SelectionDAGBuilder.h revision 550184afe7e057c65a8d498c81b629cca7def656
1//===-- SelectionDAGBuilder.h - Selection-DAG building --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef SELECTIONDAGBUILDER_H
15#define SELECTIONDAGBUILDER_H
16
17#include "llvm/Constants.h"
18#include "llvm/CodeGen/SelectionDAG.h"
19#include "llvm/ADT/APInt.h"
20#include "llvm/ADT/DenseMap.h"
21#ifndef NDEBUG
22#include "llvm/ADT/SmallSet.h"
23#endif
24#include "llvm/CodeGen/SelectionDAGNodes.h"
25#include "llvm/CodeGen/ValueTypes.h"
26#include "llvm/Support/CallSite.h"
27#include "llvm/Support/ErrorHandling.h"
28#include <vector>
29#include <set>
30
31namespace llvm {
32
33class AliasAnalysis;
34class AllocaInst;
35class BasicBlock;
36class BitCastInst;
37class BranchInst;
38class CallInst;
39class ExtractElementInst;
40class ExtractValueInst;
41class FCmpInst;
42class FPExtInst;
43class FPToSIInst;
44class FPToUIInst;
45class FPTruncInst;
46class Function;
47class FunctionLoweringInfo;
48class GetElementPtrInst;
49class GCFunctionInfo;
50class ICmpInst;
51class IntToPtrInst;
52class IndirectBrInst;
53class InvokeInst;
54class InsertElementInst;
55class InsertValueInst;
56class Instruction;
57class LoadInst;
58class MachineBasicBlock;
59class MachineInstr;
60class MachineRegisterInfo;
61class PHINode;
62class PtrToIntInst;
63class ReturnInst;
64class SDISelAsmOperandInfo;
65class SExtInst;
66class SelectInst;
67class ShuffleVectorInst;
68class SIToFPInst;
69class StoreInst;
70class SwitchInst;
71class TargetData;
72class TargetLowering;
73class TruncInst;
74class UIToFPInst;
75class UnreachableInst;
76class UnwindInst;
77class VAArgInst;
78class ZExtInst;
79
80//===----------------------------------------------------------------------===//
81/// SelectionDAGBuilder - This is the common target-independent lowering
82/// implementation that is parameterized by a TargetLowering object.
83///
84class SelectionDAGBuilder {
85  /// CurDebugLoc - current file + line number.  Changes as we build the DAG.
86  DebugLoc CurDebugLoc;
87
88  DenseMap<const Value*, SDValue> NodeMap;
89
90public:
91  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
92  /// them up and then emit token factor nodes when possible.  This allows us to
93  /// get simple disambiguation between loads without worrying about alias
94  /// analysis.
95  SmallVector<SDValue, 8> PendingLoads;
96private:
97
98  /// PendingExports - CopyToReg nodes that copy values to virtual registers
99  /// for export to other blocks need to be emitted before any terminator
100  /// instruction, but they have no other ordering requirements. We bunch them
101  /// up and the emit a single tokenfactor for them just before terminator
102  /// instructions.
103  SmallVector<SDValue, 8> PendingExports;
104
105  /// SDNodeOrder - A unique monotonically increasing number used to order the
106  /// SDNodes we create.
107  unsigned SDNodeOrder;
108
109  /// Case - A struct to record the Value for a switch case, and the
110  /// case's target basic block.
111  struct Case {
112    Constant* Low;
113    Constant* High;
114    MachineBasicBlock* BB;
115
116    Case() : Low(0), High(0), BB(0) { }
117    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
118      Low(low), High(high), BB(bb) { }
119    APInt size() const {
120      const APInt &rHigh = cast<ConstantInt>(High)->getValue();
121      const APInt &rLow  = cast<ConstantInt>(Low)->getValue();
122      return (rHigh - rLow + 1ULL);
123    }
124  };
125
126  struct CaseBits {
127    uint64_t Mask;
128    MachineBasicBlock* BB;
129    unsigned Bits;
130
131    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
132      Mask(mask), BB(bb), Bits(bits) { }
133  };
134
135  typedef std::vector<Case>           CaseVector;
136  typedef std::vector<CaseBits>       CaseBitsVector;
137  typedef CaseVector::iterator        CaseItr;
138  typedef std::pair<CaseItr, CaseItr> CaseRange;
139
140  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
141  /// of conditional branches.
142  struct CaseRec {
143    CaseRec(MachineBasicBlock *bb, const Constant *lt, const Constant *ge,
144            CaseRange r) :
145    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
146
147    /// CaseBB - The MBB in which to emit the compare and branch
148    MachineBasicBlock *CaseBB;
149    /// LT, GE - If nonzero, we know the current case value must be less-than or
150    /// greater-than-or-equal-to these Constants.
151    const Constant *LT;
152    const Constant *GE;
153    /// Range - A pair of iterators representing the range of case values to be
154    /// processed at this point in the binary search tree.
155    CaseRange Range;
156  };
157
158  typedef std::vector<CaseRec> CaseRecVector;
159
160  /// The comparison function for sorting the switch case values in the vector.
161  /// WARNING: Case ranges should be disjoint!
162  struct CaseCmp {
163    bool operator()(const Case &C1, const Case &C2) {
164      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
165      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
166      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
167      return CI1->getValue().slt(CI2->getValue());
168    }
169  };
170
171  struct CaseBitsCmp {
172    bool operator()(const CaseBits &C1, const CaseBits &C2) {
173      return C1.Bits > C2.Bits;
174    }
175  };
176
177  size_t Clusterify(CaseVector &Cases, const SwitchInst &SI);
178
179  /// CaseBlock - This structure is used to communicate between
180  /// SelectionDAGBuilder and SDISel for the code generation of additional basic
181  /// blocks needed by multi-case switch statements.
182  struct CaseBlock {
183    CaseBlock(ISD::CondCode cc, const Value *cmplhs, const Value *cmprhs,
184              const Value *cmpmiddle,
185              MachineBasicBlock *truebb, MachineBasicBlock *falsebb,
186              MachineBasicBlock *me)
187      : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs),
188        TrueBB(truebb), FalseBB(falsebb), ThisBB(me) {}
189    // CC - the condition code to use for the case block's setcc node
190    ISD::CondCode CC;
191    // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit.
192    // Emit by default LHS op RHS. MHS is used for range comparisons:
193    // If MHS is not null: (LHS <= MHS) and (MHS <= RHS).
194    const Value *CmpLHS, *CmpMHS, *CmpRHS;
195    // TrueBB/FalseBB - the block to branch to if the setcc is true/false.
196    MachineBasicBlock *TrueBB, *FalseBB;
197    // ThisBB - the block into which to emit the code for the setcc and branches
198    MachineBasicBlock *ThisBB;
199  };
200  struct JumpTable {
201    JumpTable(unsigned R, unsigned J, MachineBasicBlock *M,
202              MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {}
203
204    /// Reg - the virtual register containing the index of the jump table entry
205    //. to jump to.
206    unsigned Reg;
207    /// JTI - the JumpTableIndex for this jump table in the function.
208    unsigned JTI;
209    /// MBB - the MBB into which to emit the code for the indirect jump.
210    MachineBasicBlock *MBB;
211    /// Default - the MBB of the default bb, which is a successor of the range
212    /// check MBB.  This is when updating PHI nodes in successors.
213    MachineBasicBlock *Default;
214  };
215  struct JumpTableHeader {
216    JumpTableHeader(APInt F, APInt L, const Value *SV, MachineBasicBlock *H,
217                    bool E = false):
218      First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {}
219    APInt First;
220    APInt Last;
221    const Value *SValue;
222    MachineBasicBlock *HeaderBB;
223    bool Emitted;
224  };
225  typedef std::pair<JumpTableHeader, JumpTable> JumpTableBlock;
226
227  struct BitTestCase {
228    BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr):
229      Mask(M), ThisBB(T), TargetBB(Tr) { }
230    uint64_t Mask;
231    MachineBasicBlock *ThisBB;
232    MachineBasicBlock *TargetBB;
233  };
234
235  typedef SmallVector<BitTestCase, 3> BitTestInfo;
236
237  struct BitTestBlock {
238    BitTestBlock(APInt F, APInt R, const Value* SV,
239                 unsigned Rg, bool E,
240                 MachineBasicBlock* P, MachineBasicBlock* D,
241                 const BitTestInfo& C):
242      First(F), Range(R), SValue(SV), Reg(Rg), Emitted(E),
243      Parent(P), Default(D), Cases(C) { }
244    APInt First;
245    APInt Range;
246    const Value *SValue;
247    unsigned Reg;
248    bool Emitted;
249    MachineBasicBlock *Parent;
250    MachineBasicBlock *Default;
251    BitTestInfo Cases;
252  };
253
254public:
255  // TLI - This is information that describes the available target features we
256  // need for lowering.  This indicates when operations are unavailable,
257  // implemented with a libcall, etc.
258  const TargetMachine &TM;
259  const TargetLowering &TLI;
260  SelectionDAG &DAG;
261  const TargetData *TD;
262  AliasAnalysis *AA;
263
264  /// SwitchCases - Vector of CaseBlock structures used to communicate
265  /// SwitchInst code generation information.
266  std::vector<CaseBlock> SwitchCases;
267  /// JTCases - Vector of JumpTable structures used to communicate
268  /// SwitchInst code generation information.
269  std::vector<JumpTableBlock> JTCases;
270  /// BitTestCases - Vector of BitTestBlock structures used to communicate
271  /// SwitchInst code generation information.
272  std::vector<BitTestBlock> BitTestCases;
273
274  /// PHINodesToUpdate - A list of phi instructions whose operand list will
275  /// be updated after processing the current basic block.
276  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
277
278  /// EdgeMapping - If an edge from CurMBB to any MBB is changed (e.g. due to
279  /// scheduler custom lowering), track the change here.
280  DenseMap<MachineBasicBlock*, MachineBasicBlock*> EdgeMapping;
281
282  // Emit PHI-node-operand constants only once even if used by multiple
283  // PHI nodes.
284  DenseMap<const Constant *, unsigned> ConstantsOut;
285
286  /// FuncInfo - Information about the function as a whole.
287  ///
288  FunctionLoweringInfo &FuncInfo;
289
290  /// OptLevel - What optimization level we're generating code for.
291  ///
292  CodeGenOpt::Level OptLevel;
293
294  /// GFI - Garbage collection metadata for the function.
295  GCFunctionInfo *GFI;
296
297  /// HasTailCall - This is set to true if a call in the current
298  /// block has been translated as a tail call. In this case,
299  /// no subsequent DAG nodes should be created.
300  ///
301  bool HasTailCall;
302
303  LLVMContext *Context;
304
305  SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo,
306                      CodeGenOpt::Level ol)
307    : SDNodeOrder(0), TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
308      DAG(dag), FuncInfo(funcinfo), OptLevel(ol),
309      HasTailCall(false), Context(dag.getContext()) {
310  }
311
312  void init(GCFunctionInfo *gfi, AliasAnalysis &aa);
313
314  /// clear - Clear out the current SelectionDAG and the associated
315  /// state and prepare this SelectionDAGBuilder object to be used
316  /// for a new block. This doesn't clear out information about
317  /// additional blocks that are needed to complete switch lowering
318  /// or PHI node updating; that information is cleared out as it is
319  /// consumed.
320  void clear();
321
322  /// getRoot - Return the current virtual root of the Selection DAG,
323  /// flushing any PendingLoad items. This must be done before emitting
324  /// a store or any other node that may need to be ordered after any
325  /// prior load instructions.
326  ///
327  SDValue getRoot();
328
329  /// getControlRoot - Similar to getRoot, but instead of flushing all the
330  /// PendingLoad items, flush all the PendingExports items. It is necessary
331  /// to do this before emitting a terminator instruction.
332  ///
333  SDValue getControlRoot();
334
335  DebugLoc getCurDebugLoc() const { return CurDebugLoc; }
336
337  unsigned getSDNodeOrder() const { return SDNodeOrder; }
338
339  void CopyValueToVirtualRegister(const Value *V, unsigned Reg);
340
341  /// AssignOrderingToNode - Assign an ordering to the node. The order is gotten
342  /// from how the code appeared in the source. The ordering is used by the
343  /// scheduler to effectively turn off scheduling.
344  void AssignOrderingToNode(const SDNode *Node);
345
346  void visit(const Instruction &I);
347
348  void visit(unsigned Opcode, const User &I);
349
350  SDValue getValue(const Value *V);
351
352  void setValue(const Value *V, SDValue NewN) {
353    SDValue &N = NodeMap[V];
354    assert(N.getNode() == 0 && "Already set a value for this node!");
355    N = NewN;
356  }
357
358  void GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
359                            std::set<unsigned> &OutputRegs,
360                            std::set<unsigned> &InputRegs);
361
362  void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB,
363                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
364                            MachineBasicBlock *SwitchBB, unsigned Opc);
365  void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB,
366                                    MachineBasicBlock *FBB,
367                                    MachineBasicBlock *CurBB,
368                                    MachineBasicBlock *SwitchBB);
369  bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases);
370  bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB);
371  void CopyToExportRegsIfNeeded(const Value *V);
372  void ExportFromCurrentBlock(const Value *V);
373  void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall,
374                   MachineBasicBlock *LandingPad = NULL);
375
376private:
377  // Terminator instructions.
378  void visitRet(const ReturnInst &I);
379  void visitBr(const BranchInst &I);
380  void visitSwitch(const SwitchInst &I);
381  void visitIndirectBr(const IndirectBrInst &I);
382  void visitUnreachable(const UnreachableInst &I) { /* noop */ }
383
384  // Helpers for visitSwitch
385  bool handleSmallSwitchRange(CaseRec& CR,
386                              CaseRecVector& WorkList,
387                              const Value* SV,
388                              MachineBasicBlock* Default,
389                              MachineBasicBlock *SwitchBB);
390  bool handleJTSwitchCase(CaseRec& CR,
391                          CaseRecVector& WorkList,
392                          const Value* SV,
393                          MachineBasicBlock* Default,
394                          MachineBasicBlock *SwitchBB);
395  bool handleBTSplitSwitchCase(CaseRec& CR,
396                               CaseRecVector& WorkList,
397                               const Value* SV,
398                               MachineBasicBlock* Default,
399                               MachineBasicBlock *SwitchBB);
400  bool handleBitTestsSwitchCase(CaseRec& CR,
401                                CaseRecVector& WorkList,
402                                const Value* SV,
403                                MachineBasicBlock* Default,
404                                MachineBasicBlock *SwitchBB);
405public:
406  void visitSwitchCase(CaseBlock &CB,
407                       MachineBasicBlock *SwitchBB);
408  void visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB);
409  void visitBitTestCase(MachineBasicBlock* NextMBB,
410                        unsigned Reg,
411                        BitTestCase &B,
412                        MachineBasicBlock *SwitchBB);
413  void visitJumpTable(JumpTable &JT);
414  void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH,
415                            MachineBasicBlock *SwitchBB);
416
417private:
418  // These all get lowered before this pass.
419  void visitInvoke(const InvokeInst &I);
420  void visitUnwind(const UnwindInst &I);
421
422  void visitBinary(const User &I, unsigned OpCode);
423  void visitShift(const User &I, unsigned Opcode);
424  void visitAdd(const User &I)  { visitBinary(I, ISD::ADD); }
425  void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); }
426  void visitSub(const User &I)  { visitBinary(I, ISD::SUB); }
427  void visitFSub(const User &I);
428  void visitMul(const User &I)  { visitBinary(I, ISD::MUL); }
429  void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); }
430  void visitURem(const User &I) { visitBinary(I, ISD::UREM); }
431  void visitSRem(const User &I) { visitBinary(I, ISD::SREM); }
432  void visitFRem(const User &I) { visitBinary(I, ISD::FREM); }
433  void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); }
434  void visitSDiv(const User &I) { visitBinary(I, ISD::SDIV); }
435  void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); }
436  void visitAnd (const User &I) { visitBinary(I, ISD::AND); }
437  void visitOr  (const User &I) { visitBinary(I, ISD::OR); }
438  void visitXor (const User &I) { visitBinary(I, ISD::XOR); }
439  void visitShl (const User &I) { visitShift(I, ISD::SHL); }
440  void visitLShr(const User &I) { visitShift(I, ISD::SRL); }
441  void visitAShr(const User &I) { visitShift(I, ISD::SRA); }
442  void visitICmp(const User &I);
443  void visitFCmp(const User &I);
444  // Visit the conversion instructions
445  void visitTrunc(const User &I);
446  void visitZExt(const User &I);
447  void visitSExt(const User &I);
448  void visitFPTrunc(const User &I);
449  void visitFPExt(const User &I);
450  void visitFPToUI(const User &I);
451  void visitFPToSI(const User &I);
452  void visitUIToFP(const User &I);
453  void visitSIToFP(const User &I);
454  void visitPtrToInt(const User &I);
455  void visitIntToPtr(const User &I);
456  void visitBitCast(const User &I);
457
458  void visitExtractElement(const User &I);
459  void visitInsertElement(const User &I);
460  void visitShuffleVector(const User &I);
461
462  void visitExtractValue(const ExtractValueInst &I);
463  void visitInsertValue(const InsertValueInst &I);
464
465  void visitGetElementPtr(const User &I);
466  void visitSelect(const User &I);
467
468  void visitAlloca(const AllocaInst &I);
469  void visitLoad(const LoadInst &I);
470  void visitStore(const StoreInst &I);
471  void visitPHI(const PHINode &I) { } // PHI nodes are handled specially.
472  void visitCall(const CallInst &I);
473  bool visitMemCmpCall(const CallInst &I);
474
475  void visitInlineAsm(ImmutableCallSite CS);
476  const char *visitIntrinsicCall(const CallInst &I, unsigned Intrinsic);
477  void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic);
478
479  void visitPow(const CallInst &I);
480  void visitExp2(const CallInst &I);
481  void visitExp(const CallInst &I);
482  void visitLog(const CallInst &I);
483  void visitLog2(const CallInst &I);
484  void visitLog10(const CallInst &I);
485
486  void visitVAStart(const CallInst &I);
487  void visitVAArg(const VAArgInst &I);
488  void visitVAEnd(const CallInst &I);
489  void visitVACopy(const CallInst &I);
490
491  void visitUserOp1(const Instruction &I) {
492    llvm_unreachable("UserOp1 should not exist at instruction selection time!");
493  }
494  void visitUserOp2(const Instruction &I) {
495    llvm_unreachable("UserOp2 should not exist at instruction selection time!");
496  }
497
498  const char *implVisitBinaryAtomic(const CallInst& I, ISD::NodeType Op);
499  const char *implVisitAluOverflow(const CallInst &I, ISD::NodeType Op);
500};
501
502} // end namespace llvm
503
504#endif
505