SelectionDAG.cpp revision ff33cc4d08a115e40b8ad0caabfe971cd9a8351a
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/Assembly/Writer.h"
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/Support/MathExtras.h"
22#include "llvm/Target/MRegisterInfo.h"
23#include "llvm/Target/TargetLowering.h"
24#include "llvm/Target/TargetInstrInfo.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/ADT/SetVector.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/SmallVector.h"
29#include "llvm/ADT/StringExtras.h"
30#include <algorithm>
31#include <cmath>
32using namespace llvm;
33
34/// makeVTList - Return an instance of the SDVTList struct initialized with the
35/// specified members.
36static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
37  SDVTList Res = {VTs, NumVTs};
38  return Res;
39}
40
41//===----------------------------------------------------------------------===//
42//                              ConstantFPSDNode Class
43//===----------------------------------------------------------------------===//
44
45/// isExactlyValue - We don't rely on operator== working on double values, as
46/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
47/// As such, this method can be used to do an exact bit-for-bit comparison of
48/// two floating point values.
49bool ConstantFPSDNode::isExactlyValue(double V) const {
50  return DoubleToBits(V) == DoubleToBits(Value);
51}
52
53//===----------------------------------------------------------------------===//
54//                              ISD Namespace
55//===----------------------------------------------------------------------===//
56
57/// isBuildVectorAllOnes - Return true if the specified node is a
58/// BUILD_VECTOR where all of the elements are ~0 or undef.
59bool ISD::isBuildVectorAllOnes(const SDNode *N) {
60  // Look through a bit convert.
61  if (N->getOpcode() == ISD::BIT_CONVERT)
62    N = N->getOperand(0).Val;
63
64  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
65
66  unsigned i = 0, e = N->getNumOperands();
67
68  // Skip over all of the undef values.
69  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
70    ++i;
71
72  // Do not accept an all-undef vector.
73  if (i == e) return false;
74
75  // Do not accept build_vectors that aren't all constants or which have non-~0
76  // elements.
77  SDOperand NotZero = N->getOperand(i);
78  if (isa<ConstantSDNode>(NotZero)) {
79    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
80      return false;
81  } else if (isa<ConstantFPSDNode>(NotZero)) {
82    MVT::ValueType VT = NotZero.getValueType();
83    if (VT== MVT::f64) {
84      if (DoubleToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
85          (uint64_t)-1)
86        return false;
87    } else {
88      if (FloatToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
89          (uint32_t)-1)
90        return false;
91    }
92  } else
93    return false;
94
95  // Okay, we have at least one ~0 value, check to see if the rest match or are
96  // undefs.
97  for (++i; i != e; ++i)
98    if (N->getOperand(i) != NotZero &&
99        N->getOperand(i).getOpcode() != ISD::UNDEF)
100      return false;
101  return true;
102}
103
104
105/// isBuildVectorAllZeros - Return true if the specified node is a
106/// BUILD_VECTOR where all of the elements are 0 or undef.
107bool ISD::isBuildVectorAllZeros(const SDNode *N) {
108  // Look through a bit convert.
109  if (N->getOpcode() == ISD::BIT_CONVERT)
110    N = N->getOperand(0).Val;
111
112  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
113
114  unsigned i = 0, e = N->getNumOperands();
115
116  // Skip over all of the undef values.
117  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
118    ++i;
119
120  // Do not accept an all-undef vector.
121  if (i == e) return false;
122
123  // Do not accept build_vectors that aren't all constants or which have non-~0
124  // elements.
125  SDOperand Zero = N->getOperand(i);
126  if (isa<ConstantSDNode>(Zero)) {
127    if (!cast<ConstantSDNode>(Zero)->isNullValue())
128      return false;
129  } else if (isa<ConstantFPSDNode>(Zero)) {
130    if (!cast<ConstantFPSDNode>(Zero)->isExactlyValue(0.0))
131      return false;
132  } else
133    return false;
134
135  // Okay, we have at least one ~0 value, check to see if the rest match or are
136  // undefs.
137  for (++i; i != e; ++i)
138    if (N->getOperand(i) != Zero &&
139        N->getOperand(i).getOpcode() != ISD::UNDEF)
140      return false;
141  return true;
142}
143
144/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
145/// when given the operation for (X op Y).
146ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
147  // To perform this operation, we just need to swap the L and G bits of the
148  // operation.
149  unsigned OldL = (Operation >> 2) & 1;
150  unsigned OldG = (Operation >> 1) & 1;
151  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
152                       (OldL << 1) |       // New G bit
153                       (OldG << 2));        // New L bit.
154}
155
156/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
157/// 'op' is a valid SetCC operation.
158ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
159  unsigned Operation = Op;
160  if (isInteger)
161    Operation ^= 7;   // Flip L, G, E bits, but not U.
162  else
163    Operation ^= 15;  // Flip all of the condition bits.
164  if (Operation > ISD::SETTRUE2)
165    Operation &= ~8;     // Don't let N and U bits get set.
166  return ISD::CondCode(Operation);
167}
168
169
170/// isSignedOp - For an integer comparison, return 1 if the comparison is a
171/// signed operation and 2 if the result is an unsigned comparison.  Return zero
172/// if the operation does not depend on the sign of the input (setne and seteq).
173static int isSignedOp(ISD::CondCode Opcode) {
174  switch (Opcode) {
175  default: assert(0 && "Illegal integer setcc operation!");
176  case ISD::SETEQ:
177  case ISD::SETNE: return 0;
178  case ISD::SETLT:
179  case ISD::SETLE:
180  case ISD::SETGT:
181  case ISD::SETGE: return 1;
182  case ISD::SETULT:
183  case ISD::SETULE:
184  case ISD::SETUGT:
185  case ISD::SETUGE: return 2;
186  }
187}
188
189/// getSetCCOrOperation - Return the result of a logical OR between different
190/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
191/// returns SETCC_INVALID if it is not possible to represent the resultant
192/// comparison.
193ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
194                                       bool isInteger) {
195  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
196    // Cannot fold a signed integer setcc with an unsigned integer setcc.
197    return ISD::SETCC_INVALID;
198
199  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
200
201  // If the N and U bits get set then the resultant comparison DOES suddenly
202  // care about orderedness, and is true when ordered.
203  if (Op > ISD::SETTRUE2)
204    Op &= ~16;     // Clear the U bit if the N bit is set.
205
206  // Canonicalize illegal integer setcc's.
207  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
208    Op = ISD::SETNE;
209
210  return ISD::CondCode(Op);
211}
212
213/// getSetCCAndOperation - Return the result of a logical AND between different
214/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
215/// function returns zero if it is not possible to represent the resultant
216/// comparison.
217ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
218                                        bool isInteger) {
219  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
220    // Cannot fold a signed setcc with an unsigned setcc.
221    return ISD::SETCC_INVALID;
222
223  // Combine all of the condition bits.
224  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
225
226  // Canonicalize illegal integer setcc's.
227  if (isInteger) {
228    switch (Result) {
229    default: break;
230    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
231    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
232    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
233    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
234    }
235  }
236
237  return Result;
238}
239
240const TargetMachine &SelectionDAG::getTarget() const {
241  return TLI.getTargetMachine();
242}
243
244//===----------------------------------------------------------------------===//
245//                           SDNode Profile Support
246//===----------------------------------------------------------------------===//
247
248/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
249///
250static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
251  ID.AddInteger(OpC);
252}
253
254/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
255/// solely with their pointer.
256void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
257  ID.AddPointer(VTList.VTs);
258}
259
260/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
261///
262static void AddNodeIDOperands(FoldingSetNodeID &ID,
263                              const SDOperand *Ops, unsigned NumOps) {
264  for (; NumOps; --NumOps, ++Ops) {
265    ID.AddPointer(Ops->Val);
266    ID.AddInteger(Ops->ResNo);
267  }
268}
269
270static void AddNodeIDNode(FoldingSetNodeID &ID,
271                          unsigned short OpC, SDVTList VTList,
272                          const SDOperand *OpList, unsigned N) {
273  AddNodeIDOpcode(ID, OpC);
274  AddNodeIDValueTypes(ID, VTList);
275  AddNodeIDOperands(ID, OpList, N);
276}
277
278/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
279/// data.
280static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
281  AddNodeIDOpcode(ID, N->getOpcode());
282  // Add the return value info.
283  AddNodeIDValueTypes(ID, N->getVTList());
284  // Add the operand info.
285  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
286
287  // Handle SDNode leafs with special info.
288  switch (N->getOpcode()) {
289  default: break;  // Normal nodes don't need extra info.
290  case ISD::TargetConstant:
291  case ISD::Constant:
292    ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
293    break;
294  case ISD::TargetConstantFP:
295  case ISD::ConstantFP:
296    ID.AddDouble(cast<ConstantFPSDNode>(N)->getValue());
297    break;
298  case ISD::TargetGlobalAddress:
299  case ISD::GlobalAddress: {
300    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
301    ID.AddPointer(GA->getGlobal());
302    ID.AddInteger(GA->getOffset());
303    break;
304  }
305  case ISD::BasicBlock:
306    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
307    break;
308  case ISD::Register:
309    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
310    break;
311  case ISD::SRCVALUE: {
312    SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
313    ID.AddPointer(SV->getValue());
314    ID.AddInteger(SV->getOffset());
315    break;
316  }
317  case ISD::FrameIndex:
318  case ISD::TargetFrameIndex:
319    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
320    break;
321  case ISD::JumpTable:
322  case ISD::TargetJumpTable:
323    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
324    break;
325  case ISD::ConstantPool:
326  case ISD::TargetConstantPool: {
327    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
328    ID.AddInteger(CP->getAlignment());
329    ID.AddInteger(CP->getOffset());
330    if (CP->isMachineConstantPoolEntry())
331      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
332    else
333      ID.AddPointer(CP->getConstVal());
334    break;
335  }
336  case ISD::LOAD: {
337    LoadSDNode *LD = cast<LoadSDNode>(N);
338    ID.AddInteger(LD->getAddressingMode());
339    ID.AddInteger(LD->getExtensionType());
340    ID.AddInteger(LD->getLoadedVT());
341    ID.AddPointer(LD->getSrcValue());
342    ID.AddInteger(LD->getSrcValueOffset());
343    ID.AddInteger(LD->getAlignment());
344    ID.AddInteger(LD->isVolatile());
345    break;
346  }
347  case ISD::STORE: {
348    StoreSDNode *ST = cast<StoreSDNode>(N);
349    ID.AddInteger(ST->getAddressingMode());
350    ID.AddInteger(ST->isTruncatingStore());
351    ID.AddInteger(ST->getStoredVT());
352    ID.AddPointer(ST->getSrcValue());
353    ID.AddInteger(ST->getSrcValueOffset());
354    ID.AddInteger(ST->getAlignment());
355    ID.AddInteger(ST->isVolatile());
356    break;
357  }
358  }
359}
360
361//===----------------------------------------------------------------------===//
362//                              SelectionDAG Class
363//===----------------------------------------------------------------------===//
364
365/// RemoveDeadNodes - This method deletes all unreachable nodes in the
366/// SelectionDAG.
367void SelectionDAG::RemoveDeadNodes() {
368  // Create a dummy node (which is not added to allnodes), that adds a reference
369  // to the root node, preventing it from being deleted.
370  HandleSDNode Dummy(getRoot());
371
372  SmallVector<SDNode*, 128> DeadNodes;
373
374  // Add all obviously-dead nodes to the DeadNodes worklist.
375  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
376    if (I->use_empty())
377      DeadNodes.push_back(I);
378
379  // Process the worklist, deleting the nodes and adding their uses to the
380  // worklist.
381  while (!DeadNodes.empty()) {
382    SDNode *N = DeadNodes.back();
383    DeadNodes.pop_back();
384
385    // Take the node out of the appropriate CSE map.
386    RemoveNodeFromCSEMaps(N);
387
388    // Next, brutally remove the operand list.  This is safe to do, as there are
389    // no cycles in the graph.
390    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
391      SDNode *Operand = I->Val;
392      Operand->removeUser(N);
393
394      // Now that we removed this operand, see if there are no uses of it left.
395      if (Operand->use_empty())
396        DeadNodes.push_back(Operand);
397    }
398    if (N->OperandsNeedDelete)
399      delete[] N->OperandList;
400    N->OperandList = 0;
401    N->NumOperands = 0;
402
403    // Finally, remove N itself.
404    AllNodes.erase(N);
405  }
406
407  // If the root changed (e.g. it was a dead load, update the root).
408  setRoot(Dummy.getValue());
409}
410
411void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
412  SmallVector<SDNode*, 16> DeadNodes;
413  DeadNodes.push_back(N);
414
415  // Process the worklist, deleting the nodes and adding their uses to the
416  // worklist.
417  while (!DeadNodes.empty()) {
418    SDNode *N = DeadNodes.back();
419    DeadNodes.pop_back();
420
421    // Take the node out of the appropriate CSE map.
422    RemoveNodeFromCSEMaps(N);
423
424    // Next, brutally remove the operand list.  This is safe to do, as there are
425    // no cycles in the graph.
426    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
427      SDNode *Operand = I->Val;
428      Operand->removeUser(N);
429
430      // Now that we removed this operand, see if there are no uses of it left.
431      if (Operand->use_empty())
432        DeadNodes.push_back(Operand);
433    }
434    if (N->OperandsNeedDelete)
435      delete[] N->OperandList;
436    N->OperandList = 0;
437    N->NumOperands = 0;
438
439    // Finally, remove N itself.
440    Deleted.push_back(N);
441    AllNodes.erase(N);
442  }
443}
444
445void SelectionDAG::DeleteNode(SDNode *N) {
446  assert(N->use_empty() && "Cannot delete a node that is not dead!");
447
448  // First take this out of the appropriate CSE map.
449  RemoveNodeFromCSEMaps(N);
450
451  // Finally, remove uses due to operands of this node, remove from the
452  // AllNodes list, and delete the node.
453  DeleteNodeNotInCSEMaps(N);
454}
455
456void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
457
458  // Remove it from the AllNodes list.
459  AllNodes.remove(N);
460
461  // Drop all of the operands and decrement used nodes use counts.
462  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
463    I->Val->removeUser(N);
464  if (N->OperandsNeedDelete)
465    delete[] N->OperandList;
466  N->OperandList = 0;
467  N->NumOperands = 0;
468
469  delete N;
470}
471
472/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
473/// correspond to it.  This is useful when we're about to delete or repurpose
474/// the node.  We don't want future request for structurally identical nodes
475/// to return N anymore.
476void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
477  bool Erased = false;
478  switch (N->getOpcode()) {
479  case ISD::HANDLENODE: return;  // noop.
480  case ISD::STRING:
481    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
482    break;
483  case ISD::CONDCODE:
484    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
485           "Cond code doesn't exist!");
486    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
487    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
488    break;
489  case ISD::ExternalSymbol:
490    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
491    break;
492  case ISD::TargetExternalSymbol:
493    Erased =
494      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
495    break;
496  case ISD::VALUETYPE:
497    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
498    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
499    break;
500  default:
501    // Remove it from the CSE Map.
502    Erased = CSEMap.RemoveNode(N);
503    break;
504  }
505#ifndef NDEBUG
506  // Verify that the node was actually in one of the CSE maps, unless it has a
507  // flag result (which cannot be CSE'd) or is one of the special cases that are
508  // not subject to CSE.
509  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
510      !N->isTargetOpcode()) {
511    N->dump();
512    cerr << "\n";
513    assert(0 && "Node is not in map!");
514  }
515#endif
516}
517
518/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
519/// has been taken out and modified in some way.  If the specified node already
520/// exists in the CSE maps, do not modify the maps, but return the existing node
521/// instead.  If it doesn't exist, add it and return null.
522///
523SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
524  assert(N->getNumOperands() && "This is a leaf node!");
525  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
526    return 0;    // Never add these nodes.
527
528  // Check that remaining values produced are not flags.
529  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
530    if (N->getValueType(i) == MVT::Flag)
531      return 0;   // Never CSE anything that produces a flag.
532
533  SDNode *New = CSEMap.GetOrInsertNode(N);
534  if (New != N) return New;  // Node already existed.
535  return 0;
536}
537
538/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
539/// were replaced with those specified.  If this node is never memoized,
540/// return null, otherwise return a pointer to the slot it would take.  If a
541/// node already exists with these operands, the slot will be non-null.
542SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
543                                           void *&InsertPos) {
544  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
545    return 0;    // Never add these nodes.
546
547  // Check that remaining values produced are not flags.
548  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
549    if (N->getValueType(i) == MVT::Flag)
550      return 0;   // Never CSE anything that produces a flag.
551
552  SDOperand Ops[] = { Op };
553  FoldingSetNodeID ID;
554  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
555  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
556}
557
558/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
559/// were replaced with those specified.  If this node is never memoized,
560/// return null, otherwise return a pointer to the slot it would take.  If a
561/// node already exists with these operands, the slot will be non-null.
562SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
563                                           SDOperand Op1, SDOperand Op2,
564                                           void *&InsertPos) {
565  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
566    return 0;    // Never add these nodes.
567
568  // Check that remaining values produced are not flags.
569  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
570    if (N->getValueType(i) == MVT::Flag)
571      return 0;   // Never CSE anything that produces a flag.
572
573  SDOperand Ops[] = { Op1, Op2 };
574  FoldingSetNodeID ID;
575  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
576  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
577}
578
579
580/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
581/// were replaced with those specified.  If this node is never memoized,
582/// return null, otherwise return a pointer to the slot it would take.  If a
583/// node already exists with these operands, the slot will be non-null.
584SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
585                                           const SDOperand *Ops,unsigned NumOps,
586                                           void *&InsertPos) {
587  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
588    return 0;    // Never add these nodes.
589
590  // Check that remaining values produced are not flags.
591  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
592    if (N->getValueType(i) == MVT::Flag)
593      return 0;   // Never CSE anything that produces a flag.
594
595  FoldingSetNodeID ID;
596  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), 0, 0);
597
598  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
599    ID.AddInteger(LD->getAddressingMode());
600    ID.AddInteger(LD->getExtensionType());
601    ID.AddInteger(LD->getLoadedVT());
602    ID.AddPointer(LD->getSrcValue());
603    ID.AddInteger(LD->getSrcValueOffset());
604    ID.AddInteger(LD->getAlignment());
605    ID.AddInteger(LD->isVolatile());
606  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
607    ID.AddInteger(ST->getAddressingMode());
608    ID.AddInteger(ST->isTruncatingStore());
609    ID.AddInteger(ST->getStoredVT());
610    ID.AddPointer(ST->getSrcValue());
611    ID.AddInteger(ST->getSrcValueOffset());
612    ID.AddInteger(ST->getAlignment());
613    ID.AddInteger(ST->isVolatile());
614  }
615
616  AddNodeIDOperands(ID, Ops, NumOps);
617  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
618}
619
620
621SelectionDAG::~SelectionDAG() {
622  while (!AllNodes.empty()) {
623    SDNode *N = AllNodes.begin();
624    N->SetNextInBucket(0);
625    if (N->OperandsNeedDelete)
626      delete [] N->OperandList;
627    N->OperandList = 0;
628    N->NumOperands = 0;
629    AllNodes.pop_front();
630  }
631}
632
633SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
634  if (Op.getValueType() == VT) return Op;
635  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
636  return getNode(ISD::AND, Op.getValueType(), Op,
637                 getConstant(Imm, Op.getValueType()));
638}
639
640SDOperand SelectionDAG::getString(const std::string &Val) {
641  StringSDNode *&N = StringNodes[Val];
642  if (!N) {
643    N = new StringSDNode(Val);
644    AllNodes.push_back(N);
645  }
646  return SDOperand(N, 0);
647}
648
649SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
650  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
651  assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
652
653  // Mask out any bits that are not valid for this constant.
654  Val &= MVT::getIntVTBitMask(VT);
655
656  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
657  FoldingSetNodeID ID;
658  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
659  ID.AddInteger(Val);
660  void *IP = 0;
661  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
662    return SDOperand(E, 0);
663  SDNode *N = new ConstantSDNode(isT, Val, VT);
664  CSEMap.InsertNode(N, IP);
665  AllNodes.push_back(N);
666  return SDOperand(N, 0);
667}
668
669
670SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
671                                      bool isTarget) {
672  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
673  if (VT == MVT::f32)
674    Val = (float)Val;  // Mask out extra precision.
675
676  // Do the map lookup using the actual bit pattern for the floating point
677  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
678  // we don't have issues with SNANs.
679  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
680  FoldingSetNodeID ID;
681  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
682  ID.AddDouble(Val);
683  void *IP = 0;
684  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
685    return SDOperand(E, 0);
686  SDNode *N = new ConstantFPSDNode(isTarget, Val, VT);
687  CSEMap.InsertNode(N, IP);
688  AllNodes.push_back(N);
689  return SDOperand(N, 0);
690}
691
692SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
693                                         MVT::ValueType VT, int Offset,
694                                         bool isTargetGA) {
695  unsigned Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
696  FoldingSetNodeID ID;
697  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
698  ID.AddPointer(GV);
699  ID.AddInteger(Offset);
700  void *IP = 0;
701  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
702   return SDOperand(E, 0);
703  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
704  CSEMap.InsertNode(N, IP);
705  AllNodes.push_back(N);
706  return SDOperand(N, 0);
707}
708
709SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
710                                      bool isTarget) {
711  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
712  FoldingSetNodeID ID;
713  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
714  ID.AddInteger(FI);
715  void *IP = 0;
716  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
717    return SDOperand(E, 0);
718  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
719  CSEMap.InsertNode(N, IP);
720  AllNodes.push_back(N);
721  return SDOperand(N, 0);
722}
723
724SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
725  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
726  FoldingSetNodeID ID;
727  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
728  ID.AddInteger(JTI);
729  void *IP = 0;
730  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
731    return SDOperand(E, 0);
732  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
733  CSEMap.InsertNode(N, IP);
734  AllNodes.push_back(N);
735  return SDOperand(N, 0);
736}
737
738SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
739                                        unsigned Alignment, int Offset,
740                                        bool isTarget) {
741  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
742  FoldingSetNodeID ID;
743  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
744  ID.AddInteger(Alignment);
745  ID.AddInteger(Offset);
746  ID.AddPointer(C);
747  void *IP = 0;
748  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
749    return SDOperand(E, 0);
750  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
751  CSEMap.InsertNode(N, IP);
752  AllNodes.push_back(N);
753  return SDOperand(N, 0);
754}
755
756
757SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
758                                        MVT::ValueType VT,
759                                        unsigned Alignment, int Offset,
760                                        bool isTarget) {
761  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
762  FoldingSetNodeID ID;
763  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
764  ID.AddInteger(Alignment);
765  ID.AddInteger(Offset);
766  C->AddSelectionDAGCSEId(ID);
767  void *IP = 0;
768  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
769    return SDOperand(E, 0);
770  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
771  CSEMap.InsertNode(N, IP);
772  AllNodes.push_back(N);
773  return SDOperand(N, 0);
774}
775
776
777SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
778  FoldingSetNodeID ID;
779  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
780  ID.AddPointer(MBB);
781  void *IP = 0;
782  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
783    return SDOperand(E, 0);
784  SDNode *N = new BasicBlockSDNode(MBB);
785  CSEMap.InsertNode(N, IP);
786  AllNodes.push_back(N);
787  return SDOperand(N, 0);
788}
789
790SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
791  if ((unsigned)VT >= ValueTypeNodes.size())
792    ValueTypeNodes.resize(VT+1);
793  if (ValueTypeNodes[VT] == 0) {
794    ValueTypeNodes[VT] = new VTSDNode(VT);
795    AllNodes.push_back(ValueTypeNodes[VT]);
796  }
797
798  return SDOperand(ValueTypeNodes[VT], 0);
799}
800
801SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
802  SDNode *&N = ExternalSymbols[Sym];
803  if (N) return SDOperand(N, 0);
804  N = new ExternalSymbolSDNode(false, Sym, VT);
805  AllNodes.push_back(N);
806  return SDOperand(N, 0);
807}
808
809SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
810                                                MVT::ValueType VT) {
811  SDNode *&N = TargetExternalSymbols[Sym];
812  if (N) return SDOperand(N, 0);
813  N = new ExternalSymbolSDNode(true, Sym, VT);
814  AllNodes.push_back(N);
815  return SDOperand(N, 0);
816}
817
818SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
819  if ((unsigned)Cond >= CondCodeNodes.size())
820    CondCodeNodes.resize(Cond+1);
821
822  if (CondCodeNodes[Cond] == 0) {
823    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
824    AllNodes.push_back(CondCodeNodes[Cond]);
825  }
826  return SDOperand(CondCodeNodes[Cond], 0);
827}
828
829SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
830  FoldingSetNodeID ID;
831  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
832  ID.AddInteger(RegNo);
833  void *IP = 0;
834  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
835    return SDOperand(E, 0);
836  SDNode *N = new RegisterSDNode(RegNo, VT);
837  CSEMap.InsertNode(N, IP);
838  AllNodes.push_back(N);
839  return SDOperand(N, 0);
840}
841
842SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
843  assert((!V || isa<PointerType>(V->getType())) &&
844         "SrcValue is not a pointer?");
845
846  FoldingSetNodeID ID;
847  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
848  ID.AddPointer(V);
849  ID.AddInteger(Offset);
850  void *IP = 0;
851  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
852    return SDOperand(E, 0);
853  SDNode *N = new SrcValueSDNode(V, Offset);
854  CSEMap.InsertNode(N, IP);
855  AllNodes.push_back(N);
856  return SDOperand(N, 0);
857}
858
859SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
860                                  SDOperand N2, ISD::CondCode Cond) {
861  // These setcc operations always fold.
862  switch (Cond) {
863  default: break;
864  case ISD::SETFALSE:
865  case ISD::SETFALSE2: return getConstant(0, VT);
866  case ISD::SETTRUE:
867  case ISD::SETTRUE2:  return getConstant(1, VT);
868
869  case ISD::SETOEQ:
870  case ISD::SETOGT:
871  case ISD::SETOGE:
872  case ISD::SETOLT:
873  case ISD::SETOLE:
874  case ISD::SETONE:
875  case ISD::SETO:
876  case ISD::SETUO:
877  case ISD::SETUEQ:
878  case ISD::SETUNE:
879    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
880    break;
881  }
882
883  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
884    uint64_t C2 = N2C->getValue();
885    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
886      uint64_t C1 = N1C->getValue();
887
888      // Sign extend the operands if required
889      if (ISD::isSignedIntSetCC(Cond)) {
890        C1 = N1C->getSignExtended();
891        C2 = N2C->getSignExtended();
892      }
893
894      switch (Cond) {
895      default: assert(0 && "Unknown integer setcc!");
896      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
897      case ISD::SETNE:  return getConstant(C1 != C2, VT);
898      case ISD::SETULT: return getConstant(C1 <  C2, VT);
899      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
900      case ISD::SETULE: return getConstant(C1 <= C2, VT);
901      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
902      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
903      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
904      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
905      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
906      }
907    }
908  }
909  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
910    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
911      double C1 = N1C->getValue(), C2 = N2C->getValue();
912
913      switch (Cond) {
914      default: break; // FIXME: Implement the rest of these!
915      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
916      case ISD::SETNE:  return getConstant(C1 != C2, VT);
917      case ISD::SETLT:  return getConstant(C1 < C2, VT);
918      case ISD::SETGT:  return getConstant(C1 > C2, VT);
919      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
920      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
921      }
922    } else {
923      // Ensure that the constant occurs on the RHS.
924      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
925    }
926
927  // Could not fold it.
928  return SDOperand();
929}
930
931
932/// getNode - Gets or creates the specified node.
933///
934SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
935  FoldingSetNodeID ID;
936  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
937  void *IP = 0;
938  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
939    return SDOperand(E, 0);
940  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
941  CSEMap.InsertNode(N, IP);
942
943  AllNodes.push_back(N);
944  return SDOperand(N, 0);
945}
946
947SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
948                                SDOperand Operand) {
949  unsigned Tmp1;
950  // Constant fold unary operations with an integer constant operand.
951  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
952    uint64_t Val = C->getValue();
953    switch (Opcode) {
954    default: break;
955    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
956    case ISD::ANY_EXTEND:
957    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
958    case ISD::TRUNCATE:    return getConstant(Val, VT);
959    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
960    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
961    case ISD::BIT_CONVERT:
962      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
963        return getConstantFP(BitsToFloat(Val), VT);
964      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
965        return getConstantFP(BitsToDouble(Val), VT);
966      break;
967    case ISD::BSWAP:
968      switch(VT) {
969      default: assert(0 && "Invalid bswap!"); break;
970      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
971      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
972      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
973      }
974      break;
975    case ISD::CTPOP:
976      switch(VT) {
977      default: assert(0 && "Invalid ctpop!"); break;
978      case MVT::i1: return getConstant(Val != 0, VT);
979      case MVT::i8:
980        Tmp1 = (unsigned)Val & 0xFF;
981        return getConstant(CountPopulation_32(Tmp1), VT);
982      case MVT::i16:
983        Tmp1 = (unsigned)Val & 0xFFFF;
984        return getConstant(CountPopulation_32(Tmp1), VT);
985      case MVT::i32:
986        return getConstant(CountPopulation_32((unsigned)Val), VT);
987      case MVT::i64:
988        return getConstant(CountPopulation_64(Val), VT);
989      }
990    case ISD::CTLZ:
991      switch(VT) {
992      default: assert(0 && "Invalid ctlz!"); break;
993      case MVT::i1: return getConstant(Val == 0, VT);
994      case MVT::i8:
995        Tmp1 = (unsigned)Val & 0xFF;
996        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
997      case MVT::i16:
998        Tmp1 = (unsigned)Val & 0xFFFF;
999        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1000      case MVT::i32:
1001        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1002      case MVT::i64:
1003        return getConstant(CountLeadingZeros_64(Val), VT);
1004      }
1005    case ISD::CTTZ:
1006      switch(VT) {
1007      default: assert(0 && "Invalid cttz!"); break;
1008      case MVT::i1: return getConstant(Val == 0, VT);
1009      case MVT::i8:
1010        Tmp1 = (unsigned)Val | 0x100;
1011        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1012      case MVT::i16:
1013        Tmp1 = (unsigned)Val | 0x10000;
1014        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1015      case MVT::i32:
1016        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1017      case MVT::i64:
1018        return getConstant(CountTrailingZeros_64(Val), VT);
1019      }
1020    }
1021  }
1022
1023  // Constant fold unary operations with an floating point constant operand.
1024  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1025    switch (Opcode) {
1026    case ISD::FNEG:
1027      return getConstantFP(-C->getValue(), VT);
1028    case ISD::FABS:
1029      return getConstantFP(fabs(C->getValue()), VT);
1030    case ISD::FP_ROUND:
1031    case ISD::FP_EXTEND:
1032      return getConstantFP(C->getValue(), VT);
1033    case ISD::FP_TO_SINT:
1034      return getConstant((int64_t)C->getValue(), VT);
1035    case ISD::FP_TO_UINT:
1036      return getConstant((uint64_t)C->getValue(), VT);
1037    case ISD::BIT_CONVERT:
1038      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1039        return getConstant(FloatToBits(C->getValue()), VT);
1040      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1041        return getConstant(DoubleToBits(C->getValue()), VT);
1042      break;
1043    }
1044
1045  unsigned OpOpcode = Operand.Val->getOpcode();
1046  switch (Opcode) {
1047  case ISD::TokenFactor:
1048    return Operand;         // Factor of one node?  No factor.
1049  case ISD::FP_ROUND:
1050  case ISD::FP_EXTEND:
1051    assert(MVT::isFloatingPoint(VT) &&
1052           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1053    break;
1054  case ISD::SIGN_EXTEND:
1055    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1056           "Invalid SIGN_EXTEND!");
1057    if (Operand.getValueType() == VT) return Operand;   // noop extension
1058    assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1059    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1060      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1061    break;
1062  case ISD::ZERO_EXTEND:
1063    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1064           "Invalid ZERO_EXTEND!");
1065    if (Operand.getValueType() == VT) return Operand;   // noop extension
1066    assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1067    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1068      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1069    break;
1070  case ISD::ANY_EXTEND:
1071    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1072           "Invalid ANY_EXTEND!");
1073    if (Operand.getValueType() == VT) return Operand;   // noop extension
1074    assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1075    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1076      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1077      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1078    break;
1079  case ISD::TRUNCATE:
1080    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1081           "Invalid TRUNCATE!");
1082    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1083    assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1084    if (OpOpcode == ISD::TRUNCATE)
1085      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1086    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1087             OpOpcode == ISD::ANY_EXTEND) {
1088      // If the source is smaller than the dest, we still need an extend.
1089      if (Operand.Val->getOperand(0).getValueType() < VT)
1090        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1091      else if (Operand.Val->getOperand(0).getValueType() > VT)
1092        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1093      else
1094        return Operand.Val->getOperand(0);
1095    }
1096    break;
1097  case ISD::BIT_CONVERT:
1098    // Basic sanity checking.
1099    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1100           && "Cannot BIT_CONVERT between types of different sizes!");
1101    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1102    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1103      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1104    if (OpOpcode == ISD::UNDEF)
1105      return getNode(ISD::UNDEF, VT);
1106    break;
1107  case ISD::SCALAR_TO_VECTOR:
1108    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1109           MVT::getVectorBaseType(VT) == Operand.getValueType() &&
1110           "Illegal SCALAR_TO_VECTOR node!");
1111    break;
1112  case ISD::FNEG:
1113    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1114      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1115                     Operand.Val->getOperand(0));
1116    if (OpOpcode == ISD::FNEG)  // --X -> X
1117      return Operand.Val->getOperand(0);
1118    break;
1119  case ISD::FABS:
1120    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1121      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1122    break;
1123  }
1124
1125  SDNode *N;
1126  SDVTList VTs = getVTList(VT);
1127  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1128    FoldingSetNodeID ID;
1129    SDOperand Ops[1] = { Operand };
1130    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1131    void *IP = 0;
1132    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1133      return SDOperand(E, 0);
1134    N = new UnarySDNode(Opcode, VTs, Operand);
1135    CSEMap.InsertNode(N, IP);
1136  } else {
1137    N = new UnarySDNode(Opcode, VTs, Operand);
1138  }
1139  AllNodes.push_back(N);
1140  return SDOperand(N, 0);
1141}
1142
1143
1144
1145SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1146                                SDOperand N1, SDOperand N2) {
1147#ifndef NDEBUG
1148  switch (Opcode) {
1149  case ISD::TokenFactor:
1150    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1151           N2.getValueType() == MVT::Other && "Invalid token factor!");
1152    break;
1153  case ISD::AND:
1154  case ISD::OR:
1155  case ISD::XOR:
1156  case ISD::UDIV:
1157  case ISD::UREM:
1158  case ISD::MULHU:
1159  case ISD::MULHS:
1160    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1161    // fall through
1162  case ISD::ADD:
1163  case ISD::SUB:
1164  case ISD::MUL:
1165  case ISD::SDIV:
1166  case ISD::SREM:
1167    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1168    // fall through.
1169  case ISD::FADD:
1170  case ISD::FSUB:
1171  case ISD::FMUL:
1172  case ISD::FDIV:
1173  case ISD::FREM:
1174    assert(N1.getValueType() == N2.getValueType() &&
1175           N1.getValueType() == VT && "Binary operator types must match!");
1176    break;
1177  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1178    assert(N1.getValueType() == VT &&
1179           MVT::isFloatingPoint(N1.getValueType()) &&
1180           MVT::isFloatingPoint(N2.getValueType()) &&
1181           "Invalid FCOPYSIGN!");
1182    break;
1183  case ISD::SHL:
1184  case ISD::SRA:
1185  case ISD::SRL:
1186  case ISD::ROTL:
1187  case ISD::ROTR:
1188    assert(VT == N1.getValueType() &&
1189           "Shift operators return type must be the same as their first arg");
1190    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1191           VT != MVT::i1 && "Shifts only work on integers");
1192    break;
1193  case ISD::FP_ROUND_INREG: {
1194    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1195    assert(VT == N1.getValueType() && "Not an inreg round!");
1196    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1197           "Cannot FP_ROUND_INREG integer types");
1198    assert(EVT <= VT && "Not rounding down!");
1199    break;
1200  }
1201  case ISD::AssertSext:
1202  case ISD::AssertZext:
1203  case ISD::SIGN_EXTEND_INREG: {
1204    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1205    assert(VT == N1.getValueType() && "Not an inreg extend!");
1206    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1207           "Cannot *_EXTEND_INREG FP types");
1208    assert(EVT <= VT && "Not extending!");
1209  }
1210
1211  default: break;
1212  }
1213#endif
1214
1215  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1216  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1217  if (N1C) {
1218    if (Opcode == ISD::SIGN_EXTEND_INREG) {
1219      int64_t Val = N1C->getValue();
1220      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1221      Val <<= 64-FromBits;
1222      Val >>= 64-FromBits;
1223      return getConstant(Val, VT);
1224    }
1225
1226    if (N2C) {
1227      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1228      switch (Opcode) {
1229      case ISD::ADD: return getConstant(C1 + C2, VT);
1230      case ISD::SUB: return getConstant(C1 - C2, VT);
1231      case ISD::MUL: return getConstant(C1 * C2, VT);
1232      case ISD::UDIV:
1233        if (C2) return getConstant(C1 / C2, VT);
1234        break;
1235      case ISD::UREM :
1236        if (C2) return getConstant(C1 % C2, VT);
1237        break;
1238      case ISD::SDIV :
1239        if (C2) return getConstant(N1C->getSignExtended() /
1240                                   N2C->getSignExtended(), VT);
1241        break;
1242      case ISD::SREM :
1243        if (C2) return getConstant(N1C->getSignExtended() %
1244                                   N2C->getSignExtended(), VT);
1245        break;
1246      case ISD::AND  : return getConstant(C1 & C2, VT);
1247      case ISD::OR   : return getConstant(C1 | C2, VT);
1248      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1249      case ISD::SHL  : return getConstant(C1 << C2, VT);
1250      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1251      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1252      case ISD::ROTL :
1253        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1254                           VT);
1255      case ISD::ROTR :
1256        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1257                           VT);
1258      default: break;
1259      }
1260    } else {      // Cannonicalize constant to RHS if commutative
1261      if (isCommutativeBinOp(Opcode)) {
1262        std::swap(N1C, N2C);
1263        std::swap(N1, N2);
1264      }
1265    }
1266  }
1267
1268  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1269  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1270  if (N1CFP) {
1271    if (N2CFP) {
1272      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1273      switch (Opcode) {
1274      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1275      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1276      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1277      case ISD::FDIV:
1278        if (C2) return getConstantFP(C1 / C2, VT);
1279        break;
1280      case ISD::FREM :
1281        if (C2) return getConstantFP(fmod(C1, C2), VT);
1282        break;
1283      case ISD::FCOPYSIGN: {
1284        union {
1285          double   F;
1286          uint64_t I;
1287        } u1;
1288        union {
1289          double  F;
1290          int64_t I;
1291        } u2;
1292        u1.F = C1;
1293        u2.F = C2;
1294        if (u2.I < 0)  // Sign bit of RHS set?
1295          u1.I |= 1ULL << 63;      // Set the sign bit of the LHS.
1296        else
1297          u1.I &= (1ULL << 63)-1;  // Clear the sign bit of the LHS.
1298        return getConstantFP(u1.F, VT);
1299      }
1300      default: break;
1301      }
1302    } else {      // Cannonicalize constant to RHS if commutative
1303      if (isCommutativeBinOp(Opcode)) {
1304        std::swap(N1CFP, N2CFP);
1305        std::swap(N1, N2);
1306      }
1307    }
1308  }
1309
1310  // Canonicalize an UNDEF to the RHS, even over a constant.
1311  if (N1.getOpcode() == ISD::UNDEF) {
1312    if (isCommutativeBinOp(Opcode)) {
1313      std::swap(N1, N2);
1314    } else {
1315      switch (Opcode) {
1316      case ISD::FP_ROUND_INREG:
1317      case ISD::SIGN_EXTEND_INREG:
1318      case ISD::SUB:
1319      case ISD::FSUB:
1320      case ISD::FDIV:
1321      case ISD::FREM:
1322      case ISD::SRA:
1323        return N1;     // fold op(undef, arg2) -> undef
1324      case ISD::UDIV:
1325      case ISD::SDIV:
1326      case ISD::UREM:
1327      case ISD::SREM:
1328      case ISD::SRL:
1329      case ISD::SHL:
1330        return getConstant(0, VT);    // fold op(undef, arg2) -> 0
1331      }
1332    }
1333  }
1334
1335  // Fold a bunch of operators when the RHS is undef.
1336  if (N2.getOpcode() == ISD::UNDEF) {
1337    switch (Opcode) {
1338    case ISD::ADD:
1339    case ISD::ADDC:
1340    case ISD::ADDE:
1341    case ISD::SUB:
1342    case ISD::FADD:
1343    case ISD::FSUB:
1344    case ISD::FMUL:
1345    case ISD::FDIV:
1346    case ISD::FREM:
1347    case ISD::UDIV:
1348    case ISD::SDIV:
1349    case ISD::UREM:
1350    case ISD::SREM:
1351    case ISD::XOR:
1352      return N2;       // fold op(arg1, undef) -> undef
1353    case ISD::MUL:
1354    case ISD::AND:
1355    case ISD::SRL:
1356    case ISD::SHL:
1357      return getConstant(0, VT);  // fold op(arg1, undef) -> 0
1358    case ISD::OR:
1359      return getConstant(MVT::getIntVTBitMask(VT), VT);
1360    case ISD::SRA:
1361      return N1;
1362    }
1363  }
1364
1365  // Fold operations.
1366  switch (Opcode) {
1367  case ISD::TokenFactor:
1368    // Fold trivial token factors.
1369    if (N1.getOpcode() == ISD::EntryToken) return N2;
1370    if (N2.getOpcode() == ISD::EntryToken) return N1;
1371    break;
1372
1373  case ISD::AND:
1374    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
1375    // worth handling here.
1376    if (N2C && N2C->getValue() == 0)
1377      return N2;
1378    break;
1379  case ISD::OR:
1380  case ISD::XOR:
1381    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
1382    // worth handling here.
1383    if (N2C && N2C->getValue() == 0)
1384      return N1;
1385    break;
1386  case ISD::FP_ROUND_INREG:
1387    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1388    break;
1389  case ISD::SIGN_EXTEND_INREG: {
1390    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1391    if (EVT == VT) return N1;  // Not actually extending
1392    break;
1393  }
1394  case ISD::EXTRACT_ELEMENT:
1395    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
1396
1397    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
1398    // 64-bit integers into 32-bit parts.  Instead of building the extract of
1399    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
1400    if (N1.getOpcode() == ISD::BUILD_PAIR)
1401      return N1.getOperand(N2C->getValue());
1402
1403    // EXTRACT_ELEMENT of a constant int is also very common.
1404    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
1405      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
1406      return getConstant(C->getValue() >> Shift, VT);
1407    }
1408    break;
1409
1410  // FIXME: figure out how to safely handle things like
1411  // int foo(int x) { return 1 << (x & 255); }
1412  // int bar() { return foo(256); }
1413#if 0
1414  case ISD::SHL:
1415  case ISD::SRL:
1416  case ISD::SRA:
1417    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1418        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1419      return getNode(Opcode, VT, N1, N2.getOperand(0));
1420    else if (N2.getOpcode() == ISD::AND)
1421      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1422        // If the and is only masking out bits that cannot effect the shift,
1423        // eliminate the and.
1424        unsigned NumBits = MVT::getSizeInBits(VT);
1425        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1426          return getNode(Opcode, VT, N1, N2.getOperand(0));
1427      }
1428    break;
1429#endif
1430  }
1431
1432  // Memoize this node if possible.
1433  SDNode *N;
1434  SDVTList VTs = getVTList(VT);
1435  if (VT != MVT::Flag) {
1436    SDOperand Ops[] = { N1, N2 };
1437    FoldingSetNodeID ID;
1438    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
1439    void *IP = 0;
1440    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1441      return SDOperand(E, 0);
1442    N = new BinarySDNode(Opcode, VTs, N1, N2);
1443    CSEMap.InsertNode(N, IP);
1444  } else {
1445    N = new BinarySDNode(Opcode, VTs, N1, N2);
1446  }
1447
1448  AllNodes.push_back(N);
1449  return SDOperand(N, 0);
1450}
1451
1452SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1453                                SDOperand N1, SDOperand N2, SDOperand N3) {
1454  // Perform various simplifications.
1455  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1456  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1457  switch (Opcode) {
1458  case ISD::SETCC: {
1459    // Use FoldSetCC to simplify SETCC's.
1460    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1461    if (Simp.Val) return Simp;
1462    break;
1463  }
1464  case ISD::SELECT:
1465    if (N1C)
1466      if (N1C->getValue())
1467        return N2;             // select true, X, Y -> X
1468      else
1469        return N3;             // select false, X, Y -> Y
1470
1471    if (N2 == N3) return N2;   // select C, X, X -> X
1472    break;
1473  case ISD::BRCOND:
1474    if (N2C)
1475      if (N2C->getValue()) // Unconditional branch
1476        return getNode(ISD::BR, MVT::Other, N1, N3);
1477      else
1478        return N1;         // Never-taken branch
1479    break;
1480  case ISD::VECTOR_SHUFFLE:
1481    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1482           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
1483           N3.getOpcode() == ISD::BUILD_VECTOR &&
1484           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
1485           "Illegal VECTOR_SHUFFLE node!");
1486    break;
1487  }
1488
1489  // Memoize node if it doesn't produce a flag.
1490  SDNode *N;
1491  SDVTList VTs = getVTList(VT);
1492  if (VT != MVT::Flag) {
1493    SDOperand Ops[] = { N1, N2, N3 };
1494    FoldingSetNodeID ID;
1495    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
1496    void *IP = 0;
1497    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1498      return SDOperand(E, 0);
1499    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
1500    CSEMap.InsertNode(N, IP);
1501  } else {
1502    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
1503  }
1504  AllNodes.push_back(N);
1505  return SDOperand(N, 0);
1506}
1507
1508SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1509                                SDOperand N1, SDOperand N2, SDOperand N3,
1510                                SDOperand N4) {
1511  SDOperand Ops[] = { N1, N2, N3, N4 };
1512  return getNode(Opcode, VT, Ops, 4);
1513}
1514
1515SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1516                                SDOperand N1, SDOperand N2, SDOperand N3,
1517                                SDOperand N4, SDOperand N5) {
1518  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
1519  return getNode(Opcode, VT, Ops, 5);
1520}
1521
1522SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1523                                SDOperand Chain, SDOperand Ptr,
1524                                const Value *SV, int SVOffset,
1525                                bool isVolatile) {
1526  // FIXME: Alignment == 1 for now.
1527  unsigned Alignment = 1;
1528  SDVTList VTs = getVTList(VT, MVT::Other);
1529  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1530  SDOperand Ops[] = { Chain, Ptr, Undef };
1531  FoldingSetNodeID ID;
1532  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
1533  ID.AddInteger(ISD::UNINDEXED);
1534  ID.AddInteger(ISD::NON_EXTLOAD);
1535  ID.AddInteger(VT);
1536  ID.AddPointer(SV);
1537  ID.AddInteger(SVOffset);
1538  ID.AddInteger(Alignment);
1539  ID.AddInteger(isVolatile);
1540  void *IP = 0;
1541  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1542    return SDOperand(E, 0);
1543  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
1544                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
1545                             isVolatile);
1546  CSEMap.InsertNode(N, IP);
1547  AllNodes.push_back(N);
1548  return SDOperand(N, 0);
1549}
1550
1551SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
1552                                   SDOperand Chain, SDOperand Ptr,
1553                                   const Value *SV,
1554                                   int SVOffset, MVT::ValueType EVT,
1555                                   bool isVolatile) {
1556  // If they are asking for an extending load from/to the same thing, return a
1557  // normal load.
1558  if (VT == EVT)
1559    ExtType = ISD::NON_EXTLOAD;
1560
1561  if (MVT::isVector(VT))
1562    assert(EVT == MVT::getVectorBaseType(VT) && "Invalid vector extload!");
1563  else
1564    assert(EVT < VT && "Should only be an extending load, not truncating!");
1565  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
1566         "Cannot sign/zero extend a FP/Vector load!");
1567  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
1568         "Cannot convert from FP to Int or Int -> FP!");
1569
1570  // FIXME: Alignment == 1 for now.
1571  unsigned Alignment = 1;
1572  SDVTList VTs = getVTList(VT, MVT::Other);
1573  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1574  SDOperand Ops[] = { Chain, Ptr, Undef };
1575  FoldingSetNodeID ID;
1576  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
1577  ID.AddInteger(ISD::UNINDEXED);
1578  ID.AddInteger(ExtType);
1579  ID.AddInteger(EVT);
1580  ID.AddPointer(SV);
1581  ID.AddInteger(SVOffset);
1582  ID.AddInteger(Alignment);
1583  ID.AddInteger(isVolatile);
1584  void *IP = 0;
1585  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1586    return SDOperand(E, 0);
1587  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
1588                             SV, SVOffset, Alignment, isVolatile);
1589  CSEMap.InsertNode(N, IP);
1590  AllNodes.push_back(N);
1591  return SDOperand(N, 0);
1592}
1593
1594SDOperand
1595SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
1596                             SDOperand Offset, ISD::MemIndexedMode AM) {
1597  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
1598  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
1599         "Load is already a indexed load!");
1600  MVT::ValueType VT = OrigLoad.getValueType();
1601  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
1602  SDOperand Ops[] = { LD->getChain(), Base, Offset };
1603  FoldingSetNodeID ID;
1604  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
1605  ID.AddInteger(AM);
1606  ID.AddInteger(LD->getExtensionType());
1607  ID.AddInteger(LD->getLoadedVT());
1608  ID.AddPointer(LD->getSrcValue());
1609  ID.AddInteger(LD->getSrcValueOffset());
1610  ID.AddInteger(LD->getAlignment());
1611  ID.AddInteger(LD->isVolatile());
1612  void *IP = 0;
1613  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1614    return SDOperand(E, 0);
1615  SDNode *N = new LoadSDNode(Ops, VTs, AM,
1616                             LD->getExtensionType(), LD->getLoadedVT(),
1617                             LD->getSrcValue(), LD->getSrcValueOffset(),
1618                             LD->getAlignment(), LD->isVolatile());
1619  CSEMap.InsertNode(N, IP);
1620  AllNodes.push_back(N);
1621  return SDOperand(N, 0);
1622}
1623
1624SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT,
1625                                   SDOperand Chain, SDOperand Ptr,
1626                                   SDOperand SV) {
1627  SDOperand Ops[] = { Chain, Ptr, SV, getConstant(Count, MVT::i32),
1628                      getValueType(EVT) };
1629  return getNode(ISD::VLOAD, getVTList(MVT::Vector, MVT::Other), Ops, 5);
1630}
1631
1632SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
1633                                 SDOperand Ptr, const Value *SV, int SVOffset,
1634                                 bool isVolatile) {
1635  MVT::ValueType VT = Val.getValueType();
1636
1637  // FIXME: Alignment == 1 for now.
1638  unsigned Alignment = 1;
1639  SDVTList VTs = getVTList(MVT::Other);
1640  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1641  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
1642  FoldingSetNodeID ID;
1643  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
1644  ID.AddInteger(ISD::UNINDEXED);
1645  ID.AddInteger(false);
1646  ID.AddInteger(VT);
1647  ID.AddPointer(SV);
1648  ID.AddInteger(SVOffset);
1649  ID.AddInteger(Alignment);
1650  ID.AddInteger(isVolatile);
1651  void *IP = 0;
1652  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1653    return SDOperand(E, 0);
1654  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
1655                              VT, SV, SVOffset, Alignment, isVolatile);
1656  CSEMap.InsertNode(N, IP);
1657  AllNodes.push_back(N);
1658  return SDOperand(N, 0);
1659}
1660
1661SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
1662                                      SDOperand Ptr, const Value *SV,
1663                                      int SVOffset, MVT::ValueType SVT,
1664                                      bool isVolatile) {
1665  MVT::ValueType VT = Val.getValueType();
1666  bool isTrunc = VT != SVT;
1667
1668  assert(VT > SVT && "Not a truncation?");
1669  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
1670         "Can't do FP-INT conversion!");
1671
1672  // FIXME: Alignment == 1 for now.
1673  unsigned Alignment = 1;
1674  SDVTList VTs = getVTList(MVT::Other);
1675  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
1676  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
1677  FoldingSetNodeID ID;
1678  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
1679  ID.AddInteger(ISD::UNINDEXED);
1680  ID.AddInteger(isTrunc);
1681  ID.AddInteger(SVT);
1682  ID.AddPointer(SV);
1683  ID.AddInteger(SVOffset);
1684  ID.AddInteger(Alignment);
1685  ID.AddInteger(isVolatile);
1686  void *IP = 0;
1687  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1688    return SDOperand(E, 0);
1689  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, isTrunc,
1690                              SVT, SV, SVOffset, Alignment, isVolatile);
1691  CSEMap.InsertNode(N, IP);
1692  AllNodes.push_back(N);
1693  return SDOperand(N, 0);
1694}
1695
1696SDOperand
1697SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
1698                              SDOperand Offset, ISD::MemIndexedMode AM) {
1699  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
1700  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
1701         "Store is already a indexed store!");
1702  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
1703  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
1704  FoldingSetNodeID ID;
1705  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
1706  ID.AddInteger(AM);
1707  ID.AddInteger(ST->isTruncatingStore());
1708  ID.AddInteger(ST->getStoredVT());
1709  ID.AddPointer(ST->getSrcValue());
1710  ID.AddInteger(ST->getSrcValueOffset());
1711  ID.AddInteger(ST->getAlignment());
1712  ID.AddInteger(ST->isVolatile());
1713  void *IP = 0;
1714  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1715    return SDOperand(E, 0);
1716  SDNode *N = new StoreSDNode(Ops, VTs, AM,
1717                              ST->isTruncatingStore(), ST->getStoredVT(),
1718                              ST->getSrcValue(), ST->getSrcValueOffset(),
1719                              ST->getAlignment(), ST->isVolatile());
1720  CSEMap.InsertNode(N, IP);
1721  AllNodes.push_back(N);
1722  return SDOperand(N, 0);
1723}
1724
1725SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
1726                                 SDOperand Chain, SDOperand Ptr,
1727                                 SDOperand SV) {
1728  SDOperand Ops[] = { Chain, Ptr, SV };
1729  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
1730}
1731
1732SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1733                                const SDOperand *Ops, unsigned NumOps) {
1734  switch (NumOps) {
1735  case 0: return getNode(Opcode, VT);
1736  case 1: return getNode(Opcode, VT, Ops[0]);
1737  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1738  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1739  default: break;
1740  }
1741
1742  switch (Opcode) {
1743  default: break;
1744  case ISD::SELECT_CC: {
1745    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
1746    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1747           "LHS and RHS of condition must have same type!");
1748    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1749           "True and False arms of SelectCC must have same type!");
1750    assert(Ops[2].getValueType() == VT &&
1751           "select_cc node must be of same type as true and false value!");
1752    break;
1753  }
1754  case ISD::BR_CC: {
1755    assert(NumOps == 5 && "BR_CC takes 5 operands!");
1756    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1757           "LHS/RHS of comparison should match types!");
1758    break;
1759  }
1760  }
1761
1762  // Memoize nodes.
1763  SDNode *N;
1764  SDVTList VTs = getVTList(VT);
1765  if (VT != MVT::Flag) {
1766    FoldingSetNodeID ID;
1767    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
1768    void *IP = 0;
1769    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1770      return SDOperand(E, 0);
1771    N = new SDNode(Opcode, VTs, Ops, NumOps);
1772    CSEMap.InsertNode(N, IP);
1773  } else {
1774    N = new SDNode(Opcode, VTs, Ops, NumOps);
1775  }
1776  AllNodes.push_back(N);
1777  return SDOperand(N, 0);
1778}
1779
1780SDOperand SelectionDAG::getNode(unsigned Opcode,
1781                                std::vector<MVT::ValueType> &ResultTys,
1782                                const SDOperand *Ops, unsigned NumOps) {
1783  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
1784                 Ops, NumOps);
1785}
1786
1787SDOperand SelectionDAG::getNode(unsigned Opcode,
1788                                const MVT::ValueType *VTs, unsigned NumVTs,
1789                                const SDOperand *Ops, unsigned NumOps) {
1790  if (NumVTs == 1)
1791    return getNode(Opcode, VTs[0], Ops, NumOps);
1792  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
1793}
1794
1795SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
1796                                const SDOperand *Ops, unsigned NumOps) {
1797  if (VTList.NumVTs == 1)
1798    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
1799
1800  switch (Opcode) {
1801  // FIXME: figure out how to safely handle things like
1802  // int foo(int x) { return 1 << (x & 255); }
1803  // int bar() { return foo(256); }
1804#if 0
1805  case ISD::SRA_PARTS:
1806  case ISD::SRL_PARTS:
1807  case ISD::SHL_PARTS:
1808    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1809        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1810      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1811    else if (N3.getOpcode() == ISD::AND)
1812      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1813        // If the and is only masking out bits that cannot effect the shift,
1814        // eliminate the and.
1815        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1816        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1817          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1818      }
1819    break;
1820#endif
1821  }
1822
1823  // Memoize the node unless it returns a flag.
1824  SDNode *N;
1825  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
1826    FoldingSetNodeID ID;
1827    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
1828    void *IP = 0;
1829    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1830      return SDOperand(E, 0);
1831    if (NumOps == 1)
1832      N = new UnarySDNode(Opcode, VTList, Ops[0]);
1833    else if (NumOps == 2)
1834      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
1835    else if (NumOps == 3)
1836      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
1837    else
1838      N = new SDNode(Opcode, VTList, Ops, NumOps);
1839    CSEMap.InsertNode(N, IP);
1840  } else {
1841    if (NumOps == 1)
1842      N = new UnarySDNode(Opcode, VTList, Ops[0]);
1843    else if (NumOps == 2)
1844      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
1845    else if (NumOps == 3)
1846      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
1847    else
1848      N = new SDNode(Opcode, VTList, Ops, NumOps);
1849  }
1850  AllNodes.push_back(N);
1851  return SDOperand(N, 0);
1852}
1853
1854SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
1855  return makeVTList(SDNode::getValueTypeList(VT), 1);
1856}
1857
1858SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
1859  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1860       E = VTList.end(); I != E; ++I) {
1861    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
1862      return makeVTList(&(*I)[0], 2);
1863  }
1864  std::vector<MVT::ValueType> V;
1865  V.push_back(VT1);
1866  V.push_back(VT2);
1867  VTList.push_front(V);
1868  return makeVTList(&(*VTList.begin())[0], 2);
1869}
1870SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
1871                                 MVT::ValueType VT3) {
1872  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1873       E = VTList.end(); I != E; ++I) {
1874    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
1875        (*I)[2] == VT3)
1876      return makeVTList(&(*I)[0], 3);
1877  }
1878  std::vector<MVT::ValueType> V;
1879  V.push_back(VT1);
1880  V.push_back(VT2);
1881  V.push_back(VT3);
1882  VTList.push_front(V);
1883  return makeVTList(&(*VTList.begin())[0], 3);
1884}
1885
1886SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
1887  switch (NumVTs) {
1888    case 0: assert(0 && "Cannot have nodes without results!");
1889    case 1: return makeVTList(SDNode::getValueTypeList(VTs[0]), 1);
1890    case 2: return getVTList(VTs[0], VTs[1]);
1891    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
1892    default: break;
1893  }
1894
1895  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1896       E = VTList.end(); I != E; ++I) {
1897    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
1898
1899    bool NoMatch = false;
1900    for (unsigned i = 2; i != NumVTs; ++i)
1901      if (VTs[i] != (*I)[i]) {
1902        NoMatch = true;
1903        break;
1904      }
1905    if (!NoMatch)
1906      return makeVTList(&*I->begin(), NumVTs);
1907  }
1908
1909  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
1910  return makeVTList(&*VTList.begin()->begin(), NumVTs);
1911}
1912
1913
1914/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
1915/// specified operands.  If the resultant node already exists in the DAG,
1916/// this does not modify the specified node, instead it returns the node that
1917/// already exists.  If the resultant node does not exist in the DAG, the
1918/// input node is returned.  As a degenerate case, if you specify the same
1919/// input operands as the node already has, the input node is returned.
1920SDOperand SelectionDAG::
1921UpdateNodeOperands(SDOperand InN, SDOperand Op) {
1922  SDNode *N = InN.Val;
1923  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
1924
1925  // Check to see if there is no change.
1926  if (Op == N->getOperand(0)) return InN;
1927
1928  // See if the modified node already exists.
1929  void *InsertPos = 0;
1930  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
1931    return SDOperand(Existing, InN.ResNo);
1932
1933  // Nope it doesn't.  Remove the node from it's current place in the maps.
1934  if (InsertPos)
1935    RemoveNodeFromCSEMaps(N);
1936
1937  // Now we update the operands.
1938  N->OperandList[0].Val->removeUser(N);
1939  Op.Val->addUser(N);
1940  N->OperandList[0] = Op;
1941
1942  // If this gets put into a CSE map, add it.
1943  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1944  return InN;
1945}
1946
1947SDOperand SelectionDAG::
1948UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
1949  SDNode *N = InN.Val;
1950  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
1951
1952  // Check to see if there is no change.
1953  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
1954    return InN;   // No operands changed, just return the input node.
1955
1956  // See if the modified node already exists.
1957  void *InsertPos = 0;
1958  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
1959    return SDOperand(Existing, InN.ResNo);
1960
1961  // Nope it doesn't.  Remove the node from it's current place in the maps.
1962  if (InsertPos)
1963    RemoveNodeFromCSEMaps(N);
1964
1965  // Now we update the operands.
1966  if (N->OperandList[0] != Op1) {
1967    N->OperandList[0].Val->removeUser(N);
1968    Op1.Val->addUser(N);
1969    N->OperandList[0] = Op1;
1970  }
1971  if (N->OperandList[1] != Op2) {
1972    N->OperandList[1].Val->removeUser(N);
1973    Op2.Val->addUser(N);
1974    N->OperandList[1] = Op2;
1975  }
1976
1977  // If this gets put into a CSE map, add it.
1978  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1979  return InN;
1980}
1981
1982SDOperand SelectionDAG::
1983UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
1984  SDOperand Ops[] = { Op1, Op2, Op3 };
1985  return UpdateNodeOperands(N, Ops, 3);
1986}
1987
1988SDOperand SelectionDAG::
1989UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1990                   SDOperand Op3, SDOperand Op4) {
1991  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
1992  return UpdateNodeOperands(N, Ops, 4);
1993}
1994
1995SDOperand SelectionDAG::
1996UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1997                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
1998  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
1999  return UpdateNodeOperands(N, Ops, 5);
2000}
2001
2002
2003SDOperand SelectionDAG::
2004UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2005  SDNode *N = InN.Val;
2006  assert(N->getNumOperands() == NumOps &&
2007         "Update with wrong number of operands");
2008
2009  // Check to see if there is no change.
2010  bool AnyChange = false;
2011  for (unsigned i = 0; i != NumOps; ++i) {
2012    if (Ops[i] != N->getOperand(i)) {
2013      AnyChange = true;
2014      break;
2015    }
2016  }
2017
2018  // No operands changed, just return the input node.
2019  if (!AnyChange) return InN;
2020
2021  // See if the modified node already exists.
2022  void *InsertPos = 0;
2023  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2024    return SDOperand(Existing, InN.ResNo);
2025
2026  // Nope it doesn't.  Remove the node from it's current place in the maps.
2027  if (InsertPos)
2028    RemoveNodeFromCSEMaps(N);
2029
2030  // Now we update the operands.
2031  for (unsigned i = 0; i != NumOps; ++i) {
2032    if (N->OperandList[i] != Ops[i]) {
2033      N->OperandList[i].Val->removeUser(N);
2034      Ops[i].Val->addUser(N);
2035      N->OperandList[i] = Ops[i];
2036    }
2037  }
2038
2039  // If this gets put into a CSE map, add it.
2040  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2041  return InN;
2042}
2043
2044
2045/// MorphNodeTo - This frees the operands of the current node, resets the
2046/// opcode, types, and operands to the specified value.  This should only be
2047/// used by the SelectionDAG class.
2048void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2049                         const SDOperand *Ops, unsigned NumOps) {
2050  NodeType = Opc;
2051  ValueList = L.VTs;
2052  NumValues = L.NumVTs;
2053
2054  // Clear the operands list, updating used nodes to remove this from their
2055  // use list.
2056  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2057    I->Val->removeUser(this);
2058
2059  // If NumOps is larger than the # of operands we currently have, reallocate
2060  // the operand list.
2061  if (NumOps > NumOperands) {
2062    if (OperandsNeedDelete)
2063      delete [] OperandList;
2064    OperandList = new SDOperand[NumOps];
2065    OperandsNeedDelete = true;
2066  }
2067
2068  // Assign the new operands.
2069  NumOperands = NumOps;
2070
2071  for (unsigned i = 0, e = NumOps; i != e; ++i) {
2072    OperandList[i] = Ops[i];
2073    SDNode *N = OperandList[i].Val;
2074    N->Uses.push_back(this);
2075  }
2076}
2077
2078/// SelectNodeTo - These are used for target selectors to *mutate* the
2079/// specified node to have the specified return type, Target opcode, and
2080/// operands.  Note that target opcodes are stored as
2081/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2082///
2083/// Note that SelectNodeTo returns the resultant node.  If there is already a
2084/// node of the specified opcode and operands, it returns that node instead of
2085/// the current one.
2086SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2087                                   MVT::ValueType VT) {
2088  SDVTList VTs = getVTList(VT);
2089  FoldingSetNodeID ID;
2090  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2091  void *IP = 0;
2092  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2093    return ON;
2094
2095  RemoveNodeFromCSEMaps(N);
2096
2097  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2098
2099  CSEMap.InsertNode(N, IP);
2100  return N;
2101}
2102
2103SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2104                                   MVT::ValueType VT, SDOperand Op1) {
2105  // If an identical node already exists, use it.
2106  SDVTList VTs = getVTList(VT);
2107  SDOperand Ops[] = { Op1 };
2108
2109  FoldingSetNodeID ID;
2110  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2111  void *IP = 0;
2112  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2113    return ON;
2114
2115  RemoveNodeFromCSEMaps(N);
2116  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2117  CSEMap.InsertNode(N, IP);
2118  return N;
2119}
2120
2121SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2122                                   MVT::ValueType VT, SDOperand Op1,
2123                                   SDOperand Op2) {
2124  // If an identical node already exists, use it.
2125  SDVTList VTs = getVTList(VT);
2126  SDOperand Ops[] = { Op1, Op2 };
2127
2128  FoldingSetNodeID ID;
2129  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2130  void *IP = 0;
2131  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2132    return ON;
2133
2134  RemoveNodeFromCSEMaps(N);
2135
2136  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2137
2138  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2139  return N;
2140}
2141
2142SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2143                                   MVT::ValueType VT, SDOperand Op1,
2144                                   SDOperand Op2, SDOperand Op3) {
2145  // If an identical node already exists, use it.
2146  SDVTList VTs = getVTList(VT);
2147  SDOperand Ops[] = { Op1, Op2, Op3 };
2148  FoldingSetNodeID ID;
2149  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2150  void *IP = 0;
2151  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2152    return ON;
2153
2154  RemoveNodeFromCSEMaps(N);
2155
2156  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2157
2158  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2159  return N;
2160}
2161
2162SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2163                                   MVT::ValueType VT, const SDOperand *Ops,
2164                                   unsigned NumOps) {
2165  // If an identical node already exists, use it.
2166  SDVTList VTs = getVTList(VT);
2167  FoldingSetNodeID ID;
2168  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2169  void *IP = 0;
2170  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2171    return ON;
2172
2173  RemoveNodeFromCSEMaps(N);
2174  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2175
2176  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2177  return N;
2178}
2179
2180SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2181                                   MVT::ValueType VT1, MVT::ValueType VT2,
2182                                   SDOperand Op1, SDOperand Op2) {
2183  SDVTList VTs = getVTList(VT1, VT2);
2184  FoldingSetNodeID ID;
2185  SDOperand Ops[] = { Op1, Op2 };
2186  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2187  void *IP = 0;
2188  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2189    return ON;
2190
2191  RemoveNodeFromCSEMaps(N);
2192  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2193  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2194  return N;
2195}
2196
2197SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2198                                   MVT::ValueType VT1, MVT::ValueType VT2,
2199                                   SDOperand Op1, SDOperand Op2,
2200                                   SDOperand Op3) {
2201  // If an identical node already exists, use it.
2202  SDVTList VTs = getVTList(VT1, VT2);
2203  SDOperand Ops[] = { Op1, Op2, Op3 };
2204  FoldingSetNodeID ID;
2205  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2206  void *IP = 0;
2207  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2208    return ON;
2209
2210  RemoveNodeFromCSEMaps(N);
2211
2212  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2213  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2214  return N;
2215}
2216
2217
2218/// getTargetNode - These are used for target selectors to create a new node
2219/// with specified return type(s), target opcode, and operands.
2220///
2221/// Note that getTargetNode returns the resultant node.  If there is already a
2222/// node of the specified opcode and operands, it returns that node instead of
2223/// the current one.
2224SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2225  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2226}
2227SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2228                                    SDOperand Op1) {
2229  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2230}
2231SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2232                                    SDOperand Op1, SDOperand Op2) {
2233  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2234}
2235SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2236                                    SDOperand Op1, SDOperand Op2,
2237                                    SDOperand Op3) {
2238  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2239}
2240SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2241                                    const SDOperand *Ops, unsigned NumOps) {
2242  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
2243}
2244SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2245                                    MVT::ValueType VT2, SDOperand Op1) {
2246  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2247  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
2248}
2249SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2250                                    MVT::ValueType VT2, SDOperand Op1,
2251                                    SDOperand Op2) {
2252  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2253  SDOperand Ops[] = { Op1, Op2 };
2254  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
2255}
2256SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2257                                    MVT::ValueType VT2, SDOperand Op1,
2258                                    SDOperand Op2, SDOperand Op3) {
2259  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2260  SDOperand Ops[] = { Op1, Op2, Op3 };
2261  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
2262}
2263SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2264                                    MVT::ValueType VT2,
2265                                    const SDOperand *Ops, unsigned NumOps) {
2266  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2267  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
2268}
2269SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2270                                    MVT::ValueType VT2, MVT::ValueType VT3,
2271                                    SDOperand Op1, SDOperand Op2) {
2272  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2273  SDOperand Ops[] = { Op1, Op2 };
2274  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
2275}
2276SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2277                                    MVT::ValueType VT2, MVT::ValueType VT3,
2278                                    const SDOperand *Ops, unsigned NumOps) {
2279  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
2280  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
2281}
2282
2283/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2284/// This can cause recursive merging of nodes in the DAG.
2285///
2286/// This version assumes From/To have a single result value.
2287///
2288void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2289                                      std::vector<SDNode*> *Deleted) {
2290  SDNode *From = FromN.Val, *To = ToN.Val;
2291  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2292         "Cannot replace with this method!");
2293  assert(From != To && "Cannot replace uses of with self");
2294
2295  while (!From->use_empty()) {
2296    // Process users until they are all gone.
2297    SDNode *U = *From->use_begin();
2298
2299    // This node is about to morph, remove its old self from the CSE maps.
2300    RemoveNodeFromCSEMaps(U);
2301
2302    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2303         I != E; ++I)
2304      if (I->Val == From) {
2305        From->removeUser(U);
2306        I->Val = To;
2307        To->addUser(U);
2308      }
2309
2310    // Now that we have modified U, add it back to the CSE maps.  If it already
2311    // exists there, recursively merge the results together.
2312    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2313      ReplaceAllUsesWith(U, Existing, Deleted);
2314      // U is now dead.
2315      if (Deleted) Deleted->push_back(U);
2316      DeleteNodeNotInCSEMaps(U);
2317    }
2318  }
2319}
2320
2321/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2322/// This can cause recursive merging of nodes in the DAG.
2323///
2324/// This version assumes From/To have matching types and numbers of result
2325/// values.
2326///
2327void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2328                                      std::vector<SDNode*> *Deleted) {
2329  assert(From != To && "Cannot replace uses of with self");
2330  assert(From->getNumValues() == To->getNumValues() &&
2331         "Cannot use this version of ReplaceAllUsesWith!");
2332  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2333    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2334    return;
2335  }
2336
2337  while (!From->use_empty()) {
2338    // Process users until they are all gone.
2339    SDNode *U = *From->use_begin();
2340
2341    // This node is about to morph, remove its old self from the CSE maps.
2342    RemoveNodeFromCSEMaps(U);
2343
2344    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2345         I != E; ++I)
2346      if (I->Val == From) {
2347        From->removeUser(U);
2348        I->Val = To;
2349        To->addUser(U);
2350      }
2351
2352    // Now that we have modified U, add it back to the CSE maps.  If it already
2353    // exists there, recursively merge the results together.
2354    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2355      ReplaceAllUsesWith(U, Existing, Deleted);
2356      // U is now dead.
2357      if (Deleted) Deleted->push_back(U);
2358      DeleteNodeNotInCSEMaps(U);
2359    }
2360  }
2361}
2362
2363/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2364/// This can cause recursive merging of nodes in the DAG.
2365///
2366/// This version can replace From with any result values.  To must match the
2367/// number and types of values returned by From.
2368void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2369                                      const SDOperand *To,
2370                                      std::vector<SDNode*> *Deleted) {
2371  if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
2372    // Degenerate case handled above.
2373    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
2374    return;
2375  }
2376
2377  while (!From->use_empty()) {
2378    // Process users until they are all gone.
2379    SDNode *U = *From->use_begin();
2380
2381    // This node is about to morph, remove its old self from the CSE maps.
2382    RemoveNodeFromCSEMaps(U);
2383
2384    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2385         I != E; ++I)
2386      if (I->Val == From) {
2387        const SDOperand &ToOp = To[I->ResNo];
2388        From->removeUser(U);
2389        *I = ToOp;
2390        ToOp.Val->addUser(U);
2391      }
2392
2393    // Now that we have modified U, add it back to the CSE maps.  If it already
2394    // exists there, recursively merge the results together.
2395    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2396      ReplaceAllUsesWith(U, Existing, Deleted);
2397      // U is now dead.
2398      if (Deleted) Deleted->push_back(U);
2399      DeleteNodeNotInCSEMaps(U);
2400    }
2401  }
2402}
2403
2404/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
2405/// uses of other values produced by From.Val alone.  The Deleted vector is
2406/// handled the same was as for ReplaceAllUsesWith.
2407void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
2408                                             std::vector<SDNode*> &Deleted) {
2409  assert(From != To && "Cannot replace a value with itself");
2410  // Handle the simple, trivial, case efficiently.
2411  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
2412    ReplaceAllUsesWith(From, To, &Deleted);
2413    return;
2414  }
2415
2416  // Get all of the users of From.Val.  We want these in a nice,
2417  // deterministically ordered and uniqued set, so we use a SmallSetVector.
2418  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
2419
2420  while (!Users.empty()) {
2421    // We know that this user uses some value of From.  If it is the right
2422    // value, update it.
2423    SDNode *User = Users.back();
2424    Users.pop_back();
2425
2426    for (SDOperand *Op = User->OperandList,
2427         *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
2428      if (*Op == From) {
2429        // Okay, we know this user needs to be updated.  Remove its old self
2430        // from the CSE maps.
2431        RemoveNodeFromCSEMaps(User);
2432
2433        // Update all operands that match "From".
2434        for (; Op != E; ++Op) {
2435          if (*Op == From) {
2436            From.Val->removeUser(User);
2437            *Op = To;
2438            To.Val->addUser(User);
2439          }
2440        }
2441
2442        // Now that we have modified User, add it back to the CSE maps.  If it
2443        // already exists there, recursively merge the results together.
2444        if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
2445          unsigned NumDeleted = Deleted.size();
2446          ReplaceAllUsesWith(User, Existing, &Deleted);
2447
2448          // User is now dead.
2449          Deleted.push_back(User);
2450          DeleteNodeNotInCSEMaps(User);
2451
2452          // We have to be careful here, because ReplaceAllUsesWith could have
2453          // deleted a user of From, which means there may be dangling pointers
2454          // in the "Users" setvector.  Scan over the deleted node pointers and
2455          // remove them from the setvector.
2456          for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
2457            Users.remove(Deleted[i]);
2458        }
2459        break;   // Exit the operand scanning loop.
2460      }
2461    }
2462  }
2463}
2464
2465
2466/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
2467/// their allnodes order. It returns the maximum id.
2468unsigned SelectionDAG::AssignNodeIds() {
2469  unsigned Id = 0;
2470  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
2471    SDNode *N = I;
2472    N->setNodeId(Id++);
2473  }
2474  return Id;
2475}
2476
2477/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
2478/// based on their topological order. It returns the maximum id and a vector
2479/// of the SDNodes* in assigned order by reference.
2480unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
2481  unsigned DAGSize = AllNodes.size();
2482  std::vector<unsigned> InDegree(DAGSize);
2483  std::vector<SDNode*> Sources;
2484
2485  // Use a two pass approach to avoid using a std::map which is slow.
2486  unsigned Id = 0;
2487  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
2488    SDNode *N = I;
2489    N->setNodeId(Id++);
2490    unsigned Degree = N->use_size();
2491    InDegree[N->getNodeId()] = Degree;
2492    if (Degree == 0)
2493      Sources.push_back(N);
2494  }
2495
2496  TopOrder.clear();
2497  while (!Sources.empty()) {
2498    SDNode *N = Sources.back();
2499    Sources.pop_back();
2500    TopOrder.push_back(N);
2501    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
2502      SDNode *P = I->Val;
2503      unsigned Degree = --InDegree[P->getNodeId()];
2504      if (Degree == 0)
2505        Sources.push_back(P);
2506    }
2507  }
2508
2509  // Second pass, assign the actual topological order as node ids.
2510  Id = 0;
2511  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
2512       TI != TE; ++TI)
2513    (*TI)->setNodeId(Id++);
2514
2515  return Id;
2516}
2517
2518
2519
2520//===----------------------------------------------------------------------===//
2521//                              SDNode Class
2522//===----------------------------------------------------------------------===//
2523
2524// Out-of-line virtual method to give class a home.
2525void SDNode::ANCHOR() {}
2526void UnarySDNode::ANCHOR() {}
2527void BinarySDNode::ANCHOR() {}
2528void TernarySDNode::ANCHOR() {}
2529void HandleSDNode::ANCHOR() {}
2530void StringSDNode::ANCHOR() {}
2531void ConstantSDNode::ANCHOR() {}
2532void ConstantFPSDNode::ANCHOR() {}
2533void GlobalAddressSDNode::ANCHOR() {}
2534void FrameIndexSDNode::ANCHOR() {}
2535void JumpTableSDNode::ANCHOR() {}
2536void ConstantPoolSDNode::ANCHOR() {}
2537void BasicBlockSDNode::ANCHOR() {}
2538void SrcValueSDNode::ANCHOR() {}
2539void RegisterSDNode::ANCHOR() {}
2540void ExternalSymbolSDNode::ANCHOR() {}
2541void CondCodeSDNode::ANCHOR() {}
2542void VTSDNode::ANCHOR() {}
2543void LoadSDNode::ANCHOR() {}
2544void StoreSDNode::ANCHOR() {}
2545
2546HandleSDNode::~HandleSDNode() {
2547  SDVTList VTs = { 0, 0 };
2548  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
2549}
2550
2551
2552/// Profile - Gather unique data for the node.
2553///
2554void SDNode::Profile(FoldingSetNodeID &ID) {
2555  AddNodeIDNode(ID, this);
2556}
2557
2558/// getValueTypeList - Return a pointer to the specified value type.
2559///
2560MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
2561  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
2562  VTs[VT] = VT;
2563  return &VTs[VT];
2564}
2565
2566/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2567/// indicated value.  This method ignores uses of other values defined by this
2568/// operation.
2569bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
2570  assert(Value < getNumValues() && "Bad value!");
2571
2572  // If there is only one value, this is easy.
2573  if (getNumValues() == 1)
2574    return use_size() == NUses;
2575  if (Uses.size() < NUses) return false;
2576
2577  SDOperand TheValue(const_cast<SDNode *>(this), Value);
2578
2579  SmallPtrSet<SDNode*, 32> UsersHandled;
2580
2581  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
2582    SDNode *User = *UI;
2583    if (User->getNumOperands() == 1 ||
2584        UsersHandled.insert(User))     // First time we've seen this?
2585      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2586        if (User->getOperand(i) == TheValue) {
2587          if (NUses == 0)
2588            return false;   // too many uses
2589          --NUses;
2590        }
2591  }
2592
2593  // Found exactly the right number of uses?
2594  return NUses == 0;
2595}
2596
2597
2598/// isOnlyUse - Return true if this node is the only use of N.
2599///
2600bool SDNode::isOnlyUse(SDNode *N) const {
2601  bool Seen = false;
2602  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2603    SDNode *User = *I;
2604    if (User == this)
2605      Seen = true;
2606    else
2607      return false;
2608  }
2609
2610  return Seen;
2611}
2612
2613/// isOperand - Return true if this node is an operand of N.
2614///
2615bool SDOperand::isOperand(SDNode *N) const {
2616  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2617    if (*this == N->getOperand(i))
2618      return true;
2619  return false;
2620}
2621
2622bool SDNode::isOperand(SDNode *N) const {
2623  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
2624    if (this == N->OperandList[i].Val)
2625      return true;
2626  return false;
2627}
2628
2629static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
2630                            SmallPtrSet<SDNode *, 32> &Visited) {
2631  if (found || !Visited.insert(N))
2632    return;
2633
2634  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
2635    SDNode *Op = N->getOperand(i).Val;
2636    if (Op == P) {
2637      found = true;
2638      return;
2639    }
2640    findPredecessor(Op, P, found, Visited);
2641  }
2642}
2643
2644/// isPredecessor - Return true if this node is a predecessor of N. This node
2645/// is either an operand of N or it can be reached by recursively traversing
2646/// up the operands.
2647/// NOTE: this is an expensive method. Use it carefully.
2648bool SDNode::isPredecessor(SDNode *N) const {
2649  SmallPtrSet<SDNode *, 32> Visited;
2650  bool found = false;
2651  findPredecessor(N, this, found, Visited);
2652  return found;
2653}
2654
2655uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
2656  assert(Num < NumOperands && "Invalid child # of SDNode!");
2657  return cast<ConstantSDNode>(OperandList[Num])->getValue();
2658}
2659
2660std::string SDNode::getOperationName(const SelectionDAG *G) const {
2661  switch (getOpcode()) {
2662  default:
2663    if (getOpcode() < ISD::BUILTIN_OP_END)
2664      return "<<Unknown DAG Node>>";
2665    else {
2666      if (G) {
2667        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2668          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
2669            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2670
2671        TargetLowering &TLI = G->getTargetLoweringInfo();
2672        const char *Name =
2673          TLI.getTargetNodeName(getOpcode());
2674        if (Name) return Name;
2675      }
2676
2677      return "<<Unknown Target Node>>";
2678    }
2679
2680  case ISD::PCMARKER:      return "PCMarker";
2681  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
2682  case ISD::SRCVALUE:      return "SrcValue";
2683  case ISD::EntryToken:    return "EntryToken";
2684  case ISD::TokenFactor:   return "TokenFactor";
2685  case ISD::AssertSext:    return "AssertSext";
2686  case ISD::AssertZext:    return "AssertZext";
2687
2688  case ISD::STRING:        return "String";
2689  case ISD::BasicBlock:    return "BasicBlock";
2690  case ISD::VALUETYPE:     return "ValueType";
2691  case ISD::Register:      return "Register";
2692
2693  case ISD::Constant:      return "Constant";
2694  case ISD::ConstantFP:    return "ConstantFP";
2695  case ISD::GlobalAddress: return "GlobalAddress";
2696  case ISD::FrameIndex:    return "FrameIndex";
2697  case ISD::JumpTable:     return "JumpTable";
2698  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
2699  case ISD::RETURNADDR: return "RETURNADDR";
2700  case ISD::FRAMEADDR: return "FRAMEADDR";
2701  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
2702  case ISD::EHSELECTION: return "EHSELECTION";
2703  case ISD::ConstantPool:  return "ConstantPool";
2704  case ISD::ExternalSymbol: return "ExternalSymbol";
2705  case ISD::INTRINSIC_WO_CHAIN: {
2706    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
2707    return Intrinsic::getName((Intrinsic::ID)IID);
2708  }
2709  case ISD::INTRINSIC_VOID:
2710  case ISD::INTRINSIC_W_CHAIN: {
2711    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
2712    return Intrinsic::getName((Intrinsic::ID)IID);
2713  }
2714
2715  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
2716  case ISD::TargetConstant: return "TargetConstant";
2717  case ISD::TargetConstantFP:return "TargetConstantFP";
2718  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2719  case ISD::TargetFrameIndex: return "TargetFrameIndex";
2720  case ISD::TargetJumpTable:  return "TargetJumpTable";
2721  case ISD::TargetConstantPool:  return "TargetConstantPool";
2722  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
2723
2724  case ISD::CopyToReg:     return "CopyToReg";
2725  case ISD::CopyFromReg:   return "CopyFromReg";
2726  case ISD::UNDEF:         return "undef";
2727  case ISD::MERGE_VALUES:  return "mergevalues";
2728  case ISD::INLINEASM:     return "inlineasm";
2729  case ISD::LABEL:         return "label";
2730  case ISD::HANDLENODE:    return "handlenode";
2731  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
2732  case ISD::CALL:          return "call";
2733
2734  // Unary operators
2735  case ISD::FABS:   return "fabs";
2736  case ISD::FNEG:   return "fneg";
2737  case ISD::FSQRT:  return "fsqrt";
2738  case ISD::FSIN:   return "fsin";
2739  case ISD::FCOS:   return "fcos";
2740  case ISD::FPOWI:  return "fpowi";
2741
2742  // Binary operators
2743  case ISD::ADD:    return "add";
2744  case ISD::SUB:    return "sub";
2745  case ISD::MUL:    return "mul";
2746  case ISD::MULHU:  return "mulhu";
2747  case ISD::MULHS:  return "mulhs";
2748  case ISD::SDIV:   return "sdiv";
2749  case ISD::UDIV:   return "udiv";
2750  case ISD::SREM:   return "srem";
2751  case ISD::UREM:   return "urem";
2752  case ISD::AND:    return "and";
2753  case ISD::OR:     return "or";
2754  case ISD::XOR:    return "xor";
2755  case ISD::SHL:    return "shl";
2756  case ISD::SRA:    return "sra";
2757  case ISD::SRL:    return "srl";
2758  case ISD::ROTL:   return "rotl";
2759  case ISD::ROTR:   return "rotr";
2760  case ISD::FADD:   return "fadd";
2761  case ISD::FSUB:   return "fsub";
2762  case ISD::FMUL:   return "fmul";
2763  case ISD::FDIV:   return "fdiv";
2764  case ISD::FREM:   return "frem";
2765  case ISD::FCOPYSIGN: return "fcopysign";
2766  case ISD::VADD:   return "vadd";
2767  case ISD::VSUB:   return "vsub";
2768  case ISD::VMUL:   return "vmul";
2769  case ISD::VSDIV:  return "vsdiv";
2770  case ISD::VUDIV:  return "vudiv";
2771  case ISD::VAND:   return "vand";
2772  case ISD::VOR:    return "vor";
2773  case ISD::VXOR:   return "vxor";
2774
2775  case ISD::SETCC:       return "setcc";
2776  case ISD::SELECT:      return "select";
2777  case ISD::SELECT_CC:   return "select_cc";
2778  case ISD::VSELECT:     return "vselect";
2779  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
2780  case ISD::VINSERT_VECTOR_ELT:  return "vinsert_vector_elt";
2781  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
2782  case ISD::VEXTRACT_VECTOR_ELT: return "vextract_vector_elt";
2783  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
2784  case ISD::VBUILD_VECTOR:       return "vbuild_vector";
2785  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
2786  case ISD::VVECTOR_SHUFFLE:     return "vvector_shuffle";
2787  case ISD::VBIT_CONVERT:        return "vbit_convert";
2788  case ISD::CARRY_FALSE:         return "carry_false";
2789  case ISD::ADDC:        return "addc";
2790  case ISD::ADDE:        return "adde";
2791  case ISD::SUBC:        return "subc";
2792  case ISD::SUBE:        return "sube";
2793  case ISD::SHL_PARTS:   return "shl_parts";
2794  case ISD::SRA_PARTS:   return "sra_parts";
2795  case ISD::SRL_PARTS:   return "srl_parts";
2796
2797  // Conversion operators.
2798  case ISD::SIGN_EXTEND: return "sign_extend";
2799  case ISD::ZERO_EXTEND: return "zero_extend";
2800  case ISD::ANY_EXTEND:  return "any_extend";
2801  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2802  case ISD::TRUNCATE:    return "truncate";
2803  case ISD::FP_ROUND:    return "fp_round";
2804  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2805  case ISD::FP_EXTEND:   return "fp_extend";
2806
2807  case ISD::SINT_TO_FP:  return "sint_to_fp";
2808  case ISD::UINT_TO_FP:  return "uint_to_fp";
2809  case ISD::FP_TO_SINT:  return "fp_to_sint";
2810  case ISD::FP_TO_UINT:  return "fp_to_uint";
2811  case ISD::BIT_CONVERT: return "bit_convert";
2812
2813    // Control flow instructions
2814  case ISD::BR:      return "br";
2815  case ISD::BRIND:   return "brind";
2816  case ISD::BR_JT:   return "br_jt";
2817  case ISD::BRCOND:  return "brcond";
2818  case ISD::BR_CC:   return "br_cc";
2819  case ISD::RET:     return "ret";
2820  case ISD::CALLSEQ_START:  return "callseq_start";
2821  case ISD::CALLSEQ_END:    return "callseq_end";
2822
2823    // Other operators
2824  case ISD::LOAD:               return "load";
2825  case ISD::STORE:              return "store";
2826  case ISD::VLOAD:              return "vload";
2827  case ISD::VAARG:              return "vaarg";
2828  case ISD::VACOPY:             return "vacopy";
2829  case ISD::VAEND:              return "vaend";
2830  case ISD::VASTART:            return "vastart";
2831  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2832  case ISD::EXTRACT_ELEMENT:    return "extract_element";
2833  case ISD::BUILD_PAIR:         return "build_pair";
2834  case ISD::STACKSAVE:          return "stacksave";
2835  case ISD::STACKRESTORE:       return "stackrestore";
2836
2837  // Block memory operations.
2838  case ISD::MEMSET:  return "memset";
2839  case ISD::MEMCPY:  return "memcpy";
2840  case ISD::MEMMOVE: return "memmove";
2841
2842  // Bit manipulation
2843  case ISD::BSWAP:   return "bswap";
2844  case ISD::CTPOP:   return "ctpop";
2845  case ISD::CTTZ:    return "cttz";
2846  case ISD::CTLZ:    return "ctlz";
2847
2848  // Debug info
2849  case ISD::LOCATION: return "location";
2850  case ISD::DEBUG_LOC: return "debug_loc";
2851
2852  case ISD::CONDCODE:
2853    switch (cast<CondCodeSDNode>(this)->get()) {
2854    default: assert(0 && "Unknown setcc condition!");
2855    case ISD::SETOEQ:  return "setoeq";
2856    case ISD::SETOGT:  return "setogt";
2857    case ISD::SETOGE:  return "setoge";
2858    case ISD::SETOLT:  return "setolt";
2859    case ISD::SETOLE:  return "setole";
2860    case ISD::SETONE:  return "setone";
2861
2862    case ISD::SETO:    return "seto";
2863    case ISD::SETUO:   return "setuo";
2864    case ISD::SETUEQ:  return "setue";
2865    case ISD::SETUGT:  return "setugt";
2866    case ISD::SETUGE:  return "setuge";
2867    case ISD::SETULT:  return "setult";
2868    case ISD::SETULE:  return "setule";
2869    case ISD::SETUNE:  return "setune";
2870
2871    case ISD::SETEQ:   return "seteq";
2872    case ISD::SETGT:   return "setgt";
2873    case ISD::SETGE:   return "setge";
2874    case ISD::SETLT:   return "setlt";
2875    case ISD::SETLE:   return "setle";
2876    case ISD::SETNE:   return "setne";
2877    }
2878  }
2879}
2880
2881const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
2882  switch (AM) {
2883  default:
2884    return "";
2885  case ISD::PRE_INC:
2886    return "<pre-inc>";
2887  case ISD::PRE_DEC:
2888    return "<pre-dec>";
2889  case ISD::POST_INC:
2890    return "<post-inc>";
2891  case ISD::POST_DEC:
2892    return "<post-dec>";
2893  }
2894}
2895
2896void SDNode::dump() const { dump(0); }
2897void SDNode::dump(const SelectionDAG *G) const {
2898  cerr << (void*)this << ": ";
2899
2900  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2901    if (i) cerr << ",";
2902    if (getValueType(i) == MVT::Other)
2903      cerr << "ch";
2904    else
2905      cerr << MVT::getValueTypeString(getValueType(i));
2906  }
2907  cerr << " = " << getOperationName(G);
2908
2909  cerr << " ";
2910  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2911    if (i) cerr << ", ";
2912    cerr << (void*)getOperand(i).Val;
2913    if (unsigned RN = getOperand(i).ResNo)
2914      cerr << ":" << RN;
2915  }
2916
2917  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
2918    cerr << "<" << CSDN->getValue() << ">";
2919  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
2920    cerr << "<" << CSDN->getValue() << ">";
2921  } else if (const GlobalAddressSDNode *GADN =
2922             dyn_cast<GlobalAddressSDNode>(this)) {
2923    int offset = GADN->getOffset();
2924    cerr << "<";
2925    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
2926    if (offset > 0)
2927      cerr << " + " << offset;
2928    else
2929      cerr << " " << offset;
2930  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
2931    cerr << "<" << FIDN->getIndex() << ">";
2932  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
2933    cerr << "<" << JTDN->getIndex() << ">";
2934  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
2935    int offset = CP->getOffset();
2936    if (CP->isMachineConstantPoolEntry())
2937      cerr << "<" << *CP->getMachineCPVal() << ">";
2938    else
2939      cerr << "<" << *CP->getConstVal() << ">";
2940    if (offset > 0)
2941      cerr << " + " << offset;
2942    else
2943      cerr << " " << offset;
2944  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
2945    cerr << "<";
2946    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
2947    if (LBB)
2948      cerr << LBB->getName() << " ";
2949    cerr << (const void*)BBDN->getBasicBlock() << ">";
2950  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
2951    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
2952      cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
2953    } else {
2954      cerr << " #" << R->getReg();
2955    }
2956  } else if (const ExternalSymbolSDNode *ES =
2957             dyn_cast<ExternalSymbolSDNode>(this)) {
2958    cerr << "'" << ES->getSymbol() << "'";
2959  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
2960    if (M->getValue())
2961      cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
2962    else
2963      cerr << "<null:" << M->getOffset() << ">";
2964  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
2965    cerr << ":" << getValueTypeString(N->getVT());
2966  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
2967    bool doExt = true;
2968    switch (LD->getExtensionType()) {
2969    default: doExt = false; break;
2970    case ISD::EXTLOAD:
2971      cerr << " <anyext ";
2972      break;
2973    case ISD::SEXTLOAD:
2974      cerr << " <sext ";
2975      break;
2976    case ISD::ZEXTLOAD:
2977      cerr << " <zext ";
2978      break;
2979    }
2980    if (doExt)
2981      cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
2982
2983    const char *AM = getIndexedModeName(LD->getAddressingMode());
2984    if (AM != "")
2985      cerr << " " << AM;
2986  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
2987    if (ST->isTruncatingStore())
2988      cerr << " <trunc "
2989           << MVT::getValueTypeString(ST->getStoredVT()) << ">";
2990
2991    const char *AM = getIndexedModeName(ST->getAddressingMode());
2992    if (AM != "")
2993      cerr << " " << AM;
2994  }
2995}
2996
2997static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
2998  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2999    if (N->getOperand(i).Val->hasOneUse())
3000      DumpNodes(N->getOperand(i).Val, indent+2, G);
3001    else
3002      cerr << "\n" << std::string(indent+2, ' ')
3003           << (void*)N->getOperand(i).Val << ": <multiple use>";
3004
3005
3006  cerr << "\n" << std::string(indent, ' ');
3007  N->dump(G);
3008}
3009
3010void SelectionDAG::dump() const {
3011  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
3012  std::vector<const SDNode*> Nodes;
3013  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
3014       I != E; ++I)
3015    Nodes.push_back(I);
3016
3017  std::sort(Nodes.begin(), Nodes.end());
3018
3019  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3020    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
3021      DumpNodes(Nodes[i], 2, this);
3022  }
3023
3024  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
3025
3026  cerr << "\n\n";
3027}
3028
3029const Type *ConstantPoolSDNode::getType() const {
3030  if (isMachineConstantPoolEntry())
3031    return Val.MachineCPVal->getType();
3032  return Val.ConstVal->getType();
3033}
3034