SelectionDAG.cpp revision fcfa3114e0922e6a127cd9e63dce10d98fb77757
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/Function.h"
17#include "llvm/GlobalAlias.h"
18#include "llvm/GlobalVariable.h"
19#include "llvm/Intrinsics.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Assembly/Writer.h"
22#include "llvm/CallingConv.h"
23#include "llvm/CodeGen/MachineBasicBlock.h"
24#include "llvm/CodeGen/MachineConstantPool.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineModuleInfo.h"
27#include "llvm/CodeGen/PseudoSourceValue.h"
28#include "llvm/Target/TargetRegisterInfo.h"
29#include "llvm/Target/TargetData.h"
30#include "llvm/Target/TargetLowering.h"
31#include "llvm/Target/TargetOptions.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetIntrinsicInfo.h"
34#include "llvm/Target/TargetMachine.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/ManagedStatic.h"
38#include "llvm/Support/MathExtras.h"
39#include "llvm/Support/raw_ostream.h"
40#include "llvm/System/Mutex.h"
41#include "llvm/ADT/SetVector.h"
42#include "llvm/ADT/SmallPtrSet.h"
43#include "llvm/ADT/SmallSet.h"
44#include "llvm/ADT/SmallVector.h"
45#include "llvm/ADT/StringExtras.h"
46#include <algorithm>
47#include <cmath>
48using namespace llvm;
49
50/// makeVTList - Return an instance of the SDVTList struct initialized with the
51/// specified members.
52static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
53  SDVTList Res = {VTs, NumVTs};
54  return Res;
55}
56
57static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
58  switch (VT.getSimpleVT().SimpleTy) {
59  default: llvm_unreachable("Unknown FP format");
60  case MVT::f32:     return &APFloat::IEEEsingle;
61  case MVT::f64:     return &APFloat::IEEEdouble;
62  case MVT::f80:     return &APFloat::x87DoubleExtended;
63  case MVT::f128:    return &APFloat::IEEEquad;
64  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
65  }
66}
67
68SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
69
70//===----------------------------------------------------------------------===//
71//                              ConstantFPSDNode Class
72//===----------------------------------------------------------------------===//
73
74/// isExactlyValue - We don't rely on operator== working on double values, as
75/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
76/// As such, this method can be used to do an exact bit-for-bit comparison of
77/// two floating point values.
78bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
79  return getValueAPF().bitwiseIsEqual(V);
80}
81
82bool ConstantFPSDNode::isValueValidForType(EVT VT,
83                                           const APFloat& Val) {
84  assert(VT.isFloatingPoint() && "Can only convert between FP types");
85
86  // PPC long double cannot be converted to any other type.
87  if (VT == MVT::ppcf128 ||
88      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
89    return false;
90
91  // convert modifies in place, so make a copy.
92  APFloat Val2 = APFloat(Val);
93  bool losesInfo;
94  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
95                      &losesInfo);
96  return !losesInfo;
97}
98
99//===----------------------------------------------------------------------===//
100//                              ISD Namespace
101//===----------------------------------------------------------------------===//
102
103/// isBuildVectorAllOnes - Return true if the specified node is a
104/// BUILD_VECTOR where all of the elements are ~0 or undef.
105bool ISD::isBuildVectorAllOnes(const SDNode *N) {
106  // Look through a bit convert.
107  if (N->getOpcode() == ISD::BIT_CONVERT)
108    N = N->getOperand(0).getNode();
109
110  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
111
112  unsigned i = 0, e = N->getNumOperands();
113
114  // Skip over all of the undef values.
115  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
116    ++i;
117
118  // Do not accept an all-undef vector.
119  if (i == e) return false;
120
121  // Do not accept build_vectors that aren't all constants or which have non-~0
122  // elements.
123  SDValue NotZero = N->getOperand(i);
124  if (isa<ConstantSDNode>(NotZero)) {
125    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
126      return false;
127  } else if (isa<ConstantFPSDNode>(NotZero)) {
128    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
129                bitcastToAPInt().isAllOnesValue())
130      return false;
131  } else
132    return false;
133
134  // Okay, we have at least one ~0 value, check to see if the rest match or are
135  // undefs.
136  for (++i; i != e; ++i)
137    if (N->getOperand(i) != NotZero &&
138        N->getOperand(i).getOpcode() != ISD::UNDEF)
139      return false;
140  return true;
141}
142
143
144/// isBuildVectorAllZeros - Return true if the specified node is a
145/// BUILD_VECTOR where all of the elements are 0 or undef.
146bool ISD::isBuildVectorAllZeros(const SDNode *N) {
147  // Look through a bit convert.
148  if (N->getOpcode() == ISD::BIT_CONVERT)
149    N = N->getOperand(0).getNode();
150
151  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
152
153  unsigned i = 0, e = N->getNumOperands();
154
155  // Skip over all of the undef values.
156  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
157    ++i;
158
159  // Do not accept an all-undef vector.
160  if (i == e) return false;
161
162  // Do not accept build_vectors that aren't all constants or which have non-0
163  // elements.
164  SDValue Zero = N->getOperand(i);
165  if (isa<ConstantSDNode>(Zero)) {
166    if (!cast<ConstantSDNode>(Zero)->isNullValue())
167      return false;
168  } else if (isa<ConstantFPSDNode>(Zero)) {
169    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
170      return false;
171  } else
172    return false;
173
174  // Okay, we have at least one 0 value, check to see if the rest match or are
175  // undefs.
176  for (++i; i != e; ++i)
177    if (N->getOperand(i) != Zero &&
178        N->getOperand(i).getOpcode() != ISD::UNDEF)
179      return false;
180  return true;
181}
182
183/// isScalarToVector - Return true if the specified node is a
184/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
185/// element is not an undef.
186bool ISD::isScalarToVector(const SDNode *N) {
187  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
188    return true;
189
190  if (N->getOpcode() != ISD::BUILD_VECTOR)
191    return false;
192  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
193    return false;
194  unsigned NumElems = N->getNumOperands();
195  for (unsigned i = 1; i < NumElems; ++i) {
196    SDValue V = N->getOperand(i);
197    if (V.getOpcode() != ISD::UNDEF)
198      return false;
199  }
200  return true;
201}
202
203
204/// isDebugLabel - Return true if the specified node represents a debug
205/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
206bool ISD::isDebugLabel(const SDNode *N) {
207  SDValue Zero;
208  if (N->getOpcode() == ISD::DBG_LABEL)
209    return true;
210  if (N->isMachineOpcode() &&
211      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
212    return true;
213  return false;
214}
215
216/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
217/// when given the operation for (X op Y).
218ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
219  // To perform this operation, we just need to swap the L and G bits of the
220  // operation.
221  unsigned OldL = (Operation >> 2) & 1;
222  unsigned OldG = (Operation >> 1) & 1;
223  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
224                       (OldL << 1) |       // New G bit
225                       (OldG << 2));       // New L bit.
226}
227
228/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
229/// 'op' is a valid SetCC operation.
230ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
231  unsigned Operation = Op;
232  if (isInteger)
233    Operation ^= 7;   // Flip L, G, E bits, but not U.
234  else
235    Operation ^= 15;  // Flip all of the condition bits.
236
237  if (Operation > ISD::SETTRUE2)
238    Operation &= ~8;  // Don't let N and U bits get set.
239
240  return ISD::CondCode(Operation);
241}
242
243
244/// isSignedOp - For an integer comparison, return 1 if the comparison is a
245/// signed operation and 2 if the result is an unsigned comparison.  Return zero
246/// if the operation does not depend on the sign of the input (setne and seteq).
247static int isSignedOp(ISD::CondCode Opcode) {
248  switch (Opcode) {
249  default: llvm_unreachable("Illegal integer setcc operation!");
250  case ISD::SETEQ:
251  case ISD::SETNE: return 0;
252  case ISD::SETLT:
253  case ISD::SETLE:
254  case ISD::SETGT:
255  case ISD::SETGE: return 1;
256  case ISD::SETULT:
257  case ISD::SETULE:
258  case ISD::SETUGT:
259  case ISD::SETUGE: return 2;
260  }
261}
262
263/// getSetCCOrOperation - Return the result of a logical OR between different
264/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
265/// returns SETCC_INVALID if it is not possible to represent the resultant
266/// comparison.
267ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
268                                       bool isInteger) {
269  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
270    // Cannot fold a signed integer setcc with an unsigned integer setcc.
271    return ISD::SETCC_INVALID;
272
273  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
274
275  // If the N and U bits get set then the resultant comparison DOES suddenly
276  // care about orderedness, and is true when ordered.
277  if (Op > ISD::SETTRUE2)
278    Op &= ~16;     // Clear the U bit if the N bit is set.
279
280  // Canonicalize illegal integer setcc's.
281  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
282    Op = ISD::SETNE;
283
284  return ISD::CondCode(Op);
285}
286
287/// getSetCCAndOperation - Return the result of a logical AND between different
288/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
289/// function returns zero if it is not possible to represent the resultant
290/// comparison.
291ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
292                                        bool isInteger) {
293  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
294    // Cannot fold a signed setcc with an unsigned setcc.
295    return ISD::SETCC_INVALID;
296
297  // Combine all of the condition bits.
298  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
299
300  // Canonicalize illegal integer setcc's.
301  if (isInteger) {
302    switch (Result) {
303    default: break;
304    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
305    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
306    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
307    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
308    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
309    }
310  }
311
312  return Result;
313}
314
315const TargetMachine &SelectionDAG::getTarget() const {
316  return MF->getTarget();
317}
318
319//===----------------------------------------------------------------------===//
320//                           SDNode Profile Support
321//===----------------------------------------------------------------------===//
322
323/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
324///
325static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
326  ID.AddInteger(OpC);
327}
328
329/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
330/// solely with their pointer.
331static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
332  ID.AddPointer(VTList.VTs);
333}
334
335/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
336///
337static void AddNodeIDOperands(FoldingSetNodeID &ID,
338                              const SDValue *Ops, unsigned NumOps) {
339  for (; NumOps; --NumOps, ++Ops) {
340    ID.AddPointer(Ops->getNode());
341    ID.AddInteger(Ops->getResNo());
342  }
343}
344
345/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
346///
347static void AddNodeIDOperands(FoldingSetNodeID &ID,
348                              const SDUse *Ops, unsigned NumOps) {
349  for (; NumOps; --NumOps, ++Ops) {
350    ID.AddPointer(Ops->getNode());
351    ID.AddInteger(Ops->getResNo());
352  }
353}
354
355static void AddNodeIDNode(FoldingSetNodeID &ID,
356                          unsigned short OpC, SDVTList VTList,
357                          const SDValue *OpList, unsigned N) {
358  AddNodeIDOpcode(ID, OpC);
359  AddNodeIDValueTypes(ID, VTList);
360  AddNodeIDOperands(ID, OpList, N);
361}
362
363/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
364/// the NodeID data.
365static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
366  switch (N->getOpcode()) {
367  case ISD::TargetExternalSymbol:
368  case ISD::ExternalSymbol:
369    llvm_unreachable("Should only be used on nodes with operands");
370  default: break;  // Normal nodes don't need extra info.
371  case ISD::TargetConstant:
372  case ISD::Constant:
373    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
374    break;
375  case ISD::TargetConstantFP:
376  case ISD::ConstantFP: {
377    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
378    break;
379  }
380  case ISD::TargetGlobalAddress:
381  case ISD::GlobalAddress:
382  case ISD::TargetGlobalTLSAddress:
383  case ISD::GlobalTLSAddress: {
384    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
385    ID.AddPointer(GA->getGlobal());
386    ID.AddInteger(GA->getOffset());
387    ID.AddInteger(GA->getTargetFlags());
388    break;
389  }
390  case ISD::BasicBlock:
391    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
392    break;
393  case ISD::Register:
394    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
395    break;
396  case ISD::DBG_STOPPOINT: {
397    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
398    ID.AddInteger(DSP->getLine());
399    ID.AddInteger(DSP->getColumn());
400    ID.AddPointer(DSP->getCompileUnit());
401    break;
402  }
403  case ISD::SRCVALUE:
404    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
405    break;
406  case ISD::FrameIndex:
407  case ISD::TargetFrameIndex:
408    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
409    break;
410  case ISD::JumpTable:
411  case ISD::TargetJumpTable:
412    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
413    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
414    break;
415  case ISD::ConstantPool:
416  case ISD::TargetConstantPool: {
417    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
418    ID.AddInteger(CP->getAlignment());
419    ID.AddInteger(CP->getOffset());
420    if (CP->isMachineConstantPoolEntry())
421      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
422    else
423      ID.AddPointer(CP->getConstVal());
424    ID.AddInteger(CP->getTargetFlags());
425    break;
426  }
427  case ISD::LOAD: {
428    const LoadSDNode *LD = cast<LoadSDNode>(N);
429    ID.AddInteger(LD->getMemoryVT().getRawBits());
430    ID.AddInteger(LD->getRawSubclassData());
431    break;
432  }
433  case ISD::STORE: {
434    const StoreSDNode *ST = cast<StoreSDNode>(N);
435    ID.AddInteger(ST->getMemoryVT().getRawBits());
436    ID.AddInteger(ST->getRawSubclassData());
437    break;
438  }
439  case ISD::ATOMIC_CMP_SWAP:
440  case ISD::ATOMIC_SWAP:
441  case ISD::ATOMIC_LOAD_ADD:
442  case ISD::ATOMIC_LOAD_SUB:
443  case ISD::ATOMIC_LOAD_AND:
444  case ISD::ATOMIC_LOAD_OR:
445  case ISD::ATOMIC_LOAD_XOR:
446  case ISD::ATOMIC_LOAD_NAND:
447  case ISD::ATOMIC_LOAD_MIN:
448  case ISD::ATOMIC_LOAD_MAX:
449  case ISD::ATOMIC_LOAD_UMIN:
450  case ISD::ATOMIC_LOAD_UMAX: {
451    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
452    ID.AddInteger(AT->getMemoryVT().getRawBits());
453    ID.AddInteger(AT->getRawSubclassData());
454    break;
455  }
456  case ISD::VECTOR_SHUFFLE: {
457    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
458    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
459         i != e; ++i)
460      ID.AddInteger(SVN->getMaskElt(i));
461    break;
462  }
463  } // end switch (N->getOpcode())
464}
465
466/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
467/// data.
468static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
469  AddNodeIDOpcode(ID, N->getOpcode());
470  // Add the return value info.
471  AddNodeIDValueTypes(ID, N->getVTList());
472  // Add the operand info.
473  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
474
475  // Handle SDNode leafs with special info.
476  AddNodeIDCustom(ID, N);
477}
478
479/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
480/// the CSE map that carries volatility, indexing mode, and
481/// extension/truncation information.
482///
483static inline unsigned
484encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile) {
485  assert((ConvType & 3) == ConvType &&
486         "ConvType may not require more than 2 bits!");
487  assert((AM & 7) == AM &&
488         "AM may not require more than 3 bits!");
489  return ConvType |
490         (AM << 2) |
491         (isVolatile << 5);
492}
493
494//===----------------------------------------------------------------------===//
495//                              SelectionDAG Class
496//===----------------------------------------------------------------------===//
497
498/// doNotCSE - Return true if CSE should not be performed for this node.
499static bool doNotCSE(SDNode *N) {
500  if (N->getValueType(0) == MVT::Flag)
501    return true; // Never CSE anything that produces a flag.
502
503  switch (N->getOpcode()) {
504  default: break;
505  case ISD::HANDLENODE:
506  case ISD::DBG_LABEL:
507  case ISD::DBG_STOPPOINT:
508  case ISD::EH_LABEL:
509    return true;   // Never CSE these nodes.
510  }
511
512  // Check that remaining values produced are not flags.
513  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
514    if (N->getValueType(i) == MVT::Flag)
515      return true; // Never CSE anything that produces a flag.
516
517  return false;
518}
519
520/// RemoveDeadNodes - This method deletes all unreachable nodes in the
521/// SelectionDAG.
522void SelectionDAG::RemoveDeadNodes() {
523  // Create a dummy node (which is not added to allnodes), that adds a reference
524  // to the root node, preventing it from being deleted.
525  HandleSDNode Dummy(getRoot());
526
527  SmallVector<SDNode*, 128> DeadNodes;
528
529  // Add all obviously-dead nodes to the DeadNodes worklist.
530  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
531    if (I->use_empty())
532      DeadNodes.push_back(I);
533
534  RemoveDeadNodes(DeadNodes);
535
536  // If the root changed (e.g. it was a dead load, update the root).
537  setRoot(Dummy.getValue());
538}
539
540/// RemoveDeadNodes - This method deletes the unreachable nodes in the
541/// given list, and any nodes that become unreachable as a result.
542void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
543                                   DAGUpdateListener *UpdateListener) {
544
545  // Process the worklist, deleting the nodes and adding their uses to the
546  // worklist.
547  while (!DeadNodes.empty()) {
548    SDNode *N = DeadNodes.pop_back_val();
549
550    if (UpdateListener)
551      UpdateListener->NodeDeleted(N, 0);
552
553    // Take the node out of the appropriate CSE map.
554    RemoveNodeFromCSEMaps(N);
555
556    // Next, brutally remove the operand list.  This is safe to do, as there are
557    // no cycles in the graph.
558    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
559      SDUse &Use = *I++;
560      SDNode *Operand = Use.getNode();
561      Use.set(SDValue());
562
563      // Now that we removed this operand, see if there are no uses of it left.
564      if (Operand->use_empty())
565        DeadNodes.push_back(Operand);
566    }
567
568    DeallocateNode(N);
569  }
570}
571
572void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
573  SmallVector<SDNode*, 16> DeadNodes(1, N);
574  RemoveDeadNodes(DeadNodes, UpdateListener);
575}
576
577void SelectionDAG::DeleteNode(SDNode *N) {
578  // First take this out of the appropriate CSE map.
579  RemoveNodeFromCSEMaps(N);
580
581  // Finally, remove uses due to operands of this node, remove from the
582  // AllNodes list, and delete the node.
583  DeleteNodeNotInCSEMaps(N);
584}
585
586void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
587  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
588  assert(N->use_empty() && "Cannot delete a node that is not dead!");
589
590  // Drop all of the operands and decrement used node's use counts.
591  N->DropOperands();
592
593  DeallocateNode(N);
594}
595
596void SelectionDAG::DeallocateNode(SDNode *N) {
597  if (N->OperandsNeedDelete)
598    delete[] N->OperandList;
599
600  // Set the opcode to DELETED_NODE to help catch bugs when node
601  // memory is reallocated.
602  N->NodeType = ISD::DELETED_NODE;
603
604  NodeAllocator.Deallocate(AllNodes.remove(N));
605}
606
607/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
608/// correspond to it.  This is useful when we're about to delete or repurpose
609/// the node.  We don't want future request for structurally identical nodes
610/// to return N anymore.
611bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
612  bool Erased = false;
613  switch (N->getOpcode()) {
614  case ISD::EntryToken:
615    llvm_unreachable("EntryToken should not be in CSEMaps!");
616    return false;
617  case ISD::HANDLENODE: return false;  // noop.
618  case ISD::CONDCODE:
619    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
620           "Cond code doesn't exist!");
621    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
622    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
623    break;
624  case ISD::ExternalSymbol:
625    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
626    break;
627  case ISD::TargetExternalSymbol: {
628    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
629    Erased = TargetExternalSymbols.erase(
630               std::pair<std::string,unsigned char>(ESN->getSymbol(),
631                                                    ESN->getTargetFlags()));
632    break;
633  }
634  case ISD::VALUETYPE: {
635    EVT VT = cast<VTSDNode>(N)->getVT();
636    if (VT.isExtended()) {
637      Erased = ExtendedValueTypeNodes.erase(VT);
638    } else {
639      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
640      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
641    }
642    break;
643  }
644  default:
645    // Remove it from the CSE Map.
646    Erased = CSEMap.RemoveNode(N);
647    break;
648  }
649#ifndef NDEBUG
650  // Verify that the node was actually in one of the CSE maps, unless it has a
651  // flag result (which cannot be CSE'd) or is one of the special cases that are
652  // not subject to CSE.
653  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
654      !N->isMachineOpcode() && !doNotCSE(N)) {
655    N->dump(this);
656    errs() << "\n";
657    llvm_unreachable("Node is not in map!");
658  }
659#endif
660  return Erased;
661}
662
663/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
664/// maps and modified in place. Add it back to the CSE maps, unless an identical
665/// node already exists, in which case transfer all its users to the existing
666/// node. This transfer can potentially trigger recursive merging.
667///
668void
669SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
670                                       DAGUpdateListener *UpdateListener) {
671  // For node types that aren't CSE'd, just act as if no identical node
672  // already exists.
673  if (!doNotCSE(N)) {
674    SDNode *Existing = CSEMap.GetOrInsertNode(N);
675    if (Existing != N) {
676      // If there was already an existing matching node, use ReplaceAllUsesWith
677      // to replace the dead one with the existing one.  This can cause
678      // recursive merging of other unrelated nodes down the line.
679      ReplaceAllUsesWith(N, Existing, UpdateListener);
680
681      // N is now dead.  Inform the listener if it exists and delete it.
682      if (UpdateListener)
683        UpdateListener->NodeDeleted(N, Existing);
684      DeleteNodeNotInCSEMaps(N);
685      return;
686    }
687  }
688
689  // If the node doesn't already exist, we updated it.  Inform a listener if
690  // it exists.
691  if (UpdateListener)
692    UpdateListener->NodeUpdated(N);
693}
694
695/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
696/// were replaced with those specified.  If this node is never memoized,
697/// return null, otherwise return a pointer to the slot it would take.  If a
698/// node already exists with these operands, the slot will be non-null.
699SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
700                                           void *&InsertPos) {
701  if (doNotCSE(N))
702    return 0;
703
704  SDValue Ops[] = { Op };
705  FoldingSetNodeID ID;
706  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
707  AddNodeIDCustom(ID, N);
708  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
709}
710
711/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
712/// were replaced with those specified.  If this node is never memoized,
713/// return null, otherwise return a pointer to the slot it would take.  If a
714/// node already exists with these operands, the slot will be non-null.
715SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
716                                           SDValue Op1, SDValue Op2,
717                                           void *&InsertPos) {
718  if (doNotCSE(N))
719    return 0;
720
721  SDValue Ops[] = { Op1, Op2 };
722  FoldingSetNodeID ID;
723  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
724  AddNodeIDCustom(ID, N);
725  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
726}
727
728
729/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
730/// were replaced with those specified.  If this node is never memoized,
731/// return null, otherwise return a pointer to the slot it would take.  If a
732/// node already exists with these operands, the slot will be non-null.
733SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
734                                           const SDValue *Ops,unsigned NumOps,
735                                           void *&InsertPos) {
736  if (doNotCSE(N))
737    return 0;
738
739  FoldingSetNodeID ID;
740  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
741  AddNodeIDCustom(ID, N);
742  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
743}
744
745/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
746void SelectionDAG::VerifyNode(SDNode *N) {
747  switch (N->getOpcode()) {
748  default:
749    break;
750  case ISD::BUILD_PAIR: {
751    EVT VT = N->getValueType(0);
752    assert(N->getNumValues() == 1 && "Too many results!");
753    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
754           "Wrong return type!");
755    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
756    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
757           "Mismatched operand types!");
758    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
759           "Wrong operand type!");
760    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
761           "Wrong return type size");
762    break;
763  }
764  case ISD::BUILD_VECTOR: {
765    assert(N->getNumValues() == 1 && "Too many results!");
766    assert(N->getValueType(0).isVector() && "Wrong return type!");
767    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
768           "Wrong number of operands!");
769    EVT EltVT = N->getValueType(0).getVectorElementType();
770    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
771      assert((I->getValueType() == EltVT ||
772             (EltVT.isInteger() && I->getValueType().isInteger() &&
773              EltVT.bitsLE(I->getValueType()))) &&
774            "Wrong operand type!");
775    break;
776  }
777  }
778}
779
780/// getEVTAlignment - Compute the default alignment value for the
781/// given type.
782///
783unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
784  const Type *Ty = VT == MVT::iPTR ?
785                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
786                   VT.getTypeForEVT(*getContext());
787
788  return TLI.getTargetData()->getABITypeAlignment(Ty);
789}
790
791// EntryNode could meaningfully have debug info if we can find it...
792SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
793  : TLI(tli), FLI(fli), DW(0),
794    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
795    getVTList(MVT::Other)), Root(getEntryNode()) {
796  AllNodes.push_back(&EntryNode);
797}
798
799void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
800                        DwarfWriter *dw) {
801  MF = &mf;
802  MMI = mmi;
803  DW = dw;
804  Context = &mf.getFunction()->getContext();
805}
806
807SelectionDAG::~SelectionDAG() {
808  allnodes_clear();
809}
810
811void SelectionDAG::allnodes_clear() {
812  assert(&*AllNodes.begin() == &EntryNode);
813  AllNodes.remove(AllNodes.begin());
814  while (!AllNodes.empty())
815    DeallocateNode(AllNodes.begin());
816}
817
818void SelectionDAG::clear() {
819  allnodes_clear();
820  OperandAllocator.Reset();
821  CSEMap.clear();
822
823  ExtendedValueTypeNodes.clear();
824  ExternalSymbols.clear();
825  TargetExternalSymbols.clear();
826  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
827            static_cast<CondCodeSDNode*>(0));
828  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
829            static_cast<SDNode*>(0));
830
831  EntryNode.UseList = 0;
832  AllNodes.push_back(&EntryNode);
833  Root = getEntryNode();
834}
835
836SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
837  return VT.bitsGT(Op.getValueType()) ?
838    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
839    getNode(ISD::TRUNCATE, DL, VT, Op);
840}
841
842SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
843  return VT.bitsGT(Op.getValueType()) ?
844    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
845    getNode(ISD::TRUNCATE, DL, VT, Op);
846}
847
848SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
849  if (Op.getValueType() == VT) return Op;
850  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
851                                   VT.getSizeInBits());
852  return getNode(ISD::AND, DL, Op.getValueType(), Op,
853                 getConstant(Imm, Op.getValueType()));
854}
855
856/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
857///
858SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
859  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
860  SDValue NegOne =
861    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
862  return getNode(ISD::XOR, DL, VT, Val, NegOne);
863}
864
865SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
866  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
867  assert((EltVT.getSizeInBits() >= 64 ||
868         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
869         "getConstant with a uint64_t value that doesn't fit in the type!");
870  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
871}
872
873SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
874  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
875}
876
877SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
878  assert(VT.isInteger() && "Cannot create FP integer constant!");
879
880  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
881  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
882         "APInt size does not match type size!");
883
884  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
885  FoldingSetNodeID ID;
886  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
887  ID.AddPointer(&Val);
888  void *IP = 0;
889  SDNode *N = NULL;
890  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
891    if (!VT.isVector())
892      return SDValue(N, 0);
893  if (!N) {
894    N = NodeAllocator.Allocate<ConstantSDNode>();
895    new (N) ConstantSDNode(isT, &Val, EltVT);
896    CSEMap.InsertNode(N, IP);
897    AllNodes.push_back(N);
898  }
899
900  SDValue Result(N, 0);
901  if (VT.isVector()) {
902    SmallVector<SDValue, 8> Ops;
903    Ops.assign(VT.getVectorNumElements(), Result);
904    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
905                     VT, &Ops[0], Ops.size());
906  }
907  return Result;
908}
909
910SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
911  return getConstant(Val, TLI.getPointerTy(), isTarget);
912}
913
914
915SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
916  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
917}
918
919SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
920  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
921
922  EVT EltVT =
923    VT.isVector() ? VT.getVectorElementType() : VT;
924
925  // Do the map lookup using the actual bit pattern for the floating point
926  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
927  // we don't have issues with SNANs.
928  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
929  FoldingSetNodeID ID;
930  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
931  ID.AddPointer(&V);
932  void *IP = 0;
933  SDNode *N = NULL;
934  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
935    if (!VT.isVector())
936      return SDValue(N, 0);
937  if (!N) {
938    N = NodeAllocator.Allocate<ConstantFPSDNode>();
939    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
940    CSEMap.InsertNode(N, IP);
941    AllNodes.push_back(N);
942  }
943
944  SDValue Result(N, 0);
945  if (VT.isVector()) {
946    SmallVector<SDValue, 8> Ops;
947    Ops.assign(VT.getVectorNumElements(), Result);
948    // FIXME DebugLoc info might be appropriate here
949    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
950                     VT, &Ops[0], Ops.size());
951  }
952  return Result;
953}
954
955SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
956  EVT EltVT =
957    VT.isVector() ? VT.getVectorElementType() : VT;
958  if (EltVT==MVT::f32)
959    return getConstantFP(APFloat((float)Val), VT, isTarget);
960  else
961    return getConstantFP(APFloat(Val), VT, isTarget);
962}
963
964SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
965                                       EVT VT, int64_t Offset,
966                                       bool isTargetGA,
967                                       unsigned char TargetFlags) {
968  assert((TargetFlags == 0 || isTargetGA) &&
969         "Cannot set target flags on target-independent globals");
970
971  // Truncate (with sign-extension) the offset value to the pointer size.
972  EVT PTy = TLI.getPointerTy();
973  unsigned BitWidth = PTy.getSizeInBits();
974  if (BitWidth < 64)
975    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
976
977  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
978  if (!GVar) {
979    // If GV is an alias then use the aliasee for determining thread-localness.
980    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
981      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
982  }
983
984  unsigned Opc;
985  if (GVar && GVar->isThreadLocal())
986    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
987  else
988    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
989
990  FoldingSetNodeID ID;
991  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
992  ID.AddPointer(GV);
993  ID.AddInteger(Offset);
994  ID.AddInteger(TargetFlags);
995  void *IP = 0;
996  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
997    return SDValue(E, 0);
998  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
999  new (N) GlobalAddressSDNode(Opc, GV, VT, Offset, TargetFlags);
1000  CSEMap.InsertNode(N, IP);
1001  AllNodes.push_back(N);
1002  return SDValue(N, 0);
1003}
1004
1005SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1006  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1007  FoldingSetNodeID ID;
1008  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1009  ID.AddInteger(FI);
1010  void *IP = 0;
1011  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1012    return SDValue(E, 0);
1013  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1014  new (N) FrameIndexSDNode(FI, VT, isTarget);
1015  CSEMap.InsertNode(N, IP);
1016  AllNodes.push_back(N);
1017  return SDValue(N, 0);
1018}
1019
1020SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1021                                   unsigned char TargetFlags) {
1022  assert((TargetFlags == 0 || isTarget) &&
1023         "Cannot set target flags on target-independent jump tables");
1024  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1025  FoldingSetNodeID ID;
1026  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1027  ID.AddInteger(JTI);
1028  ID.AddInteger(TargetFlags);
1029  void *IP = 0;
1030  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1031    return SDValue(E, 0);
1032  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1033  new (N) JumpTableSDNode(JTI, VT, isTarget, TargetFlags);
1034  CSEMap.InsertNode(N, IP);
1035  AllNodes.push_back(N);
1036  return SDValue(N, 0);
1037}
1038
1039SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1040                                      unsigned Alignment, int Offset,
1041                                      bool isTarget,
1042                                      unsigned char TargetFlags) {
1043  assert((TargetFlags == 0 || isTarget) &&
1044         "Cannot set target flags on target-independent globals");
1045  if (Alignment == 0)
1046    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1047  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1048  FoldingSetNodeID ID;
1049  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1050  ID.AddInteger(Alignment);
1051  ID.AddInteger(Offset);
1052  ID.AddPointer(C);
1053  ID.AddInteger(TargetFlags);
1054  void *IP = 0;
1055  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1056    return SDValue(E, 0);
1057  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1058  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1059  CSEMap.InsertNode(N, IP);
1060  AllNodes.push_back(N);
1061  return SDValue(N, 0);
1062}
1063
1064
1065SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1066                                      unsigned Alignment, int Offset,
1067                                      bool isTarget,
1068                                      unsigned char TargetFlags) {
1069  assert((TargetFlags == 0 || isTarget) &&
1070         "Cannot set target flags on target-independent globals");
1071  if (Alignment == 0)
1072    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1073  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1074  FoldingSetNodeID ID;
1075  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1076  ID.AddInteger(Alignment);
1077  ID.AddInteger(Offset);
1078  C->AddSelectionDAGCSEId(ID);
1079  ID.AddInteger(TargetFlags);
1080  void *IP = 0;
1081  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1082    return SDValue(E, 0);
1083  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1084  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1085  CSEMap.InsertNode(N, IP);
1086  AllNodes.push_back(N);
1087  return SDValue(N, 0);
1088}
1089
1090SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1091  FoldingSetNodeID ID;
1092  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1093  ID.AddPointer(MBB);
1094  void *IP = 0;
1095  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1096    return SDValue(E, 0);
1097  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1098  new (N) BasicBlockSDNode(MBB);
1099  CSEMap.InsertNode(N, IP);
1100  AllNodes.push_back(N);
1101  return SDValue(N, 0);
1102}
1103
1104SDValue SelectionDAG::getValueType(EVT VT) {
1105  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1106      ValueTypeNodes.size())
1107    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1108
1109  SDNode *&N = VT.isExtended() ?
1110    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1111
1112  if (N) return SDValue(N, 0);
1113  N = NodeAllocator.Allocate<VTSDNode>();
1114  new (N) VTSDNode(VT);
1115  AllNodes.push_back(N);
1116  return SDValue(N, 0);
1117}
1118
1119SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1120  SDNode *&N = ExternalSymbols[Sym];
1121  if (N) return SDValue(N, 0);
1122  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1123  new (N) ExternalSymbolSDNode(false, Sym, 0, VT);
1124  AllNodes.push_back(N);
1125  return SDValue(N, 0);
1126}
1127
1128SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1129                                              unsigned char TargetFlags) {
1130  SDNode *&N =
1131    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1132                                                               TargetFlags)];
1133  if (N) return SDValue(N, 0);
1134  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1135  new (N) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1136  AllNodes.push_back(N);
1137  return SDValue(N, 0);
1138}
1139
1140SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1141  if ((unsigned)Cond >= CondCodeNodes.size())
1142    CondCodeNodes.resize(Cond+1);
1143
1144  if (CondCodeNodes[Cond] == 0) {
1145    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1146    new (N) CondCodeSDNode(Cond);
1147    CondCodeNodes[Cond] = N;
1148    AllNodes.push_back(N);
1149  }
1150  return SDValue(CondCodeNodes[Cond], 0);
1151}
1152
1153// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1154// the shuffle mask M that point at N1 to point at N2, and indices that point
1155// N2 to point at N1.
1156static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1157  std::swap(N1, N2);
1158  int NElts = M.size();
1159  for (int i = 0; i != NElts; ++i) {
1160    if (M[i] >= NElts)
1161      M[i] -= NElts;
1162    else if (M[i] >= 0)
1163      M[i] += NElts;
1164  }
1165}
1166
1167SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1168                                       SDValue N2, const int *Mask) {
1169  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1170  assert(VT.isVector() && N1.getValueType().isVector() &&
1171         "Vector Shuffle VTs must be a vectors");
1172  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1173         && "Vector Shuffle VTs must have same element type");
1174
1175  // Canonicalize shuffle undef, undef -> undef
1176  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1177    return getUNDEF(VT);
1178
1179  // Validate that all indices in Mask are within the range of the elements
1180  // input to the shuffle.
1181  unsigned NElts = VT.getVectorNumElements();
1182  SmallVector<int, 8> MaskVec;
1183  for (unsigned i = 0; i != NElts; ++i) {
1184    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1185    MaskVec.push_back(Mask[i]);
1186  }
1187
1188  // Canonicalize shuffle v, v -> v, undef
1189  if (N1 == N2) {
1190    N2 = getUNDEF(VT);
1191    for (unsigned i = 0; i != NElts; ++i)
1192      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1193  }
1194
1195  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1196  if (N1.getOpcode() == ISD::UNDEF)
1197    commuteShuffle(N1, N2, MaskVec);
1198
1199  // Canonicalize all index into lhs, -> shuffle lhs, undef
1200  // Canonicalize all index into rhs, -> shuffle rhs, undef
1201  bool AllLHS = true, AllRHS = true;
1202  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1203  for (unsigned i = 0; i != NElts; ++i) {
1204    if (MaskVec[i] >= (int)NElts) {
1205      if (N2Undef)
1206        MaskVec[i] = -1;
1207      else
1208        AllLHS = false;
1209    } else if (MaskVec[i] >= 0) {
1210      AllRHS = false;
1211    }
1212  }
1213  if (AllLHS && AllRHS)
1214    return getUNDEF(VT);
1215  if (AllLHS && !N2Undef)
1216    N2 = getUNDEF(VT);
1217  if (AllRHS) {
1218    N1 = getUNDEF(VT);
1219    commuteShuffle(N1, N2, MaskVec);
1220  }
1221
1222  // If Identity shuffle, or all shuffle in to undef, return that node.
1223  bool AllUndef = true;
1224  bool Identity = true;
1225  for (unsigned i = 0; i != NElts; ++i) {
1226    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1227    if (MaskVec[i] >= 0) AllUndef = false;
1228  }
1229  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1230    return N1;
1231  if (AllUndef)
1232    return getUNDEF(VT);
1233
1234  FoldingSetNodeID ID;
1235  SDValue Ops[2] = { N1, N2 };
1236  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1237  for (unsigned i = 0; i != NElts; ++i)
1238    ID.AddInteger(MaskVec[i]);
1239
1240  void* IP = 0;
1241  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1242    return SDValue(E, 0);
1243
1244  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1245  // SDNode doesn't have access to it.  This memory will be "leaked" when
1246  // the node is deallocated, but recovered when the NodeAllocator is released.
1247  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1248  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1249
1250  ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1251  new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1252  CSEMap.InsertNode(N, IP);
1253  AllNodes.push_back(N);
1254  return SDValue(N, 0);
1255}
1256
1257SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1258                                       SDValue Val, SDValue DTy,
1259                                       SDValue STy, SDValue Rnd, SDValue Sat,
1260                                       ISD::CvtCode Code) {
1261  // If the src and dest types are the same and the conversion is between
1262  // integer types of the same sign or two floats, no conversion is necessary.
1263  if (DTy == STy &&
1264      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1265    return Val;
1266
1267  FoldingSetNodeID ID;
1268  void* IP = 0;
1269  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1270    return SDValue(E, 0);
1271  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1272  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1273  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1274  CSEMap.InsertNode(N, IP);
1275  AllNodes.push_back(N);
1276  return SDValue(N, 0);
1277}
1278
1279SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1280  FoldingSetNodeID ID;
1281  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1282  ID.AddInteger(RegNo);
1283  void *IP = 0;
1284  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1285    return SDValue(E, 0);
1286  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1287  new (N) RegisterSDNode(RegNo, VT);
1288  CSEMap.InsertNode(N, IP);
1289  AllNodes.push_back(N);
1290  return SDValue(N, 0);
1291}
1292
1293SDValue SelectionDAG::getDbgStopPoint(DebugLoc DL, SDValue Root,
1294                                      unsigned Line, unsigned Col,
1295                                      MDNode *CU) {
1296  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1297  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1298  N->setDebugLoc(DL);
1299  AllNodes.push_back(N);
1300  return SDValue(N, 0);
1301}
1302
1303SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1304                               SDValue Root,
1305                               unsigned LabelID) {
1306  FoldingSetNodeID ID;
1307  SDValue Ops[] = { Root };
1308  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1309  ID.AddInteger(LabelID);
1310  void *IP = 0;
1311  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1312    return SDValue(E, 0);
1313  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1314  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1315  CSEMap.InsertNode(N, IP);
1316  AllNodes.push_back(N);
1317  return SDValue(N, 0);
1318}
1319
1320SDValue SelectionDAG::getSrcValue(const Value *V) {
1321  assert((!V || isa<PointerType>(V->getType())) &&
1322         "SrcValue is not a pointer?");
1323
1324  FoldingSetNodeID ID;
1325  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1326  ID.AddPointer(V);
1327
1328  void *IP = 0;
1329  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1330    return SDValue(E, 0);
1331
1332  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1333  new (N) SrcValueSDNode(V);
1334  CSEMap.InsertNode(N, IP);
1335  AllNodes.push_back(N);
1336  return SDValue(N, 0);
1337}
1338
1339/// getShiftAmountOperand - Return the specified value casted to
1340/// the target's desired shift amount type.
1341SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1342  EVT OpTy = Op.getValueType();
1343  MVT ShTy = TLI.getShiftAmountTy();
1344  if (OpTy == ShTy || OpTy.isVector()) return Op;
1345
1346  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1347  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1348}
1349
1350/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1351/// specified value type.
1352SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1353  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1354  unsigned ByteSize = VT.getStoreSize();
1355  const Type *Ty = VT.getTypeForEVT(*getContext());
1356  unsigned StackAlign =
1357  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1358
1359  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1360  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1361}
1362
1363/// CreateStackTemporary - Create a stack temporary suitable for holding
1364/// either of the specified value types.
1365SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1366  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1367                            VT2.getStoreSizeInBits())/8;
1368  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1369  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1370  const TargetData *TD = TLI.getTargetData();
1371  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1372                            TD->getPrefTypeAlignment(Ty2));
1373
1374  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1375  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align);
1376  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1377}
1378
1379SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1380                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1381  // These setcc operations always fold.
1382  switch (Cond) {
1383  default: break;
1384  case ISD::SETFALSE:
1385  case ISD::SETFALSE2: return getConstant(0, VT);
1386  case ISD::SETTRUE:
1387  case ISD::SETTRUE2:  return getConstant(1, VT);
1388
1389  case ISD::SETOEQ:
1390  case ISD::SETOGT:
1391  case ISD::SETOGE:
1392  case ISD::SETOLT:
1393  case ISD::SETOLE:
1394  case ISD::SETONE:
1395  case ISD::SETO:
1396  case ISD::SETUO:
1397  case ISD::SETUEQ:
1398  case ISD::SETUNE:
1399    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1400    break;
1401  }
1402
1403  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1404    const APInt &C2 = N2C->getAPIntValue();
1405    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1406      const APInt &C1 = N1C->getAPIntValue();
1407
1408      switch (Cond) {
1409      default: llvm_unreachable("Unknown integer setcc!");
1410      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1411      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1412      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1413      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1414      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1415      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1416      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1417      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1418      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1419      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1420      }
1421    }
1422  }
1423  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1424    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1425      // No compile time operations on this type yet.
1426      if (N1C->getValueType(0) == MVT::ppcf128)
1427        return SDValue();
1428
1429      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1430      switch (Cond) {
1431      default: break;
1432      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1433                          return getUNDEF(VT);
1434                        // fall through
1435      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1436      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1437                          return getUNDEF(VT);
1438                        // fall through
1439      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1440                                           R==APFloat::cmpLessThan, VT);
1441      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1442                          return getUNDEF(VT);
1443                        // fall through
1444      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1445      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1446                          return getUNDEF(VT);
1447                        // fall through
1448      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1449      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1450                          return getUNDEF(VT);
1451                        // fall through
1452      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1453                                           R==APFloat::cmpEqual, VT);
1454      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1455                          return getUNDEF(VT);
1456                        // fall through
1457      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1458                                           R==APFloat::cmpEqual, VT);
1459      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1460      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1461      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1462                                           R==APFloat::cmpEqual, VT);
1463      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1464      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1465                                           R==APFloat::cmpLessThan, VT);
1466      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1467                                           R==APFloat::cmpUnordered, VT);
1468      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1469      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1470      }
1471    } else {
1472      // Ensure that the constant occurs on the RHS.
1473      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1474    }
1475  }
1476
1477  // Could not fold it.
1478  return SDValue();
1479}
1480
1481/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1482/// use this predicate to simplify operations downstream.
1483bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1484  // This predicate is not safe for vector operations.
1485  if (Op.getValueType().isVector())
1486    return false;
1487
1488  unsigned BitWidth = Op.getValueSizeInBits();
1489  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1490}
1491
1492/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1493/// this predicate to simplify operations downstream.  Mask is known to be zero
1494/// for bits that V cannot have.
1495bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1496                                     unsigned Depth) const {
1497  APInt KnownZero, KnownOne;
1498  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1499  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1500  return (KnownZero & Mask) == Mask;
1501}
1502
1503/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1504/// known to be either zero or one and return them in the KnownZero/KnownOne
1505/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1506/// processing.
1507void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1508                                     APInt &KnownZero, APInt &KnownOne,
1509                                     unsigned Depth) const {
1510  unsigned BitWidth = Mask.getBitWidth();
1511  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1512         "Mask size mismatches value type size!");
1513
1514  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1515  if (Depth == 6 || Mask == 0)
1516    return;  // Limit search depth.
1517
1518  APInt KnownZero2, KnownOne2;
1519
1520  switch (Op.getOpcode()) {
1521  case ISD::Constant:
1522    // We know all of the bits for a constant!
1523    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1524    KnownZero = ~KnownOne & Mask;
1525    return;
1526  case ISD::AND:
1527    // If either the LHS or the RHS are Zero, the result is zero.
1528    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1529    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1530                      KnownZero2, KnownOne2, Depth+1);
1531    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1532    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1533
1534    // Output known-1 bits are only known if set in both the LHS & RHS.
1535    KnownOne &= KnownOne2;
1536    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1537    KnownZero |= KnownZero2;
1538    return;
1539  case ISD::OR:
1540    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1541    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1542                      KnownZero2, KnownOne2, Depth+1);
1543    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1544    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1545
1546    // Output known-0 bits are only known if clear in both the LHS & RHS.
1547    KnownZero &= KnownZero2;
1548    // Output known-1 are known to be set if set in either the LHS | RHS.
1549    KnownOne |= KnownOne2;
1550    return;
1551  case ISD::XOR: {
1552    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1553    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1554    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1555    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1556
1557    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1558    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1559    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1560    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1561    KnownZero = KnownZeroOut;
1562    return;
1563  }
1564  case ISD::MUL: {
1565    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1566    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1567    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1568    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1569    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1570
1571    // If low bits are zero in either operand, output low known-0 bits.
1572    // Also compute a conserative estimate for high known-0 bits.
1573    // More trickiness is possible, but this is sufficient for the
1574    // interesting case of alignment computation.
1575    KnownOne.clear();
1576    unsigned TrailZ = KnownZero.countTrailingOnes() +
1577                      KnownZero2.countTrailingOnes();
1578    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1579                               KnownZero2.countLeadingOnes(),
1580                               BitWidth) - BitWidth;
1581
1582    TrailZ = std::min(TrailZ, BitWidth);
1583    LeadZ = std::min(LeadZ, BitWidth);
1584    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1585                APInt::getHighBitsSet(BitWidth, LeadZ);
1586    KnownZero &= Mask;
1587    return;
1588  }
1589  case ISD::UDIV: {
1590    // For the purposes of computing leading zeros we can conservatively
1591    // treat a udiv as a logical right shift by the power of 2 known to
1592    // be less than the denominator.
1593    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1594    ComputeMaskedBits(Op.getOperand(0),
1595                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1596    unsigned LeadZ = KnownZero2.countLeadingOnes();
1597
1598    KnownOne2.clear();
1599    KnownZero2.clear();
1600    ComputeMaskedBits(Op.getOperand(1),
1601                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1602    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1603    if (RHSUnknownLeadingOnes != BitWidth)
1604      LeadZ = std::min(BitWidth,
1605                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1606
1607    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1608    return;
1609  }
1610  case ISD::SELECT:
1611    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1612    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1613    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1614    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1615
1616    // Only known if known in both the LHS and RHS.
1617    KnownOne &= KnownOne2;
1618    KnownZero &= KnownZero2;
1619    return;
1620  case ISD::SELECT_CC:
1621    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1622    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1623    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1624    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1625
1626    // Only known if known in both the LHS and RHS.
1627    KnownOne &= KnownOne2;
1628    KnownZero &= KnownZero2;
1629    return;
1630  case ISD::SADDO:
1631  case ISD::UADDO:
1632  case ISD::SSUBO:
1633  case ISD::USUBO:
1634  case ISD::SMULO:
1635  case ISD::UMULO:
1636    if (Op.getResNo() != 1)
1637      return;
1638    // The boolean result conforms to getBooleanContents.  Fall through.
1639  case ISD::SETCC:
1640    // If we know the result of a setcc has the top bits zero, use this info.
1641    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1642        BitWidth > 1)
1643      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1644    return;
1645  case ISD::SHL:
1646    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1647    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1648      unsigned ShAmt = SA->getZExtValue();
1649
1650      // If the shift count is an invalid immediate, don't do anything.
1651      if (ShAmt >= BitWidth)
1652        return;
1653
1654      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1655                        KnownZero, KnownOne, Depth+1);
1656      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1657      KnownZero <<= ShAmt;
1658      KnownOne  <<= ShAmt;
1659      // low bits known zero.
1660      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1661    }
1662    return;
1663  case ISD::SRL:
1664    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1665    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1666      unsigned ShAmt = SA->getZExtValue();
1667
1668      // If the shift count is an invalid immediate, don't do anything.
1669      if (ShAmt >= BitWidth)
1670        return;
1671
1672      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1673                        KnownZero, KnownOne, Depth+1);
1674      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1675      KnownZero = KnownZero.lshr(ShAmt);
1676      KnownOne  = KnownOne.lshr(ShAmt);
1677
1678      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1679      KnownZero |= HighBits;  // High bits known zero.
1680    }
1681    return;
1682  case ISD::SRA:
1683    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1684      unsigned ShAmt = SA->getZExtValue();
1685
1686      // If the shift count is an invalid immediate, don't do anything.
1687      if (ShAmt >= BitWidth)
1688        return;
1689
1690      APInt InDemandedMask = (Mask << ShAmt);
1691      // If any of the demanded bits are produced by the sign extension, we also
1692      // demand the input sign bit.
1693      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1694      if (HighBits.getBoolValue())
1695        InDemandedMask |= APInt::getSignBit(BitWidth);
1696
1697      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1698                        Depth+1);
1699      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1700      KnownZero = KnownZero.lshr(ShAmt);
1701      KnownOne  = KnownOne.lshr(ShAmt);
1702
1703      // Handle the sign bits.
1704      APInt SignBit = APInt::getSignBit(BitWidth);
1705      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1706
1707      if (KnownZero.intersects(SignBit)) {
1708        KnownZero |= HighBits;  // New bits are known zero.
1709      } else if (KnownOne.intersects(SignBit)) {
1710        KnownOne  |= HighBits;  // New bits are known one.
1711      }
1712    }
1713    return;
1714  case ISD::SIGN_EXTEND_INREG: {
1715    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1716    unsigned EBits = EVT.getSizeInBits();
1717
1718    // Sign extension.  Compute the demanded bits in the result that are not
1719    // present in the input.
1720    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1721
1722    APInt InSignBit = APInt::getSignBit(EBits);
1723    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1724
1725    // If the sign extended bits are demanded, we know that the sign
1726    // bit is demanded.
1727    InSignBit.zext(BitWidth);
1728    if (NewBits.getBoolValue())
1729      InputDemandedBits |= InSignBit;
1730
1731    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1732                      KnownZero, KnownOne, Depth+1);
1733    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1734
1735    // If the sign bit of the input is known set or clear, then we know the
1736    // top bits of the result.
1737    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1738      KnownZero |= NewBits;
1739      KnownOne  &= ~NewBits;
1740    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1741      KnownOne  |= NewBits;
1742      KnownZero &= ~NewBits;
1743    } else {                              // Input sign bit unknown
1744      KnownZero &= ~NewBits;
1745      KnownOne  &= ~NewBits;
1746    }
1747    return;
1748  }
1749  case ISD::CTTZ:
1750  case ISD::CTLZ:
1751  case ISD::CTPOP: {
1752    unsigned LowBits = Log2_32(BitWidth)+1;
1753    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1754    KnownOne.clear();
1755    return;
1756  }
1757  case ISD::LOAD: {
1758    if (ISD::isZEXTLoad(Op.getNode())) {
1759      LoadSDNode *LD = cast<LoadSDNode>(Op);
1760      EVT VT = LD->getMemoryVT();
1761      unsigned MemBits = VT.getSizeInBits();
1762      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1763    }
1764    return;
1765  }
1766  case ISD::ZERO_EXTEND: {
1767    EVT InVT = Op.getOperand(0).getValueType();
1768    unsigned InBits = InVT.getSizeInBits();
1769    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1770    APInt InMask    = Mask;
1771    InMask.trunc(InBits);
1772    KnownZero.trunc(InBits);
1773    KnownOne.trunc(InBits);
1774    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1775    KnownZero.zext(BitWidth);
1776    KnownOne.zext(BitWidth);
1777    KnownZero |= NewBits;
1778    return;
1779  }
1780  case ISD::SIGN_EXTEND: {
1781    EVT InVT = Op.getOperand(0).getValueType();
1782    unsigned InBits = InVT.getSizeInBits();
1783    APInt InSignBit = APInt::getSignBit(InBits);
1784    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1785    APInt InMask = Mask;
1786    InMask.trunc(InBits);
1787
1788    // If any of the sign extended bits are demanded, we know that the sign
1789    // bit is demanded. Temporarily set this bit in the mask for our callee.
1790    if (NewBits.getBoolValue())
1791      InMask |= InSignBit;
1792
1793    KnownZero.trunc(InBits);
1794    KnownOne.trunc(InBits);
1795    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1796
1797    // Note if the sign bit is known to be zero or one.
1798    bool SignBitKnownZero = KnownZero.isNegative();
1799    bool SignBitKnownOne  = KnownOne.isNegative();
1800    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1801           "Sign bit can't be known to be both zero and one!");
1802
1803    // If the sign bit wasn't actually demanded by our caller, we don't
1804    // want it set in the KnownZero and KnownOne result values. Reset the
1805    // mask and reapply it to the result values.
1806    InMask = Mask;
1807    InMask.trunc(InBits);
1808    KnownZero &= InMask;
1809    KnownOne  &= InMask;
1810
1811    KnownZero.zext(BitWidth);
1812    KnownOne.zext(BitWidth);
1813
1814    // If the sign bit is known zero or one, the top bits match.
1815    if (SignBitKnownZero)
1816      KnownZero |= NewBits;
1817    else if (SignBitKnownOne)
1818      KnownOne  |= NewBits;
1819    return;
1820  }
1821  case ISD::ANY_EXTEND: {
1822    EVT InVT = Op.getOperand(0).getValueType();
1823    unsigned InBits = InVT.getSizeInBits();
1824    APInt InMask = Mask;
1825    InMask.trunc(InBits);
1826    KnownZero.trunc(InBits);
1827    KnownOne.trunc(InBits);
1828    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1829    KnownZero.zext(BitWidth);
1830    KnownOne.zext(BitWidth);
1831    return;
1832  }
1833  case ISD::TRUNCATE: {
1834    EVT InVT = Op.getOperand(0).getValueType();
1835    unsigned InBits = InVT.getSizeInBits();
1836    APInt InMask = Mask;
1837    InMask.zext(InBits);
1838    KnownZero.zext(InBits);
1839    KnownOne.zext(InBits);
1840    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1841    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1842    KnownZero.trunc(BitWidth);
1843    KnownOne.trunc(BitWidth);
1844    break;
1845  }
1846  case ISD::AssertZext: {
1847    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1848    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1849    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1850                      KnownOne, Depth+1);
1851    KnownZero |= (~InMask) & Mask;
1852    return;
1853  }
1854  case ISD::FGETSIGN:
1855    // All bits are zero except the low bit.
1856    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1857    return;
1858
1859  case ISD::SUB: {
1860    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1861      // We know that the top bits of C-X are clear if X contains less bits
1862      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1863      // positive if we can prove that X is >= 0 and < 16.
1864      if (CLHS->getAPIntValue().isNonNegative()) {
1865        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1866        // NLZ can't be BitWidth with no sign bit
1867        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1868        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1869                          Depth+1);
1870
1871        // If all of the MaskV bits are known to be zero, then we know the
1872        // output top bits are zero, because we now know that the output is
1873        // from [0-C].
1874        if ((KnownZero2 & MaskV) == MaskV) {
1875          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1876          // Top bits known zero.
1877          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1878        }
1879      }
1880    }
1881  }
1882  // fall through
1883  case ISD::ADD: {
1884    // Output known-0 bits are known if clear or set in both the low clear bits
1885    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1886    // low 3 bits clear.
1887    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1888    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1889    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1890    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1891
1892    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1893    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1894    KnownZeroOut = std::min(KnownZeroOut,
1895                            KnownZero2.countTrailingOnes());
1896
1897    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1898    return;
1899  }
1900  case ISD::SREM:
1901    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1902      const APInt &RA = Rem->getAPIntValue();
1903      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1904        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1905        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1906        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1907
1908        // If the sign bit of the first operand is zero, the sign bit of
1909        // the result is zero. If the first operand has no one bits below
1910        // the second operand's single 1 bit, its sign will be zero.
1911        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1912          KnownZero2 |= ~LowBits;
1913
1914        KnownZero |= KnownZero2 & Mask;
1915
1916        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1917      }
1918    }
1919    return;
1920  case ISD::UREM: {
1921    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1922      const APInt &RA = Rem->getAPIntValue();
1923      if (RA.isPowerOf2()) {
1924        APInt LowBits = (RA - 1);
1925        APInt Mask2 = LowBits & Mask;
1926        KnownZero |= ~LowBits & Mask;
1927        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1928        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1929        break;
1930      }
1931    }
1932
1933    // Since the result is less than or equal to either operand, any leading
1934    // zero bits in either operand must also exist in the result.
1935    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1936    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1937                      Depth+1);
1938    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1939                      Depth+1);
1940
1941    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1942                                KnownZero2.countLeadingOnes());
1943    KnownOne.clear();
1944    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1945    return;
1946  }
1947  default:
1948    // Allow the target to implement this method for its nodes.
1949    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1950  case ISD::INTRINSIC_WO_CHAIN:
1951  case ISD::INTRINSIC_W_CHAIN:
1952  case ISD::INTRINSIC_VOID:
1953      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1954                                         Depth);
1955    }
1956    return;
1957  }
1958}
1959
1960/// ComputeNumSignBits - Return the number of times the sign bit of the
1961/// register is replicated into the other bits.  We know that at least 1 bit
1962/// is always equal to the sign bit (itself), but other cases can give us
1963/// information.  For example, immediately after an "SRA X, 2", we know that
1964/// the top 3 bits are all equal to each other, so we return 3.
1965unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1966  EVT VT = Op.getValueType();
1967  assert(VT.isInteger() && "Invalid VT!");
1968  unsigned VTBits = VT.getSizeInBits();
1969  unsigned Tmp, Tmp2;
1970  unsigned FirstAnswer = 1;
1971
1972  if (Depth == 6)
1973    return 1;  // Limit search depth.
1974
1975  switch (Op.getOpcode()) {
1976  default: break;
1977  case ISD::AssertSext:
1978    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1979    return VTBits-Tmp+1;
1980  case ISD::AssertZext:
1981    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1982    return VTBits-Tmp;
1983
1984  case ISD::Constant: {
1985    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1986    // If negative, return # leading ones.
1987    if (Val.isNegative())
1988      return Val.countLeadingOnes();
1989
1990    // Return # leading zeros.
1991    return Val.countLeadingZeros();
1992  }
1993
1994  case ISD::SIGN_EXTEND:
1995    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1996    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1997
1998  case ISD::SIGN_EXTEND_INREG:
1999    // Max of the input and what this extends.
2000    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2001    Tmp = VTBits-Tmp+1;
2002
2003    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2004    return std::max(Tmp, Tmp2);
2005
2006  case ISD::SRA:
2007    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2008    // SRA X, C   -> adds C sign bits.
2009    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2010      Tmp += C->getZExtValue();
2011      if (Tmp > VTBits) Tmp = VTBits;
2012    }
2013    return Tmp;
2014  case ISD::SHL:
2015    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2016      // shl destroys sign bits.
2017      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2018      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2019          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2020      return Tmp - C->getZExtValue();
2021    }
2022    break;
2023  case ISD::AND:
2024  case ISD::OR:
2025  case ISD::XOR:    // NOT is handled here.
2026    // Logical binary ops preserve the number of sign bits at the worst.
2027    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2028    if (Tmp != 1) {
2029      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2030      FirstAnswer = std::min(Tmp, Tmp2);
2031      // We computed what we know about the sign bits as our first
2032      // answer. Now proceed to the generic code that uses
2033      // ComputeMaskedBits, and pick whichever answer is better.
2034    }
2035    break;
2036
2037  case ISD::SELECT:
2038    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2039    if (Tmp == 1) return 1;  // Early out.
2040    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2041    return std::min(Tmp, Tmp2);
2042
2043  case ISD::SADDO:
2044  case ISD::UADDO:
2045  case ISD::SSUBO:
2046  case ISD::USUBO:
2047  case ISD::SMULO:
2048  case ISD::UMULO:
2049    if (Op.getResNo() != 1)
2050      break;
2051    // The boolean result conforms to getBooleanContents.  Fall through.
2052  case ISD::SETCC:
2053    // If setcc returns 0/-1, all bits are sign bits.
2054    if (TLI.getBooleanContents() ==
2055        TargetLowering::ZeroOrNegativeOneBooleanContent)
2056      return VTBits;
2057    break;
2058  case ISD::ROTL:
2059  case ISD::ROTR:
2060    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2061      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2062
2063      // Handle rotate right by N like a rotate left by 32-N.
2064      if (Op.getOpcode() == ISD::ROTR)
2065        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2066
2067      // If we aren't rotating out all of the known-in sign bits, return the
2068      // number that are left.  This handles rotl(sext(x), 1) for example.
2069      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2070      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2071    }
2072    break;
2073  case ISD::ADD:
2074    // Add can have at most one carry bit.  Thus we know that the output
2075    // is, at worst, one more bit than the inputs.
2076    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2077    if (Tmp == 1) return 1;  // Early out.
2078
2079    // Special case decrementing a value (ADD X, -1):
2080    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2081      if (CRHS->isAllOnesValue()) {
2082        APInt KnownZero, KnownOne;
2083        APInt Mask = APInt::getAllOnesValue(VTBits);
2084        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2085
2086        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2087        // sign bits set.
2088        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2089          return VTBits;
2090
2091        // If we are subtracting one from a positive number, there is no carry
2092        // out of the result.
2093        if (KnownZero.isNegative())
2094          return Tmp;
2095      }
2096
2097    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2098    if (Tmp2 == 1) return 1;
2099      return std::min(Tmp, Tmp2)-1;
2100    break;
2101
2102  case ISD::SUB:
2103    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2104    if (Tmp2 == 1) return 1;
2105
2106    // Handle NEG.
2107    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2108      if (CLHS->isNullValue()) {
2109        APInt KnownZero, KnownOne;
2110        APInt Mask = APInt::getAllOnesValue(VTBits);
2111        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2112        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2113        // sign bits set.
2114        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2115          return VTBits;
2116
2117        // If the input is known to be positive (the sign bit is known clear),
2118        // the output of the NEG has the same number of sign bits as the input.
2119        if (KnownZero.isNegative())
2120          return Tmp2;
2121
2122        // Otherwise, we treat this like a SUB.
2123      }
2124
2125    // Sub can have at most one carry bit.  Thus we know that the output
2126    // is, at worst, one more bit than the inputs.
2127    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2128    if (Tmp == 1) return 1;  // Early out.
2129      return std::min(Tmp, Tmp2)-1;
2130    break;
2131  case ISD::TRUNCATE:
2132    // FIXME: it's tricky to do anything useful for this, but it is an important
2133    // case for targets like X86.
2134    break;
2135  }
2136
2137  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2138  if (Op.getOpcode() == ISD::LOAD) {
2139    LoadSDNode *LD = cast<LoadSDNode>(Op);
2140    unsigned ExtType = LD->getExtensionType();
2141    switch (ExtType) {
2142    default: break;
2143    case ISD::SEXTLOAD:    // '17' bits known
2144      Tmp = LD->getMemoryVT().getSizeInBits();
2145      return VTBits-Tmp+1;
2146    case ISD::ZEXTLOAD:    // '16' bits known
2147      Tmp = LD->getMemoryVT().getSizeInBits();
2148      return VTBits-Tmp;
2149    }
2150  }
2151
2152  // Allow the target to implement this method for its nodes.
2153  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2154      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2155      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2156      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2157    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2158    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2159  }
2160
2161  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2162  // use this information.
2163  APInt KnownZero, KnownOne;
2164  APInt Mask = APInt::getAllOnesValue(VTBits);
2165  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2166
2167  if (KnownZero.isNegative()) {        // sign bit is 0
2168    Mask = KnownZero;
2169  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2170    Mask = KnownOne;
2171  } else {
2172    // Nothing known.
2173    return FirstAnswer;
2174  }
2175
2176  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2177  // the number of identical bits in the top of the input value.
2178  Mask = ~Mask;
2179  Mask <<= Mask.getBitWidth()-VTBits;
2180  // Return # leading zeros.  We use 'min' here in case Val was zero before
2181  // shifting.  We don't want to return '64' as for an i32 "0".
2182  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2183}
2184
2185bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2186  // If we're told that NaNs won't happen, assume they won't.
2187  if (FiniteOnlyFPMath())
2188    return true;
2189
2190  // If the value is a constant, we can obviously see if it is a NaN or not.
2191  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2192    return !C->getValueAPF().isNaN();
2193
2194  // TODO: Recognize more cases here.
2195
2196  return false;
2197}
2198
2199bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2200  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2201  if (!GA) return false;
2202  if (GA->getOffset() != 0) return false;
2203  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2204  if (!GV) return false;
2205  MachineModuleInfo *MMI = getMachineModuleInfo();
2206  return MMI && MMI->hasDebugInfo();
2207}
2208
2209
2210/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2211/// element of the result of the vector shuffle.
2212SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2213                                          unsigned i) {
2214  EVT VT = N->getValueType(0);
2215  DebugLoc dl = N->getDebugLoc();
2216  if (N->getMaskElt(i) < 0)
2217    return getUNDEF(VT.getVectorElementType());
2218  unsigned Index = N->getMaskElt(i);
2219  unsigned NumElems = VT.getVectorNumElements();
2220  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2221  Index %= NumElems;
2222
2223  if (V.getOpcode() == ISD::BIT_CONVERT) {
2224    V = V.getOperand(0);
2225    EVT VVT = V.getValueType();
2226    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2227      return SDValue();
2228  }
2229  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2230    return (Index == 0) ? V.getOperand(0)
2231                      : getUNDEF(VT.getVectorElementType());
2232  if (V.getOpcode() == ISD::BUILD_VECTOR)
2233    return V.getOperand(Index);
2234  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2235    return getShuffleScalarElt(SVN, Index);
2236  return SDValue();
2237}
2238
2239
2240/// getNode - Gets or creates the specified node.
2241///
2242SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2243  FoldingSetNodeID ID;
2244  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2245  void *IP = 0;
2246  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2247    return SDValue(E, 0);
2248  SDNode *N = NodeAllocator.Allocate<SDNode>();
2249  new (N) SDNode(Opcode, DL, getVTList(VT));
2250  CSEMap.InsertNode(N, IP);
2251
2252  AllNodes.push_back(N);
2253#ifndef NDEBUG
2254  VerifyNode(N);
2255#endif
2256  return SDValue(N, 0);
2257}
2258
2259SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2260                              EVT VT, SDValue Operand) {
2261  // Constant fold unary operations with an integer constant operand.
2262  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2263    const APInt &Val = C->getAPIntValue();
2264    unsigned BitWidth = VT.getSizeInBits();
2265    switch (Opcode) {
2266    default: break;
2267    case ISD::SIGN_EXTEND:
2268      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2269    case ISD::ANY_EXTEND:
2270    case ISD::ZERO_EXTEND:
2271    case ISD::TRUNCATE:
2272      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2273    case ISD::UINT_TO_FP:
2274    case ISD::SINT_TO_FP: {
2275      const uint64_t zero[] = {0, 0};
2276      // No compile time operations on this type.
2277      if (VT==MVT::ppcf128)
2278        break;
2279      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2280      (void)apf.convertFromAPInt(Val,
2281                                 Opcode==ISD::SINT_TO_FP,
2282                                 APFloat::rmNearestTiesToEven);
2283      return getConstantFP(apf, VT);
2284    }
2285    case ISD::BIT_CONVERT:
2286      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2287        return getConstantFP(Val.bitsToFloat(), VT);
2288      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2289        return getConstantFP(Val.bitsToDouble(), VT);
2290      break;
2291    case ISD::BSWAP:
2292      return getConstant(Val.byteSwap(), VT);
2293    case ISD::CTPOP:
2294      return getConstant(Val.countPopulation(), VT);
2295    case ISD::CTLZ:
2296      return getConstant(Val.countLeadingZeros(), VT);
2297    case ISD::CTTZ:
2298      return getConstant(Val.countTrailingZeros(), VT);
2299    }
2300  }
2301
2302  // Constant fold unary operations with a floating point constant operand.
2303  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2304    APFloat V = C->getValueAPF();    // make copy
2305    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2306      switch (Opcode) {
2307      case ISD::FNEG:
2308        V.changeSign();
2309        return getConstantFP(V, VT);
2310      case ISD::FABS:
2311        V.clearSign();
2312        return getConstantFP(V, VT);
2313      case ISD::FP_ROUND:
2314      case ISD::FP_EXTEND: {
2315        bool ignored;
2316        // This can return overflow, underflow, or inexact; we don't care.
2317        // FIXME need to be more flexible about rounding mode.
2318        (void)V.convert(*EVTToAPFloatSemantics(VT),
2319                        APFloat::rmNearestTiesToEven, &ignored);
2320        return getConstantFP(V, VT);
2321      }
2322      case ISD::FP_TO_SINT:
2323      case ISD::FP_TO_UINT: {
2324        integerPart x[2];
2325        bool ignored;
2326        assert(integerPartWidth >= 64);
2327        // FIXME need to be more flexible about rounding mode.
2328        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2329                              Opcode==ISD::FP_TO_SINT,
2330                              APFloat::rmTowardZero, &ignored);
2331        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2332          break;
2333        APInt api(VT.getSizeInBits(), 2, x);
2334        return getConstant(api, VT);
2335      }
2336      case ISD::BIT_CONVERT:
2337        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2338          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2339        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2340          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2341        break;
2342      }
2343    }
2344  }
2345
2346  unsigned OpOpcode = Operand.getNode()->getOpcode();
2347  switch (Opcode) {
2348  case ISD::TokenFactor:
2349  case ISD::MERGE_VALUES:
2350  case ISD::CONCAT_VECTORS:
2351    return Operand;         // Factor, merge or concat of one node?  No need.
2352  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2353  case ISD::FP_EXTEND:
2354    assert(VT.isFloatingPoint() &&
2355           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2356    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2357    if (Operand.getOpcode() == ISD::UNDEF)
2358      return getUNDEF(VT);
2359    break;
2360  case ISD::SIGN_EXTEND:
2361    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2362           "Invalid SIGN_EXTEND!");
2363    if (Operand.getValueType() == VT) return Operand;   // noop extension
2364    assert(Operand.getValueType().bitsLT(VT)
2365           && "Invalid sext node, dst < src!");
2366    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2367      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2368    break;
2369  case ISD::ZERO_EXTEND:
2370    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2371           "Invalid ZERO_EXTEND!");
2372    if (Operand.getValueType() == VT) return Operand;   // noop extension
2373    assert(Operand.getValueType().bitsLT(VT)
2374           && "Invalid zext node, dst < src!");
2375    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2376      return getNode(ISD::ZERO_EXTEND, DL, VT,
2377                     Operand.getNode()->getOperand(0));
2378    break;
2379  case ISD::ANY_EXTEND:
2380    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2381           "Invalid ANY_EXTEND!");
2382    if (Operand.getValueType() == VT) return Operand;   // noop extension
2383    assert(Operand.getValueType().bitsLT(VT)
2384           && "Invalid anyext node, dst < src!");
2385    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2386      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2387      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2388    break;
2389  case ISD::TRUNCATE:
2390    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2391           "Invalid TRUNCATE!");
2392    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2393    assert(Operand.getValueType().bitsGT(VT)
2394           && "Invalid truncate node, src < dst!");
2395    if (OpOpcode == ISD::TRUNCATE)
2396      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2397    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2398             OpOpcode == ISD::ANY_EXTEND) {
2399      // If the source is smaller than the dest, we still need an extend.
2400      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2401        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2402      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2403        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2404      else
2405        return Operand.getNode()->getOperand(0);
2406    }
2407    break;
2408  case ISD::BIT_CONVERT:
2409    // Basic sanity checking.
2410    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2411           && "Cannot BIT_CONVERT between types of different sizes!");
2412    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2413    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2414      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2415    if (OpOpcode == ISD::UNDEF)
2416      return getUNDEF(VT);
2417    break;
2418  case ISD::SCALAR_TO_VECTOR:
2419    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2420           (VT.getVectorElementType() == Operand.getValueType() ||
2421            (VT.getVectorElementType().isInteger() &&
2422             Operand.getValueType().isInteger() &&
2423             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2424           "Illegal SCALAR_TO_VECTOR node!");
2425    if (OpOpcode == ISD::UNDEF)
2426      return getUNDEF(VT);
2427    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2428    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2429        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2430        Operand.getConstantOperandVal(1) == 0 &&
2431        Operand.getOperand(0).getValueType() == VT)
2432      return Operand.getOperand(0);
2433    break;
2434  case ISD::FNEG:
2435    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2436    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2437      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2438                     Operand.getNode()->getOperand(0));
2439    if (OpOpcode == ISD::FNEG)  // --X -> X
2440      return Operand.getNode()->getOperand(0);
2441    break;
2442  case ISD::FABS:
2443    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2444      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2445    break;
2446  }
2447
2448  SDNode *N;
2449  SDVTList VTs = getVTList(VT);
2450  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2451    FoldingSetNodeID ID;
2452    SDValue Ops[1] = { Operand };
2453    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2454    void *IP = 0;
2455    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2456      return SDValue(E, 0);
2457    N = NodeAllocator.Allocate<UnarySDNode>();
2458    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2459    CSEMap.InsertNode(N, IP);
2460  } else {
2461    N = NodeAllocator.Allocate<UnarySDNode>();
2462    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2463  }
2464
2465  AllNodes.push_back(N);
2466#ifndef NDEBUG
2467  VerifyNode(N);
2468#endif
2469  return SDValue(N, 0);
2470}
2471
2472SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2473                                             EVT VT,
2474                                             ConstantSDNode *Cst1,
2475                                             ConstantSDNode *Cst2) {
2476  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2477
2478  switch (Opcode) {
2479  case ISD::ADD:  return getConstant(C1 + C2, VT);
2480  case ISD::SUB:  return getConstant(C1 - C2, VT);
2481  case ISD::MUL:  return getConstant(C1 * C2, VT);
2482  case ISD::UDIV:
2483    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2484    break;
2485  case ISD::UREM:
2486    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2487    break;
2488  case ISD::SDIV:
2489    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2490    break;
2491  case ISD::SREM:
2492    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2493    break;
2494  case ISD::AND:  return getConstant(C1 & C2, VT);
2495  case ISD::OR:   return getConstant(C1 | C2, VT);
2496  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2497  case ISD::SHL:  return getConstant(C1 << C2, VT);
2498  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2499  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2500  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2501  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2502  default: break;
2503  }
2504
2505  return SDValue();
2506}
2507
2508SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2509                              SDValue N1, SDValue N2) {
2510  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2511  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2512  switch (Opcode) {
2513  default: break;
2514  case ISD::TokenFactor:
2515    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2516           N2.getValueType() == MVT::Other && "Invalid token factor!");
2517    // Fold trivial token factors.
2518    if (N1.getOpcode() == ISD::EntryToken) return N2;
2519    if (N2.getOpcode() == ISD::EntryToken) return N1;
2520    if (N1 == N2) return N1;
2521    break;
2522  case ISD::CONCAT_VECTORS:
2523    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2524    // one big BUILD_VECTOR.
2525    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2526        N2.getOpcode() == ISD::BUILD_VECTOR) {
2527      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2528      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2529      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2530    }
2531    break;
2532  case ISD::AND:
2533    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2534           N1.getValueType() == VT && "Binary operator types must match!");
2535    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2536    // worth handling here.
2537    if (N2C && N2C->isNullValue())
2538      return N2;
2539    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2540      return N1;
2541    break;
2542  case ISD::OR:
2543  case ISD::XOR:
2544  case ISD::ADD:
2545  case ISD::SUB:
2546    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2547           N1.getValueType() == VT && "Binary operator types must match!");
2548    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2549    // it's worth handling here.
2550    if (N2C && N2C->isNullValue())
2551      return N1;
2552    break;
2553  case ISD::UDIV:
2554  case ISD::UREM:
2555  case ISD::MULHU:
2556  case ISD::MULHS:
2557  case ISD::MUL:
2558  case ISD::SDIV:
2559  case ISD::SREM:
2560    assert(VT.isInteger() && "This operator does not apply to FP types!");
2561    // fall through
2562  case ISD::FADD:
2563  case ISD::FSUB:
2564  case ISD::FMUL:
2565  case ISD::FDIV:
2566  case ISD::FREM:
2567    if (UnsafeFPMath) {
2568      if (Opcode == ISD::FADD) {
2569        // 0+x --> x
2570        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2571          if (CFP->getValueAPF().isZero())
2572            return N2;
2573        // x+0 --> x
2574        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2575          if (CFP->getValueAPF().isZero())
2576            return N1;
2577      } else if (Opcode == ISD::FSUB) {
2578        // x-0 --> x
2579        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2580          if (CFP->getValueAPF().isZero())
2581            return N1;
2582      }
2583    }
2584    assert(N1.getValueType() == N2.getValueType() &&
2585           N1.getValueType() == VT && "Binary operator types must match!");
2586    break;
2587  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2588    assert(N1.getValueType() == VT &&
2589           N1.getValueType().isFloatingPoint() &&
2590           N2.getValueType().isFloatingPoint() &&
2591           "Invalid FCOPYSIGN!");
2592    break;
2593  case ISD::SHL:
2594  case ISD::SRA:
2595  case ISD::SRL:
2596  case ISD::ROTL:
2597  case ISD::ROTR:
2598    assert(VT == N1.getValueType() &&
2599           "Shift operators return type must be the same as their first arg");
2600    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2601           "Shifts only work on integers");
2602
2603    // Always fold shifts of i1 values so the code generator doesn't need to
2604    // handle them.  Since we know the size of the shift has to be less than the
2605    // size of the value, the shift/rotate count is guaranteed to be zero.
2606    if (VT == MVT::i1)
2607      return N1;
2608    break;
2609  case ISD::FP_ROUND_INREG: {
2610    EVT EVT = cast<VTSDNode>(N2)->getVT();
2611    assert(VT == N1.getValueType() && "Not an inreg round!");
2612    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2613           "Cannot FP_ROUND_INREG integer types");
2614    assert(EVT.bitsLE(VT) && "Not rounding down!");
2615    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2616    break;
2617  }
2618  case ISD::FP_ROUND:
2619    assert(VT.isFloatingPoint() &&
2620           N1.getValueType().isFloatingPoint() &&
2621           VT.bitsLE(N1.getValueType()) &&
2622           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2623    if (N1.getValueType() == VT) return N1;  // noop conversion.
2624    break;
2625  case ISD::AssertSext:
2626  case ISD::AssertZext: {
2627    EVT EVT = cast<VTSDNode>(N2)->getVT();
2628    assert(VT == N1.getValueType() && "Not an inreg extend!");
2629    assert(VT.isInteger() && EVT.isInteger() &&
2630           "Cannot *_EXTEND_INREG FP types");
2631    assert(EVT.bitsLE(VT) && "Not extending!");
2632    if (VT == EVT) return N1; // noop assertion.
2633    break;
2634  }
2635  case ISD::SIGN_EXTEND_INREG: {
2636    EVT EVT = cast<VTSDNode>(N2)->getVT();
2637    assert(VT == N1.getValueType() && "Not an inreg extend!");
2638    assert(VT.isInteger() && EVT.isInteger() &&
2639           "Cannot *_EXTEND_INREG FP types");
2640    assert(EVT.bitsLE(VT) && "Not extending!");
2641    if (EVT == VT) return N1;  // Not actually extending
2642
2643    if (N1C) {
2644      APInt Val = N1C->getAPIntValue();
2645      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2646      Val <<= Val.getBitWidth()-FromBits;
2647      Val = Val.ashr(Val.getBitWidth()-FromBits);
2648      return getConstant(Val, VT);
2649    }
2650    break;
2651  }
2652  case ISD::EXTRACT_VECTOR_ELT:
2653    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2654    if (N1.getOpcode() == ISD::UNDEF)
2655      return getUNDEF(VT);
2656
2657    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2658    // expanding copies of large vectors from registers.
2659    if (N2C &&
2660        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2661        N1.getNumOperands() > 0) {
2662      unsigned Factor =
2663        N1.getOperand(0).getValueType().getVectorNumElements();
2664      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2665                     N1.getOperand(N2C->getZExtValue() / Factor),
2666                     getConstant(N2C->getZExtValue() % Factor,
2667                                 N2.getValueType()));
2668    }
2669
2670    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2671    // expanding large vector constants.
2672    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2673      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2674      EVT VEltTy = N1.getValueType().getVectorElementType();
2675      if (Elt.getValueType() != VEltTy) {
2676        // If the vector element type is not legal, the BUILD_VECTOR operands
2677        // are promoted and implicitly truncated.  Make that explicit here.
2678        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2679      }
2680      if (VT != VEltTy) {
2681        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2682        // result is implicitly extended.
2683        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2684      }
2685      return Elt;
2686    }
2687
2688    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2689    // operations are lowered to scalars.
2690    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2691      // If the indices are the same, return the inserted element.
2692      if (N1.getOperand(2) == N2)
2693        return N1.getOperand(1);
2694      // If the indices are known different, extract the element from
2695      // the original vector.
2696      else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2697               isa<ConstantSDNode>(N2))
2698        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2699    }
2700    break;
2701  case ISD::EXTRACT_ELEMENT:
2702    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2703    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2704           (N1.getValueType().isInteger() == VT.isInteger()) &&
2705           "Wrong types for EXTRACT_ELEMENT!");
2706
2707    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2708    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2709    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2710    if (N1.getOpcode() == ISD::BUILD_PAIR)
2711      return N1.getOperand(N2C->getZExtValue());
2712
2713    // EXTRACT_ELEMENT of a constant int is also very common.
2714    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2715      unsigned ElementSize = VT.getSizeInBits();
2716      unsigned Shift = ElementSize * N2C->getZExtValue();
2717      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2718      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2719    }
2720    break;
2721  case ISD::EXTRACT_SUBVECTOR:
2722    if (N1.getValueType() == VT) // Trivial extraction.
2723      return N1;
2724    break;
2725  }
2726
2727  if (N1C) {
2728    if (N2C) {
2729      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2730      if (SV.getNode()) return SV;
2731    } else {      // Cannonicalize constant to RHS if commutative
2732      if (isCommutativeBinOp(Opcode)) {
2733        std::swap(N1C, N2C);
2734        std::swap(N1, N2);
2735      }
2736    }
2737  }
2738
2739  // Constant fold FP operations.
2740  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2741  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2742  if (N1CFP) {
2743    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2744      // Cannonicalize constant to RHS if commutative
2745      std::swap(N1CFP, N2CFP);
2746      std::swap(N1, N2);
2747    } else if (N2CFP && VT != MVT::ppcf128) {
2748      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2749      APFloat::opStatus s;
2750      switch (Opcode) {
2751      case ISD::FADD:
2752        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2753        if (s != APFloat::opInvalidOp)
2754          return getConstantFP(V1, VT);
2755        break;
2756      case ISD::FSUB:
2757        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2758        if (s!=APFloat::opInvalidOp)
2759          return getConstantFP(V1, VT);
2760        break;
2761      case ISD::FMUL:
2762        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2763        if (s!=APFloat::opInvalidOp)
2764          return getConstantFP(V1, VT);
2765        break;
2766      case ISD::FDIV:
2767        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2768        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2769          return getConstantFP(V1, VT);
2770        break;
2771      case ISD::FREM :
2772        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2773        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2774          return getConstantFP(V1, VT);
2775        break;
2776      case ISD::FCOPYSIGN:
2777        V1.copySign(V2);
2778        return getConstantFP(V1, VT);
2779      default: break;
2780      }
2781    }
2782  }
2783
2784  // Canonicalize an UNDEF to the RHS, even over a constant.
2785  if (N1.getOpcode() == ISD::UNDEF) {
2786    if (isCommutativeBinOp(Opcode)) {
2787      std::swap(N1, N2);
2788    } else {
2789      switch (Opcode) {
2790      case ISD::FP_ROUND_INREG:
2791      case ISD::SIGN_EXTEND_INREG:
2792      case ISD::SUB:
2793      case ISD::FSUB:
2794      case ISD::FDIV:
2795      case ISD::FREM:
2796      case ISD::SRA:
2797        return N1;     // fold op(undef, arg2) -> undef
2798      case ISD::UDIV:
2799      case ISD::SDIV:
2800      case ISD::UREM:
2801      case ISD::SREM:
2802      case ISD::SRL:
2803      case ISD::SHL:
2804        if (!VT.isVector())
2805          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2806        // For vectors, we can't easily build an all zero vector, just return
2807        // the LHS.
2808        return N2;
2809      }
2810    }
2811  }
2812
2813  // Fold a bunch of operators when the RHS is undef.
2814  if (N2.getOpcode() == ISD::UNDEF) {
2815    switch (Opcode) {
2816    case ISD::XOR:
2817      if (N1.getOpcode() == ISD::UNDEF)
2818        // Handle undef ^ undef -> 0 special case. This is a common
2819        // idiom (misuse).
2820        return getConstant(0, VT);
2821      // fallthrough
2822    case ISD::ADD:
2823    case ISD::ADDC:
2824    case ISD::ADDE:
2825    case ISD::SUB:
2826    case ISD::UDIV:
2827    case ISD::SDIV:
2828    case ISD::UREM:
2829    case ISD::SREM:
2830      return N2;       // fold op(arg1, undef) -> undef
2831    case ISD::FADD:
2832    case ISD::FSUB:
2833    case ISD::FMUL:
2834    case ISD::FDIV:
2835    case ISD::FREM:
2836      if (UnsafeFPMath)
2837        return N2;
2838      break;
2839    case ISD::MUL:
2840    case ISD::AND:
2841    case ISD::SRL:
2842    case ISD::SHL:
2843      if (!VT.isVector())
2844        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2845      // For vectors, we can't easily build an all zero vector, just return
2846      // the LHS.
2847      return N1;
2848    case ISD::OR:
2849      if (!VT.isVector())
2850        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2851      // For vectors, we can't easily build an all one vector, just return
2852      // the LHS.
2853      return N1;
2854    case ISD::SRA:
2855      return N1;
2856    }
2857  }
2858
2859  // Memoize this node if possible.
2860  SDNode *N;
2861  SDVTList VTs = getVTList(VT);
2862  if (VT != MVT::Flag) {
2863    SDValue Ops[] = { N1, N2 };
2864    FoldingSetNodeID ID;
2865    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2866    void *IP = 0;
2867    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2868      return SDValue(E, 0);
2869    N = NodeAllocator.Allocate<BinarySDNode>();
2870    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2871    CSEMap.InsertNode(N, IP);
2872  } else {
2873    N = NodeAllocator.Allocate<BinarySDNode>();
2874    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2875  }
2876
2877  AllNodes.push_back(N);
2878#ifndef NDEBUG
2879  VerifyNode(N);
2880#endif
2881  return SDValue(N, 0);
2882}
2883
2884SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2885                              SDValue N1, SDValue N2, SDValue N3) {
2886  // Perform various simplifications.
2887  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2888  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2889  switch (Opcode) {
2890  case ISD::CONCAT_VECTORS:
2891    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2892    // one big BUILD_VECTOR.
2893    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2894        N2.getOpcode() == ISD::BUILD_VECTOR &&
2895        N3.getOpcode() == ISD::BUILD_VECTOR) {
2896      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2897      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2898      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2899      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2900    }
2901    break;
2902  case ISD::SETCC: {
2903    // Use FoldSetCC to simplify SETCC's.
2904    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2905    if (Simp.getNode()) return Simp;
2906    break;
2907  }
2908  case ISD::SELECT:
2909    if (N1C) {
2910     if (N1C->getZExtValue())
2911        return N2;             // select true, X, Y -> X
2912      else
2913        return N3;             // select false, X, Y -> Y
2914    }
2915
2916    if (N2 == N3) return N2;   // select C, X, X -> X
2917    break;
2918  case ISD::BRCOND:
2919    if (N2C) {
2920      if (N2C->getZExtValue()) // Unconditional branch
2921        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
2922      else
2923        return N1;         // Never-taken branch
2924    }
2925    break;
2926  case ISD::VECTOR_SHUFFLE:
2927    llvm_unreachable("should use getVectorShuffle constructor!");
2928    break;
2929  case ISD::BIT_CONVERT:
2930    // Fold bit_convert nodes from a type to themselves.
2931    if (N1.getValueType() == VT)
2932      return N1;
2933    break;
2934  }
2935
2936  // Memoize node if it doesn't produce a flag.
2937  SDNode *N;
2938  SDVTList VTs = getVTList(VT);
2939  if (VT != MVT::Flag) {
2940    SDValue Ops[] = { N1, N2, N3 };
2941    FoldingSetNodeID ID;
2942    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2943    void *IP = 0;
2944    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2945      return SDValue(E, 0);
2946    N = NodeAllocator.Allocate<TernarySDNode>();
2947    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2948    CSEMap.InsertNode(N, IP);
2949  } else {
2950    N = NodeAllocator.Allocate<TernarySDNode>();
2951    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
2952  }
2953  AllNodes.push_back(N);
2954#ifndef NDEBUG
2955  VerifyNode(N);
2956#endif
2957  return SDValue(N, 0);
2958}
2959
2960SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2961                              SDValue N1, SDValue N2, SDValue N3,
2962                              SDValue N4) {
2963  SDValue Ops[] = { N1, N2, N3, N4 };
2964  return getNode(Opcode, DL, VT, Ops, 4);
2965}
2966
2967SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2968                              SDValue N1, SDValue N2, SDValue N3,
2969                              SDValue N4, SDValue N5) {
2970  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2971  return getNode(Opcode, DL, VT, Ops, 5);
2972}
2973
2974/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
2975/// the incoming stack arguments to be loaded from the stack.
2976SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
2977  SmallVector<SDValue, 8> ArgChains;
2978
2979  // Include the original chain at the beginning of the list. When this is
2980  // used by target LowerCall hooks, this helps legalize find the
2981  // CALLSEQ_BEGIN node.
2982  ArgChains.push_back(Chain);
2983
2984  // Add a chain value for each stack argument.
2985  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
2986       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
2987    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
2988      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
2989        if (FI->getIndex() < 0)
2990          ArgChains.push_back(SDValue(L, 1));
2991
2992  // Build a tokenfactor for all the chains.
2993  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
2994                 &ArgChains[0], ArgChains.size());
2995}
2996
2997/// getMemsetValue - Vectorized representation of the memset value
2998/// operand.
2999static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3000                              DebugLoc dl) {
3001  unsigned NumBits = VT.isVector() ?
3002    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
3003  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3004    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3005    unsigned Shift = 8;
3006    for (unsigned i = NumBits; i > 8; i >>= 1) {
3007      Val = (Val << Shift) | Val;
3008      Shift <<= 1;
3009    }
3010    if (VT.isInteger())
3011      return DAG.getConstant(Val, VT);
3012    return DAG.getConstantFP(APFloat(Val), VT);
3013  }
3014
3015  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3016  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3017  unsigned Shift = 8;
3018  for (unsigned i = NumBits; i > 8; i >>= 1) {
3019    Value = DAG.getNode(ISD::OR, dl, VT,
3020                        DAG.getNode(ISD::SHL, dl, VT, Value,
3021                                    DAG.getConstant(Shift,
3022                                                    TLI.getShiftAmountTy())),
3023                        Value);
3024    Shift <<= 1;
3025  }
3026
3027  return Value;
3028}
3029
3030/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3031/// used when a memcpy is turned into a memset when the source is a constant
3032/// string ptr.
3033static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3034                                  const TargetLowering &TLI,
3035                                  std::string &Str, unsigned Offset) {
3036  // Handle vector with all elements zero.
3037  if (Str.empty()) {
3038    if (VT.isInteger())
3039      return DAG.getConstant(0, VT);
3040    unsigned NumElts = VT.getVectorNumElements();
3041    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3042    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3043                       DAG.getConstant(0,
3044                       EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts)));
3045  }
3046
3047  assert(!VT.isVector() && "Can't handle vector type here!");
3048  unsigned NumBits = VT.getSizeInBits();
3049  unsigned MSB = NumBits / 8;
3050  uint64_t Val = 0;
3051  if (TLI.isLittleEndian())
3052    Offset = Offset + MSB - 1;
3053  for (unsigned i = 0; i != MSB; ++i) {
3054    Val = (Val << 8) | (unsigned char)Str[Offset];
3055    Offset += TLI.isLittleEndian() ? -1 : 1;
3056  }
3057  return DAG.getConstant(Val, VT);
3058}
3059
3060/// getMemBasePlusOffset - Returns base and offset node for the
3061///
3062static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3063                                      SelectionDAG &DAG) {
3064  EVT VT = Base.getValueType();
3065  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3066                     VT, Base, DAG.getConstant(Offset, VT));
3067}
3068
3069/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3070///
3071static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3072  unsigned SrcDelta = 0;
3073  GlobalAddressSDNode *G = NULL;
3074  if (Src.getOpcode() == ISD::GlobalAddress)
3075    G = cast<GlobalAddressSDNode>(Src);
3076  else if (Src.getOpcode() == ISD::ADD &&
3077           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3078           Src.getOperand(1).getOpcode() == ISD::Constant) {
3079    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3080    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3081  }
3082  if (!G)
3083    return false;
3084
3085  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3086  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3087    return true;
3088
3089  return false;
3090}
3091
3092/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3093/// to replace the memset / memcpy is below the threshold. It also returns the
3094/// types of the sequence of memory ops to perform memset / memcpy.
3095static
3096bool MeetsMaxMemopRequirement(std::vector<EVT> &MemOps,
3097                              SDValue Dst, SDValue Src,
3098                              unsigned Limit, uint64_t Size, unsigned &Align,
3099                              std::string &Str, bool &isSrcStr,
3100                              SelectionDAG &DAG,
3101                              const TargetLowering &TLI) {
3102  isSrcStr = isMemSrcFromString(Src, Str);
3103  bool isSrcConst = isa<ConstantSDNode>(Src);
3104  EVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
3105  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses(VT);
3106  if (VT != MVT::iAny) {
3107    const Type *Ty = VT.getTypeForEVT(*DAG.getContext());
3108    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3109    // If source is a string constant, this will require an unaligned load.
3110    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3111      if (Dst.getOpcode() != ISD::FrameIndex) {
3112        // Can't change destination alignment. It requires a unaligned store.
3113        if (AllowUnalign)
3114          VT = MVT::iAny;
3115      } else {
3116        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3117        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3118        if (MFI->isFixedObjectIndex(FI)) {
3119          // Can't change destination alignment. It requires a unaligned store.
3120          if (AllowUnalign)
3121            VT = MVT::iAny;
3122        } else {
3123          // Give the stack frame object a larger alignment if needed.
3124          if (MFI->getObjectAlignment(FI) < NewAlign)
3125            MFI->setObjectAlignment(FI, NewAlign);
3126          Align = NewAlign;
3127        }
3128      }
3129    }
3130  }
3131
3132  if (VT == MVT::iAny) {
3133    if (TLI.allowsUnalignedMemoryAccesses(MVT::i64)) {
3134      VT = MVT::i64;
3135    } else {
3136      switch (Align & 7) {
3137      case 0:  VT = MVT::i64; break;
3138      case 4:  VT = MVT::i32; break;
3139      case 2:  VT = MVT::i16; break;
3140      default: VT = MVT::i8;  break;
3141      }
3142    }
3143
3144    MVT LVT = MVT::i64;
3145    while (!TLI.isTypeLegal(LVT))
3146      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3147    assert(LVT.isInteger());
3148
3149    if (VT.bitsGT(LVT))
3150      VT = LVT;
3151  }
3152
3153  unsigned NumMemOps = 0;
3154  while (Size != 0) {
3155    unsigned VTSize = VT.getSizeInBits() / 8;
3156    while (VTSize > Size) {
3157      // For now, only use non-vector load / store's for the left-over pieces.
3158      if (VT.isVector()) {
3159        VT = MVT::i64;
3160        while (!TLI.isTypeLegal(VT))
3161          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3162        VTSize = VT.getSizeInBits() / 8;
3163      } else {
3164        // This can result in a type that is not legal on the target, e.g.
3165        // 1 or 2 bytes on PPC.
3166        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3167        VTSize >>= 1;
3168      }
3169    }
3170
3171    if (++NumMemOps > Limit)
3172      return false;
3173    MemOps.push_back(VT);
3174    Size -= VTSize;
3175  }
3176
3177  return true;
3178}
3179
3180static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3181                                         SDValue Chain, SDValue Dst,
3182                                         SDValue Src, uint64_t Size,
3183                                         unsigned Align, bool AlwaysInline,
3184                                         const Value *DstSV, uint64_t DstSVOff,
3185                                         const Value *SrcSV, uint64_t SrcSVOff){
3186  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3187
3188  // Expand memcpy to a series of load and store ops if the size operand falls
3189  // below a certain threshold.
3190  std::vector<EVT> MemOps;
3191  uint64_t Limit = -1ULL;
3192  if (!AlwaysInline)
3193    Limit = TLI.getMaxStoresPerMemcpy();
3194  unsigned DstAlign = Align;  // Destination alignment can change.
3195  std::string Str;
3196  bool CopyFromStr;
3197  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3198                                Str, CopyFromStr, DAG, TLI))
3199    return SDValue();
3200
3201
3202  bool isZeroStr = CopyFromStr && Str.empty();
3203  SmallVector<SDValue, 8> OutChains;
3204  unsigned NumMemOps = MemOps.size();
3205  uint64_t SrcOff = 0, DstOff = 0;
3206  for (unsigned i = 0; i != NumMemOps; ++i) {
3207    EVT VT = MemOps[i];
3208    unsigned VTSize = VT.getSizeInBits() / 8;
3209    SDValue Value, Store;
3210
3211    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3212      // It's unlikely a store of a vector immediate can be done in a single
3213      // instruction. It would require a load from a constantpool first.
3214      // We also handle store a vector with all zero's.
3215      // FIXME: Handle other cases where store of vector immediate is done in
3216      // a single instruction.
3217      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3218      Store = DAG.getStore(Chain, dl, Value,
3219                           getMemBasePlusOffset(Dst, DstOff, DAG),
3220                           DstSV, DstSVOff + DstOff, false, DstAlign);
3221    } else {
3222      // The type might not be legal for the target.  This should only happen
3223      // if the type is smaller than a legal type, as on PPC, so the right
3224      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3225      // to Load/Store if NVT==VT.
3226      // FIXME does the case above also need this?
3227      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3228      assert(NVT.bitsGE(VT));
3229      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3230                             getMemBasePlusOffset(Src, SrcOff, DAG),
3231                             SrcSV, SrcSVOff + SrcOff, VT, false, Align);
3232      Store = DAG.getTruncStore(Chain, dl, Value,
3233                             getMemBasePlusOffset(Dst, DstOff, DAG),
3234                             DstSV, DstSVOff + DstOff, VT, false, DstAlign);
3235    }
3236    OutChains.push_back(Store);
3237    SrcOff += VTSize;
3238    DstOff += VTSize;
3239  }
3240
3241  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3242                     &OutChains[0], OutChains.size());
3243}
3244
3245static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3246                                          SDValue Chain, SDValue Dst,
3247                                          SDValue Src, uint64_t Size,
3248                                          unsigned Align, bool AlwaysInline,
3249                                          const Value *DstSV, uint64_t DstSVOff,
3250                                          const Value *SrcSV, uint64_t SrcSVOff){
3251  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3252
3253  // Expand memmove to a series of load and store ops if the size operand falls
3254  // below a certain threshold.
3255  std::vector<EVT> MemOps;
3256  uint64_t Limit = -1ULL;
3257  if (!AlwaysInline)
3258    Limit = TLI.getMaxStoresPerMemmove();
3259  unsigned DstAlign = Align;  // Destination alignment can change.
3260  std::string Str;
3261  bool CopyFromStr;
3262  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3263                                Str, CopyFromStr, DAG, TLI))
3264    return SDValue();
3265
3266  uint64_t SrcOff = 0, DstOff = 0;
3267
3268  SmallVector<SDValue, 8> LoadValues;
3269  SmallVector<SDValue, 8> LoadChains;
3270  SmallVector<SDValue, 8> OutChains;
3271  unsigned NumMemOps = MemOps.size();
3272  for (unsigned i = 0; i < NumMemOps; i++) {
3273    EVT VT = MemOps[i];
3274    unsigned VTSize = VT.getSizeInBits() / 8;
3275    SDValue Value, Store;
3276
3277    Value = DAG.getLoad(VT, dl, Chain,
3278                        getMemBasePlusOffset(Src, SrcOff, DAG),
3279                        SrcSV, SrcSVOff + SrcOff, false, Align);
3280    LoadValues.push_back(Value);
3281    LoadChains.push_back(Value.getValue(1));
3282    SrcOff += VTSize;
3283  }
3284  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3285                      &LoadChains[0], LoadChains.size());
3286  OutChains.clear();
3287  for (unsigned i = 0; i < NumMemOps; i++) {
3288    EVT VT = MemOps[i];
3289    unsigned VTSize = VT.getSizeInBits() / 8;
3290    SDValue Value, Store;
3291
3292    Store = DAG.getStore(Chain, dl, LoadValues[i],
3293                         getMemBasePlusOffset(Dst, DstOff, DAG),
3294                         DstSV, DstSVOff + DstOff, false, DstAlign);
3295    OutChains.push_back(Store);
3296    DstOff += VTSize;
3297  }
3298
3299  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3300                     &OutChains[0], OutChains.size());
3301}
3302
3303static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3304                                 SDValue Chain, SDValue Dst,
3305                                 SDValue Src, uint64_t Size,
3306                                 unsigned Align,
3307                                 const Value *DstSV, uint64_t DstSVOff) {
3308  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3309
3310  // Expand memset to a series of load/store ops if the size operand
3311  // falls below a certain threshold.
3312  std::vector<EVT> MemOps;
3313  std::string Str;
3314  bool CopyFromStr;
3315  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3316                                Size, Align, Str, CopyFromStr, DAG, TLI))
3317    return SDValue();
3318
3319  SmallVector<SDValue, 8> OutChains;
3320  uint64_t DstOff = 0;
3321
3322  unsigned NumMemOps = MemOps.size();
3323  for (unsigned i = 0; i < NumMemOps; i++) {
3324    EVT VT = MemOps[i];
3325    unsigned VTSize = VT.getSizeInBits() / 8;
3326    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3327    SDValue Store = DAG.getStore(Chain, dl, Value,
3328                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3329                                 DstSV, DstSVOff + DstOff);
3330    OutChains.push_back(Store);
3331    DstOff += VTSize;
3332  }
3333
3334  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3335                     &OutChains[0], OutChains.size());
3336}
3337
3338SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3339                                SDValue Src, SDValue Size,
3340                                unsigned Align, bool AlwaysInline,
3341                                const Value *DstSV, uint64_t DstSVOff,
3342                                const Value *SrcSV, uint64_t SrcSVOff) {
3343
3344  // Check to see if we should lower the memcpy to loads and stores first.
3345  // For cases within the target-specified limits, this is the best choice.
3346  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3347  if (ConstantSize) {
3348    // Memcpy with size zero? Just return the original chain.
3349    if (ConstantSize->isNullValue())
3350      return Chain;
3351
3352    SDValue Result =
3353      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3354                              ConstantSize->getZExtValue(),
3355                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3356    if (Result.getNode())
3357      return Result;
3358  }
3359
3360  // Then check to see if we should lower the memcpy with target-specific
3361  // code. If the target chooses to do this, this is the next best.
3362  SDValue Result =
3363    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3364                                AlwaysInline,
3365                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3366  if (Result.getNode())
3367    return Result;
3368
3369  // If we really need inline code and the target declined to provide it,
3370  // use a (potentially long) sequence of loads and stores.
3371  if (AlwaysInline) {
3372    assert(ConstantSize && "AlwaysInline requires a constant size!");
3373    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3374                                   ConstantSize->getZExtValue(), Align, true,
3375                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3376  }
3377
3378  // Emit a library call.
3379  TargetLowering::ArgListTy Args;
3380  TargetLowering::ArgListEntry Entry;
3381  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3382  Entry.Node = Dst; Args.push_back(Entry);
3383  Entry.Node = Src; Args.push_back(Entry);
3384  Entry.Node = Size; Args.push_back(Entry);
3385  // FIXME: pass in DebugLoc
3386  std::pair<SDValue,SDValue> CallResult =
3387    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3388                    false, false, false, false, 0,
3389                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3390                    /*isReturnValueUsed=*/false,
3391                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3392                                      TLI.getPointerTy()),
3393                    Args, *this, dl);
3394  return CallResult.second;
3395}
3396
3397SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3398                                 SDValue Src, SDValue Size,
3399                                 unsigned Align,
3400                                 const Value *DstSV, uint64_t DstSVOff,
3401                                 const Value *SrcSV, uint64_t SrcSVOff) {
3402
3403  // Check to see if we should lower the memmove to loads and stores first.
3404  // For cases within the target-specified limits, this is the best choice.
3405  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3406  if (ConstantSize) {
3407    // Memmove with size zero? Just return the original chain.
3408    if (ConstantSize->isNullValue())
3409      return Chain;
3410
3411    SDValue Result =
3412      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3413                               ConstantSize->getZExtValue(),
3414                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3415    if (Result.getNode())
3416      return Result;
3417  }
3418
3419  // Then check to see if we should lower the memmove with target-specific
3420  // code. If the target chooses to do this, this is the next best.
3421  SDValue Result =
3422    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3423                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3424  if (Result.getNode())
3425    return Result;
3426
3427  // Emit a library call.
3428  TargetLowering::ArgListTy Args;
3429  TargetLowering::ArgListEntry Entry;
3430  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3431  Entry.Node = Dst; Args.push_back(Entry);
3432  Entry.Node = Src; Args.push_back(Entry);
3433  Entry.Node = Size; Args.push_back(Entry);
3434  // FIXME:  pass in DebugLoc
3435  std::pair<SDValue,SDValue> CallResult =
3436    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3437                    false, false, false, false, 0,
3438                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3439                    /*isReturnValueUsed=*/false,
3440                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3441                                      TLI.getPointerTy()),
3442                    Args, *this, dl);
3443  return CallResult.second;
3444}
3445
3446SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3447                                SDValue Src, SDValue Size,
3448                                unsigned Align,
3449                                const Value *DstSV, uint64_t DstSVOff) {
3450
3451  // Check to see if we should lower the memset to stores first.
3452  // For cases within the target-specified limits, this is the best choice.
3453  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3454  if (ConstantSize) {
3455    // Memset with size zero? Just return the original chain.
3456    if (ConstantSize->isNullValue())
3457      return Chain;
3458
3459    SDValue Result =
3460      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3461                      Align, DstSV, DstSVOff);
3462    if (Result.getNode())
3463      return Result;
3464  }
3465
3466  // Then check to see if we should lower the memset with target-specific
3467  // code. If the target chooses to do this, this is the next best.
3468  SDValue Result =
3469    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3470                                DstSV, DstSVOff);
3471  if (Result.getNode())
3472    return Result;
3473
3474  // Emit a library call.
3475  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3476  TargetLowering::ArgListTy Args;
3477  TargetLowering::ArgListEntry Entry;
3478  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3479  Args.push_back(Entry);
3480  // Extend or truncate the argument to be an i32 value for the call.
3481  if (Src.getValueType().bitsGT(MVT::i32))
3482    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3483  else
3484    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3485  Entry.Node = Src;
3486  Entry.Ty = Type::getInt32Ty(*getContext());
3487  Entry.isSExt = true;
3488  Args.push_back(Entry);
3489  Entry.Node = Size;
3490  Entry.Ty = IntPtrTy;
3491  Entry.isSExt = false;
3492  Args.push_back(Entry);
3493  // FIXME: pass in DebugLoc
3494  std::pair<SDValue,SDValue> CallResult =
3495    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3496                    false, false, false, false, 0,
3497                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3498                    /*isReturnValueUsed=*/false,
3499                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3500                                      TLI.getPointerTy()),
3501                    Args, *this, dl);
3502  return CallResult.second;
3503}
3504
3505SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3506                                SDValue Chain,
3507                                SDValue Ptr, SDValue Cmp,
3508                                SDValue Swp, const Value* PtrVal,
3509                                unsigned Alignment) {
3510  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3511    Alignment = getEVTAlignment(MemVT);
3512
3513  // Check if the memory reference references a frame index
3514  if (!PtrVal)
3515    if (const FrameIndexSDNode *FI =
3516          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3517      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3518
3519  MachineFunction &MF = getMachineFunction();
3520  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3521
3522  // For now, atomics are considered to be volatile always.
3523  Flags |= MachineMemOperand::MOVolatile;
3524
3525  MachineMemOperand *MMO =
3526    MF.getMachineMemOperand(PtrVal, Flags, 0,
3527                            MemVT.getStoreSize(), Alignment);
3528
3529  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3530}
3531
3532SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3533                                SDValue Chain,
3534                                SDValue Ptr, SDValue Cmp,
3535                                SDValue Swp, MachineMemOperand *MMO) {
3536  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3537  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3538
3539  EVT VT = Cmp.getValueType();
3540
3541  SDVTList VTs = getVTList(VT, MVT::Other);
3542  FoldingSetNodeID ID;
3543  ID.AddInteger(MemVT.getRawBits());
3544  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3545  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3546  void* IP = 0;
3547  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3548    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3549    return SDValue(E, 0);
3550  }
3551  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3552  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3553  CSEMap.InsertNode(N, IP);
3554  AllNodes.push_back(N);
3555  return SDValue(N, 0);
3556}
3557
3558SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3559                                SDValue Chain,
3560                                SDValue Ptr, SDValue Val,
3561                                const Value* PtrVal,
3562                                unsigned Alignment) {
3563  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3564    Alignment = getEVTAlignment(MemVT);
3565
3566  // Check if the memory reference references a frame index
3567  if (!PtrVal)
3568    if (const FrameIndexSDNode *FI =
3569          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3570      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3571
3572  MachineFunction &MF = getMachineFunction();
3573  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3574
3575  // For now, atomics are considered to be volatile always.
3576  Flags |= MachineMemOperand::MOVolatile;
3577
3578  MachineMemOperand *MMO =
3579    MF.getMachineMemOperand(PtrVal, Flags, 0,
3580                            MemVT.getStoreSize(), Alignment);
3581
3582  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3583}
3584
3585SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3586                                SDValue Chain,
3587                                SDValue Ptr, SDValue Val,
3588                                MachineMemOperand *MMO) {
3589  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3590          Opcode == ISD::ATOMIC_LOAD_SUB ||
3591          Opcode == ISD::ATOMIC_LOAD_AND ||
3592          Opcode == ISD::ATOMIC_LOAD_OR ||
3593          Opcode == ISD::ATOMIC_LOAD_XOR ||
3594          Opcode == ISD::ATOMIC_LOAD_NAND ||
3595          Opcode == ISD::ATOMIC_LOAD_MIN ||
3596          Opcode == ISD::ATOMIC_LOAD_MAX ||
3597          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3598          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3599          Opcode == ISD::ATOMIC_SWAP) &&
3600         "Invalid Atomic Op");
3601
3602  EVT VT = Val.getValueType();
3603
3604  SDVTList VTs = getVTList(VT, MVT::Other);
3605  FoldingSetNodeID ID;
3606  ID.AddInteger(MemVT.getRawBits());
3607  SDValue Ops[] = {Chain, Ptr, Val};
3608  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3609  void* IP = 0;
3610  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3611    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3612    return SDValue(E, 0);
3613  }
3614  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3615  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Val, MMO);
3616  CSEMap.InsertNode(N, IP);
3617  AllNodes.push_back(N);
3618  return SDValue(N, 0);
3619}
3620
3621/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3622/// Allowed to return something different (and simpler) if Simplify is true.
3623SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3624                                     DebugLoc dl) {
3625  if (NumOps == 1)
3626    return Ops[0];
3627
3628  SmallVector<EVT, 4> VTs;
3629  VTs.reserve(NumOps);
3630  for (unsigned i = 0; i < NumOps; ++i)
3631    VTs.push_back(Ops[i].getValueType());
3632  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3633                 Ops, NumOps);
3634}
3635
3636SDValue
3637SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3638                                  const EVT *VTs, unsigned NumVTs,
3639                                  const SDValue *Ops, unsigned NumOps,
3640                                  EVT MemVT, const Value *srcValue, int SVOff,
3641                                  unsigned Align, bool Vol,
3642                                  bool ReadMem, bool WriteMem) {
3643  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3644                             MemVT, srcValue, SVOff, Align, Vol,
3645                             ReadMem, WriteMem);
3646}
3647
3648SDValue
3649SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3650                                  const SDValue *Ops, unsigned NumOps,
3651                                  EVT MemVT, const Value *srcValue, int SVOff,
3652                                  unsigned Align, bool Vol,
3653                                  bool ReadMem, bool WriteMem) {
3654  if (Align == 0)  // Ensure that codegen never sees alignment 0
3655    Align = getEVTAlignment(MemVT);
3656
3657  MachineFunction &MF = getMachineFunction();
3658  unsigned Flags = 0;
3659  if (WriteMem)
3660    Flags |= MachineMemOperand::MOStore;
3661  if (ReadMem)
3662    Flags |= MachineMemOperand::MOLoad;
3663  if (Vol)
3664    Flags |= MachineMemOperand::MOVolatile;
3665  MachineMemOperand *MMO =
3666    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3667                            MemVT.getStoreSize(), Align);
3668
3669  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3670}
3671
3672SDValue
3673SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3674                                  const SDValue *Ops, unsigned NumOps,
3675                                  EVT MemVT, MachineMemOperand *MMO) {
3676  assert((Opcode == ISD::INTRINSIC_VOID ||
3677          Opcode == ISD::INTRINSIC_W_CHAIN ||
3678          (Opcode <= INT_MAX &&
3679           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3680         "Opcode is not a memory-accessing opcode!");
3681
3682  // Memoize the node unless it returns a flag.
3683  MemIntrinsicSDNode *N;
3684  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3685    FoldingSetNodeID ID;
3686    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3687    void *IP = 0;
3688    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3689      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3690      return SDValue(E, 0);
3691    }
3692
3693    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3694    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3695    CSEMap.InsertNode(N, IP);
3696  } else {
3697    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3698    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3699  }
3700  AllNodes.push_back(N);
3701  return SDValue(N, 0);
3702}
3703
3704SDValue
3705SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3706                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3707                      SDValue Ptr, SDValue Offset,
3708                      const Value *SV, int SVOffset, EVT MemVT,
3709                      bool isVolatile, unsigned Alignment) {
3710  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3711    Alignment = getEVTAlignment(VT);
3712
3713  // Check if the memory reference references a frame index
3714  if (!SV)
3715    if (const FrameIndexSDNode *FI =
3716          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3717      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3718
3719  MachineFunction &MF = getMachineFunction();
3720  unsigned Flags = MachineMemOperand::MOLoad;
3721  if (isVolatile)
3722    Flags |= MachineMemOperand::MOVolatile;
3723  MachineMemOperand *MMO =
3724    MF.getMachineMemOperand(SV, Flags, SVOffset,
3725                            MemVT.getStoreSize(), Alignment);
3726  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3727}
3728
3729SDValue
3730SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3731                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3732                      SDValue Ptr, SDValue Offset, EVT MemVT,
3733                      MachineMemOperand *MMO) {
3734  if (VT == MemVT) {
3735    ExtType = ISD::NON_EXTLOAD;
3736  } else if (ExtType == ISD::NON_EXTLOAD) {
3737    assert(VT == MemVT && "Non-extending load from different memory type!");
3738  } else {
3739    // Extending load.
3740    if (VT.isVector())
3741      assert(MemVT.getVectorNumElements() == VT.getVectorNumElements() &&
3742             "Invalid vector extload!");
3743    else
3744      assert(MemVT.bitsLT(VT) &&
3745             "Should only be an extending load, not truncating!");
3746    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3747           "Cannot sign/zero extend a FP/Vector load!");
3748    assert(VT.isInteger() == MemVT.isInteger() &&
3749           "Cannot convert from FP to Int or Int -> FP!");
3750  }
3751
3752  bool Indexed = AM != ISD::UNINDEXED;
3753  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3754         "Unindexed load with an offset!");
3755
3756  SDVTList VTs = Indexed ?
3757    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3758  SDValue Ops[] = { Chain, Ptr, Offset };
3759  FoldingSetNodeID ID;
3760  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3761  ID.AddInteger(MemVT.getRawBits());
3762  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile()));
3763  void *IP = 0;
3764  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3765    cast<LoadSDNode>(E)->refineAlignment(MMO);
3766    return SDValue(E, 0);
3767  }
3768  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3769  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, MemVT, MMO);
3770  CSEMap.InsertNode(N, IP);
3771  AllNodes.push_back(N);
3772  return SDValue(N, 0);
3773}
3774
3775SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3776                              SDValue Chain, SDValue Ptr,
3777                              const Value *SV, int SVOffset,
3778                              bool isVolatile, unsigned Alignment) {
3779  SDValue Undef = getUNDEF(Ptr.getValueType());
3780  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3781                 SV, SVOffset, VT, isVolatile, Alignment);
3782}
3783
3784SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3785                                 SDValue Chain, SDValue Ptr,
3786                                 const Value *SV,
3787                                 int SVOffset, EVT MemVT,
3788                                 bool isVolatile, unsigned Alignment) {
3789  SDValue Undef = getUNDEF(Ptr.getValueType());
3790  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3791                 SV, SVOffset, MemVT, isVolatile, Alignment);
3792}
3793
3794SDValue
3795SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3796                             SDValue Offset, ISD::MemIndexedMode AM) {
3797  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3798  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3799         "Load is already a indexed load!");
3800  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3801                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3802                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3803                 LD->isVolatile(), LD->getAlignment());
3804}
3805
3806SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3807                               SDValue Ptr, const Value *SV, int SVOffset,
3808                               bool isVolatile, unsigned Alignment) {
3809  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3810    Alignment = getEVTAlignment(Val.getValueType());
3811
3812  // Check if the memory reference references a frame index
3813  if (!SV)
3814    if (const FrameIndexSDNode *FI =
3815          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3816      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3817
3818  MachineFunction &MF = getMachineFunction();
3819  unsigned Flags = MachineMemOperand::MOStore;
3820  if (isVolatile)
3821    Flags |= MachineMemOperand::MOVolatile;
3822  MachineMemOperand *MMO =
3823    MF.getMachineMemOperand(SV, Flags, SVOffset,
3824                            Val.getValueType().getStoreSize(), Alignment);
3825
3826  return getStore(Chain, dl, Val, Ptr, MMO);
3827}
3828
3829SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3830                               SDValue Ptr, MachineMemOperand *MMO) {
3831  EVT VT = Val.getValueType();
3832  SDVTList VTs = getVTList(MVT::Other);
3833  SDValue Undef = getUNDEF(Ptr.getValueType());
3834  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3835  FoldingSetNodeID ID;
3836  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3837  ID.AddInteger(VT.getRawBits());
3838  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile()));
3839  void *IP = 0;
3840  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3841    cast<StoreSDNode>(E)->refineAlignment(MMO);
3842    return SDValue(E, 0);
3843  }
3844  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3845  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false, VT, MMO);
3846  CSEMap.InsertNode(N, IP);
3847  AllNodes.push_back(N);
3848  return SDValue(N, 0);
3849}
3850
3851SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3852                                    SDValue Ptr, const Value *SV,
3853                                    int SVOffset, EVT SVT,
3854                                    bool isVolatile, unsigned Alignment) {
3855  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3856    Alignment = getEVTAlignment(SVT);
3857
3858  // Check if the memory reference references a frame index
3859  if (!SV)
3860    if (const FrameIndexSDNode *FI =
3861          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3862      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3863
3864  MachineFunction &MF = getMachineFunction();
3865  unsigned Flags = MachineMemOperand::MOStore;
3866  if (isVolatile)
3867    Flags |= MachineMemOperand::MOVolatile;
3868  MachineMemOperand *MMO =
3869    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
3870
3871  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
3872}
3873
3874SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3875                                    SDValue Ptr, EVT SVT,
3876                                    MachineMemOperand *MMO) {
3877  EVT VT = Val.getValueType();
3878
3879  if (VT == SVT)
3880    return getStore(Chain, dl, Val, Ptr, MMO);
3881
3882  assert(VT.bitsGT(SVT) && "Not a truncation?");
3883  assert(VT.isInteger() == SVT.isInteger() &&
3884         "Can't do FP-INT conversion!");
3885
3886
3887  SDVTList VTs = getVTList(MVT::Other);
3888  SDValue Undef = getUNDEF(Ptr.getValueType());
3889  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3890  FoldingSetNodeID ID;
3891  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3892  ID.AddInteger(SVT.getRawBits());
3893  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile()));
3894  void *IP = 0;
3895  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3896    cast<StoreSDNode>(E)->refineAlignment(MMO);
3897    return SDValue(E, 0);
3898  }
3899  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3900  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true, SVT, MMO);
3901  CSEMap.InsertNode(N, IP);
3902  AllNodes.push_back(N);
3903  return SDValue(N, 0);
3904}
3905
3906SDValue
3907SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
3908                              SDValue Offset, ISD::MemIndexedMode AM) {
3909  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3910  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3911         "Store is already a indexed store!");
3912  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3913  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3914  FoldingSetNodeID ID;
3915  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3916  ID.AddInteger(ST->getMemoryVT().getRawBits());
3917  ID.AddInteger(ST->getRawSubclassData());
3918  void *IP = 0;
3919  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3920    return SDValue(E, 0);
3921  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3922  new (N) StoreSDNode(Ops, dl, VTs, AM,
3923                      ST->isTruncatingStore(), ST->getMemoryVT(),
3924                      ST->getMemOperand());
3925  CSEMap.InsertNode(N, IP);
3926  AllNodes.push_back(N);
3927  return SDValue(N, 0);
3928}
3929
3930SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
3931                               SDValue Chain, SDValue Ptr,
3932                               SDValue SV) {
3933  SDValue Ops[] = { Chain, Ptr, SV };
3934  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
3935}
3936
3937SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3938                              const SDUse *Ops, unsigned NumOps) {
3939  switch (NumOps) {
3940  case 0: return getNode(Opcode, DL, VT);
3941  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3942  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3943  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3944  default: break;
3945  }
3946
3947  // Copy from an SDUse array into an SDValue array for use with
3948  // the regular getNode logic.
3949  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3950  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
3951}
3952
3953SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3954                              const SDValue *Ops, unsigned NumOps) {
3955  switch (NumOps) {
3956  case 0: return getNode(Opcode, DL, VT);
3957  case 1: return getNode(Opcode, DL, VT, Ops[0]);
3958  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
3959  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
3960  default: break;
3961  }
3962
3963  switch (Opcode) {
3964  default: break;
3965  case ISD::SELECT_CC: {
3966    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3967    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3968           "LHS and RHS of condition must have same type!");
3969    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3970           "True and False arms of SelectCC must have same type!");
3971    assert(Ops[2].getValueType() == VT &&
3972           "select_cc node must be of same type as true and false value!");
3973    break;
3974  }
3975  case ISD::BR_CC: {
3976    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3977    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3978           "LHS/RHS of comparison should match types!");
3979    break;
3980  }
3981  }
3982
3983  // Memoize nodes.
3984  SDNode *N;
3985  SDVTList VTs = getVTList(VT);
3986
3987  if (VT != MVT::Flag) {
3988    FoldingSetNodeID ID;
3989    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3990    void *IP = 0;
3991
3992    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3993      return SDValue(E, 0);
3994
3995    N = NodeAllocator.Allocate<SDNode>();
3996    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
3997    CSEMap.InsertNode(N, IP);
3998  } else {
3999    N = NodeAllocator.Allocate<SDNode>();
4000    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4001  }
4002
4003  AllNodes.push_back(N);
4004#ifndef NDEBUG
4005  VerifyNode(N);
4006#endif
4007  return SDValue(N, 0);
4008}
4009
4010SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4011                              const std::vector<EVT> &ResultTys,
4012                              const SDValue *Ops, unsigned NumOps) {
4013  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4014                 Ops, NumOps);
4015}
4016
4017SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4018                              const EVT *VTs, unsigned NumVTs,
4019                              const SDValue *Ops, unsigned NumOps) {
4020  if (NumVTs == 1)
4021    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4022  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4023}
4024
4025SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4026                              const SDValue *Ops, unsigned NumOps) {
4027  if (VTList.NumVTs == 1)
4028    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4029
4030#if 0
4031  switch (Opcode) {
4032  // FIXME: figure out how to safely handle things like
4033  // int foo(int x) { return 1 << (x & 255); }
4034  // int bar() { return foo(256); }
4035  case ISD::SRA_PARTS:
4036  case ISD::SRL_PARTS:
4037  case ISD::SHL_PARTS:
4038    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4039        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4040      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4041    else if (N3.getOpcode() == ISD::AND)
4042      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4043        // If the and is only masking out bits that cannot effect the shift,
4044        // eliminate the and.
4045        unsigned NumBits = VT.getSizeInBits()*2;
4046        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4047          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4048      }
4049    break;
4050  }
4051#endif
4052
4053  // Memoize the node unless it returns a flag.
4054  SDNode *N;
4055  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4056    FoldingSetNodeID ID;
4057    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4058    void *IP = 0;
4059    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4060      return SDValue(E, 0);
4061    if (NumOps == 1) {
4062      N = NodeAllocator.Allocate<UnarySDNode>();
4063      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4064    } else if (NumOps == 2) {
4065      N = NodeAllocator.Allocate<BinarySDNode>();
4066      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4067    } else if (NumOps == 3) {
4068      N = NodeAllocator.Allocate<TernarySDNode>();
4069      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4070    } else {
4071      N = NodeAllocator.Allocate<SDNode>();
4072      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4073    }
4074    CSEMap.InsertNode(N, IP);
4075  } else {
4076    if (NumOps == 1) {
4077      N = NodeAllocator.Allocate<UnarySDNode>();
4078      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4079    } else if (NumOps == 2) {
4080      N = NodeAllocator.Allocate<BinarySDNode>();
4081      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4082    } else if (NumOps == 3) {
4083      N = NodeAllocator.Allocate<TernarySDNode>();
4084      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4085    } else {
4086      N = NodeAllocator.Allocate<SDNode>();
4087      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4088    }
4089  }
4090  AllNodes.push_back(N);
4091#ifndef NDEBUG
4092  VerifyNode(N);
4093#endif
4094  return SDValue(N, 0);
4095}
4096
4097SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4098  return getNode(Opcode, DL, VTList, 0, 0);
4099}
4100
4101SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4102                              SDValue N1) {
4103  SDValue Ops[] = { N1 };
4104  return getNode(Opcode, DL, VTList, Ops, 1);
4105}
4106
4107SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4108                              SDValue N1, SDValue N2) {
4109  SDValue Ops[] = { N1, N2 };
4110  return getNode(Opcode, DL, VTList, Ops, 2);
4111}
4112
4113SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4114                              SDValue N1, SDValue N2, SDValue N3) {
4115  SDValue Ops[] = { N1, N2, N3 };
4116  return getNode(Opcode, DL, VTList, Ops, 3);
4117}
4118
4119SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4120                              SDValue N1, SDValue N2, SDValue N3,
4121                              SDValue N4) {
4122  SDValue Ops[] = { N1, N2, N3, N4 };
4123  return getNode(Opcode, DL, VTList, Ops, 4);
4124}
4125
4126SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4127                              SDValue N1, SDValue N2, SDValue N3,
4128                              SDValue N4, SDValue N5) {
4129  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4130  return getNode(Opcode, DL, VTList, Ops, 5);
4131}
4132
4133SDVTList SelectionDAG::getVTList(EVT VT) {
4134  return makeVTList(SDNode::getValueTypeList(VT), 1);
4135}
4136
4137SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4138  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4139       E = VTList.rend(); I != E; ++I)
4140    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4141      return *I;
4142
4143  EVT *Array = Allocator.Allocate<EVT>(2);
4144  Array[0] = VT1;
4145  Array[1] = VT2;
4146  SDVTList Result = makeVTList(Array, 2);
4147  VTList.push_back(Result);
4148  return Result;
4149}
4150
4151SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4152  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4153       E = VTList.rend(); I != E; ++I)
4154    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4155                          I->VTs[2] == VT3)
4156      return *I;
4157
4158  EVT *Array = Allocator.Allocate<EVT>(3);
4159  Array[0] = VT1;
4160  Array[1] = VT2;
4161  Array[2] = VT3;
4162  SDVTList Result = makeVTList(Array, 3);
4163  VTList.push_back(Result);
4164  return Result;
4165}
4166
4167SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4168  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4169       E = VTList.rend(); I != E; ++I)
4170    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4171                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4172      return *I;
4173
4174  EVT *Array = Allocator.Allocate<EVT>(3);
4175  Array[0] = VT1;
4176  Array[1] = VT2;
4177  Array[2] = VT3;
4178  Array[3] = VT4;
4179  SDVTList Result = makeVTList(Array, 4);
4180  VTList.push_back(Result);
4181  return Result;
4182}
4183
4184SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4185  switch (NumVTs) {
4186    case 0: llvm_unreachable("Cannot have nodes without results!");
4187    case 1: return getVTList(VTs[0]);
4188    case 2: return getVTList(VTs[0], VTs[1]);
4189    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4190    default: break;
4191  }
4192
4193  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4194       E = VTList.rend(); I != E; ++I) {
4195    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4196      continue;
4197
4198    bool NoMatch = false;
4199    for (unsigned i = 2; i != NumVTs; ++i)
4200      if (VTs[i] != I->VTs[i]) {
4201        NoMatch = true;
4202        break;
4203      }
4204    if (!NoMatch)
4205      return *I;
4206  }
4207
4208  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4209  std::copy(VTs, VTs+NumVTs, Array);
4210  SDVTList Result = makeVTList(Array, NumVTs);
4211  VTList.push_back(Result);
4212  return Result;
4213}
4214
4215
4216/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4217/// specified operands.  If the resultant node already exists in the DAG,
4218/// this does not modify the specified node, instead it returns the node that
4219/// already exists.  If the resultant node does not exist in the DAG, the
4220/// input node is returned.  As a degenerate case, if you specify the same
4221/// input operands as the node already has, the input node is returned.
4222SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4223  SDNode *N = InN.getNode();
4224  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4225
4226  // Check to see if there is no change.
4227  if (Op == N->getOperand(0)) return InN;
4228
4229  // See if the modified node already exists.
4230  void *InsertPos = 0;
4231  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4232    return SDValue(Existing, InN.getResNo());
4233
4234  // Nope it doesn't.  Remove the node from its current place in the maps.
4235  if (InsertPos)
4236    if (!RemoveNodeFromCSEMaps(N))
4237      InsertPos = 0;
4238
4239  // Now we update the operands.
4240  N->OperandList[0].set(Op);
4241
4242  // If this gets put into a CSE map, add it.
4243  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4244  return InN;
4245}
4246
4247SDValue SelectionDAG::
4248UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4249  SDNode *N = InN.getNode();
4250  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4251
4252  // Check to see if there is no change.
4253  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4254    return InN;   // No operands changed, just return the input node.
4255
4256  // See if the modified node already exists.
4257  void *InsertPos = 0;
4258  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4259    return SDValue(Existing, InN.getResNo());
4260
4261  // Nope it doesn't.  Remove the node from its current place in the maps.
4262  if (InsertPos)
4263    if (!RemoveNodeFromCSEMaps(N))
4264      InsertPos = 0;
4265
4266  // Now we update the operands.
4267  if (N->OperandList[0] != Op1)
4268    N->OperandList[0].set(Op1);
4269  if (N->OperandList[1] != Op2)
4270    N->OperandList[1].set(Op2);
4271
4272  // If this gets put into a CSE map, add it.
4273  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4274  return InN;
4275}
4276
4277SDValue SelectionDAG::
4278UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4279  SDValue Ops[] = { Op1, Op2, Op3 };
4280  return UpdateNodeOperands(N, Ops, 3);
4281}
4282
4283SDValue SelectionDAG::
4284UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4285                   SDValue Op3, SDValue Op4) {
4286  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4287  return UpdateNodeOperands(N, Ops, 4);
4288}
4289
4290SDValue SelectionDAG::
4291UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4292                   SDValue Op3, SDValue Op4, SDValue Op5) {
4293  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4294  return UpdateNodeOperands(N, Ops, 5);
4295}
4296
4297SDValue SelectionDAG::
4298UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4299  SDNode *N = InN.getNode();
4300  assert(N->getNumOperands() == NumOps &&
4301         "Update with wrong number of operands");
4302
4303  // Check to see if there is no change.
4304  bool AnyChange = false;
4305  for (unsigned i = 0; i != NumOps; ++i) {
4306    if (Ops[i] != N->getOperand(i)) {
4307      AnyChange = true;
4308      break;
4309    }
4310  }
4311
4312  // No operands changed, just return the input node.
4313  if (!AnyChange) return InN;
4314
4315  // See if the modified node already exists.
4316  void *InsertPos = 0;
4317  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4318    return SDValue(Existing, InN.getResNo());
4319
4320  // Nope it doesn't.  Remove the node from its current place in the maps.
4321  if (InsertPos)
4322    if (!RemoveNodeFromCSEMaps(N))
4323      InsertPos = 0;
4324
4325  // Now we update the operands.
4326  for (unsigned i = 0; i != NumOps; ++i)
4327    if (N->OperandList[i] != Ops[i])
4328      N->OperandList[i].set(Ops[i]);
4329
4330  // If this gets put into a CSE map, add it.
4331  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4332  return InN;
4333}
4334
4335/// DropOperands - Release the operands and set this node to have
4336/// zero operands.
4337void SDNode::DropOperands() {
4338  // Unlike the code in MorphNodeTo that does this, we don't need to
4339  // watch for dead nodes here.
4340  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4341    SDUse &Use = *I++;
4342    Use.set(SDValue());
4343  }
4344}
4345
4346/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4347/// machine opcode.
4348///
4349SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4350                                   EVT VT) {
4351  SDVTList VTs = getVTList(VT);
4352  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4353}
4354
4355SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4356                                   EVT VT, SDValue Op1) {
4357  SDVTList VTs = getVTList(VT);
4358  SDValue Ops[] = { Op1 };
4359  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4360}
4361
4362SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4363                                   EVT VT, SDValue Op1,
4364                                   SDValue Op2) {
4365  SDVTList VTs = getVTList(VT);
4366  SDValue Ops[] = { Op1, Op2 };
4367  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4368}
4369
4370SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4371                                   EVT VT, SDValue Op1,
4372                                   SDValue Op2, SDValue Op3) {
4373  SDVTList VTs = getVTList(VT);
4374  SDValue Ops[] = { Op1, Op2, Op3 };
4375  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4376}
4377
4378SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4379                                   EVT VT, const SDValue *Ops,
4380                                   unsigned NumOps) {
4381  SDVTList VTs = getVTList(VT);
4382  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4383}
4384
4385SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4386                                   EVT VT1, EVT VT2, const SDValue *Ops,
4387                                   unsigned NumOps) {
4388  SDVTList VTs = getVTList(VT1, VT2);
4389  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4390}
4391
4392SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4393                                   EVT VT1, EVT VT2) {
4394  SDVTList VTs = getVTList(VT1, VT2);
4395  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4396}
4397
4398SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4399                                   EVT VT1, EVT VT2, EVT VT3,
4400                                   const SDValue *Ops, unsigned NumOps) {
4401  SDVTList VTs = getVTList(VT1, VT2, VT3);
4402  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4403}
4404
4405SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4406                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4407                                   const SDValue *Ops, unsigned NumOps) {
4408  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4409  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4410}
4411
4412SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4413                                   EVT VT1, EVT VT2,
4414                                   SDValue Op1) {
4415  SDVTList VTs = getVTList(VT1, VT2);
4416  SDValue Ops[] = { Op1 };
4417  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4418}
4419
4420SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4421                                   EVT VT1, EVT VT2,
4422                                   SDValue Op1, SDValue Op2) {
4423  SDVTList VTs = getVTList(VT1, VT2);
4424  SDValue Ops[] = { Op1, Op2 };
4425  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4426}
4427
4428SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4429                                   EVT VT1, EVT VT2,
4430                                   SDValue Op1, SDValue Op2,
4431                                   SDValue Op3) {
4432  SDVTList VTs = getVTList(VT1, VT2);
4433  SDValue Ops[] = { Op1, Op2, Op3 };
4434  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4435}
4436
4437SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4438                                   EVT VT1, EVT VT2, EVT VT3,
4439                                   SDValue Op1, SDValue Op2,
4440                                   SDValue Op3) {
4441  SDVTList VTs = getVTList(VT1, VT2, VT3);
4442  SDValue Ops[] = { Op1, Op2, Op3 };
4443  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4444}
4445
4446SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4447                                   SDVTList VTs, const SDValue *Ops,
4448                                   unsigned NumOps) {
4449  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4450}
4451
4452SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4453                                  EVT VT) {
4454  SDVTList VTs = getVTList(VT);
4455  return MorphNodeTo(N, Opc, VTs, 0, 0);
4456}
4457
4458SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4459                                  EVT VT, SDValue Op1) {
4460  SDVTList VTs = getVTList(VT);
4461  SDValue Ops[] = { Op1 };
4462  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4463}
4464
4465SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4466                                  EVT VT, SDValue Op1,
4467                                  SDValue Op2) {
4468  SDVTList VTs = getVTList(VT);
4469  SDValue Ops[] = { Op1, Op2 };
4470  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4471}
4472
4473SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4474                                  EVT VT, SDValue Op1,
4475                                  SDValue Op2, SDValue Op3) {
4476  SDVTList VTs = getVTList(VT);
4477  SDValue Ops[] = { Op1, Op2, Op3 };
4478  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4479}
4480
4481SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4482                                  EVT VT, const SDValue *Ops,
4483                                  unsigned NumOps) {
4484  SDVTList VTs = getVTList(VT);
4485  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4486}
4487
4488SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4489                                  EVT VT1, EVT VT2, const SDValue *Ops,
4490                                  unsigned NumOps) {
4491  SDVTList VTs = getVTList(VT1, VT2);
4492  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4493}
4494
4495SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4496                                  EVT VT1, EVT VT2) {
4497  SDVTList VTs = getVTList(VT1, VT2);
4498  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4499}
4500
4501SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4502                                  EVT VT1, EVT VT2, EVT VT3,
4503                                  const SDValue *Ops, unsigned NumOps) {
4504  SDVTList VTs = getVTList(VT1, VT2, VT3);
4505  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4506}
4507
4508SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4509                                  EVT VT1, EVT VT2,
4510                                  SDValue Op1) {
4511  SDVTList VTs = getVTList(VT1, VT2);
4512  SDValue Ops[] = { Op1 };
4513  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4514}
4515
4516SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4517                                  EVT VT1, EVT VT2,
4518                                  SDValue Op1, SDValue Op2) {
4519  SDVTList VTs = getVTList(VT1, VT2);
4520  SDValue Ops[] = { Op1, Op2 };
4521  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4522}
4523
4524SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4525                                  EVT VT1, EVT VT2,
4526                                  SDValue Op1, SDValue Op2,
4527                                  SDValue Op3) {
4528  SDVTList VTs = getVTList(VT1, VT2);
4529  SDValue Ops[] = { Op1, Op2, Op3 };
4530  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4531}
4532
4533/// MorphNodeTo - These *mutate* the specified node to have the specified
4534/// return type, opcode, and operands.
4535///
4536/// Note that MorphNodeTo returns the resultant node.  If there is already a
4537/// node of the specified opcode and operands, it returns that node instead of
4538/// the current one.  Note that the DebugLoc need not be the same.
4539///
4540/// Using MorphNodeTo is faster than creating a new node and swapping it in
4541/// with ReplaceAllUsesWith both because it often avoids allocating a new
4542/// node, and because it doesn't require CSE recalculation for any of
4543/// the node's users.
4544///
4545SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4546                                  SDVTList VTs, const SDValue *Ops,
4547                                  unsigned NumOps) {
4548  // If an identical node already exists, use it.
4549  void *IP = 0;
4550  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4551    FoldingSetNodeID ID;
4552    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4553    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4554      return ON;
4555  }
4556
4557  if (!RemoveNodeFromCSEMaps(N))
4558    IP = 0;
4559
4560  // Start the morphing.
4561  N->NodeType = Opc;
4562  N->ValueList = VTs.VTs;
4563  N->NumValues = VTs.NumVTs;
4564
4565  // Clear the operands list, updating used nodes to remove this from their
4566  // use list.  Keep track of any operands that become dead as a result.
4567  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4568  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4569    SDUse &Use = *I++;
4570    SDNode *Used = Use.getNode();
4571    Use.set(SDValue());
4572    if (Used->use_empty())
4573      DeadNodeSet.insert(Used);
4574  }
4575
4576  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4577    // Initialize the memory references information.
4578    MN->setMemRefs(0, 0);
4579    // If NumOps is larger than the # of operands we can have in a
4580    // MachineSDNode, reallocate the operand list.
4581    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4582      if (MN->OperandsNeedDelete)
4583        delete[] MN->OperandList;
4584      if (NumOps > array_lengthof(MN->LocalOperands))
4585        // We're creating a final node that will live unmorphed for the
4586        // remainder of the current SelectionDAG iteration, so we can allocate
4587        // the operands directly out of a pool with no recycling metadata.
4588        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4589                        Ops, NumOps);
4590      else
4591        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4592      MN->OperandsNeedDelete = false;
4593    } else
4594      MN->InitOperands(MN->OperandList, Ops, NumOps);
4595  } else {
4596    // If NumOps is larger than the # of operands we currently have, reallocate
4597    // the operand list.
4598    if (NumOps > N->NumOperands) {
4599      if (N->OperandsNeedDelete)
4600        delete[] N->OperandList;
4601      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4602      N->OperandsNeedDelete = true;
4603    } else
4604      N->InitOperands(N->OperandList, Ops, NumOps);
4605  }
4606
4607  // Delete any nodes that are still dead after adding the uses for the
4608  // new operands.
4609  SmallVector<SDNode *, 16> DeadNodes;
4610  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4611       E = DeadNodeSet.end(); I != E; ++I)
4612    if ((*I)->use_empty())
4613      DeadNodes.push_back(*I);
4614  RemoveDeadNodes(DeadNodes);
4615
4616  if (IP)
4617    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4618  return N;
4619}
4620
4621
4622/// getMachineNode - These are used for target selectors to create a new node
4623/// with specified return type(s), MachineInstr opcode, and operands.
4624///
4625/// Note that getMachineNode returns the resultant node.  If there is already a
4626/// node of the specified opcode and operands, it returns that node instead of
4627/// the current one.
4628MachineSDNode *
4629SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4630  SDVTList VTs = getVTList(VT);
4631  return getMachineNode(Opcode, dl, VTs, 0, 0);
4632}
4633
4634MachineSDNode *
4635SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4636  SDVTList VTs = getVTList(VT);
4637  SDValue Ops[] = { Op1 };
4638  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4639}
4640
4641MachineSDNode *
4642SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4643                             SDValue Op1, SDValue Op2) {
4644  SDVTList VTs = getVTList(VT);
4645  SDValue Ops[] = { Op1, Op2 };
4646  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4647}
4648
4649MachineSDNode *
4650SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4651                             SDValue Op1, SDValue Op2, SDValue Op3) {
4652  SDVTList VTs = getVTList(VT);
4653  SDValue Ops[] = { Op1, Op2, Op3 };
4654  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4655}
4656
4657MachineSDNode *
4658SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4659                             const SDValue *Ops, unsigned NumOps) {
4660  SDVTList VTs = getVTList(VT);
4661  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4662}
4663
4664MachineSDNode *
4665SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4666  SDVTList VTs = getVTList(VT1, VT2);
4667  return getMachineNode(Opcode, dl, VTs, 0, 0);
4668}
4669
4670MachineSDNode *
4671SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4672                             EVT VT1, EVT VT2, SDValue Op1) {
4673  SDVTList VTs = getVTList(VT1, VT2);
4674  SDValue Ops[] = { Op1 };
4675  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4676}
4677
4678MachineSDNode *
4679SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4680                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4681  SDVTList VTs = getVTList(VT1, VT2);
4682  SDValue Ops[] = { Op1, Op2 };
4683  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4684}
4685
4686MachineSDNode *
4687SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4688                             EVT VT1, EVT VT2, SDValue Op1,
4689                             SDValue Op2, SDValue Op3) {
4690  SDVTList VTs = getVTList(VT1, VT2);
4691  SDValue Ops[] = { Op1, Op2, Op3 };
4692  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4693}
4694
4695MachineSDNode *
4696SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4697                             EVT VT1, EVT VT2,
4698                             const SDValue *Ops, unsigned NumOps) {
4699  SDVTList VTs = getVTList(VT1, VT2);
4700  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4701}
4702
4703MachineSDNode *
4704SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4705                             EVT VT1, EVT VT2, EVT VT3,
4706                             SDValue Op1, SDValue Op2) {
4707  SDVTList VTs = getVTList(VT1, VT2, VT3);
4708  SDValue Ops[] = { Op1, Op2 };
4709  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4710}
4711
4712MachineSDNode *
4713SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4714                             EVT VT1, EVT VT2, EVT VT3,
4715                             SDValue Op1, SDValue Op2, SDValue Op3) {
4716  SDVTList VTs = getVTList(VT1, VT2, VT3);
4717  SDValue Ops[] = { Op1, Op2, Op3 };
4718  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4719}
4720
4721MachineSDNode *
4722SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4723                             EVT VT1, EVT VT2, EVT VT3,
4724                             const SDValue *Ops, unsigned NumOps) {
4725  SDVTList VTs = getVTList(VT1, VT2, VT3);
4726  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4727}
4728
4729MachineSDNode *
4730SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4731                             EVT VT2, EVT VT3, EVT VT4,
4732                             const SDValue *Ops, unsigned NumOps) {
4733  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4734  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4735}
4736
4737MachineSDNode *
4738SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4739                             const std::vector<EVT> &ResultTys,
4740                             const SDValue *Ops, unsigned NumOps) {
4741  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4742  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4743}
4744
4745MachineSDNode *
4746SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4747                             const SDValue *Ops, unsigned NumOps) {
4748  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4749  MachineSDNode *N;
4750  void *IP;
4751
4752  if (DoCSE) {
4753    FoldingSetNodeID ID;
4754    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4755    IP = 0;
4756    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4757      return cast<MachineSDNode>(E);
4758  }
4759
4760  // Allocate a new MachineSDNode.
4761  N = NodeAllocator.Allocate<MachineSDNode>();
4762  new (N) MachineSDNode(~Opcode, DL, VTs);
4763
4764  // Initialize the operands list.
4765  if (NumOps > array_lengthof(N->LocalOperands))
4766    // We're creating a final node that will live unmorphed for the
4767    // remainder of the current SelectionDAG iteration, so we can allocate
4768    // the operands directly out of a pool with no recycling metadata.
4769    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4770                    Ops, NumOps);
4771  else
4772    N->InitOperands(N->LocalOperands, Ops, NumOps);
4773  N->OperandsNeedDelete = false;
4774
4775  if (DoCSE)
4776    CSEMap.InsertNode(N, IP);
4777
4778  AllNodes.push_back(N);
4779#ifndef NDEBUG
4780  VerifyNode(N);
4781#endif
4782  return N;
4783}
4784
4785/// getTargetExtractSubreg - A convenience function for creating
4786/// TargetInstrInfo::EXTRACT_SUBREG nodes.
4787SDValue
4788SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4789                                     SDValue Operand) {
4790  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4791  SDNode *Subreg = getMachineNode(TargetInstrInfo::EXTRACT_SUBREG, DL,
4792                                  VT, Operand, SRIdxVal);
4793  return SDValue(Subreg, 0);
4794}
4795
4796/// getTargetInsertSubreg - A convenience function for creating
4797/// TargetInstrInfo::INSERT_SUBREG nodes.
4798SDValue
4799SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4800                                    SDValue Operand, SDValue Subreg) {
4801  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4802  SDNode *Result = getMachineNode(TargetInstrInfo::INSERT_SUBREG, DL,
4803                                  VT, Operand, Subreg, SRIdxVal);
4804  return SDValue(Result, 0);
4805}
4806
4807/// getNodeIfExists - Get the specified node if it's already available, or
4808/// else return NULL.
4809SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4810                                      const SDValue *Ops, unsigned NumOps) {
4811  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4812    FoldingSetNodeID ID;
4813    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4814    void *IP = 0;
4815    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4816      return E;
4817  }
4818  return NULL;
4819}
4820
4821/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4822/// This can cause recursive merging of nodes in the DAG.
4823///
4824/// This version assumes From has a single result value.
4825///
4826void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4827                                      DAGUpdateListener *UpdateListener) {
4828  SDNode *From = FromN.getNode();
4829  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4830         "Cannot replace with this method!");
4831  assert(From != To.getNode() && "Cannot replace uses of with self");
4832
4833  // Iterate over all the existing uses of From. New uses will be added
4834  // to the beginning of the use list, which we avoid visiting.
4835  // This specifically avoids visiting uses of From that arise while the
4836  // replacement is happening, because any such uses would be the result
4837  // of CSE: If an existing node looks like From after one of its operands
4838  // is replaced by To, we don't want to replace of all its users with To
4839  // too. See PR3018 for more info.
4840  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4841  while (UI != UE) {
4842    SDNode *User = *UI;
4843
4844    // This node is about to morph, remove its old self from the CSE maps.
4845    RemoveNodeFromCSEMaps(User);
4846
4847    // A user can appear in a use list multiple times, and when this
4848    // happens the uses are usually next to each other in the list.
4849    // To help reduce the number of CSE recomputations, process all
4850    // the uses of this user that we can find this way.
4851    do {
4852      SDUse &Use = UI.getUse();
4853      ++UI;
4854      Use.set(To);
4855    } while (UI != UE && *UI == User);
4856
4857    // Now that we have modified User, add it back to the CSE maps.  If it
4858    // already exists there, recursively merge the results together.
4859    AddModifiedNodeToCSEMaps(User, UpdateListener);
4860  }
4861}
4862
4863/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4864/// This can cause recursive merging of nodes in the DAG.
4865///
4866/// This version assumes that for each value of From, there is a
4867/// corresponding value in To in the same position with the same type.
4868///
4869void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4870                                      DAGUpdateListener *UpdateListener) {
4871#ifndef NDEBUG
4872  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4873    assert((!From->hasAnyUseOfValue(i) ||
4874            From->getValueType(i) == To->getValueType(i)) &&
4875           "Cannot use this version of ReplaceAllUsesWith!");
4876#endif
4877
4878  // Handle the trivial case.
4879  if (From == To)
4880    return;
4881
4882  // Iterate over just the existing users of From. See the comments in
4883  // the ReplaceAllUsesWith above.
4884  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4885  while (UI != UE) {
4886    SDNode *User = *UI;
4887
4888    // This node is about to morph, remove its old self from the CSE maps.
4889    RemoveNodeFromCSEMaps(User);
4890
4891    // A user can appear in a use list multiple times, and when this
4892    // happens the uses are usually next to each other in the list.
4893    // To help reduce the number of CSE recomputations, process all
4894    // the uses of this user that we can find this way.
4895    do {
4896      SDUse &Use = UI.getUse();
4897      ++UI;
4898      Use.setNode(To);
4899    } while (UI != UE && *UI == User);
4900
4901    // Now that we have modified User, add it back to the CSE maps.  If it
4902    // already exists there, recursively merge the results together.
4903    AddModifiedNodeToCSEMaps(User, UpdateListener);
4904  }
4905}
4906
4907/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4908/// This can cause recursive merging of nodes in the DAG.
4909///
4910/// This version can replace From with any result values.  To must match the
4911/// number and types of values returned by From.
4912void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4913                                      const SDValue *To,
4914                                      DAGUpdateListener *UpdateListener) {
4915  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4916    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4917
4918  // Iterate over just the existing users of From. See the comments in
4919  // the ReplaceAllUsesWith above.
4920  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4921  while (UI != UE) {
4922    SDNode *User = *UI;
4923
4924    // This node is about to morph, remove its old self from the CSE maps.
4925    RemoveNodeFromCSEMaps(User);
4926
4927    // A user can appear in a use list multiple times, and when this
4928    // happens the uses are usually next to each other in the list.
4929    // To help reduce the number of CSE recomputations, process all
4930    // the uses of this user that we can find this way.
4931    do {
4932      SDUse &Use = UI.getUse();
4933      const SDValue &ToOp = To[Use.getResNo()];
4934      ++UI;
4935      Use.set(ToOp);
4936    } while (UI != UE && *UI == User);
4937
4938    // Now that we have modified User, add it back to the CSE maps.  If it
4939    // already exists there, recursively merge the results together.
4940    AddModifiedNodeToCSEMaps(User, UpdateListener);
4941  }
4942}
4943
4944/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4945/// uses of other values produced by From.getNode() alone.  The Deleted
4946/// vector is handled the same way as for ReplaceAllUsesWith.
4947void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4948                                             DAGUpdateListener *UpdateListener){
4949  // Handle the really simple, really trivial case efficiently.
4950  if (From == To) return;
4951
4952  // Handle the simple, trivial, case efficiently.
4953  if (From.getNode()->getNumValues() == 1) {
4954    ReplaceAllUsesWith(From, To, UpdateListener);
4955    return;
4956  }
4957
4958  // Iterate over just the existing users of From. See the comments in
4959  // the ReplaceAllUsesWith above.
4960  SDNode::use_iterator UI = From.getNode()->use_begin(),
4961                       UE = From.getNode()->use_end();
4962  while (UI != UE) {
4963    SDNode *User = *UI;
4964    bool UserRemovedFromCSEMaps = false;
4965
4966    // A user can appear in a use list multiple times, and when this
4967    // happens the uses are usually next to each other in the list.
4968    // To help reduce the number of CSE recomputations, process all
4969    // the uses of this user that we can find this way.
4970    do {
4971      SDUse &Use = UI.getUse();
4972
4973      // Skip uses of different values from the same node.
4974      if (Use.getResNo() != From.getResNo()) {
4975        ++UI;
4976        continue;
4977      }
4978
4979      // If this node hasn't been modified yet, it's still in the CSE maps,
4980      // so remove its old self from the CSE maps.
4981      if (!UserRemovedFromCSEMaps) {
4982        RemoveNodeFromCSEMaps(User);
4983        UserRemovedFromCSEMaps = true;
4984      }
4985
4986      ++UI;
4987      Use.set(To);
4988    } while (UI != UE && *UI == User);
4989
4990    // We are iterating over all uses of the From node, so if a use
4991    // doesn't use the specific value, no changes are made.
4992    if (!UserRemovedFromCSEMaps)
4993      continue;
4994
4995    // Now that we have modified User, add it back to the CSE maps.  If it
4996    // already exists there, recursively merge the results together.
4997    AddModifiedNodeToCSEMaps(User, UpdateListener);
4998  }
4999}
5000
5001namespace {
5002  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5003  /// to record information about a use.
5004  struct UseMemo {
5005    SDNode *User;
5006    unsigned Index;
5007    SDUse *Use;
5008  };
5009
5010  /// operator< - Sort Memos by User.
5011  bool operator<(const UseMemo &L, const UseMemo &R) {
5012    return (intptr_t)L.User < (intptr_t)R.User;
5013  }
5014}
5015
5016/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5017/// uses of other values produced by From.getNode() alone.  The same value
5018/// may appear in both the From and To list.  The Deleted vector is
5019/// handled the same way as for ReplaceAllUsesWith.
5020void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5021                                              const SDValue *To,
5022                                              unsigned Num,
5023                                              DAGUpdateListener *UpdateListener){
5024  // Handle the simple, trivial case efficiently.
5025  if (Num == 1)
5026    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5027
5028  // Read up all the uses and make records of them. This helps
5029  // processing new uses that are introduced during the
5030  // replacement process.
5031  SmallVector<UseMemo, 4> Uses;
5032  for (unsigned i = 0; i != Num; ++i) {
5033    unsigned FromResNo = From[i].getResNo();
5034    SDNode *FromNode = From[i].getNode();
5035    for (SDNode::use_iterator UI = FromNode->use_begin(),
5036         E = FromNode->use_end(); UI != E; ++UI) {
5037      SDUse &Use = UI.getUse();
5038      if (Use.getResNo() == FromResNo) {
5039        UseMemo Memo = { *UI, i, &Use };
5040        Uses.push_back(Memo);
5041      }
5042    }
5043  }
5044
5045  // Sort the uses, so that all the uses from a given User are together.
5046  std::sort(Uses.begin(), Uses.end());
5047
5048  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5049       UseIndex != UseIndexEnd; ) {
5050    // We know that this user uses some value of From.  If it is the right
5051    // value, update it.
5052    SDNode *User = Uses[UseIndex].User;
5053
5054    // This node is about to morph, remove its old self from the CSE maps.
5055    RemoveNodeFromCSEMaps(User);
5056
5057    // The Uses array is sorted, so all the uses for a given User
5058    // are next to each other in the list.
5059    // To help reduce the number of CSE recomputations, process all
5060    // the uses of this user that we can find this way.
5061    do {
5062      unsigned i = Uses[UseIndex].Index;
5063      SDUse &Use = *Uses[UseIndex].Use;
5064      ++UseIndex;
5065
5066      Use.set(To[i]);
5067    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5068
5069    // Now that we have modified User, add it back to the CSE maps.  If it
5070    // already exists there, recursively merge the results together.
5071    AddModifiedNodeToCSEMaps(User, UpdateListener);
5072  }
5073}
5074
5075/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5076/// based on their topological order. It returns the maximum id and a vector
5077/// of the SDNodes* in assigned order by reference.
5078unsigned SelectionDAG::AssignTopologicalOrder() {
5079
5080  unsigned DAGSize = 0;
5081
5082  // SortedPos tracks the progress of the algorithm. Nodes before it are
5083  // sorted, nodes after it are unsorted. When the algorithm completes
5084  // it is at the end of the list.
5085  allnodes_iterator SortedPos = allnodes_begin();
5086
5087  // Visit all the nodes. Move nodes with no operands to the front of
5088  // the list immediately. Annotate nodes that do have operands with their
5089  // operand count. Before we do this, the Node Id fields of the nodes
5090  // may contain arbitrary values. After, the Node Id fields for nodes
5091  // before SortedPos will contain the topological sort index, and the
5092  // Node Id fields for nodes At SortedPos and after will contain the
5093  // count of outstanding operands.
5094  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5095    SDNode *N = I++;
5096    unsigned Degree = N->getNumOperands();
5097    if (Degree == 0) {
5098      // A node with no uses, add it to the result array immediately.
5099      N->setNodeId(DAGSize++);
5100      allnodes_iterator Q = N;
5101      if (Q != SortedPos)
5102        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5103      ++SortedPos;
5104    } else {
5105      // Temporarily use the Node Id as scratch space for the degree count.
5106      N->setNodeId(Degree);
5107    }
5108  }
5109
5110  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5111  // such that by the time the end is reached all nodes will be sorted.
5112  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5113    SDNode *N = I;
5114    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5115         UI != UE; ++UI) {
5116      SDNode *P = *UI;
5117      unsigned Degree = P->getNodeId();
5118      --Degree;
5119      if (Degree == 0) {
5120        // All of P's operands are sorted, so P may sorted now.
5121        P->setNodeId(DAGSize++);
5122        if (P != SortedPos)
5123          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5124        ++SortedPos;
5125      } else {
5126        // Update P's outstanding operand count.
5127        P->setNodeId(Degree);
5128      }
5129    }
5130  }
5131
5132  assert(SortedPos == AllNodes.end() &&
5133         "Topological sort incomplete!");
5134  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5135         "First node in topological sort is not the entry token!");
5136  assert(AllNodes.front().getNodeId() == 0 &&
5137         "First node in topological sort has non-zero id!");
5138  assert(AllNodes.front().getNumOperands() == 0 &&
5139         "First node in topological sort has operands!");
5140  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5141         "Last node in topologic sort has unexpected id!");
5142  assert(AllNodes.back().use_empty() &&
5143         "Last node in topologic sort has users!");
5144  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5145  return DAGSize;
5146}
5147
5148
5149
5150//===----------------------------------------------------------------------===//
5151//                              SDNode Class
5152//===----------------------------------------------------------------------===//
5153
5154HandleSDNode::~HandleSDNode() {
5155  DropOperands();
5156}
5157
5158GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5159                                         EVT VT, int64_t o, unsigned char TF)
5160  : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
5161    Offset(o), TargetFlags(TF) {
5162  TheGlobal = const_cast<GlobalValue*>(GA);
5163}
5164
5165MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5166                     MachineMemOperand *mmo)
5167 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5168  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
5169  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5170  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5171}
5172
5173MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5174                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5175                     MachineMemOperand *mmo)
5176   : SDNode(Opc, dl, VTs, Ops, NumOps),
5177     MemoryVT(memvt), MMO(mmo) {
5178  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
5179  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5180  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5181}
5182
5183/// Profile - Gather unique data for the node.
5184///
5185void SDNode::Profile(FoldingSetNodeID &ID) const {
5186  AddNodeIDNode(ID, this);
5187}
5188
5189namespace {
5190  struct EVTArray {
5191    std::vector<EVT> VTs;
5192
5193    EVTArray() {
5194      VTs.reserve(MVT::LAST_VALUETYPE);
5195      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5196        VTs.push_back(MVT((MVT::SimpleValueType)i));
5197    }
5198  };
5199}
5200
5201static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5202static ManagedStatic<EVTArray> SimpleVTArray;
5203static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5204
5205/// getValueTypeList - Return a pointer to the specified value type.
5206///
5207const EVT *SDNode::getValueTypeList(EVT VT) {
5208  if (VT.isExtended()) {
5209    sys::SmartScopedLock<true> Lock(*VTMutex);
5210    return &(*EVTs->insert(VT).first);
5211  } else {
5212    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5213  }
5214}
5215
5216/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5217/// indicated value.  This method ignores uses of other values defined by this
5218/// operation.
5219bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5220  assert(Value < getNumValues() && "Bad value!");
5221
5222  // TODO: Only iterate over uses of a given value of the node
5223  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5224    if (UI.getUse().getResNo() == Value) {
5225      if (NUses == 0)
5226        return false;
5227      --NUses;
5228    }
5229  }
5230
5231  // Found exactly the right number of uses?
5232  return NUses == 0;
5233}
5234
5235
5236/// hasAnyUseOfValue - Return true if there are any use of the indicated
5237/// value. This method ignores uses of other values defined by this operation.
5238bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5239  assert(Value < getNumValues() && "Bad value!");
5240
5241  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5242    if (UI.getUse().getResNo() == Value)
5243      return true;
5244
5245  return false;
5246}
5247
5248
5249/// isOnlyUserOf - Return true if this node is the only use of N.
5250///
5251bool SDNode::isOnlyUserOf(SDNode *N) const {
5252  bool Seen = false;
5253  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5254    SDNode *User = *I;
5255    if (User == this)
5256      Seen = true;
5257    else
5258      return false;
5259  }
5260
5261  return Seen;
5262}
5263
5264/// isOperand - Return true if this node is an operand of N.
5265///
5266bool SDValue::isOperandOf(SDNode *N) const {
5267  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5268    if (*this == N->getOperand(i))
5269      return true;
5270  return false;
5271}
5272
5273bool SDNode::isOperandOf(SDNode *N) const {
5274  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5275    if (this == N->OperandList[i].getNode())
5276      return true;
5277  return false;
5278}
5279
5280/// reachesChainWithoutSideEffects - Return true if this operand (which must
5281/// be a chain) reaches the specified operand without crossing any
5282/// side-effecting instructions.  In practice, this looks through token
5283/// factors and non-volatile loads.  In order to remain efficient, this only
5284/// looks a couple of nodes in, it does not do an exhaustive search.
5285bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5286                                               unsigned Depth) const {
5287  if (*this == Dest) return true;
5288
5289  // Don't search too deeply, we just want to be able to see through
5290  // TokenFactor's etc.
5291  if (Depth == 0) return false;
5292
5293  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5294  // of the operands of the TF reach dest, then we can do the xform.
5295  if (getOpcode() == ISD::TokenFactor) {
5296    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5297      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5298        return true;
5299    return false;
5300  }
5301
5302  // Loads don't have side effects, look through them.
5303  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5304    if (!Ld->isVolatile())
5305      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5306  }
5307  return false;
5308}
5309
5310
5311static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
5312                            SmallPtrSet<SDNode *, 32> &Visited) {
5313  if (found || !Visited.insert(N))
5314    return;
5315
5316  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
5317    SDNode *Op = N->getOperand(i).getNode();
5318    if (Op == P) {
5319      found = true;
5320      return;
5321    }
5322    findPredecessor(Op, P, found, Visited);
5323  }
5324}
5325
5326/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5327/// is either an operand of N or it can be reached by recursively traversing
5328/// up the operands.
5329/// NOTE: this is an expensive method. Use it carefully.
5330bool SDNode::isPredecessorOf(SDNode *N) const {
5331  SmallPtrSet<SDNode *, 32> Visited;
5332  bool found = false;
5333  findPredecessor(N, this, found, Visited);
5334  return found;
5335}
5336
5337uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5338  assert(Num < NumOperands && "Invalid child # of SDNode!");
5339  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5340}
5341
5342std::string SDNode::getOperationName(const SelectionDAG *G) const {
5343  switch (getOpcode()) {
5344  default:
5345    if (getOpcode() < ISD::BUILTIN_OP_END)
5346      return "<<Unknown DAG Node>>";
5347    if (isMachineOpcode()) {
5348      if (G)
5349        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5350          if (getMachineOpcode() < TII->getNumOpcodes())
5351            return TII->get(getMachineOpcode()).getName();
5352      return "<<Unknown Machine Node>>";
5353    }
5354    if (G) {
5355      const TargetLowering &TLI = G->getTargetLoweringInfo();
5356      const char *Name = TLI.getTargetNodeName(getOpcode());
5357      if (Name) return Name;
5358      return "<<Unknown Target Node>>";
5359    }
5360    return "<<Unknown Node>>";
5361
5362#ifndef NDEBUG
5363  case ISD::DELETED_NODE:
5364    return "<<Deleted Node!>>";
5365#endif
5366  case ISD::PREFETCH:      return "Prefetch";
5367  case ISD::MEMBARRIER:    return "MemBarrier";
5368  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5369  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5370  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5371  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5372  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5373  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5374  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5375  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5376  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5377  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5378  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5379  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5380  case ISD::PCMARKER:      return "PCMarker";
5381  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5382  case ISD::SRCVALUE:      return "SrcValue";
5383  case ISD::EntryToken:    return "EntryToken";
5384  case ISD::TokenFactor:   return "TokenFactor";
5385  case ISD::AssertSext:    return "AssertSext";
5386  case ISD::AssertZext:    return "AssertZext";
5387
5388  case ISD::BasicBlock:    return "BasicBlock";
5389  case ISD::VALUETYPE:     return "ValueType";
5390  case ISD::Register:      return "Register";
5391
5392  case ISD::Constant:      return "Constant";
5393  case ISD::ConstantFP:    return "ConstantFP";
5394  case ISD::GlobalAddress: return "GlobalAddress";
5395  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5396  case ISD::FrameIndex:    return "FrameIndex";
5397  case ISD::JumpTable:     return "JumpTable";
5398  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5399  case ISD::RETURNADDR: return "RETURNADDR";
5400  case ISD::FRAMEADDR: return "FRAMEADDR";
5401  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5402  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5403  case ISD::LSDAADDR: return "LSDAADDR";
5404  case ISD::EHSELECTION: return "EHSELECTION";
5405  case ISD::EH_RETURN: return "EH_RETURN";
5406  case ISD::ConstantPool:  return "ConstantPool";
5407  case ISD::ExternalSymbol: return "ExternalSymbol";
5408  case ISD::INTRINSIC_WO_CHAIN:
5409  case ISD::INTRINSIC_VOID:
5410  case ISD::INTRINSIC_W_CHAIN: {
5411    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5412    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5413    if (IID < Intrinsic::num_intrinsics)
5414      return Intrinsic::getName((Intrinsic::ID)IID);
5415    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5416      return TII->getName(IID);
5417    llvm_unreachable("Invalid intrinsic ID");
5418  }
5419
5420  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5421  case ISD::TargetConstant: return "TargetConstant";
5422  case ISD::TargetConstantFP:return "TargetConstantFP";
5423  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5424  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5425  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5426  case ISD::TargetJumpTable:  return "TargetJumpTable";
5427  case ISD::TargetConstantPool:  return "TargetConstantPool";
5428  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5429
5430  case ISD::CopyToReg:     return "CopyToReg";
5431  case ISD::CopyFromReg:   return "CopyFromReg";
5432  case ISD::UNDEF:         return "undef";
5433  case ISD::MERGE_VALUES:  return "merge_values";
5434  case ISD::INLINEASM:     return "inlineasm";
5435  case ISD::DBG_LABEL:     return "dbg_label";
5436  case ISD::EH_LABEL:      return "eh_label";
5437  case ISD::HANDLENODE:    return "handlenode";
5438
5439  // Unary operators
5440  case ISD::FABS:   return "fabs";
5441  case ISD::FNEG:   return "fneg";
5442  case ISD::FSQRT:  return "fsqrt";
5443  case ISD::FSIN:   return "fsin";
5444  case ISD::FCOS:   return "fcos";
5445  case ISD::FPOWI:  return "fpowi";
5446  case ISD::FPOW:   return "fpow";
5447  case ISD::FTRUNC: return "ftrunc";
5448  case ISD::FFLOOR: return "ffloor";
5449  case ISD::FCEIL:  return "fceil";
5450  case ISD::FRINT:  return "frint";
5451  case ISD::FNEARBYINT: return "fnearbyint";
5452
5453  // Binary operators
5454  case ISD::ADD:    return "add";
5455  case ISD::SUB:    return "sub";
5456  case ISD::MUL:    return "mul";
5457  case ISD::MULHU:  return "mulhu";
5458  case ISD::MULHS:  return "mulhs";
5459  case ISD::SDIV:   return "sdiv";
5460  case ISD::UDIV:   return "udiv";
5461  case ISD::SREM:   return "srem";
5462  case ISD::UREM:   return "urem";
5463  case ISD::SMUL_LOHI:  return "smul_lohi";
5464  case ISD::UMUL_LOHI:  return "umul_lohi";
5465  case ISD::SDIVREM:    return "sdivrem";
5466  case ISD::UDIVREM:    return "udivrem";
5467  case ISD::AND:    return "and";
5468  case ISD::OR:     return "or";
5469  case ISD::XOR:    return "xor";
5470  case ISD::SHL:    return "shl";
5471  case ISD::SRA:    return "sra";
5472  case ISD::SRL:    return "srl";
5473  case ISD::ROTL:   return "rotl";
5474  case ISD::ROTR:   return "rotr";
5475  case ISD::FADD:   return "fadd";
5476  case ISD::FSUB:   return "fsub";
5477  case ISD::FMUL:   return "fmul";
5478  case ISD::FDIV:   return "fdiv";
5479  case ISD::FREM:   return "frem";
5480  case ISD::FCOPYSIGN: return "fcopysign";
5481  case ISD::FGETSIGN:  return "fgetsign";
5482
5483  case ISD::SETCC:       return "setcc";
5484  case ISD::VSETCC:      return "vsetcc";
5485  case ISD::SELECT:      return "select";
5486  case ISD::SELECT_CC:   return "select_cc";
5487  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5488  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5489  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5490  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5491  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5492  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5493  case ISD::CARRY_FALSE:         return "carry_false";
5494  case ISD::ADDC:        return "addc";
5495  case ISD::ADDE:        return "adde";
5496  case ISD::SADDO:       return "saddo";
5497  case ISD::UADDO:       return "uaddo";
5498  case ISD::SSUBO:       return "ssubo";
5499  case ISD::USUBO:       return "usubo";
5500  case ISD::SMULO:       return "smulo";
5501  case ISD::UMULO:       return "umulo";
5502  case ISD::SUBC:        return "subc";
5503  case ISD::SUBE:        return "sube";
5504  case ISD::SHL_PARTS:   return "shl_parts";
5505  case ISD::SRA_PARTS:   return "sra_parts";
5506  case ISD::SRL_PARTS:   return "srl_parts";
5507
5508  // Conversion operators.
5509  case ISD::SIGN_EXTEND: return "sign_extend";
5510  case ISD::ZERO_EXTEND: return "zero_extend";
5511  case ISD::ANY_EXTEND:  return "any_extend";
5512  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5513  case ISD::TRUNCATE:    return "truncate";
5514  case ISD::FP_ROUND:    return "fp_round";
5515  case ISD::FLT_ROUNDS_: return "flt_rounds";
5516  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5517  case ISD::FP_EXTEND:   return "fp_extend";
5518
5519  case ISD::SINT_TO_FP:  return "sint_to_fp";
5520  case ISD::UINT_TO_FP:  return "uint_to_fp";
5521  case ISD::FP_TO_SINT:  return "fp_to_sint";
5522  case ISD::FP_TO_UINT:  return "fp_to_uint";
5523  case ISD::BIT_CONVERT: return "bit_convert";
5524
5525  case ISD::CONVERT_RNDSAT: {
5526    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5527    default: llvm_unreachable("Unknown cvt code!");
5528    case ISD::CVT_FF:  return "cvt_ff";
5529    case ISD::CVT_FS:  return "cvt_fs";
5530    case ISD::CVT_FU:  return "cvt_fu";
5531    case ISD::CVT_SF:  return "cvt_sf";
5532    case ISD::CVT_UF:  return "cvt_uf";
5533    case ISD::CVT_SS:  return "cvt_ss";
5534    case ISD::CVT_SU:  return "cvt_su";
5535    case ISD::CVT_US:  return "cvt_us";
5536    case ISD::CVT_UU:  return "cvt_uu";
5537    }
5538  }
5539
5540    // Control flow instructions
5541  case ISD::BR:      return "br";
5542  case ISD::BRIND:   return "brind";
5543  case ISD::BR_JT:   return "br_jt";
5544  case ISD::BRCOND:  return "brcond";
5545  case ISD::BR_CC:   return "br_cc";
5546  case ISD::CALLSEQ_START:  return "callseq_start";
5547  case ISD::CALLSEQ_END:    return "callseq_end";
5548
5549    // Other operators
5550  case ISD::LOAD:               return "load";
5551  case ISD::STORE:              return "store";
5552  case ISD::VAARG:              return "vaarg";
5553  case ISD::VACOPY:             return "vacopy";
5554  case ISD::VAEND:              return "vaend";
5555  case ISD::VASTART:            return "vastart";
5556  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5557  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5558  case ISD::BUILD_PAIR:         return "build_pair";
5559  case ISD::STACKSAVE:          return "stacksave";
5560  case ISD::STACKRESTORE:       return "stackrestore";
5561  case ISD::TRAP:               return "trap";
5562
5563  // Bit manipulation
5564  case ISD::BSWAP:   return "bswap";
5565  case ISD::CTPOP:   return "ctpop";
5566  case ISD::CTTZ:    return "cttz";
5567  case ISD::CTLZ:    return "ctlz";
5568
5569  // Debug info
5570  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5571  case ISD::DEBUG_LOC: return "debug_loc";
5572
5573  // Trampolines
5574  case ISD::TRAMPOLINE: return "trampoline";
5575
5576  case ISD::CONDCODE:
5577    switch (cast<CondCodeSDNode>(this)->get()) {
5578    default: llvm_unreachable("Unknown setcc condition!");
5579    case ISD::SETOEQ:  return "setoeq";
5580    case ISD::SETOGT:  return "setogt";
5581    case ISD::SETOGE:  return "setoge";
5582    case ISD::SETOLT:  return "setolt";
5583    case ISD::SETOLE:  return "setole";
5584    case ISD::SETONE:  return "setone";
5585
5586    case ISD::SETO:    return "seto";
5587    case ISD::SETUO:   return "setuo";
5588    case ISD::SETUEQ:  return "setue";
5589    case ISD::SETUGT:  return "setugt";
5590    case ISD::SETUGE:  return "setuge";
5591    case ISD::SETULT:  return "setult";
5592    case ISD::SETULE:  return "setule";
5593    case ISD::SETUNE:  return "setune";
5594
5595    case ISD::SETEQ:   return "seteq";
5596    case ISD::SETGT:   return "setgt";
5597    case ISD::SETGE:   return "setge";
5598    case ISD::SETLT:   return "setlt";
5599    case ISD::SETLE:   return "setle";
5600    case ISD::SETNE:   return "setne";
5601    }
5602  }
5603}
5604
5605const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5606  switch (AM) {
5607  default:
5608    return "";
5609  case ISD::PRE_INC:
5610    return "<pre-inc>";
5611  case ISD::PRE_DEC:
5612    return "<pre-dec>";
5613  case ISD::POST_INC:
5614    return "<post-inc>";
5615  case ISD::POST_DEC:
5616    return "<post-dec>";
5617  }
5618}
5619
5620std::string ISD::ArgFlagsTy::getArgFlagsString() {
5621  std::string S = "< ";
5622
5623  if (isZExt())
5624    S += "zext ";
5625  if (isSExt())
5626    S += "sext ";
5627  if (isInReg())
5628    S += "inreg ";
5629  if (isSRet())
5630    S += "sret ";
5631  if (isByVal())
5632    S += "byval ";
5633  if (isNest())
5634    S += "nest ";
5635  if (getByValAlign())
5636    S += "byval-align:" + utostr(getByValAlign()) + " ";
5637  if (getOrigAlign())
5638    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5639  if (getByValSize())
5640    S += "byval-size:" + utostr(getByValSize()) + " ";
5641  return S + ">";
5642}
5643
5644void SDNode::dump() const { dump(0); }
5645void SDNode::dump(const SelectionDAG *G) const {
5646  print(errs(), G);
5647}
5648
5649void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5650  OS << (void*)this << ": ";
5651
5652  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5653    if (i) OS << ",";
5654    if (getValueType(i) == MVT::Other)
5655      OS << "ch";
5656    else
5657      OS << getValueType(i).getEVTString();
5658  }
5659  OS << " = " << getOperationName(G);
5660}
5661
5662void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5663  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5664    if (!MN->memoperands_empty()) {
5665      OS << "<";
5666      OS << "Mem:";
5667      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5668           e = MN->memoperands_end(); i != e; ++i) {
5669        OS << **i;
5670        if (next(i) != e)
5671          OS << " ";
5672      }
5673      OS << ">";
5674    }
5675  } else if (const ShuffleVectorSDNode *SVN =
5676               dyn_cast<ShuffleVectorSDNode>(this)) {
5677    OS << "<";
5678    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5679      int Idx = SVN->getMaskElt(i);
5680      if (i) OS << ",";
5681      if (Idx < 0)
5682        OS << "u";
5683      else
5684        OS << Idx;
5685    }
5686    OS << ">";
5687  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5688    OS << '<' << CSDN->getAPIntValue() << '>';
5689  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5690    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5691      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5692    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5693      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5694    else {
5695      OS << "<APFloat(";
5696      CSDN->getValueAPF().bitcastToAPInt().dump();
5697      OS << ")>";
5698    }
5699  } else if (const GlobalAddressSDNode *GADN =
5700             dyn_cast<GlobalAddressSDNode>(this)) {
5701    int64_t offset = GADN->getOffset();
5702    OS << '<';
5703    WriteAsOperand(OS, GADN->getGlobal());
5704    OS << '>';
5705    if (offset > 0)
5706      OS << " + " << offset;
5707    else
5708      OS << " " << offset;
5709    if (unsigned int TF = GADN->getTargetFlags())
5710      OS << " [TF=" << TF << ']';
5711  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5712    OS << "<" << FIDN->getIndex() << ">";
5713  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5714    OS << "<" << JTDN->getIndex() << ">";
5715    if (unsigned int TF = JTDN->getTargetFlags())
5716      OS << " [TF=" << TF << ']';
5717  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5718    int offset = CP->getOffset();
5719    if (CP->isMachineConstantPoolEntry())
5720      OS << "<" << *CP->getMachineCPVal() << ">";
5721    else
5722      OS << "<" << *CP->getConstVal() << ">";
5723    if (offset > 0)
5724      OS << " + " << offset;
5725    else
5726      OS << " " << offset;
5727    if (unsigned int TF = CP->getTargetFlags())
5728      OS << " [TF=" << TF << ']';
5729  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5730    OS << "<";
5731    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5732    if (LBB)
5733      OS << LBB->getName() << " ";
5734    OS << (const void*)BBDN->getBasicBlock() << ">";
5735  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5736    if (G && R->getReg() &&
5737        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5738      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5739    } else {
5740      OS << " #" << R->getReg();
5741    }
5742  } else if (const ExternalSymbolSDNode *ES =
5743             dyn_cast<ExternalSymbolSDNode>(this)) {
5744    OS << "'" << ES->getSymbol() << "'";
5745    if (unsigned int TF = ES->getTargetFlags())
5746      OS << " [TF=" << TF << ']';
5747  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5748    if (M->getValue())
5749      OS << "<" << M->getValue() << ">";
5750    else
5751      OS << "<null>";
5752  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5753    OS << ":" << N->getVT().getEVTString();
5754  }
5755  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5756    OS << " <" << *LD->getMemOperand();
5757
5758    bool doExt = true;
5759    switch (LD->getExtensionType()) {
5760    default: doExt = false; break;
5761    case ISD::EXTLOAD: OS << ", anyext"; break;
5762    case ISD::SEXTLOAD: OS << ", sext"; break;
5763    case ISD::ZEXTLOAD: OS << ", zext"; break;
5764    }
5765    if (doExt)
5766      OS << " from " << LD->getMemoryVT().getEVTString();
5767
5768    const char *AM = getIndexedModeName(LD->getAddressingMode());
5769    if (*AM)
5770      OS << ", " << AM;
5771
5772    OS << ">";
5773  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5774    OS << " <" << *ST->getMemOperand();
5775
5776    if (ST->isTruncatingStore())
5777      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5778
5779    const char *AM = getIndexedModeName(ST->getAddressingMode());
5780    if (*AM)
5781      OS << ", " << AM;
5782
5783    OS << ">";
5784  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5785    OS << " <" << *M->getMemOperand() << ">";
5786  }
5787}
5788
5789void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5790  print_types(OS, G);
5791  OS << " ";
5792  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5793    if (i) OS << ", ";
5794    OS << (void*)getOperand(i).getNode();
5795    if (unsigned RN = getOperand(i).getResNo())
5796      OS << ":" << RN;
5797  }
5798  print_details(OS, G);
5799}
5800
5801static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5802  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5803    if (N->getOperand(i).getNode()->hasOneUse())
5804      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5805    else
5806      errs() << "\n" << std::string(indent+2, ' ')
5807             << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5808
5809
5810  errs() << "\n";
5811  errs().indent(indent);
5812  N->dump(G);
5813}
5814
5815void SelectionDAG::dump() const {
5816  errs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
5817
5818  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5819       I != E; ++I) {
5820    const SDNode *N = I;
5821    if (!N->hasOneUse() && N != getRoot().getNode())
5822      DumpNodes(N, 2, this);
5823  }
5824
5825  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5826
5827  errs() << "\n\n";
5828}
5829
5830void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
5831  print_types(OS, G);
5832  print_details(OS, G);
5833}
5834
5835typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
5836static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
5837                       const SelectionDAG *G, VisitedSDNodeSet &once) {
5838  if (!once.insert(N))          // If we've been here before, return now.
5839    return;
5840  // Dump the current SDNode, but don't end the line yet.
5841  OS << std::string(indent, ' ');
5842  N->printr(OS, G);
5843  // Having printed this SDNode, walk the children:
5844  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5845    const SDNode *child = N->getOperand(i).getNode();
5846    if (i) OS << ",";
5847    OS << " ";
5848    if (child->getNumOperands() == 0) {
5849      // This child has no grandchildren; print it inline right here.
5850      child->printr(OS, G);
5851      once.insert(child);
5852    } else {          // Just the address.  FIXME: also print the child's opcode
5853      OS << (void*)child;
5854      if (unsigned RN = N->getOperand(i).getResNo())
5855        OS << ":" << RN;
5856    }
5857  }
5858  OS << "\n";
5859  // Dump children that have grandchildren on their own line(s).
5860  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5861    const SDNode *child = N->getOperand(i).getNode();
5862    DumpNodesr(OS, child, indent+2, G, once);
5863  }
5864}
5865
5866void SDNode::dumpr() const {
5867  VisitedSDNodeSet once;
5868  DumpNodesr(errs(), this, 0, 0, once);
5869}
5870
5871void SDNode::dumpr(const SelectionDAG *G) const {
5872  VisitedSDNodeSet once;
5873  DumpNodesr(errs(), this, 0, G, once);
5874}
5875
5876
5877// getAddressSpace - Return the address space this GlobalAddress belongs to.
5878unsigned GlobalAddressSDNode::getAddressSpace() const {
5879  return getGlobal()->getType()->getAddressSpace();
5880}
5881
5882
5883const Type *ConstantPoolSDNode::getType() const {
5884  if (isMachineConstantPoolEntry())
5885    return Val.MachineCPVal->getType();
5886  return Val.ConstVal->getType();
5887}
5888
5889bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
5890                                        APInt &SplatUndef,
5891                                        unsigned &SplatBitSize,
5892                                        bool &HasAnyUndefs,
5893                                        unsigned MinSplatBits) {
5894  EVT VT = getValueType(0);
5895  assert(VT.isVector() && "Expected a vector type");
5896  unsigned sz = VT.getSizeInBits();
5897  if (MinSplatBits > sz)
5898    return false;
5899
5900  SplatValue = APInt(sz, 0);
5901  SplatUndef = APInt(sz, 0);
5902
5903  // Get the bits.  Bits with undefined values (when the corresponding element
5904  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
5905  // in SplatValue.  If any of the values are not constant, give up and return
5906  // false.
5907  unsigned int nOps = getNumOperands();
5908  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
5909  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
5910  for (unsigned i = 0; i < nOps; ++i) {
5911    SDValue OpVal = getOperand(i);
5912    unsigned BitPos = i * EltBitSize;
5913
5914    if (OpVal.getOpcode() == ISD::UNDEF)
5915      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos +EltBitSize);
5916    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
5917      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
5918                     zextOrTrunc(sz) << BitPos);
5919    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
5920      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
5921     else
5922      return false;
5923  }
5924
5925  // The build_vector is all constants or undefs.  Find the smallest element
5926  // size that splats the vector.
5927
5928  HasAnyUndefs = (SplatUndef != 0);
5929  while (sz > 8) {
5930
5931    unsigned HalfSize = sz / 2;
5932    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
5933    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
5934    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
5935    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
5936
5937    // If the two halves do not match (ignoring undef bits), stop here.
5938    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
5939        MinSplatBits > HalfSize)
5940      break;
5941
5942    SplatValue = HighValue | LowValue;
5943    SplatUndef = HighUndef & LowUndef;
5944
5945    sz = HalfSize;
5946  }
5947
5948  SplatBitSize = sz;
5949  return true;
5950}
5951
5952bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
5953  // Find the first non-undef value in the shuffle mask.
5954  unsigned i, e;
5955  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
5956    /* search */;
5957
5958  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
5959
5960  // Make sure all remaining elements are either undef or the same as the first
5961  // non-undef value.
5962  for (int Idx = Mask[i]; i != e; ++i)
5963    if (Mask[i] >= 0 && Mask[i] != Idx)
5964      return false;
5965  return true;
5966}
5967