SelectionDAGBuilder.h revision 87589f79a98529ea2d65c1fcd572d37c38ae93a1
1//===-- SelectionDAGBuilder.h - Selection-DAG building --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef SELECTIONDAGBUILDER_H
15#define SELECTIONDAGBUILDER_H
16
17#include "llvm/Constants.h"
18#include "llvm/CodeGen/SelectionDAG.h"
19#include "llvm/ADT/APInt.h"
20#include "llvm/ADT/DenseMap.h"
21#ifndef NDEBUG
22#include "llvm/ADT/SmallSet.h"
23#endif
24#include "llvm/CodeGen/SelectionDAGNodes.h"
25#include "llvm/CodeGen/ValueTypes.h"
26#include "llvm/Support/CallSite.h"
27#include "llvm/Support/ErrorHandling.h"
28#include <vector>
29#include <set>
30
31namespace llvm {
32
33class AliasAnalysis;
34class AllocaInst;
35class BasicBlock;
36class BitCastInst;
37class BranchInst;
38class CallInst;
39class ExtractElementInst;
40class ExtractValueInst;
41class FCmpInst;
42class FPExtInst;
43class FPToSIInst;
44class FPToUIInst;
45class FPTruncInst;
46class Function;
47class FunctionLoweringInfo;
48class GetElementPtrInst;
49class GCFunctionInfo;
50class ICmpInst;
51class IntToPtrInst;
52class IndirectBrInst;
53class InvokeInst;
54class InsertElementInst;
55class InsertValueInst;
56class Instruction;
57class LoadInst;
58class MachineBasicBlock;
59class MachineFunction;
60class MachineInstr;
61class MachineRegisterInfo;
62class PHINode;
63class PtrToIntInst;
64class ReturnInst;
65class SDISelAsmOperandInfo;
66class SExtInst;
67class SelectInst;
68class ShuffleVectorInst;
69class SIToFPInst;
70class StoreInst;
71class SwitchInst;
72class TargetData;
73class TargetLowering;
74class TruncInst;
75class UIToFPInst;
76class UnreachableInst;
77class UnwindInst;
78class VAArgInst;
79class ZExtInst;
80
81//===----------------------------------------------------------------------===//
82/// SelectionDAGBuilder - This is the common target-independent lowering
83/// implementation that is parameterized by a TargetLowering object.
84/// Also, targets can overload any lowering method.
85///
86class SelectionDAGBuilder {
87  MachineBasicBlock *CurMBB;
88
89  /// CurDebugLoc - current file + line number.  Changes as we build the DAG.
90  DebugLoc CurDebugLoc;
91
92  DenseMap<const Value*, SDValue> NodeMap;
93
94public:
95  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
96  /// them up and then emit token factor nodes when possible.  This allows us to
97  /// get simple disambiguation between loads without worrying about alias
98  /// analysis.
99  SmallVector<SDValue, 8> PendingLoads;
100private:
101
102  /// PendingExports - CopyToReg nodes that copy values to virtual registers
103  /// for export to other blocks need to be emitted before any terminator
104  /// instruction, but they have no other ordering requirements. We bunch them
105  /// up and the emit a single tokenfactor for them just before terminator
106  /// instructions.
107  SmallVector<SDValue, 8> PendingExports;
108
109  /// SDNodeOrder - A unique monotonically increasing number used to order the
110  /// SDNodes we create.
111  unsigned SDNodeOrder;
112
113  /// Case - A struct to record the Value for a switch case, and the
114  /// case's target basic block.
115  struct Case {
116    Constant* Low;
117    Constant* High;
118    MachineBasicBlock* BB;
119
120    Case() : Low(0), High(0), BB(0) { }
121    Case(Constant* low, Constant* high, MachineBasicBlock* bb) :
122      Low(low), High(high), BB(bb) { }
123    APInt size() const {
124      const APInt &rHigh = cast<ConstantInt>(High)->getValue();
125      const APInt &rLow  = cast<ConstantInt>(Low)->getValue();
126      return (rHigh - rLow + 1ULL);
127    }
128  };
129
130  struct CaseBits {
131    uint64_t Mask;
132    MachineBasicBlock* BB;
133    unsigned Bits;
134
135    CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits):
136      Mask(mask), BB(bb), Bits(bits) { }
137  };
138
139  typedef std::vector<Case>           CaseVector;
140  typedef std::vector<CaseBits>       CaseBitsVector;
141  typedef CaseVector::iterator        CaseItr;
142  typedef std::pair<CaseItr, CaseItr> CaseRange;
143
144  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
145  /// of conditional branches.
146  struct CaseRec {
147    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
148    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
149
150    /// CaseBB - The MBB in which to emit the compare and branch
151    MachineBasicBlock *CaseBB;
152    /// LT, GE - If nonzero, we know the current case value must be less-than or
153    /// greater-than-or-equal-to these Constants.
154    Constant *LT;
155    Constant *GE;
156    /// Range - A pair of iterators representing the range of case values to be
157    /// processed at this point in the binary search tree.
158    CaseRange Range;
159  };
160
161  typedef std::vector<CaseRec> CaseRecVector;
162
163  /// The comparison function for sorting the switch case values in the vector.
164  /// WARNING: Case ranges should be disjoint!
165  struct CaseCmp {
166    bool operator()(const Case &C1, const Case &C2) {
167      assert(isa<ConstantInt>(C1.Low) && isa<ConstantInt>(C2.High));
168      const ConstantInt* CI1 = cast<const ConstantInt>(C1.Low);
169      const ConstantInt* CI2 = cast<const ConstantInt>(C2.High);
170      return CI1->getValue().slt(CI2->getValue());
171    }
172  };
173
174  struct CaseBitsCmp {
175    bool operator()(const CaseBits &C1, const CaseBits &C2) {
176      return C1.Bits > C2.Bits;
177    }
178  };
179
180  size_t Clusterify(CaseVector &Cases, const SwitchInst &SI);
181
182  /// CaseBlock - This structure is used to communicate between
183  /// SelectionDAGBuilder and SDISel for the code generation of additional basic
184  /// blocks needed by multi-case switch statements.
185  struct CaseBlock {
186    CaseBlock(ISD::CondCode cc, Value *cmplhs, Value *cmprhs, Value *cmpmiddle,
187              MachineBasicBlock *truebb, MachineBasicBlock *falsebb,
188              MachineBasicBlock *me)
189      : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs),
190        TrueBB(truebb), FalseBB(falsebb), ThisBB(me) {}
191    // CC - the condition code to use for the case block's setcc node
192    ISD::CondCode CC;
193    // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit.
194    // Emit by default LHS op RHS. MHS is used for range comparisons:
195    // If MHS is not null: (LHS <= MHS) and (MHS <= RHS).
196    Value *CmpLHS, *CmpMHS, *CmpRHS;
197    // TrueBB/FalseBB - the block to branch to if the setcc is true/false.
198    MachineBasicBlock *TrueBB, *FalseBB;
199    // ThisBB - the block into which to emit the code for the setcc and branches
200    MachineBasicBlock *ThisBB;
201  };
202  struct JumpTable {
203    JumpTable(unsigned R, unsigned J, MachineBasicBlock *M,
204              MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {}
205
206    /// Reg - the virtual register containing the index of the jump table entry
207    //. to jump to.
208    unsigned Reg;
209    /// JTI - the JumpTableIndex for this jump table in the function.
210    unsigned JTI;
211    /// MBB - the MBB into which to emit the code for the indirect jump.
212    MachineBasicBlock *MBB;
213    /// Default - the MBB of the default bb, which is a successor of the range
214    /// check MBB.  This is when updating PHI nodes in successors.
215    MachineBasicBlock *Default;
216  };
217  struct JumpTableHeader {
218    JumpTableHeader(APInt F, APInt L, Value *SV, MachineBasicBlock *H,
219                    bool E = false):
220      First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {}
221    APInt First;
222    APInt Last;
223    Value *SValue;
224    MachineBasicBlock *HeaderBB;
225    bool Emitted;
226  };
227  typedef std::pair<JumpTableHeader, JumpTable> JumpTableBlock;
228
229  struct BitTestCase {
230    BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr):
231      Mask(M), ThisBB(T), TargetBB(Tr) { }
232    uint64_t Mask;
233    MachineBasicBlock *ThisBB;
234    MachineBasicBlock *TargetBB;
235  };
236
237  typedef SmallVector<BitTestCase, 3> BitTestInfo;
238
239  struct BitTestBlock {
240    BitTestBlock(APInt F, APInt R, Value* SV,
241                 unsigned Rg, bool E,
242                 MachineBasicBlock* P, MachineBasicBlock* D,
243                 const BitTestInfo& C):
244      First(F), Range(R), SValue(SV), Reg(Rg), Emitted(E),
245      Parent(P), Default(D), Cases(C) { }
246    APInt First;
247    APInt Range;
248    Value  *SValue;
249    unsigned Reg;
250    bool Emitted;
251    MachineBasicBlock *Parent;
252    MachineBasicBlock *Default;
253    BitTestInfo Cases;
254  };
255
256public:
257  // TLI - This is information that describes the available target features we
258  // need for lowering.  This indicates when operations are unavailable,
259  // implemented with a libcall, etc.
260  TargetLowering &TLI;
261  SelectionDAG &DAG;
262  const TargetData *TD;
263  AliasAnalysis *AA;
264
265  /// SwitchCases - Vector of CaseBlock structures used to communicate
266  /// SwitchInst code generation information.
267  std::vector<CaseBlock> SwitchCases;
268  /// JTCases - Vector of JumpTable structures used to communicate
269  /// SwitchInst code generation information.
270  std::vector<JumpTableBlock> JTCases;
271  /// BitTestCases - Vector of BitTestBlock structures used to communicate
272  /// SwitchInst code generation information.
273  std::vector<BitTestBlock> BitTestCases;
274
275  /// PHINodesToUpdate - A list of phi instructions whose operand list will
276  /// be updated after processing the current basic block.
277  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
278
279  /// EdgeMapping - If an edge from CurMBB to any MBB is changed (e.g. due to
280  /// scheduler custom lowering), track the change here.
281  DenseMap<MachineBasicBlock*, MachineBasicBlock*> EdgeMapping;
282
283  // Emit PHI-node-operand constants only once even if used by multiple
284  // PHI nodes.
285  DenseMap<Constant*, unsigned> ConstantsOut;
286
287  /// FuncInfo - Information about the function as a whole.
288  ///
289  FunctionLoweringInfo &FuncInfo;
290
291  /// OptLevel - What optimization level we're generating code for.
292  ///
293  CodeGenOpt::Level OptLevel;
294
295  /// GFI - Garbage collection metadata for the function.
296  GCFunctionInfo *GFI;
297
298  /// HasTailCall - This is set to true if a call in the current
299  /// block has been translated as a tail call. In this case,
300  /// no subsequent DAG nodes should be created.
301  ///
302  bool HasTailCall;
303
304  LLVMContext *Context;
305
306  SelectionDAGBuilder(SelectionDAG &dag, TargetLowering &tli,
307                      FunctionLoweringInfo &funcinfo,
308                      CodeGenOpt::Level ol)
309    : CurDebugLoc(DebugLoc::getUnknownLoc()), SDNodeOrder(0),
310      TLI(tli), DAG(dag), FuncInfo(funcinfo), OptLevel(ol),
311      HasTailCall(false),
312      Context(dag.getContext()) {
313  }
314
315  void init(GCFunctionInfo *gfi, AliasAnalysis &aa);
316
317  /// clear - Clear out the curret SelectionDAG and the associated
318  /// state and prepare this SelectionDAGBuilder object to be used
319  /// for a new block. This doesn't clear out information about
320  /// additional blocks that are needed to complete switch lowering
321  /// or PHI node updating; that information is cleared out as it is
322  /// consumed.
323  void clear();
324
325  /// getRoot - Return the current virtual root of the Selection DAG,
326  /// flushing any PendingLoad items. This must be done before emitting
327  /// a store or any other node that may need to be ordered after any
328  /// prior load instructions.
329  ///
330  SDValue getRoot();
331
332  /// getControlRoot - Similar to getRoot, but instead of flushing all the
333  /// PendingLoad items, flush all the PendingExports items. It is necessary
334  /// to do this before emitting a terminator instruction.
335  ///
336  SDValue getControlRoot();
337
338  DebugLoc getCurDebugLoc() const { return CurDebugLoc; }
339  void setCurDebugLoc(DebugLoc dl) { CurDebugLoc = dl; }
340
341  unsigned getSDNodeOrder() const { return SDNodeOrder; }
342
343  void CopyValueToVirtualRegister(Value *V, unsigned Reg);
344
345  /// AssignOrderingToNode - Assign an ordering to the node. The order is gotten
346  /// from how the code appeared in the source. The ordering is used by the
347  /// scheduler to effectively turn off scheduling.
348  void AssignOrderingToNode(const SDNode *Node);
349
350  void visit(Instruction &I);
351
352  void visit(unsigned Opcode, User &I);
353
354  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
355
356  SDValue getValue(const Value *V);
357
358  void setValue(const Value *V, SDValue NewN) {
359    SDValue &N = NodeMap[V];
360    assert(N.getNode() == 0 && "Already set a value for this node!");
361    N = NewN;
362  }
363
364  void GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
365                            std::set<unsigned> &OutputRegs,
366                            std::set<unsigned> &InputRegs);
367
368  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
369                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
370                            unsigned Opc);
371  void EmitBranchForMergedCondition(Value *Cond, MachineBasicBlock *TBB,
372                                    MachineBasicBlock *FBB,
373                                    MachineBasicBlock *CurBB);
374  bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases);
375  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
376  void CopyToExportRegsIfNeeded(Value *V);
377  void ExportFromCurrentBlock(Value *V);
378  void LowerCallTo(CallSite CS, SDValue Callee, bool IsTailCall,
379                   MachineBasicBlock *LandingPad = NULL);
380
381private:
382  // Terminator instructions.
383  void visitRet(ReturnInst &I);
384  void visitBr(BranchInst &I);
385  void visitSwitch(SwitchInst &I);
386  void visitIndirectBr(IndirectBrInst &I);
387  void visitUnreachable(UnreachableInst &I) { /* noop */ }
388
389  // Helpers for visitSwitch
390  bool handleSmallSwitchRange(CaseRec& CR,
391                              CaseRecVector& WorkList,
392                              Value* SV,
393                              MachineBasicBlock* Default);
394  bool handleJTSwitchCase(CaseRec& CR,
395                          CaseRecVector& WorkList,
396                          Value* SV,
397                          MachineBasicBlock* Default);
398  bool handleBTSplitSwitchCase(CaseRec& CR,
399                               CaseRecVector& WorkList,
400                               Value* SV,
401                               MachineBasicBlock* Default);
402  bool handleBitTestsSwitchCase(CaseRec& CR,
403                                CaseRecVector& WorkList,
404                                Value* SV,
405                                MachineBasicBlock* Default);
406public:
407  void visitSwitchCase(CaseBlock &CB);
408  void visitBitTestHeader(BitTestBlock &B);
409  void visitBitTestCase(MachineBasicBlock* NextMBB,
410                        unsigned Reg,
411                        BitTestCase &B);
412  void visitJumpTable(JumpTable &JT);
413  void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH);
414
415private:
416  // These all get lowered before this pass.
417  void visitInvoke(InvokeInst &I);
418  void visitUnwind(UnwindInst &I);
419
420  void visitBinary(User &I, unsigned OpCode);
421  void visitShift(User &I, unsigned Opcode);
422  void visitAdd(User &I)  { visitBinary(I, ISD::ADD); }
423  void visitFAdd(User &I) { visitBinary(I, ISD::FADD); }
424  void visitSub(User &I)  { visitBinary(I, ISD::SUB); }
425  void visitFSub(User &I);
426  void visitMul(User &I)  { visitBinary(I, ISD::MUL); }
427  void visitFMul(User &I) { visitBinary(I, ISD::FMUL); }
428  void visitURem(User &I) { visitBinary(I, ISD::UREM); }
429  void visitSRem(User &I) { visitBinary(I, ISD::SREM); }
430  void visitFRem(User &I) { visitBinary(I, ISD::FREM); }
431  void visitUDiv(User &I) { visitBinary(I, ISD::UDIV); }
432  void visitSDiv(User &I) { visitBinary(I, ISD::SDIV); }
433  void visitFDiv(User &I) { visitBinary(I, ISD::FDIV); }
434  void visitAnd (User &I) { visitBinary(I, ISD::AND); }
435  void visitOr  (User &I) { visitBinary(I, ISD::OR); }
436  void visitXor (User &I) { visitBinary(I, ISD::XOR); }
437  void visitShl (User &I) { visitShift(I, ISD::SHL); }
438  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
439  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
440  void visitICmp(User &I);
441  void visitFCmp(User &I);
442  // Visit the conversion instructions
443  void visitTrunc(User &I);
444  void visitZExt(User &I);
445  void visitSExt(User &I);
446  void visitFPTrunc(User &I);
447  void visitFPExt(User &I);
448  void visitFPToUI(User &I);
449  void visitFPToSI(User &I);
450  void visitUIToFP(User &I);
451  void visitSIToFP(User &I);
452  void visitPtrToInt(User &I);
453  void visitIntToPtr(User &I);
454  void visitBitCast(User &I);
455
456  void visitExtractElement(User &I);
457  void visitInsertElement(User &I);
458  void visitShuffleVector(User &I);
459
460  void visitExtractValue(ExtractValueInst &I);
461  void visitInsertValue(InsertValueInst &I);
462
463  void visitGetElementPtr(User &I);
464  void visitSelect(User &I);
465
466  void visitAlloca(AllocaInst &I);
467  void visitLoad(LoadInst &I);
468  void visitStore(StoreInst &I);
469  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
470  void visitCall(CallInst &I);
471  bool visitMemCmpCall(CallInst &I);
472
473  void visitInlineAsm(CallSite CS);
474  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
475  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
476
477  void visitPow(CallInst &I);
478  void visitExp2(CallInst &I);
479  void visitExp(CallInst &I);
480  void visitLog(CallInst &I);
481  void visitLog2(CallInst &I);
482  void visitLog10(CallInst &I);
483
484  void visitVAStart(CallInst &I);
485  void visitVAArg(VAArgInst &I);
486  void visitVAEnd(CallInst &I);
487  void visitVACopy(CallInst &I);
488
489  void visitUserOp1(Instruction &I) {
490    llvm_unreachable("UserOp1 should not exist at instruction selection time!");
491  }
492  void visitUserOp2(Instruction &I) {
493    llvm_unreachable("UserOp2 should not exist at instruction selection time!");
494  }
495
496  const char *implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op);
497  const char *implVisitAluOverflow(CallInst &I, ISD::NodeType Op);
498};
499
500} // end namespace llvm
501
502#endif
503