SelectionDAGBuilder.h revision 55c06ae7afa3f862a6bb4a4441fe485c135f5b5e
1//===-- SelectionDAGBuilder.h - Selection-DAG building --------*- C++ -*---===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef SELECTIONDAGBUILDER_H
15#define SELECTIONDAGBUILDER_H
16
17#include "llvm/ADT/APInt.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/CodeGen/SelectionDAG.h"
20#include "llvm/CodeGen/SelectionDAGNodes.h"
21#include "llvm/CodeGen/ValueTypes.h"
22#include "llvm/IR/Constants.h"
23#include "llvm/Support/CallSite.h"
24#include "llvm/Support/ErrorHandling.h"
25#include <vector>
26
27namespace llvm {
28
29class AliasAnalysis;
30class AllocaInst;
31class BasicBlock;
32class BitCastInst;
33class BranchInst;
34class CallInst;
35class DbgValueInst;
36class ExtractElementInst;
37class ExtractValueInst;
38class FCmpInst;
39class FPExtInst;
40class FPToSIInst;
41class FPToUIInst;
42class FPTruncInst;
43class Function;
44class FunctionLoweringInfo;
45class GetElementPtrInst;
46class GCFunctionInfo;
47class ICmpInst;
48class IntToPtrInst;
49class IndirectBrInst;
50class InvokeInst;
51class InsertElementInst;
52class InsertValueInst;
53class Instruction;
54class LoadInst;
55class MachineBasicBlock;
56class MachineInstr;
57class MachineRegisterInfo;
58class MDNode;
59class PHINode;
60class PtrToIntInst;
61class ReturnInst;
62class SDDbgValue;
63class SExtInst;
64class SelectInst;
65class ShuffleVectorInst;
66class SIToFPInst;
67class StoreInst;
68class SwitchInst;
69class DataLayout;
70class TargetLibraryInfo;
71class TargetLowering;
72class TruncInst;
73class UIToFPInst;
74class UnreachableInst;
75class VAArgInst;
76class ZExtInst;
77
78//===----------------------------------------------------------------------===//
79/// SelectionDAGBuilder - This is the common target-independent lowering
80/// implementation that is parameterized by a TargetLowering object.
81///
82class SelectionDAGBuilder {
83  /// CurInst - The current instruction being visited
84  const Instruction *CurInst;
85
86  DenseMap<const Value*, SDValue> NodeMap;
87
88  /// UnusedArgNodeMap - Maps argument value for unused arguments. This is used
89  /// to preserve debug information for incoming arguments.
90  DenseMap<const Value*, SDValue> UnusedArgNodeMap;
91
92  /// DanglingDebugInfo - Helper type for DanglingDebugInfoMap.
93  class DanglingDebugInfo {
94    const DbgValueInst* DI;
95    DebugLoc dl;
96    unsigned SDNodeOrder;
97  public:
98    DanglingDebugInfo() : DI(0), dl(DebugLoc()), SDNodeOrder(0) { }
99    DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO) :
100      DI(di), dl(DL), SDNodeOrder(SDNO) { }
101    const DbgValueInst* getDI() { return DI; }
102    DebugLoc getdl() { return dl; }
103    unsigned getSDNodeOrder() { return SDNodeOrder; }
104  };
105
106  /// DanglingDebugInfoMap - Keeps track of dbg_values for which we have not
107  /// yet seen the referent.  We defer handling these until we do see it.
108  DenseMap<const Value*, DanglingDebugInfo> DanglingDebugInfoMap;
109
110public:
111  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
112  /// them up and then emit token factor nodes when possible.  This allows us to
113  /// get simple disambiguation between loads without worrying about alias
114  /// analysis.
115  SmallVector<SDValue, 8> PendingLoads;
116private:
117
118  /// PendingExports - CopyToReg nodes that copy values to virtual registers
119  /// for export to other blocks need to be emitted before any terminator
120  /// instruction, but they have no other ordering requirements. We bunch them
121  /// up and the emit a single tokenfactor for them just before terminator
122  /// instructions.
123  SmallVector<SDValue, 8> PendingExports;
124
125  /// SDNodeOrder - A unique monotonically increasing number used to order the
126  /// SDNodes we create.
127  unsigned SDNodeOrder;
128
129  /// Case - A struct to record the Value for a switch case, and the
130  /// case's target basic block.
131  struct Case {
132    const Constant *Low;
133    const Constant *High;
134    MachineBasicBlock* BB;
135    uint32_t ExtraWeight;
136
137    Case() : Low(0), High(0), BB(0), ExtraWeight(0) { }
138    Case(const Constant *low, const Constant *high, MachineBasicBlock *bb,
139         uint32_t extraweight) : Low(low), High(high), BB(bb),
140         ExtraWeight(extraweight) { }
141
142    APInt size() const {
143      const APInt &rHigh = cast<ConstantInt>(High)->getValue();
144      const APInt &rLow  = cast<ConstantInt>(Low)->getValue();
145      return (rHigh - rLow + 1ULL);
146    }
147  };
148
149  struct CaseBits {
150    uint64_t Mask;
151    MachineBasicBlock* BB;
152    unsigned Bits;
153    uint32_t ExtraWeight;
154
155    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits,
156             uint32_t Weight):
157      Mask(mask), BB(bb), Bits(bits), ExtraWeight(Weight) { }
158  };
159
160  typedef std::vector<Case>           CaseVector;
161  typedef std::vector<CaseBits>       CaseBitsVector;
162  typedef CaseVector::iterator        CaseItr;
163  typedef std::pair<CaseItr, CaseItr> CaseRange;
164
165  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
166  /// of conditional branches.
167  struct CaseRec {
168    CaseRec(MachineBasicBlock *bb, const Constant *lt, const Constant *ge,
169            CaseRange r) :
170    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
171
172    /// CaseBB - The MBB in which to emit the compare and branch
173    MachineBasicBlock *CaseBB;
174    /// LT, GE - If nonzero, we know the current case value must be less-than or
175    /// greater-than-or-equal-to these Constants.
176    const Constant *LT;
177    const Constant *GE;
178    /// Range - A pair of iterators representing the range of case values to be
179    /// processed at this point in the binary search tree.
180    CaseRange Range;
181  };
182
183  typedef std::vector<CaseRec> CaseRecVector;
184
185  /// The comparison function for sorting the switch case values in the vector.
186  /// WARNING: Case ranges should be disjoint!
187  struct CaseCmp {
188    bool operator()(const Case &C1, const Case &C2) {
189      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
190      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
191      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
192      return CI1->getValue().slt(CI2->getValue());
193    }
194  };
195
196  struct CaseBitsCmp {
197    bool operator()(const CaseBits &C1, const CaseBits &C2) {
198      return C1.Bits > C2.Bits;
199    }
200  };
201
202  size_t Clusterify(CaseVector &Cases, const SwitchInst &SI);
203
204  /// CaseBlock - This structure is used to communicate between
205  /// SelectionDAGBuilder and SDISel for the code generation of additional basic
206  /// blocks needed by multi-case switch statements.
207  struct CaseBlock {
208    CaseBlock(ISD::CondCode cc, const Value *cmplhs, const Value *cmprhs,
209              const Value *cmpmiddle,
210              MachineBasicBlock *truebb, MachineBasicBlock *falsebb,
211              MachineBasicBlock *me,
212              uint32_t trueweight = 0, uint32_t falseweight = 0)
213      : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs),
214        TrueBB(truebb), FalseBB(falsebb), ThisBB(me),
215        TrueWeight(trueweight), FalseWeight(falseweight) { }
216
217    // CC - the condition code to use for the case block's setcc node
218    ISD::CondCode CC;
219
220    // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit.
221    // Emit by default LHS op RHS. MHS is used for range comparisons:
222    // If MHS is not null: (LHS <= MHS) and (MHS <= RHS).
223    const Value *CmpLHS, *CmpMHS, *CmpRHS;
224
225    // TrueBB/FalseBB - the block to branch to if the setcc is true/false.
226    MachineBasicBlock *TrueBB, *FalseBB;
227
228    // ThisBB - the block into which to emit the code for the setcc and branches
229    MachineBasicBlock *ThisBB;
230
231    // TrueWeight/FalseWeight - branch weights.
232    uint32_t TrueWeight, FalseWeight;
233  };
234
235  struct JumpTable {
236    JumpTable(unsigned R, unsigned J, MachineBasicBlock *M,
237              MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {}
238
239    /// Reg - the virtual register containing the index of the jump table entry
240    //. to jump to.
241    unsigned Reg;
242    /// JTI - the JumpTableIndex for this jump table in the function.
243    unsigned JTI;
244    /// MBB - the MBB into which to emit the code for the indirect jump.
245    MachineBasicBlock *MBB;
246    /// Default - the MBB of the default bb, which is a successor of the range
247    /// check MBB.  This is when updating PHI nodes in successors.
248    MachineBasicBlock *Default;
249  };
250  struct JumpTableHeader {
251    JumpTableHeader(APInt F, APInt L, const Value *SV, MachineBasicBlock *H,
252                    bool E = false):
253      First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {}
254    APInt First;
255    APInt Last;
256    const Value *SValue;
257    MachineBasicBlock *HeaderBB;
258    bool Emitted;
259  };
260  typedef std::pair<JumpTableHeader, JumpTable> JumpTableBlock;
261
262  struct BitTestCase {
263    BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr,
264                uint32_t Weight):
265      Mask(M), ThisBB(T), TargetBB(Tr), ExtraWeight(Weight) { }
266    uint64_t Mask;
267    MachineBasicBlock *ThisBB;
268    MachineBasicBlock *TargetBB;
269    uint32_t ExtraWeight;
270  };
271
272  typedef SmallVector<BitTestCase, 3> BitTestInfo;
273
274  struct BitTestBlock {
275    BitTestBlock(APInt F, APInt R, const Value* SV,
276                 unsigned Rg, MVT RgVT, bool E,
277                 MachineBasicBlock* P, MachineBasicBlock* D,
278                 const BitTestInfo& C):
279      First(F), Range(R), SValue(SV), Reg(Rg), RegVT(RgVT), Emitted(E),
280      Parent(P), Default(D), Cases(C) { }
281    APInt First;
282    APInt Range;
283    const Value *SValue;
284    unsigned Reg;
285    MVT RegVT;
286    bool Emitted;
287    MachineBasicBlock *Parent;
288    MachineBasicBlock *Default;
289    BitTestInfo Cases;
290  };
291
292  /// A class which encapsulates all of the information needed to generate a
293  /// stack protector check and signals to isel via its state being initialized
294  /// that a stack protector needs to be generated.
295  ///
296  /// *NOTE* The following is a high level documentation of SelectionDAG Stack
297  /// Protector Generation. The reason that it is placed here is for a lack of
298  /// other good places to stick it.
299  ///
300  /// High Level Overview of SelectionDAG Stack Protector Generation:
301  ///
302  /// Previously, generation of stack protectors was done exclusively in the
303  /// pre-SelectionDAG Codegen LLVM IR Pass "Stack Protector". This necessitated
304  /// splitting basic blocks at the IR level to create the success/failure basic
305  /// blocks in the tail of the basic block in question. As a result of this,
306  /// calls that would have qualified for the sibling call optimization were no
307  /// longer eligible for optimization since said calls were no longer right in
308  /// the "tail position" (i.e. the immediate predecessor of a ReturnInst
309  /// instruction).
310  ///
311  /// Then it was noticed that since the sibling call optimization causes the
312  /// callee to reuse the caller's stack, if we could delay the generation of
313  /// the stack protector check until later in CodeGen after the sibling call
314  /// decision was made, we get both the tail call optimization and the stack
315  /// protector check!
316  ///
317  /// A few goals in solving this problem were:
318  ///
319  ///   1. Preserve the architecture independence of stack protector generation.
320  ///
321  ///   2. Preserve the normal IR level stack protector check for platforms like
322  ///      OpenBSD for which we support platform specific stack protector
323  ///      generation.
324  ///
325  /// The main problem that guided the present solution is that one can not
326  /// solve this problem in an architecture independent manner at the IR level
327  /// only. This is because:
328  ///
329  ///   1. The decision on whether or not to perform a sibling call on certain
330  ///      platforms (for instance i386) requires lower level information
331  ///      related to available registers that can not be known at the IR level.
332  ///
333  ///   2. Even if the previous point were not true, the decision on whether to
334  ///      perform a tail call is done in LowerCallTo in SelectionDAG which
335  ///      occurs after the Stack Protector Pass. As a result, one would need to
336  ///      put the relevant callinst into the stack protector check success
337  ///      basic block (where the return inst is placed) and then move it back
338  ///      later at SelectionDAG/MI time before the stack protector check if the
339  ///      tail call optimization failed. The MI level option was nixed
340  ///      immediately since it would require platform specific pattern
341  ///      matching. The SelectionDAG level option was nixed because
342  ///      SelectionDAG only processes one IR level basic block at a time
343  ///      implying one could not create a DAG Combine to move the callinst.
344  ///
345  /// To get around this problem a few things were realized:
346  ///
347  ///   1. While one can not handle multiple IR level basic blocks at the
348  ///      SelectionDAG Level, one can generate multiple machine basic blocks
349  ///      for one IR level basic block. This is how we handle bit tests and
350  ///      switches.
351  ///
352  ///   2. At the MI level, tail calls are represented via a special return
353  ///      MIInst called "tcreturn". Thus if we know the basic block in which we
354  ///      wish to insert the stack protector check, we get the correct behavior
355  ///      by always inserting the stack protector check right before the return
356  ///      statement. This is a "magical transformation" since no matter where
357  ///      the stack protector check intrinsic is, we always insert the stack
358  ///      protector check code at the end of the BB.
359  ///
360  /// Given the aforementioned constraints, the following solution was devised:
361  ///
362  ///   1. On platforms that do not support SelectionDAG stack protector check
363  ///      generation, allow for the normal IR level stack protector check
364  ///      generation to continue.
365  ///
366  ///   2. On platforms that do support SelectionDAG stack protector check
367  ///      generation:
368  ///
369  ///     a. Use the IR level stack protector pass to decide if a stack
370  ///        protector is required/which BB we insert the stack protector check
371  ///        in by reusing the logic already therein. If we wish to generate a
372  ///        stack protector check in a basic block, we place a special IR
373  ///        intrinsic called llvm.stackprotectorcheck right before the BB's
374  ///        returninst or if there is a callinst that could potentially be
375  ///        sibling call optimized, before the call inst.
376  ///
377  ///     b. Then when a BB with said intrinsic is processed, we codegen the BB
378  ///        normally via SelectBasicBlock. In said process, when we visit the
379  ///        stack protector check, we do not actually emit anything into the
380  ///        BB. Instead, we just initialize the stack protector descriptor
381  ///        class (which involves stashing information/creating the success
382  ///        mbbb and the failure mbb if we have not created one for this
383  ///        function yet) and export the guard variable that we are going to
384  ///        compare.
385  ///
386  ///     c. After we finish selecting the basic block, in FinishBasicBlock if
387  ///        the StackProtectorDescriptor attached to the SelectionDAGBuilder is
388  ///        initialized, we first find a splice point in the parent basic block
389  ///        before the terminator and then splice the terminator of said basic
390  ///        block into the success basic block. Then we code-gen a new tail for
391  ///        the parent basic block consisting of the two loads, the comparison,
392  ///        and finally two branches to the success/failure basic blocks. We
393  ///        conclude by code-gening the failure basic block if we have not
394  ///        code-gened it already (all stack protector checks we generate in
395  ///        the same function, use the same failure basic block).
396  class StackProtectorDescriptor {
397  public:
398    StackProtectorDescriptor() : ParentMBB(0), SuccessMBB(0), FailureMBB(0),
399                                 Guard(0) { }
400    ~StackProtectorDescriptor() { }
401
402    /// Returns true if all fields of the stack protector descriptor are
403    /// initialized implying that we should/are ready to emit a stack protector.
404    bool shouldEmitStackProtector() const {
405      return ParentMBB && SuccessMBB && FailureMBB && Guard;
406    }
407
408    /// Initialize the stack protector descriptor structure for a new basic
409    /// block.
410    void initialize(const BasicBlock *BB,
411                    MachineBasicBlock *MBB,
412                    const CallInst &StackProtCheckCall) {
413      // Make sure we are not initialized yet.
414      assert(!shouldEmitStackProtector() && "Stack Protector Descriptor is "
415             "already initialized!");
416      ParentMBB = MBB;
417      SuccessMBB = AddSuccessorMBB(BB, MBB);
418      FailureMBB = AddSuccessorMBB(BB, MBB, FailureMBB);
419      if (!Guard)
420        Guard = StackProtCheckCall.getArgOperand(0);
421    }
422
423    /// Reset state that changes when we handle different basic blocks.
424    ///
425    /// This currently includes:
426    ///
427    /// 1. The specific basic block we are generating a
428    /// stack protector for (ParentMBB).
429    ///
430    /// 2. The successor machine basic block that will contain the tail of
431    /// parent mbb after we create the stack protector check (SuccessMBB). This
432    /// BB is visited only on stack protector check success.
433    void resetPerBBState() {
434      ParentMBB = 0;
435      SuccessMBB = 0;
436    }
437
438    /// Reset state that only changes when we switch functions.
439    ///
440    /// This currently includes:
441    ///
442    /// 1. FailureMBB since we reuse the failure code path for all stack
443    /// protector checks created in an individual function.
444    ///
445    /// 2.The guard variable since the guard variable we are checking against is
446    /// always the same.
447    void resetPerFunctionState() {
448      FailureMBB = 0;
449      Guard = 0;
450    }
451
452    MachineBasicBlock *getParentMBB() { return ParentMBB; }
453    MachineBasicBlock *getSuccessMBB() { return SuccessMBB; }
454    MachineBasicBlock *getFailureMBB() { return FailureMBB; }
455    const Value *getGuard() { return Guard; }
456
457  private:
458    /// The basic block for which we are generating the stack protector.
459    ///
460    /// As a result of stack protector generation, we will splice the
461    /// terminators of this basic block into the successor mbb SuccessMBB and
462    /// replace it with a compare/branch to the successor mbbs
463    /// SuccessMBB/FailureMBB depending on whether or not the stack protector
464    /// was violated.
465    MachineBasicBlock *ParentMBB;
466
467    /// A basic block visited on stack protector check success that contains the
468    /// terminators of ParentMBB.
469    MachineBasicBlock *SuccessMBB;
470
471    /// This basic block visited on stack protector check failure that will
472    /// contain a call to __stack_chk_fail().
473    MachineBasicBlock *FailureMBB;
474
475    /// The guard variable which we will compare against the stored value in the
476    /// stack protector stack slot.
477    const Value *Guard;
478
479    /// Add a successor machine basic block to ParentMBB. If the successor mbb
480    /// has not been created yet (i.e. if SuccMBB = 0), then the machine basic
481    /// block will be created.
482    MachineBasicBlock *AddSuccessorMBB(const BasicBlock *BB,
483                                       MachineBasicBlock *ParentMBB,
484                                       MachineBasicBlock *SuccMBB = 0);
485  };
486
487private:
488  const TargetMachine &TM;
489public:
490  SelectionDAG &DAG;
491  const DataLayout *TD;
492  AliasAnalysis *AA;
493  const TargetLibraryInfo *LibInfo;
494
495  /// SwitchCases - Vector of CaseBlock structures used to communicate
496  /// SwitchInst code generation information.
497  std::vector<CaseBlock> SwitchCases;
498  /// JTCases - Vector of JumpTable structures used to communicate
499  /// SwitchInst code generation information.
500  std::vector<JumpTableBlock> JTCases;
501  /// BitTestCases - Vector of BitTestBlock structures used to communicate
502  /// SwitchInst code generation information.
503  std::vector<BitTestBlock> BitTestCases;
504  /// A StackProtectorDescriptor structure used to communicate stack protector
505  /// information in between SelectBasicBlock and FinishBasicBlock.
506  StackProtectorDescriptor SPDescriptor;
507
508  // Emit PHI-node-operand constants only once even if used by multiple
509  // PHI nodes.
510  DenseMap<const Constant *, unsigned> ConstantsOut;
511
512  /// FuncInfo - Information about the function as a whole.
513  ///
514  FunctionLoweringInfo &FuncInfo;
515
516  /// OptLevel - What optimization level we're generating code for.
517  ///
518  CodeGenOpt::Level OptLevel;
519
520  /// GFI - Garbage collection metadata for the function.
521  GCFunctionInfo *GFI;
522
523  /// LPadToCallSiteMap - Map a landing pad to the call site indexes.
524  DenseMap<MachineBasicBlock*, SmallVector<unsigned, 4> > LPadToCallSiteMap;
525
526  /// HasTailCall - This is set to true if a call in the current
527  /// block has been translated as a tail call. In this case,
528  /// no subsequent DAG nodes should be created.
529  ///
530  bool HasTailCall;
531
532  LLVMContext *Context;
533
534  SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo,
535                      CodeGenOpt::Level ol)
536    : CurInst(NULL), SDNodeOrder(0), TM(dag.getTarget()),
537      DAG(dag), FuncInfo(funcinfo), OptLevel(ol),
538      HasTailCall(false) {
539  }
540
541  void init(GCFunctionInfo *gfi, AliasAnalysis &aa,
542            const TargetLibraryInfo *li);
543
544  /// clear - Clear out the current SelectionDAG and the associated
545  /// state and prepare this SelectionDAGBuilder object to be used
546  /// for a new block. This doesn't clear out information about
547  /// additional blocks that are needed to complete switch lowering
548  /// or PHI node updating; that information is cleared out as it is
549  /// consumed.
550  void clear();
551
552  /// clearDanglingDebugInfo - Clear the dangling debug information
553  /// map. This function is separated from the clear so that debug
554  /// information that is dangling in a basic block can be properly
555  /// resolved in a different basic block. This allows the
556  /// SelectionDAG to resolve dangling debug information attached
557  /// to PHI nodes.
558  void clearDanglingDebugInfo();
559
560  /// getRoot - Return the current virtual root of the Selection DAG,
561  /// flushing any PendingLoad items. This must be done before emitting
562  /// a store or any other node that may need to be ordered after any
563  /// prior load instructions.
564  ///
565  SDValue getRoot();
566
567  /// getControlRoot - Similar to getRoot, but instead of flushing all the
568  /// PendingLoad items, flush all the PendingExports items. It is necessary
569  /// to do this before emitting a terminator instruction.
570  ///
571  SDValue getControlRoot();
572
573  SDLoc getCurSDLoc() const {
574    return SDLoc(CurInst, SDNodeOrder);
575  }
576
577  DebugLoc getCurDebugLoc() const {
578    return CurInst ? CurInst->getDebugLoc() : DebugLoc();
579  }
580
581  unsigned getSDNodeOrder() const { return SDNodeOrder; }
582
583  void CopyValueToVirtualRegister(const Value *V, unsigned Reg);
584
585  void visit(const Instruction &I);
586
587  void visit(unsigned Opcode, const User &I);
588
589  // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
590  // generate the debug data structures now that we've seen its definition.
591  void resolveDanglingDebugInfo(const Value *V, SDValue Val);
592  SDValue getValue(const Value *V);
593  SDValue getNonRegisterValue(const Value *V);
594  SDValue getValueImpl(const Value *V);
595
596  void setValue(const Value *V, SDValue NewN) {
597    SDValue &N = NodeMap[V];
598    assert(N.getNode() == 0 && "Already set a value for this node!");
599    N = NewN;
600  }
601
602  void setUnusedArgValue(const Value *V, SDValue NewN) {
603    SDValue &N = UnusedArgNodeMap[V];
604    assert(N.getNode() == 0 && "Already set a value for this node!");
605    N = NewN;
606  }
607
608  void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB,
609                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
610                            MachineBasicBlock *SwitchBB, unsigned Opc);
611  void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB,
612                                    MachineBasicBlock *FBB,
613                                    MachineBasicBlock *CurBB,
614                                    MachineBasicBlock *SwitchBB);
615  bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases);
616  bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB);
617  void CopyToExportRegsIfNeeded(const Value *V);
618  void ExportFromCurrentBlock(const Value *V);
619  void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall,
620                   MachineBasicBlock *LandingPad = NULL);
621
622  /// UpdateSplitBlock - When an MBB was split during scheduling, update the
623  /// references that ned to refer to the last resulting block.
624  void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last);
625
626private:
627  // Terminator instructions.
628  void visitRet(const ReturnInst &I);
629  void visitBr(const BranchInst &I);
630  void visitSwitch(const SwitchInst &I);
631  void visitIndirectBr(const IndirectBrInst &I);
632  void visitUnreachable(const UnreachableInst &I) { /* noop */ }
633
634  // Helpers for visitSwitch
635  bool handleSmallSwitchRange(CaseRec& CR,
636                              CaseRecVector& WorkList,
637                              const Value* SV,
638                              MachineBasicBlock* Default,
639                              MachineBasicBlock *SwitchBB);
640  bool handleJTSwitchCase(CaseRec& CR,
641                          CaseRecVector& WorkList,
642                          const Value* SV,
643                          MachineBasicBlock* Default,
644                          MachineBasicBlock *SwitchBB);
645  bool handleBTSplitSwitchCase(CaseRec& CR,
646                               CaseRecVector& WorkList,
647                               const Value* SV,
648                               MachineBasicBlock* Default,
649                               MachineBasicBlock *SwitchBB);
650  bool handleBitTestsSwitchCase(CaseRec& CR,
651                                CaseRecVector& WorkList,
652                                const Value* SV,
653                                MachineBasicBlock* Default,
654                                MachineBasicBlock *SwitchBB);
655
656  uint32_t getEdgeWeight(const MachineBasicBlock *Src,
657                         const MachineBasicBlock *Dst) const;
658  void addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
659                              uint32_t Weight = 0);
660public:
661  void visitSwitchCase(CaseBlock &CB,
662                       MachineBasicBlock *SwitchBB);
663  void visitSPDescriptorParent(StackProtectorDescriptor &SPD,
664                               MachineBasicBlock *ParentBB);
665  void visitSPDescriptorFailure(StackProtectorDescriptor &SPD);
666  void visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB);
667  void visitBitTestCase(BitTestBlock &BB,
668                        MachineBasicBlock* NextMBB,
669                        uint32_t BranchWeightToNext,
670                        unsigned Reg,
671                        BitTestCase &B,
672                        MachineBasicBlock *SwitchBB);
673  void visitJumpTable(JumpTable &JT);
674  void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH,
675                            MachineBasicBlock *SwitchBB);
676
677private:
678  // These all get lowered before this pass.
679  void visitInvoke(const InvokeInst &I);
680  void visitResume(const ResumeInst &I);
681
682  void visitBinary(const User &I, unsigned OpCode);
683  void visitShift(const User &I, unsigned Opcode);
684  void visitAdd(const User &I)  { visitBinary(I, ISD::ADD); }
685  void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); }
686  void visitSub(const User &I)  { visitBinary(I, ISD::SUB); }
687  void visitFSub(const User &I);
688  void visitMul(const User &I)  { visitBinary(I, ISD::MUL); }
689  void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); }
690  void visitURem(const User &I) { visitBinary(I, ISD::UREM); }
691  void visitSRem(const User &I) { visitBinary(I, ISD::SREM); }
692  void visitFRem(const User &I) { visitBinary(I, ISD::FREM); }
693  void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); }
694  void visitSDiv(const User &I);
695  void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); }
696  void visitAnd (const User &I) { visitBinary(I, ISD::AND); }
697  void visitOr  (const User &I) { visitBinary(I, ISD::OR); }
698  void visitXor (const User &I) { visitBinary(I, ISD::XOR); }
699  void visitShl (const User &I) { visitShift(I, ISD::SHL); }
700  void visitLShr(const User &I) { visitShift(I, ISD::SRL); }
701  void visitAShr(const User &I) { visitShift(I, ISD::SRA); }
702  void visitICmp(const User &I);
703  void visitFCmp(const User &I);
704  // Visit the conversion instructions
705  void visitTrunc(const User &I);
706  void visitZExt(const User &I);
707  void visitSExt(const User &I);
708  void visitFPTrunc(const User &I);
709  void visitFPExt(const User &I);
710  void visitFPToUI(const User &I);
711  void visitFPToSI(const User &I);
712  void visitUIToFP(const User &I);
713  void visitSIToFP(const User &I);
714  void visitPtrToInt(const User &I);
715  void visitIntToPtr(const User &I);
716  void visitBitCast(const User &I);
717
718  void visitExtractElement(const User &I);
719  void visitInsertElement(const User &I);
720  void visitShuffleVector(const User &I);
721
722  void visitExtractValue(const ExtractValueInst &I);
723  void visitInsertValue(const InsertValueInst &I);
724  void visitLandingPad(const LandingPadInst &I);
725
726  void visitGetElementPtr(const User &I);
727  void visitSelect(const User &I);
728
729  void visitAlloca(const AllocaInst &I);
730  void visitLoad(const LoadInst &I);
731  void visitStore(const StoreInst &I);
732  void visitAtomicCmpXchg(const AtomicCmpXchgInst &I);
733  void visitAtomicRMW(const AtomicRMWInst &I);
734  void visitFence(const FenceInst &I);
735  void visitPHI(const PHINode &I);
736  void visitCall(const CallInst &I);
737  bool visitMemCmpCall(const CallInst &I);
738  bool visitMemChrCall(const CallInst &I);
739  bool visitStrCpyCall(const CallInst &I, bool isStpcpy);
740  bool visitStrCmpCall(const CallInst &I);
741  bool visitStrLenCall(const CallInst &I);
742  bool visitStrNLenCall(const CallInst &I);
743  bool visitUnaryFloatCall(const CallInst &I, unsigned Opcode);
744  void visitAtomicLoad(const LoadInst &I);
745  void visitAtomicStore(const StoreInst &I);
746
747  void visitInlineAsm(ImmutableCallSite CS);
748  const char *visitIntrinsicCall(const CallInst &I, unsigned Intrinsic);
749  void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic);
750
751  void visitVAStart(const CallInst &I);
752  void visitVAArg(const VAArgInst &I);
753  void visitVAEnd(const CallInst &I);
754  void visitVACopy(const CallInst &I);
755
756  void visitUserOp1(const Instruction &I) {
757    llvm_unreachable("UserOp1 should not exist at instruction selection time!");
758  }
759  void visitUserOp2(const Instruction &I) {
760    llvm_unreachable("UserOp2 should not exist at instruction selection time!");
761  }
762
763  void processIntegerCallValue(const Instruction &I,
764                               SDValue Value, bool IsSigned);
765
766  void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
767
768  /// EmitFuncArgumentDbgValue - If V is an function argument then create
769  /// corresponding DBG_VALUE machine instruction for it now. At the end of
770  /// instruction selection, they will be inserted to the entry BB.
771  bool EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
772                                int64_t Offset, const SDValue &N);
773};
774
775} // end namespace llvm
776
777#endif
778