SelectionDAG.cpp revision ffe3612af4ba03269f9affd3d2552bdb78ed6824
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/Support/MathExtras.h"
23#include "llvm/Target/MRegisterInfo.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetLowering.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/ADT/SetVector.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/StringExtras.h"
32#include <algorithm>
33#include <cmath>
34using namespace llvm;
35
36/// makeVTList - Return an instance of the SDVTList struct initialized with the
37/// specified members.
38static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
39  SDVTList Res = {VTs, NumVTs};
40  return Res;
41}
42
43//===----------------------------------------------------------------------===//
44//                              ConstantFPSDNode Class
45//===----------------------------------------------------------------------===//
46
47/// isExactlyValue - We don't rely on operator== working on double values, as
48/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
49/// As such, this method can be used to do an exact bit-for-bit comparison of
50/// two floating point values.
51bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
52  return Value.bitwiseIsEqual(V);
53}
54
55bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
56                                           const APFloat& Val) {
57  // convert modifies in place, so make a copy.
58  APFloat Val2 = APFloat(Val);
59  switch (VT) {
60  default:
61    return false;         // These can't be represented as floating point!
62
63  // FIXME rounding mode needs to be more flexible
64  case MVT::f32:
65    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
66           Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==
67              APFloat::opOK;
68  case MVT::f64:
69    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
70           &Val2.getSemantics() == &APFloat::IEEEdouble ||
71           Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==
72             APFloat::opOK;
73  // TODO: Figure out how to test if we can use a shorter type instead!
74  case MVT::f80:
75  case MVT::f128:
76  case MVT::ppcf128:
77    return true;
78  }
79}
80
81//===----------------------------------------------------------------------===//
82//                              ISD Namespace
83//===----------------------------------------------------------------------===//
84
85/// isBuildVectorAllOnes - Return true if the specified node is a
86/// BUILD_VECTOR where all of the elements are ~0 or undef.
87bool ISD::isBuildVectorAllOnes(const SDNode *N) {
88  // Look through a bit convert.
89  if (N->getOpcode() == ISD::BIT_CONVERT)
90    N = N->getOperand(0).Val;
91
92  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
93
94  unsigned i = 0, e = N->getNumOperands();
95
96  // Skip over all of the undef values.
97  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
98    ++i;
99
100  // Do not accept an all-undef vector.
101  if (i == e) return false;
102
103  // Do not accept build_vectors that aren't all constants or which have non-~0
104  // elements.
105  SDOperand NotZero = N->getOperand(i);
106  if (isa<ConstantSDNode>(NotZero)) {
107    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
108      return false;
109  } else if (isa<ConstantFPSDNode>(NotZero)) {
110    MVT::ValueType VT = NotZero.getValueType();
111    if (VT== MVT::f64) {
112      if (((cast<ConstantFPSDNode>(NotZero)->getValueAPF().
113                  convertToAPInt().getZExtValue())) != (uint64_t)-1)
114        return false;
115    } else {
116      if ((uint32_t)cast<ConstantFPSDNode>(NotZero)->
117                      getValueAPF().convertToAPInt().getZExtValue() !=
118          (uint32_t)-1)
119        return false;
120    }
121  } else
122    return false;
123
124  // Okay, we have at least one ~0 value, check to see if the rest match or are
125  // undefs.
126  for (++i; i != e; ++i)
127    if (N->getOperand(i) != NotZero &&
128        N->getOperand(i).getOpcode() != ISD::UNDEF)
129      return false;
130  return true;
131}
132
133
134/// isBuildVectorAllZeros - Return true if the specified node is a
135/// BUILD_VECTOR where all of the elements are 0 or undef.
136bool ISD::isBuildVectorAllZeros(const SDNode *N) {
137  // Look through a bit convert.
138  if (N->getOpcode() == ISD::BIT_CONVERT)
139    N = N->getOperand(0).Val;
140
141  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
142
143  unsigned i = 0, e = N->getNumOperands();
144
145  // Skip over all of the undef values.
146  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
147    ++i;
148
149  // Do not accept an all-undef vector.
150  if (i == e) return false;
151
152  // Do not accept build_vectors that aren't all constants or which have non-~0
153  // elements.
154  SDOperand Zero = N->getOperand(i);
155  if (isa<ConstantSDNode>(Zero)) {
156    if (!cast<ConstantSDNode>(Zero)->isNullValue())
157      return false;
158  } else if (isa<ConstantFPSDNode>(Zero)) {
159    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
160      return false;
161  } else
162    return false;
163
164  // Okay, we have at least one ~0 value, check to see if the rest match or are
165  // undefs.
166  for (++i; i != e; ++i)
167    if (N->getOperand(i) != Zero &&
168        N->getOperand(i).getOpcode() != ISD::UNDEF)
169      return false;
170  return true;
171}
172
173/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
174/// when given the operation for (X op Y).
175ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
176  // To perform this operation, we just need to swap the L and G bits of the
177  // operation.
178  unsigned OldL = (Operation >> 2) & 1;
179  unsigned OldG = (Operation >> 1) & 1;
180  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
181                       (OldL << 1) |       // New G bit
182                       (OldG << 2));        // New L bit.
183}
184
185/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
186/// 'op' is a valid SetCC operation.
187ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
188  unsigned Operation = Op;
189  if (isInteger)
190    Operation ^= 7;   // Flip L, G, E bits, but not U.
191  else
192    Operation ^= 15;  // Flip all of the condition bits.
193  if (Operation > ISD::SETTRUE2)
194    Operation &= ~8;     // Don't let N and U bits get set.
195  return ISD::CondCode(Operation);
196}
197
198
199/// isSignedOp - For an integer comparison, return 1 if the comparison is a
200/// signed operation and 2 if the result is an unsigned comparison.  Return zero
201/// if the operation does not depend on the sign of the input (setne and seteq).
202static int isSignedOp(ISD::CondCode Opcode) {
203  switch (Opcode) {
204  default: assert(0 && "Illegal integer setcc operation!");
205  case ISD::SETEQ:
206  case ISD::SETNE: return 0;
207  case ISD::SETLT:
208  case ISD::SETLE:
209  case ISD::SETGT:
210  case ISD::SETGE: return 1;
211  case ISD::SETULT:
212  case ISD::SETULE:
213  case ISD::SETUGT:
214  case ISD::SETUGE: return 2;
215  }
216}
217
218/// getSetCCOrOperation - Return the result of a logical OR between different
219/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
220/// returns SETCC_INVALID if it is not possible to represent the resultant
221/// comparison.
222ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
223                                       bool isInteger) {
224  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
225    // Cannot fold a signed integer setcc with an unsigned integer setcc.
226    return ISD::SETCC_INVALID;
227
228  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
229
230  // If the N and U bits get set then the resultant comparison DOES suddenly
231  // care about orderedness, and is true when ordered.
232  if (Op > ISD::SETTRUE2)
233    Op &= ~16;     // Clear the U bit if the N bit is set.
234
235  // Canonicalize illegal integer setcc's.
236  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
237    Op = ISD::SETNE;
238
239  return ISD::CondCode(Op);
240}
241
242/// getSetCCAndOperation - Return the result of a logical AND between different
243/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
244/// function returns zero if it is not possible to represent the resultant
245/// comparison.
246ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
247                                        bool isInteger) {
248  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
249    // Cannot fold a signed setcc with an unsigned setcc.
250    return ISD::SETCC_INVALID;
251
252  // Combine all of the condition bits.
253  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
254
255  // Canonicalize illegal integer setcc's.
256  if (isInteger) {
257    switch (Result) {
258    default: break;
259    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
260    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
261    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
262    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
263    }
264  }
265
266  return Result;
267}
268
269const TargetMachine &SelectionDAG::getTarget() const {
270  return TLI.getTargetMachine();
271}
272
273//===----------------------------------------------------------------------===//
274//                           SDNode Profile Support
275//===----------------------------------------------------------------------===//
276
277/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
278///
279static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
280  ID.AddInteger(OpC);
281}
282
283/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
284/// solely with their pointer.
285void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
286  ID.AddPointer(VTList.VTs);
287}
288
289/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
290///
291static void AddNodeIDOperands(FoldingSetNodeID &ID,
292                              const SDOperand *Ops, unsigned NumOps) {
293  for (; NumOps; --NumOps, ++Ops) {
294    ID.AddPointer(Ops->Val);
295    ID.AddInteger(Ops->ResNo);
296  }
297}
298
299static void AddNodeIDNode(FoldingSetNodeID &ID,
300                          unsigned short OpC, SDVTList VTList,
301                          const SDOperand *OpList, unsigned N) {
302  AddNodeIDOpcode(ID, OpC);
303  AddNodeIDValueTypes(ID, VTList);
304  AddNodeIDOperands(ID, OpList, N);
305}
306
307/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
308/// data.
309static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
310  AddNodeIDOpcode(ID, N->getOpcode());
311  // Add the return value info.
312  AddNodeIDValueTypes(ID, N->getVTList());
313  // Add the operand info.
314  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
315
316  // Handle SDNode leafs with special info.
317  switch (N->getOpcode()) {
318  default: break;  // Normal nodes don't need extra info.
319  case ISD::TargetConstant:
320  case ISD::Constant:
321    ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
322    break;
323  case ISD::TargetConstantFP:
324  case ISD::ConstantFP: {
325    ID.AddAPFloat(cast<ConstantFPSDNode>(N)->getValueAPF());
326    break;
327  }
328  case ISD::TargetGlobalAddress:
329  case ISD::GlobalAddress:
330  case ISD::TargetGlobalTLSAddress:
331  case ISD::GlobalTLSAddress: {
332    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
333    ID.AddPointer(GA->getGlobal());
334    ID.AddInteger(GA->getOffset());
335    break;
336  }
337  case ISD::BasicBlock:
338    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
339    break;
340  case ISD::Register:
341    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
342    break;
343  case ISD::SRCVALUE: {
344    SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
345    ID.AddPointer(SV->getValue());
346    ID.AddInteger(SV->getOffset());
347    break;
348  }
349  case ISD::FrameIndex:
350  case ISD::TargetFrameIndex:
351    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
352    break;
353  case ISD::JumpTable:
354  case ISD::TargetJumpTable:
355    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
356    break;
357  case ISD::ConstantPool:
358  case ISD::TargetConstantPool: {
359    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
360    ID.AddInteger(CP->getAlignment());
361    ID.AddInteger(CP->getOffset());
362    if (CP->isMachineConstantPoolEntry())
363      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
364    else
365      ID.AddPointer(CP->getConstVal());
366    break;
367  }
368  case ISD::LOAD: {
369    LoadSDNode *LD = cast<LoadSDNode>(N);
370    ID.AddInteger(LD->getAddressingMode());
371    ID.AddInteger(LD->getExtensionType());
372    ID.AddInteger((unsigned int)(LD->getLoadedVT()));
373    ID.AddPointer(LD->getSrcValue());
374    ID.AddInteger(LD->getSrcValueOffset());
375    ID.AddInteger(LD->getAlignment());
376    ID.AddInteger(LD->isVolatile());
377    break;
378  }
379  case ISD::STORE: {
380    StoreSDNode *ST = cast<StoreSDNode>(N);
381    ID.AddInteger(ST->getAddressingMode());
382    ID.AddInteger(ST->isTruncatingStore());
383    ID.AddInteger((unsigned int)(ST->getStoredVT()));
384    ID.AddPointer(ST->getSrcValue());
385    ID.AddInteger(ST->getSrcValueOffset());
386    ID.AddInteger(ST->getAlignment());
387    ID.AddInteger(ST->isVolatile());
388    break;
389  }
390  }
391}
392
393//===----------------------------------------------------------------------===//
394//                              SelectionDAG Class
395//===----------------------------------------------------------------------===//
396
397/// RemoveDeadNodes - This method deletes all unreachable nodes in the
398/// SelectionDAG.
399void SelectionDAG::RemoveDeadNodes() {
400  // Create a dummy node (which is not added to allnodes), that adds a reference
401  // to the root node, preventing it from being deleted.
402  HandleSDNode Dummy(getRoot());
403
404  SmallVector<SDNode*, 128> DeadNodes;
405
406  // Add all obviously-dead nodes to the DeadNodes worklist.
407  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
408    if (I->use_empty())
409      DeadNodes.push_back(I);
410
411  // Process the worklist, deleting the nodes and adding their uses to the
412  // worklist.
413  while (!DeadNodes.empty()) {
414    SDNode *N = DeadNodes.back();
415    DeadNodes.pop_back();
416
417    // Take the node out of the appropriate CSE map.
418    RemoveNodeFromCSEMaps(N);
419
420    // Next, brutally remove the operand list.  This is safe to do, as there are
421    // no cycles in the graph.
422    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
423      SDNode *Operand = I->Val;
424      Operand->removeUser(N);
425
426      // Now that we removed this operand, see if there are no uses of it left.
427      if (Operand->use_empty())
428        DeadNodes.push_back(Operand);
429    }
430    if (N->OperandsNeedDelete)
431      delete[] N->OperandList;
432    N->OperandList = 0;
433    N->NumOperands = 0;
434
435    // Finally, remove N itself.
436    AllNodes.erase(N);
437  }
438
439  // If the root changed (e.g. it was a dead load, update the root).
440  setRoot(Dummy.getValue());
441}
442
443void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
444  SmallVector<SDNode*, 16> DeadNodes;
445  DeadNodes.push_back(N);
446
447  // Process the worklist, deleting the nodes and adding their uses to the
448  // worklist.
449  while (!DeadNodes.empty()) {
450    SDNode *N = DeadNodes.back();
451    DeadNodes.pop_back();
452
453    // Take the node out of the appropriate CSE map.
454    RemoveNodeFromCSEMaps(N);
455
456    // Next, brutally remove the operand list.  This is safe to do, as there are
457    // no cycles in the graph.
458    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
459      SDNode *Operand = I->Val;
460      Operand->removeUser(N);
461
462      // Now that we removed this operand, see if there are no uses of it left.
463      if (Operand->use_empty())
464        DeadNodes.push_back(Operand);
465    }
466    if (N->OperandsNeedDelete)
467      delete[] N->OperandList;
468    N->OperandList = 0;
469    N->NumOperands = 0;
470
471    // Finally, remove N itself.
472    Deleted.push_back(N);
473    AllNodes.erase(N);
474  }
475}
476
477void SelectionDAG::DeleteNode(SDNode *N) {
478  assert(N->use_empty() && "Cannot delete a node that is not dead!");
479
480  // First take this out of the appropriate CSE map.
481  RemoveNodeFromCSEMaps(N);
482
483  // Finally, remove uses due to operands of this node, remove from the
484  // AllNodes list, and delete the node.
485  DeleteNodeNotInCSEMaps(N);
486}
487
488void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
489
490  // Remove it from the AllNodes list.
491  AllNodes.remove(N);
492
493  // Drop all of the operands and decrement used nodes use counts.
494  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
495    I->Val->removeUser(N);
496  if (N->OperandsNeedDelete)
497    delete[] N->OperandList;
498  N->OperandList = 0;
499  N->NumOperands = 0;
500
501  delete N;
502}
503
504/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
505/// correspond to it.  This is useful when we're about to delete or repurpose
506/// the node.  We don't want future request for structurally identical nodes
507/// to return N anymore.
508void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
509  bool Erased = false;
510  switch (N->getOpcode()) {
511  case ISD::HANDLENODE: return;  // noop.
512  case ISD::STRING:
513    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
514    break;
515  case ISD::CONDCODE:
516    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
517           "Cond code doesn't exist!");
518    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
519    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
520    break;
521  case ISD::ExternalSymbol:
522    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
523    break;
524  case ISD::TargetExternalSymbol:
525    Erased =
526      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
527    break;
528  case ISD::VALUETYPE:
529    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
530    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
531    break;
532  default:
533    // Remove it from the CSE Map.
534    Erased = CSEMap.RemoveNode(N);
535    break;
536  }
537#ifndef NDEBUG
538  // Verify that the node was actually in one of the CSE maps, unless it has a
539  // flag result (which cannot be CSE'd) or is one of the special cases that are
540  // not subject to CSE.
541  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
542      !N->isTargetOpcode()) {
543    N->dump(this);
544    cerr << "\n";
545    assert(0 && "Node is not in map!");
546  }
547#endif
548}
549
550/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
551/// has been taken out and modified in some way.  If the specified node already
552/// exists in the CSE maps, do not modify the maps, but return the existing node
553/// instead.  If it doesn't exist, add it and return null.
554///
555SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
556  assert(N->getNumOperands() && "This is a leaf node!");
557  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
558    return 0;    // Never add these nodes.
559
560  // Check that remaining values produced are not flags.
561  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
562    if (N->getValueType(i) == MVT::Flag)
563      return 0;   // Never CSE anything that produces a flag.
564
565  SDNode *New = CSEMap.GetOrInsertNode(N);
566  if (New != N) return New;  // Node already existed.
567  return 0;
568}
569
570/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
571/// were replaced with those specified.  If this node is never memoized,
572/// return null, otherwise return a pointer to the slot it would take.  If a
573/// node already exists with these operands, the slot will be non-null.
574SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
575                                           void *&InsertPos) {
576  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
577    return 0;    // Never add these nodes.
578
579  // Check that remaining values produced are not flags.
580  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
581    if (N->getValueType(i) == MVT::Flag)
582      return 0;   // Never CSE anything that produces a flag.
583
584  SDOperand Ops[] = { Op };
585  FoldingSetNodeID ID;
586  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
587  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
588}
589
590/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
591/// were replaced with those specified.  If this node is never memoized,
592/// return null, otherwise return a pointer to the slot it would take.  If a
593/// node already exists with these operands, the slot will be non-null.
594SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
595                                           SDOperand Op1, SDOperand Op2,
596                                           void *&InsertPos) {
597  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
598    return 0;    // Never add these nodes.
599
600  // Check that remaining values produced are not flags.
601  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
602    if (N->getValueType(i) == MVT::Flag)
603      return 0;   // Never CSE anything that produces a flag.
604
605  SDOperand Ops[] = { Op1, Op2 };
606  FoldingSetNodeID ID;
607  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
608  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
609}
610
611
612/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
613/// were replaced with those specified.  If this node is never memoized,
614/// return null, otherwise return a pointer to the slot it would take.  If a
615/// node already exists with these operands, the slot will be non-null.
616SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
617                                           const SDOperand *Ops,unsigned NumOps,
618                                           void *&InsertPos) {
619  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
620    return 0;    // Never add these nodes.
621
622  // Check that remaining values produced are not flags.
623  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
624    if (N->getValueType(i) == MVT::Flag)
625      return 0;   // Never CSE anything that produces a flag.
626
627  FoldingSetNodeID ID;
628  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
629
630  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
631    ID.AddInteger(LD->getAddressingMode());
632    ID.AddInteger(LD->getExtensionType());
633    ID.AddInteger((unsigned int)(LD->getLoadedVT()));
634    ID.AddPointer(LD->getSrcValue());
635    ID.AddInteger(LD->getSrcValueOffset());
636    ID.AddInteger(LD->getAlignment());
637    ID.AddInteger(LD->isVolatile());
638  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
639    ID.AddInteger(ST->getAddressingMode());
640    ID.AddInteger(ST->isTruncatingStore());
641    ID.AddInteger((unsigned int)(ST->getStoredVT()));
642    ID.AddPointer(ST->getSrcValue());
643    ID.AddInteger(ST->getSrcValueOffset());
644    ID.AddInteger(ST->getAlignment());
645    ID.AddInteger(ST->isVolatile());
646  }
647
648  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
649}
650
651
652SelectionDAG::~SelectionDAG() {
653  while (!AllNodes.empty()) {
654    SDNode *N = AllNodes.begin();
655    N->SetNextInBucket(0);
656    if (N->OperandsNeedDelete)
657      delete [] N->OperandList;
658    N->OperandList = 0;
659    N->NumOperands = 0;
660    AllNodes.pop_front();
661  }
662}
663
664SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
665  if (Op.getValueType() == VT) return Op;
666  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
667  return getNode(ISD::AND, Op.getValueType(), Op,
668                 getConstant(Imm, Op.getValueType()));
669}
670
671SDOperand SelectionDAG::getString(const std::string &Val) {
672  StringSDNode *&N = StringNodes[Val];
673  if (!N) {
674    N = new StringSDNode(Val);
675    AllNodes.push_back(N);
676  }
677  return SDOperand(N, 0);
678}
679
680SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
681  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
682  assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
683
684  // Mask out any bits that are not valid for this constant.
685  Val &= MVT::getIntVTBitMask(VT);
686
687  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
688  FoldingSetNodeID ID;
689  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
690  ID.AddInteger(Val);
691  void *IP = 0;
692  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
693    return SDOperand(E, 0);
694  SDNode *N = new ConstantSDNode(isT, Val, VT);
695  CSEMap.InsertNode(N, IP);
696  AllNodes.push_back(N);
697  return SDOperand(N, 0);
698}
699
700SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
701                                      bool isTarget) {
702  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
703
704  MVT::ValueType EltVT =
705    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
706
707  // Do the map lookup using the actual bit pattern for the floating point
708  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
709  // we don't have issues with SNANs.
710  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
711  FoldingSetNodeID ID;
712  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
713  ID.AddAPFloat(V);
714  void *IP = 0;
715  SDNode *N = NULL;
716  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
717    if (!MVT::isVector(VT))
718      return SDOperand(N, 0);
719  if (!N) {
720    N = new ConstantFPSDNode(isTarget, V, EltVT);
721    CSEMap.InsertNode(N, IP);
722    AllNodes.push_back(N);
723  }
724
725  SDOperand Result(N, 0);
726  if (MVT::isVector(VT)) {
727    SmallVector<SDOperand, 8> Ops;
728    Ops.assign(MVT::getVectorNumElements(VT), Result);
729    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
730  }
731  return Result;
732}
733
734SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
735                                      bool isTarget) {
736  MVT::ValueType EltVT =
737    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
738  if (EltVT==MVT::f32)
739    return getConstantFP(APFloat((float)Val), VT, isTarget);
740  else
741    return getConstantFP(APFloat(Val), VT, isTarget);
742}
743
744SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
745                                         MVT::ValueType VT, int Offset,
746                                         bool isTargetGA) {
747  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
748  unsigned Opc;
749  if (GVar && GVar->isThreadLocal())
750    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
751  else
752    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
753  FoldingSetNodeID ID;
754  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
755  ID.AddPointer(GV);
756  ID.AddInteger(Offset);
757  void *IP = 0;
758  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
759   return SDOperand(E, 0);
760  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
761  CSEMap.InsertNode(N, IP);
762  AllNodes.push_back(N);
763  return SDOperand(N, 0);
764}
765
766SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
767                                      bool isTarget) {
768  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
769  FoldingSetNodeID ID;
770  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
771  ID.AddInteger(FI);
772  void *IP = 0;
773  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
774    return SDOperand(E, 0);
775  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
776  CSEMap.InsertNode(N, IP);
777  AllNodes.push_back(N);
778  return SDOperand(N, 0);
779}
780
781SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
782  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
783  FoldingSetNodeID ID;
784  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
785  ID.AddInteger(JTI);
786  void *IP = 0;
787  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
788    return SDOperand(E, 0);
789  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
790  CSEMap.InsertNode(N, IP);
791  AllNodes.push_back(N);
792  return SDOperand(N, 0);
793}
794
795SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
796                                        unsigned Alignment, int Offset,
797                                        bool isTarget) {
798  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
799  FoldingSetNodeID ID;
800  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
801  ID.AddInteger(Alignment);
802  ID.AddInteger(Offset);
803  ID.AddPointer(C);
804  void *IP = 0;
805  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
806    return SDOperand(E, 0);
807  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
808  CSEMap.InsertNode(N, IP);
809  AllNodes.push_back(N);
810  return SDOperand(N, 0);
811}
812
813
814SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
815                                        MVT::ValueType VT,
816                                        unsigned Alignment, int Offset,
817                                        bool isTarget) {
818  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
819  FoldingSetNodeID ID;
820  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
821  ID.AddInteger(Alignment);
822  ID.AddInteger(Offset);
823  C->AddSelectionDAGCSEId(ID);
824  void *IP = 0;
825  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
826    return SDOperand(E, 0);
827  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
828  CSEMap.InsertNode(N, IP);
829  AllNodes.push_back(N);
830  return SDOperand(N, 0);
831}
832
833
834SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
835  FoldingSetNodeID ID;
836  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
837  ID.AddPointer(MBB);
838  void *IP = 0;
839  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
840    return SDOperand(E, 0);
841  SDNode *N = new BasicBlockSDNode(MBB);
842  CSEMap.InsertNode(N, IP);
843  AllNodes.push_back(N);
844  return SDOperand(N, 0);
845}
846
847SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
848  if ((unsigned)VT >= ValueTypeNodes.size())
849    ValueTypeNodes.resize(VT+1);
850  if (ValueTypeNodes[VT] == 0) {
851    ValueTypeNodes[VT] = new VTSDNode(VT);
852    AllNodes.push_back(ValueTypeNodes[VT]);
853  }
854
855  return SDOperand(ValueTypeNodes[VT], 0);
856}
857
858SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
859  SDNode *&N = ExternalSymbols[Sym];
860  if (N) return SDOperand(N, 0);
861  N = new ExternalSymbolSDNode(false, Sym, VT);
862  AllNodes.push_back(N);
863  return SDOperand(N, 0);
864}
865
866SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
867                                                MVT::ValueType VT) {
868  SDNode *&N = TargetExternalSymbols[Sym];
869  if (N) return SDOperand(N, 0);
870  N = new ExternalSymbolSDNode(true, Sym, VT);
871  AllNodes.push_back(N);
872  return SDOperand(N, 0);
873}
874
875SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
876  if ((unsigned)Cond >= CondCodeNodes.size())
877    CondCodeNodes.resize(Cond+1);
878
879  if (CondCodeNodes[Cond] == 0) {
880    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
881    AllNodes.push_back(CondCodeNodes[Cond]);
882  }
883  return SDOperand(CondCodeNodes[Cond], 0);
884}
885
886SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
887  FoldingSetNodeID ID;
888  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
889  ID.AddInteger(RegNo);
890  void *IP = 0;
891  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
892    return SDOperand(E, 0);
893  SDNode *N = new RegisterSDNode(RegNo, VT);
894  CSEMap.InsertNode(N, IP);
895  AllNodes.push_back(N);
896  return SDOperand(N, 0);
897}
898
899SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
900  assert((!V || isa<PointerType>(V->getType())) &&
901         "SrcValue is not a pointer?");
902
903  FoldingSetNodeID ID;
904  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
905  ID.AddPointer(V);
906  ID.AddInteger(Offset);
907  void *IP = 0;
908  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
909    return SDOperand(E, 0);
910  SDNode *N = new SrcValueSDNode(V, Offset);
911  CSEMap.InsertNode(N, IP);
912  AllNodes.push_back(N);
913  return SDOperand(N, 0);
914}
915
916SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
917                                  SDOperand N2, ISD::CondCode Cond) {
918  // These setcc operations always fold.
919  switch (Cond) {
920  default: break;
921  case ISD::SETFALSE:
922  case ISD::SETFALSE2: return getConstant(0, VT);
923  case ISD::SETTRUE:
924  case ISD::SETTRUE2:  return getConstant(1, VT);
925
926  case ISD::SETOEQ:
927  case ISD::SETOGT:
928  case ISD::SETOGE:
929  case ISD::SETOLT:
930  case ISD::SETOLE:
931  case ISD::SETONE:
932  case ISD::SETO:
933  case ISD::SETUO:
934  case ISD::SETUEQ:
935  case ISD::SETUNE:
936    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
937    break;
938  }
939
940  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
941    uint64_t C2 = N2C->getValue();
942    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
943      uint64_t C1 = N1C->getValue();
944
945      // Sign extend the operands if required
946      if (ISD::isSignedIntSetCC(Cond)) {
947        C1 = N1C->getSignExtended();
948        C2 = N2C->getSignExtended();
949      }
950
951      switch (Cond) {
952      default: assert(0 && "Unknown integer setcc!");
953      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
954      case ISD::SETNE:  return getConstant(C1 != C2, VT);
955      case ISD::SETULT: return getConstant(C1 <  C2, VT);
956      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
957      case ISD::SETULE: return getConstant(C1 <= C2, VT);
958      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
959      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
960      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
961      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
962      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
963      }
964    }
965  }
966  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
967    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
968
969      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
970      switch (Cond) {
971      default: break;
972      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
973                          return getNode(ISD::UNDEF, VT);
974                        // fall through
975      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
976      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
977                          return getNode(ISD::UNDEF, VT);
978                        // fall through
979      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
980                                           R==APFloat::cmpLessThan, VT);
981      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
982                          return getNode(ISD::UNDEF, VT);
983                        // fall through
984      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
985      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
986                          return getNode(ISD::UNDEF, VT);
987                        // fall through
988      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
989      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
990                          return getNode(ISD::UNDEF, VT);
991                        // fall through
992      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
993                                           R==APFloat::cmpEqual, VT);
994      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
995                          return getNode(ISD::UNDEF, VT);
996                        // fall through
997      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
998                                           R==APFloat::cmpEqual, VT);
999      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1000      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1001      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1002                                           R==APFloat::cmpEqual, VT);
1003      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1004      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1005                                           R==APFloat::cmpLessThan, VT);
1006      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1007                                           R==APFloat::cmpUnordered, VT);
1008      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1009      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1010      }
1011    } else {
1012      // Ensure that the constant occurs on the RHS.
1013      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1014    }
1015
1016  // Could not fold it.
1017  return SDOperand();
1018}
1019
1020/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1021/// this predicate to simplify operations downstream.  Mask is known to be zero
1022/// for bits that V cannot have.
1023bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
1024                                     unsigned Depth) const {
1025  // The masks are not wide enough to represent this type!  Should use APInt.
1026  if (Op.getValueType() == MVT::i128)
1027    return false;
1028
1029  uint64_t KnownZero, KnownOne;
1030  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1031  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1032  return (KnownZero & Mask) == Mask;
1033}
1034
1035/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1036/// known to be either zero or one and return them in the KnownZero/KnownOne
1037/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1038/// processing.
1039void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
1040                                     uint64_t &KnownZero, uint64_t &KnownOne,
1041                                     unsigned Depth) const {
1042  KnownZero = KnownOne = 0;   // Don't know anything.
1043  if (Depth == 6 || Mask == 0)
1044    return;  // Limit search depth.
1045
1046  // The masks are not wide enough to represent this type!  Should use APInt.
1047  if (Op.getValueType() == MVT::i128)
1048    return;
1049
1050  uint64_t KnownZero2, KnownOne2;
1051
1052  switch (Op.getOpcode()) {
1053  case ISD::Constant:
1054    // We know all of the bits for a constant!
1055    KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
1056    KnownZero = ~KnownOne & Mask;
1057    return;
1058  case ISD::AND:
1059    // If either the LHS or the RHS are Zero, the result is zero.
1060    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1061    Mask &= ~KnownZero;
1062    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1063    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1064    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1065
1066    // Output known-1 bits are only known if set in both the LHS & RHS.
1067    KnownOne &= KnownOne2;
1068    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1069    KnownZero |= KnownZero2;
1070    return;
1071  case ISD::OR:
1072    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1073    Mask &= ~KnownOne;
1074    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1075    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1076    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1077
1078    // Output known-0 bits are only known if clear in both the LHS & RHS.
1079    KnownZero &= KnownZero2;
1080    // Output known-1 are known to be set if set in either the LHS | RHS.
1081    KnownOne |= KnownOne2;
1082    return;
1083  case ISD::XOR: {
1084    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1085    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1086    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1087    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1088
1089    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1090    uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1091    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1092    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1093    KnownZero = KnownZeroOut;
1094    return;
1095  }
1096  case ISD::SELECT:
1097    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1098    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1099    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1100    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1101
1102    // Only known if known in both the LHS and RHS.
1103    KnownOne &= KnownOne2;
1104    KnownZero &= KnownZero2;
1105    return;
1106  case ISD::SELECT_CC:
1107    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1108    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1109    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1110    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1111
1112    // Only known if known in both the LHS and RHS.
1113    KnownOne &= KnownOne2;
1114    KnownZero &= KnownZero2;
1115    return;
1116  case ISD::SETCC:
1117    // If we know the result of a setcc has the top bits zero, use this info.
1118    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
1119      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
1120    return;
1121  case ISD::SHL:
1122    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1123    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1124      ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
1125                        KnownZero, KnownOne, Depth+1);
1126      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1127      KnownZero <<= SA->getValue();
1128      KnownOne  <<= SA->getValue();
1129      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
1130    }
1131    return;
1132  case ISD::SRL:
1133    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1134    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1135      MVT::ValueType VT = Op.getValueType();
1136      unsigned ShAmt = SA->getValue();
1137
1138      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1139      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
1140                        KnownZero, KnownOne, Depth+1);
1141      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1142      KnownZero &= TypeMask;
1143      KnownOne  &= TypeMask;
1144      KnownZero >>= ShAmt;
1145      KnownOne  >>= ShAmt;
1146
1147      uint64_t HighBits = (1ULL << ShAmt)-1;
1148      HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
1149      KnownZero |= HighBits;  // High bits known zero.
1150    }
1151    return;
1152  case ISD::SRA:
1153    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1154      MVT::ValueType VT = Op.getValueType();
1155      unsigned ShAmt = SA->getValue();
1156
1157      // Compute the new bits that are at the top now.
1158      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1159
1160      uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
1161      // If any of the demanded bits are produced by the sign extension, we also
1162      // demand the input sign bit.
1163      uint64_t HighBits = (1ULL << ShAmt)-1;
1164      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
1165      if (HighBits & Mask)
1166        InDemandedMask |= MVT::getIntVTSignBit(VT);
1167
1168      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1169                        Depth+1);
1170      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1171      KnownZero &= TypeMask;
1172      KnownOne  &= TypeMask;
1173      KnownZero >>= ShAmt;
1174      KnownOne  >>= ShAmt;
1175
1176      // Handle the sign bits.
1177      uint64_t SignBit = MVT::getIntVTSignBit(VT);
1178      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
1179
1180      if (KnownZero & SignBit) {
1181        KnownZero |= HighBits;  // New bits are known zero.
1182      } else if (KnownOne & SignBit) {
1183        KnownOne  |= HighBits;  // New bits are known one.
1184      }
1185    }
1186    return;
1187  case ISD::SIGN_EXTEND_INREG: {
1188    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1189
1190    // Sign extension.  Compute the demanded bits in the result that are not
1191    // present in the input.
1192    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
1193
1194    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
1195    int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
1196
1197    // If the sign extended bits are demanded, we know that the sign
1198    // bit is demanded.
1199    if (NewBits)
1200      InputDemandedBits |= InSignBit;
1201
1202    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1203                      KnownZero, KnownOne, Depth+1);
1204    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1205
1206    // If the sign bit of the input is known set or clear, then we know the
1207    // top bits of the result.
1208    if (KnownZero & InSignBit) {          // Input sign bit known clear
1209      KnownZero |= NewBits;
1210      KnownOne  &= ~NewBits;
1211    } else if (KnownOne & InSignBit) {    // Input sign bit known set
1212      KnownOne  |= NewBits;
1213      KnownZero &= ~NewBits;
1214    } else {                              // Input sign bit unknown
1215      KnownZero &= ~NewBits;
1216      KnownOne  &= ~NewBits;
1217    }
1218    return;
1219  }
1220  case ISD::CTTZ:
1221  case ISD::CTLZ:
1222  case ISD::CTPOP: {
1223    MVT::ValueType VT = Op.getValueType();
1224    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
1225    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
1226    KnownOne  = 0;
1227    return;
1228  }
1229  case ISD::LOAD: {
1230    if (ISD::isZEXTLoad(Op.Val)) {
1231      LoadSDNode *LD = cast<LoadSDNode>(Op);
1232      MVT::ValueType VT = LD->getLoadedVT();
1233      KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
1234    }
1235    return;
1236  }
1237  case ISD::ZERO_EXTEND: {
1238    uint64_t InMask  = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
1239    uint64_t NewBits = (~InMask) & Mask;
1240    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1241                      KnownOne, Depth+1);
1242    KnownZero |= NewBits & Mask;
1243    KnownOne  &= ~NewBits;
1244    return;
1245  }
1246  case ISD::SIGN_EXTEND: {
1247    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1248    unsigned InBits    = MVT::getSizeInBits(InVT);
1249    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
1250    uint64_t InSignBit = 1ULL << (InBits-1);
1251    uint64_t NewBits   = (~InMask) & Mask;
1252    uint64_t InDemandedBits = Mask & InMask;
1253
1254    // If any of the sign extended bits are demanded, we know that the sign
1255    // bit is demanded.
1256    if (NewBits & Mask)
1257      InDemandedBits |= InSignBit;
1258
1259    ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1260                      KnownOne, Depth+1);
1261    // If the sign bit is known zero or one, the  top bits match.
1262    if (KnownZero & InSignBit) {
1263      KnownZero |= NewBits;
1264      KnownOne  &= ~NewBits;
1265    } else if (KnownOne & InSignBit) {
1266      KnownOne  |= NewBits;
1267      KnownZero &= ~NewBits;
1268    } else {   // Otherwise, top bits aren't known.
1269      KnownOne  &= ~NewBits;
1270      KnownZero &= ~NewBits;
1271    }
1272    return;
1273  }
1274  case ISD::ANY_EXTEND: {
1275    MVT::ValueType VT = Op.getOperand(0).getValueType();
1276    ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
1277                      KnownZero, KnownOne, Depth+1);
1278    return;
1279  }
1280  case ISD::TRUNCATE: {
1281    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1282    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1283    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
1284    KnownZero &= OutMask;
1285    KnownOne &= OutMask;
1286    break;
1287  }
1288  case ISD::AssertZext: {
1289    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1290    uint64_t InMask = MVT::getIntVTBitMask(VT);
1291    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1292                      KnownOne, Depth+1);
1293    KnownZero |= (~InMask) & Mask;
1294    return;
1295  }
1296  case ISD::ADD: {
1297    // If either the LHS or the RHS are Zero, the result is zero.
1298    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1299    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1300    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1301    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1302
1303    // Output known-0 bits are known if clear or set in both the low clear bits
1304    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1305    // low 3 bits clear.
1306    uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
1307                                     CountTrailingZeros_64(~KnownZero2));
1308
1309    KnownZero = (1ULL << KnownZeroOut) - 1;
1310    KnownOne = 0;
1311    return;
1312  }
1313  case ISD::SUB: {
1314    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1315    if (!CLHS) return;
1316
1317    // We know that the top bits of C-X are clear if X contains less bits
1318    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1319    // positive if we can prove that X is >= 0 and < 16.
1320    MVT::ValueType VT = CLHS->getValueType(0);
1321    if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) {  // sign bit clear
1322      unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
1323      uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
1324      MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
1325      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1326
1327      // If all of the MaskV bits are known to be zero, then we know the output
1328      // top bits are zero, because we now know that the output is from [0-C].
1329      if ((KnownZero & MaskV) == MaskV) {
1330        unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
1331        KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask;  // Top bits known zero.
1332        KnownOne = 0;   // No one bits known.
1333      } else {
1334        KnownZero = KnownOne = 0;  // Otherwise, nothing known.
1335      }
1336    }
1337    return;
1338  }
1339  default:
1340    // Allow the target to implement this method for its nodes.
1341    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1342  case ISD::INTRINSIC_WO_CHAIN:
1343  case ISD::INTRINSIC_W_CHAIN:
1344  case ISD::INTRINSIC_VOID:
1345      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1346    }
1347    return;
1348  }
1349}
1350
1351/// ComputeNumSignBits - Return the number of times the sign bit of the
1352/// register is replicated into the other bits.  We know that at least 1 bit
1353/// is always equal to the sign bit (itself), but other cases can give us
1354/// information.  For example, immediately after an "SRA X, 2", we know that
1355/// the top 3 bits are all equal to each other, so we return 3.
1356unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1357  MVT::ValueType VT = Op.getValueType();
1358  assert(MVT::isInteger(VT) && "Invalid VT!");
1359  unsigned VTBits = MVT::getSizeInBits(VT);
1360  unsigned Tmp, Tmp2;
1361
1362  if (Depth == 6)
1363    return 1;  // Limit search depth.
1364
1365  switch (Op.getOpcode()) {
1366  default: break;
1367  case ISD::AssertSext:
1368    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1369    return VTBits-Tmp+1;
1370  case ISD::AssertZext:
1371    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1372    return VTBits-Tmp;
1373
1374  case ISD::Constant: {
1375    uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1376    // If negative, invert the bits, then look at it.
1377    if (Val & MVT::getIntVTSignBit(VT))
1378      Val = ~Val;
1379
1380    // Shift the bits so they are the leading bits in the int64_t.
1381    Val <<= 64-VTBits;
1382
1383    // Return # leading zeros.  We use 'min' here in case Val was zero before
1384    // shifting.  We don't want to return '64' as for an i32 "0".
1385    return std::min(VTBits, CountLeadingZeros_64(Val));
1386  }
1387
1388  case ISD::SIGN_EXTEND:
1389    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1390    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1391
1392  case ISD::SIGN_EXTEND_INREG:
1393    // Max of the input and what this extends.
1394    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1395    Tmp = VTBits-Tmp+1;
1396
1397    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1398    return std::max(Tmp, Tmp2);
1399
1400  case ISD::SRA:
1401    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1402    // SRA X, C   -> adds C sign bits.
1403    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1404      Tmp += C->getValue();
1405      if (Tmp > VTBits) Tmp = VTBits;
1406    }
1407    return Tmp;
1408  case ISD::SHL:
1409    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1410      // shl destroys sign bits.
1411      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1412      if (C->getValue() >= VTBits ||      // Bad shift.
1413          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1414      return Tmp - C->getValue();
1415    }
1416    break;
1417  case ISD::AND:
1418  case ISD::OR:
1419  case ISD::XOR:    // NOT is handled here.
1420    // Logical binary ops preserve the number of sign bits.
1421    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1422    if (Tmp == 1) return 1;  // Early out.
1423    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1424    return std::min(Tmp, Tmp2);
1425
1426  case ISD::SELECT:
1427    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1428    if (Tmp == 1) return 1;  // Early out.
1429    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1430    return std::min(Tmp, Tmp2);
1431
1432  case ISD::SETCC:
1433    // If setcc returns 0/-1, all bits are sign bits.
1434    if (TLI.getSetCCResultContents() ==
1435        TargetLowering::ZeroOrNegativeOneSetCCResult)
1436      return VTBits;
1437    break;
1438  case ISD::ROTL:
1439  case ISD::ROTR:
1440    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1441      unsigned RotAmt = C->getValue() & (VTBits-1);
1442
1443      // Handle rotate right by N like a rotate left by 32-N.
1444      if (Op.getOpcode() == ISD::ROTR)
1445        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1446
1447      // If we aren't rotating out all of the known-in sign bits, return the
1448      // number that are left.  This handles rotl(sext(x), 1) for example.
1449      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1450      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1451    }
1452    break;
1453  case ISD::ADD:
1454    // Add can have at most one carry bit.  Thus we know that the output
1455    // is, at worst, one more bit than the inputs.
1456    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1457    if (Tmp == 1) return 1;  // Early out.
1458
1459    // Special case decrementing a value (ADD X, -1):
1460    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1461      if (CRHS->isAllOnesValue()) {
1462        uint64_t KnownZero, KnownOne;
1463        uint64_t Mask = MVT::getIntVTBitMask(VT);
1464        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1465
1466        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1467        // sign bits set.
1468        if ((KnownZero|1) == Mask)
1469          return VTBits;
1470
1471        // If we are subtracting one from a positive number, there is no carry
1472        // out of the result.
1473        if (KnownZero & MVT::getIntVTSignBit(VT))
1474          return Tmp;
1475      }
1476
1477    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1478    if (Tmp2 == 1) return 1;
1479      return std::min(Tmp, Tmp2)-1;
1480    break;
1481
1482  case ISD::SUB:
1483    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1484    if (Tmp2 == 1) return 1;
1485
1486    // Handle NEG.
1487    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1488      if (CLHS->getValue() == 0) {
1489        uint64_t KnownZero, KnownOne;
1490        uint64_t Mask = MVT::getIntVTBitMask(VT);
1491        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1492        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1493        // sign bits set.
1494        if ((KnownZero|1) == Mask)
1495          return VTBits;
1496
1497        // If the input is known to be positive (the sign bit is known clear),
1498        // the output of the NEG has the same number of sign bits as the input.
1499        if (KnownZero & MVT::getIntVTSignBit(VT))
1500          return Tmp2;
1501
1502        // Otherwise, we treat this like a SUB.
1503      }
1504
1505    // Sub can have at most one carry bit.  Thus we know that the output
1506    // is, at worst, one more bit than the inputs.
1507    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1508    if (Tmp == 1) return 1;  // Early out.
1509      return std::min(Tmp, Tmp2)-1;
1510    break;
1511  case ISD::TRUNCATE:
1512    // FIXME: it's tricky to do anything useful for this, but it is an important
1513    // case for targets like X86.
1514    break;
1515  }
1516
1517  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1518  if (Op.getOpcode() == ISD::LOAD) {
1519    LoadSDNode *LD = cast<LoadSDNode>(Op);
1520    unsigned ExtType = LD->getExtensionType();
1521    switch (ExtType) {
1522    default: break;
1523    case ISD::SEXTLOAD:    // '17' bits known
1524      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1525      return VTBits-Tmp+1;
1526    case ISD::ZEXTLOAD:    // '16' bits known
1527      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1528      return VTBits-Tmp;
1529    }
1530  }
1531
1532  // Allow the target to implement this method for its nodes.
1533  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1534      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1535      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1536      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1537    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1538    if (NumBits > 1) return NumBits;
1539  }
1540
1541  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1542  // use this information.
1543  uint64_t KnownZero, KnownOne;
1544  uint64_t Mask = MVT::getIntVTBitMask(VT);
1545  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1546
1547  uint64_t SignBit = MVT::getIntVTSignBit(VT);
1548  if (KnownZero & SignBit) {        // SignBit is 0
1549    Mask = KnownZero;
1550  } else if (KnownOne & SignBit) {  // SignBit is 1;
1551    Mask = KnownOne;
1552  } else {
1553    // Nothing known.
1554    return 1;
1555  }
1556
1557  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1558  // the number of identical bits in the top of the input value.
1559  Mask ^= ~0ULL;
1560  Mask <<= 64-VTBits;
1561  // Return # leading zeros.  We use 'min' here in case Val was zero before
1562  // shifting.  We don't want to return '64' as for an i32 "0".
1563  return std::min(VTBits, CountLeadingZeros_64(Mask));
1564}
1565
1566
1567/// getNode - Gets or creates the specified node.
1568///
1569SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1570  FoldingSetNodeID ID;
1571  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1572  void *IP = 0;
1573  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1574    return SDOperand(E, 0);
1575  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1576  CSEMap.InsertNode(N, IP);
1577
1578  AllNodes.push_back(N);
1579  return SDOperand(N, 0);
1580}
1581
1582SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1583                                SDOperand Operand) {
1584  unsigned Tmp1;
1585  // Constant fold unary operations with an integer constant operand.
1586  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1587    uint64_t Val = C->getValue();
1588    switch (Opcode) {
1589    default: break;
1590    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1591    case ISD::ANY_EXTEND:
1592    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1593    case ISD::TRUNCATE:    return getConstant(Val, VT);
1594    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
1595    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
1596    case ISD::BIT_CONVERT:
1597      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1598        return getConstantFP(BitsToFloat(Val), VT);
1599      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1600        return getConstantFP(BitsToDouble(Val), VT);
1601      break;
1602    case ISD::BSWAP:
1603      switch(VT) {
1604      default: assert(0 && "Invalid bswap!"); break;
1605      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1606      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1607      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1608      }
1609      break;
1610    case ISD::CTPOP:
1611      switch(VT) {
1612      default: assert(0 && "Invalid ctpop!"); break;
1613      case MVT::i1: return getConstant(Val != 0, VT);
1614      case MVT::i8:
1615        Tmp1 = (unsigned)Val & 0xFF;
1616        return getConstant(CountPopulation_32(Tmp1), VT);
1617      case MVT::i16:
1618        Tmp1 = (unsigned)Val & 0xFFFF;
1619        return getConstant(CountPopulation_32(Tmp1), VT);
1620      case MVT::i32:
1621        return getConstant(CountPopulation_32((unsigned)Val), VT);
1622      case MVT::i64:
1623        return getConstant(CountPopulation_64(Val), VT);
1624      }
1625    case ISD::CTLZ:
1626      switch(VT) {
1627      default: assert(0 && "Invalid ctlz!"); break;
1628      case MVT::i1: return getConstant(Val == 0, VT);
1629      case MVT::i8:
1630        Tmp1 = (unsigned)Val & 0xFF;
1631        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1632      case MVT::i16:
1633        Tmp1 = (unsigned)Val & 0xFFFF;
1634        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1635      case MVT::i32:
1636        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1637      case MVT::i64:
1638        return getConstant(CountLeadingZeros_64(Val), VT);
1639      }
1640    case ISD::CTTZ:
1641      switch(VT) {
1642      default: assert(0 && "Invalid cttz!"); break;
1643      case MVT::i1: return getConstant(Val == 0, VT);
1644      case MVT::i8:
1645        Tmp1 = (unsigned)Val | 0x100;
1646        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1647      case MVT::i16:
1648        Tmp1 = (unsigned)Val | 0x10000;
1649        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1650      case MVT::i32:
1651        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1652      case MVT::i64:
1653        return getConstant(CountTrailingZeros_64(Val), VT);
1654      }
1655    }
1656  }
1657
1658  // Constant fold unary operations with a floating point constant operand.
1659  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1660    APFloat V = C->getValueAPF();    // make copy
1661    switch (Opcode) {
1662    case ISD::FNEG:
1663      V.changeSign();
1664      return getConstantFP(V, VT);
1665    case ISD::FABS:
1666      V.clearSign();
1667      return getConstantFP(V, VT);
1668    case ISD::FP_ROUND:
1669    case ISD::FP_EXTEND:
1670      // This can return overflow, underflow, or inexact; we don't care.
1671      // FIXME need to be more flexible about rounding mode.
1672      (void) V.convert(VT==MVT::f32 ? APFloat::IEEEsingle :
1673                                      APFloat::IEEEdouble,
1674                       APFloat::rmNearestTiesToEven);
1675      return getConstantFP(V, VT);
1676    case ISD::FP_TO_SINT:
1677    case ISD::FP_TO_UINT: {
1678      integerPart x;
1679      assert(integerPartWidth >= 64);
1680      // FIXME need to be more flexible about rounding mode.
1681      APFloat::opStatus s = V.convertToInteger(&x, 64U,
1682                            Opcode==ISD::FP_TO_SINT,
1683                            APFloat::rmTowardZero);
1684      if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1685        break;
1686      return getConstant(x, VT);
1687    }
1688    case ISD::BIT_CONVERT:
1689      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1690        return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1691      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1692        return getConstant(V.convertToAPInt().getZExtValue(), VT);
1693      break;
1694    }
1695  }
1696
1697  unsigned OpOpcode = Operand.Val->getOpcode();
1698  switch (Opcode) {
1699  case ISD::TokenFactor:
1700    return Operand;         // Factor of one node?  No factor.
1701  case ISD::FP_ROUND:
1702  case ISD::FP_EXTEND:
1703    assert(MVT::isFloatingPoint(VT) &&
1704           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1705    break;
1706  case ISD::SIGN_EXTEND:
1707    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1708           "Invalid SIGN_EXTEND!");
1709    if (Operand.getValueType() == VT) return Operand;   // noop extension
1710    assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1711    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1712      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1713    break;
1714  case ISD::ZERO_EXTEND:
1715    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1716           "Invalid ZERO_EXTEND!");
1717    if (Operand.getValueType() == VT) return Operand;   // noop extension
1718    assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1719    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1720      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1721    break;
1722  case ISD::ANY_EXTEND:
1723    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1724           "Invalid ANY_EXTEND!");
1725    if (Operand.getValueType() == VT) return Operand;   // noop extension
1726    assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1727    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1728      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1729      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1730    break;
1731  case ISD::TRUNCATE:
1732    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1733           "Invalid TRUNCATE!");
1734    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1735    assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1736    if (OpOpcode == ISD::TRUNCATE)
1737      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1738    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1739             OpOpcode == ISD::ANY_EXTEND) {
1740      // If the source is smaller than the dest, we still need an extend.
1741      if (Operand.Val->getOperand(0).getValueType() < VT)
1742        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1743      else if (Operand.Val->getOperand(0).getValueType() > VT)
1744        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1745      else
1746        return Operand.Val->getOperand(0);
1747    }
1748    break;
1749  case ISD::BIT_CONVERT:
1750    // Basic sanity checking.
1751    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1752           && "Cannot BIT_CONVERT between types of different sizes!");
1753    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1754    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1755      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1756    if (OpOpcode == ISD::UNDEF)
1757      return getNode(ISD::UNDEF, VT);
1758    break;
1759  case ISD::SCALAR_TO_VECTOR:
1760    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1761           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1762           "Illegal SCALAR_TO_VECTOR node!");
1763    break;
1764  case ISD::FNEG:
1765    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1766      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1767                     Operand.Val->getOperand(0));
1768    if (OpOpcode == ISD::FNEG)  // --X -> X
1769      return Operand.Val->getOperand(0);
1770    break;
1771  case ISD::FABS:
1772    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1773      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1774    break;
1775  }
1776
1777  SDNode *N;
1778  SDVTList VTs = getVTList(VT);
1779  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1780    FoldingSetNodeID ID;
1781    SDOperand Ops[1] = { Operand };
1782    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1783    void *IP = 0;
1784    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1785      return SDOperand(E, 0);
1786    N = new UnarySDNode(Opcode, VTs, Operand);
1787    CSEMap.InsertNode(N, IP);
1788  } else {
1789    N = new UnarySDNode(Opcode, VTs, Operand);
1790  }
1791  AllNodes.push_back(N);
1792  return SDOperand(N, 0);
1793}
1794
1795
1796
1797SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1798                                SDOperand N1, SDOperand N2) {
1799#ifndef NDEBUG
1800  switch (Opcode) {
1801  case ISD::TokenFactor:
1802    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1803           N2.getValueType() == MVT::Other && "Invalid token factor!");
1804    break;
1805  case ISD::AND:
1806  case ISD::OR:
1807  case ISD::XOR:
1808  case ISD::UDIV:
1809  case ISD::UREM:
1810  case ISD::MULHU:
1811  case ISD::MULHS:
1812    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1813    // fall through
1814  case ISD::ADD:
1815  case ISD::SUB:
1816  case ISD::MUL:
1817  case ISD::SDIV:
1818  case ISD::SREM:
1819    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1820    // fall through.
1821  case ISD::FADD:
1822  case ISD::FSUB:
1823  case ISD::FMUL:
1824  case ISD::FDIV:
1825  case ISD::FREM:
1826    assert(N1.getValueType() == N2.getValueType() &&
1827           N1.getValueType() == VT && "Binary operator types must match!");
1828    break;
1829  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1830    assert(N1.getValueType() == VT &&
1831           MVT::isFloatingPoint(N1.getValueType()) &&
1832           MVT::isFloatingPoint(N2.getValueType()) &&
1833           "Invalid FCOPYSIGN!");
1834    break;
1835  case ISD::SHL:
1836  case ISD::SRA:
1837  case ISD::SRL:
1838  case ISD::ROTL:
1839  case ISD::ROTR:
1840    assert(VT == N1.getValueType() &&
1841           "Shift operators return type must be the same as their first arg");
1842    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1843           VT != MVT::i1 && "Shifts only work on integers");
1844    break;
1845  case ISD::FP_ROUND_INREG: {
1846    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1847    assert(VT == N1.getValueType() && "Not an inreg round!");
1848    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1849           "Cannot FP_ROUND_INREG integer types");
1850    assert(EVT <= VT && "Not rounding down!");
1851    break;
1852  }
1853  case ISD::AssertSext:
1854  case ISD::AssertZext:
1855  case ISD::SIGN_EXTEND_INREG: {
1856    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1857    assert(VT == N1.getValueType() && "Not an inreg extend!");
1858    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1859           "Cannot *_EXTEND_INREG FP types");
1860    assert(EVT <= VT && "Not extending!");
1861  }
1862
1863  default: break;
1864  }
1865#endif
1866
1867  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1868  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1869  if (N1C) {
1870    if (Opcode == ISD::SIGN_EXTEND_INREG) {
1871      int64_t Val = N1C->getValue();
1872      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1873      Val <<= 64-FromBits;
1874      Val >>= 64-FromBits;
1875      return getConstant(Val, VT);
1876    }
1877
1878    if (N2C) {
1879      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1880      switch (Opcode) {
1881      case ISD::ADD: return getConstant(C1 + C2, VT);
1882      case ISD::SUB: return getConstant(C1 - C2, VT);
1883      case ISD::MUL: return getConstant(C1 * C2, VT);
1884      case ISD::UDIV:
1885        if (C2) return getConstant(C1 / C2, VT);
1886        break;
1887      case ISD::UREM :
1888        if (C2) return getConstant(C1 % C2, VT);
1889        break;
1890      case ISD::SDIV :
1891        if (C2) return getConstant(N1C->getSignExtended() /
1892                                   N2C->getSignExtended(), VT);
1893        break;
1894      case ISD::SREM :
1895        if (C2) return getConstant(N1C->getSignExtended() %
1896                                   N2C->getSignExtended(), VT);
1897        break;
1898      case ISD::AND  : return getConstant(C1 & C2, VT);
1899      case ISD::OR   : return getConstant(C1 | C2, VT);
1900      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1901      case ISD::SHL  : return getConstant(C1 << C2, VT);
1902      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1903      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1904      case ISD::ROTL :
1905        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1906                           VT);
1907      case ISD::ROTR :
1908        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1909                           VT);
1910      default: break;
1911      }
1912    } else {      // Cannonicalize constant to RHS if commutative
1913      if (isCommutativeBinOp(Opcode)) {
1914        std::swap(N1C, N2C);
1915        std::swap(N1, N2);
1916      }
1917    }
1918  }
1919
1920  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1921  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1922  if (N1CFP) {
1923    if (N2CFP) {
1924      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
1925      APFloat::opStatus s;
1926      switch (Opcode) {
1927      case ISD::FADD:
1928        s = V1.add(V2, APFloat::rmNearestTiesToEven);
1929        if (s!=APFloat::opInvalidOp)
1930          return getConstantFP(V1, VT);
1931        break;
1932      case ISD::FSUB:
1933        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
1934        if (s!=APFloat::opInvalidOp)
1935          return getConstantFP(V1, VT);
1936        break;
1937      case ISD::FMUL:
1938        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
1939        if (s!=APFloat::opInvalidOp)
1940          return getConstantFP(V1, VT);
1941        break;
1942      case ISD::FDIV:
1943        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
1944        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
1945          return getConstantFP(V1, VT);
1946        break;
1947      case ISD::FREM :
1948        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
1949        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
1950          return getConstantFP(V1, VT);
1951        break;
1952      case ISD::FCOPYSIGN:
1953        V1.copySign(V2);
1954        return getConstantFP(V1, VT);
1955      default: break;
1956      }
1957    } else {      // Cannonicalize constant to RHS if commutative
1958      if (isCommutativeBinOp(Opcode)) {
1959        std::swap(N1CFP, N2CFP);
1960        std::swap(N1, N2);
1961      }
1962    }
1963  }
1964
1965  // Canonicalize an UNDEF to the RHS, even over a constant.
1966  if (N1.getOpcode() == ISD::UNDEF) {
1967    if (isCommutativeBinOp(Opcode)) {
1968      std::swap(N1, N2);
1969    } else {
1970      switch (Opcode) {
1971      case ISD::FP_ROUND_INREG:
1972      case ISD::SIGN_EXTEND_INREG:
1973      case ISD::SUB:
1974      case ISD::FSUB:
1975      case ISD::FDIV:
1976      case ISD::FREM:
1977      case ISD::SRA:
1978        return N1;     // fold op(undef, arg2) -> undef
1979      case ISD::UDIV:
1980      case ISD::SDIV:
1981      case ISD::UREM:
1982      case ISD::SREM:
1983      case ISD::SRL:
1984      case ISD::SHL:
1985        if (!MVT::isVector(VT))
1986          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
1987        // For vectors, we can't easily build an all zero vector, just return
1988        // the LHS.
1989        return N2;
1990      }
1991    }
1992  }
1993
1994  // Fold a bunch of operators when the RHS is undef.
1995  if (N2.getOpcode() == ISD::UNDEF) {
1996    switch (Opcode) {
1997    case ISD::ADD:
1998    case ISD::ADDC:
1999    case ISD::ADDE:
2000    case ISD::SUB:
2001    case ISD::FADD:
2002    case ISD::FSUB:
2003    case ISD::FMUL:
2004    case ISD::FDIV:
2005    case ISD::FREM:
2006    case ISD::UDIV:
2007    case ISD::SDIV:
2008    case ISD::UREM:
2009    case ISD::SREM:
2010    case ISD::XOR:
2011      return N2;       // fold op(arg1, undef) -> undef
2012    case ISD::MUL:
2013    case ISD::AND:
2014    case ISD::SRL:
2015    case ISD::SHL:
2016      if (!MVT::isVector(VT))
2017        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2018      // For vectors, we can't easily build an all zero vector, just return
2019      // the LHS.
2020      return N1;
2021    case ISD::OR:
2022      if (!MVT::isVector(VT))
2023        return getConstant(MVT::getIntVTBitMask(VT), VT);
2024      // For vectors, we can't easily build an all one vector, just return
2025      // the LHS.
2026      return N1;
2027    case ISD::SRA:
2028      return N1;
2029    }
2030  }
2031
2032  // Fold operations.
2033  switch (Opcode) {
2034  case ISD::TokenFactor:
2035    // Fold trivial token factors.
2036    if (N1.getOpcode() == ISD::EntryToken) return N2;
2037    if (N2.getOpcode() == ISD::EntryToken) return N1;
2038    break;
2039
2040  case ISD::AND:
2041    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2042    // worth handling here.
2043    if (N2C && N2C->getValue() == 0)
2044      return N2;
2045    break;
2046  case ISD::OR:
2047  case ISD::XOR:
2048    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
2049    // worth handling here.
2050    if (N2C && N2C->getValue() == 0)
2051      return N1;
2052    break;
2053  case ISD::FP_ROUND_INREG:
2054    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2055    break;
2056  case ISD::SIGN_EXTEND_INREG: {
2057    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2058    if (EVT == VT) return N1;  // Not actually extending
2059    break;
2060  }
2061  case ISD::EXTRACT_VECTOR_ELT:
2062    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2063
2064    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2065    // expanding copies of large vectors from registers.
2066    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2067        N1.getNumOperands() > 0) {
2068      unsigned Factor =
2069        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2070      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2071                     N1.getOperand(N2C->getValue() / Factor),
2072                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2073    }
2074
2075    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2076    // expanding large vector constants.
2077    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2078      return N1.getOperand(N2C->getValue());
2079
2080    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2081    // operations are lowered to scalars.
2082    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2083      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2084        if (IEC == N2C)
2085          return N1.getOperand(1);
2086        else
2087          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2088      }
2089    break;
2090  case ISD::EXTRACT_ELEMENT:
2091    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2092
2093    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2094    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2095    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2096    if (N1.getOpcode() == ISD::BUILD_PAIR)
2097      return N1.getOperand(N2C->getValue());
2098
2099    // EXTRACT_ELEMENT of a constant int is also very common.
2100    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2101      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2102      return getConstant(C->getValue() >> Shift, VT);
2103    }
2104    break;
2105
2106  // FIXME: figure out how to safely handle things like
2107  // int foo(int x) { return 1 << (x & 255); }
2108  // int bar() { return foo(256); }
2109#if 0
2110  case ISD::SHL:
2111  case ISD::SRL:
2112  case ISD::SRA:
2113    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2114        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
2115      return getNode(Opcode, VT, N1, N2.getOperand(0));
2116    else if (N2.getOpcode() == ISD::AND)
2117      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
2118        // If the and is only masking out bits that cannot effect the shift,
2119        // eliminate the and.
2120        unsigned NumBits = MVT::getSizeInBits(VT);
2121        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2122          return getNode(Opcode, VT, N1, N2.getOperand(0));
2123      }
2124    break;
2125#endif
2126  }
2127
2128  // Memoize this node if possible.
2129  SDNode *N;
2130  SDVTList VTs = getVTList(VT);
2131  if (VT != MVT::Flag) {
2132    SDOperand Ops[] = { N1, N2 };
2133    FoldingSetNodeID ID;
2134    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2135    void *IP = 0;
2136    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2137      return SDOperand(E, 0);
2138    N = new BinarySDNode(Opcode, VTs, N1, N2);
2139    CSEMap.InsertNode(N, IP);
2140  } else {
2141    N = new BinarySDNode(Opcode, VTs, N1, N2);
2142  }
2143
2144  AllNodes.push_back(N);
2145  return SDOperand(N, 0);
2146}
2147
2148SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2149                                SDOperand N1, SDOperand N2, SDOperand N3) {
2150  // Perform various simplifications.
2151  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2152  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2153  switch (Opcode) {
2154  case ISD::SETCC: {
2155    // Use FoldSetCC to simplify SETCC's.
2156    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2157    if (Simp.Val) return Simp;
2158    break;
2159  }
2160  case ISD::SELECT:
2161    if (N1C)
2162      if (N1C->getValue())
2163        return N2;             // select true, X, Y -> X
2164      else
2165        return N3;             // select false, X, Y -> Y
2166
2167    if (N2 == N3) return N2;   // select C, X, X -> X
2168    break;
2169  case ISD::BRCOND:
2170    if (N2C)
2171      if (N2C->getValue()) // Unconditional branch
2172        return getNode(ISD::BR, MVT::Other, N1, N3);
2173      else
2174        return N1;         // Never-taken branch
2175    break;
2176  case ISD::VECTOR_SHUFFLE:
2177    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2178           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2179           N3.getOpcode() == ISD::BUILD_VECTOR &&
2180           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2181           "Illegal VECTOR_SHUFFLE node!");
2182    break;
2183  case ISD::BIT_CONVERT:
2184    // Fold bit_convert nodes from a type to themselves.
2185    if (N1.getValueType() == VT)
2186      return N1;
2187    break;
2188  }
2189
2190  // Memoize node if it doesn't produce a flag.
2191  SDNode *N;
2192  SDVTList VTs = getVTList(VT);
2193  if (VT != MVT::Flag) {
2194    SDOperand Ops[] = { N1, N2, N3 };
2195    FoldingSetNodeID ID;
2196    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2197    void *IP = 0;
2198    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2199      return SDOperand(E, 0);
2200    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2201    CSEMap.InsertNode(N, IP);
2202  } else {
2203    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2204  }
2205  AllNodes.push_back(N);
2206  return SDOperand(N, 0);
2207}
2208
2209SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2210                                SDOperand N1, SDOperand N2, SDOperand N3,
2211                                SDOperand N4) {
2212  SDOperand Ops[] = { N1, N2, N3, N4 };
2213  return getNode(Opcode, VT, Ops, 4);
2214}
2215
2216SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2217                                SDOperand N1, SDOperand N2, SDOperand N3,
2218                                SDOperand N4, SDOperand N5) {
2219  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2220  return getNode(Opcode, VT, Ops, 5);
2221}
2222
2223SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2224                                SDOperand Chain, SDOperand Ptr,
2225                                const Value *SV, int SVOffset,
2226                                bool isVolatile, unsigned Alignment) {
2227  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2228    const Type *Ty = 0;
2229    if (VT != MVT::iPTR) {
2230      Ty = MVT::getTypeForValueType(VT);
2231    } else if (SV) {
2232      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2233      assert(PT && "Value for load must be a pointer");
2234      Ty = PT->getElementType();
2235    }
2236    assert(Ty && "Could not get type information for load");
2237    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2238  }
2239  SDVTList VTs = getVTList(VT, MVT::Other);
2240  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2241  SDOperand Ops[] = { Chain, Ptr, Undef };
2242  FoldingSetNodeID ID;
2243  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2244  ID.AddInteger(ISD::UNINDEXED);
2245  ID.AddInteger(ISD::NON_EXTLOAD);
2246  ID.AddInteger((unsigned int)VT);
2247  ID.AddPointer(SV);
2248  ID.AddInteger(SVOffset);
2249  ID.AddInteger(Alignment);
2250  ID.AddInteger(isVolatile);
2251  void *IP = 0;
2252  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2253    return SDOperand(E, 0);
2254  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2255                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2256                             isVolatile);
2257  CSEMap.InsertNode(N, IP);
2258  AllNodes.push_back(N);
2259  return SDOperand(N, 0);
2260}
2261
2262SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2263                                   SDOperand Chain, SDOperand Ptr,
2264                                   const Value *SV,
2265                                   int SVOffset, MVT::ValueType EVT,
2266                                   bool isVolatile, unsigned Alignment) {
2267  // If they are asking for an extending load from/to the same thing, return a
2268  // normal load.
2269  if (VT == EVT)
2270    ExtType = ISD::NON_EXTLOAD;
2271
2272  if (MVT::isVector(VT))
2273    assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2274  else
2275    assert(EVT < VT && "Should only be an extending load, not truncating!");
2276  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2277         "Cannot sign/zero extend a FP/Vector load!");
2278  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2279         "Cannot convert from FP to Int or Int -> FP!");
2280
2281  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2282    const Type *Ty = 0;
2283    if (VT != MVT::iPTR) {
2284      Ty = MVT::getTypeForValueType(VT);
2285    } else if (SV) {
2286      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2287      assert(PT && "Value for load must be a pointer");
2288      Ty = PT->getElementType();
2289    }
2290    assert(Ty && "Could not get type information for load");
2291    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2292  }
2293  SDVTList VTs = getVTList(VT, MVT::Other);
2294  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2295  SDOperand Ops[] = { Chain, Ptr, Undef };
2296  FoldingSetNodeID ID;
2297  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2298  ID.AddInteger(ISD::UNINDEXED);
2299  ID.AddInteger(ExtType);
2300  ID.AddInteger((unsigned int)EVT);
2301  ID.AddPointer(SV);
2302  ID.AddInteger(SVOffset);
2303  ID.AddInteger(Alignment);
2304  ID.AddInteger(isVolatile);
2305  void *IP = 0;
2306  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2307    return SDOperand(E, 0);
2308  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2309                             SV, SVOffset, Alignment, isVolatile);
2310  CSEMap.InsertNode(N, IP);
2311  AllNodes.push_back(N);
2312  return SDOperand(N, 0);
2313}
2314
2315SDOperand
2316SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2317                             SDOperand Offset, ISD::MemIndexedMode AM) {
2318  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2319  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2320         "Load is already a indexed load!");
2321  MVT::ValueType VT = OrigLoad.getValueType();
2322  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2323  SDOperand Ops[] = { LD->getChain(), Base, Offset };
2324  FoldingSetNodeID ID;
2325  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2326  ID.AddInteger(AM);
2327  ID.AddInteger(LD->getExtensionType());
2328  ID.AddInteger((unsigned int)(LD->getLoadedVT()));
2329  ID.AddPointer(LD->getSrcValue());
2330  ID.AddInteger(LD->getSrcValueOffset());
2331  ID.AddInteger(LD->getAlignment());
2332  ID.AddInteger(LD->isVolatile());
2333  void *IP = 0;
2334  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2335    return SDOperand(E, 0);
2336  SDNode *N = new LoadSDNode(Ops, VTs, AM,
2337                             LD->getExtensionType(), LD->getLoadedVT(),
2338                             LD->getSrcValue(), LD->getSrcValueOffset(),
2339                             LD->getAlignment(), LD->isVolatile());
2340  CSEMap.InsertNode(N, IP);
2341  AllNodes.push_back(N);
2342  return SDOperand(N, 0);
2343}
2344
2345SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2346                                 SDOperand Ptr, const Value *SV, int SVOffset,
2347                                 bool isVolatile, unsigned Alignment) {
2348  MVT::ValueType VT = Val.getValueType();
2349
2350  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2351    const Type *Ty = 0;
2352    if (VT != MVT::iPTR) {
2353      Ty = MVT::getTypeForValueType(VT);
2354    } else if (SV) {
2355      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2356      assert(PT && "Value for store must be a pointer");
2357      Ty = PT->getElementType();
2358    }
2359    assert(Ty && "Could not get type information for store");
2360    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2361  }
2362  SDVTList VTs = getVTList(MVT::Other);
2363  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2364  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2365  FoldingSetNodeID ID;
2366  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2367  ID.AddInteger(ISD::UNINDEXED);
2368  ID.AddInteger(false);
2369  ID.AddInteger((unsigned int)VT);
2370  ID.AddPointer(SV);
2371  ID.AddInteger(SVOffset);
2372  ID.AddInteger(Alignment);
2373  ID.AddInteger(isVolatile);
2374  void *IP = 0;
2375  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2376    return SDOperand(E, 0);
2377  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2378                              VT, SV, SVOffset, Alignment, isVolatile);
2379  CSEMap.InsertNode(N, IP);
2380  AllNodes.push_back(N);
2381  return SDOperand(N, 0);
2382}
2383
2384SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2385                                      SDOperand Ptr, const Value *SV,
2386                                      int SVOffset, MVT::ValueType SVT,
2387                                      bool isVolatile, unsigned Alignment) {
2388  MVT::ValueType VT = Val.getValueType();
2389  bool isTrunc = VT != SVT;
2390
2391  assert(VT > SVT && "Not a truncation?");
2392  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2393         "Can't do FP-INT conversion!");
2394
2395  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2396    const Type *Ty = 0;
2397    if (VT != MVT::iPTR) {
2398      Ty = MVT::getTypeForValueType(VT);
2399    } else if (SV) {
2400      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2401      assert(PT && "Value for store must be a pointer");
2402      Ty = PT->getElementType();
2403    }
2404    assert(Ty && "Could not get type information for store");
2405    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2406  }
2407  SDVTList VTs = getVTList(MVT::Other);
2408  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2409  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2410  FoldingSetNodeID ID;
2411  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2412  ID.AddInteger(ISD::UNINDEXED);
2413  ID.AddInteger(isTrunc);
2414  ID.AddInteger((unsigned int)SVT);
2415  ID.AddPointer(SV);
2416  ID.AddInteger(SVOffset);
2417  ID.AddInteger(Alignment);
2418  ID.AddInteger(isVolatile);
2419  void *IP = 0;
2420  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2421    return SDOperand(E, 0);
2422  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, isTrunc,
2423                              SVT, SV, SVOffset, Alignment, isVolatile);
2424  CSEMap.InsertNode(N, IP);
2425  AllNodes.push_back(N);
2426  return SDOperand(N, 0);
2427}
2428
2429SDOperand
2430SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2431                              SDOperand Offset, ISD::MemIndexedMode AM) {
2432  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2433  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2434         "Store is already a indexed store!");
2435  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2436  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2437  FoldingSetNodeID ID;
2438  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2439  ID.AddInteger(AM);
2440  ID.AddInteger(ST->isTruncatingStore());
2441  ID.AddInteger((unsigned int)(ST->getStoredVT()));
2442  ID.AddPointer(ST->getSrcValue());
2443  ID.AddInteger(ST->getSrcValueOffset());
2444  ID.AddInteger(ST->getAlignment());
2445  ID.AddInteger(ST->isVolatile());
2446  void *IP = 0;
2447  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2448    return SDOperand(E, 0);
2449  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2450                              ST->isTruncatingStore(), ST->getStoredVT(),
2451                              ST->getSrcValue(), ST->getSrcValueOffset(),
2452                              ST->getAlignment(), ST->isVolatile());
2453  CSEMap.InsertNode(N, IP);
2454  AllNodes.push_back(N);
2455  return SDOperand(N, 0);
2456}
2457
2458SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2459                                 SDOperand Chain, SDOperand Ptr,
2460                                 SDOperand SV) {
2461  SDOperand Ops[] = { Chain, Ptr, SV };
2462  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2463}
2464
2465SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2466                                const SDOperand *Ops, unsigned NumOps) {
2467  switch (NumOps) {
2468  case 0: return getNode(Opcode, VT);
2469  case 1: return getNode(Opcode, VT, Ops[0]);
2470  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2471  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2472  default: break;
2473  }
2474
2475  switch (Opcode) {
2476  default: break;
2477  case ISD::SELECT_CC: {
2478    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2479    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2480           "LHS and RHS of condition must have same type!");
2481    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2482           "True and False arms of SelectCC must have same type!");
2483    assert(Ops[2].getValueType() == VT &&
2484           "select_cc node must be of same type as true and false value!");
2485    break;
2486  }
2487  case ISD::BR_CC: {
2488    assert(NumOps == 5 && "BR_CC takes 5 operands!");
2489    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2490           "LHS/RHS of comparison should match types!");
2491    break;
2492  }
2493  }
2494
2495  // Memoize nodes.
2496  SDNode *N;
2497  SDVTList VTs = getVTList(VT);
2498  if (VT != MVT::Flag) {
2499    FoldingSetNodeID ID;
2500    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2501    void *IP = 0;
2502    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2503      return SDOperand(E, 0);
2504    N = new SDNode(Opcode, VTs, Ops, NumOps);
2505    CSEMap.InsertNode(N, IP);
2506  } else {
2507    N = new SDNode(Opcode, VTs, Ops, NumOps);
2508  }
2509  AllNodes.push_back(N);
2510  return SDOperand(N, 0);
2511}
2512
2513SDOperand SelectionDAG::getNode(unsigned Opcode,
2514                                std::vector<MVT::ValueType> &ResultTys,
2515                                const SDOperand *Ops, unsigned NumOps) {
2516  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2517                 Ops, NumOps);
2518}
2519
2520SDOperand SelectionDAG::getNode(unsigned Opcode,
2521                                const MVT::ValueType *VTs, unsigned NumVTs,
2522                                const SDOperand *Ops, unsigned NumOps) {
2523  if (NumVTs == 1)
2524    return getNode(Opcode, VTs[0], Ops, NumOps);
2525  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2526}
2527
2528SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2529                                const SDOperand *Ops, unsigned NumOps) {
2530  if (VTList.NumVTs == 1)
2531    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2532
2533  switch (Opcode) {
2534  // FIXME: figure out how to safely handle things like
2535  // int foo(int x) { return 1 << (x & 255); }
2536  // int bar() { return foo(256); }
2537#if 0
2538  case ISD::SRA_PARTS:
2539  case ISD::SRL_PARTS:
2540  case ISD::SHL_PARTS:
2541    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2542        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2543      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2544    else if (N3.getOpcode() == ISD::AND)
2545      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2546        // If the and is only masking out bits that cannot effect the shift,
2547        // eliminate the and.
2548        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2549        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2550          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2551      }
2552    break;
2553#endif
2554  }
2555
2556  // Memoize the node unless it returns a flag.
2557  SDNode *N;
2558  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2559    FoldingSetNodeID ID;
2560    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2561    void *IP = 0;
2562    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2563      return SDOperand(E, 0);
2564    if (NumOps == 1)
2565      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2566    else if (NumOps == 2)
2567      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2568    else if (NumOps == 3)
2569      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2570    else
2571      N = new SDNode(Opcode, VTList, Ops, NumOps);
2572    CSEMap.InsertNode(N, IP);
2573  } else {
2574    if (NumOps == 1)
2575      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2576    else if (NumOps == 2)
2577      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2578    else if (NumOps == 3)
2579      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2580    else
2581      N = new SDNode(Opcode, VTList, Ops, NumOps);
2582  }
2583  AllNodes.push_back(N);
2584  return SDOperand(N, 0);
2585}
2586
2587SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2588  if (!MVT::isExtendedVT(VT))
2589    return makeVTList(SDNode::getValueTypeList(VT), 1);
2590
2591  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2592       E = VTList.end(); I != E; ++I) {
2593    if (I->size() == 1 && (*I)[0] == VT)
2594      return makeVTList(&(*I)[0], 1);
2595  }
2596  std::vector<MVT::ValueType> V;
2597  V.push_back(VT);
2598  VTList.push_front(V);
2599  return makeVTList(&(*VTList.begin())[0], 1);
2600}
2601
2602SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2603  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2604       E = VTList.end(); I != E; ++I) {
2605    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2606      return makeVTList(&(*I)[0], 2);
2607  }
2608  std::vector<MVT::ValueType> V;
2609  V.push_back(VT1);
2610  V.push_back(VT2);
2611  VTList.push_front(V);
2612  return makeVTList(&(*VTList.begin())[0], 2);
2613}
2614SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2615                                 MVT::ValueType VT3) {
2616  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2617       E = VTList.end(); I != E; ++I) {
2618    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2619        (*I)[2] == VT3)
2620      return makeVTList(&(*I)[0], 3);
2621  }
2622  std::vector<MVT::ValueType> V;
2623  V.push_back(VT1);
2624  V.push_back(VT2);
2625  V.push_back(VT3);
2626  VTList.push_front(V);
2627  return makeVTList(&(*VTList.begin())[0], 3);
2628}
2629
2630SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2631  switch (NumVTs) {
2632    case 0: assert(0 && "Cannot have nodes without results!");
2633    case 1: return getVTList(VTs[0]);
2634    case 2: return getVTList(VTs[0], VTs[1]);
2635    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2636    default: break;
2637  }
2638
2639  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2640       E = VTList.end(); I != E; ++I) {
2641    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2642
2643    bool NoMatch = false;
2644    for (unsigned i = 2; i != NumVTs; ++i)
2645      if (VTs[i] != (*I)[i]) {
2646        NoMatch = true;
2647        break;
2648      }
2649    if (!NoMatch)
2650      return makeVTList(&*I->begin(), NumVTs);
2651  }
2652
2653  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2654  return makeVTList(&*VTList.begin()->begin(), NumVTs);
2655}
2656
2657
2658/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2659/// specified operands.  If the resultant node already exists in the DAG,
2660/// this does not modify the specified node, instead it returns the node that
2661/// already exists.  If the resultant node does not exist in the DAG, the
2662/// input node is returned.  As a degenerate case, if you specify the same
2663/// input operands as the node already has, the input node is returned.
2664SDOperand SelectionDAG::
2665UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2666  SDNode *N = InN.Val;
2667  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2668
2669  // Check to see if there is no change.
2670  if (Op == N->getOperand(0)) return InN;
2671
2672  // See if the modified node already exists.
2673  void *InsertPos = 0;
2674  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2675    return SDOperand(Existing, InN.ResNo);
2676
2677  // Nope it doesn't.  Remove the node from it's current place in the maps.
2678  if (InsertPos)
2679    RemoveNodeFromCSEMaps(N);
2680
2681  // Now we update the operands.
2682  N->OperandList[0].Val->removeUser(N);
2683  Op.Val->addUser(N);
2684  N->OperandList[0] = Op;
2685
2686  // If this gets put into a CSE map, add it.
2687  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2688  return InN;
2689}
2690
2691SDOperand SelectionDAG::
2692UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2693  SDNode *N = InN.Val;
2694  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2695
2696  // Check to see if there is no change.
2697  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2698    return InN;   // No operands changed, just return the input node.
2699
2700  // See if the modified node already exists.
2701  void *InsertPos = 0;
2702  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2703    return SDOperand(Existing, InN.ResNo);
2704
2705  // Nope it doesn't.  Remove the node from it's current place in the maps.
2706  if (InsertPos)
2707    RemoveNodeFromCSEMaps(N);
2708
2709  // Now we update the operands.
2710  if (N->OperandList[0] != Op1) {
2711    N->OperandList[0].Val->removeUser(N);
2712    Op1.Val->addUser(N);
2713    N->OperandList[0] = Op1;
2714  }
2715  if (N->OperandList[1] != Op2) {
2716    N->OperandList[1].Val->removeUser(N);
2717    Op2.Val->addUser(N);
2718    N->OperandList[1] = Op2;
2719  }
2720
2721  // If this gets put into a CSE map, add it.
2722  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2723  return InN;
2724}
2725
2726SDOperand SelectionDAG::
2727UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2728  SDOperand Ops[] = { Op1, Op2, Op3 };
2729  return UpdateNodeOperands(N, Ops, 3);
2730}
2731
2732SDOperand SelectionDAG::
2733UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2734                   SDOperand Op3, SDOperand Op4) {
2735  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2736  return UpdateNodeOperands(N, Ops, 4);
2737}
2738
2739SDOperand SelectionDAG::
2740UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2741                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2742  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2743  return UpdateNodeOperands(N, Ops, 5);
2744}
2745
2746
2747SDOperand SelectionDAG::
2748UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2749  SDNode *N = InN.Val;
2750  assert(N->getNumOperands() == NumOps &&
2751         "Update with wrong number of operands");
2752
2753  // Check to see if there is no change.
2754  bool AnyChange = false;
2755  for (unsigned i = 0; i != NumOps; ++i) {
2756    if (Ops[i] != N->getOperand(i)) {
2757      AnyChange = true;
2758      break;
2759    }
2760  }
2761
2762  // No operands changed, just return the input node.
2763  if (!AnyChange) return InN;
2764
2765  // See if the modified node already exists.
2766  void *InsertPos = 0;
2767  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2768    return SDOperand(Existing, InN.ResNo);
2769
2770  // Nope it doesn't.  Remove the node from it's current place in the maps.
2771  if (InsertPos)
2772    RemoveNodeFromCSEMaps(N);
2773
2774  // Now we update the operands.
2775  for (unsigned i = 0; i != NumOps; ++i) {
2776    if (N->OperandList[i] != Ops[i]) {
2777      N->OperandList[i].Val->removeUser(N);
2778      Ops[i].Val->addUser(N);
2779      N->OperandList[i] = Ops[i];
2780    }
2781  }
2782
2783  // If this gets put into a CSE map, add it.
2784  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2785  return InN;
2786}
2787
2788
2789/// MorphNodeTo - This frees the operands of the current node, resets the
2790/// opcode, types, and operands to the specified value.  This should only be
2791/// used by the SelectionDAG class.
2792void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2793                         const SDOperand *Ops, unsigned NumOps) {
2794  NodeType = Opc;
2795  ValueList = L.VTs;
2796  NumValues = L.NumVTs;
2797
2798  // Clear the operands list, updating used nodes to remove this from their
2799  // use list.
2800  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2801    I->Val->removeUser(this);
2802
2803  // If NumOps is larger than the # of operands we currently have, reallocate
2804  // the operand list.
2805  if (NumOps > NumOperands) {
2806    if (OperandsNeedDelete)
2807      delete [] OperandList;
2808    OperandList = new SDOperand[NumOps];
2809    OperandsNeedDelete = true;
2810  }
2811
2812  // Assign the new operands.
2813  NumOperands = NumOps;
2814
2815  for (unsigned i = 0, e = NumOps; i != e; ++i) {
2816    OperandList[i] = Ops[i];
2817    SDNode *N = OperandList[i].Val;
2818    N->Uses.push_back(this);
2819  }
2820}
2821
2822/// SelectNodeTo - These are used for target selectors to *mutate* the
2823/// specified node to have the specified return type, Target opcode, and
2824/// operands.  Note that target opcodes are stored as
2825/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2826///
2827/// Note that SelectNodeTo returns the resultant node.  If there is already a
2828/// node of the specified opcode and operands, it returns that node instead of
2829/// the current one.
2830SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2831                                   MVT::ValueType VT) {
2832  SDVTList VTs = getVTList(VT);
2833  FoldingSetNodeID ID;
2834  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2835  void *IP = 0;
2836  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2837    return ON;
2838
2839  RemoveNodeFromCSEMaps(N);
2840
2841  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2842
2843  CSEMap.InsertNode(N, IP);
2844  return N;
2845}
2846
2847SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2848                                   MVT::ValueType VT, SDOperand Op1) {
2849  // If an identical node already exists, use it.
2850  SDVTList VTs = getVTList(VT);
2851  SDOperand Ops[] = { Op1 };
2852
2853  FoldingSetNodeID ID;
2854  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2855  void *IP = 0;
2856  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2857    return ON;
2858
2859  RemoveNodeFromCSEMaps(N);
2860  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2861  CSEMap.InsertNode(N, IP);
2862  return N;
2863}
2864
2865SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2866                                   MVT::ValueType VT, SDOperand Op1,
2867                                   SDOperand Op2) {
2868  // If an identical node already exists, use it.
2869  SDVTList VTs = getVTList(VT);
2870  SDOperand Ops[] = { Op1, Op2 };
2871
2872  FoldingSetNodeID ID;
2873  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2874  void *IP = 0;
2875  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2876    return ON;
2877
2878  RemoveNodeFromCSEMaps(N);
2879
2880  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2881
2882  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2883  return N;
2884}
2885
2886SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2887                                   MVT::ValueType VT, SDOperand Op1,
2888                                   SDOperand Op2, SDOperand Op3) {
2889  // If an identical node already exists, use it.
2890  SDVTList VTs = getVTList(VT);
2891  SDOperand Ops[] = { Op1, Op2, Op3 };
2892  FoldingSetNodeID ID;
2893  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2894  void *IP = 0;
2895  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2896    return ON;
2897
2898  RemoveNodeFromCSEMaps(N);
2899
2900  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2901
2902  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2903  return N;
2904}
2905
2906SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2907                                   MVT::ValueType VT, const SDOperand *Ops,
2908                                   unsigned NumOps) {
2909  // If an identical node already exists, use it.
2910  SDVTList VTs = getVTList(VT);
2911  FoldingSetNodeID ID;
2912  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2913  void *IP = 0;
2914  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2915    return ON;
2916
2917  RemoveNodeFromCSEMaps(N);
2918  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2919
2920  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2921  return N;
2922}
2923
2924SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2925                                   MVT::ValueType VT1, MVT::ValueType VT2,
2926                                   SDOperand Op1, SDOperand Op2) {
2927  SDVTList VTs = getVTList(VT1, VT2);
2928  FoldingSetNodeID ID;
2929  SDOperand Ops[] = { Op1, Op2 };
2930  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2931  void *IP = 0;
2932  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2933    return ON;
2934
2935  RemoveNodeFromCSEMaps(N);
2936  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2937  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2938  return N;
2939}
2940
2941SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2942                                   MVT::ValueType VT1, MVT::ValueType VT2,
2943                                   SDOperand Op1, SDOperand Op2,
2944                                   SDOperand Op3) {
2945  // If an identical node already exists, use it.
2946  SDVTList VTs = getVTList(VT1, VT2);
2947  SDOperand Ops[] = { Op1, Op2, Op3 };
2948  FoldingSetNodeID ID;
2949  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2950  void *IP = 0;
2951  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2952    return ON;
2953
2954  RemoveNodeFromCSEMaps(N);
2955
2956  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2957  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2958  return N;
2959}
2960
2961
2962/// getTargetNode - These are used for target selectors to create a new node
2963/// with specified return type(s), target opcode, and operands.
2964///
2965/// Note that getTargetNode returns the resultant node.  If there is already a
2966/// node of the specified opcode and operands, it returns that node instead of
2967/// the current one.
2968SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2969  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2970}
2971SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2972                                    SDOperand Op1) {
2973  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2974}
2975SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2976                                    SDOperand Op1, SDOperand Op2) {
2977  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2978}
2979SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2980                                    SDOperand Op1, SDOperand Op2,
2981                                    SDOperand Op3) {
2982  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2983}
2984SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2985                                    const SDOperand *Ops, unsigned NumOps) {
2986  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
2987}
2988SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2989                                    MVT::ValueType VT2, SDOperand Op1) {
2990  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2991  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
2992}
2993SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2994                                    MVT::ValueType VT2, SDOperand Op1,
2995                                    SDOperand Op2) {
2996  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2997  SDOperand Ops[] = { Op1, Op2 };
2998  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
2999}
3000SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3001                                    MVT::ValueType VT2, SDOperand Op1,
3002                                    SDOperand Op2, SDOperand Op3) {
3003  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3004  SDOperand Ops[] = { Op1, Op2, Op3 };
3005  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3006}
3007SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3008                                    MVT::ValueType VT2,
3009                                    const SDOperand *Ops, unsigned NumOps) {
3010  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3011  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3012}
3013SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3014                                    MVT::ValueType VT2, MVT::ValueType VT3,
3015                                    SDOperand Op1, SDOperand Op2) {
3016  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3017  SDOperand Ops[] = { Op1, Op2 };
3018  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3019}
3020SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3021                                    MVT::ValueType VT2, MVT::ValueType VT3,
3022                                    SDOperand Op1, SDOperand Op2,
3023                                    SDOperand Op3) {
3024  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3025  SDOperand Ops[] = { Op1, Op2, Op3 };
3026  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3027}
3028SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3029                                    MVT::ValueType VT2, MVT::ValueType VT3,
3030                                    const SDOperand *Ops, unsigned NumOps) {
3031  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3032  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3033}
3034SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3035                                    MVT::ValueType VT2, MVT::ValueType VT3,
3036                                    MVT::ValueType VT4,
3037                                    const SDOperand *Ops, unsigned NumOps) {
3038  std::vector<MVT::ValueType> VTList;
3039  VTList.push_back(VT1);
3040  VTList.push_back(VT2);
3041  VTList.push_back(VT3);
3042  VTList.push_back(VT4);
3043  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3044  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3045}
3046
3047/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3048/// This can cause recursive merging of nodes in the DAG.
3049///
3050/// This version assumes From/To have a single result value.
3051///
3052void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
3053                                      std::vector<SDNode*> *Deleted) {
3054  SDNode *From = FromN.Val, *To = ToN.Val;
3055  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
3056         "Cannot replace with this method!");
3057  assert(From != To && "Cannot replace uses of with self");
3058
3059  while (!From->use_empty()) {
3060    // Process users until they are all gone.
3061    SDNode *U = *From->use_begin();
3062
3063    // This node is about to morph, remove its old self from the CSE maps.
3064    RemoveNodeFromCSEMaps(U);
3065
3066    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3067         I != E; ++I)
3068      if (I->Val == From) {
3069        From->removeUser(U);
3070        I->Val = To;
3071        To->addUser(U);
3072      }
3073
3074    // Now that we have modified U, add it back to the CSE maps.  If it already
3075    // exists there, recursively merge the results together.
3076    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3077      ReplaceAllUsesWith(U, Existing, Deleted);
3078      // U is now dead.
3079      if (Deleted) Deleted->push_back(U);
3080      DeleteNodeNotInCSEMaps(U);
3081    }
3082  }
3083}
3084
3085/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3086/// This can cause recursive merging of nodes in the DAG.
3087///
3088/// This version assumes From/To have matching types and numbers of result
3089/// values.
3090///
3091void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3092                                      std::vector<SDNode*> *Deleted) {
3093  assert(From != To && "Cannot replace uses of with self");
3094  assert(From->getNumValues() == To->getNumValues() &&
3095         "Cannot use this version of ReplaceAllUsesWith!");
3096  if (From->getNumValues() == 1) {  // If possible, use the faster version.
3097    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
3098    return;
3099  }
3100
3101  while (!From->use_empty()) {
3102    // Process users until they are all gone.
3103    SDNode *U = *From->use_begin();
3104
3105    // This node is about to morph, remove its old self from the CSE maps.
3106    RemoveNodeFromCSEMaps(U);
3107
3108    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3109         I != E; ++I)
3110      if (I->Val == From) {
3111        From->removeUser(U);
3112        I->Val = To;
3113        To->addUser(U);
3114      }
3115
3116    // Now that we have modified U, add it back to the CSE maps.  If it already
3117    // exists there, recursively merge the results together.
3118    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3119      ReplaceAllUsesWith(U, Existing, Deleted);
3120      // U is now dead.
3121      if (Deleted) Deleted->push_back(U);
3122      DeleteNodeNotInCSEMaps(U);
3123    }
3124  }
3125}
3126
3127/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3128/// This can cause recursive merging of nodes in the DAG.
3129///
3130/// This version can replace From with any result values.  To must match the
3131/// number and types of values returned by From.
3132void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3133                                      const SDOperand *To,
3134                                      std::vector<SDNode*> *Deleted) {
3135  if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
3136    // Degenerate case handled above.
3137    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
3138    return;
3139  }
3140
3141  while (!From->use_empty()) {
3142    // Process users until they are all gone.
3143    SDNode *U = *From->use_begin();
3144
3145    // This node is about to morph, remove its old self from the CSE maps.
3146    RemoveNodeFromCSEMaps(U);
3147
3148    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3149         I != E; ++I)
3150      if (I->Val == From) {
3151        const SDOperand &ToOp = To[I->ResNo];
3152        From->removeUser(U);
3153        *I = ToOp;
3154        ToOp.Val->addUser(U);
3155      }
3156
3157    // Now that we have modified U, add it back to the CSE maps.  If it already
3158    // exists there, recursively merge the results together.
3159    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3160      ReplaceAllUsesWith(U, Existing, Deleted);
3161      // U is now dead.
3162      if (Deleted) Deleted->push_back(U);
3163      DeleteNodeNotInCSEMaps(U);
3164    }
3165  }
3166}
3167
3168/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3169/// uses of other values produced by From.Val alone.  The Deleted vector is
3170/// handled the same was as for ReplaceAllUsesWith.
3171void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3172                                             std::vector<SDNode*> &Deleted) {
3173  assert(From != To && "Cannot replace a value with itself");
3174  // Handle the simple, trivial, case efficiently.
3175  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
3176    ReplaceAllUsesWith(From, To, &Deleted);
3177    return;
3178  }
3179
3180  // Get all of the users of From.Val.  We want these in a nice,
3181  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3182  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3183
3184  while (!Users.empty()) {
3185    // We know that this user uses some value of From.  If it is the right
3186    // value, update it.
3187    SDNode *User = Users.back();
3188    Users.pop_back();
3189
3190    for (SDOperand *Op = User->OperandList,
3191         *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
3192      if (*Op == From) {
3193        // Okay, we know this user needs to be updated.  Remove its old self
3194        // from the CSE maps.
3195        RemoveNodeFromCSEMaps(User);
3196
3197        // Update all operands that match "From".
3198        for (; Op != E; ++Op) {
3199          if (*Op == From) {
3200            From.Val->removeUser(User);
3201            *Op = To;
3202            To.Val->addUser(User);
3203          }
3204        }
3205
3206        // Now that we have modified User, add it back to the CSE maps.  If it
3207        // already exists there, recursively merge the results together.
3208        if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
3209          unsigned NumDeleted = Deleted.size();
3210          ReplaceAllUsesWith(User, Existing, &Deleted);
3211
3212          // User is now dead.
3213          Deleted.push_back(User);
3214          DeleteNodeNotInCSEMaps(User);
3215
3216          // We have to be careful here, because ReplaceAllUsesWith could have
3217          // deleted a user of From, which means there may be dangling pointers
3218          // in the "Users" setvector.  Scan over the deleted node pointers and
3219          // remove them from the setvector.
3220          for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
3221            Users.remove(Deleted[i]);
3222        }
3223        break;   // Exit the operand scanning loop.
3224      }
3225    }
3226  }
3227}
3228
3229
3230/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3231/// their allnodes order. It returns the maximum id.
3232unsigned SelectionDAG::AssignNodeIds() {
3233  unsigned Id = 0;
3234  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3235    SDNode *N = I;
3236    N->setNodeId(Id++);
3237  }
3238  return Id;
3239}
3240
3241/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3242/// based on their topological order. It returns the maximum id and a vector
3243/// of the SDNodes* in assigned order by reference.
3244unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3245  unsigned DAGSize = AllNodes.size();
3246  std::vector<unsigned> InDegree(DAGSize);
3247  std::vector<SDNode*> Sources;
3248
3249  // Use a two pass approach to avoid using a std::map which is slow.
3250  unsigned Id = 0;
3251  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3252    SDNode *N = I;
3253    N->setNodeId(Id++);
3254    unsigned Degree = N->use_size();
3255    InDegree[N->getNodeId()] = Degree;
3256    if (Degree == 0)
3257      Sources.push_back(N);
3258  }
3259
3260  TopOrder.clear();
3261  while (!Sources.empty()) {
3262    SDNode *N = Sources.back();
3263    Sources.pop_back();
3264    TopOrder.push_back(N);
3265    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3266      SDNode *P = I->Val;
3267      unsigned Degree = --InDegree[P->getNodeId()];
3268      if (Degree == 0)
3269        Sources.push_back(P);
3270    }
3271  }
3272
3273  // Second pass, assign the actual topological order as node ids.
3274  Id = 0;
3275  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3276       TI != TE; ++TI)
3277    (*TI)->setNodeId(Id++);
3278
3279  return Id;
3280}
3281
3282
3283
3284//===----------------------------------------------------------------------===//
3285//                              SDNode Class
3286//===----------------------------------------------------------------------===//
3287
3288// Out-of-line virtual method to give class a home.
3289void SDNode::ANCHOR() {}
3290void UnarySDNode::ANCHOR() {}
3291void BinarySDNode::ANCHOR() {}
3292void TernarySDNode::ANCHOR() {}
3293void HandleSDNode::ANCHOR() {}
3294void StringSDNode::ANCHOR() {}
3295void ConstantSDNode::ANCHOR() {}
3296void ConstantFPSDNode::ANCHOR() {}
3297void GlobalAddressSDNode::ANCHOR() {}
3298void FrameIndexSDNode::ANCHOR() {}
3299void JumpTableSDNode::ANCHOR() {}
3300void ConstantPoolSDNode::ANCHOR() {}
3301void BasicBlockSDNode::ANCHOR() {}
3302void SrcValueSDNode::ANCHOR() {}
3303void RegisterSDNode::ANCHOR() {}
3304void ExternalSymbolSDNode::ANCHOR() {}
3305void CondCodeSDNode::ANCHOR() {}
3306void VTSDNode::ANCHOR() {}
3307void LoadSDNode::ANCHOR() {}
3308void StoreSDNode::ANCHOR() {}
3309
3310HandleSDNode::~HandleSDNode() {
3311  SDVTList VTs = { 0, 0 };
3312  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3313}
3314
3315GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3316                                         MVT::ValueType VT, int o)
3317  : SDNode(isa<GlobalVariable>(GA) &&
3318           cast<GlobalVariable>(GA)->isThreadLocal() ?
3319           // Thread Local
3320           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3321           // Non Thread Local
3322           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3323           getSDVTList(VT)), Offset(o) {
3324  TheGlobal = const_cast<GlobalValue*>(GA);
3325}
3326
3327/// Profile - Gather unique data for the node.
3328///
3329void SDNode::Profile(FoldingSetNodeID &ID) {
3330  AddNodeIDNode(ID, this);
3331}
3332
3333/// getValueTypeList - Return a pointer to the specified value type.
3334///
3335MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3336  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3337  VTs[VT] = VT;
3338  return &VTs[VT];
3339}
3340
3341/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3342/// indicated value.  This method ignores uses of other values defined by this
3343/// operation.
3344bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3345  assert(Value < getNumValues() && "Bad value!");
3346
3347  // If there is only one value, this is easy.
3348  if (getNumValues() == 1)
3349    return use_size() == NUses;
3350  if (use_size() < NUses) return false;
3351
3352  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3353
3354  SmallPtrSet<SDNode*, 32> UsersHandled;
3355
3356  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3357    SDNode *User = *UI;
3358    if (User->getNumOperands() == 1 ||
3359        UsersHandled.insert(User))     // First time we've seen this?
3360      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3361        if (User->getOperand(i) == TheValue) {
3362          if (NUses == 0)
3363            return false;   // too many uses
3364          --NUses;
3365        }
3366  }
3367
3368  // Found exactly the right number of uses?
3369  return NUses == 0;
3370}
3371
3372
3373/// hasAnyUseOfValue - Return true if there are any use of the indicated
3374/// value. This method ignores uses of other values defined by this operation.
3375bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3376  assert(Value < getNumValues() && "Bad value!");
3377
3378  if (use_size() == 0) return false;
3379
3380  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3381
3382  SmallPtrSet<SDNode*, 32> UsersHandled;
3383
3384  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3385    SDNode *User = *UI;
3386    if (User->getNumOperands() == 1 ||
3387        UsersHandled.insert(User))     // First time we've seen this?
3388      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3389        if (User->getOperand(i) == TheValue) {
3390          return true;
3391        }
3392  }
3393
3394  return false;
3395}
3396
3397
3398/// isOnlyUse - Return true if this node is the only use of N.
3399///
3400bool SDNode::isOnlyUse(SDNode *N) const {
3401  bool Seen = false;
3402  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3403    SDNode *User = *I;
3404    if (User == this)
3405      Seen = true;
3406    else
3407      return false;
3408  }
3409
3410  return Seen;
3411}
3412
3413/// isOperand - Return true if this node is an operand of N.
3414///
3415bool SDOperand::isOperand(SDNode *N) const {
3416  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3417    if (*this == N->getOperand(i))
3418      return true;
3419  return false;
3420}
3421
3422bool SDNode::isOperand(SDNode *N) const {
3423  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3424    if (this == N->OperandList[i].Val)
3425      return true;
3426  return false;
3427}
3428
3429static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3430                            SmallPtrSet<SDNode *, 32> &Visited) {
3431  if (found || !Visited.insert(N))
3432    return;
3433
3434  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3435    SDNode *Op = N->getOperand(i).Val;
3436    if (Op == P) {
3437      found = true;
3438      return;
3439    }
3440    findPredecessor(Op, P, found, Visited);
3441  }
3442}
3443
3444/// isPredecessor - Return true if this node is a predecessor of N. This node
3445/// is either an operand of N or it can be reached by recursively traversing
3446/// up the operands.
3447/// NOTE: this is an expensive method. Use it carefully.
3448bool SDNode::isPredecessor(SDNode *N) const {
3449  SmallPtrSet<SDNode *, 32> Visited;
3450  bool found = false;
3451  findPredecessor(N, this, found, Visited);
3452  return found;
3453}
3454
3455uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3456  assert(Num < NumOperands && "Invalid child # of SDNode!");
3457  return cast<ConstantSDNode>(OperandList[Num])->getValue();
3458}
3459
3460std::string SDNode::getOperationName(const SelectionDAG *G) const {
3461  switch (getOpcode()) {
3462  default:
3463    if (getOpcode() < ISD::BUILTIN_OP_END)
3464      return "<<Unknown DAG Node>>";
3465    else {
3466      if (G) {
3467        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3468          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3469            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
3470
3471        TargetLowering &TLI = G->getTargetLoweringInfo();
3472        const char *Name =
3473          TLI.getTargetNodeName(getOpcode());
3474        if (Name) return Name;
3475      }
3476
3477      return "<<Unknown Target Node>>";
3478    }
3479
3480  case ISD::PCMARKER:      return "PCMarker";
3481  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3482  case ISD::SRCVALUE:      return "SrcValue";
3483  case ISD::EntryToken:    return "EntryToken";
3484  case ISD::TokenFactor:   return "TokenFactor";
3485  case ISD::AssertSext:    return "AssertSext";
3486  case ISD::AssertZext:    return "AssertZext";
3487
3488  case ISD::STRING:        return "String";
3489  case ISD::BasicBlock:    return "BasicBlock";
3490  case ISD::VALUETYPE:     return "ValueType";
3491  case ISD::Register:      return "Register";
3492
3493  case ISD::Constant:      return "Constant";
3494  case ISD::ConstantFP:    return "ConstantFP";
3495  case ISD::GlobalAddress: return "GlobalAddress";
3496  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3497  case ISD::FrameIndex:    return "FrameIndex";
3498  case ISD::JumpTable:     return "JumpTable";
3499  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3500  case ISD::RETURNADDR: return "RETURNADDR";
3501  case ISD::FRAMEADDR: return "FRAMEADDR";
3502  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3503  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3504  case ISD::EHSELECTION: return "EHSELECTION";
3505  case ISD::EH_RETURN: return "EH_RETURN";
3506  case ISD::ConstantPool:  return "ConstantPool";
3507  case ISD::ExternalSymbol: return "ExternalSymbol";
3508  case ISD::INTRINSIC_WO_CHAIN: {
3509    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3510    return Intrinsic::getName((Intrinsic::ID)IID);
3511  }
3512  case ISD::INTRINSIC_VOID:
3513  case ISD::INTRINSIC_W_CHAIN: {
3514    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3515    return Intrinsic::getName((Intrinsic::ID)IID);
3516  }
3517
3518  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
3519  case ISD::TargetConstant: return "TargetConstant";
3520  case ISD::TargetConstantFP:return "TargetConstantFP";
3521  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3522  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3523  case ISD::TargetFrameIndex: return "TargetFrameIndex";
3524  case ISD::TargetJumpTable:  return "TargetJumpTable";
3525  case ISD::TargetConstantPool:  return "TargetConstantPool";
3526  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3527
3528  case ISD::CopyToReg:     return "CopyToReg";
3529  case ISD::CopyFromReg:   return "CopyFromReg";
3530  case ISD::UNDEF:         return "undef";
3531  case ISD::MERGE_VALUES:  return "merge_values";
3532  case ISD::INLINEASM:     return "inlineasm";
3533  case ISD::LABEL:         return "label";
3534  case ISD::HANDLENODE:    return "handlenode";
3535  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3536  case ISD::CALL:          return "call";
3537
3538  // Unary operators
3539  case ISD::FABS:   return "fabs";
3540  case ISD::FNEG:   return "fneg";
3541  case ISD::FSQRT:  return "fsqrt";
3542  case ISD::FSIN:   return "fsin";
3543  case ISD::FCOS:   return "fcos";
3544  case ISD::FPOWI:  return "fpowi";
3545
3546  // Binary operators
3547  case ISD::ADD:    return "add";
3548  case ISD::SUB:    return "sub";
3549  case ISD::MUL:    return "mul";
3550  case ISD::MULHU:  return "mulhu";
3551  case ISD::MULHS:  return "mulhs";
3552  case ISD::SDIV:   return "sdiv";
3553  case ISD::UDIV:   return "udiv";
3554  case ISD::SREM:   return "srem";
3555  case ISD::UREM:   return "urem";
3556  case ISD::AND:    return "and";
3557  case ISD::OR:     return "or";
3558  case ISD::XOR:    return "xor";
3559  case ISD::SHL:    return "shl";
3560  case ISD::SRA:    return "sra";
3561  case ISD::SRL:    return "srl";
3562  case ISD::ROTL:   return "rotl";
3563  case ISD::ROTR:   return "rotr";
3564  case ISD::FADD:   return "fadd";
3565  case ISD::FSUB:   return "fsub";
3566  case ISD::FMUL:   return "fmul";
3567  case ISD::FDIV:   return "fdiv";
3568  case ISD::FREM:   return "frem";
3569  case ISD::FCOPYSIGN: return "fcopysign";
3570
3571  case ISD::SETCC:       return "setcc";
3572  case ISD::SELECT:      return "select";
3573  case ISD::SELECT_CC:   return "select_cc";
3574  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
3575  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
3576  case ISD::CONCAT_VECTORS:      return "concat_vectors";
3577  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
3578  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
3579  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
3580  case ISD::CARRY_FALSE:         return "carry_false";
3581  case ISD::ADDC:        return "addc";
3582  case ISD::ADDE:        return "adde";
3583  case ISD::SUBC:        return "subc";
3584  case ISD::SUBE:        return "sube";
3585  case ISD::SHL_PARTS:   return "shl_parts";
3586  case ISD::SRA_PARTS:   return "sra_parts";
3587  case ISD::SRL_PARTS:   return "srl_parts";
3588
3589  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
3590  case ISD::INSERT_SUBREG:      return "insert_subreg";
3591
3592  // Conversion operators.
3593  case ISD::SIGN_EXTEND: return "sign_extend";
3594  case ISD::ZERO_EXTEND: return "zero_extend";
3595  case ISD::ANY_EXTEND:  return "any_extend";
3596  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3597  case ISD::TRUNCATE:    return "truncate";
3598  case ISD::FP_ROUND:    return "fp_round";
3599  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3600  case ISD::FP_EXTEND:   return "fp_extend";
3601
3602  case ISD::SINT_TO_FP:  return "sint_to_fp";
3603  case ISD::UINT_TO_FP:  return "uint_to_fp";
3604  case ISD::FP_TO_SINT:  return "fp_to_sint";
3605  case ISD::FP_TO_UINT:  return "fp_to_uint";
3606  case ISD::BIT_CONVERT: return "bit_convert";
3607
3608    // Control flow instructions
3609  case ISD::BR:      return "br";
3610  case ISD::BRIND:   return "brind";
3611  case ISD::BR_JT:   return "br_jt";
3612  case ISD::BRCOND:  return "brcond";
3613  case ISD::BR_CC:   return "br_cc";
3614  case ISD::RET:     return "ret";
3615  case ISD::CALLSEQ_START:  return "callseq_start";
3616  case ISD::CALLSEQ_END:    return "callseq_end";
3617
3618    // Other operators
3619  case ISD::LOAD:               return "load";
3620  case ISD::STORE:              return "store";
3621  case ISD::VAARG:              return "vaarg";
3622  case ISD::VACOPY:             return "vacopy";
3623  case ISD::VAEND:              return "vaend";
3624  case ISD::VASTART:            return "vastart";
3625  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3626  case ISD::EXTRACT_ELEMENT:    return "extract_element";
3627  case ISD::BUILD_PAIR:         return "build_pair";
3628  case ISD::STACKSAVE:          return "stacksave";
3629  case ISD::STACKRESTORE:       return "stackrestore";
3630
3631  // Block memory operations.
3632  case ISD::MEMSET:  return "memset";
3633  case ISD::MEMCPY:  return "memcpy";
3634  case ISD::MEMMOVE: return "memmove";
3635
3636  // Bit manipulation
3637  case ISD::BSWAP:   return "bswap";
3638  case ISD::CTPOP:   return "ctpop";
3639  case ISD::CTTZ:    return "cttz";
3640  case ISD::CTLZ:    return "ctlz";
3641
3642  // Debug info
3643  case ISD::LOCATION: return "location";
3644  case ISD::DEBUG_LOC: return "debug_loc";
3645
3646  // Trampolines
3647  case ISD::TRAMPOLINE: return "trampoline";
3648
3649  case ISD::CONDCODE:
3650    switch (cast<CondCodeSDNode>(this)->get()) {
3651    default: assert(0 && "Unknown setcc condition!");
3652    case ISD::SETOEQ:  return "setoeq";
3653    case ISD::SETOGT:  return "setogt";
3654    case ISD::SETOGE:  return "setoge";
3655    case ISD::SETOLT:  return "setolt";
3656    case ISD::SETOLE:  return "setole";
3657    case ISD::SETONE:  return "setone";
3658
3659    case ISD::SETO:    return "seto";
3660    case ISD::SETUO:   return "setuo";
3661    case ISD::SETUEQ:  return "setue";
3662    case ISD::SETUGT:  return "setugt";
3663    case ISD::SETUGE:  return "setuge";
3664    case ISD::SETULT:  return "setult";
3665    case ISD::SETULE:  return "setule";
3666    case ISD::SETUNE:  return "setune";
3667
3668    case ISD::SETEQ:   return "seteq";
3669    case ISD::SETGT:   return "setgt";
3670    case ISD::SETGE:   return "setge";
3671    case ISD::SETLT:   return "setlt";
3672    case ISD::SETLE:   return "setle";
3673    case ISD::SETNE:   return "setne";
3674    }
3675  }
3676}
3677
3678const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
3679  switch (AM) {
3680  default:
3681    return "";
3682  case ISD::PRE_INC:
3683    return "<pre-inc>";
3684  case ISD::PRE_DEC:
3685    return "<pre-dec>";
3686  case ISD::POST_INC:
3687    return "<post-inc>";
3688  case ISD::POST_DEC:
3689    return "<post-dec>";
3690  }
3691}
3692
3693void SDNode::dump() const { dump(0); }
3694void SDNode::dump(const SelectionDAG *G) const {
3695  cerr << (void*)this << ": ";
3696
3697  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
3698    if (i) cerr << ",";
3699    if (getValueType(i) == MVT::Other)
3700      cerr << "ch";
3701    else
3702      cerr << MVT::getValueTypeString(getValueType(i));
3703  }
3704  cerr << " = " << getOperationName(G);
3705
3706  cerr << " ";
3707  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3708    if (i) cerr << ", ";
3709    cerr << (void*)getOperand(i).Val;
3710    if (unsigned RN = getOperand(i).ResNo)
3711      cerr << ":" << RN;
3712  }
3713
3714  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
3715    cerr << "<" << CSDN->getValue() << ">";
3716  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
3717    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
3718      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
3719    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
3720      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
3721    else {
3722      cerr << "<APFloat(";
3723#ifndef NDEBUG
3724      CSDN->getValueAPF().convertToAPInt().dump();
3725#endif
3726      cerr << ")>";
3727    }
3728  } else if (const GlobalAddressSDNode *GADN =
3729             dyn_cast<GlobalAddressSDNode>(this)) {
3730    int offset = GADN->getOffset();
3731    cerr << "<";
3732    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
3733    if (offset > 0)
3734      cerr << " + " << offset;
3735    else
3736      cerr << " " << offset;
3737  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
3738    cerr << "<" << FIDN->getIndex() << ">";
3739  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
3740    cerr << "<" << JTDN->getIndex() << ">";
3741  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
3742    int offset = CP->getOffset();
3743    if (CP->isMachineConstantPoolEntry())
3744      cerr << "<" << *CP->getMachineCPVal() << ">";
3745    else
3746      cerr << "<" << *CP->getConstVal() << ">";
3747    if (offset > 0)
3748      cerr << " + " << offset;
3749    else
3750      cerr << " " << offset;
3751  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
3752    cerr << "<";
3753    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
3754    if (LBB)
3755      cerr << LBB->getName() << " ";
3756    cerr << (const void*)BBDN->getBasicBlock() << ">";
3757  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
3758    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
3759      cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
3760    } else {
3761      cerr << " #" << R->getReg();
3762    }
3763  } else if (const ExternalSymbolSDNode *ES =
3764             dyn_cast<ExternalSymbolSDNode>(this)) {
3765    cerr << "'" << ES->getSymbol() << "'";
3766  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
3767    if (M->getValue())
3768      cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
3769    else
3770      cerr << "<null:" << M->getOffset() << ">";
3771  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
3772    cerr << ":" << MVT::getValueTypeString(N->getVT());
3773  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
3774    bool doExt = true;
3775    switch (LD->getExtensionType()) {
3776    default: doExt = false; break;
3777    case ISD::EXTLOAD:
3778      cerr << " <anyext ";
3779      break;
3780    case ISD::SEXTLOAD:
3781      cerr << " <sext ";
3782      break;
3783    case ISD::ZEXTLOAD:
3784      cerr << " <zext ";
3785      break;
3786    }
3787    if (doExt)
3788      cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
3789
3790    const char *AM = getIndexedModeName(LD->getAddressingMode());
3791    if (*AM)
3792      cerr << " " << AM;
3793  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
3794    if (ST->isTruncatingStore())
3795      cerr << " <trunc "
3796           << MVT::getValueTypeString(ST->getStoredVT()) << ">";
3797
3798    const char *AM = getIndexedModeName(ST->getAddressingMode());
3799    if (*AM)
3800      cerr << " " << AM;
3801  }
3802}
3803
3804static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
3805  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3806    if (N->getOperand(i).Val->hasOneUse())
3807      DumpNodes(N->getOperand(i).Val, indent+2, G);
3808    else
3809      cerr << "\n" << std::string(indent+2, ' ')
3810           << (void*)N->getOperand(i).Val << ": <multiple use>";
3811
3812
3813  cerr << "\n" << std::string(indent, ' ');
3814  N->dump(G);
3815}
3816
3817void SelectionDAG::dump() const {
3818  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
3819  std::vector<const SDNode*> Nodes;
3820  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
3821       I != E; ++I)
3822    Nodes.push_back(I);
3823
3824  std::sort(Nodes.begin(), Nodes.end());
3825
3826  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3827    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
3828      DumpNodes(Nodes[i], 2, this);
3829  }
3830
3831  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
3832
3833  cerr << "\n\n";
3834}
3835
3836const Type *ConstantPoolSDNode::getType() const {
3837  if (isMachineConstantPoolEntry())
3838    return Val.MachineCPVal->getType();
3839  return Val.ConstVal->getType();
3840}
3841