->use_begin();
3369
3370    // This node is about to morph, remove its old self from the CSE maps.
3371    RemoveNodeFromCSEMaps(U);
3372
3373    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3374         I != E; ++I)
3375      if (I->Val == From) {
3376        const SDOperand &ToOp = To[I->ResNo];
3377        From->removeUser(U);
3378        *I = ToOp;
3379        ToOp.Val->addUser(U);
3380      }
3381
3382    // Now that we have modified U, add it back to the CSE maps.  If it already
3383    // exists there, recursively merge the results together.
3384    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3385      ReplaceAllUsesWith(U, Existing, UpdateListener);
3386      // U is now dead.  Inform the listener if it exists and delete it.
3387      if (UpdateListener)
3388        UpdateListener->NodeDeleted(U);
3389      DeleteNodeNotInCSEMaps(U);
3390    } else {
3391      // If the node doesn't already exist, we updated it.  Inform a listener if
3392      // it exists.
3393      if (UpdateListener)
3394        UpdateListener->NodeUpdated(U);
3395    }
3396  }
3397}
3398
3399namespace {
3400  /// ChainedSetUpdaterListener - This class is a DAGUpdateListener that removes
3401  /// any deleted nodes from the set passed into its constructor and recursively
3402  /// notifies another update listener if specified.
3403  class ChainedSetUpdaterListener :
3404  public SelectionDAG::DAGUpdateListener {
3405    SmallSetVector<SDNode*, 16> &Set;
3406    SelectionDAG::DAGUpdateListener *Chain;
3407  public:
3408    ChainedSetUpdaterListener(SmallSetVector<SDNode*, 16> &set,
3409                              SelectionDAG::DAGUpdateListener *chain)
3410      : Set(set), Chain(chain) {}
3411
3412    virtual void NodeDeleted(SDNode *N) {
3413      Set.remove(N);
3414      if (Chain) Chain->NodeDeleted(N);
3415    }
3416    virtual void NodeUpdated(SDNode *N) {
3417      if (Chain) Chain->NodeUpdated(N);
3418    }
3419  };
3420}
3421
3422/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3423/// uses of other values produced by From.Val alone.  The Deleted vector is
3424/// handled the same way as for ReplaceAllUsesWith.
3425void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3426                                             DAGUpdateListener *UpdateListener){
3427  assert(From != To && "Cannot replace a value with itself");
3428
3429  // Handle the simple, trivial, case efficiently.
3430  if (From.Val->getNumValues() == 1) {
3431    ReplaceAllUsesWith(From, To, UpdateListener);
3432    return;
3433  }
3434
3435  if (From.use_empty()) return;
3436
3437  // Get all of the users of From.Val.  We want these in a nice,
3438  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3439  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3440
3441  // When one of the recursive merges deletes nodes from the graph, we need to
3442  // make sure that UpdateListener is notified *and* that the node is removed
3443  // from Users if present.  CSUL does this.
3444  ChainedSetUpdaterListener CSUL(Users, UpdateListener);
3445
3446  while (!Users.empty()) {
3447    // We know that this user uses some value of From.  If it is the right
3448    // value, update it.
3449    SDNode *User = Users.back();
3450    Users.pop_back();
3451
3452    // Scan for an operand that matches From.
3453    SDOperand *Op = User->OperandList, *E = User->OperandList+User->NumOperands;
3454    for (; Op != E; ++Op)
3455      if (*Op == From) break;
3456
3457    // If there are no matches, the user must use some other result of From.
3458    if (Op == E) continue;
3459
3460    // Okay, we know this user needs to be updated.  Remove its old self
3461    // from the CSE maps.
3462    RemoveNodeFromCSEMaps(User);
3463
3464    // Update all operands that match "From" in case there are multiple uses.
3465    for (; Op != E; ++Op) {
3466      if (*Op == From) {
3467        From.Val->removeUser(User);
3468        *Op = To;
3469        To.Val->addUser(User);
3470      }
3471    }
3472
3473    // Now that we have modified User, add it back to the CSE maps.  If it
3474    // already exists there, recursively merge the results together.
3475    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3476    if (!Existing) {
3477      if (UpdateListener) UpdateListener->NodeUpdated(User);
3478      continue;  // Continue on to next user.
3479    }
3480
3481    // If there was already an existing matching node, use ReplaceAllUsesWith
3482    // to replace the dead one with the existing one.  This can cause
3483    // recursive merging of other unrelated nodes down the line.  The merging
3484    // can cause deletion of nodes that used the old value.  To handle this, we
3485    // use CSUL to remove them from the Users set.
3486    ReplaceAllUsesWith(User, Existing, &CSUL);
3487
3488    // User is now dead.  Notify a listener if present.
3489    if (UpdateListener) UpdateListener->NodeDeleted(User);
3490    DeleteNodeNotInCSEMaps(User);
3491  }
3492}
3493
3494
3495/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3496/// their allnodes order. It returns the maximum id.
3497unsigned SelectionDAG::AssignNodeIds() {
3498  unsigned Id = 0;
3499  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3500    SDNode *N = I;
3501    N->setNodeId(Id++);
3502  }
3503  return Id;
3504}
3505
3506/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3507/// based on their topological order. It returns the maximum id and a vector
3508/// of the SDNodes* in assigned order by reference.
3509unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3510  unsigned DAGSize = AllNodes.size();
3511  std::vector<unsigned> InDegree(DAGSize);
3512  std::vector<SDNode*> Sources;
3513
3514  // Use a two pass approach to avoid using a std::map which is slow.
3515  unsigned Id = 0;
3516  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3517    SDNode *N = I;
3518    N->setNodeId(Id++);
3519    unsigned Degree = N->use_size();
3520    InDegree[N->getNodeId()] = Degree;
3521    if (Degree == 0)
3522      Sources.push_back(N);
3523  }
3524
3525  TopOrder.clear();
3526  while (!Sources.empty()) {
3527    SDNode *N = Sources.back();
3528    Sources.pop_back();
3529    TopOrder.push_back(N);
3530    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3531      SDNode *P = I->Val;
3532      unsigned Degree = --InDegree[P->getNodeId()];
3533      if (Degree == 0)
3534        Sources.push_back(P);
3535    }
3536  }
3537
3538  // Second pass, assign the actual topological order as node ids.
3539  Id = 0;
3540  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3541       TI != TE; ++TI)
3542    (*TI)->setNodeId(Id++);
3543
3544  return Id;
3545}
3546
3547
3548
3549//===----------------------------------------------------------------------===//
3550//                              SDNode Class
3551//===----------------------------------------------------------------------===//
3552
3553// Out-of-line virtual method to give class a home.
3554void SDNode::ANCHOR() {}
3555void UnarySDNode::ANCHOR() {}
3556void BinarySDNode::ANCHOR() {}
3557void TernarySDNode::ANCHOR() {}
3558void HandleSDNode::ANCHOR() {}
3559void StringSDNode::ANCHOR() {}
3560void ConstantSDNode::ANCHOR() {}
3561void ConstantFPSDNode::ANCHOR() {}
3562void GlobalAddressSDNode::ANCHOR() {}
3563void FrameIndexSDNode::ANCHOR() {}
3564void JumpTableSDNode::ANCHOR() {}
3565void ConstantPoolSDNode::ANCHOR() {}
3566void BasicBlockSDNode::ANCHOR() {}
3567void SrcValueSDNode::ANCHOR() {}
3568void MemOperandSDNode::ANCHOR() {}
3569void RegisterSDNode::ANCHOR() {}
3570void ExternalSymbolSDNode::ANCHOR() {}
3571void CondCodeSDNode::ANCHOR() {}
3572void VTSDNode::ANCHOR() {}
3573void LoadSDNode::ANCHOR() {}
3574void StoreSDNode::ANCHOR() {}
3575void AtomicSDNode::ANCHOR() {}
3576
3577HandleSDNode::~HandleSDNode() {
3578  SDVTList VTs = { 0, 0 };
3579  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3580}
3581
3582GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3583                                         MVT::ValueType VT, int o)
3584  : SDNode(isa<GlobalVariable>(GA) &&
3585           cast<GlobalVariable>(GA)->isThreadLocal() ?
3586           // Thread Local
3587           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3588           // Non Thread Local
3589           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3590           getSDVTList(VT)), Offset(o) {
3591  TheGlobal = const_cast<GlobalValue*>(GA);
3592}
3593
3594/// getMemOperand - Return a MemOperand object describing the memory
3595/// reference performed by this load or store.
3596MemOperand LSBaseSDNode::getMemOperand() const {
3597  int Size = (MVT::getSizeInBits(getMemoryVT()) + 7) >> 3;
3598  int Flags =
3599    getOpcode() == ISD::LOAD ? MemOperand::MOLoad : MemOperand::MOStore;
3600  if (IsVolatile) Flags |= MemOperand::MOVolatile;
3601
3602  // Check if the load references a frame index, and does not have
3603  // an SV attached.
3604  const FrameIndexSDNode *FI =
3605    dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
3606  if (!getSrcValue() && FI)
3607    return MemOperand(PseudoSourceValue::getFixedStack(), Flags,
3608                      FI->getIndex(), Size, Alignment);
3609  else
3610    return MemOperand(getSrcValue(), Flags,
3611                      getSrcValueOffset(), Size, Alignment);
3612}
3613
3614/// Profile - Gather unique data for the node.
3615///
3616void SDNode::Profile(FoldingSetNodeID &ID) {
3617  AddNodeIDNode(ID, this);
3618}
3619
3620/// getValueTypeList - Return a pointer to the specified value type.
3621///
3622const MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3623  if (MVT::isExtendedVT(VT)) {
3624    static std::set<MVT::ValueType> EVTs;
3625    return &(*EVTs.insert(VT).first);
3626  } else {
3627    static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3628    VTs[VT] = VT;
3629    return &VTs[VT];
3630  }
3631}
3632
3633/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3634/// indicated value.  This method ignores uses of other values defined by this
3635/// operation.
3636bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3637  assert(Value < getNumValues() && "Bad value!");
3638
3639  // If there is only one value, this is easy.
3640  if (getNumValues() == 1)
3641    return use_size() == NUses;
3642  if (use_size() < NUses) return false;
3643
3644  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3645
3646  SmallPtrSet<SDNode*, 32> UsersHandled;
3647
3648  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3649    SDNode *User = *UI;
3650    if (User->getNumOperands() == 1 ||
3651        UsersHandled.insert(User))     // First time we've seen this?
3652      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3653        if (User->getOperand(i) == TheValue) {
3654          if (NUses == 0)
3655            return false;   // too many uses
3656          --NUses;
3657        }
3658  }
3659
3660  // Found exactly the right number of uses?
3661  return NUses == 0;
3662}
3663
3664
3665/// hasAnyUseOfValue - Return true if there are any use of the indicated
3666/// value. This method ignores uses of other values defined by this operation.
3667bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3668  assert(Value < getNumValues() && "Bad value!");
3669
3670  if (use_empty()) return false;
3671
3672  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3673
3674  SmallPtrSet<SDNode*, 32> UsersHandled;
3675
3676  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3677    SDNode *User = *UI;
3678    if (User->getNumOperands() == 1 ||
3679        UsersHandled.insert(User))     // First time we've seen this?
3680      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3681        if (User->getOperand(i) == TheValue) {
3682          return true;
3683        }
3684  }
3685
3686  return false;
3687}
3688
3689
3690/// isOnlyUseOf - Return true if this node is the only use of N.
3691///
3692bool SDNode::isOnlyUseOf(SDNode *N) const {
3693  bool Seen = false;
3694  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3695    SDNode *User = *I;
3696    if (User == this)
3697      Seen = true;
3698    else
3699      return false;
3700  }
3701
3702  return Seen;
3703}
3704
3705/// isOperand - Return true if this node is an operand of N.
3706///
3707bool SDOperand::isOperandOf(SDNode *N) const {
3708  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3709    if (*this == N->getOperand(i))
3710      return true;
3711  return false;
3712}
3713
3714bool SDNode::isOperandOf(SDNode *N) const {
3715  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3716    if (this == N->OperandList[i].Val)
3717      return true;
3718  return false;
3719}
3720
3721/// reachesChainWithoutSideEffects - Return true if this operand (which must
3722/// be a chain) reaches the specified operand without crossing any
3723/// side-effecting instructions.  In practice, this looks through token
3724/// factors and non-volatile loads.  In order to remain efficient, this only
3725/// looks a couple of nodes in, it does not do an exhaustive search.
3726bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
3727                                               unsigned Depth) const {
3728  if (*this == Dest) return true;
3729
3730  // Don't search too deeply, we just want to be able to see through
3731  // TokenFactor's etc.
3732  if (Depth == 0) return false;
3733
3734  // If this is a token factor, all inputs to the TF happen in parallel.  If any
3735  // of the operands of the TF reach dest, then we can do the xform.
3736  if (getOpcode() == ISD::TokenFactor) {
3737    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3738      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
3739        return true;
3740    return false;
3741  }
3742
3743  // Loads don't have side effects, look through them.
3744  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
3745    if (!Ld->isVolatile())
3746      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
3747  }
3748  return false;
3749}
3750
3751
3752static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3753                            SmallPtrSet<SDNode *, 32> &Visited) {
3754  if (found || !Visited.insert(N))
3755    return;
3756
3757  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3758    SDNode *Op = N->getOperand(i).Val;
3759    if (Op == P) {
3760      found = true;
3761      return;
3762    }
3763    findPredecessor(Op, P, found, Visited);
3764  }
3765}
3766
3767/// isPredecessorOf - Return true if this node is a predecessor of N. This node
3768/// is either an operand of N or it can be reached by recursively traversing
3769/// up the operands.
3770/// NOTE: this is an expensive method. Use it carefully.
3771bool SDNode::isPredecessorOf(SDNode *N) const {
3772  SmallPtrSet<SDNode *, 32> Visited;
3773  bool found = false;
3774  findPredecessor(N, this, found, Visited);
3775  return found;
3776}
3777
3778uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3779  assert(Num < NumOperands && "Invalid child # of SDNode!");
3780  return cast<ConstantSDNode>(OperandList[Num])->getValue();
3781}
3782
3783std::string SDNode::getOperationName(const SelectionDAG *G) const {
3784  switch (getOpcode()) {
3785  default:
3786    if (getOpcode() < ISD::BUILTIN_OP_END)
3787      return "<<Unknown DAG Node>>";
3788    else {
3789      if (G) {
3790        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3791          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3792            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
3793
3794        TargetLowering &TLI = G->getTargetLoweringInfo();
3795        const char *Name =
3796          TLI.getTargetNodeName(getOpcode());
3797        if (Name) return Name;
3798      }
3799
3800      return "<<Unknown Target Node>>";
3801    }
3802
3803  case ISD::PREFETCH:      return "Prefetch";
3804  case ISD::MEMBARRIER:    return "MemBarrier";
3805  case ISD::ATOMIC_LCS:    return "AtomicLCS";
3806  case ISD::ATOMIC_LAS:    return "AtomicLAS";
3807  case ISD::ATOMIC_SWAP:    return "AtomicSWAP";
3808  case ISD::PCMARKER:      return "PCMarker";
3809  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3810  case ISD::SRCVALUE:      return "SrcValue";
3811  case ISD::MEMOPERAND:    return "MemOperand";
3812  case ISD::EntryToken:    return "EntryToken";
3813  case ISD::TokenFactor:   return "TokenFactor";
3814  case ISD::AssertSext:    return "AssertSext";
3815  case ISD::AssertZext:    return "AssertZext";
3816
3817  case ISD::STRING:        return "String";
3818  case ISD::BasicBlock:    return "BasicBlock";
3819  case ISD::VALUETYPE:     return "ValueType";
3820  case ISD::Register:      return "Register";
3821
3822  case ISD::Constant:      return "Constant";
3823  case ISD::ConstantFP:    return "ConstantFP";
3824  case ISD::GlobalAddress: return "GlobalAddress";
3825  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3826  case ISD::FrameIndex:    return "FrameIndex";
3827  case ISD::JumpTable:     return "JumpTable";
3828  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3829  case ISD::RETURNADDR: return "RETURNADDR";
3830  case ISD::FRAMEADDR: return "FRAMEADDR";
3831  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3832  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3833  case ISD::EHSELECTION: return "EHSELECTION";
3834  case ISD::EH_RETURN: return "EH_RETURN";
3835  case ISD::ConstantPool:  return "ConstantPool";
3836  case ISD::ExternalSymbol: return "ExternalSymbol";
3837  case ISD::INTRINSIC_WO_CHAIN: {
3838    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3839    return Intrinsic::getName((Intrinsic::ID)IID);
3840  }
3841  case ISD::INTRINSIC_VOID:
3842  case ISD::INTRINSIC_W_CHAIN: {
3843    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3844    return Intrinsic::getName((Intrinsic::ID)IID);
3845  }
3846
3847  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
3848  case ISD::TargetConstant: return "TargetConstant";
3849  case ISD::TargetConstantFP:return "TargetConstantFP";
3850  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3851  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3852  case ISD::TargetFrameIndex: return "TargetFrameIndex";
3853  case ISD::TargetJumpTable:  return "TargetJumpTable";
3854  case ISD::TargetConstantPool:  return "TargetConstantPool";
3855  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3856
3857  case ISD::CopyToReg:     return "CopyToReg";
3858  case ISD::CopyFromReg:   return "CopyFromReg";
3859  case ISD::UNDEF:         return "undef";
3860  case ISD::MERGE_VALUES:  return "merge_values";
3861  case ISD::INLINEASM:     return "inlineasm";
3862  case ISD::LABEL:         return "label";
3863  case ISD::DECLARE:       return "declare";
3864  case ISD::HANDLENODE:    return "handlenode";
3865  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3866  case ISD::CALL:          return "call";
3867
3868  // Unary operators
3869  case ISD::FABS:   return "fabs";
3870  case ISD::FNEG:   return "fneg";
3871  case ISD::FSQRT:  return "fsqrt";
3872  case ISD::FSIN:   return "fsin";
3873  case ISD::FCOS:   return "fcos";
3874  case ISD::FPOWI:  return "fpowi";
3875  case ISD::FPOW:   return "fpow";
3876
3877  // Binary operators
3878  case ISD::ADD:    return "add";
3879  case ISD::SUB:    return "sub";
3880  case ISD::MUL:    return "mul";
3881  case ISD::MULHU:  return "mulhu";
3882  case ISD::MULHS:  return "mulhs";
3883  case ISD::SDIV:   return "sdiv";
3884  case ISD::UDIV:   return "udiv";
3885  case ISD::SREM:   return "srem";
3886  case ISD::UREM:   return "urem";
3887  case ISD::SMUL_LOHI:  return "smul_lohi";
3888  case ISD::UMUL_LOHI:  return "umul_lohi";
3889  case ISD::SDIVREM:    return "sdivrem";
3890  case ISD::UDIVREM:    return "divrem";
3891  case ISD::AND:    return "and";
3892  case ISD::OR:     return "or";
3893  case ISD::XOR:    return "xor";
3894  case ISD::SHL:    return "shl";
3895  case ISD::SRA:    return "sra";
3896  case ISD::SRL:    return "srl";
3897  case ISD::ROTL:   return "rotl";
3898  case ISD::ROTR:   return "rotr";
3899  case ISD::FADD:   return "fadd";
3900  case ISD::FSUB:   return "fsub";
3901  case ISD::FMUL:   return "fmul";
3902  case ISD::FDIV:   return "fdiv";
3903  case ISD::FREM:   return "frem";
3904  case ISD::FCOPYSIGN: return "fcopysign";
3905  case ISD::FGETSIGN:  return "fgetsign";
3906
3907  case ISD::SETCC:       return "setcc";
3908  case ISD::SELECT:      return "select";
3909  case ISD::SELECT_CC:   return "select_cc";
3910  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
3911  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
3912  case ISD::CONCAT_VECTORS:      return "concat_vectors";
3913  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
3914  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
3915  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
3916  case ISD::CARRY_FALSE:         return "carry_false";
3917  case ISD::ADDC:        return "addc";
3918  case ISD::ADDE:        return "adde";
3919  case ISD::SUBC:        return "subc";
3920  case ISD::SUBE:        return "sube";
3921  case ISD::SHL_PARTS:   return "shl_parts";
3922  case ISD::SRA_PARTS:   return "sra_parts";
3923  case ISD::SRL_PARTS:   return "srl_parts";
3924
3925  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
3926  case ISD::INSERT_SUBREG:      return "insert_subreg";
3927
3928  // Conversion operators.
3929  case ISD::SIGN_EXTEND: return "sign_extend";
3930  case ISD::ZERO_EXTEND: return "zero_extend";
3931  case ISD::ANY_EXTEND:  return "any_extend";
3932  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3933  case ISD::TRUNCATE:    return "truncate";
3934  case ISD::FP_ROUND:    return "fp_round";
3935  case ISD::FLT_ROUNDS_: return "flt_rounds";
3936  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3937  case ISD::FP_EXTEND:   return "fp_extend";
3938
3939  case ISD::SINT_TO_FP:  return "sint_to_fp";
3940  case ISD::UINT_TO_FP:  return "uint_to_fp";
3941  case ISD::FP_TO_SINT:  return "fp_to_sint";
3942  case ISD::FP_TO_UINT:  return "fp_to_uint";
3943  case ISD::BIT_CONVERT: return "bit_convert";
3944
3945    // Control flow instructions
3946  case ISD::BR:      return "br";
3947  case ISD::BRIND:   return "brind";
3948  case ISD::BR_JT:   return "br_jt";
3949  case ISD::BRCOND:  return "brcond";
3950  case ISD::BR_CC:   return "br_cc";
3951  case ISD::RET:     return "ret";
3952  case ISD::CALLSEQ_START:  return "callseq_start";
3953  case ISD::CALLSEQ_END:    return "callseq_end";
3954
3955    // Other operators
3956  case ISD::LOAD:               return "load";
3957  case ISD::STORE:              return "store";
3958  case ISD::VAARG:              return "vaarg";
3959  case ISD::VACOPY:             return "vacopy";
3960  case ISD::VAEND:              return "vaend";
3961  case ISD::VASTART:            return "vastart";
3962  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3963  case ISD::EXTRACT_ELEMENT:    return "extract_element";
3964  case ISD::BUILD_PAIR:         return "build_pair";
3965  case ISD::STACKSAVE:          return "stacksave";
3966  case ISD::STACKRESTORE:       return "stackrestore";
3967  case ISD::TRAP:               return "trap";
3968
3969  // Block memory operations.
3970  case ISD::MEMSET:  return "memset";
3971  case ISD::MEMCPY:  return "memcpy";
3972  case ISD::MEMMOVE: return "memmove";
3973
3974  // Bit manipulation
3975  case ISD::BSWAP:   return "bswap";
3976  case ISD::CTPOP:   return "ctpop";
3977  case ISD::CTTZ:    return "cttz";
3978  case ISD::CTLZ:    return "ctlz";
3979
3980  // Debug info
3981  case ISD::LOCATION: return "location";
3982  case ISD::DEBUG_LOC: return "debug_loc";
3983
3984  // Trampolines
3985  case ISD::TRAMPOLINE: return "trampoline";
3986
3987  case ISD::CONDCODE:
3988    switch (cast<CondCodeSDNode>(this)->get()) {
3989    default: assert(0 && "Unknown setcc condition!");
3990    case ISD::SETOEQ:  return "setoeq";
3991    case ISD::SETOGT:  return "setogt";
3992    case ISD::SETOGE:  return "setoge";
3993    case ISD::SETOLT:  return "setolt";
3994    case ISD::SETOLE:  return "setole";
3995    case ISD::SETONE:  return "setone";
3996
3997    case ISD::SETO:    return "seto";
3998    case ISD::SETUO:   return "setuo";
3999    case ISD::SETUEQ:  return "setue";
4000    case ISD::SETUGT:  return "setugt";
4001    case ISD::SETUGE:  return "setuge";
4002    case ISD::SETULT:  return "setult";
4003    case ISD::SETULE:  return "setule";
4004    case ISD::SETUNE:  return "setune";
4005
4006    case ISD::SETEQ:   return "seteq";
4007    case ISD::SETGT:   return "setgt";
4008    case ISD::SETGE:   return "setge";
4009    case ISD::SETLT:   return "setlt";
4010    case ISD::SETLE:   return "setle";
4011    case ISD::SETNE:   return "setne";
4012    }
4013  }
4014}
4015
4016const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
4017  switch (AM) {
4018  default:
4019    return "";
4020  case ISD::PRE_INC:
4021    return "<pre-inc>";
4022  case ISD::PRE_DEC:
4023    return "<pre-dec>";
4024  case ISD::POST_INC:
4025    return "<post-inc>";
4026  case ISD::POST_DEC:
4027    return "<post-dec>";
4028  }
4029}
4030
4031void SDNode::dump() const { dump(0); }
4032void SDNode::dump(const SelectionDAG *G) const {
4033  cerr << (void*)this << ": ";
4034
4035  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
4036    if (i) cerr << ",";
4037    if (getValueType(i) == MVT::Other)
4038      cerr << "ch";
4039    else
4040      cerr << MVT::getValueTypeString(getValueType(i));
4041  }
4042  cerr << " = " << getOperationName(G);
4043
4044  cerr << " ";
4045  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
4046    if (i) cerr << ", ";
4047    cerr << (void*)getOperand(i).Val;
4048    if (unsigned RN = getOperand(i).ResNo)
4049      cerr << ":" << RN;
4050  }
4051
4052  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
4053    SDNode *Mask = getOperand(2).Val;
4054    cerr << "<";
4055    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
4056      if (i) cerr << ",";
4057      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
4058        cerr << "u";
4059      else
4060        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
4061    }
4062    cerr << ">";
4063  }
4064
4065  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
4066    cerr << "<" << CSDN->getValue() << ">";
4067  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
4068    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
4069      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
4070    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
4071      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
4072    else {
4073      cerr << "<APFloat(";
4074      CSDN->getValueAPF().convertToAPInt().dump();
4075      cerr << ")>";
4076    }
4077  } else if (const GlobalAddressSDNode *GADN =
4078             dyn_cast<GlobalAddressSDNode>(this)) {
4079    int offset = GADN->getOffset();
4080    cerr << "<";
4081    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
4082    if (offset > 0)
4083      cerr << " + " << offset;
4084    else
4085      cerr << " " << offset;
4086  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
4087    cerr << "<" << FIDN->getIndex() << ">";
4088  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
4089    cerr << "<" << JTDN->getIndex() << ">";
4090  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
4091    int offset = CP->getOffset();
4092    if (CP->isMachineConstantPoolEntry())
4093      cerr << "<" << *CP->getMachineCPVal() << ">";
4094    else
4095      cerr << "<" << *CP->getConstVal() << ">";
4096    if (offset > 0)
4097      cerr << " + " << offset;
4098    else
4099      cerr << " " << offset;
4100  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
4101    cerr << "<";
4102    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
4103    if (LBB)
4104      cerr << LBB->getName() << " ";
4105    cerr << (const void*)BBDN->getBasicBlock() << ">";
4106  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
4107    if (G && R->getReg() &&
4108        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
4109      cerr << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
4110    } else {
4111      cerr << " #" << R->getReg();
4112    }
4113  } else if (const ExternalSymbolSDNode *ES =
4114             dyn_cast<ExternalSymbolSDNode>(this)) {
4115    cerr << "'" << ES->getSymbol() << "'";
4116  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
4117    if (M->getValue())
4118      cerr << "<" << M->getValue() << ">";
4119    else
4120      cerr << "<null>";
4121  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
4122    if (M->MO.getValue())
4123      cerr << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
4124    else
4125      cerr << "<null:" << M->MO.getOffset() << ">";
4126  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
4127    cerr << ":" << MVT::getValueTypeString(N->getVT());
4128  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
4129    const Value *SrcValue = LD->getSrcValue();
4130    int SrcOffset = LD->getSrcValueOffset();
4131    cerr << " <";
4132    if (SrcValue)
4133      cerr << SrcValue;
4134    else
4135      cerr << "null";
4136    cerr << ":" << SrcOffset << ">";
4137
4138    bool doExt = true;
4139    switch (LD->getExtensionType()) {
4140    default: doExt = false; break;
4141    case ISD::EXTLOAD:
4142      cerr << " <anyext ";
4143      break;
4144    case ISD::SEXTLOAD:
4145      cerr << " <sext ";
4146      break;
4147    case ISD::ZEXTLOAD:
4148      cerr << " <zext ";
4149      break;
4150    }
4151    if (doExt)
4152      cerr << MVT::getValueTypeString(LD->getMemoryVT()) << ">";
4153
4154    const char *AM = getIndexedModeName(LD->getAddressingMode());
4155    if (*AM)
4156      cerr << " " << AM;
4157    if (LD->isVolatile())
4158      cerr << " <volatile>";
4159    cerr << " alignment=" << LD->getAlignment();
4160  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
4161    const Value *SrcValue = ST->getSrcValue();
4162    int SrcOffset = ST->getSrcValueOffset();
4163    cerr << " <";
4164    if (SrcValue)
4165      cerr << SrcValue;
4166    else
4167      cerr << "null";
4168    cerr << ":" << SrcOffset << ">";
4169
4170    if (ST->isTruncatingStore())
4171      cerr << " <trunc "
4172           << MVT::getValueTypeString(ST->getMemoryVT()) << ">";
4173
4174    const char *AM = getIndexedModeName(ST->getAddressingMode());
4175    if (*AM)
4176      cerr << " " << AM;
4177    if (ST->isVolatile())
4178      cerr << " <volatile>";
4179    cerr << " alignment=" << ST->getAlignment();
4180  }
4181}
4182
4183static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4184  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4185    if (N->getOperand(i).Val->hasOneUse())
4186      DumpNodes(N->getOperand(i).Val, indent+2, G);
4187    else
4188      cerr << "\n" << std::string(indent+2, ' ')
4189           << (void*)N->getOperand(i).Val << ": <multiple use>";
4190
4191
4192  cerr << "\n" << std::string(indent, ' ');
4193  N->dump(G);
4194}
4195
4196void SelectionDAG::dump() const {
4197  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4198  std::vector<const SDNode*> Nodes;
4199  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4200       I != E; ++I)
4201    Nodes.push_back(I);
4202
4203  std::sort(Nodes.begin(), Nodes.end());
4204
4205  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4206    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4207      DumpNodes(Nodes[i], 2, this);
4208  }
4209
4210  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4211
4212  cerr << "\n\n";
4213}
4214
4215const Type *ConstantPoolSDNode::getType() const {
4216  if (isMachineConstantPoolEntry())
4217    return Val.MachineCPVal->getType();
4218  return Val.ConstVal->getType();
4219}
4220