SelectionDAG.cpp revision fa252e56029c5a375f9c1f5d281f14eebb6e39be
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/ADT/SetVector.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/SmallSet.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/StringExtras.h"
40#include <algorithm>
41#include <cmath>
42using namespace llvm;
43
44/// makeVTList - Return an instance of the SDVTList struct initialized with the
45/// specified members.
46static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
47  SDVTList Res = {VTs, NumVTs};
48  return Res;
49}
50
51static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
52  switch (VT.getSimpleVT()) {
53  default: assert(0 && "Unknown FP format");
54  case MVT::f32:     return &APFloat::IEEEsingle;
55  case MVT::f64:     return &APFloat::IEEEdouble;
56  case MVT::f80:     return &APFloat::x87DoubleExtended;
57  case MVT::f128:    return &APFloat::IEEEquad;
58  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
59  }
60}
61
62SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
63
64//===----------------------------------------------------------------------===//
65//                              ConstantFPSDNode Class
66//===----------------------------------------------------------------------===//
67
68/// isExactlyValue - We don't rely on operator== working on double values, as
69/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
70/// As such, this method can be used to do an exact bit-for-bit comparison of
71/// two floating point values.
72bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
73  return getValueAPF().bitwiseIsEqual(V);
74}
75
76bool ConstantFPSDNode::isValueValidForType(MVT VT,
77                                           const APFloat& Val) {
78  assert(VT.isFloatingPoint() && "Can only convert between FP types");
79
80  // PPC long double cannot be converted to any other type.
81  if (VT == MVT::ppcf128 ||
82      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
83    return false;
84
85  // convert modifies in place, so make a copy.
86  APFloat Val2 = APFloat(Val);
87  bool losesInfo;
88  (void) Val2.convert(*MVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
89                      &losesInfo);
90  return !losesInfo;
91}
92
93//===----------------------------------------------------------------------===//
94//                              ISD Namespace
95//===----------------------------------------------------------------------===//
96
97/// isBuildVectorAllOnes - Return true if the specified node is a
98/// BUILD_VECTOR where all of the elements are ~0 or undef.
99bool ISD::isBuildVectorAllOnes(const SDNode *N) {
100  // Look through a bit convert.
101  if (N->getOpcode() == ISD::BIT_CONVERT)
102    N = N->getOperand(0).getNode();
103
104  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
105
106  unsigned i = 0, e = N->getNumOperands();
107
108  // Skip over all of the undef values.
109  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
110    ++i;
111
112  // Do not accept an all-undef vector.
113  if (i == e) return false;
114
115  // Do not accept build_vectors that aren't all constants or which have non-~0
116  // elements.
117  SDValue NotZero = N->getOperand(i);
118  if (isa<ConstantSDNode>(NotZero)) {
119    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
120      return false;
121  } else if (isa<ConstantFPSDNode>(NotZero)) {
122    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
123                bitcastToAPInt().isAllOnesValue())
124      return false;
125  } else
126    return false;
127
128  // Okay, we have at least one ~0 value, check to see if the rest match or are
129  // undefs.
130  for (++i; i != e; ++i)
131    if (N->getOperand(i) != NotZero &&
132        N->getOperand(i).getOpcode() != ISD::UNDEF)
133      return false;
134  return true;
135}
136
137
138/// isBuildVectorAllZeros - Return true if the specified node is a
139/// BUILD_VECTOR where all of the elements are 0 or undef.
140bool ISD::isBuildVectorAllZeros(const SDNode *N) {
141  // Look through a bit convert.
142  if (N->getOpcode() == ISD::BIT_CONVERT)
143    N = N->getOperand(0).getNode();
144
145  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
146
147  unsigned i = 0, e = N->getNumOperands();
148
149  // Skip over all of the undef values.
150  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
151    ++i;
152
153  // Do not accept an all-undef vector.
154  if (i == e) return false;
155
156  // Do not accept build_vectors that aren't all constants or which have non-~0
157  // elements.
158  SDValue Zero = N->getOperand(i);
159  if (isa<ConstantSDNode>(Zero)) {
160    if (!cast<ConstantSDNode>(Zero)->isNullValue())
161      return false;
162  } else if (isa<ConstantFPSDNode>(Zero)) {
163    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
164      return false;
165  } else
166    return false;
167
168  // Okay, we have at least one ~0 value, check to see if the rest match or are
169  // undefs.
170  for (++i; i != e; ++i)
171    if (N->getOperand(i) != Zero &&
172        N->getOperand(i).getOpcode() != ISD::UNDEF)
173      return false;
174  return true;
175}
176
177/// isScalarToVector - Return true if the specified node is a
178/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
179/// element is not an undef.
180bool ISD::isScalarToVector(const SDNode *N) {
181  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
182    return true;
183
184  if (N->getOpcode() != ISD::BUILD_VECTOR)
185    return false;
186  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
187    return false;
188  unsigned NumElems = N->getNumOperands();
189  for (unsigned i = 1; i < NumElems; ++i) {
190    SDValue V = N->getOperand(i);
191    if (V.getOpcode() != ISD::UNDEF)
192      return false;
193  }
194  return true;
195}
196
197
198/// isDebugLabel - Return true if the specified node represents a debug
199/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
200bool ISD::isDebugLabel(const SDNode *N) {
201  SDValue Zero;
202  if (N->getOpcode() == ISD::DBG_LABEL)
203    return true;
204  if (N->isMachineOpcode() &&
205      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
206    return true;
207  return false;
208}
209
210/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
211/// when given the operation for (X op Y).
212ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
213  // To perform this operation, we just need to swap the L and G bits of the
214  // operation.
215  unsigned OldL = (Operation >> 2) & 1;
216  unsigned OldG = (Operation >> 1) & 1;
217  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
218                       (OldL << 1) |       // New G bit
219                       (OldG << 2));       // New L bit.
220}
221
222/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
223/// 'op' is a valid SetCC operation.
224ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
225  unsigned Operation = Op;
226  if (isInteger)
227    Operation ^= 7;   // Flip L, G, E bits, but not U.
228  else
229    Operation ^= 15;  // Flip all of the condition bits.
230
231  if (Operation > ISD::SETTRUE2)
232    Operation &= ~8;  // Don't let N and U bits get set.
233
234  return ISD::CondCode(Operation);
235}
236
237
238/// isSignedOp - For an integer comparison, return 1 if the comparison is a
239/// signed operation and 2 if the result is an unsigned comparison.  Return zero
240/// if the operation does not depend on the sign of the input (setne and seteq).
241static int isSignedOp(ISD::CondCode Opcode) {
242  switch (Opcode) {
243  default: assert(0 && "Illegal integer setcc operation!");
244  case ISD::SETEQ:
245  case ISD::SETNE: return 0;
246  case ISD::SETLT:
247  case ISD::SETLE:
248  case ISD::SETGT:
249  case ISD::SETGE: return 1;
250  case ISD::SETULT:
251  case ISD::SETULE:
252  case ISD::SETUGT:
253  case ISD::SETUGE: return 2;
254  }
255}
256
257/// getSetCCOrOperation - Return the result of a logical OR between different
258/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
259/// returns SETCC_INVALID if it is not possible to represent the resultant
260/// comparison.
261ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
262                                       bool isInteger) {
263  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
264    // Cannot fold a signed integer setcc with an unsigned integer setcc.
265    return ISD::SETCC_INVALID;
266
267  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
268
269  // If the N and U bits get set then the resultant comparison DOES suddenly
270  // care about orderedness, and is true when ordered.
271  if (Op > ISD::SETTRUE2)
272    Op &= ~16;     // Clear the U bit if the N bit is set.
273
274  // Canonicalize illegal integer setcc's.
275  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
276    Op = ISD::SETNE;
277
278  return ISD::CondCode(Op);
279}
280
281/// getSetCCAndOperation - Return the result of a logical AND between different
282/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
283/// function returns zero if it is not possible to represent the resultant
284/// comparison.
285ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
286                                        bool isInteger) {
287  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
288    // Cannot fold a signed setcc with an unsigned setcc.
289    return ISD::SETCC_INVALID;
290
291  // Combine all of the condition bits.
292  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
293
294  // Canonicalize illegal integer setcc's.
295  if (isInteger) {
296    switch (Result) {
297    default: break;
298    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
299    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
300    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
301    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
302    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
303    }
304  }
305
306  return Result;
307}
308
309const TargetMachine &SelectionDAG::getTarget() const {
310  return MF->getTarget();
311}
312
313//===----------------------------------------------------------------------===//
314//                           SDNode Profile Support
315//===----------------------------------------------------------------------===//
316
317/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
318///
319static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
320  ID.AddInteger(OpC);
321}
322
323/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
324/// solely with their pointer.
325static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
326  ID.AddPointer(VTList.VTs);
327}
328
329/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
330///
331static void AddNodeIDOperands(FoldingSetNodeID &ID,
332                              const SDValue *Ops, unsigned NumOps) {
333  for (; NumOps; --NumOps, ++Ops) {
334    ID.AddPointer(Ops->getNode());
335    ID.AddInteger(Ops->getResNo());
336  }
337}
338
339/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
340///
341static void AddNodeIDOperands(FoldingSetNodeID &ID,
342                              const SDUse *Ops, unsigned NumOps) {
343  for (; NumOps; --NumOps, ++Ops) {
344    ID.AddPointer(Ops->getVal());
345    ID.AddInteger(Ops->getSDValue().getResNo());
346  }
347}
348
349static void AddNodeIDNode(FoldingSetNodeID &ID,
350                          unsigned short OpC, SDVTList VTList,
351                          const SDValue *OpList, unsigned N) {
352  AddNodeIDOpcode(ID, OpC);
353  AddNodeIDValueTypes(ID, VTList);
354  AddNodeIDOperands(ID, OpList, N);
355}
356
357/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
358/// the NodeID data.
359static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
360  switch (N->getOpcode()) {
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::ARG_FLAGS:
363    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
364    break;
365  case ISD::TargetConstant:
366  case ISD::Constant:
367    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
368    break;
369  case ISD::TargetConstantFP:
370  case ISD::ConstantFP: {
371    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
372    break;
373  }
374  case ISD::TargetGlobalAddress:
375  case ISD::GlobalAddress:
376  case ISD::TargetGlobalTLSAddress:
377  case ISD::GlobalTLSAddress: {
378    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
379    ID.AddPointer(GA->getGlobal());
380    ID.AddInteger(GA->getOffset());
381    break;
382  }
383  case ISD::BasicBlock:
384    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
385    break;
386  case ISD::Register:
387    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
388    break;
389  case ISD::DBG_STOPPOINT: {
390    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
391    ID.AddInteger(DSP->getLine());
392    ID.AddInteger(DSP->getColumn());
393    ID.AddPointer(DSP->getCompileUnit());
394    break;
395  }
396  case ISD::SRCVALUE:
397    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
398    break;
399  case ISD::MEMOPERAND: {
400    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
401    MO.Profile(ID);
402    break;
403  }
404  case ISD::FrameIndex:
405  case ISD::TargetFrameIndex:
406    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
407    break;
408  case ISD::JumpTable:
409  case ISD::TargetJumpTable:
410    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
411    break;
412  case ISD::ConstantPool:
413  case ISD::TargetConstantPool: {
414    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
415    ID.AddInteger(CP->getAlignment());
416    ID.AddInteger(CP->getOffset());
417    if (CP->isMachineConstantPoolEntry())
418      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
419    else
420      ID.AddPointer(CP->getConstVal());
421    break;
422  }
423  case ISD::CALL: {
424    const CallSDNode *Call = cast<CallSDNode>(N);
425    ID.AddInteger(Call->getCallingConv());
426    ID.AddInteger(Call->isVarArg());
427    break;
428  }
429  case ISD::LOAD: {
430    const LoadSDNode *LD = cast<LoadSDNode>(N);
431    ID.AddInteger(LD->getAddressingMode());
432    ID.AddInteger(LD->getExtensionType());
433    ID.AddInteger(LD->getMemoryVT().getRawBits());
434    ID.AddInteger(LD->getRawFlags());
435    break;
436  }
437  case ISD::STORE: {
438    const StoreSDNode *ST = cast<StoreSDNode>(N);
439    ID.AddInteger(ST->getAddressingMode());
440    ID.AddInteger(ST->isTruncatingStore());
441    ID.AddInteger(ST->getMemoryVT().getRawBits());
442    ID.AddInteger(ST->getRawFlags());
443    break;
444  }
445  case ISD::ATOMIC_CMP_SWAP_8:
446  case ISD::ATOMIC_SWAP_8:
447  case ISD::ATOMIC_LOAD_ADD_8:
448  case ISD::ATOMIC_LOAD_SUB_8:
449  case ISD::ATOMIC_LOAD_AND_8:
450  case ISD::ATOMIC_LOAD_OR_8:
451  case ISD::ATOMIC_LOAD_XOR_8:
452  case ISD::ATOMIC_LOAD_NAND_8:
453  case ISD::ATOMIC_LOAD_MIN_8:
454  case ISD::ATOMIC_LOAD_MAX_8:
455  case ISD::ATOMIC_LOAD_UMIN_8:
456  case ISD::ATOMIC_LOAD_UMAX_8:
457  case ISD::ATOMIC_CMP_SWAP_16:
458  case ISD::ATOMIC_SWAP_16:
459  case ISD::ATOMIC_LOAD_ADD_16:
460  case ISD::ATOMIC_LOAD_SUB_16:
461  case ISD::ATOMIC_LOAD_AND_16:
462  case ISD::ATOMIC_LOAD_OR_16:
463  case ISD::ATOMIC_LOAD_XOR_16:
464  case ISD::ATOMIC_LOAD_NAND_16:
465  case ISD::ATOMIC_LOAD_MIN_16:
466  case ISD::ATOMIC_LOAD_MAX_16:
467  case ISD::ATOMIC_LOAD_UMIN_16:
468  case ISD::ATOMIC_LOAD_UMAX_16:
469  case ISD::ATOMIC_CMP_SWAP_32:
470  case ISD::ATOMIC_SWAP_32:
471  case ISD::ATOMIC_LOAD_ADD_32:
472  case ISD::ATOMIC_LOAD_SUB_32:
473  case ISD::ATOMIC_LOAD_AND_32:
474  case ISD::ATOMIC_LOAD_OR_32:
475  case ISD::ATOMIC_LOAD_XOR_32:
476  case ISD::ATOMIC_LOAD_NAND_32:
477  case ISD::ATOMIC_LOAD_MIN_32:
478  case ISD::ATOMIC_LOAD_MAX_32:
479  case ISD::ATOMIC_LOAD_UMIN_32:
480  case ISD::ATOMIC_LOAD_UMAX_32:
481  case ISD::ATOMIC_CMP_SWAP_64:
482  case ISD::ATOMIC_SWAP_64:
483  case ISD::ATOMIC_LOAD_ADD_64:
484  case ISD::ATOMIC_LOAD_SUB_64:
485  case ISD::ATOMIC_LOAD_AND_64:
486  case ISD::ATOMIC_LOAD_OR_64:
487  case ISD::ATOMIC_LOAD_XOR_64:
488  case ISD::ATOMIC_LOAD_NAND_64:
489  case ISD::ATOMIC_LOAD_MIN_64:
490  case ISD::ATOMIC_LOAD_MAX_64:
491  case ISD::ATOMIC_LOAD_UMIN_64:
492  case ISD::ATOMIC_LOAD_UMAX_64: {
493    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
494    ID.AddInteger(AT->getRawFlags());
495    break;
496  }
497  } // end switch (N->getOpcode())
498}
499
500/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
501/// data.
502static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
503  AddNodeIDOpcode(ID, N->getOpcode());
504  // Add the return value info.
505  AddNodeIDValueTypes(ID, N->getVTList());
506  // Add the operand info.
507  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
508
509  // Handle SDNode leafs with special info.
510  AddNodeIDCustom(ID, N);
511}
512
513/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
514/// the CSE map that carries both alignment and volatility information.
515///
516static inline unsigned
517encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) {
518  return isVolatile | ((Log2_32(Alignment) + 1) << 1);
519}
520
521//===----------------------------------------------------------------------===//
522//                              SelectionDAG Class
523//===----------------------------------------------------------------------===//
524
525/// doNotCSE - Return true if CSE should not be performed for this node.
526static bool doNotCSE(SDNode *N) {
527  if (N->getValueType(0) == MVT::Flag)
528    return true; // Never CSE anything that produces a flag.
529
530  switch (N->getOpcode()) {
531  default: break;
532  case ISD::HANDLENODE:
533  case ISD::DBG_LABEL:
534  case ISD::DBG_STOPPOINT:
535  case ISD::EH_LABEL:
536  case ISD::DECLARE:
537    return true;   // Never CSE these nodes.
538  }
539
540  // Check that remaining values produced are not flags.
541  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
542    if (N->getValueType(i) == MVT::Flag)
543      return true; // Never CSE anything that produces a flag.
544
545  return false;
546}
547
548/// RemoveDeadNodes - This method deletes all unreachable nodes in the
549/// SelectionDAG.
550void SelectionDAG::RemoveDeadNodes() {
551  // Create a dummy node (which is not added to allnodes), that adds a reference
552  // to the root node, preventing it from being deleted.
553  HandleSDNode Dummy(getRoot());
554
555  SmallVector<SDNode*, 128> DeadNodes;
556
557  // Add all obviously-dead nodes to the DeadNodes worklist.
558  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
559    if (I->use_empty())
560      DeadNodes.push_back(I);
561
562  RemoveDeadNodes(DeadNodes);
563
564  // If the root changed (e.g. it was a dead load, update the root).
565  setRoot(Dummy.getValue());
566}
567
568/// RemoveDeadNodes - This method deletes the unreachable nodes in the
569/// given list, and any nodes that become unreachable as a result.
570void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
571                                   DAGUpdateListener *UpdateListener) {
572
573  // Process the worklist, deleting the nodes and adding their uses to the
574  // worklist.
575  while (!DeadNodes.empty()) {
576    SDNode *N = DeadNodes.back();
577    DeadNodes.pop_back();
578
579    if (UpdateListener)
580      UpdateListener->NodeDeleted(N, 0);
581
582    // Take the node out of the appropriate CSE map.
583    RemoveNodeFromCSEMaps(N);
584
585    // Next, brutally remove the operand list.  This is safe to do, as there are
586    // no cycles in the graph.
587    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
588      SDNode *Operand = I->getVal();
589      Operand->removeUser(std::distance(N->op_begin(), I), N);
590
591      // Now that we removed this operand, see if there are no uses of it left.
592      if (Operand->use_empty())
593        DeadNodes.push_back(Operand);
594    }
595
596    if (N->OperandsNeedDelete)
597      delete[] N->OperandList;
598
599    N->OperandList = 0;
600    N->NumOperands = 0;
601
602    // Finally, remove N itself.
603    NodeAllocator.Deallocate(AllNodes.remove(N));
604  }
605}
606
607void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
608  SmallVector<SDNode*, 16> DeadNodes(1, N);
609  RemoveDeadNodes(DeadNodes, UpdateListener);
610}
611
612void SelectionDAG::DeleteNode(SDNode *N) {
613  assert(N->use_empty() && "Cannot delete a node that is not dead!");
614
615  // First take this out of the appropriate CSE map.
616  RemoveNodeFromCSEMaps(N);
617
618  // Finally, remove uses due to operands of this node, remove from the
619  // AllNodes list, and delete the node.
620  DeleteNodeNotInCSEMaps(N);
621}
622
623void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
624  // Drop all of the operands and decrement used node's use counts.
625  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
626    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
627
628  if (N->OperandsNeedDelete) {
629    delete[] N->OperandList;
630    N->OperandList = 0;
631  }
632
633  assert(N != AllNodes.begin());
634  NodeAllocator.Deallocate(AllNodes.remove(N));
635}
636
637/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
638/// correspond to it.  This is useful when we're about to delete or repurpose
639/// the node.  We don't want future request for structurally identical nodes
640/// to return N anymore.
641bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
642  bool Erased = false;
643  switch (N->getOpcode()) {
644  case ISD::EntryToken:
645    assert(0 && "EntryToken should not be in CSEMaps!");
646    return false;
647  case ISD::HANDLENODE: return false;  // noop.
648  case ISD::CONDCODE:
649    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
650           "Cond code doesn't exist!");
651    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
652    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
653    break;
654  case ISD::ExternalSymbol:
655    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
656    break;
657  case ISD::TargetExternalSymbol:
658    Erased =
659      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
660    break;
661  case ISD::VALUETYPE: {
662    MVT VT = cast<VTSDNode>(N)->getVT();
663    if (VT.isExtended()) {
664      Erased = ExtendedValueTypeNodes.erase(VT);
665    } else {
666      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
667      ValueTypeNodes[VT.getSimpleVT()] = 0;
668    }
669    break;
670  }
671  default:
672    // Remove it from the CSE Map.
673    Erased = CSEMap.RemoveNode(N);
674    break;
675  }
676#ifndef NDEBUG
677  // Verify that the node was actually in one of the CSE maps, unless it has a
678  // flag result (which cannot be CSE'd) or is one of the special cases that are
679  // not subject to CSE.
680  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
681      !N->isMachineOpcode() && !doNotCSE(N)) {
682    N->dump(this);
683    cerr << "\n";
684    assert(0 && "Node is not in map!");
685  }
686#endif
687  return Erased;
688}
689
690/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
691/// has been taken out and modified in some way.  If the specified node already
692/// exists in the CSE maps, do not modify the maps, but return the existing node
693/// instead.  If it doesn't exist, add it and return null.
694///
695SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
696  assert(N->getNumOperands() && "This is a leaf node!");
697
698  if (doNotCSE(N))
699    return 0;
700
701  SDNode *New = CSEMap.GetOrInsertNode(N);
702  if (New != N) return New;  // Node already existed.
703  return 0;
704}
705
706/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
707/// were replaced with those specified.  If this node is never memoized,
708/// return null, otherwise return a pointer to the slot it would take.  If a
709/// node already exists with these operands, the slot will be non-null.
710SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
711                                           void *&InsertPos) {
712  if (doNotCSE(N))
713    return 0;
714
715  SDValue Ops[] = { Op };
716  FoldingSetNodeID ID;
717  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
718  AddNodeIDCustom(ID, N);
719  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
720}
721
722/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
723/// were replaced with those specified.  If this node is never memoized,
724/// return null, otherwise return a pointer to the slot it would take.  If a
725/// node already exists with these operands, the slot will be non-null.
726SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
727                                           SDValue Op1, SDValue Op2,
728                                           void *&InsertPos) {
729  if (doNotCSE(N))
730    return 0;
731
732  SDValue Ops[] = { Op1, Op2 };
733  FoldingSetNodeID ID;
734  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
735  AddNodeIDCustom(ID, N);
736  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
737}
738
739
740/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
741/// were replaced with those specified.  If this node is never memoized,
742/// return null, otherwise return a pointer to the slot it would take.  If a
743/// node already exists with these operands, the slot will be non-null.
744SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
745                                           const SDValue *Ops,unsigned NumOps,
746                                           void *&InsertPos) {
747  if (doNotCSE(N))
748    return 0;
749
750  FoldingSetNodeID ID;
751  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
752  AddNodeIDCustom(ID, N);
753  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
754}
755
756/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
757void SelectionDAG::VerifyNode(SDNode *N) {
758  switch (N->getOpcode()) {
759  default:
760    break;
761  case ISD::BUILD_PAIR: {
762    MVT VT = N->getValueType(0);
763    assert(N->getNumValues() == 1 && "Too many results!");
764    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
765           "Wrong return type!");
766    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
767    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
768           "Mismatched operand types!");
769    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
770           "Wrong operand type!");
771    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
772           "Wrong return type size");
773    break;
774  }
775  case ISD::BUILD_VECTOR: {
776    assert(N->getNumValues() == 1 && "Too many results!");
777    assert(N->getValueType(0).isVector() && "Wrong return type!");
778    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
779           "Wrong number of operands!");
780    // FIXME: Change vector_shuffle to a variadic node with mask elements being
781    // operands of the node.  Currently the mask is a BUILD_VECTOR passed as an
782    // operand, and it is not always possible to legalize it.  Turning off the
783    // following checks at least makes it possible to legalize most of the time.
784//    MVT EltVT = N->getValueType(0).getVectorElementType();
785//    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
786//      assert(I->getSDValue().getValueType() == EltVT &&
787//             "Wrong operand type!");
788    break;
789  }
790  }
791}
792
793/// getMVTAlignment - Compute the default alignment value for the
794/// given type.
795///
796unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
797  const Type *Ty = VT == MVT::iPTR ?
798                   PointerType::get(Type::Int8Ty, 0) :
799                   VT.getTypeForMVT();
800
801  return TLI.getTargetData()->getABITypeAlignment(Ty);
802}
803
804SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
805  : TLI(tli), FLI(fli),
806    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
807    Root(getEntryNode()) {
808  AllNodes.push_back(&EntryNode);
809}
810
811void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi) {
812  MF = &mf;
813  MMI = mmi;
814}
815
816SelectionDAG::~SelectionDAG() {
817  allnodes_clear();
818}
819
820void SelectionDAG::allnodes_clear() {
821  assert(&*AllNodes.begin() == &EntryNode);
822  AllNodes.remove(AllNodes.begin());
823  while (!AllNodes.empty()) {
824    SDNode *N = AllNodes.remove(AllNodes.begin());
825    N->SetNextInBucket(0);
826
827    if (N->OperandsNeedDelete) {
828      delete [] N->OperandList;
829      N->OperandList = 0;
830    }
831
832    NodeAllocator.Deallocate(N);
833  }
834}
835
836void SelectionDAG::clear() {
837  allnodes_clear();
838  OperandAllocator.Reset();
839  CSEMap.clear();
840
841  ExtendedValueTypeNodes.clear();
842  ExternalSymbols.clear();
843  TargetExternalSymbols.clear();
844  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
845            static_cast<CondCodeSDNode*>(0));
846  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
847            static_cast<SDNode*>(0));
848
849  EntryNode.Uses = 0;
850  AllNodes.push_back(&EntryNode);
851  Root = getEntryNode();
852}
853
854SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
855  if (Op.getValueType() == VT) return Op;
856  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
857                                   VT.getSizeInBits());
858  return getNode(ISD::AND, Op.getValueType(), Op,
859                 getConstant(Imm, Op.getValueType()));
860}
861
862SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
863  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
864  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
865}
866
867SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
868  return getConstant(*ConstantInt::get(Val), VT, isT);
869}
870
871SDValue SelectionDAG::getConstant(const ConstantInt &Val, MVT VT, bool isT) {
872  assert(VT.isInteger() && "Cannot create FP integer constant!");
873
874  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
875  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
876         "APInt size does not match type size!");
877
878  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
879  FoldingSetNodeID ID;
880  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
881  ID.AddPointer(&Val);
882  void *IP = 0;
883  SDNode *N = NULL;
884  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
885    if (!VT.isVector())
886      return SDValue(N, 0);
887  if (!N) {
888    N = NodeAllocator.Allocate<ConstantSDNode>();
889    new (N) ConstantSDNode(isT, &Val, EltVT);
890    CSEMap.InsertNode(N, IP);
891    AllNodes.push_back(N);
892  }
893
894  SDValue Result(N, 0);
895  if (VT.isVector()) {
896    SmallVector<SDValue, 8> Ops;
897    Ops.assign(VT.getVectorNumElements(), Result);
898    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
899  }
900  return Result;
901}
902
903SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
904  return getConstant(Val, TLI.getPointerTy(), isTarget);
905}
906
907
908SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
909  return getConstantFP(*ConstantFP::get(V), VT, isTarget);
910}
911
912SDValue SelectionDAG::getConstantFP(const ConstantFP& V, MVT VT, bool isTarget){
913  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
914
915  MVT EltVT =
916    VT.isVector() ? VT.getVectorElementType() : VT;
917
918  // Do the map lookup using the actual bit pattern for the floating point
919  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
920  // we don't have issues with SNANs.
921  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
922  FoldingSetNodeID ID;
923  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
924  ID.AddPointer(&V);
925  void *IP = 0;
926  SDNode *N = NULL;
927  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
928    if (!VT.isVector())
929      return SDValue(N, 0);
930  if (!N) {
931    N = NodeAllocator.Allocate<ConstantFPSDNode>();
932    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
933    CSEMap.InsertNode(N, IP);
934    AllNodes.push_back(N);
935  }
936
937  SDValue Result(N, 0);
938  if (VT.isVector()) {
939    SmallVector<SDValue, 8> Ops;
940    Ops.assign(VT.getVectorNumElements(), Result);
941    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
942  }
943  return Result;
944}
945
946SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
947  MVT EltVT =
948    VT.isVector() ? VT.getVectorElementType() : VT;
949  if (EltVT==MVT::f32)
950    return getConstantFP(APFloat((float)Val), VT, isTarget);
951  else
952    return getConstantFP(APFloat(Val), VT, isTarget);
953}
954
955SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
956                                       MVT VT, int64_t Offset,
957                                       bool isTargetGA) {
958  unsigned Opc;
959
960  // Truncate (with sign-extension) the offset value to the pointer size.
961  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
962  if (BitWidth < 64)
963    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
964
965  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
966  if (!GVar) {
967    // If GV is an alias then use the aliasee for determining thread-localness.
968    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
969      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
970  }
971
972  if (GVar && GVar->isThreadLocal())
973    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
974  else
975    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
976
977  FoldingSetNodeID ID;
978  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
979  ID.AddPointer(GV);
980  ID.AddInteger(Offset);
981  void *IP = 0;
982  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
983   return SDValue(E, 0);
984  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
985  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
986  CSEMap.InsertNode(N, IP);
987  AllNodes.push_back(N);
988  return SDValue(N, 0);
989}
990
991SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
992  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
993  FoldingSetNodeID ID;
994  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
995  ID.AddInteger(FI);
996  void *IP = 0;
997  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
998    return SDValue(E, 0);
999  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1000  new (N) FrameIndexSDNode(FI, VT, isTarget);
1001  CSEMap.InsertNode(N, IP);
1002  AllNodes.push_back(N);
1003  return SDValue(N, 0);
1004}
1005
1006SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
1007  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1008  FoldingSetNodeID ID;
1009  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1010  ID.AddInteger(JTI);
1011  void *IP = 0;
1012  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1013    return SDValue(E, 0);
1014  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1015  new (N) JumpTableSDNode(JTI, VT, isTarget);
1016  CSEMap.InsertNode(N, IP);
1017  AllNodes.push_back(N);
1018  return SDValue(N, 0);
1019}
1020
1021SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1022                                      unsigned Alignment, int Offset,
1023                                      bool isTarget) {
1024  if (Alignment == 0)
1025    Alignment =
1026      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1027  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1028  FoldingSetNodeID ID;
1029  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1030  ID.AddInteger(Alignment);
1031  ID.AddInteger(Offset);
1032  ID.AddPointer(C);
1033  void *IP = 0;
1034  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1035    return SDValue(E, 0);
1036  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1037  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1038  CSEMap.InsertNode(N, IP);
1039  AllNodes.push_back(N);
1040  return SDValue(N, 0);
1041}
1042
1043
1044SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1045                                      unsigned Alignment, int Offset,
1046                                      bool isTarget) {
1047  if (Alignment == 0)
1048    Alignment =
1049      TLI.getTargetData()->getPreferredTypeAlignmentShift(C->getType());
1050  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1051  FoldingSetNodeID ID;
1052  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1053  ID.AddInteger(Alignment);
1054  ID.AddInteger(Offset);
1055  C->AddSelectionDAGCSEId(ID);
1056  void *IP = 0;
1057  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1058    return SDValue(E, 0);
1059  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1060  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1061  CSEMap.InsertNode(N, IP);
1062  AllNodes.push_back(N);
1063  return SDValue(N, 0);
1064}
1065
1066
1067SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1068  FoldingSetNodeID ID;
1069  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1070  ID.AddPointer(MBB);
1071  void *IP = 0;
1072  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1073    return SDValue(E, 0);
1074  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1075  new (N) BasicBlockSDNode(MBB);
1076  CSEMap.InsertNode(N, IP);
1077  AllNodes.push_back(N);
1078  return SDValue(N, 0);
1079}
1080
1081SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1082  FoldingSetNodeID ID;
1083  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1084  ID.AddInteger(Flags.getRawBits());
1085  void *IP = 0;
1086  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1087    return SDValue(E, 0);
1088  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1089  new (N) ARG_FLAGSSDNode(Flags);
1090  CSEMap.InsertNode(N, IP);
1091  AllNodes.push_back(N);
1092  return SDValue(N, 0);
1093}
1094
1095SDValue SelectionDAG::getValueType(MVT VT) {
1096  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1097    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1098
1099  SDNode *&N = VT.isExtended() ?
1100    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1101
1102  if (N) return SDValue(N, 0);
1103  N = NodeAllocator.Allocate<VTSDNode>();
1104  new (N) VTSDNode(VT);
1105  AllNodes.push_back(N);
1106  return SDValue(N, 0);
1107}
1108
1109SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1110  SDNode *&N = ExternalSymbols[Sym];
1111  if (N) return SDValue(N, 0);
1112  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1113  new (N) ExternalSymbolSDNode(false, Sym, VT);
1114  AllNodes.push_back(N);
1115  return SDValue(N, 0);
1116}
1117
1118SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1119  SDNode *&N = TargetExternalSymbols[Sym];
1120  if (N) return SDValue(N, 0);
1121  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1122  new (N) ExternalSymbolSDNode(true, Sym, VT);
1123  AllNodes.push_back(N);
1124  return SDValue(N, 0);
1125}
1126
1127SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1128  if ((unsigned)Cond >= CondCodeNodes.size())
1129    CondCodeNodes.resize(Cond+1);
1130
1131  if (CondCodeNodes[Cond] == 0) {
1132    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1133    new (N) CondCodeSDNode(Cond);
1134    CondCodeNodes[Cond] = N;
1135    AllNodes.push_back(N);
1136  }
1137  return SDValue(CondCodeNodes[Cond], 0);
1138}
1139
1140SDValue SelectionDAG::getConvertRndSat(MVT VT, SDValue Val, SDValue DTy,
1141                                       SDValue STy, SDValue Rnd, SDValue Sat,
1142                                       ISD::CvtCode Code) {
1143  // If the src and dest types are the same, no conversion is necessary.
1144  if (DTy == STy)
1145    return Val;
1146
1147  FoldingSetNodeID ID;
1148  void* IP = 0;
1149  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1150    return SDValue(E, 0);
1151  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1152  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1153  new (N) CvtRndSatSDNode(VT, Ops, 5, Code);
1154  CSEMap.InsertNode(N, IP);
1155  AllNodes.push_back(N);
1156  return SDValue(N, 0);
1157}
1158
1159SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1160  FoldingSetNodeID ID;
1161  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1162  ID.AddInteger(RegNo);
1163  void *IP = 0;
1164  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1165    return SDValue(E, 0);
1166  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1167  new (N) RegisterSDNode(RegNo, VT);
1168  CSEMap.InsertNode(N, IP);
1169  AllNodes.push_back(N);
1170  return SDValue(N, 0);
1171}
1172
1173SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1174                                        unsigned Line, unsigned Col,
1175                                        const CompileUnitDesc *CU) {
1176  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1177  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1178  AllNodes.push_back(N);
1179  return SDValue(N, 0);
1180}
1181
1182SDValue SelectionDAG::getLabel(unsigned Opcode,
1183                               SDValue Root,
1184                               unsigned LabelID) {
1185  FoldingSetNodeID ID;
1186  SDValue Ops[] = { Root };
1187  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1188  ID.AddInteger(LabelID);
1189  void *IP = 0;
1190  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1191    return SDValue(E, 0);
1192  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1193  new (N) LabelSDNode(Opcode, Root, LabelID);
1194  CSEMap.InsertNode(N, IP);
1195  AllNodes.push_back(N);
1196  return SDValue(N, 0);
1197}
1198
1199SDValue SelectionDAG::getSrcValue(const Value *V) {
1200  assert((!V || isa<PointerType>(V->getType())) &&
1201         "SrcValue is not a pointer?");
1202
1203  FoldingSetNodeID ID;
1204  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1205  ID.AddPointer(V);
1206
1207  void *IP = 0;
1208  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1209    return SDValue(E, 0);
1210
1211  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1212  new (N) SrcValueSDNode(V);
1213  CSEMap.InsertNode(N, IP);
1214  AllNodes.push_back(N);
1215  return SDValue(N, 0);
1216}
1217
1218SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1219#ifndef NDEBUG
1220  const Value *v = MO.getValue();
1221  assert((!v || isa<PointerType>(v->getType())) &&
1222         "SrcValue is not a pointer?");
1223#endif
1224
1225  FoldingSetNodeID ID;
1226  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1227  MO.Profile(ID);
1228
1229  void *IP = 0;
1230  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1231    return SDValue(E, 0);
1232
1233  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1234  new (N) MemOperandSDNode(MO);
1235  CSEMap.InsertNode(N, IP);
1236  AllNodes.push_back(N);
1237  return SDValue(N, 0);
1238}
1239
1240/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1241/// specified value type.
1242SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1243  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1244  unsigned ByteSize = VT.getStoreSizeInBits()/8;
1245  const Type *Ty = VT.getTypeForMVT();
1246  unsigned StackAlign =
1247  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1248
1249  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1250  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1251}
1252
1253/// CreateStackTemporary - Create a stack temporary suitable for holding
1254/// either of the specified value types.
1255SDValue SelectionDAG::CreateStackTemporary(MVT VT1, MVT VT2) {
1256  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1257                            VT2.getStoreSizeInBits())/8;
1258  const Type *Ty1 = VT1.getTypeForMVT();
1259  const Type *Ty2 = VT2.getTypeForMVT();
1260  const TargetData *TD = TLI.getTargetData();
1261  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1262                            TD->getPrefTypeAlignment(Ty2));
1263
1264  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1265  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1266  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1267}
1268
1269SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1270                                SDValue N2, ISD::CondCode Cond) {
1271  // These setcc operations always fold.
1272  switch (Cond) {
1273  default: break;
1274  case ISD::SETFALSE:
1275  case ISD::SETFALSE2: return getConstant(0, VT);
1276  case ISD::SETTRUE:
1277  case ISD::SETTRUE2:  return getConstant(1, VT);
1278
1279  case ISD::SETOEQ:
1280  case ISD::SETOGT:
1281  case ISD::SETOGE:
1282  case ISD::SETOLT:
1283  case ISD::SETOLE:
1284  case ISD::SETONE:
1285  case ISD::SETO:
1286  case ISD::SETUO:
1287  case ISD::SETUEQ:
1288  case ISD::SETUNE:
1289    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1290    break;
1291  }
1292
1293  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1294    const APInt &C2 = N2C->getAPIntValue();
1295    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1296      const APInt &C1 = N1C->getAPIntValue();
1297
1298      switch (Cond) {
1299      default: assert(0 && "Unknown integer setcc!");
1300      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1301      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1302      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1303      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1304      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1305      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1306      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1307      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1308      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1309      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1310      }
1311    }
1312  }
1313  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1314    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1315      // No compile time operations on this type yet.
1316      if (N1C->getValueType(0) == MVT::ppcf128)
1317        return SDValue();
1318
1319      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1320      switch (Cond) {
1321      default: break;
1322      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1323                          return getNode(ISD::UNDEF, VT);
1324                        // fall through
1325      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1326      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1327                          return getNode(ISD::UNDEF, VT);
1328                        // fall through
1329      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1330                                           R==APFloat::cmpLessThan, VT);
1331      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1332                          return getNode(ISD::UNDEF, VT);
1333                        // fall through
1334      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1335      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1336                          return getNode(ISD::UNDEF, VT);
1337                        // fall through
1338      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1339      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1340                          return getNode(ISD::UNDEF, VT);
1341                        // fall through
1342      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1343                                           R==APFloat::cmpEqual, VT);
1344      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1345                          return getNode(ISD::UNDEF, VT);
1346                        // fall through
1347      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1348                                           R==APFloat::cmpEqual, VT);
1349      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1350      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1351      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1352                                           R==APFloat::cmpEqual, VT);
1353      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1354      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1355                                           R==APFloat::cmpLessThan, VT);
1356      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1357                                           R==APFloat::cmpUnordered, VT);
1358      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1359      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1360      }
1361    } else {
1362      // Ensure that the constant occurs on the RHS.
1363      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1364    }
1365  }
1366
1367  // Could not fold it.
1368  return SDValue();
1369}
1370
1371/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1372/// use this predicate to simplify operations downstream.
1373bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1374  unsigned BitWidth = Op.getValueSizeInBits();
1375  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1376}
1377
1378/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1379/// this predicate to simplify operations downstream.  Mask is known to be zero
1380/// for bits that V cannot have.
1381bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1382                                     unsigned Depth) const {
1383  APInt KnownZero, KnownOne;
1384  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1385  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1386  return (KnownZero & Mask) == Mask;
1387}
1388
1389/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1390/// known to be either zero or one and return them in the KnownZero/KnownOne
1391/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1392/// processing.
1393void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1394                                     APInt &KnownZero, APInt &KnownOne,
1395                                     unsigned Depth) const {
1396  unsigned BitWidth = Mask.getBitWidth();
1397  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1398         "Mask size mismatches value type size!");
1399
1400  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1401  if (Depth == 6 || Mask == 0)
1402    return;  // Limit search depth.
1403
1404  APInt KnownZero2, KnownOne2;
1405
1406  switch (Op.getOpcode()) {
1407  case ISD::Constant:
1408    // We know all of the bits for a constant!
1409    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1410    KnownZero = ~KnownOne & Mask;
1411    return;
1412  case ISD::AND:
1413    // If either the LHS or the RHS are Zero, the result is zero.
1414    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1415    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1416                      KnownZero2, KnownOne2, Depth+1);
1417    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1418    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1419
1420    // Output known-1 bits are only known if set in both the LHS & RHS.
1421    KnownOne &= KnownOne2;
1422    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1423    KnownZero |= KnownZero2;
1424    return;
1425  case ISD::OR:
1426    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1427    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1428                      KnownZero2, KnownOne2, Depth+1);
1429    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1430    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1431
1432    // Output known-0 bits are only known if clear in both the LHS & RHS.
1433    KnownZero &= KnownZero2;
1434    // Output known-1 are known to be set if set in either the LHS | RHS.
1435    KnownOne |= KnownOne2;
1436    return;
1437  case ISD::XOR: {
1438    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1439    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1440    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1441    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1442
1443    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1444    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1445    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1446    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1447    KnownZero = KnownZeroOut;
1448    return;
1449  }
1450  case ISD::MUL: {
1451    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1452    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1453    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1454    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1455    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1456
1457    // If low bits are zero in either operand, output low known-0 bits.
1458    // Also compute a conserative estimate for high known-0 bits.
1459    // More trickiness is possible, but this is sufficient for the
1460    // interesting case of alignment computation.
1461    KnownOne.clear();
1462    unsigned TrailZ = KnownZero.countTrailingOnes() +
1463                      KnownZero2.countTrailingOnes();
1464    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1465                               KnownZero2.countLeadingOnes(),
1466                               BitWidth) - BitWidth;
1467
1468    TrailZ = std::min(TrailZ, BitWidth);
1469    LeadZ = std::min(LeadZ, BitWidth);
1470    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1471                APInt::getHighBitsSet(BitWidth, LeadZ);
1472    KnownZero &= Mask;
1473    return;
1474  }
1475  case ISD::UDIV: {
1476    // For the purposes of computing leading zeros we can conservatively
1477    // treat a udiv as a logical right shift by the power of 2 known to
1478    // be less than the denominator.
1479    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1480    ComputeMaskedBits(Op.getOperand(0),
1481                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1482    unsigned LeadZ = KnownZero2.countLeadingOnes();
1483
1484    KnownOne2.clear();
1485    KnownZero2.clear();
1486    ComputeMaskedBits(Op.getOperand(1),
1487                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1488    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1489    if (RHSUnknownLeadingOnes != BitWidth)
1490      LeadZ = std::min(BitWidth,
1491                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1492
1493    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1494    return;
1495  }
1496  case ISD::SELECT:
1497    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1498    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1499    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1500    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1501
1502    // Only known if known in both the LHS and RHS.
1503    KnownOne &= KnownOne2;
1504    KnownZero &= KnownZero2;
1505    return;
1506  case ISD::SELECT_CC:
1507    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1508    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1509    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1510    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1511
1512    // Only known if known in both the LHS and RHS.
1513    KnownOne &= KnownOne2;
1514    KnownZero &= KnownZero2;
1515    return;
1516  case ISD::SADDO:
1517  case ISD::UADDO:
1518  case ISD::SSUBO:
1519  case ISD::USUBO:
1520  case ISD::SMULO:
1521  case ISD::UMULO:
1522    if (Op.getResNo() != 1)
1523      return;
1524    // The boolean result conforms to getBooleanContents.  Fall through.
1525  case ISD::SETCC:
1526    // If we know the result of a setcc has the top bits zero, use this info.
1527    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1528        BitWidth > 1)
1529      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1530    return;
1531  case ISD::SHL:
1532    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1533    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1534      unsigned ShAmt = SA->getZExtValue();
1535
1536      // If the shift count is an invalid immediate, don't do anything.
1537      if (ShAmt >= BitWidth)
1538        return;
1539
1540      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1541                        KnownZero, KnownOne, Depth+1);
1542      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1543      KnownZero <<= ShAmt;
1544      KnownOne  <<= ShAmt;
1545      // low bits known zero.
1546      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1547    }
1548    return;
1549  case ISD::SRL:
1550    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1551    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1552      unsigned ShAmt = SA->getZExtValue();
1553
1554      // If the shift count is an invalid immediate, don't do anything.
1555      if (ShAmt >= BitWidth)
1556        return;
1557
1558      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1559                        KnownZero, KnownOne, Depth+1);
1560      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1561      KnownZero = KnownZero.lshr(ShAmt);
1562      KnownOne  = KnownOne.lshr(ShAmt);
1563
1564      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1565      KnownZero |= HighBits;  // High bits known zero.
1566    }
1567    return;
1568  case ISD::SRA:
1569    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1570      unsigned ShAmt = SA->getZExtValue();
1571
1572      // If the shift count is an invalid immediate, don't do anything.
1573      if (ShAmt >= BitWidth)
1574        return;
1575
1576      APInt InDemandedMask = (Mask << ShAmt);
1577      // If any of the demanded bits are produced by the sign extension, we also
1578      // demand the input sign bit.
1579      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1580      if (HighBits.getBoolValue())
1581        InDemandedMask |= APInt::getSignBit(BitWidth);
1582
1583      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1584                        Depth+1);
1585      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1586      KnownZero = KnownZero.lshr(ShAmt);
1587      KnownOne  = KnownOne.lshr(ShAmt);
1588
1589      // Handle the sign bits.
1590      APInt SignBit = APInt::getSignBit(BitWidth);
1591      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1592
1593      if (KnownZero.intersects(SignBit)) {
1594        KnownZero |= HighBits;  // New bits are known zero.
1595      } else if (KnownOne.intersects(SignBit)) {
1596        KnownOne  |= HighBits;  // New bits are known one.
1597      }
1598    }
1599    return;
1600  case ISD::SIGN_EXTEND_INREG: {
1601    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1602    unsigned EBits = EVT.getSizeInBits();
1603
1604    // Sign extension.  Compute the demanded bits in the result that are not
1605    // present in the input.
1606    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1607
1608    APInt InSignBit = APInt::getSignBit(EBits);
1609    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1610
1611    // If the sign extended bits are demanded, we know that the sign
1612    // bit is demanded.
1613    InSignBit.zext(BitWidth);
1614    if (NewBits.getBoolValue())
1615      InputDemandedBits |= InSignBit;
1616
1617    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1618                      KnownZero, KnownOne, Depth+1);
1619    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1620
1621    // If the sign bit of the input is known set or clear, then we know the
1622    // top bits of the result.
1623    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1624      KnownZero |= NewBits;
1625      KnownOne  &= ~NewBits;
1626    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1627      KnownOne  |= NewBits;
1628      KnownZero &= ~NewBits;
1629    } else {                              // Input sign bit unknown
1630      KnownZero &= ~NewBits;
1631      KnownOne  &= ~NewBits;
1632    }
1633    return;
1634  }
1635  case ISD::CTTZ:
1636  case ISD::CTLZ:
1637  case ISD::CTPOP: {
1638    unsigned LowBits = Log2_32(BitWidth)+1;
1639    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1640    KnownOne.clear();
1641    return;
1642  }
1643  case ISD::LOAD: {
1644    if (ISD::isZEXTLoad(Op.getNode())) {
1645      LoadSDNode *LD = cast<LoadSDNode>(Op);
1646      MVT VT = LD->getMemoryVT();
1647      unsigned MemBits = VT.getSizeInBits();
1648      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1649    }
1650    return;
1651  }
1652  case ISD::ZERO_EXTEND: {
1653    MVT InVT = Op.getOperand(0).getValueType();
1654    unsigned InBits = InVT.getSizeInBits();
1655    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1656    APInt InMask    = Mask;
1657    InMask.trunc(InBits);
1658    KnownZero.trunc(InBits);
1659    KnownOne.trunc(InBits);
1660    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1661    KnownZero.zext(BitWidth);
1662    KnownOne.zext(BitWidth);
1663    KnownZero |= NewBits;
1664    return;
1665  }
1666  case ISD::SIGN_EXTEND: {
1667    MVT InVT = Op.getOperand(0).getValueType();
1668    unsigned InBits = InVT.getSizeInBits();
1669    APInt InSignBit = APInt::getSignBit(InBits);
1670    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1671    APInt InMask = Mask;
1672    InMask.trunc(InBits);
1673
1674    // If any of the sign extended bits are demanded, we know that the sign
1675    // bit is demanded. Temporarily set this bit in the mask for our callee.
1676    if (NewBits.getBoolValue())
1677      InMask |= InSignBit;
1678
1679    KnownZero.trunc(InBits);
1680    KnownOne.trunc(InBits);
1681    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1682
1683    // Note if the sign bit is known to be zero or one.
1684    bool SignBitKnownZero = KnownZero.isNegative();
1685    bool SignBitKnownOne  = KnownOne.isNegative();
1686    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1687           "Sign bit can't be known to be both zero and one!");
1688
1689    // If the sign bit wasn't actually demanded by our caller, we don't
1690    // want it set in the KnownZero and KnownOne result values. Reset the
1691    // mask and reapply it to the result values.
1692    InMask = Mask;
1693    InMask.trunc(InBits);
1694    KnownZero &= InMask;
1695    KnownOne  &= InMask;
1696
1697    KnownZero.zext(BitWidth);
1698    KnownOne.zext(BitWidth);
1699
1700    // If the sign bit is known zero or one, the top bits match.
1701    if (SignBitKnownZero)
1702      KnownZero |= NewBits;
1703    else if (SignBitKnownOne)
1704      KnownOne  |= NewBits;
1705    return;
1706  }
1707  case ISD::ANY_EXTEND: {
1708    MVT InVT = Op.getOperand(0).getValueType();
1709    unsigned InBits = InVT.getSizeInBits();
1710    APInt InMask = Mask;
1711    InMask.trunc(InBits);
1712    KnownZero.trunc(InBits);
1713    KnownOne.trunc(InBits);
1714    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1715    KnownZero.zext(BitWidth);
1716    KnownOne.zext(BitWidth);
1717    return;
1718  }
1719  case ISD::TRUNCATE: {
1720    MVT InVT = Op.getOperand(0).getValueType();
1721    unsigned InBits = InVT.getSizeInBits();
1722    APInt InMask = Mask;
1723    InMask.zext(InBits);
1724    KnownZero.zext(InBits);
1725    KnownOne.zext(InBits);
1726    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1727    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1728    KnownZero.trunc(BitWidth);
1729    KnownOne.trunc(BitWidth);
1730    break;
1731  }
1732  case ISD::AssertZext: {
1733    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1734    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1735    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1736                      KnownOne, Depth+1);
1737    KnownZero |= (~InMask) & Mask;
1738    return;
1739  }
1740  case ISD::FGETSIGN:
1741    // All bits are zero except the low bit.
1742    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1743    return;
1744
1745  case ISD::SUB: {
1746    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1747      // We know that the top bits of C-X are clear if X contains less bits
1748      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1749      // positive if we can prove that X is >= 0 and < 16.
1750      if (CLHS->getAPIntValue().isNonNegative()) {
1751        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1752        // NLZ can't be BitWidth with no sign bit
1753        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1754        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1755                          Depth+1);
1756
1757        // If all of the MaskV bits are known to be zero, then we know the
1758        // output top bits are zero, because we now know that the output is
1759        // from [0-C].
1760        if ((KnownZero2 & MaskV) == MaskV) {
1761          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1762          // Top bits known zero.
1763          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1764        }
1765      }
1766    }
1767  }
1768  // fall through
1769  case ISD::ADD: {
1770    // Output known-0 bits are known if clear or set in both the low clear bits
1771    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1772    // low 3 bits clear.
1773    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1774    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1775    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1776    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1777
1778    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1779    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1780    KnownZeroOut = std::min(KnownZeroOut,
1781                            KnownZero2.countTrailingOnes());
1782
1783    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1784    return;
1785  }
1786  case ISD::SREM:
1787    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1788      const APInt &RA = Rem->getAPIntValue();
1789      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1790        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1791        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1792        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1793
1794        // If the sign bit of the first operand is zero, the sign bit of
1795        // the result is zero. If the first operand has no one bits below
1796        // the second operand's single 1 bit, its sign will be zero.
1797        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1798          KnownZero2 |= ~LowBits;
1799
1800        KnownZero |= KnownZero2 & Mask;
1801
1802        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1803      }
1804    }
1805    return;
1806  case ISD::UREM: {
1807    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1808      const APInt &RA = Rem->getAPIntValue();
1809      if (RA.isPowerOf2()) {
1810        APInt LowBits = (RA - 1);
1811        APInt Mask2 = LowBits & Mask;
1812        KnownZero |= ~LowBits & Mask;
1813        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1814        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1815        break;
1816      }
1817    }
1818
1819    // Since the result is less than or equal to either operand, any leading
1820    // zero bits in either operand must also exist in the result.
1821    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1822    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1823                      Depth+1);
1824    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1825                      Depth+1);
1826
1827    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1828                                KnownZero2.countLeadingOnes());
1829    KnownOne.clear();
1830    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1831    return;
1832  }
1833  default:
1834    // Allow the target to implement this method for its nodes.
1835    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1836  case ISD::INTRINSIC_WO_CHAIN:
1837  case ISD::INTRINSIC_W_CHAIN:
1838  case ISD::INTRINSIC_VOID:
1839      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1840    }
1841    return;
1842  }
1843}
1844
1845/// ComputeNumSignBits - Return the number of times the sign bit of the
1846/// register is replicated into the other bits.  We know that at least 1 bit
1847/// is always equal to the sign bit (itself), but other cases can give us
1848/// information.  For example, immediately after an "SRA X, 2", we know that
1849/// the top 3 bits are all equal to each other, so we return 3.
1850unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1851  MVT VT = Op.getValueType();
1852  assert(VT.isInteger() && "Invalid VT!");
1853  unsigned VTBits = VT.getSizeInBits();
1854  unsigned Tmp, Tmp2;
1855  unsigned FirstAnswer = 1;
1856
1857  if (Depth == 6)
1858    return 1;  // Limit search depth.
1859
1860  switch (Op.getOpcode()) {
1861  default: break;
1862  case ISD::AssertSext:
1863    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1864    return VTBits-Tmp+1;
1865  case ISD::AssertZext:
1866    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1867    return VTBits-Tmp;
1868
1869  case ISD::Constant: {
1870    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1871    // If negative, return # leading ones.
1872    if (Val.isNegative())
1873      return Val.countLeadingOnes();
1874
1875    // Return # leading zeros.
1876    return Val.countLeadingZeros();
1877  }
1878
1879  case ISD::SIGN_EXTEND:
1880    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1881    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1882
1883  case ISD::SIGN_EXTEND_INREG:
1884    // Max of the input and what this extends.
1885    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1886    Tmp = VTBits-Tmp+1;
1887
1888    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1889    return std::max(Tmp, Tmp2);
1890
1891  case ISD::SRA:
1892    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1893    // SRA X, C   -> adds C sign bits.
1894    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1895      Tmp += C->getZExtValue();
1896      if (Tmp > VTBits) Tmp = VTBits;
1897    }
1898    return Tmp;
1899  case ISD::SHL:
1900    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1901      // shl destroys sign bits.
1902      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1903      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1904          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1905      return Tmp - C->getZExtValue();
1906    }
1907    break;
1908  case ISD::AND:
1909  case ISD::OR:
1910  case ISD::XOR:    // NOT is handled here.
1911    // Logical binary ops preserve the number of sign bits at the worst.
1912    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1913    if (Tmp != 1) {
1914      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1915      FirstAnswer = std::min(Tmp, Tmp2);
1916      // We computed what we know about the sign bits as our first
1917      // answer. Now proceed to the generic code that uses
1918      // ComputeMaskedBits, and pick whichever answer is better.
1919    }
1920    break;
1921
1922  case ISD::SELECT:
1923    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1924    if (Tmp == 1) return 1;  // Early out.
1925    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1926    return std::min(Tmp, Tmp2);
1927
1928  case ISD::SADDO:
1929  case ISD::UADDO:
1930  case ISD::SSUBO:
1931  case ISD::USUBO:
1932  case ISD::SMULO:
1933  case ISD::UMULO:
1934    if (Op.getResNo() != 1)
1935      break;
1936    // The boolean result conforms to getBooleanContents.  Fall through.
1937  case ISD::SETCC:
1938    // If setcc returns 0/-1, all bits are sign bits.
1939    if (TLI.getBooleanContents() ==
1940        TargetLowering::ZeroOrNegativeOneBooleanContent)
1941      return VTBits;
1942    break;
1943  case ISD::ROTL:
1944  case ISD::ROTR:
1945    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1946      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1947
1948      // Handle rotate right by N like a rotate left by 32-N.
1949      if (Op.getOpcode() == ISD::ROTR)
1950        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1951
1952      // If we aren't rotating out all of the known-in sign bits, return the
1953      // number that are left.  This handles rotl(sext(x), 1) for example.
1954      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1955      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1956    }
1957    break;
1958  case ISD::ADD:
1959    // Add can have at most one carry bit.  Thus we know that the output
1960    // is, at worst, one more bit than the inputs.
1961    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1962    if (Tmp == 1) return 1;  // Early out.
1963
1964    // Special case decrementing a value (ADD X, -1):
1965    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1966      if (CRHS->isAllOnesValue()) {
1967        APInt KnownZero, KnownOne;
1968        APInt Mask = APInt::getAllOnesValue(VTBits);
1969        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1970
1971        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1972        // sign bits set.
1973        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1974          return VTBits;
1975
1976        // If we are subtracting one from a positive number, there is no carry
1977        // out of the result.
1978        if (KnownZero.isNegative())
1979          return Tmp;
1980      }
1981
1982    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1983    if (Tmp2 == 1) return 1;
1984      return std::min(Tmp, Tmp2)-1;
1985    break;
1986
1987  case ISD::SUB:
1988    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1989    if (Tmp2 == 1) return 1;
1990
1991    // Handle NEG.
1992    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1993      if (CLHS->isNullValue()) {
1994        APInt KnownZero, KnownOne;
1995        APInt Mask = APInt::getAllOnesValue(VTBits);
1996        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1997        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1998        // sign bits set.
1999        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2000          return VTBits;
2001
2002        // If the input is known to be positive (the sign bit is known clear),
2003        // the output of the NEG has the same number of sign bits as the input.
2004        if (KnownZero.isNegative())
2005          return Tmp2;
2006
2007        // Otherwise, we treat this like a SUB.
2008      }
2009
2010    // Sub can have at most one carry bit.  Thus we know that the output
2011    // is, at worst, one more bit than the inputs.
2012    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2013    if (Tmp == 1) return 1;  // Early out.
2014      return std::min(Tmp, Tmp2)-1;
2015    break;
2016  case ISD::TRUNCATE:
2017    // FIXME: it's tricky to do anything useful for this, but it is an important
2018    // case for targets like X86.
2019    break;
2020  }
2021
2022  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2023  if (Op.getOpcode() == ISD::LOAD) {
2024    LoadSDNode *LD = cast<LoadSDNode>(Op);
2025    unsigned ExtType = LD->getExtensionType();
2026    switch (ExtType) {
2027    default: break;
2028    case ISD::SEXTLOAD:    // '17' bits known
2029      Tmp = LD->getMemoryVT().getSizeInBits();
2030      return VTBits-Tmp+1;
2031    case ISD::ZEXTLOAD:    // '16' bits known
2032      Tmp = LD->getMemoryVT().getSizeInBits();
2033      return VTBits-Tmp;
2034    }
2035  }
2036
2037  // Allow the target to implement this method for its nodes.
2038  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2039      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2040      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2041      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2042    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2043    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2044  }
2045
2046  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2047  // use this information.
2048  APInt KnownZero, KnownOne;
2049  APInt Mask = APInt::getAllOnesValue(VTBits);
2050  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2051
2052  if (KnownZero.isNegative()) {        // sign bit is 0
2053    Mask = KnownZero;
2054  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2055    Mask = KnownOne;
2056  } else {
2057    // Nothing known.
2058    return FirstAnswer;
2059  }
2060
2061  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2062  // the number of identical bits in the top of the input value.
2063  Mask = ~Mask;
2064  Mask <<= Mask.getBitWidth()-VTBits;
2065  // Return # leading zeros.  We use 'min' here in case Val was zero before
2066  // shifting.  We don't want to return '64' as for an i32 "0".
2067  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2068}
2069
2070
2071bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2072  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2073  if (!GA) return false;
2074  if (GA->getOffset() != 0) return false;
2075  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2076  if (!GV) return false;
2077  MachineModuleInfo *MMI = getMachineModuleInfo();
2078  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
2079}
2080
2081
2082/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2083/// element of the result of the vector shuffle.
2084SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2085  MVT VT = N->getValueType(0);
2086  SDValue PermMask = N->getOperand(2);
2087  SDValue Idx = PermMask.getOperand(i);
2088  if (Idx.getOpcode() == ISD::UNDEF)
2089    return getNode(ISD::UNDEF, VT.getVectorElementType());
2090  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2091  unsigned NumElems = PermMask.getNumOperands();
2092  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2093  Index %= NumElems;
2094
2095  if (V.getOpcode() == ISD::BIT_CONVERT) {
2096    V = V.getOperand(0);
2097    MVT VVT = V.getValueType();
2098    if (!VVT.isVector() || VVT.getVectorNumElements() != NumElems)
2099      return SDValue();
2100  }
2101  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2102    return (Index == 0) ? V.getOperand(0)
2103                      : getNode(ISD::UNDEF, VT.getVectorElementType());
2104  if (V.getOpcode() == ISD::BUILD_VECTOR)
2105    return V.getOperand(Index);
2106  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2107    return getShuffleScalarElt(V.getNode(), Index);
2108  return SDValue();
2109}
2110
2111
2112/// getNode - Gets or creates the specified node.
2113///
2114SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
2115  FoldingSetNodeID ID;
2116  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2117  void *IP = 0;
2118  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2119    return SDValue(E, 0);
2120  SDNode *N = NodeAllocator.Allocate<SDNode>();
2121  new (N) SDNode(Opcode, SDNode::getSDVTList(VT));
2122  CSEMap.InsertNode(N, IP);
2123
2124  AllNodes.push_back(N);
2125#ifndef NDEBUG
2126  VerifyNode(N);
2127#endif
2128  return SDValue(N, 0);
2129}
2130
2131SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
2132  // Constant fold unary operations with an integer constant operand.
2133  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2134    const APInt &Val = C->getAPIntValue();
2135    unsigned BitWidth = VT.getSizeInBits();
2136    switch (Opcode) {
2137    default: break;
2138    case ISD::SIGN_EXTEND:
2139      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2140    case ISD::ANY_EXTEND:
2141    case ISD::ZERO_EXTEND:
2142    case ISD::TRUNCATE:
2143      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2144    case ISD::UINT_TO_FP:
2145    case ISD::SINT_TO_FP: {
2146      const uint64_t zero[] = {0, 0};
2147      // No compile time operations on this type.
2148      if (VT==MVT::ppcf128)
2149        break;
2150      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2151      (void)apf.convertFromAPInt(Val,
2152                                 Opcode==ISD::SINT_TO_FP,
2153                                 APFloat::rmNearestTiesToEven);
2154      return getConstantFP(apf, VT);
2155    }
2156    case ISD::BIT_CONVERT:
2157      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2158        return getConstantFP(Val.bitsToFloat(), VT);
2159      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2160        return getConstantFP(Val.bitsToDouble(), VT);
2161      break;
2162    case ISD::BSWAP:
2163      return getConstant(Val.byteSwap(), VT);
2164    case ISD::CTPOP:
2165      return getConstant(Val.countPopulation(), VT);
2166    case ISD::CTLZ:
2167      return getConstant(Val.countLeadingZeros(), VT);
2168    case ISD::CTTZ:
2169      return getConstant(Val.countTrailingZeros(), VT);
2170    }
2171  }
2172
2173  // Constant fold unary operations with a floating point constant operand.
2174  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2175    APFloat V = C->getValueAPF();    // make copy
2176    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2177      switch (Opcode) {
2178      case ISD::FNEG:
2179        V.changeSign();
2180        return getConstantFP(V, VT);
2181      case ISD::FABS:
2182        V.clearSign();
2183        return getConstantFP(V, VT);
2184      case ISD::FP_ROUND:
2185      case ISD::FP_EXTEND: {
2186        bool ignored;
2187        // This can return overflow, underflow, or inexact; we don't care.
2188        // FIXME need to be more flexible about rounding mode.
2189        (void)V.convert(*MVTToAPFloatSemantics(VT),
2190                        APFloat::rmNearestTiesToEven, &ignored);
2191        return getConstantFP(V, VT);
2192      }
2193      case ISD::FP_TO_SINT:
2194      case ISD::FP_TO_UINT: {
2195        integerPart x;
2196        bool ignored;
2197        assert(integerPartWidth >= 64);
2198        // FIXME need to be more flexible about rounding mode.
2199        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2200                              Opcode==ISD::FP_TO_SINT,
2201                              APFloat::rmTowardZero, &ignored);
2202        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2203          break;
2204        return getConstant(x, VT);
2205      }
2206      case ISD::BIT_CONVERT:
2207        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2208          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2209        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2210          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2211        break;
2212      }
2213    }
2214  }
2215
2216  unsigned OpOpcode = Operand.getNode()->getOpcode();
2217  switch (Opcode) {
2218  case ISD::TokenFactor:
2219  case ISD::MERGE_VALUES:
2220  case ISD::CONCAT_VECTORS:
2221    return Operand;         // Factor, merge or concat of one node?  No need.
2222  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2223  case ISD::FP_EXTEND:
2224    assert(VT.isFloatingPoint() &&
2225           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2226    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2227    if (Operand.getOpcode() == ISD::UNDEF)
2228      return getNode(ISD::UNDEF, VT);
2229    break;
2230  case ISD::SIGN_EXTEND:
2231    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2232           "Invalid SIGN_EXTEND!");
2233    if (Operand.getValueType() == VT) return Operand;   // noop extension
2234    assert(Operand.getValueType().bitsLT(VT)
2235           && "Invalid sext node, dst < src!");
2236    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2237      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2238    break;
2239  case ISD::ZERO_EXTEND:
2240    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2241           "Invalid ZERO_EXTEND!");
2242    if (Operand.getValueType() == VT) return Operand;   // noop extension
2243    assert(Operand.getValueType().bitsLT(VT)
2244           && "Invalid zext node, dst < src!");
2245    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2246      return getNode(ISD::ZERO_EXTEND, VT, Operand.getNode()->getOperand(0));
2247    break;
2248  case ISD::ANY_EXTEND:
2249    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2250           "Invalid ANY_EXTEND!");
2251    if (Operand.getValueType() == VT) return Operand;   // noop extension
2252    assert(Operand.getValueType().bitsLT(VT)
2253           && "Invalid anyext node, dst < src!");
2254    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2255      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2256      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2257    break;
2258  case ISD::TRUNCATE:
2259    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2260           "Invalid TRUNCATE!");
2261    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2262    assert(Operand.getValueType().bitsGT(VT)
2263           && "Invalid truncate node, src < dst!");
2264    if (OpOpcode == ISD::TRUNCATE)
2265      return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2266    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2267             OpOpcode == ISD::ANY_EXTEND) {
2268      // If the source is smaller than the dest, we still need an extend.
2269      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2270        return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2271      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2272        return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2273      else
2274        return Operand.getNode()->getOperand(0);
2275    }
2276    break;
2277  case ISD::BIT_CONVERT:
2278    // Basic sanity checking.
2279    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2280           && "Cannot BIT_CONVERT between types of different sizes!");
2281    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2282    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2283      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2284    if (OpOpcode == ISD::UNDEF)
2285      return getNode(ISD::UNDEF, VT);
2286    break;
2287  case ISD::SCALAR_TO_VECTOR:
2288    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2289           VT.getVectorElementType() == Operand.getValueType() &&
2290           "Illegal SCALAR_TO_VECTOR node!");
2291    if (OpOpcode == ISD::UNDEF)
2292      return getNode(ISD::UNDEF, VT);
2293    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2294    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2295        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2296        Operand.getConstantOperandVal(1) == 0 &&
2297        Operand.getOperand(0).getValueType() == VT)
2298      return Operand.getOperand(0);
2299    break;
2300  case ISD::FNEG:
2301    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2302      return getNode(ISD::FSUB, VT, Operand.getNode()->getOperand(1),
2303                     Operand.getNode()->getOperand(0));
2304    if (OpOpcode == ISD::FNEG)  // --X -> X
2305      return Operand.getNode()->getOperand(0);
2306    break;
2307  case ISD::FABS:
2308    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2309      return getNode(ISD::FABS, VT, Operand.getNode()->getOperand(0));
2310    break;
2311  }
2312
2313  SDNode *N;
2314  SDVTList VTs = getVTList(VT);
2315  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2316    FoldingSetNodeID ID;
2317    SDValue Ops[1] = { Operand };
2318    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2319    void *IP = 0;
2320    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2321      return SDValue(E, 0);
2322    N = NodeAllocator.Allocate<UnarySDNode>();
2323    new (N) UnarySDNode(Opcode, VTs, Operand);
2324    CSEMap.InsertNode(N, IP);
2325  } else {
2326    N = NodeAllocator.Allocate<UnarySDNode>();
2327    new (N) UnarySDNode(Opcode, VTs, Operand);
2328  }
2329
2330  AllNodes.push_back(N);
2331#ifndef NDEBUG
2332  VerifyNode(N);
2333#endif
2334  return SDValue(N, 0);
2335}
2336
2337SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2338                                             MVT VT,
2339                                             ConstantSDNode *Cst1,
2340                                             ConstantSDNode *Cst2) {
2341  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2342
2343  switch (Opcode) {
2344  case ISD::ADD:  return getConstant(C1 + C2, VT);
2345  case ISD::SUB:  return getConstant(C1 - C2, VT);
2346  case ISD::MUL:  return getConstant(C1 * C2, VT);
2347  case ISD::UDIV:
2348    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2349    break;
2350  case ISD::UREM:
2351    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2352    break;
2353  case ISD::SDIV:
2354    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2355    break;
2356  case ISD::SREM:
2357    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2358    break;
2359  case ISD::AND:  return getConstant(C1 & C2, VT);
2360  case ISD::OR:   return getConstant(C1 | C2, VT);
2361  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2362  case ISD::SHL:  return getConstant(C1 << C2, VT);
2363  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2364  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2365  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2366  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2367  default: break;
2368  }
2369
2370  return SDValue();
2371}
2372
2373SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2374                              SDValue N1, SDValue N2) {
2375  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2376  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2377  switch (Opcode) {
2378  default: break;
2379  case ISD::TokenFactor:
2380    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2381           N2.getValueType() == MVT::Other && "Invalid token factor!");
2382    // Fold trivial token factors.
2383    if (N1.getOpcode() == ISD::EntryToken) return N2;
2384    if (N2.getOpcode() == ISD::EntryToken) return N1;
2385    if (N1 == N2) return N1;
2386    break;
2387  case ISD::CONCAT_VECTORS:
2388    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2389    // one big BUILD_VECTOR.
2390    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2391        N2.getOpcode() == ISD::BUILD_VECTOR) {
2392      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2393      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2394      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2395    }
2396    break;
2397  case ISD::AND:
2398    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2399           N1.getValueType() == VT && "Binary operator types must match!");
2400    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2401    // worth handling here.
2402    if (N2C && N2C->isNullValue())
2403      return N2;
2404    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2405      return N1;
2406    break;
2407  case ISD::OR:
2408  case ISD::XOR:
2409  case ISD::ADD:
2410  case ISD::SUB:
2411    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2412           N1.getValueType() == VT && "Binary operator types must match!");
2413    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2414    // it's worth handling here.
2415    if (N2C && N2C->isNullValue())
2416      return N1;
2417    break;
2418  case ISD::UDIV:
2419  case ISD::UREM:
2420  case ISD::MULHU:
2421  case ISD::MULHS:
2422    assert(VT.isInteger() && "This operator does not apply to FP types!");
2423    // fall through
2424  case ISD::MUL:
2425  case ISD::SDIV:
2426  case ISD::SREM:
2427  case ISD::FADD:
2428  case ISD::FSUB:
2429  case ISD::FMUL:
2430  case ISD::FDIV:
2431  case ISD::FREM:
2432    assert(N1.getValueType() == N2.getValueType() &&
2433           N1.getValueType() == VT && "Binary operator types must match!");
2434    break;
2435  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2436    assert(N1.getValueType() == VT &&
2437           N1.getValueType().isFloatingPoint() &&
2438           N2.getValueType().isFloatingPoint() &&
2439           "Invalid FCOPYSIGN!");
2440    break;
2441  case ISD::SHL:
2442  case ISD::SRA:
2443  case ISD::SRL:
2444  case ISD::ROTL:
2445  case ISD::ROTR:
2446    assert(VT == N1.getValueType() &&
2447           "Shift operators return type must be the same as their first arg");
2448    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2449           "Shifts only work on integers");
2450    assert((N2.getValueType() == TLI.getShiftAmountTy() ||
2451            (N2.getValueType().isVector() && N2.getValueType().isInteger())) &&
2452           "Wrong type for shift amount");
2453
2454    // Always fold shifts of i1 values so the code generator doesn't need to
2455    // handle them.  Since we know the size of the shift has to be less than the
2456    // size of the value, the shift/rotate count is guaranteed to be zero.
2457    if (VT == MVT::i1)
2458      return N1;
2459    break;
2460  case ISD::FP_ROUND_INREG: {
2461    MVT EVT = cast<VTSDNode>(N2)->getVT();
2462    assert(VT == N1.getValueType() && "Not an inreg round!");
2463    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2464           "Cannot FP_ROUND_INREG integer types");
2465    assert(EVT.bitsLE(VT) && "Not rounding down!");
2466    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2467    break;
2468  }
2469  case ISD::FP_ROUND:
2470    assert(VT.isFloatingPoint() &&
2471           N1.getValueType().isFloatingPoint() &&
2472           VT.bitsLE(N1.getValueType()) &&
2473           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2474    if (N1.getValueType() == VT) return N1;  // noop conversion.
2475    break;
2476  case ISD::AssertSext:
2477  case ISD::AssertZext: {
2478    MVT EVT = cast<VTSDNode>(N2)->getVT();
2479    assert(VT == N1.getValueType() && "Not an inreg extend!");
2480    assert(VT.isInteger() && EVT.isInteger() &&
2481           "Cannot *_EXTEND_INREG FP types");
2482    assert(EVT.bitsLE(VT) && "Not extending!");
2483    if (VT == EVT) return N1; // noop assertion.
2484    break;
2485  }
2486  case ISD::SIGN_EXTEND_INREG: {
2487    MVT EVT = cast<VTSDNode>(N2)->getVT();
2488    assert(VT == N1.getValueType() && "Not an inreg extend!");
2489    assert(VT.isInteger() && EVT.isInteger() &&
2490           "Cannot *_EXTEND_INREG FP types");
2491    assert(EVT.bitsLE(VT) && "Not extending!");
2492    if (EVT == VT) return N1;  // Not actually extending
2493
2494    if (N1C) {
2495      APInt Val = N1C->getAPIntValue();
2496      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2497      Val <<= Val.getBitWidth()-FromBits;
2498      Val = Val.ashr(Val.getBitWidth()-FromBits);
2499      return getConstant(Val, VT);
2500    }
2501    break;
2502  }
2503  case ISD::EXTRACT_VECTOR_ELT:
2504    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2505    if (N1.getOpcode() == ISD::UNDEF)
2506      return getNode(ISD::UNDEF, VT);
2507
2508    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2509    // expanding copies of large vectors from registers.
2510    if (N2C &&
2511        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2512        N1.getNumOperands() > 0) {
2513      unsigned Factor =
2514        N1.getOperand(0).getValueType().getVectorNumElements();
2515      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2516                     N1.getOperand(N2C->getZExtValue() / Factor),
2517                     getConstant(N2C->getZExtValue() % Factor,
2518                                 N2.getValueType()));
2519    }
2520
2521    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2522    // expanding large vector constants.
2523    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2524      return N1.getOperand(N2C->getZExtValue());
2525
2526    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2527    // operations are lowered to scalars.
2528    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2529      if (N1.getOperand(2) == N2)
2530        return N1.getOperand(1);
2531      else
2532        return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2533    }
2534    break;
2535  case ISD::EXTRACT_ELEMENT:
2536    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2537    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2538           (N1.getValueType().isInteger() == VT.isInteger()) &&
2539           "Wrong types for EXTRACT_ELEMENT!");
2540
2541    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2542    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2543    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2544    if (N1.getOpcode() == ISD::BUILD_PAIR)
2545      return N1.getOperand(N2C->getZExtValue());
2546
2547    // EXTRACT_ELEMENT of a constant int is also very common.
2548    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2549      unsigned ElementSize = VT.getSizeInBits();
2550      unsigned Shift = ElementSize * N2C->getZExtValue();
2551      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2552      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2553    }
2554    break;
2555  case ISD::EXTRACT_SUBVECTOR:
2556    if (N1.getValueType() == VT) // Trivial extraction.
2557      return N1;
2558    break;
2559  }
2560
2561  if (N1C) {
2562    if (N2C) {
2563      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2564      if (SV.getNode()) return SV;
2565    } else {      // Cannonicalize constant to RHS if commutative
2566      if (isCommutativeBinOp(Opcode)) {
2567        std::swap(N1C, N2C);
2568        std::swap(N1, N2);
2569      }
2570    }
2571  }
2572
2573  // Constant fold FP operations.
2574  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2575  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2576  if (N1CFP) {
2577    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2578      // Cannonicalize constant to RHS if commutative
2579      std::swap(N1CFP, N2CFP);
2580      std::swap(N1, N2);
2581    } else if (N2CFP && VT != MVT::ppcf128) {
2582      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2583      APFloat::opStatus s;
2584      switch (Opcode) {
2585      case ISD::FADD:
2586        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2587        if (s != APFloat::opInvalidOp)
2588          return getConstantFP(V1, VT);
2589        break;
2590      case ISD::FSUB:
2591        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2592        if (s!=APFloat::opInvalidOp)
2593          return getConstantFP(V1, VT);
2594        break;
2595      case ISD::FMUL:
2596        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2597        if (s!=APFloat::opInvalidOp)
2598          return getConstantFP(V1, VT);
2599        break;
2600      case ISD::FDIV:
2601        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2602        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2603          return getConstantFP(V1, VT);
2604        break;
2605      case ISD::FREM :
2606        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2607        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2608          return getConstantFP(V1, VT);
2609        break;
2610      case ISD::FCOPYSIGN:
2611        V1.copySign(V2);
2612        return getConstantFP(V1, VT);
2613      default: break;
2614      }
2615    }
2616  }
2617
2618  // Canonicalize an UNDEF to the RHS, even over a constant.
2619  if (N1.getOpcode() == ISD::UNDEF) {
2620    if (isCommutativeBinOp(Opcode)) {
2621      std::swap(N1, N2);
2622    } else {
2623      switch (Opcode) {
2624      case ISD::FP_ROUND_INREG:
2625      case ISD::SIGN_EXTEND_INREG:
2626      case ISD::SUB:
2627      case ISD::FSUB:
2628      case ISD::FDIV:
2629      case ISD::FREM:
2630      case ISD::SRA:
2631        return N1;     // fold op(undef, arg2) -> undef
2632      case ISD::UDIV:
2633      case ISD::SDIV:
2634      case ISD::UREM:
2635      case ISD::SREM:
2636      case ISD::SRL:
2637      case ISD::SHL:
2638        if (!VT.isVector())
2639          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2640        // For vectors, we can't easily build an all zero vector, just return
2641        // the LHS.
2642        return N2;
2643      }
2644    }
2645  }
2646
2647  // Fold a bunch of operators when the RHS is undef.
2648  if (N2.getOpcode() == ISD::UNDEF) {
2649    switch (Opcode) {
2650    case ISD::XOR:
2651      if (N1.getOpcode() == ISD::UNDEF)
2652        // Handle undef ^ undef -> 0 special case. This is a common
2653        // idiom (misuse).
2654        return getConstant(0, VT);
2655      // fallthrough
2656    case ISD::ADD:
2657    case ISD::ADDC:
2658    case ISD::ADDE:
2659    case ISD::SUB:
2660    case ISD::FADD:
2661    case ISD::FSUB:
2662    case ISD::FMUL:
2663    case ISD::FDIV:
2664    case ISD::FREM:
2665    case ISD::UDIV:
2666    case ISD::SDIV:
2667    case ISD::UREM:
2668    case ISD::SREM:
2669      return N2;       // fold op(arg1, undef) -> undef
2670    case ISD::MUL:
2671    case ISD::AND:
2672    case ISD::SRL:
2673    case ISD::SHL:
2674      if (!VT.isVector())
2675        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2676      // For vectors, we can't easily build an all zero vector, just return
2677      // the LHS.
2678      return N1;
2679    case ISD::OR:
2680      if (!VT.isVector())
2681        return getConstant(VT.getIntegerVTBitMask(), VT);
2682      // For vectors, we can't easily build an all one vector, just return
2683      // the LHS.
2684      return N1;
2685    case ISD::SRA:
2686      return N1;
2687    }
2688  }
2689
2690  // Memoize this node if possible.
2691  SDNode *N;
2692  SDVTList VTs = getVTList(VT);
2693  if (VT != MVT::Flag) {
2694    SDValue Ops[] = { N1, N2 };
2695    FoldingSetNodeID ID;
2696    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2697    void *IP = 0;
2698    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2699      return SDValue(E, 0);
2700    N = NodeAllocator.Allocate<BinarySDNode>();
2701    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2702    CSEMap.InsertNode(N, IP);
2703  } else {
2704    N = NodeAllocator.Allocate<BinarySDNode>();
2705    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2706  }
2707
2708  AllNodes.push_back(N);
2709#ifndef NDEBUG
2710  VerifyNode(N);
2711#endif
2712  return SDValue(N, 0);
2713}
2714
2715SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2716                              SDValue N1, SDValue N2, SDValue N3) {
2717  // Perform various simplifications.
2718  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2719  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2720  switch (Opcode) {
2721  case ISD::CONCAT_VECTORS:
2722    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2723    // one big BUILD_VECTOR.
2724    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2725        N2.getOpcode() == ISD::BUILD_VECTOR &&
2726        N3.getOpcode() == ISD::BUILD_VECTOR) {
2727      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2728      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2729      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2730      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2731    }
2732    break;
2733  case ISD::SETCC: {
2734    // Use FoldSetCC to simplify SETCC's.
2735    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2736    if (Simp.getNode()) return Simp;
2737    break;
2738  }
2739  case ISD::SELECT:
2740    if (N1C) {
2741     if (N1C->getZExtValue())
2742        return N2;             // select true, X, Y -> X
2743      else
2744        return N3;             // select false, X, Y -> Y
2745    }
2746
2747    if (N2 == N3) return N2;   // select C, X, X -> X
2748    break;
2749  case ISD::BRCOND:
2750    if (N2C) {
2751      if (N2C->getZExtValue()) // Unconditional branch
2752        return getNode(ISD::BR, MVT::Other, N1, N3);
2753      else
2754        return N1;         // Never-taken branch
2755    }
2756    break;
2757  case ISD::VECTOR_SHUFFLE:
2758    assert(N1.getValueType() == N2.getValueType() &&
2759           N1.getValueType().isVector() &&
2760           VT.isVector() && N3.getValueType().isVector() &&
2761           N3.getOpcode() == ISD::BUILD_VECTOR &&
2762           VT.getVectorNumElements() == N3.getNumOperands() &&
2763           "Illegal VECTOR_SHUFFLE node!");
2764    break;
2765  case ISD::BIT_CONVERT:
2766    // Fold bit_convert nodes from a type to themselves.
2767    if (N1.getValueType() == VT)
2768      return N1;
2769    break;
2770  }
2771
2772  // Memoize node if it doesn't produce a flag.
2773  SDNode *N;
2774  SDVTList VTs = getVTList(VT);
2775  if (VT != MVT::Flag) {
2776    SDValue Ops[] = { N1, N2, N3 };
2777    FoldingSetNodeID ID;
2778    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2779    void *IP = 0;
2780    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2781      return SDValue(E, 0);
2782    N = NodeAllocator.Allocate<TernarySDNode>();
2783    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2784    CSEMap.InsertNode(N, IP);
2785  } else {
2786    N = NodeAllocator.Allocate<TernarySDNode>();
2787    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2788  }
2789  AllNodes.push_back(N);
2790#ifndef NDEBUG
2791  VerifyNode(N);
2792#endif
2793  return SDValue(N, 0);
2794}
2795
2796SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2797                              SDValue N1, SDValue N2, SDValue N3,
2798                              SDValue N4) {
2799  SDValue Ops[] = { N1, N2, N3, N4 };
2800  return getNode(Opcode, VT, Ops, 4);
2801}
2802
2803SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2804                              SDValue N1, SDValue N2, SDValue N3,
2805                              SDValue N4, SDValue N5) {
2806  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2807  return getNode(Opcode, VT, Ops, 5);
2808}
2809
2810/// getMemsetValue - Vectorized representation of the memset value
2811/// operand.
2812static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) {
2813  unsigned NumBits = VT.isVector() ?
2814    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2815  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2816    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2817    unsigned Shift = 8;
2818    for (unsigned i = NumBits; i > 8; i >>= 1) {
2819      Val = (Val << Shift) | Val;
2820      Shift <<= 1;
2821    }
2822    if (VT.isInteger())
2823      return DAG.getConstant(Val, VT);
2824    return DAG.getConstantFP(APFloat(Val), VT);
2825  }
2826
2827  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2828  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2829  unsigned Shift = 8;
2830  for (unsigned i = NumBits; i > 8; i >>= 1) {
2831    Value = DAG.getNode(ISD::OR, VT,
2832                        DAG.getNode(ISD::SHL, VT, Value,
2833                                    DAG.getConstant(Shift,
2834                                                    TLI.getShiftAmountTy())),
2835                        Value);
2836    Shift <<= 1;
2837  }
2838
2839  return Value;
2840}
2841
2842/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2843/// used when a memcpy is turned into a memset when the source is a constant
2844/// string ptr.
2845static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2846                                    const TargetLowering &TLI,
2847                                    std::string &Str, unsigned Offset) {
2848  // Handle vector with all elements zero.
2849  if (Str.empty()) {
2850    if (VT.isInteger())
2851      return DAG.getConstant(0, VT);
2852    unsigned NumElts = VT.getVectorNumElements();
2853    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2854    return DAG.getNode(ISD::BIT_CONVERT, VT,
2855                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2856  }
2857
2858  assert(!VT.isVector() && "Can't handle vector type here!");
2859  unsigned NumBits = VT.getSizeInBits();
2860  unsigned MSB = NumBits / 8;
2861  uint64_t Val = 0;
2862  if (TLI.isLittleEndian())
2863    Offset = Offset + MSB - 1;
2864  for (unsigned i = 0; i != MSB; ++i) {
2865    Val = (Val << 8) | (unsigned char)Str[Offset];
2866    Offset += TLI.isLittleEndian() ? -1 : 1;
2867  }
2868  return DAG.getConstant(Val, VT);
2869}
2870
2871/// getMemBasePlusOffset - Returns base and offset node for the
2872///
2873static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2874                                      SelectionDAG &DAG) {
2875  MVT VT = Base.getValueType();
2876  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2877}
2878
2879/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2880///
2881static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2882  unsigned SrcDelta = 0;
2883  GlobalAddressSDNode *G = NULL;
2884  if (Src.getOpcode() == ISD::GlobalAddress)
2885    G = cast<GlobalAddressSDNode>(Src);
2886  else if (Src.getOpcode() == ISD::ADD &&
2887           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2888           Src.getOperand(1).getOpcode() == ISD::Constant) {
2889    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2890    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2891  }
2892  if (!G)
2893    return false;
2894
2895  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2896  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2897    return true;
2898
2899  return false;
2900}
2901
2902/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2903/// to replace the memset / memcpy is below the threshold. It also returns the
2904/// types of the sequence of memory ops to perform memset / memcpy.
2905static
2906bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2907                              SDValue Dst, SDValue Src,
2908                              unsigned Limit, uint64_t Size, unsigned &Align,
2909                              std::string &Str, bool &isSrcStr,
2910                              SelectionDAG &DAG,
2911                              const TargetLowering &TLI) {
2912  isSrcStr = isMemSrcFromString(Src, Str);
2913  bool isSrcConst = isa<ConstantSDNode>(Src);
2914  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2915  MVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2916  if (VT != MVT::iAny) {
2917    unsigned NewAlign = (unsigned)
2918      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2919    // If source is a string constant, this will require an unaligned load.
2920    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2921      if (Dst.getOpcode() != ISD::FrameIndex) {
2922        // Can't change destination alignment. It requires a unaligned store.
2923        if (AllowUnalign)
2924          VT = MVT::iAny;
2925      } else {
2926        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2927        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2928        if (MFI->isFixedObjectIndex(FI)) {
2929          // Can't change destination alignment. It requires a unaligned store.
2930          if (AllowUnalign)
2931            VT = MVT::iAny;
2932        } else {
2933          // Give the stack frame object a larger alignment if needed.
2934          if (MFI->getObjectAlignment(FI) < NewAlign)
2935            MFI->setObjectAlignment(FI, NewAlign);
2936          Align = NewAlign;
2937        }
2938      }
2939    }
2940  }
2941
2942  if (VT == MVT::iAny) {
2943    if (AllowUnalign) {
2944      VT = MVT::i64;
2945    } else {
2946      switch (Align & 7) {
2947      case 0:  VT = MVT::i64; break;
2948      case 4:  VT = MVT::i32; break;
2949      case 2:  VT = MVT::i16; break;
2950      default: VT = MVT::i8;  break;
2951      }
2952    }
2953
2954    MVT LVT = MVT::i64;
2955    while (!TLI.isTypeLegal(LVT))
2956      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2957    assert(LVT.isInteger());
2958
2959    if (VT.bitsGT(LVT))
2960      VT = LVT;
2961  }
2962
2963  unsigned NumMemOps = 0;
2964  while (Size != 0) {
2965    unsigned VTSize = VT.getSizeInBits() / 8;
2966    while (VTSize > Size) {
2967      // For now, only use non-vector load / store's for the left-over pieces.
2968      if (VT.isVector()) {
2969        VT = MVT::i64;
2970        while (!TLI.isTypeLegal(VT))
2971          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2972        VTSize = VT.getSizeInBits() / 8;
2973      } else {
2974        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2975        VTSize >>= 1;
2976      }
2977    }
2978
2979    if (++NumMemOps > Limit)
2980      return false;
2981    MemOps.push_back(VT);
2982    Size -= VTSize;
2983  }
2984
2985  return true;
2986}
2987
2988static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG,
2989                                         SDValue Chain, SDValue Dst,
2990                                         SDValue Src, uint64_t Size,
2991                                         unsigned Align, bool AlwaysInline,
2992                                         const Value *DstSV, uint64_t DstSVOff,
2993                                         const Value *SrcSV, uint64_t SrcSVOff){
2994  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2995
2996  // Expand memcpy to a series of load and store ops if the size operand falls
2997  // below a certain threshold.
2998  std::vector<MVT> MemOps;
2999  uint64_t Limit = -1ULL;
3000  if (!AlwaysInline)
3001    Limit = TLI.getMaxStoresPerMemcpy();
3002  unsigned DstAlign = Align;  // Destination alignment can change.
3003  std::string Str;
3004  bool CopyFromStr;
3005  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3006                                Str, CopyFromStr, DAG, TLI))
3007    return SDValue();
3008
3009
3010  bool isZeroStr = CopyFromStr && Str.empty();
3011  SmallVector<SDValue, 8> OutChains;
3012  unsigned NumMemOps = MemOps.size();
3013  uint64_t SrcOff = 0, DstOff = 0;
3014  for (unsigned i = 0; i < NumMemOps; i++) {
3015    MVT VT = MemOps[i];
3016    unsigned VTSize = VT.getSizeInBits() / 8;
3017    SDValue Value, Store;
3018
3019    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3020      // It's unlikely a store of a vector immediate can be done in a single
3021      // instruction. It would require a load from a constantpool first.
3022      // We also handle store a vector with all zero's.
3023      // FIXME: Handle other cases where store of vector immediate is done in
3024      // a single instruction.
3025      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
3026      Store = DAG.getStore(Chain, Value,
3027                           getMemBasePlusOffset(Dst, DstOff, DAG),
3028                           DstSV, DstSVOff + DstOff, false, DstAlign);
3029    } else {
3030      Value = DAG.getLoad(VT, Chain,
3031                          getMemBasePlusOffset(Src, SrcOff, DAG),
3032                          SrcSV, SrcSVOff + SrcOff, false, Align);
3033      Store = DAG.getStore(Chain, Value,
3034                           getMemBasePlusOffset(Dst, DstOff, DAG),
3035                           DstSV, DstSVOff + DstOff, false, DstAlign);
3036    }
3037    OutChains.push_back(Store);
3038    SrcOff += VTSize;
3039    DstOff += VTSize;
3040  }
3041
3042  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3043                     &OutChains[0], OutChains.size());
3044}
3045
3046static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG,
3047                                          SDValue Chain, SDValue Dst,
3048                                          SDValue Src, uint64_t Size,
3049                                          unsigned Align, bool AlwaysInline,
3050                                          const Value *DstSV, uint64_t DstSVOff,
3051                                          const Value *SrcSV, uint64_t SrcSVOff){
3052  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3053
3054  // Expand memmove to a series of load and store ops if the size operand falls
3055  // below a certain threshold.
3056  std::vector<MVT> MemOps;
3057  uint64_t Limit = -1ULL;
3058  if (!AlwaysInline)
3059    Limit = TLI.getMaxStoresPerMemmove();
3060  unsigned DstAlign = Align;  // Destination alignment can change.
3061  std::string Str;
3062  bool CopyFromStr;
3063  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3064                                Str, CopyFromStr, DAG, TLI))
3065    return SDValue();
3066
3067  uint64_t SrcOff = 0, DstOff = 0;
3068
3069  SmallVector<SDValue, 8> LoadValues;
3070  SmallVector<SDValue, 8> LoadChains;
3071  SmallVector<SDValue, 8> OutChains;
3072  unsigned NumMemOps = MemOps.size();
3073  for (unsigned i = 0; i < NumMemOps; i++) {
3074    MVT VT = MemOps[i];
3075    unsigned VTSize = VT.getSizeInBits() / 8;
3076    SDValue Value, Store;
3077
3078    Value = DAG.getLoad(VT, Chain,
3079                        getMemBasePlusOffset(Src, SrcOff, DAG),
3080                        SrcSV, SrcSVOff + SrcOff, false, Align);
3081    LoadValues.push_back(Value);
3082    LoadChains.push_back(Value.getValue(1));
3083    SrcOff += VTSize;
3084  }
3085  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
3086                      &LoadChains[0], LoadChains.size());
3087  OutChains.clear();
3088  for (unsigned i = 0; i < NumMemOps; i++) {
3089    MVT VT = MemOps[i];
3090    unsigned VTSize = VT.getSizeInBits() / 8;
3091    SDValue Value, Store;
3092
3093    Store = DAG.getStore(Chain, LoadValues[i],
3094                         getMemBasePlusOffset(Dst, DstOff, DAG),
3095                         DstSV, DstSVOff + DstOff, false, DstAlign);
3096    OutChains.push_back(Store);
3097    DstOff += VTSize;
3098  }
3099
3100  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3101                     &OutChains[0], OutChains.size());
3102}
3103
3104static SDValue getMemsetStores(SelectionDAG &DAG,
3105                                 SDValue Chain, SDValue Dst,
3106                                 SDValue Src, uint64_t Size,
3107                                 unsigned Align,
3108                                 const Value *DstSV, uint64_t DstSVOff) {
3109  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3110
3111  // Expand memset to a series of load/store ops if the size operand
3112  // falls below a certain threshold.
3113  std::vector<MVT> MemOps;
3114  std::string Str;
3115  bool CopyFromStr;
3116  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3117                                Size, Align, Str, CopyFromStr, DAG, TLI))
3118    return SDValue();
3119
3120  SmallVector<SDValue, 8> OutChains;
3121  uint64_t DstOff = 0;
3122
3123  unsigned NumMemOps = MemOps.size();
3124  for (unsigned i = 0; i < NumMemOps; i++) {
3125    MVT VT = MemOps[i];
3126    unsigned VTSize = VT.getSizeInBits() / 8;
3127    SDValue Value = getMemsetValue(Src, VT, DAG);
3128    SDValue Store = DAG.getStore(Chain, Value,
3129                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3130                                 DstSV, DstSVOff + DstOff);
3131    OutChains.push_back(Store);
3132    DstOff += VTSize;
3133  }
3134
3135  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3136                     &OutChains[0], OutChains.size());
3137}
3138
3139SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst,
3140                                SDValue Src, SDValue Size,
3141                                unsigned Align, bool AlwaysInline,
3142                                const Value *DstSV, uint64_t DstSVOff,
3143                                const Value *SrcSV, uint64_t SrcSVOff) {
3144
3145  // Check to see if we should lower the memcpy to loads and stores first.
3146  // For cases within the target-specified limits, this is the best choice.
3147  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3148  if (ConstantSize) {
3149    // Memcpy with size zero? Just return the original chain.
3150    if (ConstantSize->isNullValue())
3151      return Chain;
3152
3153    SDValue Result =
3154      getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3155                              ConstantSize->getZExtValue(),
3156                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3157    if (Result.getNode())
3158      return Result;
3159  }
3160
3161  // Then check to see if we should lower the memcpy with target-specific
3162  // code. If the target chooses to do this, this is the next best.
3163  SDValue Result =
3164    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
3165                                AlwaysInline,
3166                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3167  if (Result.getNode())
3168    return Result;
3169
3170  // If we really need inline code and the target declined to provide it,
3171  // use a (potentially long) sequence of loads and stores.
3172  if (AlwaysInline) {
3173    assert(ConstantSize && "AlwaysInline requires a constant size!");
3174    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3175                                   ConstantSize->getZExtValue(), Align, true,
3176                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3177  }
3178
3179  // Emit a library call.
3180  TargetLowering::ArgListTy Args;
3181  TargetLowering::ArgListEntry Entry;
3182  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3183  Entry.Node = Dst; Args.push_back(Entry);
3184  Entry.Node = Src; Args.push_back(Entry);
3185  Entry.Node = Size; Args.push_back(Entry);
3186  std::pair<SDValue,SDValue> CallResult =
3187    TLI.LowerCallTo(Chain, Type::VoidTy,
3188                    false, false, false, false, CallingConv::C, false,
3189                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3190                    Args, *this);
3191  return CallResult.second;
3192}
3193
3194SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst,
3195                                 SDValue Src, SDValue Size,
3196                                 unsigned Align,
3197                                 const Value *DstSV, uint64_t DstSVOff,
3198                                 const Value *SrcSV, uint64_t SrcSVOff) {
3199
3200  // Check to see if we should lower the memmove to loads and stores first.
3201  // For cases within the target-specified limits, this is the best choice.
3202  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3203  if (ConstantSize) {
3204    // Memmove with size zero? Just return the original chain.
3205    if (ConstantSize->isNullValue())
3206      return Chain;
3207
3208    SDValue Result =
3209      getMemmoveLoadsAndStores(*this, Chain, Dst, Src,
3210                               ConstantSize->getZExtValue(),
3211                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3212    if (Result.getNode())
3213      return Result;
3214  }
3215
3216  // Then check to see if we should lower the memmove with target-specific
3217  // code. If the target chooses to do this, this is the next best.
3218  SDValue Result =
3219    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
3220                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3221  if (Result.getNode())
3222    return Result;
3223
3224  // Emit a library call.
3225  TargetLowering::ArgListTy Args;
3226  TargetLowering::ArgListEntry Entry;
3227  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3228  Entry.Node = Dst; Args.push_back(Entry);
3229  Entry.Node = Src; Args.push_back(Entry);
3230  Entry.Node = Size; Args.push_back(Entry);
3231  std::pair<SDValue,SDValue> CallResult =
3232    TLI.LowerCallTo(Chain, Type::VoidTy,
3233                    false, false, false, false, CallingConv::C, false,
3234                    getExternalSymbol("memmove", TLI.getPointerTy()),
3235                    Args, *this);
3236  return CallResult.second;
3237}
3238
3239SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst,
3240                                SDValue Src, SDValue Size,
3241                                unsigned Align,
3242                                const Value *DstSV, uint64_t DstSVOff) {
3243
3244  // Check to see if we should lower the memset to stores first.
3245  // For cases within the target-specified limits, this is the best choice.
3246  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3247  if (ConstantSize) {
3248    // Memset with size zero? Just return the original chain.
3249    if (ConstantSize->isNullValue())
3250      return Chain;
3251
3252    SDValue Result =
3253      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(),
3254                      Align, DstSV, DstSVOff);
3255    if (Result.getNode())
3256      return Result;
3257  }
3258
3259  // Then check to see if we should lower the memset with target-specific
3260  // code. If the target chooses to do this, this is the next best.
3261  SDValue Result =
3262    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3263                                DstSV, DstSVOff);
3264  if (Result.getNode())
3265    return Result;
3266
3267  // Emit a library call.
3268  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3269  TargetLowering::ArgListTy Args;
3270  TargetLowering::ArgListEntry Entry;
3271  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3272  Args.push_back(Entry);
3273  // Extend or truncate the argument to be an i32 value for the call.
3274  if (Src.getValueType().bitsGT(MVT::i32))
3275    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3276  else
3277    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3278  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3279  Args.push_back(Entry);
3280  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3281  Args.push_back(Entry);
3282  std::pair<SDValue,SDValue> CallResult =
3283    TLI.LowerCallTo(Chain, Type::VoidTy,
3284                    false, false, false, false, CallingConv::C, false,
3285                    getExternalSymbol("memset", TLI.getPointerTy()),
3286                    Args, *this);
3287  return CallResult.second;
3288}
3289
3290SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3291                                SDValue Ptr, SDValue Cmp,
3292                                SDValue Swp, const Value* PtrVal,
3293                                unsigned Alignment) {
3294  assert((Opcode == ISD::ATOMIC_CMP_SWAP_8  ||
3295          Opcode == ISD::ATOMIC_CMP_SWAP_16 ||
3296          Opcode == ISD::ATOMIC_CMP_SWAP_32 ||
3297          Opcode == ISD::ATOMIC_CMP_SWAP_64) && "Invalid Atomic Op");
3298  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3299
3300  MVT VT = Cmp.getValueType();
3301
3302  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3303    Alignment = getMVTAlignment(VT);
3304
3305  SDVTList VTs = getVTList(VT, MVT::Other);
3306  FoldingSetNodeID ID;
3307  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3308  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3309  void* IP = 0;
3310  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3311    return SDValue(E, 0);
3312  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3313  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3314  CSEMap.InsertNode(N, IP);
3315  AllNodes.push_back(N);
3316  return SDValue(N, 0);
3317}
3318
3319SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3320                                SDValue Ptr, SDValue Val,
3321                                const Value* PtrVal,
3322                                unsigned Alignment) {
3323  assert((Opcode == ISD::ATOMIC_LOAD_ADD_8 ||
3324          Opcode == ISD::ATOMIC_LOAD_SUB_8 ||
3325          Opcode == ISD::ATOMIC_LOAD_AND_8 ||
3326          Opcode == ISD::ATOMIC_LOAD_OR_8 ||
3327          Opcode == ISD::ATOMIC_LOAD_XOR_8 ||
3328          Opcode == ISD::ATOMIC_LOAD_NAND_8 ||
3329          Opcode == ISD::ATOMIC_LOAD_MIN_8 ||
3330          Opcode == ISD::ATOMIC_LOAD_MAX_8 ||
3331          Opcode == ISD::ATOMIC_LOAD_UMIN_8 ||
3332          Opcode == ISD::ATOMIC_LOAD_UMAX_8 ||
3333          Opcode == ISD::ATOMIC_SWAP_8 ||
3334          Opcode == ISD::ATOMIC_LOAD_ADD_16 ||
3335          Opcode == ISD::ATOMIC_LOAD_SUB_16 ||
3336          Opcode == ISD::ATOMIC_LOAD_AND_16 ||
3337          Opcode == ISD::ATOMIC_LOAD_OR_16 ||
3338          Opcode == ISD::ATOMIC_LOAD_XOR_16 ||
3339          Opcode == ISD::ATOMIC_LOAD_NAND_16 ||
3340          Opcode == ISD::ATOMIC_LOAD_MIN_16 ||
3341          Opcode == ISD::ATOMIC_LOAD_MAX_16 ||
3342          Opcode == ISD::ATOMIC_LOAD_UMIN_16 ||
3343          Opcode == ISD::ATOMIC_LOAD_UMAX_16 ||
3344          Opcode == ISD::ATOMIC_SWAP_16 ||
3345          Opcode == ISD::ATOMIC_LOAD_ADD_32 ||
3346          Opcode == ISD::ATOMIC_LOAD_SUB_32 ||
3347          Opcode == ISD::ATOMIC_LOAD_AND_32 ||
3348          Opcode == ISD::ATOMIC_LOAD_OR_32 ||
3349          Opcode == ISD::ATOMIC_LOAD_XOR_32 ||
3350          Opcode == ISD::ATOMIC_LOAD_NAND_32 ||
3351          Opcode == ISD::ATOMIC_LOAD_MIN_32 ||
3352          Opcode == ISD::ATOMIC_LOAD_MAX_32 ||
3353          Opcode == ISD::ATOMIC_LOAD_UMIN_32 ||
3354          Opcode == ISD::ATOMIC_LOAD_UMAX_32 ||
3355          Opcode == ISD::ATOMIC_SWAP_32 ||
3356          Opcode == ISD::ATOMIC_LOAD_ADD_64 ||
3357          Opcode == ISD::ATOMIC_LOAD_SUB_64 ||
3358          Opcode == ISD::ATOMIC_LOAD_AND_64 ||
3359          Opcode == ISD::ATOMIC_LOAD_OR_64 ||
3360          Opcode == ISD::ATOMIC_LOAD_XOR_64 ||
3361          Opcode == ISD::ATOMIC_LOAD_NAND_64 ||
3362          Opcode == ISD::ATOMIC_LOAD_MIN_64 ||
3363          Opcode == ISD::ATOMIC_LOAD_MAX_64 ||
3364          Opcode == ISD::ATOMIC_LOAD_UMIN_64 ||
3365          Opcode == ISD::ATOMIC_LOAD_UMAX_64 ||
3366          Opcode == ISD::ATOMIC_SWAP_64)        && "Invalid Atomic Op");
3367
3368  MVT VT = Val.getValueType();
3369
3370  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3371    Alignment = getMVTAlignment(VT);
3372
3373  SDVTList VTs = getVTList(VT, MVT::Other);
3374  FoldingSetNodeID ID;
3375  SDValue Ops[] = {Chain, Ptr, Val};
3376  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3377  void* IP = 0;
3378  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3379    return SDValue(E, 0);
3380  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3381  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, PtrVal, Alignment);
3382  CSEMap.InsertNode(N, IP);
3383  AllNodes.push_back(N);
3384  return SDValue(N, 0);
3385}
3386
3387/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3388/// Allowed to return something different (and simpler) if Simplify is true.
3389SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps) {
3390  if (NumOps == 1)
3391    return Ops[0];
3392
3393  SmallVector<MVT, 4> VTs;
3394  VTs.reserve(NumOps);
3395  for (unsigned i = 0; i < NumOps; ++i)
3396    VTs.push_back(Ops[i].getValueType());
3397  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3398}
3399
3400SDValue
3401SelectionDAG::getMemIntrinsicNode(unsigned Opcode,
3402                                  const MVT *VTs, unsigned NumVTs,
3403                                  const SDValue *Ops, unsigned NumOps,
3404                                  MVT MemVT, const Value *srcValue, int SVOff,
3405                                  unsigned Align, bool Vol,
3406                                  bool ReadMem, bool WriteMem) {
3407  return getMemIntrinsicNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps,
3408                             MemVT, srcValue, SVOff, Align, Vol,
3409                             ReadMem, WriteMem);
3410}
3411
3412SDValue
3413SelectionDAG::getMemIntrinsicNode(unsigned Opcode, SDVTList VTList,
3414                                  const SDValue *Ops, unsigned NumOps,
3415                                  MVT MemVT, const Value *srcValue, int SVOff,
3416                                  unsigned Align, bool Vol,
3417                                  bool ReadMem, bool WriteMem) {
3418  // Memoize the node unless it returns a flag.
3419  MemIntrinsicSDNode *N;
3420  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3421    FoldingSetNodeID ID;
3422    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3423    void *IP = 0;
3424    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3425      return SDValue(E, 0);
3426
3427    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3428    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3429                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3430    CSEMap.InsertNode(N, IP);
3431  } else {
3432    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3433    new (N) MemIntrinsicSDNode(Opcode, VTList, Ops, NumOps, MemVT,
3434                               srcValue, SVOff, Align, Vol, ReadMem, WriteMem);
3435  }
3436  AllNodes.push_back(N);
3437  return SDValue(N, 0);
3438}
3439
3440SDValue
3441SelectionDAG::getCall(unsigned CallingConv, bool IsVarArgs, bool IsTailCall,
3442                      bool IsInreg, SDVTList VTs,
3443                      const SDValue *Operands, unsigned NumOperands) {
3444  // Do not include isTailCall in the folding set profile.
3445  FoldingSetNodeID ID;
3446  AddNodeIDNode(ID, ISD::CALL, VTs, Operands, NumOperands);
3447  ID.AddInteger(CallingConv);
3448  ID.AddInteger(IsVarArgs);
3449  void *IP = 0;
3450  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3451    // Instead of including isTailCall in the folding set, we just
3452    // set the flag of the existing node.
3453    if (!IsTailCall)
3454      cast<CallSDNode>(E)->setNotTailCall();
3455    return SDValue(E, 0);
3456  }
3457  SDNode *N = NodeAllocator.Allocate<CallSDNode>();
3458  new (N) CallSDNode(CallingConv, IsVarArgs, IsTailCall, IsInreg,
3459                     VTs, Operands, NumOperands);
3460  CSEMap.InsertNode(N, IP);
3461  AllNodes.push_back(N);
3462  return SDValue(N, 0);
3463}
3464
3465SDValue
3466SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3467                      MVT VT, SDValue Chain,
3468                      SDValue Ptr, SDValue Offset,
3469                      const Value *SV, int SVOffset, MVT EVT,
3470                      bool isVolatile, unsigned Alignment) {
3471  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3472    Alignment = getMVTAlignment(VT);
3473
3474  if (VT == EVT) {
3475    ExtType = ISD::NON_EXTLOAD;
3476  } else if (ExtType == ISD::NON_EXTLOAD) {
3477    assert(VT == EVT && "Non-extending load from different memory type!");
3478  } else {
3479    // Extending load.
3480    if (VT.isVector())
3481      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3482             "Invalid vector extload!");
3483    else
3484      assert(EVT.bitsLT(VT) &&
3485             "Should only be an extending load, not truncating!");
3486    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3487           "Cannot sign/zero extend a FP/Vector load!");
3488    assert(VT.isInteger() == EVT.isInteger() &&
3489           "Cannot convert from FP to Int or Int -> FP!");
3490  }
3491
3492  bool Indexed = AM != ISD::UNINDEXED;
3493  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3494         "Unindexed load with an offset!");
3495
3496  SDVTList VTs = Indexed ?
3497    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3498  SDValue Ops[] = { Chain, Ptr, Offset };
3499  FoldingSetNodeID ID;
3500  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3501  ID.AddInteger(AM);
3502  ID.AddInteger(ExtType);
3503  ID.AddInteger(EVT.getRawBits());
3504  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3505  void *IP = 0;
3506  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3507    return SDValue(E, 0);
3508  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3509  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3510                     Alignment, isVolatile);
3511  CSEMap.InsertNode(N, IP);
3512  AllNodes.push_back(N);
3513  return SDValue(N, 0);
3514}
3515
3516SDValue SelectionDAG::getLoad(MVT VT,
3517                              SDValue Chain, SDValue Ptr,
3518                              const Value *SV, int SVOffset,
3519                              bool isVolatile, unsigned Alignment) {
3520  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3521  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3522                 SV, SVOffset, VT, isVolatile, Alignment);
3523}
3524
3525SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3526                                 SDValue Chain, SDValue Ptr,
3527                                 const Value *SV,
3528                                 int SVOffset, MVT EVT,
3529                                 bool isVolatile, unsigned Alignment) {
3530  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3531  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3532                 SV, SVOffset, EVT, isVolatile, Alignment);
3533}
3534
3535SDValue
3536SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
3537                             SDValue Offset, ISD::MemIndexedMode AM) {
3538  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3539  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3540         "Load is already a indexed load!");
3541  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3542                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3543                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3544                 LD->isVolatile(), LD->getAlignment());
3545}
3546
3547SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
3548                               SDValue Ptr, const Value *SV, int SVOffset,
3549                               bool isVolatile, unsigned Alignment) {
3550  MVT VT = Val.getValueType();
3551
3552  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3553    Alignment = getMVTAlignment(VT);
3554
3555  SDVTList VTs = getVTList(MVT::Other);
3556  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3557  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3558  FoldingSetNodeID ID;
3559  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3560  ID.AddInteger(ISD::UNINDEXED);
3561  ID.AddInteger(false);
3562  ID.AddInteger(VT.getRawBits());
3563  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3564  void *IP = 0;
3565  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3566    return SDValue(E, 0);
3567  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3568  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3569                      VT, SV, SVOffset, Alignment, isVolatile);
3570  CSEMap.InsertNode(N, IP);
3571  AllNodes.push_back(N);
3572  return SDValue(N, 0);
3573}
3574
3575SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
3576                                    SDValue Ptr, const Value *SV,
3577                                    int SVOffset, MVT SVT,
3578                                    bool isVolatile, unsigned Alignment) {
3579  MVT VT = Val.getValueType();
3580
3581  if (VT == SVT)
3582    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3583
3584  assert(VT.bitsGT(SVT) && "Not a truncation?");
3585  assert(VT.isInteger() == SVT.isInteger() &&
3586         "Can't do FP-INT conversion!");
3587
3588  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3589    Alignment = getMVTAlignment(VT);
3590
3591  SDVTList VTs = getVTList(MVT::Other);
3592  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3593  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3594  FoldingSetNodeID ID;
3595  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3596  ID.AddInteger(ISD::UNINDEXED);
3597  ID.AddInteger(1);
3598  ID.AddInteger(SVT.getRawBits());
3599  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3600  void *IP = 0;
3601  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3602    return SDValue(E, 0);
3603  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3604  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3605                      SVT, SV, SVOffset, Alignment, isVolatile);
3606  CSEMap.InsertNode(N, IP);
3607  AllNodes.push_back(N);
3608  return SDValue(N, 0);
3609}
3610
3611SDValue
3612SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
3613                              SDValue Offset, ISD::MemIndexedMode AM) {
3614  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3615  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3616         "Store is already a indexed store!");
3617  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3618  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3619  FoldingSetNodeID ID;
3620  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3621  ID.AddInteger(AM);
3622  ID.AddInteger(ST->isTruncatingStore());
3623  ID.AddInteger(ST->getMemoryVT().getRawBits());
3624  ID.AddInteger(ST->getRawFlags());
3625  void *IP = 0;
3626  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3627    return SDValue(E, 0);
3628  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3629  new (N) StoreSDNode(Ops, VTs, AM,
3630                      ST->isTruncatingStore(), ST->getMemoryVT(),
3631                      ST->getSrcValue(), ST->getSrcValueOffset(),
3632                      ST->getAlignment(), ST->isVolatile());
3633  CSEMap.InsertNode(N, IP);
3634  AllNodes.push_back(N);
3635  return SDValue(N, 0);
3636}
3637
3638SDValue SelectionDAG::getVAArg(MVT VT,
3639                               SDValue Chain, SDValue Ptr,
3640                               SDValue SV) {
3641  SDValue Ops[] = { Chain, Ptr, SV };
3642  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3643}
3644
3645SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3646                              const SDUse *Ops, unsigned NumOps) {
3647  switch (NumOps) {
3648  case 0: return getNode(Opcode, VT);
3649  case 1: return getNode(Opcode, VT, Ops[0]);
3650  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3651  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3652  default: break;
3653  }
3654
3655  // Copy from an SDUse array into an SDValue array for use with
3656  // the regular getNode logic.
3657  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3658  return getNode(Opcode, VT, &NewOps[0], NumOps);
3659}
3660
3661SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3662                              const SDValue *Ops, unsigned NumOps) {
3663  switch (NumOps) {
3664  case 0: return getNode(Opcode, VT);
3665  case 1: return getNode(Opcode, VT, Ops[0]);
3666  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3667  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3668  default: break;
3669  }
3670
3671  switch (Opcode) {
3672  default: break;
3673  case ISD::SELECT_CC: {
3674    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3675    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3676           "LHS and RHS of condition must have same type!");
3677    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3678           "True and False arms of SelectCC must have same type!");
3679    assert(Ops[2].getValueType() == VT &&
3680           "select_cc node must be of same type as true and false value!");
3681    break;
3682  }
3683  case ISD::BR_CC: {
3684    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3685    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3686           "LHS/RHS of comparison should match types!");
3687    break;
3688  }
3689  }
3690
3691  // Memoize nodes.
3692  SDNode *N;
3693  SDVTList VTs = getVTList(VT);
3694  if (VT != MVT::Flag) {
3695    FoldingSetNodeID ID;
3696    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3697    void *IP = 0;
3698    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3699      return SDValue(E, 0);
3700    N = NodeAllocator.Allocate<SDNode>();
3701    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3702    CSEMap.InsertNode(N, IP);
3703  } else {
3704    N = NodeAllocator.Allocate<SDNode>();
3705    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3706  }
3707  AllNodes.push_back(N);
3708#ifndef NDEBUG
3709  VerifyNode(N);
3710#endif
3711  return SDValue(N, 0);
3712}
3713
3714SDValue SelectionDAG::getNode(unsigned Opcode,
3715                              const std::vector<MVT> &ResultTys,
3716                              const SDValue *Ops, unsigned NumOps) {
3717  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3718                 Ops, NumOps);
3719}
3720
3721SDValue SelectionDAG::getNode(unsigned Opcode,
3722                              const MVT *VTs, unsigned NumVTs,
3723                              const SDValue *Ops, unsigned NumOps) {
3724  if (NumVTs == 1)
3725    return getNode(Opcode, VTs[0], Ops, NumOps);
3726  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3727}
3728
3729SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3730                              const SDValue *Ops, unsigned NumOps) {
3731  if (VTList.NumVTs == 1)
3732    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3733
3734  switch (Opcode) {
3735  // FIXME: figure out how to safely handle things like
3736  // int foo(int x) { return 1 << (x & 255); }
3737  // int bar() { return foo(256); }
3738#if 0
3739  case ISD::SRA_PARTS:
3740  case ISD::SRL_PARTS:
3741  case ISD::SHL_PARTS:
3742    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3743        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3744      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3745    else if (N3.getOpcode() == ISD::AND)
3746      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3747        // If the and is only masking out bits that cannot effect the shift,
3748        // eliminate the and.
3749        unsigned NumBits = VT.getSizeInBits()*2;
3750        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3751          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3752      }
3753    break;
3754#endif
3755  }
3756
3757  // Memoize the node unless it returns a flag.
3758  SDNode *N;
3759  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3760    FoldingSetNodeID ID;
3761    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3762    void *IP = 0;
3763    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3764      return SDValue(E, 0);
3765    if (NumOps == 1) {
3766      N = NodeAllocator.Allocate<UnarySDNode>();
3767      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3768    } else if (NumOps == 2) {
3769      N = NodeAllocator.Allocate<BinarySDNode>();
3770      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3771    } else if (NumOps == 3) {
3772      N = NodeAllocator.Allocate<TernarySDNode>();
3773      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3774    } else {
3775      N = NodeAllocator.Allocate<SDNode>();
3776      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3777    }
3778    CSEMap.InsertNode(N, IP);
3779  } else {
3780    if (NumOps == 1) {
3781      N = NodeAllocator.Allocate<UnarySDNode>();
3782      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3783    } else if (NumOps == 2) {
3784      N = NodeAllocator.Allocate<BinarySDNode>();
3785      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3786    } else if (NumOps == 3) {
3787      N = NodeAllocator.Allocate<TernarySDNode>();
3788      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3789    } else {
3790      N = NodeAllocator.Allocate<SDNode>();
3791      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3792    }
3793  }
3794  AllNodes.push_back(N);
3795#ifndef NDEBUG
3796  VerifyNode(N);
3797#endif
3798  return SDValue(N, 0);
3799}
3800
3801SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3802  return getNode(Opcode, VTList, 0, 0);
3803}
3804
3805SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3806                                SDValue N1) {
3807  SDValue Ops[] = { N1 };
3808  return getNode(Opcode, VTList, Ops, 1);
3809}
3810
3811SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3812                              SDValue N1, SDValue N2) {
3813  SDValue Ops[] = { N1, N2 };
3814  return getNode(Opcode, VTList, Ops, 2);
3815}
3816
3817SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3818                              SDValue N1, SDValue N2, SDValue N3) {
3819  SDValue Ops[] = { N1, N2, N3 };
3820  return getNode(Opcode, VTList, Ops, 3);
3821}
3822
3823SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3824                              SDValue N1, SDValue N2, SDValue N3,
3825                              SDValue N4) {
3826  SDValue Ops[] = { N1, N2, N3, N4 };
3827  return getNode(Opcode, VTList, Ops, 4);
3828}
3829
3830SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3831                              SDValue N1, SDValue N2, SDValue N3,
3832                              SDValue N4, SDValue N5) {
3833  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3834  return getNode(Opcode, VTList, Ops, 5);
3835}
3836
3837SDVTList SelectionDAG::getVTList(MVT VT) {
3838  return makeVTList(SDNode::getValueTypeList(VT), 1);
3839}
3840
3841SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3842  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3843       E = VTList.rend(); I != E; ++I)
3844    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3845      return *I;
3846
3847  MVT *Array = Allocator.Allocate<MVT>(2);
3848  Array[0] = VT1;
3849  Array[1] = VT2;
3850  SDVTList Result = makeVTList(Array, 2);
3851  VTList.push_back(Result);
3852  return Result;
3853}
3854
3855SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3856  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3857       E = VTList.rend(); I != E; ++I)
3858    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3859                          I->VTs[2] == VT3)
3860      return *I;
3861
3862  MVT *Array = Allocator.Allocate<MVT>(3);
3863  Array[0] = VT1;
3864  Array[1] = VT2;
3865  Array[2] = VT3;
3866  SDVTList Result = makeVTList(Array, 3);
3867  VTList.push_back(Result);
3868  return Result;
3869}
3870
3871SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3, MVT VT4) {
3872  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3873       E = VTList.rend(); I != E; ++I)
3874    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3875                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
3876      return *I;
3877
3878  MVT *Array = Allocator.Allocate<MVT>(3);
3879  Array[0] = VT1;
3880  Array[1] = VT2;
3881  Array[2] = VT3;
3882  Array[3] = VT4;
3883  SDVTList Result = makeVTList(Array, 4);
3884  VTList.push_back(Result);
3885  return Result;
3886}
3887
3888SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3889  switch (NumVTs) {
3890    case 0: assert(0 && "Cannot have nodes without results!");
3891    case 1: return getVTList(VTs[0]);
3892    case 2: return getVTList(VTs[0], VTs[1]);
3893    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3894    default: break;
3895  }
3896
3897  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3898       E = VTList.rend(); I != E; ++I) {
3899    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3900      continue;
3901
3902    bool NoMatch = false;
3903    for (unsigned i = 2; i != NumVTs; ++i)
3904      if (VTs[i] != I->VTs[i]) {
3905        NoMatch = true;
3906        break;
3907      }
3908    if (!NoMatch)
3909      return *I;
3910  }
3911
3912  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3913  std::copy(VTs, VTs+NumVTs, Array);
3914  SDVTList Result = makeVTList(Array, NumVTs);
3915  VTList.push_back(Result);
3916  return Result;
3917}
3918
3919
3920/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3921/// specified operands.  If the resultant node already exists in the DAG,
3922/// this does not modify the specified node, instead it returns the node that
3923/// already exists.  If the resultant node does not exist in the DAG, the
3924/// input node is returned.  As a degenerate case, if you specify the same
3925/// input operands as the node already has, the input node is returned.
3926SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3927  SDNode *N = InN.getNode();
3928  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3929
3930  // Check to see if there is no change.
3931  if (Op == N->getOperand(0)) return InN;
3932
3933  // See if the modified node already exists.
3934  void *InsertPos = 0;
3935  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3936    return SDValue(Existing, InN.getResNo());
3937
3938  // Nope it doesn't.  Remove the node from its current place in the maps.
3939  if (InsertPos)
3940    if (!RemoveNodeFromCSEMaps(N))
3941      InsertPos = 0;
3942
3943  // Now we update the operands.
3944  N->OperandList[0].getVal()->removeUser(0, N);
3945  N->OperandList[0] = Op;
3946  N->OperandList[0].setUser(N);
3947  Op.getNode()->addUser(0, N);
3948
3949  // If this gets put into a CSE map, add it.
3950  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3951  return InN;
3952}
3953
3954SDValue SelectionDAG::
3955UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3956  SDNode *N = InN.getNode();
3957  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3958
3959  // Check to see if there is no change.
3960  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3961    return InN;   // No operands changed, just return the input node.
3962
3963  // See if the modified node already exists.
3964  void *InsertPos = 0;
3965  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3966    return SDValue(Existing, InN.getResNo());
3967
3968  // Nope it doesn't.  Remove the node from its current place in the maps.
3969  if (InsertPos)
3970    if (!RemoveNodeFromCSEMaps(N))
3971      InsertPos = 0;
3972
3973  // Now we update the operands.
3974  if (N->OperandList[0] != Op1) {
3975    N->OperandList[0].getVal()->removeUser(0, N);
3976    N->OperandList[0] = Op1;
3977    N->OperandList[0].setUser(N);
3978    Op1.getNode()->addUser(0, N);
3979  }
3980  if (N->OperandList[1] != Op2) {
3981    N->OperandList[1].getVal()->removeUser(1, N);
3982    N->OperandList[1] = Op2;
3983    N->OperandList[1].setUser(N);
3984    Op2.getNode()->addUser(1, N);
3985  }
3986
3987  // If this gets put into a CSE map, add it.
3988  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3989  return InN;
3990}
3991
3992SDValue SelectionDAG::
3993UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3994  SDValue Ops[] = { Op1, Op2, Op3 };
3995  return UpdateNodeOperands(N, Ops, 3);
3996}
3997
3998SDValue SelectionDAG::
3999UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4000                   SDValue Op3, SDValue Op4) {
4001  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4002  return UpdateNodeOperands(N, Ops, 4);
4003}
4004
4005SDValue SelectionDAG::
4006UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4007                   SDValue Op3, SDValue Op4, SDValue Op5) {
4008  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4009  return UpdateNodeOperands(N, Ops, 5);
4010}
4011
4012SDValue SelectionDAG::
4013UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4014  SDNode *N = InN.getNode();
4015  assert(N->getNumOperands() == NumOps &&
4016         "Update with wrong number of operands");
4017
4018  // Check to see if there is no change.
4019  bool AnyChange = false;
4020  for (unsigned i = 0; i != NumOps; ++i) {
4021    if (Ops[i] != N->getOperand(i)) {
4022      AnyChange = true;
4023      break;
4024    }
4025  }
4026
4027  // No operands changed, just return the input node.
4028  if (!AnyChange) return InN;
4029
4030  // See if the modified node already exists.
4031  void *InsertPos = 0;
4032  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4033    return SDValue(Existing, InN.getResNo());
4034
4035  // Nope it doesn't.  Remove the node from its current place in the maps.
4036  if (InsertPos)
4037    if (!RemoveNodeFromCSEMaps(N))
4038      InsertPos = 0;
4039
4040  // Now we update the operands.
4041  for (unsigned i = 0; i != NumOps; ++i) {
4042    if (N->OperandList[i] != Ops[i]) {
4043      N->OperandList[i].getVal()->removeUser(i, N);
4044      N->OperandList[i] = Ops[i];
4045      N->OperandList[i].setUser(N);
4046      Ops[i].getNode()->addUser(i, N);
4047    }
4048  }
4049
4050  // If this gets put into a CSE map, add it.
4051  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4052  return InN;
4053}
4054
4055/// DropOperands - Release the operands and set this node to have
4056/// zero operands.
4057void SDNode::DropOperands() {
4058  // Unlike the code in MorphNodeTo that does this, we don't need to
4059  // watch for dead nodes here.
4060  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
4061    I->getVal()->removeUser(std::distance(op_begin(), I), this);
4062
4063  NumOperands = 0;
4064}
4065
4066/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4067/// machine opcode.
4068///
4069SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4070                                   MVT VT) {
4071  SDVTList VTs = getVTList(VT);
4072  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4073}
4074
4075SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4076                                   MVT VT, SDValue Op1) {
4077  SDVTList VTs = getVTList(VT);
4078  SDValue Ops[] = { Op1 };
4079  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4080}
4081
4082SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4083                                   MVT VT, SDValue Op1,
4084                                   SDValue Op2) {
4085  SDVTList VTs = getVTList(VT);
4086  SDValue Ops[] = { Op1, Op2 };
4087  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4088}
4089
4090SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4091                                   MVT VT, SDValue Op1,
4092                                   SDValue Op2, SDValue Op3) {
4093  SDVTList VTs = getVTList(VT);
4094  SDValue Ops[] = { Op1, Op2, Op3 };
4095  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4096}
4097
4098SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4099                                   MVT VT, const SDValue *Ops,
4100                                   unsigned NumOps) {
4101  SDVTList VTs = getVTList(VT);
4102  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4103}
4104
4105SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4106                                   MVT VT1, MVT VT2, const SDValue *Ops,
4107                                   unsigned NumOps) {
4108  SDVTList VTs = getVTList(VT1, VT2);
4109  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4110}
4111
4112SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4113                                   MVT VT1, MVT VT2) {
4114  SDVTList VTs = getVTList(VT1, VT2);
4115  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4116}
4117
4118SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4119                                   MVT VT1, MVT VT2, MVT VT3,
4120                                   const SDValue *Ops, unsigned NumOps) {
4121  SDVTList VTs = getVTList(VT1, VT2, VT3);
4122  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4123}
4124
4125SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4126                                   MVT VT1, MVT VT2, MVT VT3, MVT VT4,
4127                                   const SDValue *Ops, unsigned NumOps) {
4128  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4129  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4130}
4131
4132SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4133                                   MVT VT1, MVT VT2,
4134                                   SDValue Op1) {
4135  SDVTList VTs = getVTList(VT1, VT2);
4136  SDValue Ops[] = { Op1 };
4137  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4138}
4139
4140SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4141                                   MVT VT1, MVT VT2,
4142                                   SDValue Op1, SDValue Op2) {
4143  SDVTList VTs = getVTList(VT1, VT2);
4144  SDValue Ops[] = { Op1, Op2 };
4145  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4146}
4147
4148SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4149                                   MVT VT1, MVT VT2,
4150                                   SDValue Op1, SDValue Op2,
4151                                   SDValue Op3) {
4152  SDVTList VTs = getVTList(VT1, VT2);
4153  SDValue Ops[] = { Op1, Op2, Op3 };
4154  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4155}
4156
4157SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4158                                   MVT VT1, MVT VT2, MVT VT3,
4159                                   SDValue Op1, SDValue Op2,
4160                                   SDValue Op3) {
4161  SDVTList VTs = getVTList(VT1, VT2, VT3);
4162  SDValue Ops[] = { Op1, Op2, Op3 };
4163  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4164}
4165
4166SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4167                                   SDVTList VTs, const SDValue *Ops,
4168                                   unsigned NumOps) {
4169  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4170}
4171
4172SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4173                                  MVT VT) {
4174  SDVTList VTs = getVTList(VT);
4175  return MorphNodeTo(N, Opc, VTs, 0, 0);
4176}
4177
4178SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4179                                  MVT VT, SDValue Op1) {
4180  SDVTList VTs = getVTList(VT);
4181  SDValue Ops[] = { Op1 };
4182  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4183}
4184
4185SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4186                                  MVT VT, SDValue Op1,
4187                                  SDValue Op2) {
4188  SDVTList VTs = getVTList(VT);
4189  SDValue Ops[] = { Op1, Op2 };
4190  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4191}
4192
4193SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4194                                  MVT VT, SDValue Op1,
4195                                  SDValue Op2, SDValue Op3) {
4196  SDVTList VTs = getVTList(VT);
4197  SDValue Ops[] = { Op1, Op2, Op3 };
4198  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4199}
4200
4201SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4202                                  MVT VT, const SDValue *Ops,
4203                                  unsigned NumOps) {
4204  SDVTList VTs = getVTList(VT);
4205  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4206}
4207
4208SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4209                                  MVT VT1, MVT VT2, const SDValue *Ops,
4210                                  unsigned NumOps) {
4211  SDVTList VTs = getVTList(VT1, VT2);
4212  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4213}
4214
4215SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4216                                  MVT VT1, MVT VT2) {
4217  SDVTList VTs = getVTList(VT1, VT2);
4218  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4219}
4220
4221SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4222                                  MVT VT1, MVT VT2, MVT VT3,
4223                                  const SDValue *Ops, unsigned NumOps) {
4224  SDVTList VTs = getVTList(VT1, VT2, VT3);
4225  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4226}
4227
4228SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4229                                  MVT VT1, MVT VT2,
4230                                  SDValue Op1) {
4231  SDVTList VTs = getVTList(VT1, VT2);
4232  SDValue Ops[] = { Op1 };
4233  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4234}
4235
4236SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4237                                  MVT VT1, MVT VT2,
4238                                  SDValue Op1, SDValue Op2) {
4239  SDVTList VTs = getVTList(VT1, VT2);
4240  SDValue Ops[] = { Op1, Op2 };
4241  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4242}
4243
4244SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4245                                  MVT VT1, MVT VT2,
4246                                  SDValue Op1, SDValue Op2,
4247                                  SDValue Op3) {
4248  SDVTList VTs = getVTList(VT1, VT2);
4249  SDValue Ops[] = { Op1, Op2, Op3 };
4250  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4251}
4252
4253/// MorphNodeTo - These *mutate* the specified node to have the specified
4254/// return type, opcode, and operands.
4255///
4256/// Note that MorphNodeTo returns the resultant node.  If there is already a
4257/// node of the specified opcode and operands, it returns that node instead of
4258/// the current one.
4259///
4260/// Using MorphNodeTo is faster than creating a new node and swapping it in
4261/// with ReplaceAllUsesWith both because it often avoids allocating a new
4262/// node, and because it doesn't require CSE recalculation for any of
4263/// the node's users.
4264///
4265SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4266                                  SDVTList VTs, const SDValue *Ops,
4267                                  unsigned NumOps) {
4268  // If an identical node already exists, use it.
4269  void *IP = 0;
4270  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4271    FoldingSetNodeID ID;
4272    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4273    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4274      return ON;
4275  }
4276
4277  if (!RemoveNodeFromCSEMaps(N))
4278    IP = 0;
4279
4280  // Start the morphing.
4281  N->NodeType = Opc;
4282  N->ValueList = VTs.VTs;
4283  N->NumValues = VTs.NumVTs;
4284
4285  // Clear the operands list, updating used nodes to remove this from their
4286  // use list.  Keep track of any operands that become dead as a result.
4287  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4288  for (SDNode::op_iterator B = N->op_begin(), I = B, E = N->op_end();
4289       I != E; ++I) {
4290    SDNode *Used = I->getVal();
4291    Used->removeUser(std::distance(B, I), N);
4292    if (Used->use_empty())
4293      DeadNodeSet.insert(Used);
4294  }
4295
4296  // If NumOps is larger than the # of operands we currently have, reallocate
4297  // the operand list.
4298  if (NumOps > N->NumOperands) {
4299    if (N->OperandsNeedDelete)
4300      delete[] N->OperandList;
4301
4302    if (N->isMachineOpcode()) {
4303      // We're creating a final node that will live unmorphed for the
4304      // remainder of the current SelectionDAG iteration, so we can allocate
4305      // the operands directly out of a pool with no recycling metadata.
4306      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4307      N->OperandsNeedDelete = false;
4308    } else {
4309      N->OperandList = new SDUse[NumOps];
4310      N->OperandsNeedDelete = true;
4311    }
4312  }
4313
4314  // Assign the new operands.
4315  N->NumOperands = NumOps;
4316  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4317    N->OperandList[i] = Ops[i];
4318    N->OperandList[i].setUser(N);
4319    SDNode *ToUse = N->OperandList[i].getVal();
4320    ToUse->addUser(i, N);
4321  }
4322
4323  // Delete any nodes that are still dead after adding the uses for the
4324  // new operands.
4325  SmallVector<SDNode *, 16> DeadNodes;
4326  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4327       E = DeadNodeSet.end(); I != E; ++I)
4328    if ((*I)->use_empty())
4329      DeadNodes.push_back(*I);
4330  RemoveDeadNodes(DeadNodes);
4331
4332  if (IP)
4333    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4334  return N;
4335}
4336
4337
4338/// getTargetNode - These are used for target selectors to create a new node
4339/// with specified return type(s), target opcode, and operands.
4340///
4341/// Note that getTargetNode returns the resultant node.  If there is already a
4342/// node of the specified opcode and operands, it returns that node instead of
4343/// the current one.
4344SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4345  return getNode(~Opcode, VT).getNode();
4346}
4347SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4348  return getNode(~Opcode, VT, Op1).getNode();
4349}
4350SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4351                                    SDValue Op1, SDValue Op2) {
4352  return getNode(~Opcode, VT, Op1, Op2).getNode();
4353}
4354SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4355                                    SDValue Op1, SDValue Op2,
4356                                    SDValue Op3) {
4357  return getNode(~Opcode, VT, Op1, Op2, Op3).getNode();
4358}
4359SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4360                                    const SDValue *Ops, unsigned NumOps) {
4361  return getNode(~Opcode, VT, Ops, NumOps).getNode();
4362}
4363SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4364  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4365  SDValue Op;
4366  return getNode(~Opcode, VTs, 2, &Op, 0).getNode();
4367}
4368SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4369                                    MVT VT2, SDValue Op1) {
4370  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4371  return getNode(~Opcode, VTs, 2, &Op1, 1).getNode();
4372}
4373SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4374                                    MVT VT2, SDValue Op1,
4375                                    SDValue Op2) {
4376  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4377  SDValue Ops[] = { Op1, Op2 };
4378  return getNode(~Opcode, VTs, 2, Ops, 2).getNode();
4379}
4380SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4381                                    MVT VT2, SDValue Op1,
4382                                    SDValue Op2, SDValue Op3) {
4383  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4384  SDValue Ops[] = { Op1, Op2, Op3 };
4385  return getNode(~Opcode, VTs, 2, Ops, 3).getNode();
4386}
4387SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4388                                    const SDValue *Ops, unsigned NumOps) {
4389  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4390  return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode();
4391}
4392SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4393                                    SDValue Op1, SDValue Op2) {
4394  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4395  SDValue Ops[] = { Op1, Op2 };
4396  return getNode(~Opcode, VTs, 3, Ops, 2).getNode();
4397}
4398SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4399                                    SDValue Op1, SDValue Op2,
4400                                    SDValue Op3) {
4401  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4402  SDValue Ops[] = { Op1, Op2, Op3 };
4403  return getNode(~Opcode, VTs, 3, Ops, 3).getNode();
4404}
4405SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4406                                    const SDValue *Ops, unsigned NumOps) {
4407  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4408  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4409}
4410SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4411                                    MVT VT2, MVT VT3, MVT VT4,
4412                                    const SDValue *Ops, unsigned NumOps) {
4413  std::vector<MVT> VTList;
4414  VTList.push_back(VT1);
4415  VTList.push_back(VT2);
4416  VTList.push_back(VT3);
4417  VTList.push_back(VT4);
4418  const MVT *VTs = getNodeValueTypes(VTList);
4419  return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode();
4420}
4421SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4422                                    const std::vector<MVT> &ResultTys,
4423                                    const SDValue *Ops, unsigned NumOps) {
4424  const MVT *VTs = getNodeValueTypes(ResultTys);
4425  return getNode(~Opcode, VTs, ResultTys.size(),
4426                 Ops, NumOps).getNode();
4427}
4428
4429/// getNodeIfExists - Get the specified node if it's already available, or
4430/// else return NULL.
4431SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4432                                      const SDValue *Ops, unsigned NumOps) {
4433  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4434    FoldingSetNodeID ID;
4435    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4436    void *IP = 0;
4437    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4438      return E;
4439  }
4440  return NULL;
4441}
4442
4443
4444/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4445/// This can cause recursive merging of nodes in the DAG.
4446///
4447/// This version assumes From has a single result value.
4448///
4449void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4450                                      DAGUpdateListener *UpdateListener) {
4451  SDNode *From = FromN.getNode();
4452  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4453         "Cannot replace with this method!");
4454  assert(From != To.getNode() && "Cannot replace uses of with self");
4455
4456  while (!From->use_empty()) {
4457    SDNode::use_iterator UI = From->use_begin();
4458    SDNode *U = *UI;
4459
4460    // This node is about to morph, remove its old self from the CSE maps.
4461    RemoveNodeFromCSEMaps(U);
4462    int operandNum = 0;
4463    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4464         I != E; ++I, ++operandNum)
4465      if (I->getVal() == From) {
4466        From->removeUser(operandNum, U);
4467        *I = To;
4468        I->setUser(U);
4469        To.getNode()->addUser(operandNum, U);
4470      }
4471
4472    // Now that we have modified U, add it back to the CSE maps.  If it already
4473    // exists there, recursively merge the results together.
4474    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4475      ReplaceAllUsesWith(U, Existing, UpdateListener);
4476      // U is now dead.  Inform the listener if it exists and delete it.
4477      if (UpdateListener)
4478        UpdateListener->NodeDeleted(U, Existing);
4479      DeleteNodeNotInCSEMaps(U);
4480    } else {
4481      // If the node doesn't already exist, we updated it.  Inform a listener if
4482      // it exists.
4483      if (UpdateListener)
4484        UpdateListener->NodeUpdated(U);
4485    }
4486  }
4487}
4488
4489/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4490/// This can cause recursive merging of nodes in the DAG.
4491///
4492/// This version assumes From/To have matching types and numbers of result
4493/// values.
4494///
4495void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4496                                      DAGUpdateListener *UpdateListener) {
4497  assert(From->getVTList().VTs == To->getVTList().VTs &&
4498         From->getNumValues() == To->getNumValues() &&
4499         "Cannot use this version of ReplaceAllUsesWith!");
4500
4501  // Handle the trivial case.
4502  if (From == To)
4503    return;
4504
4505  while (!From->use_empty()) {
4506    SDNode::use_iterator UI = From->use_begin();
4507    SDNode *U = *UI;
4508
4509    // This node is about to morph, remove its old self from the CSE maps.
4510    RemoveNodeFromCSEMaps(U);
4511    int operandNum = 0;
4512    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4513         I != E; ++I, ++operandNum)
4514      if (I->getVal() == From) {
4515        From->removeUser(operandNum, U);
4516        I->getSDValue().setNode(To);
4517        To->addUser(operandNum, U);
4518      }
4519
4520    // Now that we have modified U, add it back to the CSE maps.  If it already
4521    // exists there, recursively merge the results together.
4522    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4523      ReplaceAllUsesWith(U, Existing, UpdateListener);
4524      // U is now dead.  Inform the listener if it exists and delete it.
4525      if (UpdateListener)
4526        UpdateListener->NodeDeleted(U, Existing);
4527      DeleteNodeNotInCSEMaps(U);
4528    } else {
4529      // If the node doesn't already exist, we updated it.  Inform a listener if
4530      // it exists.
4531      if (UpdateListener)
4532        UpdateListener->NodeUpdated(U);
4533    }
4534  }
4535}
4536
4537/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4538/// This can cause recursive merging of nodes in the DAG.
4539///
4540/// This version can replace From with any result values.  To must match the
4541/// number and types of values returned by From.
4542void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4543                                      const SDValue *To,
4544                                      DAGUpdateListener *UpdateListener) {
4545  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4546    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4547
4548  while (!From->use_empty()) {
4549    SDNode::use_iterator UI = From->use_begin();
4550    SDNode *U = *UI;
4551
4552    // This node is about to morph, remove its old self from the CSE maps.
4553    RemoveNodeFromCSEMaps(U);
4554    int operandNum = 0;
4555    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4556         I != E; ++I, ++operandNum)
4557      if (I->getVal() == From) {
4558        const SDValue &ToOp = To[I->getSDValue().getResNo()];
4559        From->removeUser(operandNum, U);
4560        *I = ToOp;
4561        I->setUser(U);
4562        ToOp.getNode()->addUser(operandNum, U);
4563      }
4564
4565    // Now that we have modified U, add it back to the CSE maps.  If it already
4566    // exists there, recursively merge the results together.
4567    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4568      ReplaceAllUsesWith(U, Existing, UpdateListener);
4569      // U is now dead.  Inform the listener if it exists and delete it.
4570      if (UpdateListener)
4571        UpdateListener->NodeDeleted(U, Existing);
4572      DeleteNodeNotInCSEMaps(U);
4573    } else {
4574      // If the node doesn't already exist, we updated it.  Inform a listener if
4575      // it exists.
4576      if (UpdateListener)
4577        UpdateListener->NodeUpdated(U);
4578    }
4579  }
4580}
4581
4582/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4583/// uses of other values produced by From.getVal() alone.  The Deleted vector is
4584/// handled the same way as for ReplaceAllUsesWith.
4585void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4586                                             DAGUpdateListener *UpdateListener){
4587  // Handle the really simple, really trivial case efficiently.
4588  if (From == To) return;
4589
4590  // Handle the simple, trivial, case efficiently.
4591  if (From.getNode()->getNumValues() == 1) {
4592    ReplaceAllUsesWith(From, To, UpdateListener);
4593    return;
4594  }
4595
4596  // Get all of the users of From.getNode().  We want these in a nice,
4597  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4598  SmallSetVector<SDNode*, 16> Users(From.getNode()->use_begin(), From.getNode()->use_end());
4599
4600  while (!Users.empty()) {
4601    // We know that this user uses some value of From.  If it is the right
4602    // value, update it.
4603    SDNode *User = Users.back();
4604    Users.pop_back();
4605
4606    // Scan for an operand that matches From.
4607    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4608    for (; Op != E; ++Op)
4609      if (*Op == From) break;
4610
4611    // If there are no matches, the user must use some other result of From.
4612    if (Op == E) continue;
4613
4614    // Okay, we know this user needs to be updated.  Remove its old self
4615    // from the CSE maps.
4616    RemoveNodeFromCSEMaps(User);
4617
4618    // Update all operands that match "From" in case there are multiple uses.
4619    for (; Op != E; ++Op) {
4620      if (*Op == From) {
4621        From.getNode()->removeUser(Op-User->op_begin(), User);
4622        *Op = To;
4623        Op->setUser(User);
4624        To.getNode()->addUser(Op-User->op_begin(), User);
4625      }
4626    }
4627
4628    // Now that we have modified User, add it back to the CSE maps.  If it
4629    // already exists there, recursively merge the results together.
4630    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4631    if (!Existing) {
4632      if (UpdateListener) UpdateListener->NodeUpdated(User);
4633      continue;  // Continue on to next user.
4634    }
4635
4636    // If there was already an existing matching node, use ReplaceAllUsesWith
4637    // to replace the dead one with the existing one.  This can cause
4638    // recursive merging of other unrelated nodes down the line.
4639    ReplaceAllUsesWith(User, Existing, UpdateListener);
4640
4641    // User is now dead.  Notify a listener if present.
4642    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4643    DeleteNodeNotInCSEMaps(User);
4644  }
4645}
4646
4647/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4648/// uses of other values produced by From.getVal() alone.  The same value may
4649/// appear in both the From and To list.  The Deleted vector is
4650/// handled the same way as for ReplaceAllUsesWith.
4651void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4652                                              const SDValue *To,
4653                                              unsigned Num,
4654                                              DAGUpdateListener *UpdateListener){
4655  // Handle the simple, trivial case efficiently.
4656  if (Num == 1)
4657    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4658
4659  SmallVector<std::pair<SDNode *, unsigned>, 16> Users;
4660  for (unsigned i = 0; i != Num; ++i)
4661    for (SDNode::use_iterator UI = From[i].getNode()->use_begin(),
4662         E = From[i].getNode()->use_end(); UI != E; ++UI)
4663      Users.push_back(std::make_pair(*UI, i));
4664
4665  while (!Users.empty()) {
4666    // We know that this user uses some value of From.  If it is the right
4667    // value, update it.
4668    SDNode *User = Users.back().first;
4669    unsigned i = Users.back().second;
4670    Users.pop_back();
4671
4672    // Scan for an operand that matches From.
4673    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4674    for (; Op != E; ++Op)
4675      if (*Op == From[i]) break;
4676
4677    // If there are no matches, the user must use some other result of From.
4678    if (Op == E) continue;
4679
4680    // Okay, we know this user needs to be updated.  Remove its old self
4681    // from the CSE maps.
4682    RemoveNodeFromCSEMaps(User);
4683
4684    // Update all operands that match "From" in case there are multiple uses.
4685    for (; Op != E; ++Op) {
4686      if (*Op == From[i]) {
4687        From[i].getNode()->removeUser(Op-User->op_begin(), User);
4688        *Op = To[i];
4689        Op->setUser(User);
4690        To[i].getNode()->addUser(Op-User->op_begin(), User);
4691      }
4692    }
4693
4694    // Now that we have modified User, add it back to the CSE maps.  If it
4695    // already exists there, recursively merge the results together.
4696    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4697    if (!Existing) {
4698      if (UpdateListener) UpdateListener->NodeUpdated(User);
4699      continue;  // Continue on to next user.
4700    }
4701
4702    // If there was already an existing matching node, use ReplaceAllUsesWith
4703    // to replace the dead one with the existing one.  This can cause
4704    // recursive merging of other unrelated nodes down the line.
4705    ReplaceAllUsesWith(User, Existing, UpdateListener);
4706
4707    // User is now dead.  Notify a listener if present.
4708    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4709    DeleteNodeNotInCSEMaps(User);
4710  }
4711}
4712
4713/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4714/// based on their topological order. It returns the maximum id and a vector
4715/// of the SDNodes* in assigned order by reference.
4716unsigned SelectionDAG::AssignTopologicalOrder() {
4717
4718  unsigned DAGSize = 0;
4719
4720  // SortedPos tracks the progress of the algorithm. Nodes before it are
4721  // sorted, nodes after it are unsorted. When the algorithm completes
4722  // it is at the end of the list.
4723  allnodes_iterator SortedPos = allnodes_begin();
4724
4725  // Visit all the nodes. Move nodes with no operands to the front of
4726  // the list immediately. Annotate nodes that do have operands with their
4727  // operand count. Before we do this, the Node Id fields of the nodes
4728  // may contain arbitrary values. After, the Node Id fields for nodes
4729  // before SortedPos will contain the topological sort index, and the
4730  // Node Id fields for nodes At SortedPos and after will contain the
4731  // count of outstanding operands.
4732  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
4733    SDNode *N = I++;
4734    unsigned Degree = N->getNumOperands();
4735    if (Degree == 0) {
4736      // A node with no uses, add it to the result array immediately.
4737      N->setNodeId(DAGSize++);
4738      allnodes_iterator Q = N;
4739      if (Q != SortedPos)
4740        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
4741      ++SortedPos;
4742    } else {
4743      // Temporarily use the Node Id as scratch space for the degree count.
4744      N->setNodeId(Degree);
4745    }
4746  }
4747
4748  // Visit all the nodes. As we iterate, moves nodes into sorted order,
4749  // such that by the time the end is reached all nodes will be sorted.
4750  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
4751    SDNode *N = I;
4752    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
4753         UI != UE; ++UI) {
4754      SDNode *P = *UI;
4755      unsigned Degree = P->getNodeId();
4756      --Degree;
4757      if (Degree == 0) {
4758        // All of P's operands are sorted, so P may sorted now.
4759        P->setNodeId(DAGSize++);
4760        if (P != SortedPos)
4761          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
4762        ++SortedPos;
4763      } else {
4764        // Update P's outstanding operand count.
4765        P->setNodeId(Degree);
4766      }
4767    }
4768  }
4769
4770  assert(SortedPos == AllNodes.end() &&
4771         "Topological sort incomplete!");
4772  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
4773         "First node in topological sort is not the entry token!");
4774  assert(AllNodes.front().getNodeId() == 0 &&
4775         "First node in topological sort has non-zero id!");
4776  assert(AllNodes.front().getNumOperands() == 0 &&
4777         "First node in topological sort has operands!");
4778  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
4779         "Last node in topologic sort has unexpected id!");
4780  assert(AllNodes.back().use_empty() &&
4781         "Last node in topologic sort has users!");
4782  assert(DAGSize == allnodes_size() && "Node count mismatch!");
4783  return DAGSize;
4784}
4785
4786
4787
4788//===----------------------------------------------------------------------===//
4789//                              SDNode Class
4790//===----------------------------------------------------------------------===//
4791
4792// Out-of-line virtual method to give class a home.
4793void SDNode::ANCHOR() {}
4794void UnarySDNode::ANCHOR() {}
4795void BinarySDNode::ANCHOR() {}
4796void TernarySDNode::ANCHOR() {}
4797void HandleSDNode::ANCHOR() {}
4798void ConstantSDNode::ANCHOR() {}
4799void ConstantFPSDNode::ANCHOR() {}
4800void GlobalAddressSDNode::ANCHOR() {}
4801void FrameIndexSDNode::ANCHOR() {}
4802void JumpTableSDNode::ANCHOR() {}
4803void ConstantPoolSDNode::ANCHOR() {}
4804void BasicBlockSDNode::ANCHOR() {}
4805void SrcValueSDNode::ANCHOR() {}
4806void MemOperandSDNode::ANCHOR() {}
4807void RegisterSDNode::ANCHOR() {}
4808void DbgStopPointSDNode::ANCHOR() {}
4809void LabelSDNode::ANCHOR() {}
4810void ExternalSymbolSDNode::ANCHOR() {}
4811void CondCodeSDNode::ANCHOR() {}
4812void ARG_FLAGSSDNode::ANCHOR() {}
4813void VTSDNode::ANCHOR() {}
4814void MemSDNode::ANCHOR() {}
4815void LoadSDNode::ANCHOR() {}
4816void StoreSDNode::ANCHOR() {}
4817void AtomicSDNode::ANCHOR() {}
4818void MemIntrinsicSDNode::ANCHOR() {}
4819void CallSDNode::ANCHOR() {}
4820void CvtRndSatSDNode::ANCHOR() {}
4821
4822HandleSDNode::~HandleSDNode() {
4823  DropOperands();
4824}
4825
4826GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4827                                         MVT VT, int64_t o)
4828  : SDNode(isa<GlobalVariable>(GA) &&
4829           cast<GlobalVariable>(GA)->isThreadLocal() ?
4830           // Thread Local
4831           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4832           // Non Thread Local
4833           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4834           getSDVTList(VT)), Offset(o) {
4835  TheGlobal = const_cast<GlobalValue*>(GA);
4836}
4837
4838MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
4839                     const Value *srcValue, int SVO,
4840                     unsigned alignment, bool vol)
4841 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4842   Flags(encodeMemSDNodeFlags(vol, alignment)) {
4843
4844  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4845  assert(getAlignment() == alignment && "Alignment representation error!");
4846  assert(isVolatile() == vol && "Volatile representation error!");
4847}
4848
4849MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, const SDValue *Ops,
4850                     unsigned NumOps, MVT memvt, const Value *srcValue,
4851                     int SVO, unsigned alignment, bool vol)
4852   : SDNode(Opc, VTs, Ops, NumOps),
4853     MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4854     Flags(vol | ((Log2_32(alignment) + 1) << 1)) {
4855  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4856  assert(getAlignment() == alignment && "Alignment representation error!");
4857  assert(isVolatile() == vol && "Volatile representation error!");
4858}
4859
4860/// getMemOperand - Return a MachineMemOperand object describing the memory
4861/// reference performed by this memory reference.
4862MachineMemOperand MemSDNode::getMemOperand() const {
4863  int Flags = 0;
4864  if (isa<LoadSDNode>(this))
4865    Flags = MachineMemOperand::MOLoad;
4866  else if (isa<StoreSDNode>(this))
4867    Flags = MachineMemOperand::MOStore;
4868  else if (isa<AtomicSDNode>(this)) {
4869    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4870  }
4871  else {
4872    const MemIntrinsicSDNode* MemIntrinNode = dyn_cast<MemIntrinsicSDNode>(this);
4873    assert(MemIntrinNode && "Unknown MemSDNode opcode!");
4874    if (MemIntrinNode->readMem()) Flags |= MachineMemOperand::MOLoad;
4875    if (MemIntrinNode->writeMem()) Flags |= MachineMemOperand::MOStore;
4876  }
4877
4878  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4879  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4880
4881  // Check if the memory reference references a frame index
4882  const FrameIndexSDNode *FI =
4883  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4884  if (!getSrcValue() && FI)
4885    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4886                             Flags, 0, Size, getAlignment());
4887  else
4888    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4889                             Size, getAlignment());
4890}
4891
4892/// Profile - Gather unique data for the node.
4893///
4894void SDNode::Profile(FoldingSetNodeID &ID) const {
4895  AddNodeIDNode(ID, this);
4896}
4897
4898/// getValueTypeList - Return a pointer to the specified value type.
4899///
4900const MVT *SDNode::getValueTypeList(MVT VT) {
4901  if (VT.isExtended()) {
4902    static std::set<MVT, MVT::compareRawBits> EVTs;
4903    return &(*EVTs.insert(VT).first);
4904  } else {
4905    static MVT VTs[MVT::LAST_VALUETYPE];
4906    VTs[VT.getSimpleVT()] = VT;
4907    return &VTs[VT.getSimpleVT()];
4908  }
4909}
4910
4911/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4912/// indicated value.  This method ignores uses of other values defined by this
4913/// operation.
4914bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4915  assert(Value < getNumValues() && "Bad value!");
4916
4917  // TODO: Only iterate over uses of a given value of the node
4918  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4919    if (UI.getUse().getSDValue().getResNo() == Value) {
4920      if (NUses == 0)
4921        return false;
4922      --NUses;
4923    }
4924  }
4925
4926  // Found exactly the right number of uses?
4927  return NUses == 0;
4928}
4929
4930
4931/// hasAnyUseOfValue - Return true if there are any use of the indicated
4932/// value. This method ignores uses of other values defined by this operation.
4933bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4934  assert(Value < getNumValues() && "Bad value!");
4935
4936  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4937    if (UI.getUse().getSDValue().getResNo() == Value)
4938      return true;
4939
4940  return false;
4941}
4942
4943
4944/// isOnlyUserOf - Return true if this node is the only use of N.
4945///
4946bool SDNode::isOnlyUserOf(SDNode *N) const {
4947  bool Seen = false;
4948  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4949    SDNode *User = *I;
4950    if (User == this)
4951      Seen = true;
4952    else
4953      return false;
4954  }
4955
4956  return Seen;
4957}
4958
4959/// isOperand - Return true if this node is an operand of N.
4960///
4961bool SDValue::isOperandOf(SDNode *N) const {
4962  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4963    if (*this == N->getOperand(i))
4964      return true;
4965  return false;
4966}
4967
4968bool SDNode::isOperandOf(SDNode *N) const {
4969  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4970    if (this == N->OperandList[i].getVal())
4971      return true;
4972  return false;
4973}
4974
4975/// reachesChainWithoutSideEffects - Return true if this operand (which must
4976/// be a chain) reaches the specified operand without crossing any
4977/// side-effecting instructions.  In practice, this looks through token
4978/// factors and non-volatile loads.  In order to remain efficient, this only
4979/// looks a couple of nodes in, it does not do an exhaustive search.
4980bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4981                                               unsigned Depth) const {
4982  if (*this == Dest) return true;
4983
4984  // Don't search too deeply, we just want to be able to see through
4985  // TokenFactor's etc.
4986  if (Depth == 0) return false;
4987
4988  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4989  // of the operands of the TF reach dest, then we can do the xform.
4990  if (getOpcode() == ISD::TokenFactor) {
4991    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4992      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4993        return true;
4994    return false;
4995  }
4996
4997  // Loads don't have side effects, look through them.
4998  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4999    if (!Ld->isVolatile())
5000      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5001  }
5002  return false;
5003}
5004
5005
5006static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
5007                            SmallPtrSet<SDNode *, 32> &Visited) {
5008  if (found || !Visited.insert(N))
5009    return;
5010
5011  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
5012    SDNode *Op = N->getOperand(i).getNode();
5013    if (Op == P) {
5014      found = true;
5015      return;
5016    }
5017    findPredecessor(Op, P, found, Visited);
5018  }
5019}
5020
5021/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5022/// is either an operand of N or it can be reached by recursively traversing
5023/// up the operands.
5024/// NOTE: this is an expensive method. Use it carefully.
5025bool SDNode::isPredecessorOf(SDNode *N) const {
5026  SmallPtrSet<SDNode *, 32> Visited;
5027  bool found = false;
5028  findPredecessor(N, this, found, Visited);
5029  return found;
5030}
5031
5032uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5033  assert(Num < NumOperands && "Invalid child # of SDNode!");
5034  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5035}
5036
5037std::string SDNode::getOperationName(const SelectionDAG *G) const {
5038  switch (getOpcode()) {
5039  default:
5040    if (getOpcode() < ISD::BUILTIN_OP_END)
5041      return "<<Unknown DAG Node>>";
5042    if (isMachineOpcode()) {
5043      if (G)
5044        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5045          if (getMachineOpcode() < TII->getNumOpcodes())
5046            return TII->get(getMachineOpcode()).getName();
5047      return "<<Unknown Machine Node>>";
5048    }
5049    if (G) {
5050      TargetLowering &TLI = G->getTargetLoweringInfo();
5051      const char *Name = TLI.getTargetNodeName(getOpcode());
5052      if (Name) return Name;
5053      return "<<Unknown Target Node>>";
5054    }
5055    return "<<Unknown Node>>";
5056
5057#ifndef NDEBUG
5058  case ISD::DELETED_NODE:
5059    return "<<Deleted Node!>>";
5060#endif
5061  case ISD::PREFETCH:      return "Prefetch";
5062  case ISD::MEMBARRIER:    return "MemBarrier";
5063  case ISD::ATOMIC_CMP_SWAP_8:  return "AtomicCmpSwap8";
5064  case ISD::ATOMIC_SWAP_8:      return "AtomicSwap8";
5065  case ISD::ATOMIC_LOAD_ADD_8:  return "AtomicLoadAdd8";
5066  case ISD::ATOMIC_LOAD_SUB_8:  return "AtomicLoadSub8";
5067  case ISD::ATOMIC_LOAD_AND_8:  return "AtomicLoadAnd8";
5068  case ISD::ATOMIC_LOAD_OR_8:   return "AtomicLoadOr8";
5069  case ISD::ATOMIC_LOAD_XOR_8:  return "AtomicLoadXor8";
5070  case ISD::ATOMIC_LOAD_NAND_8: return "AtomicLoadNand8";
5071  case ISD::ATOMIC_LOAD_MIN_8:  return "AtomicLoadMin8";
5072  case ISD::ATOMIC_LOAD_MAX_8:  return "AtomicLoadMax8";
5073  case ISD::ATOMIC_LOAD_UMIN_8: return "AtomicLoadUMin8";
5074  case ISD::ATOMIC_LOAD_UMAX_8: return "AtomicLoadUMax8";
5075  case ISD::ATOMIC_CMP_SWAP_16:  return "AtomicCmpSwap16";
5076  case ISD::ATOMIC_SWAP_16:      return "AtomicSwap16";
5077  case ISD::ATOMIC_LOAD_ADD_16:  return "AtomicLoadAdd16";
5078  case ISD::ATOMIC_LOAD_SUB_16:  return "AtomicLoadSub16";
5079  case ISD::ATOMIC_LOAD_AND_16:  return "AtomicLoadAnd16";
5080  case ISD::ATOMIC_LOAD_OR_16:   return "AtomicLoadOr16";
5081  case ISD::ATOMIC_LOAD_XOR_16:  return "AtomicLoadXor16";
5082  case ISD::ATOMIC_LOAD_NAND_16: return "AtomicLoadNand16";
5083  case ISD::ATOMIC_LOAD_MIN_16:  return "AtomicLoadMin16";
5084  case ISD::ATOMIC_LOAD_MAX_16:  return "AtomicLoadMax16";
5085  case ISD::ATOMIC_LOAD_UMIN_16: return "AtomicLoadUMin16";
5086  case ISD::ATOMIC_LOAD_UMAX_16: return "AtomicLoadUMax16";
5087  case ISD::ATOMIC_CMP_SWAP_32:  return "AtomicCmpSwap32";
5088  case ISD::ATOMIC_SWAP_32:      return "AtomicSwap32";
5089  case ISD::ATOMIC_LOAD_ADD_32:  return "AtomicLoadAdd32";
5090  case ISD::ATOMIC_LOAD_SUB_32:  return "AtomicLoadSub32";
5091  case ISD::ATOMIC_LOAD_AND_32:  return "AtomicLoadAnd32";
5092  case ISD::ATOMIC_LOAD_OR_32:   return "AtomicLoadOr32";
5093  case ISD::ATOMIC_LOAD_XOR_32:  return "AtomicLoadXor32";
5094  case ISD::ATOMIC_LOAD_NAND_32: return "AtomicLoadNand32";
5095  case ISD::ATOMIC_LOAD_MIN_32:  return "AtomicLoadMin32";
5096  case ISD::ATOMIC_LOAD_MAX_32:  return "AtomicLoadMax32";
5097  case ISD::ATOMIC_LOAD_UMIN_32: return "AtomicLoadUMin32";
5098  case ISD::ATOMIC_LOAD_UMAX_32: return "AtomicLoadUMax32";
5099  case ISD::ATOMIC_CMP_SWAP_64:  return "AtomicCmpSwap64";
5100  case ISD::ATOMIC_SWAP_64:      return "AtomicSwap64";
5101  case ISD::ATOMIC_LOAD_ADD_64:  return "AtomicLoadAdd64";
5102  case ISD::ATOMIC_LOAD_SUB_64:  return "AtomicLoadSub64";
5103  case ISD::ATOMIC_LOAD_AND_64:  return "AtomicLoadAnd64";
5104  case ISD::ATOMIC_LOAD_OR_64:   return "AtomicLoadOr64";
5105  case ISD::ATOMIC_LOAD_XOR_64:  return "AtomicLoadXor64";
5106  case ISD::ATOMIC_LOAD_NAND_64: return "AtomicLoadNand64";
5107  case ISD::ATOMIC_LOAD_MIN_64:  return "AtomicLoadMin64";
5108  case ISD::ATOMIC_LOAD_MAX_64:  return "AtomicLoadMax64";
5109  case ISD::ATOMIC_LOAD_UMIN_64: return "AtomicLoadUMin64";
5110  case ISD::ATOMIC_LOAD_UMAX_64: return "AtomicLoadUMax64";
5111  case ISD::PCMARKER:      return "PCMarker";
5112  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5113  case ISD::SRCVALUE:      return "SrcValue";
5114  case ISD::MEMOPERAND:    return "MemOperand";
5115  case ISD::EntryToken:    return "EntryToken";
5116  case ISD::TokenFactor:   return "TokenFactor";
5117  case ISD::AssertSext:    return "AssertSext";
5118  case ISD::AssertZext:    return "AssertZext";
5119
5120  case ISD::BasicBlock:    return "BasicBlock";
5121  case ISD::ARG_FLAGS:     return "ArgFlags";
5122  case ISD::VALUETYPE:     return "ValueType";
5123  case ISD::Register:      return "Register";
5124
5125  case ISD::Constant:      return "Constant";
5126  case ISD::ConstantFP:    return "ConstantFP";
5127  case ISD::GlobalAddress: return "GlobalAddress";
5128  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5129  case ISD::FrameIndex:    return "FrameIndex";
5130  case ISD::JumpTable:     return "JumpTable";
5131  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5132  case ISD::RETURNADDR: return "RETURNADDR";
5133  case ISD::FRAMEADDR: return "FRAMEADDR";
5134  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5135  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5136  case ISD::EHSELECTION: return "EHSELECTION";
5137  case ISD::EH_RETURN: return "EH_RETURN";
5138  case ISD::ConstantPool:  return "ConstantPool";
5139  case ISD::ExternalSymbol: return "ExternalSymbol";
5140  case ISD::INTRINSIC_WO_CHAIN: {
5141    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
5142    return Intrinsic::getName((Intrinsic::ID)IID);
5143  }
5144  case ISD::INTRINSIC_VOID:
5145  case ISD::INTRINSIC_W_CHAIN: {
5146    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
5147    return Intrinsic::getName((Intrinsic::ID)IID);
5148  }
5149
5150  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5151  case ISD::TargetConstant: return "TargetConstant";
5152  case ISD::TargetConstantFP:return "TargetConstantFP";
5153  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5154  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5155  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5156  case ISD::TargetJumpTable:  return "TargetJumpTable";
5157  case ISD::TargetConstantPool:  return "TargetConstantPool";
5158  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5159
5160  case ISD::CopyToReg:     return "CopyToReg";
5161  case ISD::CopyFromReg:   return "CopyFromReg";
5162  case ISD::UNDEF:         return "undef";
5163  case ISD::MERGE_VALUES:  return "merge_values";
5164  case ISD::INLINEASM:     return "inlineasm";
5165  case ISD::DBG_LABEL:     return "dbg_label";
5166  case ISD::EH_LABEL:      return "eh_label";
5167  case ISD::DECLARE:       return "declare";
5168  case ISD::HANDLENODE:    return "handlenode";
5169  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
5170  case ISD::CALL:          return "call";
5171
5172  // Unary operators
5173  case ISD::FABS:   return "fabs";
5174  case ISD::FNEG:   return "fneg";
5175  case ISD::FSQRT:  return "fsqrt";
5176  case ISD::FSIN:   return "fsin";
5177  case ISD::FCOS:   return "fcos";
5178  case ISD::FPOWI:  return "fpowi";
5179  case ISD::FPOW:   return "fpow";
5180  case ISD::FTRUNC: return "ftrunc";
5181  case ISD::FFLOOR: return "ffloor";
5182  case ISD::FCEIL:  return "fceil";
5183  case ISD::FRINT:  return "frint";
5184  case ISD::FNEARBYINT: return "fnearbyint";
5185
5186  // Binary operators
5187  case ISD::ADD:    return "add";
5188  case ISD::SUB:    return "sub";
5189  case ISD::MUL:    return "mul";
5190  case ISD::MULHU:  return "mulhu";
5191  case ISD::MULHS:  return "mulhs";
5192  case ISD::SDIV:   return "sdiv";
5193  case ISD::UDIV:   return "udiv";
5194  case ISD::SREM:   return "srem";
5195  case ISD::UREM:   return "urem";
5196  case ISD::SMUL_LOHI:  return "smul_lohi";
5197  case ISD::UMUL_LOHI:  return "umul_lohi";
5198  case ISD::SDIVREM:    return "sdivrem";
5199  case ISD::UDIVREM:    return "udivrem";
5200  case ISD::AND:    return "and";
5201  case ISD::OR:     return "or";
5202  case ISD::XOR:    return "xor";
5203  case ISD::SHL:    return "shl";
5204  case ISD::SRA:    return "sra";
5205  case ISD::SRL:    return "srl";
5206  case ISD::ROTL:   return "rotl";
5207  case ISD::ROTR:   return "rotr";
5208  case ISD::FADD:   return "fadd";
5209  case ISD::FSUB:   return "fsub";
5210  case ISD::FMUL:   return "fmul";
5211  case ISD::FDIV:   return "fdiv";
5212  case ISD::FREM:   return "frem";
5213  case ISD::FCOPYSIGN: return "fcopysign";
5214  case ISD::FGETSIGN:  return "fgetsign";
5215
5216  case ISD::SETCC:       return "setcc";
5217  case ISD::VSETCC:      return "vsetcc";
5218  case ISD::SELECT:      return "select";
5219  case ISD::SELECT_CC:   return "select_cc";
5220  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5221  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5222  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5223  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5224  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5225  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5226  case ISD::CARRY_FALSE:         return "carry_false";
5227  case ISD::ADDC:        return "addc";
5228  case ISD::ADDE:        return "adde";
5229  case ISD::SADDO:       return "saddo";
5230  case ISD::UADDO:       return "uaddo";
5231  case ISD::SSUBO:       return "ssubo";
5232  case ISD::USUBO:       return "usubo";
5233  case ISD::SMULO:       return "smulo";
5234  case ISD::UMULO:       return "umulo";
5235  case ISD::SUBC:        return "subc";
5236  case ISD::SUBE:        return "sube";
5237  case ISD::SHL_PARTS:   return "shl_parts";
5238  case ISD::SRA_PARTS:   return "sra_parts";
5239  case ISD::SRL_PARTS:   return "srl_parts";
5240
5241  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
5242  case ISD::INSERT_SUBREG:      return "insert_subreg";
5243
5244  // Conversion operators.
5245  case ISD::SIGN_EXTEND: return "sign_extend";
5246  case ISD::ZERO_EXTEND: return "zero_extend";
5247  case ISD::ANY_EXTEND:  return "any_extend";
5248  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5249  case ISD::TRUNCATE:    return "truncate";
5250  case ISD::FP_ROUND:    return "fp_round";
5251  case ISD::FLT_ROUNDS_: return "flt_rounds";
5252  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5253  case ISD::FP_EXTEND:   return "fp_extend";
5254
5255  case ISD::SINT_TO_FP:  return "sint_to_fp";
5256  case ISD::UINT_TO_FP:  return "uint_to_fp";
5257  case ISD::FP_TO_SINT:  return "fp_to_sint";
5258  case ISD::FP_TO_UINT:  return "fp_to_uint";
5259  case ISD::BIT_CONVERT: return "bit_convert";
5260
5261  case ISD::CONVERT_RNDSAT: {
5262    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5263    default: assert(0 && "Unknown cvt code!");
5264    case ISD::CVT_FF:  return "cvt_ff";
5265    case ISD::CVT_FS:  return "cvt_fs";
5266    case ISD::CVT_FU:  return "cvt_fu";
5267    case ISD::CVT_SF:  return "cvt_sf";
5268    case ISD::CVT_UF:  return "cvt_uf";
5269    case ISD::CVT_SS:  return "cvt_ss";
5270    case ISD::CVT_SU:  return "cvt_su";
5271    case ISD::CVT_US:  return "cvt_us";
5272    case ISD::CVT_UU:  return "cvt_uu";
5273    }
5274  }
5275
5276    // Control flow instructions
5277  case ISD::BR:      return "br";
5278  case ISD::BRIND:   return "brind";
5279  case ISD::BR_JT:   return "br_jt";
5280  case ISD::BRCOND:  return "brcond";
5281  case ISD::BR_CC:   return "br_cc";
5282  case ISD::RET:     return "ret";
5283  case ISD::CALLSEQ_START:  return "callseq_start";
5284  case ISD::CALLSEQ_END:    return "callseq_end";
5285
5286    // Other operators
5287  case ISD::LOAD:               return "load";
5288  case ISD::STORE:              return "store";
5289  case ISD::VAARG:              return "vaarg";
5290  case ISD::VACOPY:             return "vacopy";
5291  case ISD::VAEND:              return "vaend";
5292  case ISD::VASTART:            return "vastart";
5293  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5294  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5295  case ISD::BUILD_PAIR:         return "build_pair";
5296  case ISD::STACKSAVE:          return "stacksave";
5297  case ISD::STACKRESTORE:       return "stackrestore";
5298  case ISD::TRAP:               return "trap";
5299
5300  // Bit manipulation
5301  case ISD::BSWAP:   return "bswap";
5302  case ISD::CTPOP:   return "ctpop";
5303  case ISD::CTTZ:    return "cttz";
5304  case ISD::CTLZ:    return "ctlz";
5305
5306  // Debug info
5307  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5308  case ISD::DEBUG_LOC: return "debug_loc";
5309
5310  // Trampolines
5311  case ISD::TRAMPOLINE: return "trampoline";
5312
5313  case ISD::CONDCODE:
5314    switch (cast<CondCodeSDNode>(this)->get()) {
5315    default: assert(0 && "Unknown setcc condition!");
5316    case ISD::SETOEQ:  return "setoeq";
5317    case ISD::SETOGT:  return "setogt";
5318    case ISD::SETOGE:  return "setoge";
5319    case ISD::SETOLT:  return "setolt";
5320    case ISD::SETOLE:  return "setole";
5321    case ISD::SETONE:  return "setone";
5322
5323    case ISD::SETO:    return "seto";
5324    case ISD::SETUO:   return "setuo";
5325    case ISD::SETUEQ:  return "setue";
5326    case ISD::SETUGT:  return "setugt";
5327    case ISD::SETUGE:  return "setuge";
5328    case ISD::SETULT:  return "setult";
5329    case ISD::SETULE:  return "setule";
5330    case ISD::SETUNE:  return "setune";
5331
5332    case ISD::SETEQ:   return "seteq";
5333    case ISD::SETGT:   return "setgt";
5334    case ISD::SETGE:   return "setge";
5335    case ISD::SETLT:   return "setlt";
5336    case ISD::SETLE:   return "setle";
5337    case ISD::SETNE:   return "setne";
5338    }
5339  }
5340}
5341
5342const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5343  switch (AM) {
5344  default:
5345    return "";
5346  case ISD::PRE_INC:
5347    return "<pre-inc>";
5348  case ISD::PRE_DEC:
5349    return "<pre-dec>";
5350  case ISD::POST_INC:
5351    return "<post-inc>";
5352  case ISD::POST_DEC:
5353    return "<post-dec>";
5354  }
5355}
5356
5357std::string ISD::ArgFlagsTy::getArgFlagsString() {
5358  std::string S = "< ";
5359
5360  if (isZExt())
5361    S += "zext ";
5362  if (isSExt())
5363    S += "sext ";
5364  if (isInReg())
5365    S += "inreg ";
5366  if (isSRet())
5367    S += "sret ";
5368  if (isByVal())
5369    S += "byval ";
5370  if (isNest())
5371    S += "nest ";
5372  if (getByValAlign())
5373    S += "byval-align:" + utostr(getByValAlign()) + " ";
5374  if (getOrigAlign())
5375    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5376  if (getByValSize())
5377    S += "byval-size:" + utostr(getByValSize()) + " ";
5378  return S + ">";
5379}
5380
5381void SDNode::dump() const { dump(0); }
5382void SDNode::dump(const SelectionDAG *G) const {
5383  print(errs(), G);
5384  errs().flush();
5385}
5386
5387void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5388  OS << (void*)this << ": ";
5389
5390  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5391    if (i) OS << ",";
5392    if (getValueType(i) == MVT::Other)
5393      OS << "ch";
5394    else
5395      OS << getValueType(i).getMVTString();
5396  }
5397  OS << " = " << getOperationName(G);
5398
5399  OS << " ";
5400  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5401    if (i) OS << ", ";
5402    OS << (void*)getOperand(i).getNode();
5403    if (unsigned RN = getOperand(i).getResNo())
5404      OS << ":" << RN;
5405  }
5406
5407  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5408    SDNode *Mask = getOperand(2).getNode();
5409    OS << "<";
5410    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5411      if (i) OS << ",";
5412      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5413        OS << "u";
5414      else
5415        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5416    }
5417    OS << ">";
5418  }
5419
5420  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5421    OS << '<' << CSDN->getAPIntValue() << '>';
5422  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5423    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5424      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5425    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5426      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5427    else {
5428      OS << "<APFloat(";
5429      CSDN->getValueAPF().bitcastToAPInt().dump();
5430      OS << ")>";
5431    }
5432  } else if (const GlobalAddressSDNode *GADN =
5433             dyn_cast<GlobalAddressSDNode>(this)) {
5434    int64_t offset = GADN->getOffset();
5435    OS << '<';
5436    WriteAsOperand(OS, GADN->getGlobal());
5437    OS << '>';
5438    if (offset > 0)
5439      OS << " + " << offset;
5440    else
5441      OS << " " << offset;
5442  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5443    OS << "<" << FIDN->getIndex() << ">";
5444  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5445    OS << "<" << JTDN->getIndex() << ">";
5446  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5447    int offset = CP->getOffset();
5448    if (CP->isMachineConstantPoolEntry())
5449      OS << "<" << *CP->getMachineCPVal() << ">";
5450    else
5451      OS << "<" << *CP->getConstVal() << ">";
5452    if (offset > 0)
5453      OS << " + " << offset;
5454    else
5455      OS << " " << offset;
5456  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5457    OS << "<";
5458    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5459    if (LBB)
5460      OS << LBB->getName() << " ";
5461    OS << (const void*)BBDN->getBasicBlock() << ">";
5462  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5463    if (G && R->getReg() &&
5464        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5465      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5466    } else {
5467      OS << " #" << R->getReg();
5468    }
5469  } else if (const ExternalSymbolSDNode *ES =
5470             dyn_cast<ExternalSymbolSDNode>(this)) {
5471    OS << "'" << ES->getSymbol() << "'";
5472  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5473    if (M->getValue())
5474      OS << "<" << M->getValue() << ">";
5475    else
5476      OS << "<null>";
5477  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5478    if (M->MO.getValue())
5479      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5480    else
5481      OS << "<null:" << M->MO.getOffset() << ">";
5482  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5483    OS << N->getArgFlags().getArgFlagsString();
5484  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5485    OS << ":" << N->getVT().getMVTString();
5486  }
5487  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5488    const Value *SrcValue = LD->getSrcValue();
5489    int SrcOffset = LD->getSrcValueOffset();
5490    OS << " <";
5491    if (SrcValue)
5492      OS << SrcValue;
5493    else
5494      OS << "null";
5495    OS << ":" << SrcOffset << ">";
5496
5497    bool doExt = true;
5498    switch (LD->getExtensionType()) {
5499    default: doExt = false; break;
5500    case ISD::EXTLOAD: OS << " <anyext "; break;
5501    case ISD::SEXTLOAD: OS << " <sext "; break;
5502    case ISD::ZEXTLOAD: OS << " <zext "; break;
5503    }
5504    if (doExt)
5505      OS << LD->getMemoryVT().getMVTString() << ">";
5506
5507    const char *AM = getIndexedModeName(LD->getAddressingMode());
5508    if (*AM)
5509      OS << " " << AM;
5510    if (LD->isVolatile())
5511      OS << " <volatile>";
5512    OS << " alignment=" << LD->getAlignment();
5513  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5514    const Value *SrcValue = ST->getSrcValue();
5515    int SrcOffset = ST->getSrcValueOffset();
5516    OS << " <";
5517    if (SrcValue)
5518      OS << SrcValue;
5519    else
5520      OS << "null";
5521    OS << ":" << SrcOffset << ">";
5522
5523    if (ST->isTruncatingStore())
5524      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5525
5526    const char *AM = getIndexedModeName(ST->getAddressingMode());
5527    if (*AM)
5528      OS << " " << AM;
5529    if (ST->isVolatile())
5530      OS << " <volatile>";
5531    OS << " alignment=" << ST->getAlignment();
5532  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5533    const Value *SrcValue = AT->getSrcValue();
5534    int SrcOffset = AT->getSrcValueOffset();
5535    OS << " <";
5536    if (SrcValue)
5537      OS << SrcValue;
5538    else
5539      OS << "null";
5540    OS << ":" << SrcOffset << ">";
5541    if (AT->isVolatile())
5542      OS << " <volatile>";
5543    OS << " alignment=" << AT->getAlignment();
5544  }
5545}
5546
5547static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5548  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5549    if (N->getOperand(i).getNode()->hasOneUse())
5550      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5551    else
5552      cerr << "\n" << std::string(indent+2, ' ')
5553           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5554
5555
5556  cerr << "\n" << std::string(indent, ' ');
5557  N->dump(G);
5558}
5559
5560void SelectionDAG::dump() const {
5561  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5562
5563  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5564       I != E; ++I) {
5565    const SDNode *N = I;
5566    if (!N->hasOneUse() && N != getRoot().getNode())
5567      DumpNodes(N, 2, this);
5568  }
5569
5570  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5571
5572  cerr << "\n\n";
5573}
5574
5575const Type *ConstantPoolSDNode::getType() const {
5576  if (isMachineConstantPoolEntry())
5577    return Val.MachineCPVal->getType();
5578  return Val.ConstVal->getType();
5579}
5580