SelectionDAG.cpp revision f4ec817299a4187044a6162c2f520772b3ad69a0
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/Assembly/Writer.h"
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/Support/MathExtras.h"
21#include "llvm/Target/MRegisterInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetInstrInfo.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/ADT/SetVector.h"
26#include "llvm/ADT/StringExtras.h"
27#include <iostream>
28#include <set>
29#include <cmath>
30#include <algorithm>
31using namespace llvm;
32
33static bool isCommutativeBinOp(unsigned Opcode) {
34  switch (Opcode) {
35  case ISD::ADD:
36  case ISD::MUL:
37  case ISD::MULHU:
38  case ISD::MULHS:
39  case ISD::FADD:
40  case ISD::FMUL:
41  case ISD::AND:
42  case ISD::OR:
43  case ISD::XOR: return true;
44  default: return false; // FIXME: Need commutative info for user ops!
45  }
46}
47
48// isInvertibleForFree - Return true if there is no cost to emitting the logical
49// inverse of this node.
50static bool isInvertibleForFree(SDOperand N) {
51  if (isa<ConstantSDNode>(N.Val)) return true;
52  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
53    return true;
54  return false;
55}
56
57//===----------------------------------------------------------------------===//
58//                              ConstantFPSDNode Class
59//===----------------------------------------------------------------------===//
60
61/// isExactlyValue - We don't rely on operator== working on double values, as
62/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
63/// As such, this method can be used to do an exact bit-for-bit comparison of
64/// two floating point values.
65bool ConstantFPSDNode::isExactlyValue(double V) const {
66  return DoubleToBits(V) == DoubleToBits(Value);
67}
68
69//===----------------------------------------------------------------------===//
70//                              ISD Namespace
71//===----------------------------------------------------------------------===//
72
73/// isBuildVectorAllOnes - Return true if the specified node is a
74/// BUILD_VECTOR where all of the elements are ~0 or undef.
75bool ISD::isBuildVectorAllOnes(const SDNode *N) {
76  // Look through a bit convert.
77  if (N->getOpcode() == ISD::BIT_CONVERT)
78    N = N->getOperand(0).Val;
79
80  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
81
82  unsigned i = 0, e = N->getNumOperands();
83
84  // Skip over all of the undef values.
85  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
86    ++i;
87
88  // Do not accept an all-undef vector.
89  if (i == e) return false;
90
91  // Do not accept build_vectors that aren't all constants or which have non-~0
92  // elements.
93  SDOperand NotZero = N->getOperand(i);
94  if (isa<ConstantSDNode>(NotZero)) {
95    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
96      return false;
97  } else if (isa<ConstantFPSDNode>(NotZero)) {
98    MVT::ValueType VT = NotZero.getValueType();
99    if (VT== MVT::f64) {
100      if (DoubleToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
101          (uint64_t)-1)
102        return false;
103    } else {
104      if (FloatToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
105          (uint32_t)-1)
106        return false;
107    }
108  } else
109    return false;
110
111  // Okay, we have at least one ~0 value, check to see if the rest match or are
112  // undefs.
113  for (++i; i != e; ++i)
114    if (N->getOperand(i) != NotZero &&
115        N->getOperand(i).getOpcode() != ISD::UNDEF)
116      return false;
117  return true;
118}
119
120
121/// isBuildVectorAllZeros - Return true if the specified node is a
122/// BUILD_VECTOR where all of the elements are 0 or undef.
123bool ISD::isBuildVectorAllZeros(const SDNode *N) {
124  // Look through a bit convert.
125  if (N->getOpcode() == ISD::BIT_CONVERT)
126    N = N->getOperand(0).Val;
127
128  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
129
130  unsigned i = 0, e = N->getNumOperands();
131
132  // Skip over all of the undef values.
133  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
134    ++i;
135
136  // Do not accept an all-undef vector.
137  if (i == e) return false;
138
139  // Do not accept build_vectors that aren't all constants or which have non-~0
140  // elements.
141  SDOperand Zero = N->getOperand(i);
142  if (isa<ConstantSDNode>(Zero)) {
143    if (!cast<ConstantSDNode>(Zero)->isNullValue())
144      return false;
145  } else if (isa<ConstantFPSDNode>(Zero)) {
146    if (!cast<ConstantFPSDNode>(Zero)->isExactlyValue(0.0))
147      return false;
148  } else
149    return false;
150
151  // Okay, we have at least one ~0 value, check to see if the rest match or are
152  // undefs.
153  for (++i; i != e; ++i)
154    if (N->getOperand(i) != Zero &&
155        N->getOperand(i).getOpcode() != ISD::UNDEF)
156      return false;
157  return true;
158}
159
160/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
161/// when given the operation for (X op Y).
162ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
163  // To perform this operation, we just need to swap the L and G bits of the
164  // operation.
165  unsigned OldL = (Operation >> 2) & 1;
166  unsigned OldG = (Operation >> 1) & 1;
167  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
168                       (OldL << 1) |       // New G bit
169                       (OldG << 2));        // New L bit.
170}
171
172/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
173/// 'op' is a valid SetCC operation.
174ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
175  unsigned Operation = Op;
176  if (isInteger)
177    Operation ^= 7;   // Flip L, G, E bits, but not U.
178  else
179    Operation ^= 15;  // Flip all of the condition bits.
180  if (Operation > ISD::SETTRUE2)
181    Operation &= ~8;     // Don't let N and U bits get set.
182  return ISD::CondCode(Operation);
183}
184
185
186/// isSignedOp - For an integer comparison, return 1 if the comparison is a
187/// signed operation and 2 if the result is an unsigned comparison.  Return zero
188/// if the operation does not depend on the sign of the input (setne and seteq).
189static int isSignedOp(ISD::CondCode Opcode) {
190  switch (Opcode) {
191  default: assert(0 && "Illegal integer setcc operation!");
192  case ISD::SETEQ:
193  case ISD::SETNE: return 0;
194  case ISD::SETLT:
195  case ISD::SETLE:
196  case ISD::SETGT:
197  case ISD::SETGE: return 1;
198  case ISD::SETULT:
199  case ISD::SETULE:
200  case ISD::SETUGT:
201  case ISD::SETUGE: return 2;
202  }
203}
204
205/// getSetCCOrOperation - Return the result of a logical OR between different
206/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
207/// returns SETCC_INVALID if it is not possible to represent the resultant
208/// comparison.
209ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
210                                       bool isInteger) {
211  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
212    // Cannot fold a signed integer setcc with an unsigned integer setcc.
213    return ISD::SETCC_INVALID;
214
215  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
216
217  // If the N and U bits get set then the resultant comparison DOES suddenly
218  // care about orderedness, and is true when ordered.
219  if (Op > ISD::SETTRUE2)
220    Op &= ~16;     // Clear the U bit if the N bit is set.
221
222  // Canonicalize illegal integer setcc's.
223  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
224    Op = ISD::SETNE;
225
226  return ISD::CondCode(Op);
227}
228
229/// getSetCCAndOperation - Return the result of a logical AND between different
230/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
231/// function returns zero if it is not possible to represent the resultant
232/// comparison.
233ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
234                                        bool isInteger) {
235  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
236    // Cannot fold a signed setcc with an unsigned setcc.
237    return ISD::SETCC_INVALID;
238
239  // Combine all of the condition bits.
240  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
241
242  // Canonicalize illegal integer setcc's.
243  if (isInteger) {
244    switch (Result) {
245    default: break;
246    case ISD::SETUO:   // e.g. SETUGT & SETULT
247      Result = ISD::SETFALSE;
248      break;
249    case ISD::SETUEQ:  // e.g. SETUGE & SETULE
250      Result = ISD::SETEQ;
251      break;
252    }
253  }
254
255  return Result;
256}
257
258const TargetMachine &SelectionDAG::getTarget() const {
259  return TLI.getTargetMachine();
260}
261
262//===----------------------------------------------------------------------===//
263//                              SelectionDAG Class
264//===----------------------------------------------------------------------===//
265
266/// RemoveDeadNodes - This method deletes all unreachable nodes in the
267/// SelectionDAG, including nodes (like loads) that have uses of their token
268/// chain but no other uses and no side effect.  If a node is passed in as an
269/// argument, it is used as the seed for node deletion.
270void SelectionDAG::RemoveDeadNodes(SDNode *N) {
271  // Create a dummy node (which is not added to allnodes), that adds a reference
272  // to the root node, preventing it from being deleted.
273  HandleSDNode Dummy(getRoot());
274
275  bool MadeChange = false;
276
277  // If we have a hint to start from, use it.
278  if (N && N->use_empty()) {
279    DestroyDeadNode(N);
280    MadeChange = true;
281  }
282
283  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
284    if (I->use_empty() && I->getOpcode() != 65535) {
285      // Node is dead, recursively delete newly dead uses.
286      DestroyDeadNode(I);
287      MadeChange = true;
288    }
289
290  // Walk the nodes list, removing the nodes we've marked as dead.
291  if (MadeChange) {
292    for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ) {
293      SDNode *N = I++;
294      if (N->use_empty())
295        AllNodes.erase(N);
296    }
297  }
298
299  // If the root changed (e.g. it was a dead load, update the root).
300  setRoot(Dummy.getValue());
301}
302
303/// DestroyDeadNode - We know that N is dead.  Nuke it from the CSE maps for the
304/// graph.  If it is the last user of any of its operands, recursively process
305/// them the same way.
306///
307void SelectionDAG::DestroyDeadNode(SDNode *N) {
308  // Okay, we really are going to delete this node.  First take this out of the
309  // appropriate CSE map.
310  RemoveNodeFromCSEMaps(N);
311
312  // Next, brutally remove the operand list.  This is safe to do, as there are
313  // no cycles in the graph.
314  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
315    SDNode *O = I->Val;
316    O->removeUser(N);
317
318    // Now that we removed this operand, see if there are no uses of it left.
319    if (O->use_empty())
320      DestroyDeadNode(O);
321  }
322  delete[] N->OperandList;
323  N->OperandList = 0;
324  N->NumOperands = 0;
325
326  // Mark the node as dead.
327  N->MorphNodeTo(65535);
328}
329
330void SelectionDAG::DeleteNode(SDNode *N) {
331  assert(N->use_empty() && "Cannot delete a node that is not dead!");
332
333  // First take this out of the appropriate CSE map.
334  RemoveNodeFromCSEMaps(N);
335
336  // Finally, remove uses due to operands of this node, remove from the
337  // AllNodes list, and delete the node.
338  DeleteNodeNotInCSEMaps(N);
339}
340
341void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
342
343  // Remove it from the AllNodes list.
344  AllNodes.remove(N);
345
346  // Drop all of the operands and decrement used nodes use counts.
347  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
348    I->Val->removeUser(N);
349  delete[] N->OperandList;
350  N->OperandList = 0;
351  N->NumOperands = 0;
352
353  delete N;
354}
355
356/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
357/// correspond to it.  This is useful when we're about to delete or repurpose
358/// the node.  We don't want future request for structurally identical nodes
359/// to return N anymore.
360void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
361  bool Erased = false;
362  switch (N->getOpcode()) {
363  case ISD::HANDLENODE: return;  // noop.
364  case ISD::Constant:
365    Erased = Constants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(),
366                                            N->getValueType(0)));
367    break;
368  case ISD::TargetConstant:
369    Erased = TargetConstants.erase(std::make_pair(
370                                    cast<ConstantSDNode>(N)->getValue(),
371                                                  N->getValueType(0)));
372    break;
373  case ISD::ConstantFP: {
374    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
375    Erased = ConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
376    break;
377  }
378  case ISD::TargetConstantFP: {
379    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
380    Erased = TargetConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
381    break;
382  }
383  case ISD::STRING:
384    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
385    break;
386  case ISD::CONDCODE:
387    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
388           "Cond code doesn't exist!");
389    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
390    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
391    break;
392  case ISD::GlobalAddress: {
393    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
394    Erased = GlobalValues.erase(std::make_pair(GN->getGlobal(),
395                                               GN->getOffset()));
396    break;
397  }
398  case ISD::TargetGlobalAddress: {
399    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
400    Erased =TargetGlobalValues.erase(std::make_pair(GN->getGlobal(),
401                                                    GN->getOffset()));
402    break;
403  }
404  case ISD::FrameIndex:
405    Erased = FrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
406    break;
407  case ISD::TargetFrameIndex:
408    Erased = TargetFrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
409    break;
410  case ISD::JumpTable:
411    Erased = JumpTableIndices.erase(cast<JumpTableSDNode>(N)->getIndex());
412    break;
413  case ISD::TargetJumpTable:
414    Erased =
415      TargetJumpTableIndices.erase(cast<JumpTableSDNode>(N)->getIndex());
416    break;
417  case ISD::ConstantPool:
418    Erased = ConstantPoolIndices.
419      erase(std::make_pair(cast<ConstantPoolSDNode>(N)->get(),
420                        std::make_pair(cast<ConstantPoolSDNode>(N)->getOffset(),
421                                 cast<ConstantPoolSDNode>(N)->getAlignment())));
422    break;
423  case ISD::TargetConstantPool:
424    Erased = TargetConstantPoolIndices.
425      erase(std::make_pair(cast<ConstantPoolSDNode>(N)->get(),
426                        std::make_pair(cast<ConstantPoolSDNode>(N)->getOffset(),
427                                 cast<ConstantPoolSDNode>(N)->getAlignment())));
428    break;
429  case ISD::BasicBlock:
430    Erased = BBNodes.erase(cast<BasicBlockSDNode>(N)->getBasicBlock());
431    break;
432  case ISD::ExternalSymbol:
433    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
434    break;
435  case ISD::TargetExternalSymbol:
436    Erased =
437      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
438    break;
439  case ISD::VALUETYPE:
440    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
441    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
442    break;
443  case ISD::Register:
444    Erased = RegNodes.erase(std::make_pair(cast<RegisterSDNode>(N)->getReg(),
445                                           N->getValueType(0)));
446    break;
447  case ISD::SRCVALUE: {
448    SrcValueSDNode *SVN = cast<SrcValueSDNode>(N);
449    Erased =ValueNodes.erase(std::make_pair(SVN->getValue(), SVN->getOffset()));
450    break;
451  }
452  case ISD::LOAD:
453    Erased = Loads.erase(std::make_pair(N->getOperand(1),
454                                        std::make_pair(N->getOperand(0),
455                                                       N->getValueType(0))));
456    break;
457  default:
458    if (N->getNumValues() == 1) {
459      if (N->getNumOperands() == 0) {
460        Erased = NullaryOps.erase(std::make_pair(N->getOpcode(),
461                                                 N->getValueType(0)));
462      } else if (N->getNumOperands() == 1) {
463        Erased =
464          UnaryOps.erase(std::make_pair(N->getOpcode(),
465                                        std::make_pair(N->getOperand(0),
466                                                       N->getValueType(0))));
467      } else if (N->getNumOperands() == 2) {
468        Erased =
469          BinaryOps.erase(std::make_pair(N->getOpcode(),
470                                         std::make_pair(N->getOperand(0),
471                                                        N->getOperand(1))));
472      } else {
473        std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
474        Erased =
475          OneResultNodes.erase(std::make_pair(N->getOpcode(),
476                                              std::make_pair(N->getValueType(0),
477                                                             Ops)));
478      }
479    } else {
480      // Remove the node from the ArbitraryNodes map.
481      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
482      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
483      Erased =
484        ArbitraryNodes.erase(std::make_pair(N->getOpcode(),
485                                            std::make_pair(RV, Ops)));
486    }
487    break;
488  }
489#ifndef NDEBUG
490  // Verify that the node was actually in one of the CSE maps, unless it has a
491  // flag result (which cannot be CSE'd) or is one of the special cases that are
492  // not subject to CSE.
493  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
494      !N->isTargetOpcode()) {
495    N->dump();
496    assert(0 && "Node is not in map!");
497  }
498#endif
499}
500
501/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
502/// has been taken out and modified in some way.  If the specified node already
503/// exists in the CSE maps, do not modify the maps, but return the existing node
504/// instead.  If it doesn't exist, add it and return null.
505///
506SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
507  assert(N->getNumOperands() && "This is a leaf node!");
508  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
509    return 0;    // Never add these nodes.
510
511  // Check that remaining values produced are not flags.
512  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
513    if (N->getValueType(i) == MVT::Flag)
514      return 0;   // Never CSE anything that produces a flag.
515
516  if (N->getNumValues() == 1) {
517    if (N->getNumOperands() == 1) {
518      SDNode *&U = UnaryOps[std::make_pair(N->getOpcode(),
519                                           std::make_pair(N->getOperand(0),
520                                                          N->getValueType(0)))];
521      if (U) return U;
522      U = N;
523    } else if (N->getNumOperands() == 2) {
524      SDNode *&B = BinaryOps[std::make_pair(N->getOpcode(),
525                                            std::make_pair(N->getOperand(0),
526                                                           N->getOperand(1)))];
527      if (B) return B;
528      B = N;
529    } else {
530      std::vector<SDOperand> Ops(N->op_begin(), N->op_end());
531      SDNode *&ORN = OneResultNodes[std::make_pair(N->getOpcode(),
532                                      std::make_pair(N->getValueType(0), Ops))];
533      if (ORN) return ORN;
534      ORN = N;
535    }
536  } else {
537    if (N->getOpcode() == ISD::LOAD) {
538      SDNode *&L = Loads[std::make_pair(N->getOperand(1),
539                                        std::make_pair(N->getOperand(0),
540                                                       N->getValueType(0)))];
541      if (L) return L;
542      L = N;
543    } else {
544      // Remove the node from the ArbitraryNodes map.
545      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
546      std::vector<SDOperand>     Ops(N->op_begin(), N->op_end());
547      SDNode *&AN = ArbitraryNodes[std::make_pair(N->getOpcode(),
548                                                  std::make_pair(RV, Ops))];
549      if (AN) return AN;
550      AN = N;
551    }
552  }
553  return 0;
554}
555
556/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
557/// were replaced with those specified.  If this node is never memoized,
558/// return null, otherwise return a pointer to the slot it would take.  If a
559/// node already exists with these operands, the slot will be non-null.
560SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op) {
561  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
562    return 0;    // Never add these nodes.
563
564  // Check that remaining values produced are not flags.
565  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
566    if (N->getValueType(i) == MVT::Flag)
567      return 0;   // Never CSE anything that produces a flag.
568
569  if (N->getNumValues() == 1) {
570    return &UnaryOps[std::make_pair(N->getOpcode(),
571                                    std::make_pair(Op, N->getValueType(0)))];
572  } else {
573    // Remove the node from the ArbitraryNodes map.
574    std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
575    std::vector<SDOperand> Ops;
576    Ops.push_back(Op);
577    return &ArbitraryNodes[std::make_pair(N->getOpcode(),
578                                          std::make_pair(RV, Ops))];
579  }
580  return 0;
581}
582
583/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
584/// were replaced with those specified.  If this node is never memoized,
585/// return null, otherwise return a pointer to the slot it would take.  If a
586/// node already exists with these operands, the slot will be non-null.
587SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N,
588                                            SDOperand Op1, SDOperand Op2) {
589  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
590    return 0;    // Never add these nodes.
591
592  // Check that remaining values produced are not flags.
593  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
594    if (N->getValueType(i) == MVT::Flag)
595      return 0;   // Never CSE anything that produces a flag.
596
597  if (N->getNumValues() == 1) {
598    return &BinaryOps[std::make_pair(N->getOpcode(),
599                                     std::make_pair(Op1, Op2))];
600  } else {
601    std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
602    std::vector<SDOperand> Ops;
603    Ops.push_back(Op1);
604    Ops.push_back(Op2);
605    return &ArbitraryNodes[std::make_pair(N->getOpcode(),
606                                          std::make_pair(RV, Ops))];
607  }
608  return 0;
609}
610
611
612/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
613/// were replaced with those specified.  If this node is never memoized,
614/// return null, otherwise return a pointer to the slot it would take.  If a
615/// node already exists with these operands, the slot will be non-null.
616SDNode **SelectionDAG::FindModifiedNodeSlot(SDNode *N,
617                                            const std::vector<SDOperand> &Ops) {
618  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
619    return 0;    // Never add these nodes.
620
621  // Check that remaining values produced are not flags.
622  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
623    if (N->getValueType(i) == MVT::Flag)
624      return 0;   // Never CSE anything that produces a flag.
625
626  if (N->getNumValues() == 1) {
627    if (N->getNumOperands() == 1) {
628      return &UnaryOps[std::make_pair(N->getOpcode(),
629                                      std::make_pair(Ops[0],
630                                                     N->getValueType(0)))];
631    } else if (N->getNumOperands() == 2) {
632      return &BinaryOps[std::make_pair(N->getOpcode(),
633                                       std::make_pair(Ops[0], Ops[1]))];
634    } else {
635      return &OneResultNodes[std::make_pair(N->getOpcode(),
636                                            std::make_pair(N->getValueType(0),
637                                                           Ops))];
638    }
639  } else {
640    if (N->getOpcode() == ISD::LOAD) {
641      return &Loads[std::make_pair(Ops[1],
642                                   std::make_pair(Ops[0], N->getValueType(0)))];
643    } else {
644      std::vector<MVT::ValueType> RV(N->value_begin(), N->value_end());
645      return &ArbitraryNodes[std::make_pair(N->getOpcode(),
646                                            std::make_pair(RV, Ops))];
647    }
648  }
649  return 0;
650}
651
652
653SelectionDAG::~SelectionDAG() {
654  while (!AllNodes.empty()) {
655    SDNode *N = AllNodes.begin();
656    delete [] N->OperandList;
657    N->OperandList = 0;
658    N->NumOperands = 0;
659    AllNodes.pop_front();
660  }
661}
662
663SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
664  if (Op.getValueType() == VT) return Op;
665  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
666  return getNode(ISD::AND, Op.getValueType(), Op,
667                 getConstant(Imm, Op.getValueType()));
668}
669
670SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) {
671  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
672  assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
673
674  // Mask out any bits that are not valid for this constant.
675  if (VT != MVT::i64)
676    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
677
678  SDNode *&N = Constants[std::make_pair(Val, VT)];
679  if (N) return SDOperand(N, 0);
680  N = new ConstantSDNode(false, Val, VT);
681  AllNodes.push_back(N);
682  return SDOperand(N, 0);
683}
684
685SDOperand SelectionDAG::getString(const std::string &Val) {
686  StringSDNode *&N = StringNodes[Val];
687  if (!N) {
688    N = new StringSDNode(Val);
689    AllNodes.push_back(N);
690  }
691  return SDOperand(N, 0);
692}
693
694SDOperand SelectionDAG::getTargetConstant(uint64_t Val, MVT::ValueType VT) {
695  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
696  // Mask out any bits that are not valid for this constant.
697  if (VT != MVT::i64)
698    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
699
700  SDNode *&N = TargetConstants[std::make_pair(Val, VT)];
701  if (N) return SDOperand(N, 0);
702  N = new ConstantSDNode(true, Val, VT);
703  AllNodes.push_back(N);
704  return SDOperand(N, 0);
705}
706
707SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) {
708  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
709  if (VT == MVT::f32)
710    Val = (float)Val;  // Mask out extra precision.
711
712  // Do the map lookup using the actual bit pattern for the floating point
713  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
714  // we don't have issues with SNANs.
715  SDNode *&N = ConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
716  if (N) return SDOperand(N, 0);
717  N = new ConstantFPSDNode(false, Val, VT);
718  AllNodes.push_back(N);
719  return SDOperand(N, 0);
720}
721
722SDOperand SelectionDAG::getTargetConstantFP(double Val, MVT::ValueType VT) {
723  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
724  if (VT == MVT::f32)
725    Val = (float)Val;  // Mask out extra precision.
726
727  // Do the map lookup using the actual bit pattern for the floating point
728  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
729  // we don't have issues with SNANs.
730  SDNode *&N = TargetConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
731  if (N) return SDOperand(N, 0);
732  N = new ConstantFPSDNode(true, Val, VT);
733  AllNodes.push_back(N);
734  return SDOperand(N, 0);
735}
736
737SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
738                                         MVT::ValueType VT, int offset) {
739  SDNode *&N = GlobalValues[std::make_pair(GV, offset)];
740  if (N) return SDOperand(N, 0);
741  N = new GlobalAddressSDNode(false, GV, VT, offset);
742  AllNodes.push_back(N);
743  return SDOperand(N, 0);
744}
745
746SDOperand SelectionDAG::getTargetGlobalAddress(const GlobalValue *GV,
747                                               MVT::ValueType VT, int offset) {
748  SDNode *&N = TargetGlobalValues[std::make_pair(GV, offset)];
749  if (N) return SDOperand(N, 0);
750  N = new GlobalAddressSDNode(true, GV, VT, offset);
751  AllNodes.push_back(N);
752  return SDOperand(N, 0);
753}
754
755SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) {
756  SDNode *&N = FrameIndices[FI];
757  if (N) return SDOperand(N, 0);
758  N = new FrameIndexSDNode(FI, VT, false);
759  AllNodes.push_back(N);
760  return SDOperand(N, 0);
761}
762
763SDOperand SelectionDAG::getTargetFrameIndex(int FI, MVT::ValueType VT) {
764  SDNode *&N = TargetFrameIndices[FI];
765  if (N) return SDOperand(N, 0);
766  N = new FrameIndexSDNode(FI, VT, true);
767  AllNodes.push_back(N);
768  return SDOperand(N, 0);
769}
770
771SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT) {
772  SDNode *&N = JumpTableIndices[JTI];
773  if (N) return SDOperand(N, 0);
774  N = new JumpTableSDNode(JTI, VT, false);
775  AllNodes.push_back(N);
776  return SDOperand(N, 0);
777}
778
779SDOperand SelectionDAG::getTargetJumpTable(int JTI, MVT::ValueType VT) {
780  SDNode *&N = TargetJumpTableIndices[JTI];
781  if (N) return SDOperand(N, 0);
782  N = new JumpTableSDNode(JTI, VT, true);
783  AllNodes.push_back(N);
784  return SDOperand(N, 0);
785}
786
787SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
788                                        unsigned Alignment,  int Offset) {
789  SDNode *&N = ConstantPoolIndices[std::make_pair(C,
790                                            std::make_pair(Offset, Alignment))];
791  if (N) return SDOperand(N, 0);
792  N = new ConstantPoolSDNode(false, C, VT, Offset, Alignment);
793  AllNodes.push_back(N);
794  return SDOperand(N, 0);
795}
796
797SDOperand SelectionDAG::getTargetConstantPool(Constant *C, MVT::ValueType VT,
798                                             unsigned Alignment,  int Offset) {
799  SDNode *&N = TargetConstantPoolIndices[std::make_pair(C,
800                                            std::make_pair(Offset, Alignment))];
801  if (N) return SDOperand(N, 0);
802  N = new ConstantPoolSDNode(true, C, VT, Offset, Alignment);
803  AllNodes.push_back(N);
804  return SDOperand(N, 0);
805}
806
807SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
808  SDNode *&N = BBNodes[MBB];
809  if (N) return SDOperand(N, 0);
810  N = new BasicBlockSDNode(MBB);
811  AllNodes.push_back(N);
812  return SDOperand(N, 0);
813}
814
815SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
816  if ((unsigned)VT >= ValueTypeNodes.size())
817    ValueTypeNodes.resize(VT+1);
818  if (ValueTypeNodes[VT] == 0) {
819    ValueTypeNodes[VT] = new VTSDNode(VT);
820    AllNodes.push_back(ValueTypeNodes[VT]);
821  }
822
823  return SDOperand(ValueTypeNodes[VT], 0);
824}
825
826SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
827  SDNode *&N = ExternalSymbols[Sym];
828  if (N) return SDOperand(N, 0);
829  N = new ExternalSymbolSDNode(false, Sym, VT);
830  AllNodes.push_back(N);
831  return SDOperand(N, 0);
832}
833
834SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
835                                                MVT::ValueType VT) {
836  SDNode *&N = TargetExternalSymbols[Sym];
837  if (N) return SDOperand(N, 0);
838  N = new ExternalSymbolSDNode(true, Sym, VT);
839  AllNodes.push_back(N);
840  return SDOperand(N, 0);
841}
842
843SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
844  if ((unsigned)Cond >= CondCodeNodes.size())
845    CondCodeNodes.resize(Cond+1);
846
847  if (CondCodeNodes[Cond] == 0) {
848    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
849    AllNodes.push_back(CondCodeNodes[Cond]);
850  }
851  return SDOperand(CondCodeNodes[Cond], 0);
852}
853
854SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
855  RegisterSDNode *&Reg = RegNodes[std::make_pair(RegNo, VT)];
856  if (!Reg) {
857    Reg = new RegisterSDNode(RegNo, VT);
858    AllNodes.push_back(Reg);
859  }
860  return SDOperand(Reg, 0);
861}
862
863SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
864                                      SDOperand N2, ISD::CondCode Cond) {
865  // These setcc operations always fold.
866  switch (Cond) {
867  default: break;
868  case ISD::SETFALSE:
869  case ISD::SETFALSE2: return getConstant(0, VT);
870  case ISD::SETTRUE:
871  case ISD::SETTRUE2:  return getConstant(1, VT);
872
873  case ISD::SETOEQ:
874  case ISD::SETOGT:
875  case ISD::SETOGE:
876  case ISD::SETOLT:
877  case ISD::SETOLE:
878  case ISD::SETONE:
879  case ISD::SETO:
880  case ISD::SETUO:
881  case ISD::SETUEQ:
882  case ISD::SETUNE:
883    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
884    break;
885  }
886
887  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
888    uint64_t C2 = N2C->getValue();
889    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
890      uint64_t C1 = N1C->getValue();
891
892      // Sign extend the operands if required
893      if (ISD::isSignedIntSetCC(Cond)) {
894        C1 = N1C->getSignExtended();
895        C2 = N2C->getSignExtended();
896      }
897
898      switch (Cond) {
899      default: assert(0 && "Unknown integer setcc!");
900      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
901      case ISD::SETNE:  return getConstant(C1 != C2, VT);
902      case ISD::SETULT: return getConstant(C1 <  C2, VT);
903      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
904      case ISD::SETULE: return getConstant(C1 <= C2, VT);
905      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
906      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
907      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
908      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
909      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
910      }
911    } else {
912      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
913      if (N1.getOpcode() == ISD::ZERO_EXTEND) {
914        unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
915
916        // If the comparison constant has bits in the upper part, the
917        // zero-extended value could never match.
918        if (C2 & (~0ULL << InSize)) {
919          unsigned VSize = MVT::getSizeInBits(N1.getValueType());
920          switch (Cond) {
921          case ISD::SETUGT:
922          case ISD::SETUGE:
923          case ISD::SETEQ: return getConstant(0, VT);
924          case ISD::SETULT:
925          case ISD::SETULE:
926          case ISD::SETNE: return getConstant(1, VT);
927          case ISD::SETGT:
928          case ISD::SETGE:
929            // True if the sign bit of C2 is set.
930            return getConstant((C2 & (1ULL << VSize)) != 0, VT);
931          case ISD::SETLT:
932          case ISD::SETLE:
933            // True if the sign bit of C2 isn't set.
934            return getConstant((C2 & (1ULL << VSize)) == 0, VT);
935          default:
936            break;
937          }
938        }
939
940        // Otherwise, we can perform the comparison with the low bits.
941        switch (Cond) {
942        case ISD::SETEQ:
943        case ISD::SETNE:
944        case ISD::SETUGT:
945        case ISD::SETUGE:
946        case ISD::SETULT:
947        case ISD::SETULE:
948          return getSetCC(VT, N1.getOperand(0),
949                          getConstant(C2, N1.getOperand(0).getValueType()),
950                          Cond);
951        default:
952          break;   // todo, be more careful with signed comparisons
953        }
954      } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
955                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
956        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
957        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
958        MVT::ValueType ExtDstTy = N1.getValueType();
959        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
960
961        // If the extended part has any inconsistent bits, it cannot ever
962        // compare equal.  In other words, they have to be all ones or all
963        // zeros.
964        uint64_t ExtBits =
965          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
966        if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
967          return getConstant(Cond == ISD::SETNE, VT);
968
969        // Otherwise, make this a use of a zext.
970        return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
971                        getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy),
972                        Cond);
973      }
974
975      uint64_t MinVal, MaxVal;
976      unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
977      if (ISD::isSignedIntSetCC(Cond)) {
978        MinVal = 1ULL << (OperandBitSize-1);
979        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
980          MaxVal = ~0ULL >> (65-OperandBitSize);
981        else
982          MaxVal = 0;
983      } else {
984        MinVal = 0;
985        MaxVal = ~0ULL >> (64-OperandBitSize);
986      }
987
988      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
989      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
990        if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true
991        --C2;                                          // X >= C1 --> X > (C1-1)
992        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
993                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
994      }
995
996      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
997        if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true
998        ++C2;                                          // X <= C1 --> X < (C1+1)
999        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
1000                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1001      }
1002
1003      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
1004        return getConstant(0, VT);      // X < MIN --> false
1005
1006      // Canonicalize setgt X, Min --> setne X, Min
1007      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
1008        return getSetCC(VT, N1, N2, ISD::SETNE);
1009
1010      // If we have setult X, 1, turn it into seteq X, 0
1011      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
1012        return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
1013                        ISD::SETEQ);
1014      // If we have setugt X, Max-1, turn it into seteq X, Max
1015      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
1016        return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
1017                        ISD::SETEQ);
1018
1019      // If we have "setcc X, C1", check to see if we can shrink the immediate
1020      // by changing cc.
1021
1022      // SETUGT X, SINTMAX  -> SETLT X, 0
1023      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1024          C2 == (~0ULL >> (65-OperandBitSize)))
1025        return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
1026
1027      // FIXME: Implement the rest of these.
1028
1029
1030      // Fold bit comparisons when we can.
1031      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1032          VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
1033        if (ConstantSDNode *AndRHS =
1034                    dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
1035          if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1036            // Perform the xform if the AND RHS is a single bit.
1037            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
1038              return getNode(ISD::SRL, VT, N1,
1039                             getConstant(Log2_64(AndRHS->getValue()),
1040                                                   TLI.getShiftAmountTy()));
1041            }
1042          } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
1043            // (X & 8) == 8  -->  (X & 8) >> 3
1044            // Perform the xform if C2 is a single bit.
1045            if ((C2 & (C2-1)) == 0) {
1046              return getNode(ISD::SRL, VT, N1,
1047                             getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
1048            }
1049          }
1050        }
1051    }
1052  } else if (isa<ConstantSDNode>(N1.Val)) {
1053      // Ensure that the constant occurs on the RHS.
1054    return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1055  }
1056
1057  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
1058    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1059      double C1 = N1C->getValue(), C2 = N2C->getValue();
1060
1061      switch (Cond) {
1062      default: break; // FIXME: Implement the rest of these!
1063      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1064      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1065      case ISD::SETLT:  return getConstant(C1 < C2, VT);
1066      case ISD::SETGT:  return getConstant(C1 > C2, VT);
1067      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
1068      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
1069      }
1070    } else {
1071      // Ensure that the constant occurs on the RHS.
1072      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1073    }
1074
1075  // Could not fold it.
1076  return SDOperand();
1077}
1078
1079/// getNode - Gets or creates the specified node.
1080///
1081SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1082  SDNode *&N = NullaryOps[std::make_pair(Opcode, VT)];
1083  if (!N) {
1084    N = new SDNode(Opcode, VT);
1085    AllNodes.push_back(N);
1086  }
1087  return SDOperand(N, 0);
1088}
1089
1090SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1091                                SDOperand Operand) {
1092  unsigned Tmp1;
1093  // Constant fold unary operations with an integer constant operand.
1094  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1095    uint64_t Val = C->getValue();
1096    switch (Opcode) {
1097    default: break;
1098    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1099    case ISD::ANY_EXTEND:
1100    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1101    case ISD::TRUNCATE:    return getConstant(Val, VT);
1102    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
1103    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
1104    case ISD::BIT_CONVERT:
1105      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1106        return getConstantFP(BitsToFloat(Val), VT);
1107      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1108        return getConstantFP(BitsToDouble(Val), VT);
1109      break;
1110    case ISD::BSWAP:
1111      switch(VT) {
1112      default: assert(0 && "Invalid bswap!"); break;
1113      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1114      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1115      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1116      }
1117      break;
1118    case ISD::CTPOP:
1119      switch(VT) {
1120      default: assert(0 && "Invalid ctpop!"); break;
1121      case MVT::i1: return getConstant(Val != 0, VT);
1122      case MVT::i8:
1123        Tmp1 = (unsigned)Val & 0xFF;
1124        return getConstant(CountPopulation_32(Tmp1), VT);
1125      case MVT::i16:
1126        Tmp1 = (unsigned)Val & 0xFFFF;
1127        return getConstant(CountPopulation_32(Tmp1), VT);
1128      case MVT::i32:
1129        return getConstant(CountPopulation_32((unsigned)Val), VT);
1130      case MVT::i64:
1131        return getConstant(CountPopulation_64(Val), VT);
1132      }
1133    case ISD::CTLZ:
1134      switch(VT) {
1135      default: assert(0 && "Invalid ctlz!"); break;
1136      case MVT::i1: return getConstant(Val == 0, VT);
1137      case MVT::i8:
1138        Tmp1 = (unsigned)Val & 0xFF;
1139        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1140      case MVT::i16:
1141        Tmp1 = (unsigned)Val & 0xFFFF;
1142        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1143      case MVT::i32:
1144        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1145      case MVT::i64:
1146        return getConstant(CountLeadingZeros_64(Val), VT);
1147      }
1148    case ISD::CTTZ:
1149      switch(VT) {
1150      default: assert(0 && "Invalid cttz!"); break;
1151      case MVT::i1: return getConstant(Val == 0, VT);
1152      case MVT::i8:
1153        Tmp1 = (unsigned)Val | 0x100;
1154        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1155      case MVT::i16:
1156        Tmp1 = (unsigned)Val | 0x10000;
1157        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1158      case MVT::i32:
1159        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1160      case MVT::i64:
1161        return getConstant(CountTrailingZeros_64(Val), VT);
1162      }
1163    }
1164  }
1165
1166  // Constant fold unary operations with an floating point constant operand.
1167  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1168    switch (Opcode) {
1169    case ISD::FNEG:
1170      return getConstantFP(-C->getValue(), VT);
1171    case ISD::FABS:
1172      return getConstantFP(fabs(C->getValue()), VT);
1173    case ISD::FP_ROUND:
1174    case ISD::FP_EXTEND:
1175      return getConstantFP(C->getValue(), VT);
1176    case ISD::FP_TO_SINT:
1177      return getConstant((int64_t)C->getValue(), VT);
1178    case ISD::FP_TO_UINT:
1179      return getConstant((uint64_t)C->getValue(), VT);
1180    case ISD::BIT_CONVERT:
1181      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1182        return getConstant(FloatToBits(C->getValue()), VT);
1183      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1184        return getConstant(DoubleToBits(C->getValue()), VT);
1185      break;
1186    }
1187
1188  unsigned OpOpcode = Operand.Val->getOpcode();
1189  switch (Opcode) {
1190  case ISD::TokenFactor:
1191    return Operand;         // Factor of one node?  No factor.
1192  case ISD::SIGN_EXTEND:
1193    if (Operand.getValueType() == VT) return Operand;   // noop extension
1194    assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1195    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1196      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1197    break;
1198  case ISD::ZERO_EXTEND:
1199    if (Operand.getValueType() == VT) return Operand;   // noop extension
1200    assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1201    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1202      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1203    break;
1204  case ISD::ANY_EXTEND:
1205    if (Operand.getValueType() == VT) return Operand;   // noop extension
1206    assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1207    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1208      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1209      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1210    break;
1211  case ISD::TRUNCATE:
1212    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1213    assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1214    if (OpOpcode == ISD::TRUNCATE)
1215      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1216    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1217             OpOpcode == ISD::ANY_EXTEND) {
1218      // If the source is smaller than the dest, we still need an extend.
1219      if (Operand.Val->getOperand(0).getValueType() < VT)
1220        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1221      else if (Operand.Val->getOperand(0).getValueType() > VT)
1222        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1223      else
1224        return Operand.Val->getOperand(0);
1225    }
1226    break;
1227  case ISD::BIT_CONVERT:
1228    // Basic sanity checking.
1229    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1230           && "Cannot BIT_CONVERT between two different types!");
1231    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1232    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1233      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1234    if (OpOpcode == ISD::UNDEF)
1235      return getNode(ISD::UNDEF, VT);
1236    break;
1237  case ISD::SCALAR_TO_VECTOR:
1238    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1239           MVT::getVectorBaseType(VT) == Operand.getValueType() &&
1240           "Illegal SCALAR_TO_VECTOR node!");
1241    break;
1242  case ISD::FNEG:
1243    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1244      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1245                     Operand.Val->getOperand(0));
1246    if (OpOpcode == ISD::FNEG)  // --X -> X
1247      return Operand.Val->getOperand(0);
1248    break;
1249  case ISD::FABS:
1250    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1251      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1252    break;
1253  }
1254
1255  SDNode *N;
1256  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1257    SDNode *&E = UnaryOps[std::make_pair(Opcode, std::make_pair(Operand, VT))];
1258    if (E) return SDOperand(E, 0);
1259    E = N = new SDNode(Opcode, Operand);
1260  } else {
1261    N = new SDNode(Opcode, Operand);
1262  }
1263  N->setValueTypes(VT);
1264  AllNodes.push_back(N);
1265  return SDOperand(N, 0);
1266}
1267
1268
1269
1270SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1271                                SDOperand N1, SDOperand N2) {
1272#ifndef NDEBUG
1273  switch (Opcode) {
1274  case ISD::TokenFactor:
1275    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1276           N2.getValueType() == MVT::Other && "Invalid token factor!");
1277    break;
1278  case ISD::AND:
1279  case ISD::OR:
1280  case ISD::XOR:
1281  case ISD::UDIV:
1282  case ISD::UREM:
1283  case ISD::MULHU:
1284  case ISD::MULHS:
1285    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1286    // fall through
1287  case ISD::ADD:
1288  case ISD::SUB:
1289  case ISD::MUL:
1290  case ISD::SDIV:
1291  case ISD::SREM:
1292    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1293    // fall through.
1294  case ISD::FADD:
1295  case ISD::FSUB:
1296  case ISD::FMUL:
1297  case ISD::FDIV:
1298  case ISD::FREM:
1299    assert(N1.getValueType() == N2.getValueType() &&
1300           N1.getValueType() == VT && "Binary operator types must match!");
1301    break;
1302  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1303    assert(N1.getValueType() == VT &&
1304           MVT::isFloatingPoint(N1.getValueType()) &&
1305           MVT::isFloatingPoint(N2.getValueType()) &&
1306           "Invalid FCOPYSIGN!");
1307    break;
1308  case ISD::SHL:
1309  case ISD::SRA:
1310  case ISD::SRL:
1311  case ISD::ROTL:
1312  case ISD::ROTR:
1313    assert(VT == N1.getValueType() &&
1314           "Shift operators return type must be the same as their first arg");
1315    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1316           VT != MVT::i1 && "Shifts only work on integers");
1317    break;
1318  case ISD::FP_ROUND_INREG: {
1319    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1320    assert(VT == N1.getValueType() && "Not an inreg round!");
1321    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1322           "Cannot FP_ROUND_INREG integer types");
1323    assert(EVT <= VT && "Not rounding down!");
1324    break;
1325  }
1326  case ISD::AssertSext:
1327  case ISD::AssertZext:
1328  case ISD::SIGN_EXTEND_INREG: {
1329    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1330    assert(VT == N1.getValueType() && "Not an inreg extend!");
1331    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1332           "Cannot *_EXTEND_INREG FP types");
1333    assert(EVT <= VT && "Not extending!");
1334  }
1335
1336  default: break;
1337  }
1338#endif
1339
1340  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1341  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1342  if (N1C) {
1343    if (Opcode == ISD::SIGN_EXTEND_INREG) {
1344      int64_t Val = N1C->getValue();
1345      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1346      Val <<= 64-FromBits;
1347      Val >>= 64-FromBits;
1348      return getConstant(Val, VT);
1349    }
1350
1351    if (N2C) {
1352      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1353      switch (Opcode) {
1354      case ISD::ADD: return getConstant(C1 + C2, VT);
1355      case ISD::SUB: return getConstant(C1 - C2, VT);
1356      case ISD::MUL: return getConstant(C1 * C2, VT);
1357      case ISD::UDIV:
1358        if (C2) return getConstant(C1 / C2, VT);
1359        break;
1360      case ISD::UREM :
1361        if (C2) return getConstant(C1 % C2, VT);
1362        break;
1363      case ISD::SDIV :
1364        if (C2) return getConstant(N1C->getSignExtended() /
1365                                   N2C->getSignExtended(), VT);
1366        break;
1367      case ISD::SREM :
1368        if (C2) return getConstant(N1C->getSignExtended() %
1369                                   N2C->getSignExtended(), VT);
1370        break;
1371      case ISD::AND  : return getConstant(C1 & C2, VT);
1372      case ISD::OR   : return getConstant(C1 | C2, VT);
1373      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1374      case ISD::SHL  : return getConstant(C1 << C2, VT);
1375      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1376      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1377      case ISD::ROTL :
1378        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1379                           VT);
1380      case ISD::ROTR :
1381        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1382                           VT);
1383      default: break;
1384      }
1385    } else {      // Cannonicalize constant to RHS if commutative
1386      if (isCommutativeBinOp(Opcode)) {
1387        std::swap(N1C, N2C);
1388        std::swap(N1, N2);
1389      }
1390    }
1391  }
1392
1393  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1394  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1395  if (N1CFP) {
1396    if (N2CFP) {
1397      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1398      switch (Opcode) {
1399      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1400      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1401      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1402      case ISD::FDIV:
1403        if (C2) return getConstantFP(C1 / C2, VT);
1404        break;
1405      case ISD::FREM :
1406        if (C2) return getConstantFP(fmod(C1, C2), VT);
1407        break;
1408      case ISD::FCOPYSIGN: {
1409        union {
1410          double   F;
1411          uint64_t I;
1412        } u1;
1413        union {
1414          double  F;
1415          int64_t I;
1416        } u2;
1417        u1.F = C1;
1418        u2.F = C2;
1419        if (u2.I < 0)  // Sign bit of RHS set?
1420          u1.I |= 1ULL << 63;      // Set the sign bit of the LHS.
1421        else
1422          u1.I &= (1ULL << 63)-1;  // Clear the sign bit of the LHS.
1423        return getConstantFP(u1.F, VT);
1424      }
1425      default: break;
1426      }
1427    } else {      // Cannonicalize constant to RHS if commutative
1428      if (isCommutativeBinOp(Opcode)) {
1429        std::swap(N1CFP, N2CFP);
1430        std::swap(N1, N2);
1431      }
1432    }
1433  }
1434
1435  // Canonicalize an UNDEF to the RHS, even over a constant.
1436  if (N1.getOpcode() == ISD::UNDEF) {
1437    if (isCommutativeBinOp(Opcode)) {
1438      std::swap(N1, N2);
1439    } else {
1440      switch (Opcode) {
1441      case ISD::FP_ROUND_INREG:
1442      case ISD::SIGN_EXTEND_INREG:
1443      case ISD::SUB:
1444      case ISD::FSUB:
1445      case ISD::FDIV:
1446      case ISD::FREM:
1447      case ISD::SRA:
1448        return N1;     // fold op(undef, arg2) -> undef
1449      case ISD::UDIV:
1450      case ISD::SDIV:
1451      case ISD::UREM:
1452      case ISD::SREM:
1453      case ISD::SRL:
1454      case ISD::SHL:
1455        return getConstant(0, VT);    // fold op(undef, arg2) -> 0
1456      }
1457    }
1458  }
1459
1460  // Fold a bunch of operators when the RHS is undef.
1461  if (N2.getOpcode() == ISD::UNDEF) {
1462    switch (Opcode) {
1463    case ISD::ADD:
1464    case ISD::SUB:
1465    case ISD::FADD:
1466    case ISD::FSUB:
1467    case ISD::FMUL:
1468    case ISD::FDIV:
1469    case ISD::FREM:
1470    case ISD::UDIV:
1471    case ISD::SDIV:
1472    case ISD::UREM:
1473    case ISD::SREM:
1474    case ISD::XOR:
1475      return N2;       // fold op(arg1, undef) -> undef
1476    case ISD::MUL:
1477    case ISD::AND:
1478    case ISD::SRL:
1479    case ISD::SHL:
1480      return getConstant(0, VT);  // fold op(arg1, undef) -> 0
1481    case ISD::OR:
1482      return getConstant(MVT::getIntVTBitMask(VT), VT);
1483    case ISD::SRA:
1484      return N1;
1485    }
1486  }
1487
1488  // Finally, fold operations that do not require constants.
1489  switch (Opcode) {
1490  case ISD::FP_ROUND_INREG:
1491    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1492    break;
1493  case ISD::SIGN_EXTEND_INREG: {
1494    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1495    if (EVT == VT) return N1;  // Not actually extending
1496    break;
1497  }
1498
1499  // FIXME: figure out how to safely handle things like
1500  // int foo(int x) { return 1 << (x & 255); }
1501  // int bar() { return foo(256); }
1502#if 0
1503  case ISD::SHL:
1504  case ISD::SRL:
1505  case ISD::SRA:
1506    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1507        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1508      return getNode(Opcode, VT, N1, N2.getOperand(0));
1509    else if (N2.getOpcode() == ISD::AND)
1510      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1511        // If the and is only masking out bits that cannot effect the shift,
1512        // eliminate the and.
1513        unsigned NumBits = MVT::getSizeInBits(VT);
1514        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1515          return getNode(Opcode, VT, N1, N2.getOperand(0));
1516      }
1517    break;
1518#endif
1519  }
1520
1521  // Memoize this node if possible.
1522  SDNode *N;
1523  if (VT != MVT::Flag) {
1524    SDNode *&BON = BinaryOps[std::make_pair(Opcode, std::make_pair(N1, N2))];
1525    if (BON) return SDOperand(BON, 0);
1526
1527    BON = N = new SDNode(Opcode, N1, N2);
1528  } else {
1529    N = new SDNode(Opcode, N1, N2);
1530  }
1531
1532  N->setValueTypes(VT);
1533  AllNodes.push_back(N);
1534  return SDOperand(N, 0);
1535}
1536
1537SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1538                                SDOperand N1, SDOperand N2, SDOperand N3) {
1539  // Perform various simplifications.
1540  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1541  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1542  //ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1543  switch (Opcode) {
1544  case ISD::SETCC: {
1545    // Use SimplifySetCC  to simplify SETCC's.
1546    SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1547    if (Simp.Val) return Simp;
1548    break;
1549  }
1550  case ISD::SELECT:
1551    if (N1C)
1552      if (N1C->getValue())
1553        return N2;             // select true, X, Y -> X
1554      else
1555        return N3;             // select false, X, Y -> Y
1556
1557    if (N2 == N3) return N2;   // select C, X, X -> X
1558    break;
1559  case ISD::BRCOND:
1560    if (N2C)
1561      if (N2C->getValue()) // Unconditional branch
1562        return getNode(ISD::BR, MVT::Other, N1, N3);
1563      else
1564        return N1;         // Never-taken branch
1565    break;
1566  case ISD::VECTOR_SHUFFLE:
1567    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1568           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
1569           N3.getOpcode() == ISD::BUILD_VECTOR &&
1570           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
1571           "Illegal VECTOR_SHUFFLE node!");
1572    break;
1573  }
1574
1575  std::vector<SDOperand> Ops;
1576  Ops.reserve(3);
1577  Ops.push_back(N1);
1578  Ops.push_back(N2);
1579  Ops.push_back(N3);
1580
1581  // Memoize node if it doesn't produce a flag.
1582  SDNode *N;
1583  if (VT != MVT::Flag) {
1584    SDNode *&E = OneResultNodes[std::make_pair(Opcode,std::make_pair(VT, Ops))];
1585    if (E) return SDOperand(E, 0);
1586    E = N = new SDNode(Opcode, N1, N2, N3);
1587  } else {
1588    N = new SDNode(Opcode, N1, N2, N3);
1589  }
1590  N->setValueTypes(VT);
1591  AllNodes.push_back(N);
1592  return SDOperand(N, 0);
1593}
1594
1595SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1596                                SDOperand N1, SDOperand N2, SDOperand N3,
1597                                SDOperand N4) {
1598  std::vector<SDOperand> Ops;
1599  Ops.reserve(4);
1600  Ops.push_back(N1);
1601  Ops.push_back(N2);
1602  Ops.push_back(N3);
1603  Ops.push_back(N4);
1604  return getNode(Opcode, VT, Ops);
1605}
1606
1607SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1608                                SDOperand N1, SDOperand N2, SDOperand N3,
1609                                SDOperand N4, SDOperand N5) {
1610  std::vector<SDOperand> Ops;
1611  Ops.reserve(5);
1612  Ops.push_back(N1);
1613  Ops.push_back(N2);
1614  Ops.push_back(N3);
1615  Ops.push_back(N4);
1616  Ops.push_back(N5);
1617  return getNode(Opcode, VT, Ops);
1618}
1619
1620SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1621                                SDOperand Chain, SDOperand Ptr,
1622                                SDOperand SV) {
1623  SDNode *&N = Loads[std::make_pair(Ptr, std::make_pair(Chain, VT))];
1624  if (N) return SDOperand(N, 0);
1625  N = new SDNode(ISD::LOAD, Chain, Ptr, SV);
1626
1627  // Loads have a token chain.
1628  setNodeValueTypes(N, VT, MVT::Other);
1629  AllNodes.push_back(N);
1630  return SDOperand(N, 0);
1631}
1632
1633SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT,
1634                                   SDOperand Chain, SDOperand Ptr,
1635                                   SDOperand SV) {
1636  std::vector<SDOperand> Ops;
1637  Ops.reserve(5);
1638  Ops.push_back(Chain);
1639  Ops.push_back(Ptr);
1640  Ops.push_back(SV);
1641  Ops.push_back(getConstant(Count, MVT::i32));
1642  Ops.push_back(getValueType(EVT));
1643  std::vector<MVT::ValueType> VTs;
1644  VTs.reserve(2);
1645  VTs.push_back(MVT::Vector); VTs.push_back(MVT::Other);  // Add token chain.
1646  return getNode(ISD::VLOAD, VTs, Ops);
1647}
1648
1649SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT,
1650                                   SDOperand Chain, SDOperand Ptr, SDOperand SV,
1651                                   MVT::ValueType EVT) {
1652  std::vector<SDOperand> Ops;
1653  Ops.reserve(4);
1654  Ops.push_back(Chain);
1655  Ops.push_back(Ptr);
1656  Ops.push_back(SV);
1657  Ops.push_back(getValueType(EVT));
1658  std::vector<MVT::ValueType> VTs;
1659  VTs.reserve(2);
1660  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1661  return getNode(Opcode, VTs, Ops);
1662}
1663
1664SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
1665  assert((!V || isa<PointerType>(V->getType())) &&
1666         "SrcValue is not a pointer?");
1667  SDNode *&N = ValueNodes[std::make_pair(V, Offset)];
1668  if (N) return SDOperand(N, 0);
1669
1670  N = new SrcValueSDNode(V, Offset);
1671  AllNodes.push_back(N);
1672  return SDOperand(N, 0);
1673}
1674
1675SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
1676                                 SDOperand Chain, SDOperand Ptr,
1677                                 SDOperand SV) {
1678  std::vector<SDOperand> Ops;
1679  Ops.reserve(3);
1680  Ops.push_back(Chain);
1681  Ops.push_back(Ptr);
1682  Ops.push_back(SV);
1683  std::vector<MVT::ValueType> VTs;
1684  VTs.reserve(2);
1685  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1686  return getNode(ISD::VAARG, VTs, Ops);
1687}
1688
1689SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1690                                std::vector<SDOperand> &Ops) {
1691  switch (Ops.size()) {
1692  case 0: return getNode(Opcode, VT);
1693  case 1: return getNode(Opcode, VT, Ops[0]);
1694  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1695  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1696  default: break;
1697  }
1698
1699  switch (Opcode) {
1700  default: break;
1701  case ISD::TRUNCSTORE: {
1702    assert(Ops.size() == 5 && "TRUNCSTORE takes 5 operands!");
1703    MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
1704#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
1705    // If this is a truncating store of a constant, convert to the desired type
1706    // and store it instead.
1707    if (isa<Constant>(Ops[0])) {
1708      SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
1709      if (isa<Constant>(Op))
1710        N1 = Op;
1711    }
1712    // Also for ConstantFP?
1713#endif
1714    if (Ops[0].getValueType() == EVT)       // Normal store?
1715      return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]);
1716    assert(Ops[1].getValueType() > EVT && "Not a truncation?");
1717    assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
1718           "Can't do FP-INT conversion!");
1719    break;
1720  }
1721  case ISD::SELECT_CC: {
1722    assert(Ops.size() == 5 && "SELECT_CC takes 5 operands!");
1723    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1724           "LHS and RHS of condition must have same type!");
1725    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1726           "True and False arms of SelectCC must have same type!");
1727    assert(Ops[2].getValueType() == VT &&
1728           "select_cc node must be of same type as true and false value!");
1729    break;
1730  }
1731  case ISD::BR_CC: {
1732    assert(Ops.size() == 5 && "BR_CC takes 5 operands!");
1733    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1734           "LHS/RHS of comparison should match types!");
1735    break;
1736  }
1737  }
1738
1739  // Memoize nodes.
1740  SDNode *N;
1741  if (VT != MVT::Flag) {
1742    SDNode *&E =
1743      OneResultNodes[std::make_pair(Opcode, std::make_pair(VT, Ops))];
1744    if (E) return SDOperand(E, 0);
1745    E = N = new SDNode(Opcode, Ops);
1746  } else {
1747    N = new SDNode(Opcode, Ops);
1748  }
1749  N->setValueTypes(VT);
1750  AllNodes.push_back(N);
1751  return SDOperand(N, 0);
1752}
1753
1754SDOperand SelectionDAG::getNode(unsigned Opcode,
1755                                std::vector<MVT::ValueType> &ResultTys,
1756                                std::vector<SDOperand> &Ops) {
1757  if (ResultTys.size() == 1)
1758    return getNode(Opcode, ResultTys[0], Ops);
1759
1760  switch (Opcode) {
1761  case ISD::EXTLOAD:
1762  case ISD::SEXTLOAD:
1763  case ISD::ZEXTLOAD: {
1764    MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT();
1765    assert(Ops.size() == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!");
1766    // If they are asking for an extending load from/to the same thing, return a
1767    // normal load.
1768    if (ResultTys[0] == EVT)
1769      return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]);
1770    if (MVT::isVector(ResultTys[0])) {
1771      assert(EVT == MVT::getVectorBaseType(ResultTys[0]) &&
1772             "Invalid vector extload!");
1773    } else {
1774      assert(EVT < ResultTys[0] &&
1775             "Should only be an extending load, not truncating!");
1776    }
1777    assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) &&
1778           "Cannot sign/zero extend a FP/Vector load!");
1779    assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) &&
1780           "Cannot convert from FP to Int or Int -> FP!");
1781    break;
1782  }
1783
1784  // FIXME: figure out how to safely handle things like
1785  // int foo(int x) { return 1 << (x & 255); }
1786  // int bar() { return foo(256); }
1787#if 0
1788  case ISD::SRA_PARTS:
1789  case ISD::SRL_PARTS:
1790  case ISD::SHL_PARTS:
1791    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1792        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1793      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1794    else if (N3.getOpcode() == ISD::AND)
1795      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1796        // If the and is only masking out bits that cannot effect the shift,
1797        // eliminate the and.
1798        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1799        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1800          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1801      }
1802    break;
1803#endif
1804  }
1805
1806  // Memoize the node unless it returns a flag.
1807  SDNode *N;
1808  if (ResultTys.back() != MVT::Flag) {
1809    SDNode *&E =
1810      ArbitraryNodes[std::make_pair(Opcode, std::make_pair(ResultTys, Ops))];
1811    if (E) return SDOperand(E, 0);
1812    E = N = new SDNode(Opcode, Ops);
1813  } else {
1814    N = new SDNode(Opcode, Ops);
1815  }
1816  setNodeValueTypes(N, ResultTys);
1817  AllNodes.push_back(N);
1818  return SDOperand(N, 0);
1819}
1820
1821void SelectionDAG::setNodeValueTypes(SDNode *N,
1822                                     std::vector<MVT::ValueType> &RetVals) {
1823  switch (RetVals.size()) {
1824  case 0: return;
1825  case 1: N->setValueTypes(RetVals[0]); return;
1826  case 2: setNodeValueTypes(N, RetVals[0], RetVals[1]); return;
1827  default: break;
1828  }
1829
1830  std::list<std::vector<MVT::ValueType> >::iterator I =
1831    std::find(VTList.begin(), VTList.end(), RetVals);
1832  if (I == VTList.end()) {
1833    VTList.push_front(RetVals);
1834    I = VTList.begin();
1835  }
1836
1837  N->setValueTypes(&(*I)[0], I->size());
1838}
1839
1840void SelectionDAG::setNodeValueTypes(SDNode *N, MVT::ValueType VT1,
1841                                     MVT::ValueType VT2) {
1842  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1843       E = VTList.end(); I != E; ++I) {
1844    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2) {
1845      N->setValueTypes(&(*I)[0], 2);
1846      return;
1847    }
1848  }
1849  std::vector<MVT::ValueType> V;
1850  V.push_back(VT1);
1851  V.push_back(VT2);
1852  VTList.push_front(V);
1853  N->setValueTypes(&(*VTList.begin())[0], 2);
1854}
1855
1856/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
1857/// specified operands.  If the resultant node already exists in the DAG,
1858/// this does not modify the specified node, instead it returns the node that
1859/// already exists.  If the resultant node does not exist in the DAG, the
1860/// input node is returned.  As a degenerate case, if you specify the same
1861/// input operands as the node already has, the input node is returned.
1862SDOperand SelectionDAG::
1863UpdateNodeOperands(SDOperand InN, SDOperand Op) {
1864  SDNode *N = InN.Val;
1865  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
1866
1867  // Check to see if there is no change.
1868  if (Op == N->getOperand(0)) return InN;
1869
1870  // See if the modified node already exists.
1871  SDNode **NewSlot = FindModifiedNodeSlot(N, Op);
1872  if (NewSlot && *NewSlot)
1873    return SDOperand(*NewSlot, InN.ResNo);
1874
1875  // Nope it doesn't.  Remove the node from it's current place in the maps.
1876  if (NewSlot)
1877    RemoveNodeFromCSEMaps(N);
1878
1879  // Now we update the operands.
1880  N->OperandList[0].Val->removeUser(N);
1881  Op.Val->addUser(N);
1882  N->OperandList[0] = Op;
1883
1884  // If this gets put into a CSE map, add it.
1885  if (NewSlot) *NewSlot = N;
1886  return InN;
1887}
1888
1889SDOperand SelectionDAG::
1890UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
1891  SDNode *N = InN.Val;
1892  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
1893
1894  // Check to see if there is no change.
1895  bool AnyChange = false;
1896  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
1897    return InN;   // No operands changed, just return the input node.
1898
1899  // See if the modified node already exists.
1900  SDNode **NewSlot = FindModifiedNodeSlot(N, Op1, Op2);
1901  if (NewSlot && *NewSlot)
1902    return SDOperand(*NewSlot, InN.ResNo);
1903
1904  // Nope it doesn't.  Remove the node from it's current place in the maps.
1905  if (NewSlot)
1906    RemoveNodeFromCSEMaps(N);
1907
1908  // Now we update the operands.
1909  if (N->OperandList[0] != Op1) {
1910    N->OperandList[0].Val->removeUser(N);
1911    Op1.Val->addUser(N);
1912    N->OperandList[0] = Op1;
1913  }
1914  if (N->OperandList[1] != Op2) {
1915    N->OperandList[1].Val->removeUser(N);
1916    Op2.Val->addUser(N);
1917    N->OperandList[1] = Op2;
1918  }
1919
1920  // If this gets put into a CSE map, add it.
1921  if (NewSlot) *NewSlot = N;
1922  return InN;
1923}
1924
1925SDOperand SelectionDAG::
1926UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
1927  std::vector<SDOperand> Ops;
1928  Ops.push_back(Op1);
1929  Ops.push_back(Op2);
1930  Ops.push_back(Op3);
1931  return UpdateNodeOperands(N, Ops);
1932}
1933
1934SDOperand SelectionDAG::
1935UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1936                   SDOperand Op3, SDOperand Op4) {
1937  std::vector<SDOperand> Ops;
1938  Ops.push_back(Op1);
1939  Ops.push_back(Op2);
1940  Ops.push_back(Op3);
1941  Ops.push_back(Op4);
1942  return UpdateNodeOperands(N, Ops);
1943}
1944
1945SDOperand SelectionDAG::
1946UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1947                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
1948  std::vector<SDOperand> Ops;
1949  Ops.push_back(Op1);
1950  Ops.push_back(Op2);
1951  Ops.push_back(Op3);
1952  Ops.push_back(Op4);
1953  Ops.push_back(Op5);
1954  return UpdateNodeOperands(N, Ops);
1955}
1956
1957
1958SDOperand SelectionDAG::
1959UpdateNodeOperands(SDOperand InN, const std::vector<SDOperand> &Ops) {
1960  SDNode *N = InN.Val;
1961  assert(N->getNumOperands() == Ops.size() &&
1962         "Update with wrong number of operands");
1963
1964  // Check to see if there is no change.
1965  unsigned NumOps = Ops.size();
1966  bool AnyChange = false;
1967  for (unsigned i = 0; i != NumOps; ++i) {
1968    if (Ops[i] != N->getOperand(i)) {
1969      AnyChange = true;
1970      break;
1971    }
1972  }
1973
1974  // No operands changed, just return the input node.
1975  if (!AnyChange) return InN;
1976
1977  // See if the modified node already exists.
1978  SDNode **NewSlot = FindModifiedNodeSlot(N, Ops);
1979  if (NewSlot && *NewSlot)
1980    return SDOperand(*NewSlot, InN.ResNo);
1981
1982  // Nope it doesn't.  Remove the node from it's current place in the maps.
1983  if (NewSlot)
1984    RemoveNodeFromCSEMaps(N);
1985
1986  // Now we update the operands.
1987  for (unsigned i = 0; i != NumOps; ++i) {
1988    if (N->OperandList[i] != Ops[i]) {
1989      N->OperandList[i].Val->removeUser(N);
1990      Ops[i].Val->addUser(N);
1991      N->OperandList[i] = Ops[i];
1992    }
1993  }
1994
1995  // If this gets put into a CSE map, add it.
1996  if (NewSlot) *NewSlot = N;
1997  return InN;
1998}
1999
2000
2001
2002
2003/// SelectNodeTo - These are used for target selectors to *mutate* the
2004/// specified node to have the specified return type, Target opcode, and
2005/// operands.  Note that target opcodes are stored as
2006/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2007///
2008/// Note that SelectNodeTo returns the resultant node.  If there is already a
2009/// node of the specified opcode and operands, it returns that node instead of
2010/// the current one.
2011SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2012                                     MVT::ValueType VT) {
2013  // If an identical node already exists, use it.
2014  SDNode *&ON = NullaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, VT)];
2015  if (ON) return SDOperand(ON, 0);
2016
2017  RemoveNodeFromCSEMaps(N);
2018
2019  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2020  N->setValueTypes(VT);
2021
2022  ON = N;   // Memoize the new node.
2023  return SDOperand(N, 0);
2024}
2025
2026SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2027                                     MVT::ValueType VT, SDOperand Op1) {
2028  // If an identical node already exists, use it.
2029  SDNode *&ON = UnaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2030                                        std::make_pair(Op1, VT))];
2031  if (ON) return SDOperand(ON, 0);
2032
2033  RemoveNodeFromCSEMaps(N);
2034  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2035  N->setValueTypes(VT);
2036  N->setOperands(Op1);
2037
2038  ON = N;   // Memoize the new node.
2039  return SDOperand(N, 0);
2040}
2041
2042SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2043                                     MVT::ValueType VT, SDOperand Op1,
2044                                     SDOperand Op2) {
2045  // If an identical node already exists, use it.
2046  SDNode *&ON = BinaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2047                                         std::make_pair(Op1, Op2))];
2048  if (ON) return SDOperand(ON, 0);
2049
2050  RemoveNodeFromCSEMaps(N);
2051  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2052  N->setValueTypes(VT);
2053  N->setOperands(Op1, Op2);
2054
2055  ON = N;   // Memoize the new node.
2056  return SDOperand(N, 0);
2057}
2058
2059SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2060                                     MVT::ValueType VT, SDOperand Op1,
2061                                     SDOperand Op2, SDOperand Op3) {
2062  // If an identical node already exists, use it.
2063  std::vector<SDOperand> OpList;
2064  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2065  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2066                                              std::make_pair(VT, OpList))];
2067  if (ON) return SDOperand(ON, 0);
2068
2069  RemoveNodeFromCSEMaps(N);
2070  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2071  N->setValueTypes(VT);
2072  N->setOperands(Op1, Op2, Op3);
2073
2074  ON = N;   // Memoize the new node.
2075  return SDOperand(N, 0);
2076}
2077
2078SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2079                                     MVT::ValueType VT, SDOperand Op1,
2080                                     SDOperand Op2, SDOperand Op3,
2081                                     SDOperand Op4) {
2082  // If an identical node already exists, use it.
2083  std::vector<SDOperand> OpList;
2084  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2085  OpList.push_back(Op4);
2086  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2087                                              std::make_pair(VT, OpList))];
2088  if (ON) return SDOperand(ON, 0);
2089
2090  RemoveNodeFromCSEMaps(N);
2091  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2092  N->setValueTypes(VT);
2093  N->setOperands(Op1, Op2, Op3, Op4);
2094
2095  ON = N;   // Memoize the new node.
2096  return SDOperand(N, 0);
2097}
2098
2099SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2100                                     MVT::ValueType VT, SDOperand Op1,
2101                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
2102                                     SDOperand Op5) {
2103  // If an identical node already exists, use it.
2104  std::vector<SDOperand> OpList;
2105  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2106  OpList.push_back(Op4); OpList.push_back(Op5);
2107  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2108                                              std::make_pair(VT, OpList))];
2109  if (ON) return SDOperand(ON, 0);
2110
2111  RemoveNodeFromCSEMaps(N);
2112  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2113  N->setValueTypes(VT);
2114  N->setOperands(Op1, Op2, Op3, Op4, Op5);
2115
2116  ON = N;   // Memoize the new node.
2117  return SDOperand(N, 0);
2118}
2119
2120SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2121                                     MVT::ValueType VT, SDOperand Op1,
2122                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
2123                                     SDOperand Op5, SDOperand Op6) {
2124  // If an identical node already exists, use it.
2125  std::vector<SDOperand> OpList;
2126  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2127  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
2128  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2129                                              std::make_pair(VT, OpList))];
2130  if (ON) return SDOperand(ON, 0);
2131
2132  RemoveNodeFromCSEMaps(N);
2133  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2134  N->setValueTypes(VT);
2135  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6);
2136
2137  ON = N;   // Memoize the new node.
2138  return SDOperand(N, 0);
2139}
2140
2141SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2142                                     MVT::ValueType VT, SDOperand Op1,
2143                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
2144                                     SDOperand Op5, SDOperand Op6,
2145				     SDOperand Op7) {
2146  // If an identical node already exists, use it.
2147  std::vector<SDOperand> OpList;
2148  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2149  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
2150  OpList.push_back(Op7);
2151  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2152                                              std::make_pair(VT, OpList))];
2153  if (ON) return SDOperand(ON, 0);
2154
2155  RemoveNodeFromCSEMaps(N);
2156  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2157  N->setValueTypes(VT);
2158  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7);
2159
2160  ON = N;   // Memoize the new node.
2161  return SDOperand(N, 0);
2162}
2163SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2164                                     MVT::ValueType VT, SDOperand Op1,
2165                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
2166                                     SDOperand Op5, SDOperand Op6,
2167				     SDOperand Op7, SDOperand Op8) {
2168  // If an identical node already exists, use it.
2169  std::vector<SDOperand> OpList;
2170  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2171  OpList.push_back(Op4); OpList.push_back(Op5); OpList.push_back(Op6);
2172  OpList.push_back(Op7); OpList.push_back(Op8);
2173  SDNode *&ON = OneResultNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2174                                              std::make_pair(VT, OpList))];
2175  if (ON) return SDOperand(ON, 0);
2176
2177  RemoveNodeFromCSEMaps(N);
2178  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2179  N->setValueTypes(VT);
2180  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8);
2181
2182  ON = N;   // Memoize the new node.
2183  return SDOperand(N, 0);
2184}
2185
2186SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2187                                     MVT::ValueType VT1, MVT::ValueType VT2,
2188                                     SDOperand Op1, SDOperand Op2) {
2189  // If an identical node already exists, use it.
2190  std::vector<SDOperand> OpList;
2191  OpList.push_back(Op1); OpList.push_back(Op2);
2192  std::vector<MVT::ValueType> VTList;
2193  VTList.push_back(VT1); VTList.push_back(VT2);
2194  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2195                                              std::make_pair(VTList, OpList))];
2196  if (ON) return SDOperand(ON, 0);
2197
2198  RemoveNodeFromCSEMaps(N);
2199  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2200  setNodeValueTypes(N, VT1, VT2);
2201  N->setOperands(Op1, Op2);
2202
2203  ON = N;   // Memoize the new node.
2204  return SDOperand(N, 0);
2205}
2206
2207SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2208                                     MVT::ValueType VT1, MVT::ValueType VT2,
2209                                     SDOperand Op1, SDOperand Op2,
2210                                     SDOperand Op3) {
2211  // If an identical node already exists, use it.
2212  std::vector<SDOperand> OpList;
2213  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2214  std::vector<MVT::ValueType> VTList;
2215  VTList.push_back(VT1); VTList.push_back(VT2);
2216  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2217                                              std::make_pair(VTList, OpList))];
2218  if (ON) return SDOperand(ON, 0);
2219
2220  RemoveNodeFromCSEMaps(N);
2221  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2222  setNodeValueTypes(N, VT1, VT2);
2223  N->setOperands(Op1, Op2, Op3);
2224
2225  ON = N;   // Memoize the new node.
2226  return SDOperand(N, 0);
2227}
2228
2229SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2230                                     MVT::ValueType VT1, MVT::ValueType VT2,
2231                                     SDOperand Op1, SDOperand Op2,
2232                                     SDOperand Op3, SDOperand Op4) {
2233  // If an identical node already exists, use it.
2234  std::vector<SDOperand> OpList;
2235  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2236  OpList.push_back(Op4);
2237  std::vector<MVT::ValueType> VTList;
2238  VTList.push_back(VT1); VTList.push_back(VT2);
2239  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2240                                              std::make_pair(VTList, OpList))];
2241  if (ON) return SDOperand(ON, 0);
2242
2243  RemoveNodeFromCSEMaps(N);
2244  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2245  setNodeValueTypes(N, VT1, VT2);
2246  N->setOperands(Op1, Op2, Op3, Op4);
2247
2248  ON = N;   // Memoize the new node.
2249  return SDOperand(N, 0);
2250}
2251
2252SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2253                                     MVT::ValueType VT1, MVT::ValueType VT2,
2254                                     SDOperand Op1, SDOperand Op2,
2255                                     SDOperand Op3, SDOperand Op4,
2256                                     SDOperand Op5) {
2257  // If an identical node already exists, use it.
2258  std::vector<SDOperand> OpList;
2259  OpList.push_back(Op1); OpList.push_back(Op2); OpList.push_back(Op3);
2260  OpList.push_back(Op4); OpList.push_back(Op5);
2261  std::vector<MVT::ValueType> VTList;
2262  VTList.push_back(VT1); VTList.push_back(VT2);
2263  SDNode *&ON = ArbitraryNodes[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc,
2264                                              std::make_pair(VTList, OpList))];
2265  if (ON) return SDOperand(ON, 0);
2266
2267  RemoveNodeFromCSEMaps(N);
2268  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2269  setNodeValueTypes(N, VT1, VT2);
2270  N->setOperands(Op1, Op2, Op3, Op4, Op5);
2271
2272  ON = N;   // Memoize the new node.
2273  return SDOperand(N, 0);
2274}
2275
2276/// getTargetNode - These are used for target selectors to create a new node
2277/// with specified return type(s), target opcode, and operands.
2278///
2279/// Note that getTargetNode returns the resultant node.  If there is already a
2280/// node of the specified opcode and operands, it returns that node instead of
2281/// the current one.
2282SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2283  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2284}
2285SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2286                                    SDOperand Op1) {
2287  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2288}
2289SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2290                                    SDOperand Op1, SDOperand Op2) {
2291  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2292}
2293SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2294                                    SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2295  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2296}
2297SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2298                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2299                                    SDOperand Op4) {
2300  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3, Op4).Val;
2301}
2302SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2303                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2304                                    SDOperand Op4, SDOperand Op5) {
2305  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3, Op4, Op5).Val;
2306}
2307SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2308                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2309                                    SDOperand Op4, SDOperand Op5, SDOperand Op6) {
2310  std::vector<SDOperand> Ops;
2311  Ops.reserve(6);
2312  Ops.push_back(Op1);
2313  Ops.push_back(Op2);
2314  Ops.push_back(Op3);
2315  Ops.push_back(Op4);
2316  Ops.push_back(Op5);
2317  Ops.push_back(Op6);
2318  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2319}
2320SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2321                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2322                                    SDOperand Op4, SDOperand Op5, SDOperand Op6,
2323                                    SDOperand Op7) {
2324  std::vector<SDOperand> Ops;
2325  Ops.reserve(7);
2326  Ops.push_back(Op1);
2327  Ops.push_back(Op2);
2328  Ops.push_back(Op3);
2329  Ops.push_back(Op4);
2330  Ops.push_back(Op5);
2331  Ops.push_back(Op6);
2332  Ops.push_back(Op7);
2333  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2334}
2335SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2336                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2337                                    SDOperand Op4, SDOperand Op5, SDOperand Op6,
2338                                    SDOperand Op7, SDOperand Op8) {
2339  std::vector<SDOperand> Ops;
2340  Ops.reserve(8);
2341  Ops.push_back(Op1);
2342  Ops.push_back(Op2);
2343  Ops.push_back(Op3);
2344  Ops.push_back(Op4);
2345  Ops.push_back(Op5);
2346  Ops.push_back(Op6);
2347  Ops.push_back(Op7);
2348  Ops.push_back(Op8);
2349  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2350}
2351SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2352                                    std::vector<SDOperand> &Ops) {
2353  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2354}
2355SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2356                                    MVT::ValueType VT2, SDOperand Op1) {
2357  std::vector<MVT::ValueType> ResultTys;
2358  ResultTys.push_back(VT1);
2359  ResultTys.push_back(VT2);
2360  std::vector<SDOperand> Ops;
2361  Ops.push_back(Op1);
2362  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2363}
2364SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2365                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2) {
2366  std::vector<MVT::ValueType> ResultTys;
2367  ResultTys.push_back(VT1);
2368  ResultTys.push_back(VT2);
2369  std::vector<SDOperand> Ops;
2370  Ops.push_back(Op1);
2371  Ops.push_back(Op2);
2372  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2373}
2374SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2375                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2376                                    SDOperand Op3) {
2377  std::vector<MVT::ValueType> ResultTys;
2378  ResultTys.push_back(VT1);
2379  ResultTys.push_back(VT2);
2380  std::vector<SDOperand> Ops;
2381  Ops.push_back(Op1);
2382  Ops.push_back(Op2);
2383  Ops.push_back(Op3);
2384  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2385}
2386SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2387                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2388                                    SDOperand Op3, SDOperand Op4) {
2389  std::vector<MVT::ValueType> ResultTys;
2390  ResultTys.push_back(VT1);
2391  ResultTys.push_back(VT2);
2392  std::vector<SDOperand> Ops;
2393  Ops.push_back(Op1);
2394  Ops.push_back(Op2);
2395  Ops.push_back(Op3);
2396  Ops.push_back(Op4);
2397  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2398}
2399SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2400                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2401                                    SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2402  std::vector<MVT::ValueType> ResultTys;
2403  ResultTys.push_back(VT1);
2404  ResultTys.push_back(VT2);
2405  std::vector<SDOperand> Ops;
2406  Ops.push_back(Op1);
2407  Ops.push_back(Op2);
2408  Ops.push_back(Op3);
2409  Ops.push_back(Op4);
2410  Ops.push_back(Op5);
2411  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2412}
2413SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2414                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2415                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2416                                    SDOperand Op6) {
2417  std::vector<MVT::ValueType> ResultTys;
2418  ResultTys.push_back(VT1);
2419  ResultTys.push_back(VT2);
2420  std::vector<SDOperand> Ops;
2421  Ops.push_back(Op1);
2422  Ops.push_back(Op2);
2423  Ops.push_back(Op3);
2424  Ops.push_back(Op4);
2425  Ops.push_back(Op5);
2426  Ops.push_back(Op6);
2427  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2428}
2429SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2430                                    MVT::ValueType VT2, SDOperand Op1, SDOperand Op2,
2431                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2432                                    SDOperand Op6, SDOperand Op7) {
2433  std::vector<MVT::ValueType> ResultTys;
2434  ResultTys.push_back(VT1);
2435  ResultTys.push_back(VT2);
2436  std::vector<SDOperand> Ops;
2437  Ops.push_back(Op1);
2438  Ops.push_back(Op2);
2439  Ops.push_back(Op3);
2440  Ops.push_back(Op4);
2441  Ops.push_back(Op5);
2442  Ops.push_back(Op6);
2443  Ops.push_back(Op7);
2444  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2445}
2446SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2447                                    MVT::ValueType VT2, MVT::ValueType VT3,
2448                                    SDOperand Op1, SDOperand Op2) {
2449  std::vector<MVT::ValueType> ResultTys;
2450  ResultTys.push_back(VT1);
2451  ResultTys.push_back(VT2);
2452  ResultTys.push_back(VT3);
2453  std::vector<SDOperand> Ops;
2454  Ops.push_back(Op1);
2455  Ops.push_back(Op2);
2456  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2457}
2458SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2459                                    MVT::ValueType VT2, MVT::ValueType VT3,
2460                                    SDOperand Op1, SDOperand Op2,
2461                                    SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2462  std::vector<MVT::ValueType> ResultTys;
2463  ResultTys.push_back(VT1);
2464  ResultTys.push_back(VT2);
2465  ResultTys.push_back(VT3);
2466  std::vector<SDOperand> Ops;
2467  Ops.push_back(Op1);
2468  Ops.push_back(Op2);
2469  Ops.push_back(Op3);
2470  Ops.push_back(Op4);
2471  Ops.push_back(Op5);
2472  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2473}
2474SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2475                                    MVT::ValueType VT2, MVT::ValueType VT3,
2476                                    SDOperand Op1, SDOperand Op2,
2477                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2478                                    SDOperand Op6) {
2479  std::vector<MVT::ValueType> ResultTys;
2480  ResultTys.push_back(VT1);
2481  ResultTys.push_back(VT2);
2482  ResultTys.push_back(VT3);
2483  std::vector<SDOperand> Ops;
2484  Ops.push_back(Op1);
2485  Ops.push_back(Op2);
2486  Ops.push_back(Op3);
2487  Ops.push_back(Op4);
2488  Ops.push_back(Op5);
2489  Ops.push_back(Op6);
2490  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2491}
2492SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2493                                    MVT::ValueType VT2, MVT::ValueType VT3,
2494                                    SDOperand Op1, SDOperand Op2,
2495                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2496                                    SDOperand Op6, SDOperand Op7) {
2497  std::vector<MVT::ValueType> ResultTys;
2498  ResultTys.push_back(VT1);
2499  ResultTys.push_back(VT2);
2500  ResultTys.push_back(VT3);
2501  std::vector<SDOperand> Ops;
2502  Ops.push_back(Op1);
2503  Ops.push_back(Op2);
2504  Ops.push_back(Op3);
2505  Ops.push_back(Op4);
2506  Ops.push_back(Op5);
2507  Ops.push_back(Op6);
2508  Ops.push_back(Op7);
2509  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2510}
2511SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2512                                    MVT::ValueType VT2, std::vector<SDOperand> &Ops) {
2513  std::vector<MVT::ValueType> ResultTys;
2514  ResultTys.push_back(VT1);
2515  ResultTys.push_back(VT2);
2516  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2517}
2518
2519// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2520/// This can cause recursive merging of nodes in the DAG.
2521///
2522/// This version assumes From/To have a single result value.
2523///
2524void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2525                                      std::vector<SDNode*> *Deleted) {
2526  SDNode *From = FromN.Val, *To = ToN.Val;
2527  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2528         "Cannot replace with this method!");
2529  assert(From != To && "Cannot replace uses of with self");
2530
2531  while (!From->use_empty()) {
2532    // Process users until they are all gone.
2533    SDNode *U = *From->use_begin();
2534
2535    // This node is about to morph, remove its old self from the CSE maps.
2536    RemoveNodeFromCSEMaps(U);
2537
2538    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2539         I != E; ++I)
2540      if (I->Val == From) {
2541        From->removeUser(U);
2542        I->Val = To;
2543        To->addUser(U);
2544      }
2545
2546    // Now that we have modified U, add it back to the CSE maps.  If it already
2547    // exists there, recursively merge the results together.
2548    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2549      ReplaceAllUsesWith(U, Existing, Deleted);
2550      // U is now dead.
2551      if (Deleted) Deleted->push_back(U);
2552      DeleteNodeNotInCSEMaps(U);
2553    }
2554  }
2555}
2556
2557/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2558/// This can cause recursive merging of nodes in the DAG.
2559///
2560/// This version assumes From/To have matching types and numbers of result
2561/// values.
2562///
2563void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2564                                      std::vector<SDNode*> *Deleted) {
2565  assert(From != To && "Cannot replace uses of with self");
2566  assert(From->getNumValues() == To->getNumValues() &&
2567         "Cannot use this version of ReplaceAllUsesWith!");
2568  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2569    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2570    return;
2571  }
2572
2573  while (!From->use_empty()) {
2574    // Process users until they are all gone.
2575    SDNode *U = *From->use_begin();
2576
2577    // This node is about to morph, remove its old self from the CSE maps.
2578    RemoveNodeFromCSEMaps(U);
2579
2580    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2581         I != E; ++I)
2582      if (I->Val == From) {
2583        From->removeUser(U);
2584        I->Val = To;
2585        To->addUser(U);
2586      }
2587
2588    // Now that we have modified U, add it back to the CSE maps.  If it already
2589    // exists there, recursively merge the results together.
2590    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2591      ReplaceAllUsesWith(U, Existing, Deleted);
2592      // U is now dead.
2593      if (Deleted) Deleted->push_back(U);
2594      DeleteNodeNotInCSEMaps(U);
2595    }
2596  }
2597}
2598
2599/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2600/// This can cause recursive merging of nodes in the DAG.
2601///
2602/// This version can replace From with any result values.  To must match the
2603/// number and types of values returned by From.
2604void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2605                                      const std::vector<SDOperand> &To,
2606                                      std::vector<SDNode*> *Deleted) {
2607  assert(From->getNumValues() == To.size() &&
2608         "Incorrect number of values to replace with!");
2609  if (To.size() == 1 && To[0].Val->getNumValues() == 1) {
2610    // Degenerate case handled above.
2611    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
2612    return;
2613  }
2614
2615  while (!From->use_empty()) {
2616    // Process users until they are all gone.
2617    SDNode *U = *From->use_begin();
2618
2619    // This node is about to morph, remove its old self from the CSE maps.
2620    RemoveNodeFromCSEMaps(U);
2621
2622    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2623         I != E; ++I)
2624      if (I->Val == From) {
2625        const SDOperand &ToOp = To[I->ResNo];
2626        From->removeUser(U);
2627        *I = ToOp;
2628        ToOp.Val->addUser(U);
2629      }
2630
2631    // Now that we have modified U, add it back to the CSE maps.  If it already
2632    // exists there, recursively merge the results together.
2633    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2634      ReplaceAllUsesWith(U, Existing, Deleted);
2635      // U is now dead.
2636      if (Deleted) Deleted->push_back(U);
2637      DeleteNodeNotInCSEMaps(U);
2638    }
2639  }
2640}
2641
2642/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
2643/// uses of other values produced by From.Val alone.  The Deleted vector is
2644/// handled the same was as for ReplaceAllUsesWith.
2645void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
2646                                             std::vector<SDNode*> &Deleted) {
2647  assert(From != To && "Cannot replace a value with itself");
2648  // Handle the simple, trivial, case efficiently.
2649  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
2650    ReplaceAllUsesWith(From, To, &Deleted);
2651    return;
2652  }
2653
2654  // Get all of the users in a nice, deterministically ordered, uniqued set.
2655  SetVector<SDNode*> Users(From.Val->use_begin(), From.Val->use_end());
2656
2657  while (!Users.empty()) {
2658    // We know that this user uses some value of From.  If it is the right
2659    // value, update it.
2660    SDNode *User = Users.back();
2661    Users.pop_back();
2662
2663    for (SDOperand *Op = User->OperandList,
2664         *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
2665      if (*Op == From) {
2666        // Okay, we know this user needs to be updated.  Remove its old self
2667        // from the CSE maps.
2668        RemoveNodeFromCSEMaps(User);
2669
2670        // Update all operands that match "From".
2671        for (; Op != E; ++Op) {
2672          if (*Op == From) {
2673            From.Val->removeUser(User);
2674            *Op = To;
2675            To.Val->addUser(User);
2676          }
2677        }
2678
2679        // Now that we have modified User, add it back to the CSE maps.  If it
2680        // already exists there, recursively merge the results together.
2681        if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
2682          unsigned NumDeleted = Deleted.size();
2683          ReplaceAllUsesWith(User, Existing, &Deleted);
2684
2685          // User is now dead.
2686          Deleted.push_back(User);
2687          DeleteNodeNotInCSEMaps(User);
2688
2689          // We have to be careful here, because ReplaceAllUsesWith could have
2690          // deleted a user of From, which means there may be dangling pointers
2691          // in the "Users" setvector.  Scan over the deleted node pointers and
2692          // remove them from the setvector.
2693          for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
2694            Users.remove(Deleted[i]);
2695        }
2696        break;   // Exit the operand scanning loop.
2697      }
2698    }
2699  }
2700}
2701
2702
2703//===----------------------------------------------------------------------===//
2704//                              SDNode Class
2705//===----------------------------------------------------------------------===//
2706
2707
2708/// getValueTypeList - Return a pointer to the specified value type.
2709///
2710MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
2711  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
2712  VTs[VT] = VT;
2713  return &VTs[VT];
2714}
2715
2716/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2717/// indicated value.  This method ignores uses of other values defined by this
2718/// operation.
2719bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
2720  assert(Value < getNumValues() && "Bad value!");
2721
2722  // If there is only one value, this is easy.
2723  if (getNumValues() == 1)
2724    return use_size() == NUses;
2725  if (Uses.size() < NUses) return false;
2726
2727  SDOperand TheValue(const_cast<SDNode *>(this), Value);
2728
2729  std::set<SDNode*> UsersHandled;
2730
2731  for (std::vector<SDNode*>::const_iterator UI = Uses.begin(), E = Uses.end();
2732       UI != E; ++UI) {
2733    SDNode *User = *UI;
2734    if (User->getNumOperands() == 1 ||
2735        UsersHandled.insert(User).second)     // First time we've seen this?
2736      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2737        if (User->getOperand(i) == TheValue) {
2738          if (NUses == 0)
2739            return false;   // too many uses
2740          --NUses;
2741        }
2742  }
2743
2744  // Found exactly the right number of uses?
2745  return NUses == 0;
2746}
2747
2748
2749// isOnlyUse - Return true if this node is the only use of N.
2750bool SDNode::isOnlyUse(SDNode *N) const {
2751  bool Seen = false;
2752  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2753    SDNode *User = *I;
2754    if (User == this)
2755      Seen = true;
2756    else
2757      return false;
2758  }
2759
2760  return Seen;
2761}
2762
2763// isOperand - Return true if this node is an operand of N.
2764bool SDOperand::isOperand(SDNode *N) const {
2765  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2766    if (*this == N->getOperand(i))
2767      return true;
2768  return false;
2769}
2770
2771bool SDNode::isOperand(SDNode *N) const {
2772  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
2773    if (this == N->OperandList[i].Val)
2774      return true;
2775  return false;
2776}
2777
2778const char *SDNode::getOperationName(const SelectionDAG *G) const {
2779  switch (getOpcode()) {
2780  default:
2781    if (getOpcode() < ISD::BUILTIN_OP_END)
2782      return "<<Unknown DAG Node>>";
2783    else {
2784      if (G) {
2785        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2786          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
2787            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2788
2789        TargetLowering &TLI = G->getTargetLoweringInfo();
2790        const char *Name =
2791          TLI.getTargetNodeName(getOpcode());
2792        if (Name) return Name;
2793      }
2794
2795      return "<<Unknown Target Node>>";
2796    }
2797
2798  case ISD::PCMARKER:      return "PCMarker";
2799  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
2800  case ISD::SRCVALUE:      return "SrcValue";
2801  case ISD::EntryToken:    return "EntryToken";
2802  case ISD::TokenFactor:   return "TokenFactor";
2803  case ISD::AssertSext:    return "AssertSext";
2804  case ISD::AssertZext:    return "AssertZext";
2805
2806  case ISD::STRING:        return "String";
2807  case ISD::BasicBlock:    return "BasicBlock";
2808  case ISD::VALUETYPE:     return "ValueType";
2809  case ISD::Register:      return "Register";
2810
2811  case ISD::Constant:      return "Constant";
2812  case ISD::ConstantFP:    return "ConstantFP";
2813  case ISD::GlobalAddress: return "GlobalAddress";
2814  case ISD::FrameIndex:    return "FrameIndex";
2815  case ISD::JumpTable:     return "JumpTable";
2816  case ISD::ConstantPool:  return "ConstantPool";
2817  case ISD::ExternalSymbol: return "ExternalSymbol";
2818  case ISD::INTRINSIC_WO_CHAIN: {
2819    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
2820    return Intrinsic::getName((Intrinsic::ID)IID);
2821  }
2822  case ISD::INTRINSIC_VOID:
2823  case ISD::INTRINSIC_W_CHAIN: {
2824    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
2825    return Intrinsic::getName((Intrinsic::ID)IID);
2826  }
2827
2828  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
2829  case ISD::TargetConstant: return "TargetConstant";
2830  case ISD::TargetConstantFP:return "TargetConstantFP";
2831  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2832  case ISD::TargetFrameIndex: return "TargetFrameIndex";
2833  case ISD::TargetJumpTable:  return "TargetJumpTable";
2834  case ISD::TargetConstantPool:  return "TargetConstantPool";
2835  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
2836
2837  case ISD::CopyToReg:     return "CopyToReg";
2838  case ISD::CopyFromReg:   return "CopyFromReg";
2839  case ISD::UNDEF:         return "undef";
2840  case ISD::MERGE_VALUES:  return "mergevalues";
2841  case ISD::INLINEASM:     return "inlineasm";
2842  case ISD::HANDLENODE:    return "handlenode";
2843  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
2844  case ISD::CALL:          return "call";
2845
2846  // Unary operators
2847  case ISD::FABS:   return "fabs";
2848  case ISD::FNEG:   return "fneg";
2849  case ISD::FSQRT:  return "fsqrt";
2850  case ISD::FSIN:   return "fsin";
2851  case ISD::FCOS:   return "fcos";
2852
2853  // Binary operators
2854  case ISD::ADD:    return "add";
2855  case ISD::SUB:    return "sub";
2856  case ISD::MUL:    return "mul";
2857  case ISD::MULHU:  return "mulhu";
2858  case ISD::MULHS:  return "mulhs";
2859  case ISD::SDIV:   return "sdiv";
2860  case ISD::UDIV:   return "udiv";
2861  case ISD::SREM:   return "srem";
2862  case ISD::UREM:   return "urem";
2863  case ISD::AND:    return "and";
2864  case ISD::OR:     return "or";
2865  case ISD::XOR:    return "xor";
2866  case ISD::SHL:    return "shl";
2867  case ISD::SRA:    return "sra";
2868  case ISD::SRL:    return "srl";
2869  case ISD::ROTL:   return "rotl";
2870  case ISD::ROTR:   return "rotr";
2871  case ISD::FADD:   return "fadd";
2872  case ISD::FSUB:   return "fsub";
2873  case ISD::FMUL:   return "fmul";
2874  case ISD::FDIV:   return "fdiv";
2875  case ISD::FREM:   return "frem";
2876  case ISD::FCOPYSIGN: return "fcopysign";
2877  case ISD::VADD:   return "vadd";
2878  case ISD::VSUB:   return "vsub";
2879  case ISD::VMUL:   return "vmul";
2880  case ISD::VSDIV:  return "vsdiv";
2881  case ISD::VUDIV:  return "vudiv";
2882  case ISD::VAND:   return "vand";
2883  case ISD::VOR:    return "vor";
2884  case ISD::VXOR:   return "vxor";
2885
2886  case ISD::SETCC:       return "setcc";
2887  case ISD::SELECT:      return "select";
2888  case ISD::SELECT_CC:   return "select_cc";
2889  case ISD::VSELECT:     return "vselect";
2890  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
2891  case ISD::VINSERT_VECTOR_ELT:  return "vinsert_vector_elt";
2892  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
2893  case ISD::VEXTRACT_VECTOR_ELT: return "vextract_vector_elt";
2894  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
2895  case ISD::VBUILD_VECTOR:       return "vbuild_vector";
2896  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
2897  case ISD::VVECTOR_SHUFFLE:     return "vvector_shuffle";
2898  case ISD::VBIT_CONVERT:        return "vbit_convert";
2899  case ISD::ADDC:        return "addc";
2900  case ISD::ADDE:        return "adde";
2901  case ISD::SUBC:        return "subc";
2902  case ISD::SUBE:        return "sube";
2903  case ISD::SHL_PARTS:   return "shl_parts";
2904  case ISD::SRA_PARTS:   return "sra_parts";
2905  case ISD::SRL_PARTS:   return "srl_parts";
2906
2907  // Conversion operators.
2908  case ISD::SIGN_EXTEND: return "sign_extend";
2909  case ISD::ZERO_EXTEND: return "zero_extend";
2910  case ISD::ANY_EXTEND:  return "any_extend";
2911  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2912  case ISD::TRUNCATE:    return "truncate";
2913  case ISD::FP_ROUND:    return "fp_round";
2914  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2915  case ISD::FP_EXTEND:   return "fp_extend";
2916
2917  case ISD::SINT_TO_FP:  return "sint_to_fp";
2918  case ISD::UINT_TO_FP:  return "uint_to_fp";
2919  case ISD::FP_TO_SINT:  return "fp_to_sint";
2920  case ISD::FP_TO_UINT:  return "fp_to_uint";
2921  case ISD::BIT_CONVERT: return "bit_convert";
2922
2923    // Control flow instructions
2924  case ISD::BR:      return "br";
2925  case ISD::BRIND:   return "brind";
2926  case ISD::BRCOND:  return "brcond";
2927  case ISD::BR_CC:   return "br_cc";
2928  case ISD::RET:     return "ret";
2929  case ISD::CALLSEQ_START:  return "callseq_start";
2930  case ISD::CALLSEQ_END:    return "callseq_end";
2931
2932    // Other operators
2933  case ISD::LOAD:               return "load";
2934  case ISD::STORE:              return "store";
2935  case ISD::VLOAD:              return "vload";
2936  case ISD::EXTLOAD:            return "extload";
2937  case ISD::SEXTLOAD:           return "sextload";
2938  case ISD::ZEXTLOAD:           return "zextload";
2939  case ISD::TRUNCSTORE:         return "truncstore";
2940  case ISD::VAARG:              return "vaarg";
2941  case ISD::VACOPY:             return "vacopy";
2942  case ISD::VAEND:              return "vaend";
2943  case ISD::VASTART:            return "vastart";
2944  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2945  case ISD::EXTRACT_ELEMENT:    return "extract_element";
2946  case ISD::BUILD_PAIR:         return "build_pair";
2947  case ISD::STACKSAVE:          return "stacksave";
2948  case ISD::STACKRESTORE:       return "stackrestore";
2949
2950  // Block memory operations.
2951  case ISD::MEMSET:  return "memset";
2952  case ISD::MEMCPY:  return "memcpy";
2953  case ISD::MEMMOVE: return "memmove";
2954
2955  // Bit manipulation
2956  case ISD::BSWAP:   return "bswap";
2957  case ISD::CTPOP:   return "ctpop";
2958  case ISD::CTTZ:    return "cttz";
2959  case ISD::CTLZ:    return "ctlz";
2960
2961  // Debug info
2962  case ISD::LOCATION: return "location";
2963  case ISD::DEBUG_LOC: return "debug_loc";
2964  case ISD::DEBUG_LABEL: return "debug_label";
2965
2966  case ISD::CONDCODE:
2967    switch (cast<CondCodeSDNode>(this)->get()) {
2968    default: assert(0 && "Unknown setcc condition!");
2969    case ISD::SETOEQ:  return "setoeq";
2970    case ISD::SETOGT:  return "setogt";
2971    case ISD::SETOGE:  return "setoge";
2972    case ISD::SETOLT:  return "setolt";
2973    case ISD::SETOLE:  return "setole";
2974    case ISD::SETONE:  return "setone";
2975
2976    case ISD::SETO:    return "seto";
2977    case ISD::SETUO:   return "setuo";
2978    case ISD::SETUEQ:  return "setue";
2979    case ISD::SETUGT:  return "setugt";
2980    case ISD::SETUGE:  return "setuge";
2981    case ISD::SETULT:  return "setult";
2982    case ISD::SETULE:  return "setule";
2983    case ISD::SETUNE:  return "setune";
2984
2985    case ISD::SETEQ:   return "seteq";
2986    case ISD::SETGT:   return "setgt";
2987    case ISD::SETGE:   return "setge";
2988    case ISD::SETLT:   return "setlt";
2989    case ISD::SETLE:   return "setle";
2990    case ISD::SETNE:   return "setne";
2991    }
2992  }
2993}
2994
2995void SDNode::dump() const { dump(0); }
2996void SDNode::dump(const SelectionDAG *G) const {
2997  std::cerr << (void*)this << ": ";
2998
2999  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
3000    if (i) std::cerr << ",";
3001    if (getValueType(i) == MVT::Other)
3002      std::cerr << "ch";
3003    else
3004      std::cerr << MVT::getValueTypeString(getValueType(i));
3005  }
3006  std::cerr << " = " << getOperationName(G);
3007
3008  std::cerr << " ";
3009  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3010    if (i) std::cerr << ", ";
3011    std::cerr << (void*)getOperand(i).Val;
3012    if (unsigned RN = getOperand(i).ResNo)
3013      std::cerr << ":" << RN;
3014  }
3015
3016  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
3017    std::cerr << "<" << CSDN->getValue() << ">";
3018  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
3019    std::cerr << "<" << CSDN->getValue() << ">";
3020  } else if (const GlobalAddressSDNode *GADN =
3021             dyn_cast<GlobalAddressSDNode>(this)) {
3022    int offset = GADN->getOffset();
3023    std::cerr << "<";
3024    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
3025    if (offset > 0)
3026      std::cerr << " + " << offset;
3027    else
3028      std::cerr << " " << offset;
3029  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
3030    std::cerr << "<" << FIDN->getIndex() << ">";
3031  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
3032    int offset = CP->getOffset();
3033    std::cerr << "<" << *CP->get() << ">";
3034    if (offset > 0)
3035      std::cerr << " + " << offset;
3036    else
3037      std::cerr << " " << offset;
3038  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
3039    std::cerr << "<";
3040    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
3041    if (LBB)
3042      std::cerr << LBB->getName() << " ";
3043    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
3044  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
3045    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
3046      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
3047    } else {
3048      std::cerr << " #" << R->getReg();
3049    }
3050  } else if (const ExternalSymbolSDNode *ES =
3051             dyn_cast<ExternalSymbolSDNode>(this)) {
3052    std::cerr << "'" << ES->getSymbol() << "'";
3053  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
3054    if (M->getValue())
3055      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
3056    else
3057      std::cerr << "<null:" << M->getOffset() << ">";
3058  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
3059    std::cerr << ":" << getValueTypeString(N->getVT());
3060  }
3061}
3062
3063static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
3064  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3065    if (N->getOperand(i).Val->hasOneUse())
3066      DumpNodes(N->getOperand(i).Val, indent+2, G);
3067    else
3068      std::cerr << "\n" << std::string(indent+2, ' ')
3069                << (void*)N->getOperand(i).Val << ": <multiple use>";
3070
3071
3072  std::cerr << "\n" << std::string(indent, ' ');
3073  N->dump(G);
3074}
3075
3076void SelectionDAG::dump() const {
3077  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
3078  std::vector<const SDNode*> Nodes;
3079  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
3080       I != E; ++I)
3081    Nodes.push_back(I);
3082
3083  std::sort(Nodes.begin(), Nodes.end());
3084
3085  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3086    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
3087      DumpNodes(Nodes[i], 2, this);
3088  }
3089
3090  DumpNodes(getRoot().Val, 2, this);
3091
3092  std::cerr << "\n\n";
3093}
3094
3095/// InsertISelMapEntry - A helper function to insert a key / element pair
3096/// into a SDOperand to SDOperand map. This is added to avoid the map
3097/// insertion operator from being inlined.
3098void SelectionDAG::InsertISelMapEntry(std::map<SDOperand, SDOperand> &Map,
3099                                      SDNode *Key, unsigned KeyResNo,
3100                                      SDNode *Element, unsigned ElementResNo) {
3101  Map.insert(std::make_pair(SDOperand(Key, KeyResNo),
3102                            SDOperand(Element, ElementResNo)));
3103}
3104