SelectionDAG.cpp revision fd29e0eb060ea8b4d490860329234d2ae5f5952e
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineModuleInfo.h"
24#include "llvm/CodeGen/PseudoSourceValue.h"
25#include "llvm/Support/MathExtras.h"
26#include "llvm/Target/TargetRegisterInfo.h"
27#include "llvm/Target/TargetData.h"
28#include "llvm/Target/TargetLowering.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/ADT/SetVector.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/SmallSet.h"
34#include "llvm/ADT/SmallVector.h"
35#include "llvm/ADT/StringExtras.h"
36#include <algorithm>
37#include <cmath>
38using namespace llvm;
39
40/// makeVTList - Return an instance of the SDVTList struct initialized with the
41/// specified members.
42static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
43  SDVTList Res = {VTs, NumVTs};
44  return Res;
45}
46
47SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
48
49//===----------------------------------------------------------------------===//
50//                              ConstantFPSDNode Class
51//===----------------------------------------------------------------------===//
52
53/// isExactlyValue - We don't rely on operator== working on double values, as
54/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
55/// As such, this method can be used to do an exact bit-for-bit comparison of
56/// two floating point values.
57bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
58  return Value.bitwiseIsEqual(V);
59}
60
61bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
62                                           const APFloat& Val) {
63  // convert modifies in place, so make a copy.
64  APFloat Val2 = APFloat(Val);
65  switch (VT) {
66  default:
67    return false;         // These can't be represented as floating point!
68
69  // FIXME rounding mode needs to be more flexible
70  case MVT::f32:
71    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
72           Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==
73              APFloat::opOK;
74  case MVT::f64:
75    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
76           &Val2.getSemantics() == &APFloat::IEEEdouble ||
77           Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==
78             APFloat::opOK;
79  // TODO: Figure out how to test if we can use a shorter type instead!
80  case MVT::f80:
81  case MVT::f128:
82  case MVT::ppcf128:
83    return true;
84  }
85}
86
87//===----------------------------------------------------------------------===//
88//                              ISD Namespace
89//===----------------------------------------------------------------------===//
90
91/// isBuildVectorAllOnes - Return true if the specified node is a
92/// BUILD_VECTOR where all of the elements are ~0 or undef.
93bool ISD::isBuildVectorAllOnes(const SDNode *N) {
94  // Look through a bit convert.
95  if (N->getOpcode() == ISD::BIT_CONVERT)
96    N = N->getOperand(0).Val;
97
98  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
99
100  unsigned i = 0, e = N->getNumOperands();
101
102  // Skip over all of the undef values.
103  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
104    ++i;
105
106  // Do not accept an all-undef vector.
107  if (i == e) return false;
108
109  // Do not accept build_vectors that aren't all constants or which have non-~0
110  // elements.
111  SDOperand NotZero = N->getOperand(i);
112  if (isa<ConstantSDNode>(NotZero)) {
113    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
114      return false;
115  } else if (isa<ConstantFPSDNode>(NotZero)) {
116    MVT::ValueType VT = NotZero.getValueType();
117    if (VT== MVT::f64) {
118      if (((cast<ConstantFPSDNode>(NotZero)->getValueAPF().
119                  convertToAPInt().getZExtValue())) != (uint64_t)-1)
120        return false;
121    } else {
122      if ((uint32_t)cast<ConstantFPSDNode>(NotZero)->
123                      getValueAPF().convertToAPInt().getZExtValue() !=
124          (uint32_t)-1)
125        return false;
126    }
127  } else
128    return false;
129
130  // Okay, we have at least one ~0 value, check to see if the rest match or are
131  // undefs.
132  for (++i; i != e; ++i)
133    if (N->getOperand(i) != NotZero &&
134        N->getOperand(i).getOpcode() != ISD::UNDEF)
135      return false;
136  return true;
137}
138
139
140/// isBuildVectorAllZeros - Return true if the specified node is a
141/// BUILD_VECTOR where all of the elements are 0 or undef.
142bool ISD::isBuildVectorAllZeros(const SDNode *N) {
143  // Look through a bit convert.
144  if (N->getOpcode() == ISD::BIT_CONVERT)
145    N = N->getOperand(0).Val;
146
147  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
148
149  unsigned i = 0, e = N->getNumOperands();
150
151  // Skip over all of the undef values.
152  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
153    ++i;
154
155  // Do not accept an all-undef vector.
156  if (i == e) return false;
157
158  // Do not accept build_vectors that aren't all constants or which have non-~0
159  // elements.
160  SDOperand Zero = N->getOperand(i);
161  if (isa<ConstantSDNode>(Zero)) {
162    if (!cast<ConstantSDNode>(Zero)->isNullValue())
163      return false;
164  } else if (isa<ConstantFPSDNode>(Zero)) {
165    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
166      return false;
167  } else
168    return false;
169
170  // Okay, we have at least one ~0 value, check to see if the rest match or are
171  // undefs.
172  for (++i; i != e; ++i)
173    if (N->getOperand(i) != Zero &&
174        N->getOperand(i).getOpcode() != ISD::UNDEF)
175      return false;
176  return true;
177}
178
179/// isDebugLabel - Return true if the specified node represents a debug
180/// label (i.e. ISD::LABEL or TargetInstrInfo::LABEL node and third operand
181/// is 0).
182bool ISD::isDebugLabel(const SDNode *N) {
183  SDOperand Zero;
184  if (N->getOpcode() == ISD::LABEL)
185    Zero = N->getOperand(2);
186  else if (N->isTargetOpcode() &&
187           N->getTargetOpcode() == TargetInstrInfo::LABEL)
188    // Chain moved to last operand.
189    Zero = N->getOperand(1);
190  else
191    return false;
192  return isa<ConstantSDNode>(Zero) && cast<ConstantSDNode>(Zero)->isNullValue();
193}
194
195/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
196/// when given the operation for (X op Y).
197ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
198  // To perform this operation, we just need to swap the L and G bits of the
199  // operation.
200  unsigned OldL = (Operation >> 2) & 1;
201  unsigned OldG = (Operation >> 1) & 1;
202  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
203                       (OldL << 1) |       // New G bit
204                       (OldG << 2));        // New L bit.
205}
206
207/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
208/// 'op' is a valid SetCC operation.
209ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
210  unsigned Operation = Op;
211  if (isInteger)
212    Operation ^= 7;   // Flip L, G, E bits, but not U.
213  else
214    Operation ^= 15;  // Flip all of the condition bits.
215  if (Operation > ISD::SETTRUE2)
216    Operation &= ~8;     // Don't let N and U bits get set.
217  return ISD::CondCode(Operation);
218}
219
220
221/// isSignedOp - For an integer comparison, return 1 if the comparison is a
222/// signed operation and 2 if the result is an unsigned comparison.  Return zero
223/// if the operation does not depend on the sign of the input (setne and seteq).
224static int isSignedOp(ISD::CondCode Opcode) {
225  switch (Opcode) {
226  default: assert(0 && "Illegal integer setcc operation!");
227  case ISD::SETEQ:
228  case ISD::SETNE: return 0;
229  case ISD::SETLT:
230  case ISD::SETLE:
231  case ISD::SETGT:
232  case ISD::SETGE: return 1;
233  case ISD::SETULT:
234  case ISD::SETULE:
235  case ISD::SETUGT:
236  case ISD::SETUGE: return 2;
237  }
238}
239
240/// getSetCCOrOperation - Return the result of a logical OR between different
241/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
242/// returns SETCC_INVALID if it is not possible to represent the resultant
243/// comparison.
244ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
245                                       bool isInteger) {
246  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
247    // Cannot fold a signed integer setcc with an unsigned integer setcc.
248    return ISD::SETCC_INVALID;
249
250  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
251
252  // If the N and U bits get set then the resultant comparison DOES suddenly
253  // care about orderedness, and is true when ordered.
254  if (Op > ISD::SETTRUE2)
255    Op &= ~16;     // Clear the U bit if the N bit is set.
256
257  // Canonicalize illegal integer setcc's.
258  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
259    Op = ISD::SETNE;
260
261  return ISD::CondCode(Op);
262}
263
264/// getSetCCAndOperation - Return the result of a logical AND between different
265/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
266/// function returns zero if it is not possible to represent the resultant
267/// comparison.
268ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
269                                        bool isInteger) {
270  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
271    // Cannot fold a signed setcc with an unsigned setcc.
272    return ISD::SETCC_INVALID;
273
274  // Combine all of the condition bits.
275  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
276
277  // Canonicalize illegal integer setcc's.
278  if (isInteger) {
279    switch (Result) {
280    default: break;
281    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
282    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
283    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
284    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
285    }
286  }
287
288  return Result;
289}
290
291const TargetMachine &SelectionDAG::getTarget() const {
292  return TLI.getTargetMachine();
293}
294
295//===----------------------------------------------------------------------===//
296//                           SDNode Profile Support
297//===----------------------------------------------------------------------===//
298
299/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
300///
301static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
302  ID.AddInteger(OpC);
303}
304
305/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
306/// solely with their pointer.
307void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
308  ID.AddPointer(VTList.VTs);
309}
310
311/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
312///
313static void AddNodeIDOperands(FoldingSetNodeID &ID,
314                              const SDOperand *Ops, unsigned NumOps) {
315  for (; NumOps; --NumOps, ++Ops) {
316    ID.AddPointer(Ops->Val);
317    ID.AddInteger(Ops->ResNo);
318  }
319}
320
321static void AddNodeIDNode(FoldingSetNodeID &ID,
322                          unsigned short OpC, SDVTList VTList,
323                          const SDOperand *OpList, unsigned N) {
324  AddNodeIDOpcode(ID, OpC);
325  AddNodeIDValueTypes(ID, VTList);
326  AddNodeIDOperands(ID, OpList, N);
327}
328
329/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
330/// data.
331static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
332  AddNodeIDOpcode(ID, N->getOpcode());
333  // Add the return value info.
334  AddNodeIDValueTypes(ID, N->getVTList());
335  // Add the operand info.
336  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
337
338  // Handle SDNode leafs with special info.
339  switch (N->getOpcode()) {
340  default: break;  // Normal nodes don't need extra info.
341  case ISD::TargetConstant:
342  case ISD::Constant:
343    ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
344    break;
345  case ISD::TargetConstantFP:
346  case ISD::ConstantFP: {
347    ID.Add(cast<ConstantFPSDNode>(N)->getValueAPF());
348    break;
349  }
350  case ISD::TargetGlobalAddress:
351  case ISD::GlobalAddress:
352  case ISD::TargetGlobalTLSAddress:
353  case ISD::GlobalTLSAddress: {
354    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
355    ID.AddPointer(GA->getGlobal());
356    ID.AddInteger(GA->getOffset());
357    break;
358  }
359  case ISD::BasicBlock:
360    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
361    break;
362  case ISD::Register:
363    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
364    break;
365  case ISD::SRCVALUE:
366    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
367    break;
368  case ISD::MEMOPERAND: {
369    const MemOperand &MO = cast<MemOperandSDNode>(N)->MO;
370    ID.AddPointer(MO.getValue());
371    ID.AddInteger(MO.getFlags());
372    ID.AddInteger(MO.getOffset());
373    ID.AddInteger(MO.getSize());
374    ID.AddInteger(MO.getAlignment());
375    break;
376  }
377  case ISD::FrameIndex:
378  case ISD::TargetFrameIndex:
379    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
380    break;
381  case ISD::JumpTable:
382  case ISD::TargetJumpTable:
383    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
384    break;
385  case ISD::ConstantPool:
386  case ISD::TargetConstantPool: {
387    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
388    ID.AddInteger(CP->getAlignment());
389    ID.AddInteger(CP->getOffset());
390    if (CP->isMachineConstantPoolEntry())
391      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
392    else
393      ID.AddPointer(CP->getConstVal());
394    break;
395  }
396  case ISD::LOAD: {
397    LoadSDNode *LD = cast<LoadSDNode>(N);
398    ID.AddInteger(LD->getAddressingMode());
399    ID.AddInteger(LD->getExtensionType());
400    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
401    ID.AddInteger(LD->getAlignment());
402    ID.AddInteger(LD->isVolatile());
403    break;
404  }
405  case ISD::STORE: {
406    StoreSDNode *ST = cast<StoreSDNode>(N);
407    ID.AddInteger(ST->getAddressingMode());
408    ID.AddInteger(ST->isTruncatingStore());
409    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
410    ID.AddInteger(ST->getAlignment());
411    ID.AddInteger(ST->isVolatile());
412    break;
413  }
414  }
415}
416
417//===----------------------------------------------------------------------===//
418//                              SelectionDAG Class
419//===----------------------------------------------------------------------===//
420
421/// RemoveDeadNodes - This method deletes all unreachable nodes in the
422/// SelectionDAG.
423void SelectionDAG::RemoveDeadNodes() {
424  // Create a dummy node (which is not added to allnodes), that adds a reference
425  // to the root node, preventing it from being deleted.
426  HandleSDNode Dummy(getRoot());
427
428  SmallVector<SDNode*, 128> DeadNodes;
429
430  // Add all obviously-dead nodes to the DeadNodes worklist.
431  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
432    if (I->use_empty())
433      DeadNodes.push_back(I);
434
435  // Process the worklist, deleting the nodes and adding their uses to the
436  // worklist.
437  while (!DeadNodes.empty()) {
438    SDNode *N = DeadNodes.back();
439    DeadNodes.pop_back();
440
441    // Take the node out of the appropriate CSE map.
442    RemoveNodeFromCSEMaps(N);
443
444    // Next, brutally remove the operand list.  This is safe to do, as there are
445    // no cycles in the graph.
446    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
447      SDNode *Operand = I->Val;
448      Operand->removeUser(N);
449
450      // Now that we removed this operand, see if there are no uses of it left.
451      if (Operand->use_empty())
452        DeadNodes.push_back(Operand);
453    }
454    if (N->OperandsNeedDelete)
455      delete[] N->OperandList;
456    N->OperandList = 0;
457    N->NumOperands = 0;
458
459    // Finally, remove N itself.
460    AllNodes.erase(N);
461  }
462
463  // If the root changed (e.g. it was a dead load, update the root).
464  setRoot(Dummy.getValue());
465}
466
467void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
468  SmallVector<SDNode*, 16> DeadNodes;
469  DeadNodes.push_back(N);
470
471  // Process the worklist, deleting the nodes and adding their uses to the
472  // worklist.
473  while (!DeadNodes.empty()) {
474    SDNode *N = DeadNodes.back();
475    DeadNodes.pop_back();
476
477    if (UpdateListener)
478      UpdateListener->NodeDeleted(N);
479
480    // Take the node out of the appropriate CSE map.
481    RemoveNodeFromCSEMaps(N);
482
483    // Next, brutally remove the operand list.  This is safe to do, as there are
484    // no cycles in the graph.
485    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
486      SDNode *Operand = I->Val;
487      Operand->removeUser(N);
488
489      // Now that we removed this operand, see if there are no uses of it left.
490      if (Operand->use_empty())
491        DeadNodes.push_back(Operand);
492    }
493    if (N->OperandsNeedDelete)
494      delete[] N->OperandList;
495    N->OperandList = 0;
496    N->NumOperands = 0;
497
498    // Finally, remove N itself.
499    AllNodes.erase(N);
500  }
501}
502
503void SelectionDAG::DeleteNode(SDNode *N) {
504  assert(N->use_empty() && "Cannot delete a node that is not dead!");
505
506  // First take this out of the appropriate CSE map.
507  RemoveNodeFromCSEMaps(N);
508
509  // Finally, remove uses due to operands of this node, remove from the
510  // AllNodes list, and delete the node.
511  DeleteNodeNotInCSEMaps(N);
512}
513
514void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
515
516  // Remove it from the AllNodes list.
517  AllNodes.remove(N);
518
519  // Drop all of the operands and decrement used nodes use counts.
520  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
521    I->Val->removeUser(N);
522  if (N->OperandsNeedDelete)
523    delete[] N->OperandList;
524  N->OperandList = 0;
525  N->NumOperands = 0;
526
527  delete N;
528}
529
530/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
531/// correspond to it.  This is useful when we're about to delete or repurpose
532/// the node.  We don't want future request for structurally identical nodes
533/// to return N anymore.
534void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
535  bool Erased = false;
536  switch (N->getOpcode()) {
537  case ISD::HANDLENODE: return;  // noop.
538  case ISD::STRING:
539    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
540    break;
541  case ISD::CONDCODE:
542    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
543           "Cond code doesn't exist!");
544    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
545    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
546    break;
547  case ISD::ExternalSymbol:
548    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
549    break;
550  case ISD::TargetExternalSymbol:
551    Erased =
552      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
553    break;
554  case ISD::VALUETYPE: {
555    MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
556    if (MVT::isExtendedVT(VT)) {
557      Erased = ExtendedValueTypeNodes.erase(VT);
558    } else {
559      Erased = ValueTypeNodes[VT] != 0;
560      ValueTypeNodes[VT] = 0;
561    }
562    break;
563  }
564  default:
565    // Remove it from the CSE Map.
566    Erased = CSEMap.RemoveNode(N);
567    break;
568  }
569#ifndef NDEBUG
570  // Verify that the node was actually in one of the CSE maps, unless it has a
571  // flag result (which cannot be CSE'd) or is one of the special cases that are
572  // not subject to CSE.
573  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
574      !N->isTargetOpcode()) {
575    N->dump(this);
576    cerr << "\n";
577    assert(0 && "Node is not in map!");
578  }
579#endif
580}
581
582/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
583/// has been taken out and modified in some way.  If the specified node already
584/// exists in the CSE maps, do not modify the maps, but return the existing node
585/// instead.  If it doesn't exist, add it and return null.
586///
587SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
588  assert(N->getNumOperands() && "This is a leaf node!");
589  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
590    return 0;    // Never add these nodes.
591
592  // Check that remaining values produced are not flags.
593  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
594    if (N->getValueType(i) == MVT::Flag)
595      return 0;   // Never CSE anything that produces a flag.
596
597  SDNode *New = CSEMap.GetOrInsertNode(N);
598  if (New != N) return New;  // Node already existed.
599  return 0;
600}
601
602/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
603/// were replaced with those specified.  If this node is never memoized,
604/// return null, otherwise return a pointer to the slot it would take.  If a
605/// node already exists with these operands, the slot will be non-null.
606SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
607                                           void *&InsertPos) {
608  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
609    return 0;    // Never add these nodes.
610
611  // Check that remaining values produced are not flags.
612  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
613    if (N->getValueType(i) == MVT::Flag)
614      return 0;   // Never CSE anything that produces a flag.
615
616  SDOperand Ops[] = { Op };
617  FoldingSetNodeID ID;
618  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
619  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
620}
621
622/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
623/// were replaced with those specified.  If this node is never memoized,
624/// return null, otherwise return a pointer to the slot it would take.  If a
625/// node already exists with these operands, the slot will be non-null.
626SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
627                                           SDOperand Op1, SDOperand Op2,
628                                           void *&InsertPos) {
629  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
630    return 0;    // Never add these nodes.
631
632  // Check that remaining values produced are not flags.
633  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
634    if (N->getValueType(i) == MVT::Flag)
635      return 0;   // Never CSE anything that produces a flag.
636
637  SDOperand Ops[] = { Op1, Op2 };
638  FoldingSetNodeID ID;
639  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
640  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
641}
642
643
644/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
645/// were replaced with those specified.  If this node is never memoized,
646/// return null, otherwise return a pointer to the slot it would take.  If a
647/// node already exists with these operands, the slot will be non-null.
648SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
649                                           const SDOperand *Ops,unsigned NumOps,
650                                           void *&InsertPos) {
651  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
652    return 0;    // Never add these nodes.
653
654  // Check that remaining values produced are not flags.
655  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
656    if (N->getValueType(i) == MVT::Flag)
657      return 0;   // Never CSE anything that produces a flag.
658
659  FoldingSetNodeID ID;
660  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
661
662  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
663    ID.AddInteger(LD->getAddressingMode());
664    ID.AddInteger(LD->getExtensionType());
665    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
666    ID.AddInteger(LD->getAlignment());
667    ID.AddInteger(LD->isVolatile());
668  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
669    ID.AddInteger(ST->getAddressingMode());
670    ID.AddInteger(ST->isTruncatingStore());
671    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
672    ID.AddInteger(ST->getAlignment());
673    ID.AddInteger(ST->isVolatile());
674  }
675
676  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
677}
678
679
680SelectionDAG::~SelectionDAG() {
681  while (!AllNodes.empty()) {
682    SDNode *N = AllNodes.begin();
683    N->SetNextInBucket(0);
684    if (N->OperandsNeedDelete)
685      delete [] N->OperandList;
686    N->OperandList = 0;
687    N->NumOperands = 0;
688    AllNodes.pop_front();
689  }
690}
691
692SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
693  if (Op.getValueType() == VT) return Op;
694  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
695  return getNode(ISD::AND, Op.getValueType(), Op,
696                 getConstant(Imm, Op.getValueType()));
697}
698
699SDOperand SelectionDAG::getString(const std::string &Val) {
700  StringSDNode *&N = StringNodes[Val];
701  if (!N) {
702    N = new StringSDNode(Val);
703    AllNodes.push_back(N);
704  }
705  return SDOperand(N, 0);
706}
707
708SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
709  MVT::ValueType EltVT =
710    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
711
712  return getConstant(APInt(MVT::getSizeInBits(EltVT), Val), VT, isT);
713}
714
715SDOperand SelectionDAG::getConstant(const APInt &Val, MVT::ValueType VT, bool isT) {
716  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
717
718  MVT::ValueType EltVT =
719    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
720
721  assert(Val.getBitWidth() == MVT::getSizeInBits(EltVT) &&
722         "APInt size does not match type size!");
723
724  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
725  FoldingSetNodeID ID;
726  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
727  ID.Add(Val);
728  void *IP = 0;
729  SDNode *N = NULL;
730  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
731    if (!MVT::isVector(VT))
732      return SDOperand(N, 0);
733  if (!N) {
734    N = new ConstantSDNode(isT, Val, EltVT);
735    CSEMap.InsertNode(N, IP);
736    AllNodes.push_back(N);
737  }
738
739  SDOperand Result(N, 0);
740  if (MVT::isVector(VT)) {
741    SmallVector<SDOperand, 8> Ops;
742    Ops.assign(MVT::getVectorNumElements(VT), Result);
743    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
744  }
745  return Result;
746}
747
748SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
749  return getConstant(Val, TLI.getPointerTy(), isTarget);
750}
751
752
753SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
754                                      bool isTarget) {
755  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
756
757  MVT::ValueType EltVT =
758    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
759
760  // Do the map lookup using the actual bit pattern for the floating point
761  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
762  // we don't have issues with SNANs.
763  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
764  FoldingSetNodeID ID;
765  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
766  ID.Add(V);
767  void *IP = 0;
768  SDNode *N = NULL;
769  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
770    if (!MVT::isVector(VT))
771      return SDOperand(N, 0);
772  if (!N) {
773    N = new ConstantFPSDNode(isTarget, V, EltVT);
774    CSEMap.InsertNode(N, IP);
775    AllNodes.push_back(N);
776  }
777
778  SDOperand Result(N, 0);
779  if (MVT::isVector(VT)) {
780    SmallVector<SDOperand, 8> Ops;
781    Ops.assign(MVT::getVectorNumElements(VT), Result);
782    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
783  }
784  return Result;
785}
786
787SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
788                                      bool isTarget) {
789  MVT::ValueType EltVT =
790    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
791  if (EltVT==MVT::f32)
792    return getConstantFP(APFloat((float)Val), VT, isTarget);
793  else
794    return getConstantFP(APFloat(Val), VT, isTarget);
795}
796
797SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
798                                         MVT::ValueType VT, int Offset,
799                                         bool isTargetGA) {
800  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
801  unsigned Opc;
802  if (GVar && GVar->isThreadLocal())
803    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
804  else
805    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
806  FoldingSetNodeID ID;
807  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
808  ID.AddPointer(GV);
809  ID.AddInteger(Offset);
810  void *IP = 0;
811  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
812   return SDOperand(E, 0);
813  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
814  CSEMap.InsertNode(N, IP);
815  AllNodes.push_back(N);
816  return SDOperand(N, 0);
817}
818
819SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
820                                      bool isTarget) {
821  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
822  FoldingSetNodeID ID;
823  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
824  ID.AddInteger(FI);
825  void *IP = 0;
826  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
827    return SDOperand(E, 0);
828  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
829  CSEMap.InsertNode(N, IP);
830  AllNodes.push_back(N);
831  return SDOperand(N, 0);
832}
833
834SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
835  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
836  FoldingSetNodeID ID;
837  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
838  ID.AddInteger(JTI);
839  void *IP = 0;
840  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
841    return SDOperand(E, 0);
842  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
843  CSEMap.InsertNode(N, IP);
844  AllNodes.push_back(N);
845  return SDOperand(N, 0);
846}
847
848SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
849                                        unsigned Alignment, int Offset,
850                                        bool isTarget) {
851  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
852  FoldingSetNodeID ID;
853  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
854  ID.AddInteger(Alignment);
855  ID.AddInteger(Offset);
856  ID.AddPointer(C);
857  void *IP = 0;
858  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
859    return SDOperand(E, 0);
860  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
861  CSEMap.InsertNode(N, IP);
862  AllNodes.push_back(N);
863  return SDOperand(N, 0);
864}
865
866
867SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
868                                        MVT::ValueType VT,
869                                        unsigned Alignment, int Offset,
870                                        bool isTarget) {
871  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
872  FoldingSetNodeID ID;
873  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
874  ID.AddInteger(Alignment);
875  ID.AddInteger(Offset);
876  C->AddSelectionDAGCSEId(ID);
877  void *IP = 0;
878  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
879    return SDOperand(E, 0);
880  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
881  CSEMap.InsertNode(N, IP);
882  AllNodes.push_back(N);
883  return SDOperand(N, 0);
884}
885
886
887SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
888  FoldingSetNodeID ID;
889  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
890  ID.AddPointer(MBB);
891  void *IP = 0;
892  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
893    return SDOperand(E, 0);
894  SDNode *N = new BasicBlockSDNode(MBB);
895  CSEMap.InsertNode(N, IP);
896  AllNodes.push_back(N);
897  return SDOperand(N, 0);
898}
899
900SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
901  if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
902    ValueTypeNodes.resize(VT+1);
903
904  SDNode *&N = MVT::isExtendedVT(VT) ?
905    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
906
907  if (N) return SDOperand(N, 0);
908  N = new VTSDNode(VT);
909  AllNodes.push_back(N);
910  return SDOperand(N, 0);
911}
912
913SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
914  SDNode *&N = ExternalSymbols[Sym];
915  if (N) return SDOperand(N, 0);
916  N = new ExternalSymbolSDNode(false, Sym, VT);
917  AllNodes.push_back(N);
918  return SDOperand(N, 0);
919}
920
921SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
922                                                MVT::ValueType VT) {
923  SDNode *&N = TargetExternalSymbols[Sym];
924  if (N) return SDOperand(N, 0);
925  N = new ExternalSymbolSDNode(true, Sym, VT);
926  AllNodes.push_back(N);
927  return SDOperand(N, 0);
928}
929
930SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
931  if ((unsigned)Cond >= CondCodeNodes.size())
932    CondCodeNodes.resize(Cond+1);
933
934  if (CondCodeNodes[Cond] == 0) {
935    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
936    AllNodes.push_back(CondCodeNodes[Cond]);
937  }
938  return SDOperand(CondCodeNodes[Cond], 0);
939}
940
941SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
942  FoldingSetNodeID ID;
943  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
944  ID.AddInteger(RegNo);
945  void *IP = 0;
946  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
947    return SDOperand(E, 0);
948  SDNode *N = new RegisterSDNode(RegNo, VT);
949  CSEMap.InsertNode(N, IP);
950  AllNodes.push_back(N);
951  return SDOperand(N, 0);
952}
953
954SDOperand SelectionDAG::getSrcValue(const Value *V) {
955  assert((!V || isa<PointerType>(V->getType())) &&
956         "SrcValue is not a pointer?");
957
958  FoldingSetNodeID ID;
959  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
960  ID.AddPointer(V);
961
962  void *IP = 0;
963  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
964    return SDOperand(E, 0);
965
966  SDNode *N = new SrcValueSDNode(V);
967  CSEMap.InsertNode(N, IP);
968  AllNodes.push_back(N);
969  return SDOperand(N, 0);
970}
971
972SDOperand SelectionDAG::getMemOperand(const MemOperand &MO) {
973  const Value *v = MO.getValue();
974  assert((!v || isa<PointerType>(v->getType())) &&
975         "SrcValue is not a pointer?");
976
977  FoldingSetNodeID ID;
978  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
979  ID.AddPointer(v);
980  ID.AddInteger(MO.getFlags());
981  ID.AddInteger(MO.getOffset());
982  ID.AddInteger(MO.getSize());
983  ID.AddInteger(MO.getAlignment());
984
985  void *IP = 0;
986  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
987    return SDOperand(E, 0);
988
989  SDNode *N = new MemOperandSDNode(MO);
990  CSEMap.InsertNode(N, IP);
991  AllNodes.push_back(N);
992  return SDOperand(N, 0);
993}
994
995/// CreateStackTemporary - Create a stack temporary, suitable for holding the
996/// specified value type.
997SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
998  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
999  unsigned ByteSize = MVT::getSizeInBits(VT)/8;
1000  const Type *Ty = MVT::getTypeForValueType(VT);
1001  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
1002  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1003  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1004}
1005
1006
1007SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
1008                                  SDOperand N2, ISD::CondCode Cond) {
1009  // These setcc operations always fold.
1010  switch (Cond) {
1011  default: break;
1012  case ISD::SETFALSE:
1013  case ISD::SETFALSE2: return getConstant(0, VT);
1014  case ISD::SETTRUE:
1015  case ISD::SETTRUE2:  return getConstant(1, VT);
1016
1017  case ISD::SETOEQ:
1018  case ISD::SETOGT:
1019  case ISD::SETOGE:
1020  case ISD::SETOLT:
1021  case ISD::SETOLE:
1022  case ISD::SETONE:
1023  case ISD::SETO:
1024  case ISD::SETUO:
1025  case ISD::SETUEQ:
1026  case ISD::SETUNE:
1027    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
1028    break;
1029  }
1030
1031  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
1032    uint64_t C2 = N2C->getValue();
1033    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1034      uint64_t C1 = N1C->getValue();
1035
1036      // Sign extend the operands if required
1037      if (ISD::isSignedIntSetCC(Cond)) {
1038        C1 = N1C->getSignExtended();
1039        C2 = N2C->getSignExtended();
1040      }
1041
1042      switch (Cond) {
1043      default: assert(0 && "Unknown integer setcc!");
1044      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1045      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1046      case ISD::SETULT: return getConstant(C1 <  C2, VT);
1047      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
1048      case ISD::SETULE: return getConstant(C1 <= C2, VT);
1049      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
1050      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
1051      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
1052      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
1053      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
1054      }
1055    }
1056  }
1057  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
1058    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1059      // No compile time operations on this type yet.
1060      if (N1C->getValueType(0) == MVT::ppcf128)
1061        return SDOperand();
1062
1063      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1064      switch (Cond) {
1065      default: break;
1066      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1067                          return getNode(ISD::UNDEF, VT);
1068                        // fall through
1069      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1070      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1071                          return getNode(ISD::UNDEF, VT);
1072                        // fall through
1073      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1074                                           R==APFloat::cmpLessThan, VT);
1075      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1076                          return getNode(ISD::UNDEF, VT);
1077                        // fall through
1078      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1079      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1080                          return getNode(ISD::UNDEF, VT);
1081                        // fall through
1082      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1083      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1084                          return getNode(ISD::UNDEF, VT);
1085                        // fall through
1086      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1087                                           R==APFloat::cmpEqual, VT);
1088      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1089                          return getNode(ISD::UNDEF, VT);
1090                        // fall through
1091      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1092                                           R==APFloat::cmpEqual, VT);
1093      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1094      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1095      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1096                                           R==APFloat::cmpEqual, VT);
1097      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1098      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1099                                           R==APFloat::cmpLessThan, VT);
1100      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1101                                           R==APFloat::cmpUnordered, VT);
1102      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1103      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1104      }
1105    } else {
1106      // Ensure that the constant occurs on the RHS.
1107      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1108    }
1109
1110  // Could not fold it.
1111  return SDOperand();
1112}
1113
1114/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1115/// this predicate to simplify operations downstream.  Mask is known to be zero
1116/// for bits that V cannot have.
1117bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
1118                                     unsigned Depth) const {
1119  // The masks are not wide enough to represent this type!  Should use APInt.
1120  if (Op.getValueType() == MVT::i128)
1121    return false;
1122
1123  uint64_t KnownZero, KnownOne;
1124  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1125  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1126  return (KnownZero & Mask) == Mask;
1127}
1128
1129/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1130/// known to be either zero or one and return them in the KnownZero/KnownOne
1131/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1132/// processing.
1133void SelectionDAG::ComputeMaskedBits(SDOperand Op, APInt Mask,
1134                                     APInt &KnownZero, APInt &KnownOne,
1135                                     unsigned Depth) const {
1136  unsigned BitWidth = Mask.getBitWidth();
1137  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1138  if (Depth == 6 || Mask == 0)
1139    return;  // Limit search depth.
1140
1141  // The masks are not wide enough to represent this type!  Should use APInt.
1142  if (Op.getValueType() == MVT::i128)
1143    return;
1144
1145  APInt KnownZero2, KnownOne2;
1146
1147  switch (Op.getOpcode()) {
1148  case ISD::Constant:
1149    // We know all of the bits for a constant!
1150    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1151    KnownZero = ~KnownOne & Mask;
1152    return;
1153  case ISD::AND:
1154    // If either the LHS or the RHS are Zero, the result is zero.
1155    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1156    Mask &= ~KnownZero;
1157    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1158    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1159    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1160
1161    // Output known-1 bits are only known if set in both the LHS & RHS.
1162    KnownOne &= KnownOne2;
1163    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1164    KnownZero |= KnownZero2;
1165    return;
1166  case ISD::OR:
1167    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1168    Mask &= ~KnownOne;
1169    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1170    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1171    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1172
1173    // Output known-0 bits are only known if clear in both the LHS & RHS.
1174    KnownZero &= KnownZero2;
1175    // Output known-1 are known to be set if set in either the LHS | RHS.
1176    KnownOne |= KnownOne2;
1177    return;
1178  case ISD::XOR: {
1179    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1180    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1181    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1182    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1183
1184    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1185    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1186    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1187    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1188    KnownZero = KnownZeroOut;
1189    return;
1190  }
1191  case ISD::SELECT:
1192    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1193    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1194    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1195    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1196
1197    // Only known if known in both the LHS and RHS.
1198    KnownOne &= KnownOne2;
1199    KnownZero &= KnownZero2;
1200    return;
1201  case ISD::SELECT_CC:
1202    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1203    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1204    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1205    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1206
1207    // Only known if known in both the LHS and RHS.
1208    KnownOne &= KnownOne2;
1209    KnownZero &= KnownZero2;
1210    return;
1211  case ISD::SETCC:
1212    // If we know the result of a setcc has the top bits zero, use this info.
1213    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1214        BitWidth > 1)
1215      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1216    return;
1217  case ISD::SHL:
1218    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1219    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1220      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(SA->getValue()),
1221                        KnownZero, KnownOne, Depth+1);
1222      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1223      KnownZero <<= SA->getValue();
1224      KnownOne  <<= SA->getValue();
1225      // low bits known zero.
1226      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getValue());
1227    }
1228    return;
1229  case ISD::SRL:
1230    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1231    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1232      unsigned ShAmt = SA->getValue();
1233
1234      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1235                        KnownZero, KnownOne, Depth+1);
1236      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1237      KnownZero = KnownZero.lshr(ShAmt);
1238      KnownOne  = KnownOne.lshr(ShAmt);
1239
1240      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1241      KnownZero |= HighBits;  // High bits known zero.
1242    }
1243    return;
1244  case ISD::SRA:
1245    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1246      unsigned ShAmt = SA->getValue();
1247
1248      APInt InDemandedMask = (Mask << ShAmt);
1249      // If any of the demanded bits are produced by the sign extension, we also
1250      // demand the input sign bit.
1251      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1252      if (!!(HighBits & Mask))
1253        InDemandedMask |= APInt::getSignBit(BitWidth);
1254
1255      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1256                        Depth+1);
1257      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1258      KnownZero = KnownZero.lshr(ShAmt);
1259      KnownOne  = KnownOne.lshr(ShAmt);
1260
1261      // Handle the sign bits.
1262      APInt SignBit = APInt::getSignBit(BitWidth);
1263      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1264
1265      if (!!(KnownZero & SignBit)) {
1266        KnownZero |= HighBits;  // New bits are known zero.
1267      } else if (!!(KnownOne & SignBit)) {
1268        KnownOne  |= HighBits;  // New bits are known one.
1269      }
1270    }
1271    return;
1272  case ISD::SIGN_EXTEND_INREG: {
1273    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1274
1275    // Sign extension.  Compute the demanded bits in the result that are not
1276    // present in the input.
1277    APInt NewBits = ~APInt::getLowBitsSet(BitWidth,
1278                                          MVT::getSizeInBits(EVT)) & Mask;
1279
1280    APInt InSignBit = APInt::getSignBit(MVT::getSizeInBits(EVT));
1281    APInt InputDemandedBits =
1282      Mask & APInt::getLowBitsSet(BitWidth,
1283                                  MVT::getSizeInBits(EVT));
1284
1285    // If the sign extended bits are demanded, we know that the sign
1286    // bit is demanded.
1287    InSignBit.zext(BitWidth);
1288    if (!!NewBits)
1289      InputDemandedBits |= InSignBit;
1290
1291    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1292                      KnownZero, KnownOne, Depth+1);
1293    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1294
1295    // If the sign bit of the input is known set or clear, then we know the
1296    // top bits of the result.
1297    if (!!(KnownZero & InSignBit)) {          // Input sign bit known clear
1298      KnownZero |= NewBits;
1299      KnownOne  &= ~NewBits;
1300    } else if (!!(KnownOne & InSignBit)) {    // Input sign bit known set
1301      KnownOne  |= NewBits;
1302      KnownZero &= ~NewBits;
1303    } else {                              // Input sign bit unknown
1304      KnownZero &= ~NewBits;
1305      KnownOne  &= ~NewBits;
1306    }
1307    return;
1308  }
1309  case ISD::CTTZ:
1310  case ISD::CTLZ:
1311  case ISD::CTPOP: {
1312    unsigned LowBits = Log2_32(BitWidth)+1;
1313    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1314    KnownOne  = APInt(BitWidth, 0);
1315    return;
1316  }
1317  case ISD::LOAD: {
1318    if (ISD::isZEXTLoad(Op.Val)) {
1319      LoadSDNode *LD = cast<LoadSDNode>(Op);
1320      MVT::ValueType VT = LD->getMemoryVT();
1321      KnownZero |= ~APInt::getLowBitsSet(BitWidth, MVT::getSizeInBits(VT)) & Mask;
1322    }
1323    return;
1324  }
1325  case ISD::ZERO_EXTEND: {
1326    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1327    unsigned InBits = MVT::getSizeInBits(InVT);
1328    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1329    APInt NewBits = (~InMask) & Mask;
1330    Mask.trunc(InBits);
1331    KnownZero.trunc(InBits);
1332    KnownOne.trunc(InBits);
1333    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1334    KnownZero.zext(BitWidth);
1335    KnownOne.zext(BitWidth);
1336    KnownZero |= NewBits;
1337    return;
1338  }
1339  case ISD::SIGN_EXTEND: {
1340    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1341    unsigned InBits = MVT::getSizeInBits(InVT);
1342    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1343    APInt InSignBit = APInt::getSignBit(InBits);
1344    APInt NewBits   = (~InMask) & Mask;
1345
1346    // If any of the sign extended bits are demanded, we know that the sign
1347    // bit is demanded.
1348    InSignBit.zext(BitWidth);
1349    if (!!(NewBits & Mask))
1350      Mask |= InSignBit;
1351
1352    Mask.trunc(InBits);
1353    KnownZero.trunc(InBits);
1354    KnownOne.trunc(InBits);
1355    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1356    KnownZero.zext(BitWidth);
1357    KnownOne.zext(BitWidth);
1358
1359    // If the sign bit is known zero or one, the  top bits match.
1360    if (!!(KnownZero & InSignBit)) {
1361      KnownZero |= NewBits;
1362      KnownOne  &= ~NewBits;
1363    } else if (!!(KnownOne & InSignBit)) {
1364      KnownOne  |= NewBits;
1365      KnownZero &= ~NewBits;
1366    } else {   // Otherwise, top bits aren't known.
1367      KnownOne  &= ~NewBits;
1368      KnownZero &= ~NewBits;
1369    }
1370    return;
1371  }
1372  case ISD::ANY_EXTEND: {
1373    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1374    unsigned InBits = MVT::getSizeInBits(InVT);
1375    Mask.trunc(InBits);
1376    KnownZero.trunc(InBits);
1377    KnownOne.trunc(InBits);
1378    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1379    KnownZero.zext(BitWidth);
1380    KnownOne.zext(BitWidth);
1381    return;
1382  }
1383  case ISD::TRUNCATE: {
1384    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1385    unsigned InBits = MVT::getSizeInBits(InVT);
1386    Mask.zext(InBits);
1387    KnownZero.zext(InBits);
1388    KnownOne.zext(InBits);
1389    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1390    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1391    KnownZero.trunc(BitWidth);
1392    KnownOne.trunc(BitWidth);
1393    break;
1394  }
1395  case ISD::AssertZext: {
1396    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1397    APInt InMask = APInt::getLowBitsSet(BitWidth, MVT::getSizeInBits(VT));
1398    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1399                      KnownOne, Depth+1);
1400    KnownZero |= (~InMask) & Mask;
1401    return;
1402  }
1403  case ISD::FGETSIGN:
1404    // All bits are zero except the low bit.
1405    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1406    return;
1407
1408  case ISD::ADD: {
1409    // If either the LHS or the RHS are Zero, the result is zero.
1410    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1411    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1412    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1413    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1414
1415    // Output known-0 bits are known if clear or set in both the low clear bits
1416    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1417    // low 3 bits clear.
1418    unsigned KnownZeroOut = std::min((~KnownZero).countTrailingZeros(),
1419                                     (~KnownZero2).countTrailingZeros());
1420
1421    KnownZero = APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1422    KnownOne = APInt(BitWidth, 0);
1423    return;
1424  }
1425  case ISD::SUB: {
1426    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1427    if (!CLHS) return;
1428
1429    // We know that the top bits of C-X are clear if X contains less bits
1430    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1431    // positive if we can prove that X is >= 0 and < 16.
1432
1433    // sign bit clear
1434    if (!(CLHS->getAPIntValue() & APInt::getSignBit(BitWidth))) {
1435      unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1436      // NLZ can't be BitWidth with no sign bit
1437      APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ);
1438      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1439
1440      // If all of the MaskV bits are known to be zero, then we know the output
1441      // top bits are zero, because we now know that the output is from [0-C].
1442      if ((KnownZero & MaskV) == MaskV) {
1443        unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1444        // Top bits known zero.
1445        KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1446        KnownOne = APInt(BitWidth, 0);   // No one bits known.
1447      } else {
1448        KnownZero = KnownOne = APInt(BitWidth, 0);  // Otherwise, nothing known.
1449      }
1450    }
1451    return;
1452  }
1453  default:
1454    // Allow the target to implement this method for its nodes.
1455    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1456  case ISD::INTRINSIC_WO_CHAIN:
1457  case ISD::INTRINSIC_W_CHAIN:
1458  case ISD::INTRINSIC_VOID:
1459      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1460    }
1461    return;
1462  }
1463}
1464
1465/// ComputeMaskedBits - This is a wrapper around the APInt-using
1466/// form of ComputeMaskedBits for use by clients that haven't been converted
1467/// to APInt yet.
1468void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
1469                                     uint64_t &KnownZero, uint64_t &KnownOne,
1470                                     unsigned Depth) const {
1471  unsigned NumBits = MVT::getSizeInBits(Op.getValueType());
1472  APInt APIntMask(NumBits, Mask);
1473  APInt APIntKnownZero(NumBits, 0);
1474  APInt APIntKnownOne(NumBits, 0);
1475  ComputeMaskedBits(Op, APIntMask, APIntKnownZero, APIntKnownOne, Depth);
1476  KnownZero = APIntKnownZero.getZExtValue();
1477  KnownOne = APIntKnownOne.getZExtValue();
1478}
1479
1480/// ComputeNumSignBits - Return the number of times the sign bit of the
1481/// register is replicated into the other bits.  We know that at least 1 bit
1482/// is always equal to the sign bit (itself), but other cases can give us
1483/// information.  For example, immediately after an "SRA X, 2", we know that
1484/// the top 3 bits are all equal to each other, so we return 3.
1485unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1486  MVT::ValueType VT = Op.getValueType();
1487  assert(MVT::isInteger(VT) && "Invalid VT!");
1488  unsigned VTBits = MVT::getSizeInBits(VT);
1489  unsigned Tmp, Tmp2;
1490
1491  if (Depth == 6)
1492    return 1;  // Limit search depth.
1493
1494  switch (Op.getOpcode()) {
1495  default: break;
1496  case ISD::AssertSext:
1497    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1498    return VTBits-Tmp+1;
1499  case ISD::AssertZext:
1500    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1501    return VTBits-Tmp;
1502
1503  case ISD::Constant: {
1504    uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1505    // If negative, invert the bits, then look at it.
1506    if (Val & MVT::getIntVTSignBit(VT))
1507      Val = ~Val;
1508
1509    // Shift the bits so they are the leading bits in the int64_t.
1510    Val <<= 64-VTBits;
1511
1512    // Return # leading zeros.  We use 'min' here in case Val was zero before
1513    // shifting.  We don't want to return '64' as for an i32 "0".
1514    return std::min(VTBits, CountLeadingZeros_64(Val));
1515  }
1516
1517  case ISD::SIGN_EXTEND:
1518    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1519    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1520
1521  case ISD::SIGN_EXTEND_INREG:
1522    // Max of the input and what this extends.
1523    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1524    Tmp = VTBits-Tmp+1;
1525
1526    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1527    return std::max(Tmp, Tmp2);
1528
1529  case ISD::SRA:
1530    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1531    // SRA X, C   -> adds C sign bits.
1532    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1533      Tmp += C->getValue();
1534      if (Tmp > VTBits) Tmp = VTBits;
1535    }
1536    return Tmp;
1537  case ISD::SHL:
1538    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1539      // shl destroys sign bits.
1540      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1541      if (C->getValue() >= VTBits ||      // Bad shift.
1542          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1543      return Tmp - C->getValue();
1544    }
1545    break;
1546  case ISD::AND:
1547  case ISD::OR:
1548  case ISD::XOR:    // NOT is handled here.
1549    // Logical binary ops preserve the number of sign bits.
1550    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1551    if (Tmp == 1) return 1;  // Early out.
1552    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1553    return std::min(Tmp, Tmp2);
1554
1555  case ISD::SELECT:
1556    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1557    if (Tmp == 1) return 1;  // Early out.
1558    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1559    return std::min(Tmp, Tmp2);
1560
1561  case ISD::SETCC:
1562    // If setcc returns 0/-1, all bits are sign bits.
1563    if (TLI.getSetCCResultContents() ==
1564        TargetLowering::ZeroOrNegativeOneSetCCResult)
1565      return VTBits;
1566    break;
1567  case ISD::ROTL:
1568  case ISD::ROTR:
1569    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1570      unsigned RotAmt = C->getValue() & (VTBits-1);
1571
1572      // Handle rotate right by N like a rotate left by 32-N.
1573      if (Op.getOpcode() == ISD::ROTR)
1574        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1575
1576      // If we aren't rotating out all of the known-in sign bits, return the
1577      // number that are left.  This handles rotl(sext(x), 1) for example.
1578      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1579      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1580    }
1581    break;
1582  case ISD::ADD:
1583    // Add can have at most one carry bit.  Thus we know that the output
1584    // is, at worst, one more bit than the inputs.
1585    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1586    if (Tmp == 1) return 1;  // Early out.
1587
1588    // Special case decrementing a value (ADD X, -1):
1589    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1590      if (CRHS->isAllOnesValue()) {
1591        uint64_t KnownZero, KnownOne;
1592        uint64_t Mask = MVT::getIntVTBitMask(VT);
1593        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1594
1595        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1596        // sign bits set.
1597        if ((KnownZero|1) == Mask)
1598          return VTBits;
1599
1600        // If we are subtracting one from a positive number, there is no carry
1601        // out of the result.
1602        if (KnownZero & MVT::getIntVTSignBit(VT))
1603          return Tmp;
1604      }
1605
1606    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1607    if (Tmp2 == 1) return 1;
1608      return std::min(Tmp, Tmp2)-1;
1609    break;
1610
1611  case ISD::SUB:
1612    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1613    if (Tmp2 == 1) return 1;
1614
1615    // Handle NEG.
1616    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1617      if (CLHS->getValue() == 0) {
1618        uint64_t KnownZero, KnownOne;
1619        uint64_t Mask = MVT::getIntVTBitMask(VT);
1620        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1621        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1622        // sign bits set.
1623        if ((KnownZero|1) == Mask)
1624          return VTBits;
1625
1626        // If the input is known to be positive (the sign bit is known clear),
1627        // the output of the NEG has the same number of sign bits as the input.
1628        if (KnownZero & MVT::getIntVTSignBit(VT))
1629          return Tmp2;
1630
1631        // Otherwise, we treat this like a SUB.
1632      }
1633
1634    // Sub can have at most one carry bit.  Thus we know that the output
1635    // is, at worst, one more bit than the inputs.
1636    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1637    if (Tmp == 1) return 1;  // Early out.
1638      return std::min(Tmp, Tmp2)-1;
1639    break;
1640  case ISD::TRUNCATE:
1641    // FIXME: it's tricky to do anything useful for this, but it is an important
1642    // case for targets like X86.
1643    break;
1644  }
1645
1646  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1647  if (Op.getOpcode() == ISD::LOAD) {
1648    LoadSDNode *LD = cast<LoadSDNode>(Op);
1649    unsigned ExtType = LD->getExtensionType();
1650    switch (ExtType) {
1651    default: break;
1652    case ISD::SEXTLOAD:    // '17' bits known
1653      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1654      return VTBits-Tmp+1;
1655    case ISD::ZEXTLOAD:    // '16' bits known
1656      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1657      return VTBits-Tmp;
1658    }
1659  }
1660
1661  // Allow the target to implement this method for its nodes.
1662  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1663      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1664      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1665      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1666    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1667    if (NumBits > 1) return NumBits;
1668  }
1669
1670  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1671  // use this information.
1672  uint64_t KnownZero, KnownOne;
1673  uint64_t Mask = MVT::getIntVTBitMask(VT);
1674  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1675
1676  uint64_t SignBit = MVT::getIntVTSignBit(VT);
1677  if (KnownZero & SignBit) {        // SignBit is 0
1678    Mask = KnownZero;
1679  } else if (KnownOne & SignBit) {  // SignBit is 1;
1680    Mask = KnownOne;
1681  } else {
1682    // Nothing known.
1683    return 1;
1684  }
1685
1686  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1687  // the number of identical bits in the top of the input value.
1688  Mask ^= ~0ULL;
1689  Mask <<= 64-VTBits;
1690  // Return # leading zeros.  We use 'min' here in case Val was zero before
1691  // shifting.  We don't want to return '64' as for an i32 "0".
1692  return std::min(VTBits, CountLeadingZeros_64(Mask));
1693}
1694
1695
1696bool SelectionDAG::isVerifiedDebugInfoDesc(SDOperand Op) const {
1697  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1698  if (!GA) return false;
1699  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
1700  if (!GV) return false;
1701  MachineModuleInfo *MMI = getMachineModuleInfo();
1702  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
1703}
1704
1705
1706/// getNode - Gets or creates the specified node.
1707///
1708SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1709  FoldingSetNodeID ID;
1710  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1711  void *IP = 0;
1712  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1713    return SDOperand(E, 0);
1714  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1715  CSEMap.InsertNode(N, IP);
1716
1717  AllNodes.push_back(N);
1718  return SDOperand(N, 0);
1719}
1720
1721SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1722                                SDOperand Operand) {
1723  unsigned Tmp1;
1724  // Constant fold unary operations with an integer constant operand.
1725  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1726    uint64_t Val = C->getValue();
1727    switch (Opcode) {
1728    default: break;
1729    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1730    case ISD::ANY_EXTEND:
1731    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1732    case ISD::TRUNCATE:    return getConstant(Val, VT);
1733    case ISD::UINT_TO_FP:
1734    case ISD::SINT_TO_FP: {
1735      const uint64_t zero[] = {0, 0};
1736      // No compile time operations on this type.
1737      if (VT==MVT::ppcf128)
1738        break;
1739      APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero));
1740      (void)apf.convertFromZeroExtendedInteger(&Val,
1741                               MVT::getSizeInBits(Operand.getValueType()),
1742                               Opcode==ISD::SINT_TO_FP,
1743                               APFloat::rmNearestTiesToEven);
1744      return getConstantFP(apf, VT);
1745    }
1746    case ISD::BIT_CONVERT:
1747      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1748        return getConstantFP(BitsToFloat(Val), VT);
1749      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1750        return getConstantFP(BitsToDouble(Val), VT);
1751      break;
1752    case ISD::BSWAP:
1753      switch(VT) {
1754      default: assert(0 && "Invalid bswap!"); break;
1755      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1756      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1757      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1758      }
1759      break;
1760    case ISD::CTPOP:
1761      switch(VT) {
1762      default: assert(0 && "Invalid ctpop!"); break;
1763      case MVT::i1: return getConstant(Val != 0, VT);
1764      case MVT::i8:
1765        Tmp1 = (unsigned)Val & 0xFF;
1766        return getConstant(CountPopulation_32(Tmp1), VT);
1767      case MVT::i16:
1768        Tmp1 = (unsigned)Val & 0xFFFF;
1769        return getConstant(CountPopulation_32(Tmp1), VT);
1770      case MVT::i32:
1771        return getConstant(CountPopulation_32((unsigned)Val), VT);
1772      case MVT::i64:
1773        return getConstant(CountPopulation_64(Val), VT);
1774      }
1775    case ISD::CTLZ:
1776      switch(VT) {
1777      default: assert(0 && "Invalid ctlz!"); break;
1778      case MVT::i1: return getConstant(Val == 0, VT);
1779      case MVT::i8:
1780        Tmp1 = (unsigned)Val & 0xFF;
1781        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1782      case MVT::i16:
1783        Tmp1 = (unsigned)Val & 0xFFFF;
1784        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1785      case MVT::i32:
1786        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1787      case MVT::i64:
1788        return getConstant(CountLeadingZeros_64(Val), VT);
1789      }
1790    case ISD::CTTZ:
1791      switch(VT) {
1792      default: assert(0 && "Invalid cttz!"); break;
1793      case MVT::i1: return getConstant(Val == 0, VT);
1794      case MVT::i8:
1795        Tmp1 = (unsigned)Val | 0x100;
1796        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1797      case MVT::i16:
1798        Tmp1 = (unsigned)Val | 0x10000;
1799        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1800      case MVT::i32:
1801        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1802      case MVT::i64:
1803        return getConstant(CountTrailingZeros_64(Val), VT);
1804      }
1805    }
1806  }
1807
1808  // Constant fold unary operations with a floating point constant operand.
1809  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1810    APFloat V = C->getValueAPF();    // make copy
1811    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
1812      switch (Opcode) {
1813      case ISD::FNEG:
1814        V.changeSign();
1815        return getConstantFP(V, VT);
1816      case ISD::FABS:
1817        V.clearSign();
1818        return getConstantFP(V, VT);
1819      case ISD::FP_ROUND:
1820      case ISD::FP_EXTEND:
1821        // This can return overflow, underflow, or inexact; we don't care.
1822        // FIXME need to be more flexible about rounding mode.
1823        (void) V.convert(VT==MVT::f32 ? APFloat::IEEEsingle :
1824                         VT==MVT::f64 ? APFloat::IEEEdouble :
1825                         VT==MVT::f80 ? APFloat::x87DoubleExtended :
1826                         VT==MVT::f128 ? APFloat::IEEEquad :
1827                         APFloat::Bogus,
1828                         APFloat::rmNearestTiesToEven);
1829        return getConstantFP(V, VT);
1830      case ISD::FP_TO_SINT:
1831      case ISD::FP_TO_UINT: {
1832        integerPart x;
1833        assert(integerPartWidth >= 64);
1834        // FIXME need to be more flexible about rounding mode.
1835        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1836                              Opcode==ISD::FP_TO_SINT,
1837                              APFloat::rmTowardZero);
1838        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1839          break;
1840        return getConstant(x, VT);
1841      }
1842      case ISD::BIT_CONVERT:
1843        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1844          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1845        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1846          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1847        break;
1848      }
1849    }
1850  }
1851
1852  unsigned OpOpcode = Operand.Val->getOpcode();
1853  switch (Opcode) {
1854  case ISD::TokenFactor:
1855    return Operand;         // Factor of one node?  No factor.
1856  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
1857  case ISD::FP_EXTEND:
1858    assert(MVT::isFloatingPoint(VT) &&
1859           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1860    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
1861    break;
1862    case ISD::SIGN_EXTEND:
1863    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1864           "Invalid SIGN_EXTEND!");
1865    if (Operand.getValueType() == VT) return Operand;   // noop extension
1866    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1867           && "Invalid sext node, dst < src!");
1868    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1869      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1870    break;
1871  case ISD::ZERO_EXTEND:
1872    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1873           "Invalid ZERO_EXTEND!");
1874    if (Operand.getValueType() == VT) return Operand;   // noop extension
1875    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1876           && "Invalid zext node, dst < src!");
1877    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1878      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1879    break;
1880  case ISD::ANY_EXTEND:
1881    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1882           "Invalid ANY_EXTEND!");
1883    if (Operand.getValueType() == VT) return Operand;   // noop extension
1884    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1885           && "Invalid anyext node, dst < src!");
1886    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1887      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1888      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1889    break;
1890  case ISD::TRUNCATE:
1891    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1892           "Invalid TRUNCATE!");
1893    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1894    assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
1895           && "Invalid truncate node, src < dst!");
1896    if (OpOpcode == ISD::TRUNCATE)
1897      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1898    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1899             OpOpcode == ISD::ANY_EXTEND) {
1900      // If the source is smaller than the dest, we still need an extend.
1901      if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1902          < MVT::getSizeInBits(VT))
1903        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1904      else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1905               > MVT::getSizeInBits(VT))
1906        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1907      else
1908        return Operand.Val->getOperand(0);
1909    }
1910    break;
1911  case ISD::BIT_CONVERT:
1912    // Basic sanity checking.
1913    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1914           && "Cannot BIT_CONVERT between types of different sizes!");
1915    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1916    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1917      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1918    if (OpOpcode == ISD::UNDEF)
1919      return getNode(ISD::UNDEF, VT);
1920    break;
1921  case ISD::SCALAR_TO_VECTOR:
1922    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1923           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1924           "Illegal SCALAR_TO_VECTOR node!");
1925    break;
1926  case ISD::FNEG:
1927    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1928      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1929                     Operand.Val->getOperand(0));
1930    if (OpOpcode == ISD::FNEG)  // --X -> X
1931      return Operand.Val->getOperand(0);
1932    break;
1933  case ISD::FABS:
1934    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1935      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1936    break;
1937  }
1938
1939  SDNode *N;
1940  SDVTList VTs = getVTList(VT);
1941  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1942    FoldingSetNodeID ID;
1943    SDOperand Ops[1] = { Operand };
1944    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1945    void *IP = 0;
1946    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1947      return SDOperand(E, 0);
1948    N = new UnarySDNode(Opcode, VTs, Operand);
1949    CSEMap.InsertNode(N, IP);
1950  } else {
1951    N = new UnarySDNode(Opcode, VTs, Operand);
1952  }
1953  AllNodes.push_back(N);
1954  return SDOperand(N, 0);
1955}
1956
1957
1958
1959SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1960                                SDOperand N1, SDOperand N2) {
1961  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1962  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1963  switch (Opcode) {
1964  default: break;
1965  case ISD::TokenFactor:
1966    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1967           N2.getValueType() == MVT::Other && "Invalid token factor!");
1968    // Fold trivial token factors.
1969    if (N1.getOpcode() == ISD::EntryToken) return N2;
1970    if (N2.getOpcode() == ISD::EntryToken) return N1;
1971    break;
1972  case ISD::AND:
1973    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1974           N1.getValueType() == VT && "Binary operator types must match!");
1975    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
1976    // worth handling here.
1977    if (N2C && N2C->getValue() == 0)
1978      return N2;
1979    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
1980      return N1;
1981    break;
1982  case ISD::OR:
1983  case ISD::XOR:
1984    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1985           N1.getValueType() == VT && "Binary operator types must match!");
1986    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
1987    // worth handling here.
1988    if (N2C && N2C->getValue() == 0)
1989      return N1;
1990    break;
1991  case ISD::UDIV:
1992  case ISD::UREM:
1993  case ISD::MULHU:
1994  case ISD::MULHS:
1995    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1996    // fall through
1997  case ISD::ADD:
1998  case ISD::SUB:
1999  case ISD::MUL:
2000  case ISD::SDIV:
2001  case ISD::SREM:
2002  case ISD::FADD:
2003  case ISD::FSUB:
2004  case ISD::FMUL:
2005  case ISD::FDIV:
2006  case ISD::FREM:
2007    assert(N1.getValueType() == N2.getValueType() &&
2008           N1.getValueType() == VT && "Binary operator types must match!");
2009    break;
2010  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2011    assert(N1.getValueType() == VT &&
2012           MVT::isFloatingPoint(N1.getValueType()) &&
2013           MVT::isFloatingPoint(N2.getValueType()) &&
2014           "Invalid FCOPYSIGN!");
2015    break;
2016  case ISD::SHL:
2017  case ISD::SRA:
2018  case ISD::SRL:
2019  case ISD::ROTL:
2020  case ISD::ROTR:
2021    assert(VT == N1.getValueType() &&
2022           "Shift operators return type must be the same as their first arg");
2023    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
2024           VT != MVT::i1 && "Shifts only work on integers");
2025    break;
2026  case ISD::FP_ROUND_INREG: {
2027    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2028    assert(VT == N1.getValueType() && "Not an inreg round!");
2029    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
2030           "Cannot FP_ROUND_INREG integer types");
2031    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2032           "Not rounding down!");
2033    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2034    break;
2035  }
2036  case ISD::FP_ROUND:
2037    assert(MVT::isFloatingPoint(VT) &&
2038           MVT::isFloatingPoint(N1.getValueType()) &&
2039           MVT::getSizeInBits(VT) <= MVT::getSizeInBits(N1.getValueType()) &&
2040           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2041    if (N1.getValueType() == VT) return N1;  // noop conversion.
2042    break;
2043  case ISD::AssertSext:
2044  case ISD::AssertZext: {
2045    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2046    assert(VT == N1.getValueType() && "Not an inreg extend!");
2047    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2048           "Cannot *_EXTEND_INREG FP types");
2049    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2050           "Not extending!");
2051    if (VT == EVT) return N1; // noop assertion.
2052    break;
2053  }
2054  case ISD::SIGN_EXTEND_INREG: {
2055    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2056    assert(VT == N1.getValueType() && "Not an inreg extend!");
2057    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2058           "Cannot *_EXTEND_INREG FP types");
2059    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2060           "Not extending!");
2061    if (EVT == VT) return N1;  // Not actually extending
2062
2063    if (N1C) {
2064      int64_t Val = N1C->getValue();
2065      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
2066      Val <<= 64-FromBits;
2067      Val >>= 64-FromBits;
2068      return getConstant(Val, VT);
2069    }
2070    break;
2071  }
2072  case ISD::EXTRACT_VECTOR_ELT:
2073    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2074
2075    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2076    // expanding copies of large vectors from registers.
2077    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2078        N1.getNumOperands() > 0) {
2079      unsigned Factor =
2080        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2081      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2082                     N1.getOperand(N2C->getValue() / Factor),
2083                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2084    }
2085
2086    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2087    // expanding large vector constants.
2088    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2089      return N1.getOperand(N2C->getValue());
2090
2091    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2092    // operations are lowered to scalars.
2093    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2094      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2095        if (IEC == N2C)
2096          return N1.getOperand(1);
2097        else
2098          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2099      }
2100    break;
2101  case ISD::EXTRACT_ELEMENT:
2102    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2103
2104    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2105    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2106    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2107    if (N1.getOpcode() == ISD::BUILD_PAIR)
2108      return N1.getOperand(N2C->getValue());
2109
2110    // EXTRACT_ELEMENT of a constant int is also very common.
2111    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2112      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2113      return getConstant(C->getValue() >> Shift, VT);
2114    }
2115    break;
2116  }
2117
2118  if (N1C) {
2119    if (N2C) {
2120      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
2121      switch (Opcode) {
2122      case ISD::ADD: return getConstant(C1 + C2, VT);
2123      case ISD::SUB: return getConstant(C1 - C2, VT);
2124      case ISD::MUL: return getConstant(C1 * C2, VT);
2125      case ISD::UDIV:
2126        if (C2) return getConstant(C1 / C2, VT);
2127        break;
2128      case ISD::UREM :
2129        if (C2) return getConstant(C1 % C2, VT);
2130        break;
2131      case ISD::SDIV :
2132        if (C2) return getConstant(N1C->getSignExtended() /
2133                                   N2C->getSignExtended(), VT);
2134        break;
2135      case ISD::SREM :
2136        if (C2) return getConstant(N1C->getSignExtended() %
2137                                   N2C->getSignExtended(), VT);
2138        break;
2139      case ISD::AND  : return getConstant(C1 & C2, VT);
2140      case ISD::OR   : return getConstant(C1 | C2, VT);
2141      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2142      case ISD::SHL  : return getConstant(C1 << C2, VT);
2143      case ISD::SRL  : return getConstant(C1 >> C2, VT);
2144      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
2145      case ISD::ROTL :
2146        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
2147                           VT);
2148      case ISD::ROTR :
2149        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
2150                           VT);
2151      default: break;
2152      }
2153    } else {      // Cannonicalize constant to RHS if commutative
2154      if (isCommutativeBinOp(Opcode)) {
2155        std::swap(N1C, N2C);
2156        std::swap(N1, N2);
2157      }
2158    }
2159  }
2160
2161  // Constant fold FP operations.
2162  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2163  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2164  if (N1CFP) {
2165    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2166      // Cannonicalize constant to RHS if commutative
2167      std::swap(N1CFP, N2CFP);
2168      std::swap(N1, N2);
2169    } else if (N2CFP && VT != MVT::ppcf128) {
2170      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2171      APFloat::opStatus s;
2172      switch (Opcode) {
2173      case ISD::FADD:
2174        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2175        if (s != APFloat::opInvalidOp)
2176          return getConstantFP(V1, VT);
2177        break;
2178      case ISD::FSUB:
2179        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2180        if (s!=APFloat::opInvalidOp)
2181          return getConstantFP(V1, VT);
2182        break;
2183      case ISD::FMUL:
2184        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2185        if (s!=APFloat::opInvalidOp)
2186          return getConstantFP(V1, VT);
2187        break;
2188      case ISD::FDIV:
2189        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2190        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2191          return getConstantFP(V1, VT);
2192        break;
2193      case ISD::FREM :
2194        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2195        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2196          return getConstantFP(V1, VT);
2197        break;
2198      case ISD::FCOPYSIGN:
2199        V1.copySign(V2);
2200        return getConstantFP(V1, VT);
2201      default: break;
2202      }
2203    }
2204  }
2205
2206  // Canonicalize an UNDEF to the RHS, even over a constant.
2207  if (N1.getOpcode() == ISD::UNDEF) {
2208    if (isCommutativeBinOp(Opcode)) {
2209      std::swap(N1, N2);
2210    } else {
2211      switch (Opcode) {
2212      case ISD::FP_ROUND_INREG:
2213      case ISD::SIGN_EXTEND_INREG:
2214      case ISD::SUB:
2215      case ISD::FSUB:
2216      case ISD::FDIV:
2217      case ISD::FREM:
2218      case ISD::SRA:
2219        return N1;     // fold op(undef, arg2) -> undef
2220      case ISD::UDIV:
2221      case ISD::SDIV:
2222      case ISD::UREM:
2223      case ISD::SREM:
2224      case ISD::SRL:
2225      case ISD::SHL:
2226        if (!MVT::isVector(VT))
2227          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2228        // For vectors, we can't easily build an all zero vector, just return
2229        // the LHS.
2230        return N2;
2231      }
2232    }
2233  }
2234
2235  // Fold a bunch of operators when the RHS is undef.
2236  if (N2.getOpcode() == ISD::UNDEF) {
2237    switch (Opcode) {
2238    case ISD::ADD:
2239    case ISD::ADDC:
2240    case ISD::ADDE:
2241    case ISD::SUB:
2242    case ISD::FADD:
2243    case ISD::FSUB:
2244    case ISD::FMUL:
2245    case ISD::FDIV:
2246    case ISD::FREM:
2247    case ISD::UDIV:
2248    case ISD::SDIV:
2249    case ISD::UREM:
2250    case ISD::SREM:
2251    case ISD::XOR:
2252      return N2;       // fold op(arg1, undef) -> undef
2253    case ISD::MUL:
2254    case ISD::AND:
2255    case ISD::SRL:
2256    case ISD::SHL:
2257      if (!MVT::isVector(VT))
2258        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2259      // For vectors, we can't easily build an all zero vector, just return
2260      // the LHS.
2261      return N1;
2262    case ISD::OR:
2263      if (!MVT::isVector(VT))
2264        return getConstant(MVT::getIntVTBitMask(VT), VT);
2265      // For vectors, we can't easily build an all one vector, just return
2266      // the LHS.
2267      return N1;
2268    case ISD::SRA:
2269      return N1;
2270    }
2271  }
2272
2273  // Memoize this node if possible.
2274  SDNode *N;
2275  SDVTList VTs = getVTList(VT);
2276  if (VT != MVT::Flag) {
2277    SDOperand Ops[] = { N1, N2 };
2278    FoldingSetNodeID ID;
2279    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2280    void *IP = 0;
2281    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2282      return SDOperand(E, 0);
2283    N = new BinarySDNode(Opcode, VTs, N1, N2);
2284    CSEMap.InsertNode(N, IP);
2285  } else {
2286    N = new BinarySDNode(Opcode, VTs, N1, N2);
2287  }
2288
2289  AllNodes.push_back(N);
2290  return SDOperand(N, 0);
2291}
2292
2293SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2294                                SDOperand N1, SDOperand N2, SDOperand N3) {
2295  // Perform various simplifications.
2296  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2297  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2298  switch (Opcode) {
2299  case ISD::SETCC: {
2300    // Use FoldSetCC to simplify SETCC's.
2301    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2302    if (Simp.Val) return Simp;
2303    break;
2304  }
2305  case ISD::SELECT:
2306    if (N1C)
2307      if (N1C->getValue())
2308        return N2;             // select true, X, Y -> X
2309      else
2310        return N3;             // select false, X, Y -> Y
2311
2312    if (N2 == N3) return N2;   // select C, X, X -> X
2313    break;
2314  case ISD::BRCOND:
2315    if (N2C)
2316      if (N2C->getValue()) // Unconditional branch
2317        return getNode(ISD::BR, MVT::Other, N1, N3);
2318      else
2319        return N1;         // Never-taken branch
2320    break;
2321  case ISD::VECTOR_SHUFFLE:
2322    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2323           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2324           N3.getOpcode() == ISD::BUILD_VECTOR &&
2325           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2326           "Illegal VECTOR_SHUFFLE node!");
2327    break;
2328  case ISD::BIT_CONVERT:
2329    // Fold bit_convert nodes from a type to themselves.
2330    if (N1.getValueType() == VT)
2331      return N1;
2332    break;
2333  }
2334
2335  // Memoize node if it doesn't produce a flag.
2336  SDNode *N;
2337  SDVTList VTs = getVTList(VT);
2338  if (VT != MVT::Flag) {
2339    SDOperand Ops[] = { N1, N2, N3 };
2340    FoldingSetNodeID ID;
2341    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2342    void *IP = 0;
2343    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2344      return SDOperand(E, 0);
2345    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2346    CSEMap.InsertNode(N, IP);
2347  } else {
2348    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2349  }
2350  AllNodes.push_back(N);
2351  return SDOperand(N, 0);
2352}
2353
2354SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2355                                SDOperand N1, SDOperand N2, SDOperand N3,
2356                                SDOperand N4) {
2357  SDOperand Ops[] = { N1, N2, N3, N4 };
2358  return getNode(Opcode, VT, Ops, 4);
2359}
2360
2361SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2362                                SDOperand N1, SDOperand N2, SDOperand N3,
2363                                SDOperand N4, SDOperand N5) {
2364  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2365  return getNode(Opcode, VT, Ops, 5);
2366}
2367
2368SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dest,
2369                                  SDOperand Src, SDOperand Size,
2370                                  SDOperand Align,
2371                                  SDOperand AlwaysInline) {
2372  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2373  return getNode(ISD::MEMCPY, MVT::Other, Ops, 6);
2374}
2375
2376SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dest,
2377                                  SDOperand Src, SDOperand Size,
2378                                  SDOperand Align,
2379                                  SDOperand AlwaysInline) {
2380  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2381  return getNode(ISD::MEMMOVE, MVT::Other, Ops, 6);
2382}
2383
2384SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dest,
2385                                  SDOperand Src, SDOperand Size,
2386                                  SDOperand Align,
2387                                  SDOperand AlwaysInline) {
2388  SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2389  return getNode(ISD::MEMSET, MVT::Other, Ops, 6);
2390}
2391
2392SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2393                                SDOperand Chain, SDOperand Ptr,
2394                                const Value *SV, int SVOffset,
2395                                bool isVolatile, unsigned Alignment) {
2396  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2397    const Type *Ty = 0;
2398    if (VT != MVT::iPTR) {
2399      Ty = MVT::getTypeForValueType(VT);
2400    } else if (SV) {
2401      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2402      assert(PT && "Value for load must be a pointer");
2403      Ty = PT->getElementType();
2404    }
2405    assert(Ty && "Could not get type information for load");
2406    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2407  }
2408  SDVTList VTs = getVTList(VT, MVT::Other);
2409  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2410  SDOperand Ops[] = { Chain, Ptr, Undef };
2411  FoldingSetNodeID ID;
2412  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2413  ID.AddInteger(ISD::UNINDEXED);
2414  ID.AddInteger(ISD::NON_EXTLOAD);
2415  ID.AddInteger((unsigned int)VT);
2416  ID.AddInteger(Alignment);
2417  ID.AddInteger(isVolatile);
2418  void *IP = 0;
2419  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2420    return SDOperand(E, 0);
2421  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2422                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2423                             isVolatile);
2424  CSEMap.InsertNode(N, IP);
2425  AllNodes.push_back(N);
2426  return SDOperand(N, 0);
2427}
2428
2429SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2430                                   SDOperand Chain, SDOperand Ptr,
2431                                   const Value *SV,
2432                                   int SVOffset, MVT::ValueType EVT,
2433                                   bool isVolatile, unsigned Alignment) {
2434  // If they are asking for an extending load from/to the same thing, return a
2435  // normal load.
2436  if (VT == EVT)
2437    return getLoad(VT, Chain, Ptr, SV, SVOffset, isVolatile, Alignment);
2438
2439  if (MVT::isVector(VT))
2440    assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2441  else
2442    assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
2443           "Should only be an extending load, not truncating!");
2444  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2445         "Cannot sign/zero extend a FP/Vector load!");
2446  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2447         "Cannot convert from FP to Int or Int -> FP!");
2448
2449  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2450    const Type *Ty = 0;
2451    if (VT != MVT::iPTR) {
2452      Ty = MVT::getTypeForValueType(VT);
2453    } else if (SV) {
2454      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2455      assert(PT && "Value for load must be a pointer");
2456      Ty = PT->getElementType();
2457    }
2458    assert(Ty && "Could not get type information for load");
2459    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2460  }
2461  SDVTList VTs = getVTList(VT, MVT::Other);
2462  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2463  SDOperand Ops[] = { Chain, Ptr, Undef };
2464  FoldingSetNodeID ID;
2465  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2466  ID.AddInteger(ISD::UNINDEXED);
2467  ID.AddInteger(ExtType);
2468  ID.AddInteger((unsigned int)EVT);
2469  ID.AddInteger(Alignment);
2470  ID.AddInteger(isVolatile);
2471  void *IP = 0;
2472  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2473    return SDOperand(E, 0);
2474  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2475                             SV, SVOffset, Alignment, isVolatile);
2476  CSEMap.InsertNode(N, IP);
2477  AllNodes.push_back(N);
2478  return SDOperand(N, 0);
2479}
2480
2481SDOperand
2482SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2483                             SDOperand Offset, ISD::MemIndexedMode AM) {
2484  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2485  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2486         "Load is already a indexed load!");
2487  MVT::ValueType VT = OrigLoad.getValueType();
2488  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2489  SDOperand Ops[] = { LD->getChain(), Base, Offset };
2490  FoldingSetNodeID ID;
2491  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2492  ID.AddInteger(AM);
2493  ID.AddInteger(LD->getExtensionType());
2494  ID.AddInteger((unsigned int)(LD->getMemoryVT()));
2495  ID.AddInteger(LD->getAlignment());
2496  ID.AddInteger(LD->isVolatile());
2497  void *IP = 0;
2498  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2499    return SDOperand(E, 0);
2500  SDNode *N = new LoadSDNode(Ops, VTs, AM,
2501                             LD->getExtensionType(), LD->getMemoryVT(),
2502                             LD->getSrcValue(), LD->getSrcValueOffset(),
2503                             LD->getAlignment(), LD->isVolatile());
2504  CSEMap.InsertNode(N, IP);
2505  AllNodes.push_back(N);
2506  return SDOperand(N, 0);
2507}
2508
2509SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2510                                 SDOperand Ptr, const Value *SV, int SVOffset,
2511                                 bool isVolatile, unsigned Alignment) {
2512  MVT::ValueType VT = Val.getValueType();
2513
2514  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2515    const Type *Ty = 0;
2516    if (VT != MVT::iPTR) {
2517      Ty = MVT::getTypeForValueType(VT);
2518    } else if (SV) {
2519      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2520      assert(PT && "Value for store must be a pointer");
2521      Ty = PT->getElementType();
2522    }
2523    assert(Ty && "Could not get type information for store");
2524    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2525  }
2526  SDVTList VTs = getVTList(MVT::Other);
2527  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2528  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2529  FoldingSetNodeID ID;
2530  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2531  ID.AddInteger(ISD::UNINDEXED);
2532  ID.AddInteger(false);
2533  ID.AddInteger((unsigned int)VT);
2534  ID.AddInteger(Alignment);
2535  ID.AddInteger(isVolatile);
2536  void *IP = 0;
2537  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2538    return SDOperand(E, 0);
2539  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2540                              VT, SV, SVOffset, Alignment, isVolatile);
2541  CSEMap.InsertNode(N, IP);
2542  AllNodes.push_back(N);
2543  return SDOperand(N, 0);
2544}
2545
2546SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2547                                      SDOperand Ptr, const Value *SV,
2548                                      int SVOffset, MVT::ValueType SVT,
2549                                      bool isVolatile, unsigned Alignment) {
2550  MVT::ValueType VT = Val.getValueType();
2551
2552  if (VT == SVT)
2553    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
2554
2555  assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
2556         "Not a truncation?");
2557  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2558         "Can't do FP-INT conversion!");
2559
2560  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2561    const Type *Ty = 0;
2562    if (VT != MVT::iPTR) {
2563      Ty = MVT::getTypeForValueType(VT);
2564    } else if (SV) {
2565      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2566      assert(PT && "Value for store must be a pointer");
2567      Ty = PT->getElementType();
2568    }
2569    assert(Ty && "Could not get type information for store");
2570    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2571  }
2572  SDVTList VTs = getVTList(MVT::Other);
2573  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2574  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2575  FoldingSetNodeID ID;
2576  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2577  ID.AddInteger(ISD::UNINDEXED);
2578  ID.AddInteger(1);
2579  ID.AddInteger((unsigned int)SVT);
2580  ID.AddInteger(Alignment);
2581  ID.AddInteger(isVolatile);
2582  void *IP = 0;
2583  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2584    return SDOperand(E, 0);
2585  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
2586                              SVT, SV, SVOffset, Alignment, isVolatile);
2587  CSEMap.InsertNode(N, IP);
2588  AllNodes.push_back(N);
2589  return SDOperand(N, 0);
2590}
2591
2592SDOperand
2593SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2594                              SDOperand Offset, ISD::MemIndexedMode AM) {
2595  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2596  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2597         "Store is already a indexed store!");
2598  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2599  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2600  FoldingSetNodeID ID;
2601  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2602  ID.AddInteger(AM);
2603  ID.AddInteger(ST->isTruncatingStore());
2604  ID.AddInteger((unsigned int)(ST->getMemoryVT()));
2605  ID.AddInteger(ST->getAlignment());
2606  ID.AddInteger(ST->isVolatile());
2607  void *IP = 0;
2608  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2609    return SDOperand(E, 0);
2610  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2611                              ST->isTruncatingStore(), ST->getMemoryVT(),
2612                              ST->getSrcValue(), ST->getSrcValueOffset(),
2613                              ST->getAlignment(), ST->isVolatile());
2614  CSEMap.InsertNode(N, IP);
2615  AllNodes.push_back(N);
2616  return SDOperand(N, 0);
2617}
2618
2619SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2620                                 SDOperand Chain, SDOperand Ptr,
2621                                 SDOperand SV) {
2622  SDOperand Ops[] = { Chain, Ptr, SV };
2623  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2624}
2625
2626SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2627                                const SDOperand *Ops, unsigned NumOps) {
2628  switch (NumOps) {
2629  case 0: return getNode(Opcode, VT);
2630  case 1: return getNode(Opcode, VT, Ops[0]);
2631  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2632  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2633  default: break;
2634  }
2635
2636  switch (Opcode) {
2637  default: break;
2638  case ISD::SELECT_CC: {
2639    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2640    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2641           "LHS and RHS of condition must have same type!");
2642    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2643           "True and False arms of SelectCC must have same type!");
2644    assert(Ops[2].getValueType() == VT &&
2645           "select_cc node must be of same type as true and false value!");
2646    break;
2647  }
2648  case ISD::BR_CC: {
2649    assert(NumOps == 5 && "BR_CC takes 5 operands!");
2650    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2651           "LHS/RHS of comparison should match types!");
2652    break;
2653  }
2654  }
2655
2656  // Memoize nodes.
2657  SDNode *N;
2658  SDVTList VTs = getVTList(VT);
2659  if (VT != MVT::Flag) {
2660    FoldingSetNodeID ID;
2661    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2662    void *IP = 0;
2663    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2664      return SDOperand(E, 0);
2665    N = new SDNode(Opcode, VTs, Ops, NumOps);
2666    CSEMap.InsertNode(N, IP);
2667  } else {
2668    N = new SDNode(Opcode, VTs, Ops, NumOps);
2669  }
2670  AllNodes.push_back(N);
2671  return SDOperand(N, 0);
2672}
2673
2674SDOperand SelectionDAG::getNode(unsigned Opcode,
2675                                std::vector<MVT::ValueType> &ResultTys,
2676                                const SDOperand *Ops, unsigned NumOps) {
2677  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2678                 Ops, NumOps);
2679}
2680
2681SDOperand SelectionDAG::getNode(unsigned Opcode,
2682                                const MVT::ValueType *VTs, unsigned NumVTs,
2683                                const SDOperand *Ops, unsigned NumOps) {
2684  if (NumVTs == 1)
2685    return getNode(Opcode, VTs[0], Ops, NumOps);
2686  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2687}
2688
2689SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2690                                const SDOperand *Ops, unsigned NumOps) {
2691  if (VTList.NumVTs == 1)
2692    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2693
2694  switch (Opcode) {
2695  // FIXME: figure out how to safely handle things like
2696  // int foo(int x) { return 1 << (x & 255); }
2697  // int bar() { return foo(256); }
2698#if 0
2699  case ISD::SRA_PARTS:
2700  case ISD::SRL_PARTS:
2701  case ISD::SHL_PARTS:
2702    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2703        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2704      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2705    else if (N3.getOpcode() == ISD::AND)
2706      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2707        // If the and is only masking out bits that cannot effect the shift,
2708        // eliminate the and.
2709        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2710        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2711          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2712      }
2713    break;
2714#endif
2715  }
2716
2717  // Memoize the node unless it returns a flag.
2718  SDNode *N;
2719  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2720    FoldingSetNodeID ID;
2721    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2722    void *IP = 0;
2723    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2724      return SDOperand(E, 0);
2725    if (NumOps == 1)
2726      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2727    else if (NumOps == 2)
2728      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2729    else if (NumOps == 3)
2730      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2731    else
2732      N = new SDNode(Opcode, VTList, Ops, NumOps);
2733    CSEMap.InsertNode(N, IP);
2734  } else {
2735    if (NumOps == 1)
2736      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2737    else if (NumOps == 2)
2738      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2739    else if (NumOps == 3)
2740      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2741    else
2742      N = new SDNode(Opcode, VTList, Ops, NumOps);
2743  }
2744  AllNodes.push_back(N);
2745  return SDOperand(N, 0);
2746}
2747
2748SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
2749  return getNode(Opcode, VTList, 0, 0);
2750}
2751
2752SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2753                                SDOperand N1) {
2754  SDOperand Ops[] = { N1 };
2755  return getNode(Opcode, VTList, Ops, 1);
2756}
2757
2758SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2759                                SDOperand N1, SDOperand N2) {
2760  SDOperand Ops[] = { N1, N2 };
2761  return getNode(Opcode, VTList, Ops, 2);
2762}
2763
2764SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2765                                SDOperand N1, SDOperand N2, SDOperand N3) {
2766  SDOperand Ops[] = { N1, N2, N3 };
2767  return getNode(Opcode, VTList, Ops, 3);
2768}
2769
2770SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2771                                SDOperand N1, SDOperand N2, SDOperand N3,
2772                                SDOperand N4) {
2773  SDOperand Ops[] = { N1, N2, N3, N4 };
2774  return getNode(Opcode, VTList, Ops, 4);
2775}
2776
2777SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2778                                SDOperand N1, SDOperand N2, SDOperand N3,
2779                                SDOperand N4, SDOperand N5) {
2780  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2781  return getNode(Opcode, VTList, Ops, 5);
2782}
2783
2784SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2785  return makeVTList(SDNode::getValueTypeList(VT), 1);
2786}
2787
2788SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2789  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2790       E = VTList.end(); I != E; ++I) {
2791    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2792      return makeVTList(&(*I)[0], 2);
2793  }
2794  std::vector<MVT::ValueType> V;
2795  V.push_back(VT1);
2796  V.push_back(VT2);
2797  VTList.push_front(V);
2798  return makeVTList(&(*VTList.begin())[0], 2);
2799}
2800SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2801                                 MVT::ValueType VT3) {
2802  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2803       E = VTList.end(); I != E; ++I) {
2804    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2805        (*I)[2] == VT3)
2806      return makeVTList(&(*I)[0], 3);
2807  }
2808  std::vector<MVT::ValueType> V;
2809  V.push_back(VT1);
2810  V.push_back(VT2);
2811  V.push_back(VT3);
2812  VTList.push_front(V);
2813  return makeVTList(&(*VTList.begin())[0], 3);
2814}
2815
2816SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2817  switch (NumVTs) {
2818    case 0: assert(0 && "Cannot have nodes without results!");
2819    case 1: return getVTList(VTs[0]);
2820    case 2: return getVTList(VTs[0], VTs[1]);
2821    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2822    default: break;
2823  }
2824
2825  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2826       E = VTList.end(); I != E; ++I) {
2827    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2828
2829    bool NoMatch = false;
2830    for (unsigned i = 2; i != NumVTs; ++i)
2831      if (VTs[i] != (*I)[i]) {
2832        NoMatch = true;
2833        break;
2834      }
2835    if (!NoMatch)
2836      return makeVTList(&*I->begin(), NumVTs);
2837  }
2838
2839  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2840  return makeVTList(&*VTList.begin()->begin(), NumVTs);
2841}
2842
2843
2844/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2845/// specified operands.  If the resultant node already exists in the DAG,
2846/// this does not modify the specified node, instead it returns the node that
2847/// already exists.  If the resultant node does not exist in the DAG, the
2848/// input node is returned.  As a degenerate case, if you specify the same
2849/// input operands as the node already has, the input node is returned.
2850SDOperand SelectionDAG::
2851UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2852  SDNode *N = InN.Val;
2853  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2854
2855  // Check to see if there is no change.
2856  if (Op == N->getOperand(0)) return InN;
2857
2858  // See if the modified node already exists.
2859  void *InsertPos = 0;
2860  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2861    return SDOperand(Existing, InN.ResNo);
2862
2863  // Nope it doesn't.  Remove the node from it's current place in the maps.
2864  if (InsertPos)
2865    RemoveNodeFromCSEMaps(N);
2866
2867  // Now we update the operands.
2868  N->OperandList[0].Val->removeUser(N);
2869  Op.Val->addUser(N);
2870  N->OperandList[0] = Op;
2871
2872  // If this gets put into a CSE map, add it.
2873  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2874  return InN;
2875}
2876
2877SDOperand SelectionDAG::
2878UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2879  SDNode *N = InN.Val;
2880  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2881
2882  // Check to see if there is no change.
2883  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2884    return InN;   // No operands changed, just return the input node.
2885
2886  // See if the modified node already exists.
2887  void *InsertPos = 0;
2888  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2889    return SDOperand(Existing, InN.ResNo);
2890
2891  // Nope it doesn't.  Remove the node from it's current place in the maps.
2892  if (InsertPos)
2893    RemoveNodeFromCSEMaps(N);
2894
2895  // Now we update the operands.
2896  if (N->OperandList[0] != Op1) {
2897    N->OperandList[0].Val->removeUser(N);
2898    Op1.Val->addUser(N);
2899    N->OperandList[0] = Op1;
2900  }
2901  if (N->OperandList[1] != Op2) {
2902    N->OperandList[1].Val->removeUser(N);
2903    Op2.Val->addUser(N);
2904    N->OperandList[1] = Op2;
2905  }
2906
2907  // If this gets put into a CSE map, add it.
2908  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2909  return InN;
2910}
2911
2912SDOperand SelectionDAG::
2913UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2914  SDOperand Ops[] = { Op1, Op2, Op3 };
2915  return UpdateNodeOperands(N, Ops, 3);
2916}
2917
2918SDOperand SelectionDAG::
2919UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2920                   SDOperand Op3, SDOperand Op4) {
2921  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2922  return UpdateNodeOperands(N, Ops, 4);
2923}
2924
2925SDOperand SelectionDAG::
2926UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2927                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2928  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2929  return UpdateNodeOperands(N, Ops, 5);
2930}
2931
2932
2933SDOperand SelectionDAG::
2934UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2935  SDNode *N = InN.Val;
2936  assert(N->getNumOperands() == NumOps &&
2937         "Update with wrong number of operands");
2938
2939  // Check to see if there is no change.
2940  bool AnyChange = false;
2941  for (unsigned i = 0; i != NumOps; ++i) {
2942    if (Ops[i] != N->getOperand(i)) {
2943      AnyChange = true;
2944      break;
2945    }
2946  }
2947
2948  // No operands changed, just return the input node.
2949  if (!AnyChange) return InN;
2950
2951  // See if the modified node already exists.
2952  void *InsertPos = 0;
2953  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2954    return SDOperand(Existing, InN.ResNo);
2955
2956  // Nope it doesn't.  Remove the node from it's current place in the maps.
2957  if (InsertPos)
2958    RemoveNodeFromCSEMaps(N);
2959
2960  // Now we update the operands.
2961  for (unsigned i = 0; i != NumOps; ++i) {
2962    if (N->OperandList[i] != Ops[i]) {
2963      N->OperandList[i].Val->removeUser(N);
2964      Ops[i].Val->addUser(N);
2965      N->OperandList[i] = Ops[i];
2966    }
2967  }
2968
2969  // If this gets put into a CSE map, add it.
2970  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2971  return InN;
2972}
2973
2974
2975/// MorphNodeTo - This frees the operands of the current node, resets the
2976/// opcode, types, and operands to the specified value.  This should only be
2977/// used by the SelectionDAG class.
2978void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2979                         const SDOperand *Ops, unsigned NumOps) {
2980  NodeType = Opc;
2981  ValueList = L.VTs;
2982  NumValues = L.NumVTs;
2983
2984  // Clear the operands list, updating used nodes to remove this from their
2985  // use list.
2986  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2987    I->Val->removeUser(this);
2988
2989  // If NumOps is larger than the # of operands we currently have, reallocate
2990  // the operand list.
2991  if (NumOps > NumOperands) {
2992    if (OperandsNeedDelete)
2993      delete [] OperandList;
2994    OperandList = new SDOperand[NumOps];
2995    OperandsNeedDelete = true;
2996  }
2997
2998  // Assign the new operands.
2999  NumOperands = NumOps;
3000
3001  for (unsigned i = 0, e = NumOps; i != e; ++i) {
3002    OperandList[i] = Ops[i];
3003    SDNode *N = OperandList[i].Val;
3004    N->Uses.push_back(this);
3005  }
3006}
3007
3008/// SelectNodeTo - These are used for target selectors to *mutate* the
3009/// specified node to have the specified return type, Target opcode, and
3010/// operands.  Note that target opcodes are stored as
3011/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
3012///
3013/// Note that SelectNodeTo returns the resultant node.  If there is already a
3014/// node of the specified opcode and operands, it returns that node instead of
3015/// the current one.
3016SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3017                                   MVT::ValueType VT) {
3018  SDVTList VTs = getVTList(VT);
3019  FoldingSetNodeID ID;
3020  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
3021  void *IP = 0;
3022  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3023    return ON;
3024
3025  RemoveNodeFromCSEMaps(N);
3026
3027  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
3028
3029  CSEMap.InsertNode(N, IP);
3030  return N;
3031}
3032
3033SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3034                                   MVT::ValueType VT, SDOperand Op1) {
3035  // If an identical node already exists, use it.
3036  SDVTList VTs = getVTList(VT);
3037  SDOperand Ops[] = { Op1 };
3038
3039  FoldingSetNodeID ID;
3040  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3041  void *IP = 0;
3042  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3043    return ON;
3044
3045  RemoveNodeFromCSEMaps(N);
3046  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3047  CSEMap.InsertNode(N, IP);
3048  return N;
3049}
3050
3051SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3052                                   MVT::ValueType VT, SDOperand Op1,
3053                                   SDOperand Op2) {
3054  // If an identical node already exists, use it.
3055  SDVTList VTs = getVTList(VT);
3056  SDOperand Ops[] = { Op1, Op2 };
3057
3058  FoldingSetNodeID ID;
3059  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3060  void *IP = 0;
3061  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3062    return ON;
3063
3064  RemoveNodeFromCSEMaps(N);
3065
3066  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3067
3068  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3069  return N;
3070}
3071
3072SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3073                                   MVT::ValueType VT, SDOperand Op1,
3074                                   SDOperand Op2, SDOperand Op3) {
3075  // If an identical node already exists, use it.
3076  SDVTList VTs = getVTList(VT);
3077  SDOperand Ops[] = { Op1, Op2, Op3 };
3078  FoldingSetNodeID ID;
3079  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3080  void *IP = 0;
3081  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3082    return ON;
3083
3084  RemoveNodeFromCSEMaps(N);
3085
3086  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3087
3088  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3089  return N;
3090}
3091
3092SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3093                                   MVT::ValueType VT, const SDOperand *Ops,
3094                                   unsigned NumOps) {
3095  // If an identical node already exists, use it.
3096  SDVTList VTs = getVTList(VT);
3097  FoldingSetNodeID ID;
3098  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3099  void *IP = 0;
3100  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3101    return ON;
3102
3103  RemoveNodeFromCSEMaps(N);
3104  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3105
3106  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3107  return N;
3108}
3109
3110SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3111                                   MVT::ValueType VT1, MVT::ValueType VT2,
3112                                   SDOperand Op1, SDOperand Op2) {
3113  SDVTList VTs = getVTList(VT1, VT2);
3114  FoldingSetNodeID ID;
3115  SDOperand Ops[] = { Op1, Op2 };
3116  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3117  void *IP = 0;
3118  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3119    return ON;
3120
3121  RemoveNodeFromCSEMaps(N);
3122  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3123  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3124  return N;
3125}
3126
3127SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3128                                   MVT::ValueType VT1, MVT::ValueType VT2,
3129                                   SDOperand Op1, SDOperand Op2,
3130                                   SDOperand Op3) {
3131  // If an identical node already exists, use it.
3132  SDVTList VTs = getVTList(VT1, VT2);
3133  SDOperand Ops[] = { Op1, Op2, Op3 };
3134  FoldingSetNodeID ID;
3135  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3136  void *IP = 0;
3137  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3138    return ON;
3139
3140  RemoveNodeFromCSEMaps(N);
3141
3142  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3143  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3144  return N;
3145}
3146
3147
3148/// getTargetNode - These are used for target selectors to create a new node
3149/// with specified return type(s), target opcode, and operands.
3150///
3151/// Note that getTargetNode returns the resultant node.  If there is already a
3152/// node of the specified opcode and operands, it returns that node instead of
3153/// the current one.
3154SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3155  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3156}
3157SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3158                                    SDOperand Op1) {
3159  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3160}
3161SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3162                                    SDOperand Op1, SDOperand Op2) {
3163  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3164}
3165SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3166                                    SDOperand Op1, SDOperand Op2,
3167                                    SDOperand Op3) {
3168  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3169}
3170SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3171                                    const SDOperand *Ops, unsigned NumOps) {
3172  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3173}
3174SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3175                                    MVT::ValueType VT2) {
3176  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3177  SDOperand Op;
3178  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3179}
3180SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3181                                    MVT::ValueType VT2, SDOperand Op1) {
3182  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3183  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3184}
3185SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3186                                    MVT::ValueType VT2, SDOperand Op1,
3187                                    SDOperand Op2) {
3188  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3189  SDOperand Ops[] = { Op1, Op2 };
3190  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3191}
3192SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3193                                    MVT::ValueType VT2, SDOperand Op1,
3194                                    SDOperand Op2, SDOperand Op3) {
3195  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3196  SDOperand Ops[] = { Op1, Op2, Op3 };
3197  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3198}
3199SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3200                                    MVT::ValueType VT2,
3201                                    const SDOperand *Ops, unsigned NumOps) {
3202  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3203  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3204}
3205SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3206                                    MVT::ValueType VT2, MVT::ValueType VT3,
3207                                    SDOperand Op1, SDOperand Op2) {
3208  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3209  SDOperand Ops[] = { Op1, Op2 };
3210  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3211}
3212SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3213                                    MVT::ValueType VT2, MVT::ValueType VT3,
3214                                    SDOperand Op1, SDOperand Op2,
3215                                    SDOperand Op3) {
3216  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3217  SDOperand Ops[] = { Op1, Op2, Op3 };
3218  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3219}
3220SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3221                                    MVT::ValueType VT2, MVT::ValueType VT3,
3222                                    const SDOperand *Ops, unsigned NumOps) {
3223  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3224  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3225}
3226SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3227                                    MVT::ValueType VT2, MVT::ValueType VT3,
3228                                    MVT::ValueType VT4,
3229                                    const SDOperand *Ops, unsigned NumOps) {
3230  std::vector<MVT::ValueType> VTList;
3231  VTList.push_back(VT1);
3232  VTList.push_back(VT2);
3233  VTList.push_back(VT3);
3234  VTList.push_back(VT4);
3235  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3236  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3237}
3238SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3239                                    std::vector<MVT::ValueType> &ResultTys,
3240                                    const SDOperand *Ops, unsigned NumOps) {
3241  const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3242  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3243                 Ops, NumOps).Val;
3244}
3245
3246
3247/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3248/// This can cause recursive merging of nodes in the DAG.
3249///
3250/// This version assumes From has a single result value.
3251///
3252void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand To,
3253                                      DAGUpdateListener *UpdateListener) {
3254  SDNode *From = FromN.Val;
3255  assert(From->getNumValues() == 1 && FromN.ResNo == 0 &&
3256         "Cannot replace with this method!");
3257  assert(From != To.Val && "Cannot replace uses of with self");
3258
3259  while (!From->use_empty()) {
3260    // Process users until they are all gone.
3261    SDNode *U = *From->use_begin();
3262
3263    // This node is about to morph, remove its old self from the CSE maps.
3264    RemoveNodeFromCSEMaps(U);
3265
3266    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3267         I != E; ++I)
3268      if (I->Val == From) {
3269        From->removeUser(U);
3270        *I = To;
3271        To.Val->addUser(U);
3272      }
3273
3274    // Now that we have modified U, add it back to the CSE maps.  If it already
3275    // exists there, recursively merge the results together.
3276    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3277      ReplaceAllUsesWith(U, Existing, UpdateListener);
3278      // U is now dead.  Inform the listener if it exists and delete it.
3279      if (UpdateListener)
3280        UpdateListener->NodeDeleted(U);
3281      DeleteNodeNotInCSEMaps(U);
3282    } else {
3283      // If the node doesn't already exist, we updated it.  Inform a listener if
3284      // it exists.
3285      if (UpdateListener)
3286        UpdateListener->NodeUpdated(U);
3287    }
3288  }
3289}
3290
3291/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3292/// This can cause recursive merging of nodes in the DAG.
3293///
3294/// This version assumes From/To have matching types and numbers of result
3295/// values.
3296///
3297void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3298                                      DAGUpdateListener *UpdateListener) {
3299  assert(From != To && "Cannot replace uses of with self");
3300  assert(From->getNumValues() == To->getNumValues() &&
3301         "Cannot use this version of ReplaceAllUsesWith!");
3302  if (From->getNumValues() == 1)   // If possible, use the faster version.
3303    return ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0),
3304                              UpdateListener);
3305
3306  while (!From->use_empty()) {
3307    // Process users until they are all gone.
3308    SDNode *U = *From->use_begin();
3309
3310    // This node is about to morph, remove its old self from the CSE maps.
3311    RemoveNodeFromCSEMaps(U);
3312
3313    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3314         I != E; ++I)
3315      if (I->Val == From) {
3316        From->removeUser(U);
3317        I->Val = To;
3318        To->addUser(U);
3319      }
3320
3321    // Now that we have modified U, add it back to the CSE maps.  If it already
3322    // exists there, recursively merge the results together.
3323    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3324      ReplaceAllUsesWith(U, Existing, UpdateListener);
3325      // U is now dead.  Inform the listener if it exists and delete it.
3326      if (UpdateListener)
3327        UpdateListener->NodeDeleted(U);
3328      DeleteNodeNotInCSEMaps(U);
3329    } else {
3330      // If the node doesn't already exist, we updated it.  Inform a listener if
3331      // it exists.
3332      if (UpdateListener)
3333        UpdateListener->NodeUpdated(U);
3334    }
3335  }
3336}
3337
3338/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3339/// This can cause recursive merging of nodes in the DAG.
3340///
3341/// This version can replace From with any result values.  To must match the
3342/// number and types of values returned by From.
3343void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3344                                      const SDOperand *To,
3345                                      DAGUpdateListener *UpdateListener) {
3346  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
3347    return ReplaceAllUsesWith(SDOperand(From, 0), To[0], UpdateListener);
3348
3349  while (!From->use_empty()) {
3350    // Process users until they are all gone.
3351    SDNode *U = *From->use_begin();
3352
3353    // This node is about to morph, remove its old self from the CSE maps.
3354    RemoveNodeFromCSEMaps(U);
3355
3356    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3357         I != E; ++I)
3358      if (I->Val == From) {
3359        const SDOperand &ToOp = To[I->ResNo];
3360        From->removeUser(U);
3361        *I = ToOp;
3362        ToOp.Val->addUser(U);
3363      }
3364
3365    // Now that we have modified U, add it back to the CSE maps.  If it already
3366    // exists there, recursively merge the results together.
3367    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3368      ReplaceAllUsesWith(U, Existing, UpdateListener);
3369      // U is now dead.  Inform the listener if it exists and delete it.
3370      if (UpdateListener)
3371        UpdateListener->NodeDeleted(U);
3372      DeleteNodeNotInCSEMaps(U);
3373    } else {
3374      // If the node doesn't already exist, we updated it.  Inform a listener if
3375      // it exists.
3376      if (UpdateListener)
3377        UpdateListener->NodeUpdated(U);
3378    }
3379  }
3380}
3381
3382namespace {
3383  /// ChainedSetUpdaterListener - This class is a DAGUpdateListener that removes
3384  /// any deleted nodes from the set passed into its constructor and recursively
3385  /// notifies another update listener if specified.
3386  class ChainedSetUpdaterListener :
3387  public SelectionDAG::DAGUpdateListener {
3388    SmallSetVector<SDNode*, 16> &Set;
3389    SelectionDAG::DAGUpdateListener *Chain;
3390  public:
3391    ChainedSetUpdaterListener(SmallSetVector<SDNode*, 16> &set,
3392                              SelectionDAG::DAGUpdateListener *chain)
3393      : Set(set), Chain(chain) {}
3394
3395    virtual void NodeDeleted(SDNode *N) {
3396      Set.remove(N);
3397      if (Chain) Chain->NodeDeleted(N);
3398    }
3399    virtual void NodeUpdated(SDNode *N) {
3400      if (Chain) Chain->NodeUpdated(N);
3401    }
3402  };
3403}
3404
3405/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3406/// uses of other values produced by From.Val alone.  The Deleted vector is
3407/// handled the same way as for ReplaceAllUsesWith.
3408void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3409                                             DAGUpdateListener *UpdateListener){
3410  assert(From != To && "Cannot replace a value with itself");
3411
3412  // Handle the simple, trivial, case efficiently.
3413  if (From.Val->getNumValues() == 1) {
3414    ReplaceAllUsesWith(From, To, UpdateListener);
3415    return;
3416  }
3417
3418  if (From.use_empty()) return;
3419
3420  // Get all of the users of From.Val.  We want these in a nice,
3421  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3422  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3423
3424  // When one of the recursive merges deletes nodes from the graph, we need to
3425  // make sure that UpdateListener is notified *and* that the node is removed
3426  // from Users if present.  CSUL does this.
3427  ChainedSetUpdaterListener CSUL(Users, UpdateListener);
3428
3429  while (!Users.empty()) {
3430    // We know that this user uses some value of From.  If it is the right
3431    // value, update it.
3432    SDNode *User = Users.back();
3433    Users.pop_back();
3434
3435    // Scan for an operand that matches From.
3436    SDOperand *Op = User->OperandList, *E = User->OperandList+User->NumOperands;
3437    for (; Op != E; ++Op)
3438      if (*Op == From) break;
3439
3440    // If there are no matches, the user must use some other result of From.
3441    if (Op == E) continue;
3442
3443    // Okay, we know this user needs to be updated.  Remove its old self
3444    // from the CSE maps.
3445    RemoveNodeFromCSEMaps(User);
3446
3447    // Update all operands that match "From" in case there are multiple uses.
3448    for (; Op != E; ++Op) {
3449      if (*Op == From) {
3450        From.Val->removeUser(User);
3451        *Op = To;
3452        To.Val->addUser(User);
3453      }
3454    }
3455
3456    // Now that we have modified User, add it back to the CSE maps.  If it
3457    // already exists there, recursively merge the results together.
3458    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3459    if (!Existing) {
3460      if (UpdateListener) UpdateListener->NodeUpdated(User);
3461      continue;  // Continue on to next user.
3462    }
3463
3464    // If there was already an existing matching node, use ReplaceAllUsesWith
3465    // to replace the dead one with the existing one.  This can cause
3466    // recursive merging of other unrelated nodes down the line.  The merging
3467    // can cause deletion of nodes that used the old value.  To handle this, we
3468    // use CSUL to remove them from the Users set.
3469    ReplaceAllUsesWith(User, Existing, &CSUL);
3470
3471    // User is now dead.  Notify a listener if present.
3472    if (UpdateListener) UpdateListener->NodeDeleted(User);
3473    DeleteNodeNotInCSEMaps(User);
3474  }
3475}
3476
3477
3478/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3479/// their allnodes order. It returns the maximum id.
3480unsigned SelectionDAG::AssignNodeIds() {
3481  unsigned Id = 0;
3482  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3483    SDNode *N = I;
3484    N->setNodeId(Id++);
3485  }
3486  return Id;
3487}
3488
3489/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3490/// based on their topological order. It returns the maximum id and a vector
3491/// of the SDNodes* in assigned order by reference.
3492unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3493  unsigned DAGSize = AllNodes.size();
3494  std::vector<unsigned> InDegree(DAGSize);
3495  std::vector<SDNode*> Sources;
3496
3497  // Use a two pass approach to avoid using a std::map which is slow.
3498  unsigned Id = 0;
3499  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3500    SDNode *N = I;
3501    N->setNodeId(Id++);
3502    unsigned Degree = N->use_size();
3503    InDegree[N->getNodeId()] = Degree;
3504    if (Degree == 0)
3505      Sources.push_back(N);
3506  }
3507
3508  TopOrder.clear();
3509  while (!Sources.empty()) {
3510    SDNode *N = Sources.back();
3511    Sources.pop_back();
3512    TopOrder.push_back(N);
3513    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3514      SDNode *P = I->Val;
3515      unsigned Degree = --InDegree[P->getNodeId()];
3516      if (Degree == 0)
3517        Sources.push_back(P);
3518    }
3519  }
3520
3521  // Second pass, assign the actual topological order as node ids.
3522  Id = 0;
3523  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3524       TI != TE; ++TI)
3525    (*TI)->setNodeId(Id++);
3526
3527  return Id;
3528}
3529
3530
3531
3532//===----------------------------------------------------------------------===//
3533//                              SDNode Class
3534//===----------------------------------------------------------------------===//
3535
3536// Out-of-line virtual method to give class a home.
3537void SDNode::ANCHOR() {}
3538void UnarySDNode::ANCHOR() {}
3539void BinarySDNode::ANCHOR() {}
3540void TernarySDNode::ANCHOR() {}
3541void HandleSDNode::ANCHOR() {}
3542void StringSDNode::ANCHOR() {}
3543void ConstantSDNode::ANCHOR() {}
3544void ConstantFPSDNode::ANCHOR() {}
3545void GlobalAddressSDNode::ANCHOR() {}
3546void FrameIndexSDNode::ANCHOR() {}
3547void JumpTableSDNode::ANCHOR() {}
3548void ConstantPoolSDNode::ANCHOR() {}
3549void BasicBlockSDNode::ANCHOR() {}
3550void SrcValueSDNode::ANCHOR() {}
3551void MemOperandSDNode::ANCHOR() {}
3552void RegisterSDNode::ANCHOR() {}
3553void ExternalSymbolSDNode::ANCHOR() {}
3554void CondCodeSDNode::ANCHOR() {}
3555void VTSDNode::ANCHOR() {}
3556void LoadSDNode::ANCHOR() {}
3557void StoreSDNode::ANCHOR() {}
3558
3559HandleSDNode::~HandleSDNode() {
3560  SDVTList VTs = { 0, 0 };
3561  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3562}
3563
3564GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3565                                         MVT::ValueType VT, int o)
3566  : SDNode(isa<GlobalVariable>(GA) &&
3567           cast<GlobalVariable>(GA)->isThreadLocal() ?
3568           // Thread Local
3569           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3570           // Non Thread Local
3571           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3572           getSDVTList(VT)), Offset(o) {
3573  TheGlobal = const_cast<GlobalValue*>(GA);
3574}
3575
3576/// getMemOperand - Return a MemOperand object describing the memory
3577/// reference performed by this load or store.
3578MemOperand LSBaseSDNode::getMemOperand() const {
3579  int Size = (MVT::getSizeInBits(getMemoryVT()) + 7) >> 3;
3580  int Flags =
3581    getOpcode() == ISD::LOAD ? MemOperand::MOLoad : MemOperand::MOStore;
3582  if (IsVolatile) Flags |= MemOperand::MOVolatile;
3583
3584  // Check if the load references a frame index, and does not have
3585  // an SV attached.
3586  const FrameIndexSDNode *FI =
3587    dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
3588  if (!getSrcValue() && FI)
3589    return MemOperand(PseudoSourceValue::getFixedStack(), Flags,
3590                      FI->getIndex(), Size, Alignment);
3591  else
3592    return MemOperand(getSrcValue(), Flags,
3593                      getSrcValueOffset(), Size, Alignment);
3594}
3595
3596/// Profile - Gather unique data for the node.
3597///
3598void SDNode::Profile(FoldingSetNodeID &ID) {
3599  AddNodeIDNode(ID, this);
3600}
3601
3602/// getValueTypeList - Return a pointer to the specified value type.
3603///
3604const MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3605  if (MVT::isExtendedVT(VT)) {
3606    static std::set<MVT::ValueType> EVTs;
3607    return &(*EVTs.insert(VT).first);
3608  } else {
3609    static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3610    VTs[VT] = VT;
3611    return &VTs[VT];
3612  }
3613}
3614
3615/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3616/// indicated value.  This method ignores uses of other values defined by this
3617/// operation.
3618bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3619  assert(Value < getNumValues() && "Bad value!");
3620
3621  // If there is only one value, this is easy.
3622  if (getNumValues() == 1)
3623    return use_size() == NUses;
3624  if (use_size() < NUses) return false;
3625
3626  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3627
3628  SmallPtrSet<SDNode*, 32> UsersHandled;
3629
3630  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3631    SDNode *User = *UI;
3632    if (User->getNumOperands() == 1 ||
3633        UsersHandled.insert(User))     // First time we've seen this?
3634      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3635        if (User->getOperand(i) == TheValue) {
3636          if (NUses == 0)
3637            return false;   // too many uses
3638          --NUses;
3639        }
3640  }
3641
3642  // Found exactly the right number of uses?
3643  return NUses == 0;
3644}
3645
3646
3647/// hasAnyUseOfValue - Return true if there are any use of the indicated
3648/// value. This method ignores uses of other values defined by this operation.
3649bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3650  assert(Value < getNumValues() && "Bad value!");
3651
3652  if (use_empty()) return false;
3653
3654  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3655
3656  SmallPtrSet<SDNode*, 32> UsersHandled;
3657
3658  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3659    SDNode *User = *UI;
3660    if (User->getNumOperands() == 1 ||
3661        UsersHandled.insert(User))     // First time we've seen this?
3662      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3663        if (User->getOperand(i) == TheValue) {
3664          return true;
3665        }
3666  }
3667
3668  return false;
3669}
3670
3671
3672/// isOnlyUse - Return true if this node is the only use of N.
3673///
3674bool SDNode::isOnlyUse(SDNode *N) const {
3675  bool Seen = false;
3676  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3677    SDNode *User = *I;
3678    if (User == this)
3679      Seen = true;
3680    else
3681      return false;
3682  }
3683
3684  return Seen;
3685}
3686
3687/// isOperand - Return true if this node is an operand of N.
3688///
3689bool SDOperand::isOperand(SDNode *N) const {
3690  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3691    if (*this == N->getOperand(i))
3692      return true;
3693  return false;
3694}
3695
3696bool SDNode::isOperand(SDNode *N) const {
3697  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3698    if (this == N->OperandList[i].Val)
3699      return true;
3700  return false;
3701}
3702
3703/// reachesChainWithoutSideEffects - Return true if this operand (which must
3704/// be a chain) reaches the specified operand without crossing any
3705/// side-effecting instructions.  In practice, this looks through token
3706/// factors and non-volatile loads.  In order to remain efficient, this only
3707/// looks a couple of nodes in, it does not do an exhaustive search.
3708bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
3709                                               unsigned Depth) const {
3710  if (*this == Dest) return true;
3711
3712  // Don't search too deeply, we just want to be able to see through
3713  // TokenFactor's etc.
3714  if (Depth == 0) return false;
3715
3716  // If this is a token factor, all inputs to the TF happen in parallel.  If any
3717  // of the operands of the TF reach dest, then we can do the xform.
3718  if (getOpcode() == ISD::TokenFactor) {
3719    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3720      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
3721        return true;
3722    return false;
3723  }
3724
3725  // Loads don't have side effects, look through them.
3726  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
3727    if (!Ld->isVolatile())
3728      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
3729  }
3730  return false;
3731}
3732
3733
3734static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3735                            SmallPtrSet<SDNode *, 32> &Visited) {
3736  if (found || !Visited.insert(N))
3737    return;
3738
3739  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3740    SDNode *Op = N->getOperand(i).Val;
3741    if (Op == P) {
3742      found = true;
3743      return;
3744    }
3745    findPredecessor(Op, P, found, Visited);
3746  }
3747}
3748
3749/// isPredecessor - Return true if this node is a predecessor of N. This node
3750/// is either an operand of N or it can be reached by recursively traversing
3751/// up the operands.
3752/// NOTE: this is an expensive method. Use it carefully.
3753bool SDNode::isPredecessor(SDNode *N) const {
3754  SmallPtrSet<SDNode *, 32> Visited;
3755  bool found = false;
3756  findPredecessor(N, this, found, Visited);
3757  return found;
3758}
3759
3760uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3761  assert(Num < NumOperands && "Invalid child # of SDNode!");
3762  return cast<ConstantSDNode>(OperandList[Num])->getValue();
3763}
3764
3765std::string SDNode::getOperationName(const SelectionDAG *G) const {
3766  switch (getOpcode()) {
3767  default:
3768    if (getOpcode() < ISD::BUILTIN_OP_END)
3769      return "<<Unknown DAG Node>>";
3770    else {
3771      if (G) {
3772        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3773          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3774            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
3775
3776        TargetLowering &TLI = G->getTargetLoweringInfo();
3777        const char *Name =
3778          TLI.getTargetNodeName(getOpcode());
3779        if (Name) return Name;
3780      }
3781
3782      return "<<Unknown Target Node>>";
3783    }
3784
3785  case ISD::PCMARKER:      return "PCMarker";
3786  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3787  case ISD::SRCVALUE:      return "SrcValue";
3788  case ISD::MEMOPERAND:    return "MemOperand";
3789  case ISD::EntryToken:    return "EntryToken";
3790  case ISD::TokenFactor:   return "TokenFactor";
3791  case ISD::AssertSext:    return "AssertSext";
3792  case ISD::AssertZext:    return "AssertZext";
3793
3794  case ISD::STRING:        return "String";
3795  case ISD::BasicBlock:    return "BasicBlock";
3796  case ISD::VALUETYPE:     return "ValueType";
3797  case ISD::Register:      return "Register";
3798
3799  case ISD::Constant:      return "Constant";
3800  case ISD::ConstantFP:    return "ConstantFP";
3801  case ISD::GlobalAddress: return "GlobalAddress";
3802  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3803  case ISD::FrameIndex:    return "FrameIndex";
3804  case ISD::JumpTable:     return "JumpTable";
3805  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3806  case ISD::RETURNADDR: return "RETURNADDR";
3807  case ISD::FRAMEADDR: return "FRAMEADDR";
3808  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3809  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3810  case ISD::EHSELECTION: return "EHSELECTION";
3811  case ISD::EH_RETURN: return "EH_RETURN";
3812  case ISD::ConstantPool:  return "ConstantPool";
3813  case ISD::ExternalSymbol: return "ExternalSymbol";
3814  case ISD::INTRINSIC_WO_CHAIN: {
3815    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3816    return Intrinsic::getName((Intrinsic::ID)IID);
3817  }
3818  case ISD::INTRINSIC_VOID:
3819  case ISD::INTRINSIC_W_CHAIN: {
3820    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3821    return Intrinsic::getName((Intrinsic::ID)IID);
3822  }
3823
3824  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
3825  case ISD::TargetConstant: return "TargetConstant";
3826  case ISD::TargetConstantFP:return "TargetConstantFP";
3827  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3828  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3829  case ISD::TargetFrameIndex: return "TargetFrameIndex";
3830  case ISD::TargetJumpTable:  return "TargetJumpTable";
3831  case ISD::TargetConstantPool:  return "TargetConstantPool";
3832  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3833
3834  case ISD::CopyToReg:     return "CopyToReg";
3835  case ISD::CopyFromReg:   return "CopyFromReg";
3836  case ISD::UNDEF:         return "undef";
3837  case ISD::MERGE_VALUES:  return "merge_values";
3838  case ISD::INLINEASM:     return "inlineasm";
3839  case ISD::LABEL:         return "label";
3840  case ISD::DECLARE:       return "declare";
3841  case ISD::HANDLENODE:    return "handlenode";
3842  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3843  case ISD::CALL:          return "call";
3844
3845  // Unary operators
3846  case ISD::FABS:   return "fabs";
3847  case ISD::FNEG:   return "fneg";
3848  case ISD::FSQRT:  return "fsqrt";
3849  case ISD::FSIN:   return "fsin";
3850  case ISD::FCOS:   return "fcos";
3851  case ISD::FPOWI:  return "fpowi";
3852  case ISD::FPOW:   return "fpow";
3853
3854  // Binary operators
3855  case ISD::ADD:    return "add";
3856  case ISD::SUB:    return "sub";
3857  case ISD::MUL:    return "mul";
3858  case ISD::MULHU:  return "mulhu";
3859  case ISD::MULHS:  return "mulhs";
3860  case ISD::SDIV:   return "sdiv";
3861  case ISD::UDIV:   return "udiv";
3862  case ISD::SREM:   return "srem";
3863  case ISD::UREM:   return "urem";
3864  case ISD::SMUL_LOHI:  return "smul_lohi";
3865  case ISD::UMUL_LOHI:  return "umul_lohi";
3866  case ISD::SDIVREM:    return "sdivrem";
3867  case ISD::UDIVREM:    return "divrem";
3868  case ISD::AND:    return "and";
3869  case ISD::OR:     return "or";
3870  case ISD::XOR:    return "xor";
3871  case ISD::SHL:    return "shl";
3872  case ISD::SRA:    return "sra";
3873  case ISD::SRL:    return "srl";
3874  case ISD::ROTL:   return "rotl";
3875  case ISD::ROTR:   return "rotr";
3876  case ISD::FADD:   return "fadd";
3877  case ISD::FSUB:   return "fsub";
3878  case ISD::FMUL:   return "fmul";
3879  case ISD::FDIV:   return "fdiv";
3880  case ISD::FREM:   return "frem";
3881  case ISD::FCOPYSIGN: return "fcopysign";
3882  case ISD::FGETSIGN:  return "fgetsign";
3883
3884  case ISD::SETCC:       return "setcc";
3885  case ISD::SELECT:      return "select";
3886  case ISD::SELECT_CC:   return "select_cc";
3887  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
3888  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
3889  case ISD::CONCAT_VECTORS:      return "concat_vectors";
3890  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
3891  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
3892  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
3893  case ISD::CARRY_FALSE:         return "carry_false";
3894  case ISD::ADDC:        return "addc";
3895  case ISD::ADDE:        return "adde";
3896  case ISD::SUBC:        return "subc";
3897  case ISD::SUBE:        return "sube";
3898  case ISD::SHL_PARTS:   return "shl_parts";
3899  case ISD::SRA_PARTS:   return "sra_parts";
3900  case ISD::SRL_PARTS:   return "srl_parts";
3901
3902  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
3903  case ISD::INSERT_SUBREG:      return "insert_subreg";
3904
3905  // Conversion operators.
3906  case ISD::SIGN_EXTEND: return "sign_extend";
3907  case ISD::ZERO_EXTEND: return "zero_extend";
3908  case ISD::ANY_EXTEND:  return "any_extend";
3909  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3910  case ISD::TRUNCATE:    return "truncate";
3911  case ISD::FP_ROUND:    return "fp_round";
3912  case ISD::FLT_ROUNDS_: return "flt_rounds";
3913  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3914  case ISD::FP_EXTEND:   return "fp_extend";
3915
3916  case ISD::SINT_TO_FP:  return "sint_to_fp";
3917  case ISD::UINT_TO_FP:  return "uint_to_fp";
3918  case ISD::FP_TO_SINT:  return "fp_to_sint";
3919  case ISD::FP_TO_UINT:  return "fp_to_uint";
3920  case ISD::BIT_CONVERT: return "bit_convert";
3921
3922    // Control flow instructions
3923  case ISD::BR:      return "br";
3924  case ISD::BRIND:   return "brind";
3925  case ISD::BR_JT:   return "br_jt";
3926  case ISD::BRCOND:  return "brcond";
3927  case ISD::BR_CC:   return "br_cc";
3928  case ISD::RET:     return "ret";
3929  case ISD::CALLSEQ_START:  return "callseq_start";
3930  case ISD::CALLSEQ_END:    return "callseq_end";
3931
3932    // Other operators
3933  case ISD::LOAD:               return "load";
3934  case ISD::STORE:              return "store";
3935  case ISD::VAARG:              return "vaarg";
3936  case ISD::VACOPY:             return "vacopy";
3937  case ISD::VAEND:              return "vaend";
3938  case ISD::VASTART:            return "vastart";
3939  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3940  case ISD::EXTRACT_ELEMENT:    return "extract_element";
3941  case ISD::BUILD_PAIR:         return "build_pair";
3942  case ISD::STACKSAVE:          return "stacksave";
3943  case ISD::STACKRESTORE:       return "stackrestore";
3944  case ISD::TRAP:               return "trap";
3945
3946  // Block memory operations.
3947  case ISD::MEMSET:  return "memset";
3948  case ISD::MEMCPY:  return "memcpy";
3949  case ISD::MEMMOVE: return "memmove";
3950
3951  // Bit manipulation
3952  case ISD::BSWAP:   return "bswap";
3953  case ISD::CTPOP:   return "ctpop";
3954  case ISD::CTTZ:    return "cttz";
3955  case ISD::CTLZ:    return "ctlz";
3956
3957  // Debug info
3958  case ISD::LOCATION: return "location";
3959  case ISD::DEBUG_LOC: return "debug_loc";
3960
3961  // Trampolines
3962  case ISD::TRAMPOLINE: return "trampoline";
3963
3964  case ISD::CONDCODE:
3965    switch (cast<CondCodeSDNode>(this)->get()) {
3966    default: assert(0 && "Unknown setcc condition!");
3967    case ISD::SETOEQ:  return "setoeq";
3968    case ISD::SETOGT:  return "setogt";
3969    case ISD::SETOGE:  return "setoge";
3970    case ISD::SETOLT:  return "setolt";
3971    case ISD::SETOLE:  return "setole";
3972    case ISD::SETONE:  return "setone";
3973
3974    case ISD::SETO:    return "seto";
3975    case ISD::SETUO:   return "setuo";
3976    case ISD::SETUEQ:  return "setue";
3977    case ISD::SETUGT:  return "setugt";
3978    case ISD::SETUGE:  return "setuge";
3979    case ISD::SETULT:  return "setult";
3980    case ISD::SETULE:  return "setule";
3981    case ISD::SETUNE:  return "setune";
3982
3983    case ISD::SETEQ:   return "seteq";
3984    case ISD::SETGT:   return "setgt";
3985    case ISD::SETGE:   return "setge";
3986    case ISD::SETLT:   return "setlt";
3987    case ISD::SETLE:   return "setle";
3988    case ISD::SETNE:   return "setne";
3989    }
3990  }
3991}
3992
3993const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
3994  switch (AM) {
3995  default:
3996    return "";
3997  case ISD::PRE_INC:
3998    return "<pre-inc>";
3999  case ISD::PRE_DEC:
4000    return "<pre-dec>";
4001  case ISD::POST_INC:
4002    return "<post-inc>";
4003  case ISD::POST_DEC:
4004    return "<post-dec>";
4005  }
4006}
4007
4008void SDNode::dump() const { dump(0); }
4009void SDNode::dump(const SelectionDAG *G) const {
4010  cerr << (void*)this << ": ";
4011
4012  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
4013    if (i) cerr << ",";
4014    if (getValueType(i) == MVT::Other)
4015      cerr << "ch";
4016    else
4017      cerr << MVT::getValueTypeString(getValueType(i));
4018  }
4019  cerr << " = " << getOperationName(G);
4020
4021  cerr << " ";
4022  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
4023    if (i) cerr << ", ";
4024    cerr << (void*)getOperand(i).Val;
4025    if (unsigned RN = getOperand(i).ResNo)
4026      cerr << ":" << RN;
4027  }
4028
4029  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
4030    SDNode *Mask = getOperand(2).Val;
4031    cerr << "<";
4032    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
4033      if (i) cerr << ",";
4034      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
4035        cerr << "u";
4036      else
4037        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
4038    }
4039    cerr << ">";
4040  }
4041
4042  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
4043    cerr << "<" << CSDN->getValue() << ">";
4044  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
4045    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
4046      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
4047    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
4048      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
4049    else {
4050      cerr << "<APFloat(";
4051      CSDN->getValueAPF().convertToAPInt().dump();
4052      cerr << ")>";
4053    }
4054  } else if (const GlobalAddressSDNode *GADN =
4055             dyn_cast<GlobalAddressSDNode>(this)) {
4056    int offset = GADN->getOffset();
4057    cerr << "<";
4058    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
4059    if (offset > 0)
4060      cerr << " + " << offset;
4061    else
4062      cerr << " " << offset;
4063  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
4064    cerr << "<" << FIDN->getIndex() << ">";
4065  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
4066    cerr << "<" << JTDN->getIndex() << ">";
4067  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
4068    int offset = CP->getOffset();
4069    if (CP->isMachineConstantPoolEntry())
4070      cerr << "<" << *CP->getMachineCPVal() << ">";
4071    else
4072      cerr << "<" << *CP->getConstVal() << ">";
4073    if (offset > 0)
4074      cerr << " + " << offset;
4075    else
4076      cerr << " " << offset;
4077  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
4078    cerr << "<";
4079    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
4080    if (LBB)
4081      cerr << LBB->getName() << " ";
4082    cerr << (const void*)BBDN->getBasicBlock() << ">";
4083  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
4084    if (G && R->getReg() &&
4085        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
4086      cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
4087    } else {
4088      cerr << " #" << R->getReg();
4089    }
4090  } else if (const ExternalSymbolSDNode *ES =
4091             dyn_cast<ExternalSymbolSDNode>(this)) {
4092    cerr << "'" << ES->getSymbol() << "'";
4093  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
4094    if (M->getValue())
4095      cerr << "<" << M->getValue() << ">";
4096    else
4097      cerr << "<null>";
4098  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
4099    if (M->MO.getValue())
4100      cerr << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
4101    else
4102      cerr << "<null:" << M->MO.getOffset() << ">";
4103  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
4104    cerr << ":" << MVT::getValueTypeString(N->getVT());
4105  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
4106    const Value *SrcValue = LD->getSrcValue();
4107    int SrcOffset = LD->getSrcValueOffset();
4108    cerr << " <";
4109    if (SrcValue)
4110      cerr << SrcValue;
4111    else
4112      cerr << "null";
4113    cerr << ":" << SrcOffset << ">";
4114
4115    bool doExt = true;
4116    switch (LD->getExtensionType()) {
4117    default: doExt = false; break;
4118    case ISD::EXTLOAD:
4119      cerr << " <anyext ";
4120      break;
4121    case ISD::SEXTLOAD:
4122      cerr << " <sext ";
4123      break;
4124    case ISD::ZEXTLOAD:
4125      cerr << " <zext ";
4126      break;
4127    }
4128    if (doExt)
4129      cerr << MVT::getValueTypeString(LD->getMemoryVT()) << ">";
4130
4131    const char *AM = getIndexedModeName(LD->getAddressingMode());
4132    if (*AM)
4133      cerr << " " << AM;
4134    if (LD->isVolatile())
4135      cerr << " <volatile>";
4136    cerr << " alignment=" << LD->getAlignment();
4137  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
4138    const Value *SrcValue = ST->getSrcValue();
4139    int SrcOffset = ST->getSrcValueOffset();
4140    cerr << " <";
4141    if (SrcValue)
4142      cerr << SrcValue;
4143    else
4144      cerr << "null";
4145    cerr << ":" << SrcOffset << ">";
4146
4147    if (ST->isTruncatingStore())
4148      cerr << " <trunc "
4149           << MVT::getValueTypeString(ST->getMemoryVT()) << ">";
4150
4151    const char *AM = getIndexedModeName(ST->getAddressingMode());
4152    if (*AM)
4153      cerr << " " << AM;
4154    if (ST->isVolatile())
4155      cerr << " <volatile>";
4156    cerr << " alignment=" << ST->getAlignment();
4157  }
4158}
4159
4160static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4161  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4162    if (N->getOperand(i).Val->hasOneUse())
4163      DumpNodes(N->getOperand(i).Val, indent+2, G);
4164    else
4165      cerr << "\n" << std::string(indent+2, ' ')
4166           << (void*)N->getOperand(i).Val << ": <multiple use>";
4167
4168
4169  cerr << "\n" << std::string(indent, ' ');
4170  N->dump(G);
4171}
4172
4173void SelectionDAG::dump() const {
4174  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4175  std::vector<const SDNode*> Nodes;
4176  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4177       I != E; ++I)
4178    Nodes.push_back(I);
4179
4180  std::sort(Nodes.begin(), Nodes.end());
4181
4182  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4183    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4184      DumpNodes(Nodes[i], 2, this);
4185  }
4186
4187  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4188
4189  cerr << "\n\n";
4190}
4191
4192const Type *ConstantPoolSDNode::getType() const {
4193  if (isMachineConstantPoolEntry())
4194    return Val.MachineCPVal->getType();
4195  return Val.ConstVal->getType();
4196}
4197