SelectionDAGBuilder.h revision 40ba3d21580f18bc87f9a784b84b88fc21964b10
1//===-- SelectionDAGBuilder.h - Selection-DAG building --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef SELECTIONDAGBUILDER_H
15#define SELECTIONDAGBUILDER_H
16
17#include "llvm/Constants.h"
18#include "llvm/CodeGen/SelectionDAG.h"
19#include "llvm/ADT/APInt.h"
20#include "llvm/ADT/DenseMap.h"
21#ifndef NDEBUG
22#include "llvm/ADT/SmallSet.h"
23#endif
24#include "llvm/CodeGen/SelectionDAGNodes.h"
25#include "llvm/CodeGen/ValueTypes.h"
26#include "llvm/Support/CallSite.h"
27#include "llvm/Support/ErrorHandling.h"
28#include <vector>
29#include <set>
30
31namespace llvm {
32
33class AliasAnalysis;
34class AllocaInst;
35class BasicBlock;
36class BitCastInst;
37class BranchInst;
38class CallInst;
39class ExtractElementInst;
40class ExtractValueInst;
41class FCmpInst;
42class FPExtInst;
43class FPToSIInst;
44class FPToUIInst;
45class FPTruncInst;
46class Function;
47class FunctionLoweringInfo;
48class GetElementPtrInst;
49class GCFunctionInfo;
50class ICmpInst;
51class IntToPtrInst;
52class IndirectBrInst;
53class InvokeInst;
54class InsertElementInst;
55class InsertValueInst;
56class Instruction;
57class LoadInst;
58class MachineBasicBlock;
59class MachineInstr;
60class MachineRegisterInfo;
61class PHINode;
62class PtrToIntInst;
63class ReturnInst;
64class SDISelAsmOperandInfo;
65class SExtInst;
66class SelectInst;
67class ShuffleVectorInst;
68class SIToFPInst;
69class StoreInst;
70class SwitchInst;
71class TargetData;
72class TargetLowering;
73class TruncInst;
74class UIToFPInst;
75class UnreachableInst;
76class UnwindInst;
77class VAArgInst;
78class ZExtInst;
79
80//===----------------------------------------------------------------------===//
81/// SelectionDAGBuilder - This is the common target-independent lowering
82/// implementation that is parameterized by a TargetLowering object.
83///
84class SelectionDAGBuilder {
85  MachineBasicBlock *CurMBB;
86
87  /// CurDebugLoc - current file + line number.  Changes as we build the DAG.
88  DebugLoc CurDebugLoc;
89
90  DenseMap<const Value*, SDValue> NodeMap;
91
92public:
93  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
94  /// them up and then emit token factor nodes when possible.  This allows us to
95  /// get simple disambiguation between loads without worrying about alias
96  /// analysis.
97  SmallVector<SDValue, 8> PendingLoads;
98private:
99
100  /// PendingExports - CopyToReg nodes that copy values to virtual registers
101  /// for export to other blocks need to be emitted before any terminator
102  /// instruction, but they have no other ordering requirements. We bunch them
103  /// up and the emit a single tokenfactor for them just before terminator
104  /// instructions.
105  SmallVector<SDValue, 8> PendingExports;
106
107  /// SDNodeOrder - A unique monotonically increasing number used to order the
108  /// SDNodes we create.
109  unsigned SDNodeOrder;
110
111  /// Case - A struct to record the Value for a switch case, and the
112  /// case's target basic block.
113  struct Case {
114    Constant* Low;
115    Constant* High;
116    MachineBasicBlock* BB;
117
118    Case() : Low(0), High(0), BB(0) { }
119    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
120      Low(low), High(high), BB(bb) { }
121    APInt size() const {
122      const APInt &rHigh = cast<ConstantInt>(High)->getValue();
123      const APInt &rLow  = cast<ConstantInt>(Low)->getValue();
124      return (rHigh - rLow + 1ULL);
125    }
126  };
127
128  struct CaseBits {
129    uint64_t Mask;
130    MachineBasicBlock* BB;
131    unsigned Bits;
132
133    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
134      Mask(mask), BB(bb), Bits(bits) { }
135  };
136
137  typedef std::vector<Case>           CaseVector;
138  typedef std::vector<CaseBits>       CaseBitsVector;
139  typedef CaseVector::iterator        CaseItr;
140  typedef std::pair<CaseItr, CaseItr> CaseRange;
141
142  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
143  /// of conditional branches.
144  struct CaseRec {
145    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
146    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
147
148    /// CaseBB - The MBB in which to emit the compare and branch
149    MachineBasicBlock *CaseBB;
150    /// LT, GE - If nonzero, we know the current case value must be less-than or
151    /// greater-than-or-equal-to these Constants.
152    Constant *LT;
153    Constant *GE;
154    /// Range - A pair of iterators representing the range of case values to be
155    /// processed at this point in the binary search tree.
156    CaseRange Range;
157  };
158
159  typedef std::vector<CaseRec> CaseRecVector;
160
161  /// The comparison function for sorting the switch case values in the vector.
162  /// WARNING: Case ranges should be disjoint!
163  struct CaseCmp {
164    bool operator()(const Case &C1, const Case &C2) {
165      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
166      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
167      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
168      return CI1->getValue().slt(CI2->getValue());
169    }
170  };
171
172  struct CaseBitsCmp {
173    bool operator()(const CaseBits &C1, const CaseBits &C2) {
174      return C1.Bits > C2.Bits;
175    }
176  };
177
178  size_t Clusterify(CaseVector &Cases, const SwitchInst &SI);
179
180  /// CaseBlock - This structure is used to communicate between
181  /// SelectionDAGBuilder and SDISel for the code generation of additional basic
182  /// blocks needed by multi-case switch statements.
183  struct CaseBlock {
184    CaseBlock(ISD::CondCode cc, Value *cmplhs, Value *cmprhs, Value *cmpmiddle,
185              MachineBasicBlock *truebb, MachineBasicBlock *falsebb,
186              MachineBasicBlock *me)
187      : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs),
188        TrueBB(truebb), FalseBB(falsebb), ThisBB(me) {}
189    // CC - the condition code to use for the case block's setcc node
190    ISD::CondCode CC;
191    // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit.
192    // Emit by default LHS op RHS. MHS is used for range comparisons:
193    // If MHS is not null: (LHS <= MHS) and (MHS <= RHS).
194    Value *CmpLHS, *CmpMHS, *CmpRHS;
195    // TrueBB/FalseBB - the block to branch to if the setcc is true/false.
196    MachineBasicBlock *TrueBB, *FalseBB;
197    // ThisBB - the block into which to emit the code for the setcc and branches
198    MachineBasicBlock *ThisBB;
199  };
200  struct JumpTable {
201    JumpTable(unsigned R, unsigned J, MachineBasicBlock *M,
202              MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {}
203
204    /// Reg - the virtual register containing the index of the jump table entry
205    //. to jump to.
206    unsigned Reg;
207    /// JTI - the JumpTableIndex for this jump table in the function.
208    unsigned JTI;
209    /// MBB - the MBB into which to emit the code for the indirect jump.
210    MachineBasicBlock *MBB;
211    /// Default - the MBB of the default bb, which is a successor of the range
212    /// check MBB.  This is when updating PHI nodes in successors.
213    MachineBasicBlock *Default;
214  };
215  struct JumpTableHeader {
216    JumpTableHeader(APInt F, APInt L, Value *SV, MachineBasicBlock *H,
217                    bool E = false):
218      First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {}
219    APInt First;
220    APInt Last;
221    Value *SValue;
222    MachineBasicBlock *HeaderBB;
223    bool Emitted;
224  };
225  typedef std::pair<JumpTableHeader, JumpTable> JumpTableBlock;
226
227  struct BitTestCase {
228    BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr):
229      Mask(M), ThisBB(T), TargetBB(Tr) { }
230    uint64_t Mask;
231    MachineBasicBlock *ThisBB;
232    MachineBasicBlock *TargetBB;
233  };
234
235  typedef SmallVector<BitTestCase, 3> BitTestInfo;
236
237  struct BitTestBlock {
238    BitTestBlock(APInt F, APInt R, Value* SV,
239                 unsigned Rg, bool E,
240                 MachineBasicBlock* P, MachineBasicBlock* D,
241                 const BitTestInfo& C):
242      First(F), Range(R), SValue(SV), Reg(Rg), Emitted(E),
243      Parent(P), Default(D), Cases(C) { }
244    APInt First;
245    APInt Range;
246    Value  *SValue;
247    unsigned Reg;
248    bool Emitted;
249    MachineBasicBlock *Parent;
250    MachineBasicBlock *Default;
251    BitTestInfo Cases;
252  };
253
254public:
255  // TLI - This is information that describes the available target features we
256  // need for lowering.  This indicates when operations are unavailable,
257  // implemented with a libcall, etc.
258  TargetLowering &TLI;
259  SelectionDAG &DAG;
260  const TargetData *TD;
261  AliasAnalysis *AA;
262
263  /// SwitchCases - Vector of CaseBlock structures used to communicate
264  /// SwitchInst code generation information.
265  std::vector<CaseBlock> SwitchCases;
266  /// JTCases - Vector of JumpTable structures used to communicate
267  /// SwitchInst code generation information.
268  std::vector<JumpTableBlock> JTCases;
269  /// BitTestCases - Vector of BitTestBlock structures used to communicate
270  /// SwitchInst code generation information.
271  std::vector<BitTestBlock> BitTestCases;
272
273  /// PHINodesToUpdate - A list of phi instructions whose operand list will
274  /// be updated after processing the current basic block.
275  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
276
277  /// EdgeMapping - If an edge from CurMBB to any MBB is changed (e.g. due to
278  /// scheduler custom lowering), track the change here.
279  DenseMap<MachineBasicBlock*, MachineBasicBlock*> EdgeMapping;
280
281  // Emit PHI-node-operand constants only once even if used by multiple
282  // PHI nodes.
283  DenseMap<Constant*, unsigned> ConstantsOut;
284
285  /// FuncInfo - Information about the function as a whole.
286  ///
287  FunctionLoweringInfo &FuncInfo;
288
289  /// OptLevel - What optimization level we're generating code for.
290  ///
291  CodeGenOpt::Level OptLevel;
292
293  /// GFI - Garbage collection metadata for the function.
294  GCFunctionInfo *GFI;
295
296  /// HasTailCall - This is set to true if a call in the current
297  /// block has been translated as a tail call. In this case,
298  /// no subsequent DAG nodes should be created.
299  ///
300  bool HasTailCall;
301
302  LLVMContext *Context;
303
304  SelectionDAGBuilder(SelectionDAG &dag, TargetLowering &tli,
305                      FunctionLoweringInfo &funcinfo,
306                      CodeGenOpt::Level ol)
307    : SDNodeOrder(0), TLI(tli), DAG(dag), FuncInfo(funcinfo), OptLevel(ol),
308      HasTailCall(false), Context(dag.getContext()) {
309  }
310
311  void init(GCFunctionInfo *gfi, AliasAnalysis &aa);
312
313  /// clear - Clear out the curret SelectionDAG and the associated
314  /// state and prepare this SelectionDAGBuilder object to be used
315  /// for a new block. This doesn't clear out information about
316  /// additional blocks that are needed to complete switch lowering
317  /// or PHI node updating; that information is cleared out as it is
318  /// consumed.
319  void clear();
320
321  /// getRoot - Return the current virtual root of the Selection DAG,
322  /// flushing any PendingLoad items. This must be done before emitting
323  /// a store or any other node that may need to be ordered after any
324  /// prior load instructions.
325  ///
326  SDValue getRoot();
327
328  /// getControlRoot - Similar to getRoot, but instead of flushing all the
329  /// PendingLoad items, flush all the PendingExports items. It is necessary
330  /// to do this before emitting a terminator instruction.
331  ///
332  SDValue getControlRoot();
333
334  DebugLoc getCurDebugLoc() const { return CurDebugLoc; }
335  void setCurDebugLoc(DebugLoc dl) { CurDebugLoc = dl; }
336
337  unsigned getSDNodeOrder() const { return SDNodeOrder; }
338
339  void CopyValueToVirtualRegister(Value *V, unsigned Reg);
340
341  /// AssignOrderingToNode - Assign an ordering to the node. The order is gotten
342  /// from how the code appeared in the source. The ordering is used by the
343  /// scheduler to effectively turn off scheduling.
344  void AssignOrderingToNode(const SDNode *Node);
345
346  void visit(Instruction &I);
347
348  void visit(unsigned Opcode, User &I);
349
350  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
351
352  SDValue getValue(const Value *V);
353
354  void setValue(const Value *V, SDValue NewN) {
355    SDValue &N = NodeMap[V];
356    assert(N.getNode() == 0 && "Already set a value for this node!");
357    N = NewN;
358  }
359
360  void GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
361                            std::set<unsigned> &OutputRegs,
362                            std::set<unsigned> &InputRegs);
363
364  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
365                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
366                            unsigned Opc);
367  void EmitBranchForMergedCondition(Value *Cond, MachineBasicBlock *TBB,
368                                    MachineBasicBlock *FBB,
369                                    MachineBasicBlock *CurBB);
370  bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases);
371  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
372  void CopyToExportRegsIfNeeded(Value *V);
373  void ExportFromCurrentBlock(Value *V);
374  void LowerCallTo(CallSite CS, SDValue Callee, bool IsTailCall,
375                   MachineBasicBlock *LandingPad = NULL);
376
377private:
378  // Terminator instructions.
379  void visitRet(ReturnInst &I);
380  void visitBr(BranchInst &I);
381  void visitSwitch(SwitchInst &I);
382  void visitIndirectBr(IndirectBrInst &I);
383  void visitUnreachable(UnreachableInst &I) { /* noop */ }
384
385  // Helpers for visitSwitch
386  bool handleSmallSwitchRange(CaseRec& CR,
387                              CaseRecVector& WorkList,
388                              Value* SV,
389                              MachineBasicBlock* Default);
390  bool handleJTSwitchCase(CaseRec& CR,
391                          CaseRecVector& WorkList,
392                          Value* SV,
393                          MachineBasicBlock* Default);
394  bool handleBTSplitSwitchCase(CaseRec& CR,
395                               CaseRecVector& WorkList,
396                               Value* SV,
397                               MachineBasicBlock* Default);
398  bool handleBitTestsSwitchCase(CaseRec& CR,
399                                CaseRecVector& WorkList,
400                                Value* SV,
401                                MachineBasicBlock* Default);
402public:
403  void visitSwitchCase(CaseBlock &CB);
404  void visitBitTestHeader(BitTestBlock &B);
405  void visitBitTestCase(MachineBasicBlock* NextMBB,
406                        unsigned Reg,
407                        BitTestCase &B);
408  void visitJumpTable(JumpTable &JT);
409  void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH);
410
411private:
412  // These all get lowered before this pass.
413  void visitInvoke(InvokeInst &I);
414  void visitUnwind(UnwindInst &I);
415
416  void visitBinary(User &I, unsigned OpCode);
417  void visitShift(User &I, unsigned Opcode);
418  void visitAdd(User &I)  { visitBinary(I, ISD::ADD); }
419  void visitFAdd(User &I) { visitBinary(I, ISD::FADD); }
420  void visitSub(User &I)  { visitBinary(I, ISD::SUB); }
421  void visitFSub(User &I);
422  void visitMul(User &I)  { visitBinary(I, ISD::MUL); }
423  void visitFMul(User &I) { visitBinary(I, ISD::FMUL); }
424  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
425  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
426  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
427  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
428  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
429  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
430  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
431  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
432  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
433  void visitShl (User &I) { visitShift(I, ISD::SHL); }
434  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
435  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
436  void visitICmp(User &I);
437  void visitFCmp(User &I);
438  // Visit the conversion instructions
439  void visitTrunc(User &I);
440  void visitZExt(User &I);
441  void visitSExt(User &I);
442  void visitFPTrunc(User &I);
443  void visitFPExt(User &I);
444  void visitFPToUI(User &I);
445  void visitFPToSI(User &I);
446  void visitUIToFP(User &I);
447  void visitSIToFP(User &I);
448  void visitPtrToInt(User &I);
449  void visitIntToPtr(User &I);
450  void visitBitCast(User &I);
451
452  void visitExtractElement(User &I);
453  void visitInsertElement(User &I);
454  void visitShuffleVector(User &I);
455
456  void visitExtractValue(ExtractValueInst &I);
457  void visitInsertValue(InsertValueInst &I);
458
459  void visitGetElementPtr(User &I);
460  void visitSelect(User &I);
461
462  void visitAlloca(AllocaInst &I);
463  void visitLoad(LoadInst &I);
464  void visitStore(StoreInst &I);
465  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
466  void visitCall(CallInst &I);
467  bool visitMemCmpCall(CallInst &I);
468
469  void visitInlineAsm(CallSite CS);
470  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
471  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
472
473  void visitPow(CallInst &I);
474  void visitExp2(CallInst &I);
475  void visitExp(CallInst &I);
476  void visitLog(CallInst &I);
477  void visitLog2(CallInst &I);
478  void visitLog10(CallInst &I);
479
480  void visitVAStart(CallInst &I);
481  void visitVAArg(VAArgInst &I);
482  void visitVAEnd(CallInst &I);
483  void visitVACopy(CallInst &I);
484
485  void visitUserOp1(Instruction &I) {
486    llvm_unreachable("UserOp1 should not exist at instruction selection time!");
487  }
488  void visitUserOp2(Instruction &I) {
489    llvm_unreachable("UserOp2 should not exist at instruction selection time!");
490  }
491
492  const char *implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op);
493  const char *implVisitAluOverflow(CallInst &I, ISD::NodeType Op);
494};
495
496} // end namespace llvm
497
498#endif
499