TargetLowering.cpp revision 0521928ae7cc492f3f45ef0e0cedc349102489c5
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/MC/MCAsmInfo.h"
16#include "llvm/MC/MCExpr.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetLoweringObjectFile.h"
19#include "llvm/Target/TargetMachine.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/CodeGen/Analysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineJumpTableInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/MathExtras.h"
31#include <cctype>
32using namespace llvm;
33
34namespace llvm {
35TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
36  bool isLocal = GV->hasLocalLinkage();
37  bool isDeclaration = GV->isDeclaration();
38  // FIXME: what should we do for protected and internal visibility?
39  // For variables, is internal different from hidden?
40  bool isHidden = GV->hasHiddenVisibility();
41
42  if (reloc == Reloc::PIC_) {
43    if (isLocal || isHidden)
44      return TLSModel::LocalDynamic;
45    else
46      return TLSModel::GeneralDynamic;
47  } else {
48    if (!isDeclaration || isHidden)
49      return TLSModel::LocalExec;
50    else
51      return TLSModel::InitialExec;
52  }
53}
54}
55
56/// InitLibcallNames - Set default libcall names.
57///
58static void InitLibcallNames(const char **Names) {
59  Names[RTLIB::SHL_I16] = "__ashlhi3";
60  Names[RTLIB::SHL_I32] = "__ashlsi3";
61  Names[RTLIB::SHL_I64] = "__ashldi3";
62  Names[RTLIB::SHL_I128] = "__ashlti3";
63  Names[RTLIB::SRL_I16] = "__lshrhi3";
64  Names[RTLIB::SRL_I32] = "__lshrsi3";
65  Names[RTLIB::SRL_I64] = "__lshrdi3";
66  Names[RTLIB::SRL_I128] = "__lshrti3";
67  Names[RTLIB::SRA_I16] = "__ashrhi3";
68  Names[RTLIB::SRA_I32] = "__ashrsi3";
69  Names[RTLIB::SRA_I64] = "__ashrdi3";
70  Names[RTLIB::SRA_I128] = "__ashrti3";
71  Names[RTLIB::MUL_I8] = "__mulqi3";
72  Names[RTLIB::MUL_I16] = "__mulhi3";
73  Names[RTLIB::MUL_I32] = "__mulsi3";
74  Names[RTLIB::MUL_I64] = "__muldi3";
75  Names[RTLIB::MUL_I128] = "__multi3";
76  Names[RTLIB::SDIV_I8] = "__divqi3";
77  Names[RTLIB::SDIV_I16] = "__divhi3";
78  Names[RTLIB::SDIV_I32] = "__divsi3";
79  Names[RTLIB::SDIV_I64] = "__divdi3";
80  Names[RTLIB::SDIV_I128] = "__divti3";
81  Names[RTLIB::UDIV_I8] = "__udivqi3";
82  Names[RTLIB::UDIV_I16] = "__udivhi3";
83  Names[RTLIB::UDIV_I32] = "__udivsi3";
84  Names[RTLIB::UDIV_I64] = "__udivdi3";
85  Names[RTLIB::UDIV_I128] = "__udivti3";
86  Names[RTLIB::SREM_I8] = "__modqi3";
87  Names[RTLIB::SREM_I16] = "__modhi3";
88  Names[RTLIB::SREM_I32] = "__modsi3";
89  Names[RTLIB::SREM_I64] = "__moddi3";
90  Names[RTLIB::SREM_I128] = "__modti3";
91  Names[RTLIB::UREM_I8] = "__umodqi3";
92  Names[RTLIB::UREM_I16] = "__umodhi3";
93  Names[RTLIB::UREM_I32] = "__umodsi3";
94  Names[RTLIB::UREM_I64] = "__umoddi3";
95  Names[RTLIB::UREM_I128] = "__umodti3";
96  Names[RTLIB::NEG_I32] = "__negsi2";
97  Names[RTLIB::NEG_I64] = "__negdi2";
98  Names[RTLIB::ADD_F32] = "__addsf3";
99  Names[RTLIB::ADD_F64] = "__adddf3";
100  Names[RTLIB::ADD_F80] = "__addxf3";
101  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
102  Names[RTLIB::SUB_F32] = "__subsf3";
103  Names[RTLIB::SUB_F64] = "__subdf3";
104  Names[RTLIB::SUB_F80] = "__subxf3";
105  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
106  Names[RTLIB::MUL_F32] = "__mulsf3";
107  Names[RTLIB::MUL_F64] = "__muldf3";
108  Names[RTLIB::MUL_F80] = "__mulxf3";
109  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
110  Names[RTLIB::DIV_F32] = "__divsf3";
111  Names[RTLIB::DIV_F64] = "__divdf3";
112  Names[RTLIB::DIV_F80] = "__divxf3";
113  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
114  Names[RTLIB::REM_F32] = "fmodf";
115  Names[RTLIB::REM_F64] = "fmod";
116  Names[RTLIB::REM_F80] = "fmodl";
117  Names[RTLIB::REM_PPCF128] = "fmodl";
118  Names[RTLIB::POWI_F32] = "__powisf2";
119  Names[RTLIB::POWI_F64] = "__powidf2";
120  Names[RTLIB::POWI_F80] = "__powixf2";
121  Names[RTLIB::POWI_PPCF128] = "__powitf2";
122  Names[RTLIB::SQRT_F32] = "sqrtf";
123  Names[RTLIB::SQRT_F64] = "sqrt";
124  Names[RTLIB::SQRT_F80] = "sqrtl";
125  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
126  Names[RTLIB::LOG_F32] = "logf";
127  Names[RTLIB::LOG_F64] = "log";
128  Names[RTLIB::LOG_F80] = "logl";
129  Names[RTLIB::LOG_PPCF128] = "logl";
130  Names[RTLIB::LOG2_F32] = "log2f";
131  Names[RTLIB::LOG2_F64] = "log2";
132  Names[RTLIB::LOG2_F80] = "log2l";
133  Names[RTLIB::LOG2_PPCF128] = "log2l";
134  Names[RTLIB::LOG10_F32] = "log10f";
135  Names[RTLIB::LOG10_F64] = "log10";
136  Names[RTLIB::LOG10_F80] = "log10l";
137  Names[RTLIB::LOG10_PPCF128] = "log10l";
138  Names[RTLIB::EXP_F32] = "expf";
139  Names[RTLIB::EXP_F64] = "exp";
140  Names[RTLIB::EXP_F80] = "expl";
141  Names[RTLIB::EXP_PPCF128] = "expl";
142  Names[RTLIB::EXP2_F32] = "exp2f";
143  Names[RTLIB::EXP2_F64] = "exp2";
144  Names[RTLIB::EXP2_F80] = "exp2l";
145  Names[RTLIB::EXP2_PPCF128] = "exp2l";
146  Names[RTLIB::SIN_F32] = "sinf";
147  Names[RTLIB::SIN_F64] = "sin";
148  Names[RTLIB::SIN_F80] = "sinl";
149  Names[RTLIB::SIN_PPCF128] = "sinl";
150  Names[RTLIB::COS_F32] = "cosf";
151  Names[RTLIB::COS_F64] = "cos";
152  Names[RTLIB::COS_F80] = "cosl";
153  Names[RTLIB::COS_PPCF128] = "cosl";
154  Names[RTLIB::POW_F32] = "powf";
155  Names[RTLIB::POW_F64] = "pow";
156  Names[RTLIB::POW_F80] = "powl";
157  Names[RTLIB::POW_PPCF128] = "powl";
158  Names[RTLIB::CEIL_F32] = "ceilf";
159  Names[RTLIB::CEIL_F64] = "ceil";
160  Names[RTLIB::CEIL_F80] = "ceill";
161  Names[RTLIB::CEIL_PPCF128] = "ceill";
162  Names[RTLIB::TRUNC_F32] = "truncf";
163  Names[RTLIB::TRUNC_F64] = "trunc";
164  Names[RTLIB::TRUNC_F80] = "truncl";
165  Names[RTLIB::TRUNC_PPCF128] = "truncl";
166  Names[RTLIB::RINT_F32] = "rintf";
167  Names[RTLIB::RINT_F64] = "rint";
168  Names[RTLIB::RINT_F80] = "rintl";
169  Names[RTLIB::RINT_PPCF128] = "rintl";
170  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
171  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
172  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
173  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
174  Names[RTLIB::FLOOR_F32] = "floorf";
175  Names[RTLIB::FLOOR_F64] = "floor";
176  Names[RTLIB::FLOOR_F80] = "floorl";
177  Names[RTLIB::FLOOR_PPCF128] = "floorl";
178  Names[RTLIB::COPYSIGN_F32] = "copysignf";
179  Names[RTLIB::COPYSIGN_F64] = "copysign";
180  Names[RTLIB::COPYSIGN_F80] = "copysignl";
181  Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
182  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
183  Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
184  Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
185  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
186  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
187  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
188  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
189  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
190  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
191  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
192  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
193  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
194  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
195  Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
196  Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
197  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
198  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
199  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
200  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
201  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
202  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
203  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
204  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
205  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
206  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
207  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
208  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
209  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
210  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
211  Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
212  Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
213  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
214  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
215  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
216  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
217  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
218  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
219  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
220  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
221  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
222  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
223  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
224  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
225  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
226  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
227  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
228  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
229  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
230  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
231  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
232  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
233  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
234  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
235  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
236  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
237  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
238  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
239  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
240  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
241  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
242  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
243  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
244  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
245  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
246  Names[RTLIB::OEQ_F32] = "__eqsf2";
247  Names[RTLIB::OEQ_F64] = "__eqdf2";
248  Names[RTLIB::UNE_F32] = "__nesf2";
249  Names[RTLIB::UNE_F64] = "__nedf2";
250  Names[RTLIB::OGE_F32] = "__gesf2";
251  Names[RTLIB::OGE_F64] = "__gedf2";
252  Names[RTLIB::OLT_F32] = "__ltsf2";
253  Names[RTLIB::OLT_F64] = "__ltdf2";
254  Names[RTLIB::OLE_F32] = "__lesf2";
255  Names[RTLIB::OLE_F64] = "__ledf2";
256  Names[RTLIB::OGT_F32] = "__gtsf2";
257  Names[RTLIB::OGT_F64] = "__gtdf2";
258  Names[RTLIB::UO_F32] = "__unordsf2";
259  Names[RTLIB::UO_F64] = "__unorddf2";
260  Names[RTLIB::O_F32] = "__unordsf2";
261  Names[RTLIB::O_F64] = "__unorddf2";
262  Names[RTLIB::MEMCPY] = "memcpy";
263  Names[RTLIB::MEMMOVE] = "memmove";
264  Names[RTLIB::MEMSET] = "memset";
265  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
266  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
267  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
268  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
269  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
270  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
271  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
272  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
273  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
274  Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
275  Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
276  Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
277  Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
278  Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
279  Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
280  Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
281  Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
282  Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
283  Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
284  Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
285  Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
286  Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
287  Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
288  Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
289  Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
290  Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
291  Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
292  Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and-xor_4";
293  Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
294  Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
295  Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
296  Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
297  Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
298}
299
300/// InitLibcallCallingConvs - Set default libcall CallingConvs.
301///
302static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
303  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
304    CCs[i] = CallingConv::C;
305  }
306}
307
308/// getFPEXT - Return the FPEXT_*_* value for the given types, or
309/// UNKNOWN_LIBCALL if there is none.
310RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
311  if (OpVT == MVT::f32) {
312    if (RetVT == MVT::f64)
313      return FPEXT_F32_F64;
314  }
315
316  return UNKNOWN_LIBCALL;
317}
318
319/// getFPROUND - Return the FPROUND_*_* value for the given types, or
320/// UNKNOWN_LIBCALL if there is none.
321RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
322  if (RetVT == MVT::f32) {
323    if (OpVT == MVT::f64)
324      return FPROUND_F64_F32;
325    if (OpVT == MVT::f80)
326      return FPROUND_F80_F32;
327    if (OpVT == MVT::ppcf128)
328      return FPROUND_PPCF128_F32;
329  } else if (RetVT == MVT::f64) {
330    if (OpVT == MVT::f80)
331      return FPROUND_F80_F64;
332    if (OpVT == MVT::ppcf128)
333      return FPROUND_PPCF128_F64;
334  }
335
336  return UNKNOWN_LIBCALL;
337}
338
339/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
340/// UNKNOWN_LIBCALL if there is none.
341RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
342  if (OpVT == MVT::f32) {
343    if (RetVT == MVT::i8)
344      return FPTOSINT_F32_I8;
345    if (RetVT == MVT::i16)
346      return FPTOSINT_F32_I16;
347    if (RetVT == MVT::i32)
348      return FPTOSINT_F32_I32;
349    if (RetVT == MVT::i64)
350      return FPTOSINT_F32_I64;
351    if (RetVT == MVT::i128)
352      return FPTOSINT_F32_I128;
353  } else if (OpVT == MVT::f64) {
354    if (RetVT == MVT::i8)
355      return FPTOSINT_F64_I8;
356    if (RetVT == MVT::i16)
357      return FPTOSINT_F64_I16;
358    if (RetVT == MVT::i32)
359      return FPTOSINT_F64_I32;
360    if (RetVT == MVT::i64)
361      return FPTOSINT_F64_I64;
362    if (RetVT == MVT::i128)
363      return FPTOSINT_F64_I128;
364  } else if (OpVT == MVT::f80) {
365    if (RetVT == MVT::i32)
366      return FPTOSINT_F80_I32;
367    if (RetVT == MVT::i64)
368      return FPTOSINT_F80_I64;
369    if (RetVT == MVT::i128)
370      return FPTOSINT_F80_I128;
371  } else if (OpVT == MVT::ppcf128) {
372    if (RetVT == MVT::i32)
373      return FPTOSINT_PPCF128_I32;
374    if (RetVT == MVT::i64)
375      return FPTOSINT_PPCF128_I64;
376    if (RetVT == MVT::i128)
377      return FPTOSINT_PPCF128_I128;
378  }
379  return UNKNOWN_LIBCALL;
380}
381
382/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
383/// UNKNOWN_LIBCALL if there is none.
384RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
385  if (OpVT == MVT::f32) {
386    if (RetVT == MVT::i8)
387      return FPTOUINT_F32_I8;
388    if (RetVT == MVT::i16)
389      return FPTOUINT_F32_I16;
390    if (RetVT == MVT::i32)
391      return FPTOUINT_F32_I32;
392    if (RetVT == MVT::i64)
393      return FPTOUINT_F32_I64;
394    if (RetVT == MVT::i128)
395      return FPTOUINT_F32_I128;
396  } else if (OpVT == MVT::f64) {
397    if (RetVT == MVT::i8)
398      return FPTOUINT_F64_I8;
399    if (RetVT == MVT::i16)
400      return FPTOUINT_F64_I16;
401    if (RetVT == MVT::i32)
402      return FPTOUINT_F64_I32;
403    if (RetVT == MVT::i64)
404      return FPTOUINT_F64_I64;
405    if (RetVT == MVT::i128)
406      return FPTOUINT_F64_I128;
407  } else if (OpVT == MVT::f80) {
408    if (RetVT == MVT::i32)
409      return FPTOUINT_F80_I32;
410    if (RetVT == MVT::i64)
411      return FPTOUINT_F80_I64;
412    if (RetVT == MVT::i128)
413      return FPTOUINT_F80_I128;
414  } else if (OpVT == MVT::ppcf128) {
415    if (RetVT == MVT::i32)
416      return FPTOUINT_PPCF128_I32;
417    if (RetVT == MVT::i64)
418      return FPTOUINT_PPCF128_I64;
419    if (RetVT == MVT::i128)
420      return FPTOUINT_PPCF128_I128;
421  }
422  return UNKNOWN_LIBCALL;
423}
424
425/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
426/// UNKNOWN_LIBCALL if there is none.
427RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
428  if (OpVT == MVT::i32) {
429    if (RetVT == MVT::f32)
430      return SINTTOFP_I32_F32;
431    else if (RetVT == MVT::f64)
432      return SINTTOFP_I32_F64;
433    else if (RetVT == MVT::f80)
434      return SINTTOFP_I32_F80;
435    else if (RetVT == MVT::ppcf128)
436      return SINTTOFP_I32_PPCF128;
437  } else if (OpVT == MVT::i64) {
438    if (RetVT == MVT::f32)
439      return SINTTOFP_I64_F32;
440    else if (RetVT == MVT::f64)
441      return SINTTOFP_I64_F64;
442    else if (RetVT == MVT::f80)
443      return SINTTOFP_I64_F80;
444    else if (RetVT == MVT::ppcf128)
445      return SINTTOFP_I64_PPCF128;
446  } else if (OpVT == MVT::i128) {
447    if (RetVT == MVT::f32)
448      return SINTTOFP_I128_F32;
449    else if (RetVT == MVT::f64)
450      return SINTTOFP_I128_F64;
451    else if (RetVT == MVT::f80)
452      return SINTTOFP_I128_F80;
453    else if (RetVT == MVT::ppcf128)
454      return SINTTOFP_I128_PPCF128;
455  }
456  return UNKNOWN_LIBCALL;
457}
458
459/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
460/// UNKNOWN_LIBCALL if there is none.
461RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
462  if (OpVT == MVT::i32) {
463    if (RetVT == MVT::f32)
464      return UINTTOFP_I32_F32;
465    else if (RetVT == MVT::f64)
466      return UINTTOFP_I32_F64;
467    else if (RetVT == MVT::f80)
468      return UINTTOFP_I32_F80;
469    else if (RetVT == MVT::ppcf128)
470      return UINTTOFP_I32_PPCF128;
471  } else if (OpVT == MVT::i64) {
472    if (RetVT == MVT::f32)
473      return UINTTOFP_I64_F32;
474    else if (RetVT == MVT::f64)
475      return UINTTOFP_I64_F64;
476    else if (RetVT == MVT::f80)
477      return UINTTOFP_I64_F80;
478    else if (RetVT == MVT::ppcf128)
479      return UINTTOFP_I64_PPCF128;
480  } else if (OpVT == MVT::i128) {
481    if (RetVT == MVT::f32)
482      return UINTTOFP_I128_F32;
483    else if (RetVT == MVT::f64)
484      return UINTTOFP_I128_F64;
485    else if (RetVT == MVT::f80)
486      return UINTTOFP_I128_F80;
487    else if (RetVT == MVT::ppcf128)
488      return UINTTOFP_I128_PPCF128;
489  }
490  return UNKNOWN_LIBCALL;
491}
492
493/// InitCmpLibcallCCs - Set default comparison libcall CC.
494///
495static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
496  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
497  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
498  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
499  CCs[RTLIB::UNE_F32] = ISD::SETNE;
500  CCs[RTLIB::UNE_F64] = ISD::SETNE;
501  CCs[RTLIB::OGE_F32] = ISD::SETGE;
502  CCs[RTLIB::OGE_F64] = ISD::SETGE;
503  CCs[RTLIB::OLT_F32] = ISD::SETLT;
504  CCs[RTLIB::OLT_F64] = ISD::SETLT;
505  CCs[RTLIB::OLE_F32] = ISD::SETLE;
506  CCs[RTLIB::OLE_F64] = ISD::SETLE;
507  CCs[RTLIB::OGT_F32] = ISD::SETGT;
508  CCs[RTLIB::OGT_F64] = ISD::SETGT;
509  CCs[RTLIB::UO_F32] = ISD::SETNE;
510  CCs[RTLIB::UO_F64] = ISD::SETNE;
511  CCs[RTLIB::O_F32] = ISD::SETEQ;
512  CCs[RTLIB::O_F64] = ISD::SETEQ;
513}
514
515/// NOTE: The constructor takes ownership of TLOF.
516TargetLowering::TargetLowering(const TargetMachine &tm,
517                               const TargetLoweringObjectFile *tlof)
518  : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
519  // All operations default to being supported.
520  memset(OpActions, 0, sizeof(OpActions));
521  memset(LoadExtActions, 0, sizeof(LoadExtActions));
522  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
523  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
524  memset(CondCodeActions, 0, sizeof(CondCodeActions));
525
526  // Set default actions for various operations.
527  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
528    // Default all indexed load / store to expand.
529    for (unsigned IM = (unsigned)ISD::PRE_INC;
530         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
531      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
532      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
533    }
534
535    // These operations default to expand.
536    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
537    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
538  }
539
540  // Most targets ignore the @llvm.prefetch intrinsic.
541  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
542
543  // ConstantFP nodes default to expand.  Targets can either change this to
544  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
545  // to optimize expansions for certain constants.
546  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
547  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
548  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
549
550  // These library functions default to expand.
551  setOperationAction(ISD::FLOG , MVT::f64, Expand);
552  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
553  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
554  setOperationAction(ISD::FEXP , MVT::f64, Expand);
555  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
556  setOperationAction(ISD::FLOG , MVT::f32, Expand);
557  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
558  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
559  setOperationAction(ISD::FEXP , MVT::f32, Expand);
560  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
561
562  // Default ISD::TRAP to expand (which turns it into abort).
563  setOperationAction(ISD::TRAP, MVT::Other, Expand);
564
565  IsLittleEndian = TD->isLittleEndian();
566  ShiftAmountTy = PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
567  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
568  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
569  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
570  maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize
571    = maxStoresPerMemmoveOptSize = 4;
572  benefitFromCodePlacementOpt = false;
573  UseUnderscoreSetJmp = false;
574  UseUnderscoreLongJmp = false;
575  SelectIsExpensive = false;
576  IntDivIsCheap = false;
577  Pow2DivIsCheap = false;
578  JumpIsExpensive = false;
579  StackPointerRegisterToSaveRestore = 0;
580  ExceptionPointerRegister = 0;
581  ExceptionSelectorRegister = 0;
582  BooleanContents = UndefinedBooleanContent;
583  SchedPreferenceInfo = Sched::Latency;
584  JumpBufSize = 0;
585  JumpBufAlignment = 0;
586  PrefLoopAlignment = 0;
587  MinStackArgumentAlignment = 1;
588  ShouldFoldAtomicFences = false;
589
590  InitLibcallNames(LibcallRoutineNames);
591  InitCmpLibcallCCs(CmpLibcallCCs);
592  InitLibcallCallingConvs(LibcallCallingConvs);
593}
594
595TargetLowering::~TargetLowering() {
596  delete &TLOF;
597}
598
599/// canOpTrap - Returns true if the operation can trap for the value type.
600/// VT must be a legal type.
601bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
602  assert(isTypeLegal(VT));
603  switch (Op) {
604  default:
605    return false;
606  case ISD::FDIV:
607  case ISD::FREM:
608  case ISD::SDIV:
609  case ISD::UDIV:
610  case ISD::SREM:
611  case ISD::UREM:
612    return true;
613  }
614}
615
616
617static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
618                                          unsigned &NumIntermediates,
619                                          EVT &RegisterVT,
620                                          TargetLowering *TLI) {
621  // Figure out the right, legal destination reg to copy into.
622  unsigned NumElts = VT.getVectorNumElements();
623  MVT EltTy = VT.getVectorElementType();
624
625  unsigned NumVectorRegs = 1;
626
627  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
628  // could break down into LHS/RHS like LegalizeDAG does.
629  if (!isPowerOf2_32(NumElts)) {
630    NumVectorRegs = NumElts;
631    NumElts = 1;
632  }
633
634  // Divide the input until we get to a supported size.  This will always
635  // end with a scalar if the target doesn't support vectors.
636  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
637    NumElts >>= 1;
638    NumVectorRegs <<= 1;
639  }
640
641  NumIntermediates = NumVectorRegs;
642
643  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
644  if (!TLI->isTypeLegal(NewVT))
645    NewVT = EltTy;
646  IntermediateVT = NewVT;
647
648  EVT DestVT = TLI->getRegisterType(NewVT);
649  RegisterVT = DestVT;
650  if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
651    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
652
653  // Otherwise, promotion or legal types use the same number of registers as
654  // the vector decimated to the appropriate level.
655  return NumVectorRegs;
656}
657
658/// isLegalRC - Return true if the value types that can be represented by the
659/// specified register class are all legal.
660bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const {
661  for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
662       I != E; ++I) {
663    if (isTypeLegal(*I))
664      return true;
665  }
666  return false;
667}
668
669/// hasLegalSuperRegRegClasses - Return true if the specified register class
670/// has one or more super-reg register classes that are legal.
671bool
672TargetLowering::hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const{
673  if (*RC->superregclasses_begin() == 0)
674    return false;
675  for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
676         E = RC->superregclasses_end(); I != E; ++I) {
677    const TargetRegisterClass *RRC = *I;
678    if (isLegalRC(RRC))
679      return true;
680  }
681  return false;
682}
683
684/// findRepresentativeClass - Return the largest legal super-reg register class
685/// of the register class for the specified type and its associated "cost".
686std::pair<const TargetRegisterClass*, uint8_t>
687TargetLowering::findRepresentativeClass(EVT VT) const {
688  const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
689  if (!RC)
690    return std::make_pair(RC, 0);
691  const TargetRegisterClass *BestRC = RC;
692  for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
693         E = RC->superregclasses_end(); I != E; ++I) {
694    const TargetRegisterClass *RRC = *I;
695    if (RRC->isASubClass() || !isLegalRC(RRC))
696      continue;
697    if (!hasLegalSuperRegRegClasses(RRC))
698      return std::make_pair(RRC, 1);
699    BestRC = RRC;
700  }
701  return std::make_pair(BestRC, 1);
702}
703
704
705/// computeRegisterProperties - Once all of the register classes are added,
706/// this allows us to compute derived properties we expose.
707void TargetLowering::computeRegisterProperties() {
708  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
709         "Too many value types for ValueTypeActions to hold!");
710
711  // Everything defaults to needing one register.
712  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
713    NumRegistersForVT[i] = 1;
714    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
715  }
716  // ...except isVoid, which doesn't need any registers.
717  NumRegistersForVT[MVT::isVoid] = 0;
718
719  // Find the largest integer register class.
720  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
721  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
722    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
723
724  // Every integer value type larger than this largest register takes twice as
725  // many registers to represent as the previous ValueType.
726  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
727    EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
728    if (!ExpandedVT.isInteger())
729      break;
730    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
731    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
732    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
733    ValueTypeActions.setTypeAction(ExpandedVT, Expand);
734  }
735
736  // Inspect all of the ValueType's smaller than the largest integer
737  // register to see which ones need promotion.
738  unsigned LegalIntReg = LargestIntReg;
739  for (unsigned IntReg = LargestIntReg - 1;
740       IntReg >= (unsigned)MVT::i1; --IntReg) {
741    EVT IVT = (MVT::SimpleValueType)IntReg;
742    if (isTypeLegal(IVT)) {
743      LegalIntReg = IntReg;
744    } else {
745      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
746        (MVT::SimpleValueType)LegalIntReg;
747      ValueTypeActions.setTypeAction(IVT, Promote);
748    }
749  }
750
751  // ppcf128 type is really two f64's.
752  if (!isTypeLegal(MVT::ppcf128)) {
753    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
754    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
755    TransformToType[MVT::ppcf128] = MVT::f64;
756    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
757  }
758
759  // Decide how to handle f64. If the target does not have native f64 support,
760  // expand it to i64 and we will be generating soft float library calls.
761  if (!isTypeLegal(MVT::f64)) {
762    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
763    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
764    TransformToType[MVT::f64] = MVT::i64;
765    ValueTypeActions.setTypeAction(MVT::f64, Expand);
766  }
767
768  // Decide how to handle f32. If the target does not have native support for
769  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
770  if (!isTypeLegal(MVT::f32)) {
771    if (isTypeLegal(MVT::f64)) {
772      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
773      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
774      TransformToType[MVT::f32] = MVT::f64;
775      ValueTypeActions.setTypeAction(MVT::f32, Promote);
776    } else {
777      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
778      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
779      TransformToType[MVT::f32] = MVT::i32;
780      ValueTypeActions.setTypeAction(MVT::f32, Expand);
781    }
782  }
783
784  // Loop over all of the vector value types to see which need transformations.
785  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
786       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
787    MVT VT = (MVT::SimpleValueType)i;
788    if (isTypeLegal(VT)) continue;
789
790    // Determine if there is a legal wider type.  If so, we should promote to
791    // that wider vector type.
792    EVT EltVT = VT.getVectorElementType();
793    unsigned NElts = VT.getVectorNumElements();
794    if (NElts != 1) {
795      bool IsLegalWiderType = false;
796      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
797        EVT SVT = (MVT::SimpleValueType)nVT;
798        if (SVT.getVectorElementType() == EltVT &&
799            SVT.getVectorNumElements() > NElts &&
800            isTypeLegal(SVT)) {
801          TransformToType[i] = SVT;
802          RegisterTypeForVT[i] = SVT;
803          NumRegistersForVT[i] = 1;
804          ValueTypeActions.setTypeAction(VT, Promote);
805          IsLegalWiderType = true;
806          break;
807        }
808      }
809      if (IsLegalWiderType) continue;
810    }
811
812    MVT IntermediateVT;
813    EVT RegisterVT;
814    unsigned NumIntermediates;
815    NumRegistersForVT[i] =
816      getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
817                                RegisterVT, this);
818    RegisterTypeForVT[i] = RegisterVT;
819
820    EVT NVT = VT.getPow2VectorType();
821    if (NVT == VT) {
822      // Type is already a power of 2.  The default action is to split.
823      TransformToType[i] = MVT::Other;
824      ValueTypeActions.setTypeAction(VT, Expand);
825    } else {
826      TransformToType[i] = NVT;
827      ValueTypeActions.setTypeAction(VT, Promote);
828    }
829  }
830
831  // Determine the 'representative' register class for each value type.
832  // An representative register class is the largest (meaning one which is
833  // not a sub-register class / subreg register class) legal register class for
834  // a group of value types. For example, on i386, i8, i16, and i32
835  // representative would be GR32; while on x86_64 it's GR64.
836  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
837    const TargetRegisterClass* RRC;
838    uint8_t Cost;
839    tie(RRC, Cost) =  findRepresentativeClass((MVT::SimpleValueType)i);
840    RepRegClassForVT[i] = RRC;
841    RepRegClassCostForVT[i] = Cost;
842  }
843}
844
845const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
846  return NULL;
847}
848
849
850MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
851  return PointerTy.SimpleTy;
852}
853
854MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
855  return MVT::i32; // return the default value
856}
857
858/// getVectorTypeBreakdown - Vector types are broken down into some number of
859/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
860/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
861/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
862///
863/// This method returns the number of registers needed, and the VT for each
864/// register.  It also returns the VT and quantity of the intermediate values
865/// before they are promoted/expanded.
866///
867unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
868                                                EVT &IntermediateVT,
869                                                unsigned &NumIntermediates,
870                                                EVT &RegisterVT) const {
871  unsigned NumElts = VT.getVectorNumElements();
872
873  // If there is a wider vector type with the same element type as this one,
874  // we should widen to that legal vector type.  This handles things like
875  // <2 x float> -> <4 x float>.
876  if (NumElts != 1 && getTypeAction(VT) == Promote) {
877    RegisterVT = getTypeToTransformTo(Context, VT);
878    if (isTypeLegal(RegisterVT)) {
879      IntermediateVT = RegisterVT;
880      NumIntermediates = 1;
881      return 1;
882    }
883  }
884
885  // Figure out the right, legal destination reg to copy into.
886  EVT EltTy = VT.getVectorElementType();
887
888  unsigned NumVectorRegs = 1;
889
890  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
891  // could break down into LHS/RHS like LegalizeDAG does.
892  if (!isPowerOf2_32(NumElts)) {
893    NumVectorRegs = NumElts;
894    NumElts = 1;
895  }
896
897  // Divide the input until we get to a supported size.  This will always
898  // end with a scalar if the target doesn't support vectors.
899  while (NumElts > 1 && !isTypeLegal(
900                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
901    NumElts >>= 1;
902    NumVectorRegs <<= 1;
903  }
904
905  NumIntermediates = NumVectorRegs;
906
907  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
908  if (!isTypeLegal(NewVT))
909    NewVT = EltTy;
910  IntermediateVT = NewVT;
911
912  EVT DestVT = getRegisterType(Context, NewVT);
913  RegisterVT = DestVT;
914  if (DestVT.bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
915    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
916
917  // Otherwise, promotion or legal types use the same number of registers as
918  // the vector decimated to the appropriate level.
919  return NumVectorRegs;
920}
921
922/// Get the EVTs and ArgFlags collections that represent the legalized return
923/// type of the given function.  This does not require a DAG or a return value,
924/// and is suitable for use before any DAGs for the function are constructed.
925/// TODO: Move this out of TargetLowering.cpp.
926void llvm::GetReturnInfo(const Type* ReturnType, Attributes attr,
927                         SmallVectorImpl<ISD::OutputArg> &Outs,
928                         const TargetLowering &TLI,
929                         SmallVectorImpl<uint64_t> *Offsets) {
930  SmallVector<EVT, 4> ValueVTs;
931  ComputeValueVTs(TLI, ReturnType, ValueVTs);
932  unsigned NumValues = ValueVTs.size();
933  if (NumValues == 0) return;
934  unsigned Offset = 0;
935
936  for (unsigned j = 0, f = NumValues; j != f; ++j) {
937    EVT VT = ValueVTs[j];
938    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
939
940    if (attr & Attribute::SExt)
941      ExtendKind = ISD::SIGN_EXTEND;
942    else if (attr & Attribute::ZExt)
943      ExtendKind = ISD::ZERO_EXTEND;
944
945    // FIXME: C calling convention requires the return type to be promoted to
946    // at least 32-bit. But this is not necessary for non-C calling
947    // conventions. The frontend should mark functions whose return values
948    // require promoting with signext or zeroext attributes.
949    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
950      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
951      if (VT.bitsLT(MinVT))
952        VT = MinVT;
953    }
954
955    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
956    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
957    unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
958                        PartVT.getTypeForEVT(ReturnType->getContext()));
959
960    // 'inreg' on function refers to return value
961    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
962    if (attr & Attribute::InReg)
963      Flags.setInReg();
964
965    // Propagate extension type if any
966    if (attr & Attribute::SExt)
967      Flags.setSExt();
968    else if (attr & Attribute::ZExt)
969      Flags.setZExt();
970
971    for (unsigned i = 0; i < NumParts; ++i) {
972      Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true));
973      if (Offsets) {
974        Offsets->push_back(Offset);
975        Offset += PartSize;
976      }
977    }
978  }
979}
980
981/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
982/// function arguments in the caller parameter area.  This is the actual
983/// alignment, not its logarithm.
984unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
985  return TD->getCallFrameTypeAlignment(Ty);
986}
987
988/// getJumpTableEncoding - Return the entry encoding for a jump table in the
989/// current function.  The returned value is a member of the
990/// MachineJumpTableInfo::JTEntryKind enum.
991unsigned TargetLowering::getJumpTableEncoding() const {
992  // In non-pic modes, just use the address of a block.
993  if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
994    return MachineJumpTableInfo::EK_BlockAddress;
995
996  // In PIC mode, if the target supports a GPRel32 directive, use it.
997  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
998    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
999
1000  // Otherwise, use a label difference.
1001  return MachineJumpTableInfo::EK_LabelDifference32;
1002}
1003
1004SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1005                                                 SelectionDAG &DAG) const {
1006  // If our PIC model is GP relative, use the global offset table as the base.
1007  if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
1008    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1009  return Table;
1010}
1011
1012/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1013/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1014/// MCExpr.
1015const MCExpr *
1016TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
1017                                             unsigned JTI,MCContext &Ctx) const{
1018  // The normal PIC reloc base is the label at the start of the jump table.
1019  return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
1020}
1021
1022bool
1023TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
1024  // Assume that everything is safe in static mode.
1025  if (getTargetMachine().getRelocationModel() == Reloc::Static)
1026    return true;
1027
1028  // In dynamic-no-pic mode, assume that known defined values are safe.
1029  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
1030      GA &&
1031      !GA->getGlobal()->isDeclaration() &&
1032      !GA->getGlobal()->isWeakForLinker())
1033    return true;
1034
1035  // Otherwise assume nothing is safe.
1036  return false;
1037}
1038
1039//===----------------------------------------------------------------------===//
1040//  Optimization Methods
1041//===----------------------------------------------------------------------===//
1042
1043/// ShrinkDemandedConstant - Check to see if the specified operand of the
1044/// specified instruction is a constant integer.  If so, check to see if there
1045/// are any bits set in the constant that are not demanded.  If so, shrink the
1046/// constant and return true.
1047bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
1048                                                        const APInt &Demanded) {
1049  DebugLoc dl = Op.getDebugLoc();
1050
1051  // FIXME: ISD::SELECT, ISD::SELECT_CC
1052  switch (Op.getOpcode()) {
1053  default: break;
1054  case ISD::XOR:
1055  case ISD::AND:
1056  case ISD::OR: {
1057    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1058    if (!C) return false;
1059
1060    if (Op.getOpcode() == ISD::XOR &&
1061        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
1062      return false;
1063
1064    // if we can expand it to have all bits set, do it
1065    if (C->getAPIntValue().intersects(~Demanded)) {
1066      EVT VT = Op.getValueType();
1067      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
1068                                DAG.getConstant(Demanded &
1069                                                C->getAPIntValue(),
1070                                                VT));
1071      return CombineTo(Op, New);
1072    }
1073
1074    break;
1075  }
1076  }
1077
1078  return false;
1079}
1080
1081/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
1082/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
1083/// cast, but it could be generalized for targets with other types of
1084/// implicit widening casts.
1085bool
1086TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
1087                                                    unsigned BitWidth,
1088                                                    const APInt &Demanded,
1089                                                    DebugLoc dl) {
1090  assert(Op.getNumOperands() == 2 &&
1091         "ShrinkDemandedOp only supports binary operators!");
1092  assert(Op.getNode()->getNumValues() == 1 &&
1093         "ShrinkDemandedOp only supports nodes with one result!");
1094
1095  // Don't do this if the node has another user, which may require the
1096  // full value.
1097  if (!Op.getNode()->hasOneUse())
1098    return false;
1099
1100  // Search for the smallest integer type with free casts to and from
1101  // Op's type. For expedience, just check power-of-2 integer types.
1102  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1103  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
1104  if (!isPowerOf2_32(SmallVTBits))
1105    SmallVTBits = NextPowerOf2(SmallVTBits);
1106  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1107    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
1108    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
1109        TLI.isZExtFree(SmallVT, Op.getValueType())) {
1110      // We found a type with free casts.
1111      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
1112                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1113                                          Op.getNode()->getOperand(0)),
1114                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1115                                          Op.getNode()->getOperand(1)));
1116      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
1117      return CombineTo(Op, Z);
1118    }
1119  }
1120  return false;
1121}
1122
1123/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
1124/// DemandedMask bits of the result of Op are ever used downstream.  If we can
1125/// use this information to simplify Op, create a new simplified DAG node and
1126/// return true, returning the original and new nodes in Old and New. Otherwise,
1127/// analyze the expression and return a mask of KnownOne and KnownZero bits for
1128/// the expression (used to simplify the caller).  The KnownZero/One bits may
1129/// only be accurate for those bits in the DemandedMask.
1130bool TargetLowering::SimplifyDemandedBits(SDValue Op,
1131                                          const APInt &DemandedMask,
1132                                          APInt &KnownZero,
1133                                          APInt &KnownOne,
1134                                          TargetLoweringOpt &TLO,
1135                                          unsigned Depth) const {
1136  unsigned BitWidth = DemandedMask.getBitWidth();
1137  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
1138         "Mask size mismatches value type size!");
1139  APInt NewMask = DemandedMask;
1140  DebugLoc dl = Op.getDebugLoc();
1141
1142  // Don't know anything.
1143  KnownZero = KnownOne = APInt(BitWidth, 0);
1144
1145  // Other users may use these bits.
1146  if (!Op.getNode()->hasOneUse()) {
1147    if (Depth != 0) {
1148      // If not at the root, Just compute the KnownZero/KnownOne bits to
1149      // simplify things downstream.
1150      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
1151      return false;
1152    }
1153    // If this is the root being simplified, allow it to have multiple uses,
1154    // just set the NewMask to all bits.
1155    NewMask = APInt::getAllOnesValue(BitWidth);
1156  } else if (DemandedMask == 0) {
1157    // Not demanding any bits from Op.
1158    if (Op.getOpcode() != ISD::UNDEF)
1159      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
1160    return false;
1161  } else if (Depth == 6) {        // Limit search depth.
1162    return false;
1163  }
1164
1165  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
1166  switch (Op.getOpcode()) {
1167  case ISD::Constant:
1168    // We know all of the bits for a constant!
1169    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
1170    KnownZero = ~KnownOne & NewMask;
1171    return false;   // Don't fall through, will infinitely loop.
1172  case ISD::AND:
1173    // If the RHS is a constant, check to see if the LHS would be zero without
1174    // using the bits from the RHS.  Below, we use knowledge about the RHS to
1175    // simplify the LHS, here we're using information from the LHS to simplify
1176    // the RHS.
1177    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1178      APInt LHSZero, LHSOne;
1179      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
1180                                LHSZero, LHSOne, Depth+1);
1181      // If the LHS already has zeros where RHSC does, this and is dead.
1182      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1183        return TLO.CombineTo(Op, Op.getOperand(0));
1184      // If any of the set bits in the RHS are known zero on the LHS, shrink
1185      // the constant.
1186      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1187        return true;
1188    }
1189
1190    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1191                             KnownOne, TLO, Depth+1))
1192      return true;
1193    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1194    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1195                             KnownZero2, KnownOne2, TLO, Depth+1))
1196      return true;
1197    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1198
1199    // If all of the demanded bits are known one on one side, return the other.
1200    // These bits cannot contribute to the result of the 'and'.
1201    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1202      return TLO.CombineTo(Op, Op.getOperand(0));
1203    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1204      return TLO.CombineTo(Op, Op.getOperand(1));
1205    // If all of the demanded bits in the inputs are known zeros, return zero.
1206    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1207      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1208    // If the RHS is a constant, see if we can simplify it.
1209    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1210      return true;
1211    // If the operation can be done in a smaller type, do so.
1212    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1213      return true;
1214
1215    // Output known-1 bits are only known if set in both the LHS & RHS.
1216    KnownOne &= KnownOne2;
1217    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1218    KnownZero |= KnownZero2;
1219    break;
1220  case ISD::OR:
1221    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1222                             KnownOne, TLO, Depth+1))
1223      return true;
1224    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1225    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1226                             KnownZero2, KnownOne2, TLO, Depth+1))
1227      return true;
1228    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1229
1230    // If all of the demanded bits are known zero on one side, return the other.
1231    // These bits cannot contribute to the result of the 'or'.
1232    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1233      return TLO.CombineTo(Op, Op.getOperand(0));
1234    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1235      return TLO.CombineTo(Op, Op.getOperand(1));
1236    // If all of the potentially set bits on one side are known to be set on
1237    // the other side, just use the 'other' side.
1238    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1239      return TLO.CombineTo(Op, Op.getOperand(0));
1240    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1241      return TLO.CombineTo(Op, Op.getOperand(1));
1242    // If the RHS is a constant, see if we can simplify it.
1243    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1244      return true;
1245    // If the operation can be done in a smaller type, do so.
1246    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1247      return true;
1248
1249    // Output known-0 bits are only known if clear in both the LHS & RHS.
1250    KnownZero &= KnownZero2;
1251    // Output known-1 are known to be set if set in either the LHS | RHS.
1252    KnownOne |= KnownOne2;
1253    break;
1254  case ISD::XOR:
1255    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1256                             KnownOne, TLO, Depth+1))
1257      return true;
1258    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1259    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1260                             KnownOne2, TLO, Depth+1))
1261      return true;
1262    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1263
1264    // If all of the demanded bits are known zero on one side, return the other.
1265    // These bits cannot contribute to the result of the 'xor'.
1266    if ((KnownZero & NewMask) == NewMask)
1267      return TLO.CombineTo(Op, Op.getOperand(0));
1268    if ((KnownZero2 & NewMask) == NewMask)
1269      return TLO.CombineTo(Op, Op.getOperand(1));
1270    // If the operation can be done in a smaller type, do so.
1271    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1272      return true;
1273
1274    // If all of the unknown bits are known to be zero on one side or the other
1275    // (but not both) turn this into an *inclusive* or.
1276    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1277    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1278      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1279                                               Op.getOperand(0),
1280                                               Op.getOperand(1)));
1281
1282    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1283    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1284    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1285    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1286
1287    // If all of the demanded bits on one side are known, and all of the set
1288    // bits on that side are also known to be set on the other side, turn this
1289    // into an AND, as we know the bits will be cleared.
1290    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1291    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1292      if ((KnownOne & KnownOne2) == KnownOne) {
1293        EVT VT = Op.getValueType();
1294        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1295        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1296                                                 Op.getOperand(0), ANDC));
1297      }
1298    }
1299
1300    // If the RHS is a constant, see if we can simplify it.
1301    // for XOR, we prefer to force bits to 1 if they will make a -1.
1302    // if we can't force bits, try to shrink constant
1303    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1304      APInt Expanded = C->getAPIntValue() | (~NewMask);
1305      // if we can expand it to have all bits set, do it
1306      if (Expanded.isAllOnesValue()) {
1307        if (Expanded != C->getAPIntValue()) {
1308          EVT VT = Op.getValueType();
1309          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1310                                          TLO.DAG.getConstant(Expanded, VT));
1311          return TLO.CombineTo(Op, New);
1312        }
1313        // if it already has all the bits set, nothing to change
1314        // but don't shrink either!
1315      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1316        return true;
1317      }
1318    }
1319
1320    KnownZero = KnownZeroOut;
1321    KnownOne  = KnownOneOut;
1322    break;
1323  case ISD::SELECT:
1324    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1325                             KnownOne, TLO, Depth+1))
1326      return true;
1327    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1328                             KnownOne2, TLO, Depth+1))
1329      return true;
1330    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1331    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1332
1333    // If the operands are constants, see if we can simplify them.
1334    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1335      return true;
1336
1337    // Only known if known in both the LHS and RHS.
1338    KnownOne &= KnownOne2;
1339    KnownZero &= KnownZero2;
1340    break;
1341  case ISD::SELECT_CC:
1342    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1343                             KnownOne, TLO, Depth+1))
1344      return true;
1345    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1346                             KnownOne2, TLO, Depth+1))
1347      return true;
1348    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1349    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1350
1351    // If the operands are constants, see if we can simplify them.
1352    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1353      return true;
1354
1355    // Only known if known in both the LHS and RHS.
1356    KnownOne &= KnownOne2;
1357    KnownZero &= KnownZero2;
1358    break;
1359  case ISD::SHL:
1360    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1361      unsigned ShAmt = SA->getZExtValue();
1362      SDValue InOp = Op.getOperand(0);
1363
1364      // If the shift count is an invalid immediate, don't do anything.
1365      if (ShAmt >= BitWidth)
1366        break;
1367
1368      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1369      // single shift.  We can do this if the bottom bits (which are shifted
1370      // out) are never demanded.
1371      if (InOp.getOpcode() == ISD::SRL &&
1372          isa<ConstantSDNode>(InOp.getOperand(1))) {
1373        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1374          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1375          unsigned Opc = ISD::SHL;
1376          int Diff = ShAmt-C1;
1377          if (Diff < 0) {
1378            Diff = -Diff;
1379            Opc = ISD::SRL;
1380          }
1381
1382          SDValue NewSA =
1383            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1384          EVT VT = Op.getValueType();
1385          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1386                                                   InOp.getOperand(0), NewSA));
1387        }
1388      }
1389
1390      if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
1391                               KnownZero, KnownOne, TLO, Depth+1))
1392        return true;
1393
1394      // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1395      // are not demanded. This will likely allow the anyext to be folded away.
1396      if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
1397        SDValue InnerOp = InOp.getNode()->getOperand(0);
1398        EVT InnerVT = InnerOp.getValueType();
1399        if ((APInt::getHighBitsSet(BitWidth,
1400                                   BitWidth - InnerVT.getSizeInBits()) &
1401               DemandedMask) == 0 &&
1402            isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1403          EVT ShTy = getShiftAmountTy();
1404          if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1405            ShTy = InnerVT;
1406          SDValue NarrowShl =
1407            TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1408                            TLO.DAG.getConstant(ShAmt, ShTy));
1409          return
1410            TLO.CombineTo(Op,
1411                          TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
1412                                          NarrowShl));
1413        }
1414      }
1415
1416      KnownZero <<= SA->getZExtValue();
1417      KnownOne  <<= SA->getZExtValue();
1418      // low bits known zero.
1419      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1420    }
1421    break;
1422  case ISD::SRL:
1423    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1424      EVT VT = Op.getValueType();
1425      unsigned ShAmt = SA->getZExtValue();
1426      unsigned VTSize = VT.getSizeInBits();
1427      SDValue InOp = Op.getOperand(0);
1428
1429      // If the shift count is an invalid immediate, don't do anything.
1430      if (ShAmt >= BitWidth)
1431        break;
1432
1433      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1434      // single shift.  We can do this if the top bits (which are shifted out)
1435      // are never demanded.
1436      if (InOp.getOpcode() == ISD::SHL &&
1437          isa<ConstantSDNode>(InOp.getOperand(1))) {
1438        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1439          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1440          unsigned Opc = ISD::SRL;
1441          int Diff = ShAmt-C1;
1442          if (Diff < 0) {
1443            Diff = -Diff;
1444            Opc = ISD::SHL;
1445          }
1446
1447          SDValue NewSA =
1448            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1449          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1450                                                   InOp.getOperand(0), NewSA));
1451        }
1452      }
1453
1454      // Compute the new bits that are at the top now.
1455      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1456                               KnownZero, KnownOne, TLO, Depth+1))
1457        return true;
1458      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1459      KnownZero = KnownZero.lshr(ShAmt);
1460      KnownOne  = KnownOne.lshr(ShAmt);
1461
1462      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1463      KnownZero |= HighBits;  // High bits known zero.
1464    }
1465    break;
1466  case ISD::SRA:
1467    // If this is an arithmetic shift right and only the low-bit is set, we can
1468    // always convert this into a logical shr, even if the shift amount is
1469    // variable.  The low bit of the shift cannot be an input sign bit unless
1470    // the shift amount is >= the size of the datatype, which is undefined.
1471    if (DemandedMask == 1)
1472      return TLO.CombineTo(Op,
1473                           TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1474                                           Op.getOperand(0), Op.getOperand(1)));
1475
1476    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1477      EVT VT = Op.getValueType();
1478      unsigned ShAmt = SA->getZExtValue();
1479
1480      // If the shift count is an invalid immediate, don't do anything.
1481      if (ShAmt >= BitWidth)
1482        break;
1483
1484      APInt InDemandedMask = (NewMask << ShAmt);
1485
1486      // If any of the demanded bits are produced by the sign extension, we also
1487      // demand the input sign bit.
1488      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1489      if (HighBits.intersects(NewMask))
1490        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1491
1492      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1493                               KnownZero, KnownOne, TLO, Depth+1))
1494        return true;
1495      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1496      KnownZero = KnownZero.lshr(ShAmt);
1497      KnownOne  = KnownOne.lshr(ShAmt);
1498
1499      // Handle the sign bit, adjusted to where it is now in the mask.
1500      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1501
1502      // If the input sign bit is known to be zero, or if none of the top bits
1503      // are demanded, turn this into an unsigned shift right.
1504      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1505        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1506                                                 Op.getOperand(0),
1507                                                 Op.getOperand(1)));
1508      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1509        KnownOne |= HighBits;
1510      }
1511    }
1512    break;
1513  case ISD::SIGN_EXTEND_INREG: {
1514    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1515
1516    // Sign extension.  Compute the demanded bits in the result that are not
1517    // present in the input.
1518    APInt NewBits =
1519      APInt::getHighBitsSet(BitWidth,
1520                            BitWidth - EVT.getScalarType().getSizeInBits());
1521
1522    // If none of the extended bits are demanded, eliminate the sextinreg.
1523    if ((NewBits & NewMask) == 0)
1524      return TLO.CombineTo(Op, Op.getOperand(0));
1525
1526    APInt InSignBit =
1527      APInt::getSignBit(EVT.getScalarType().getSizeInBits()).zext(BitWidth);
1528    APInt InputDemandedBits =
1529      APInt::getLowBitsSet(BitWidth,
1530                           EVT.getScalarType().getSizeInBits()) &
1531      NewMask;
1532
1533    // Since the sign extended bits are demanded, we know that the sign
1534    // bit is demanded.
1535    InputDemandedBits |= InSignBit;
1536
1537    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1538                             KnownZero, KnownOne, TLO, Depth+1))
1539      return true;
1540    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1541
1542    // If the sign bit of the input is known set or clear, then we know the
1543    // top bits of the result.
1544
1545    // If the input sign bit is known zero, convert this into a zero extension.
1546    if (KnownZero.intersects(InSignBit))
1547      return TLO.CombineTo(Op,
1548                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1549
1550    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1551      KnownOne |= NewBits;
1552      KnownZero &= ~NewBits;
1553    } else {                       // Input sign bit unknown
1554      KnownZero &= ~NewBits;
1555      KnownOne &= ~NewBits;
1556    }
1557    break;
1558  }
1559  case ISD::ZERO_EXTEND: {
1560    unsigned OperandBitWidth =
1561      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1562    APInt InMask = NewMask.trunc(OperandBitWidth);
1563
1564    // If none of the top bits are demanded, convert this into an any_extend.
1565    APInt NewBits =
1566      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1567    if (!NewBits.intersects(NewMask))
1568      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1569                                               Op.getValueType(),
1570                                               Op.getOperand(0)));
1571
1572    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1573                             KnownZero, KnownOne, TLO, Depth+1))
1574      return true;
1575    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1576    KnownZero = KnownZero.zext(BitWidth);
1577    KnownOne = KnownOne.zext(BitWidth);
1578    KnownZero |= NewBits;
1579    break;
1580  }
1581  case ISD::SIGN_EXTEND: {
1582    EVT InVT = Op.getOperand(0).getValueType();
1583    unsigned InBits = InVT.getScalarType().getSizeInBits();
1584    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1585    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1586    APInt NewBits   = ~InMask & NewMask;
1587
1588    // If none of the top bits are demanded, convert this into an any_extend.
1589    if (NewBits == 0)
1590      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1591                                              Op.getValueType(),
1592                                              Op.getOperand(0)));
1593
1594    // Since some of the sign extended bits are demanded, we know that the sign
1595    // bit is demanded.
1596    APInt InDemandedBits = InMask & NewMask;
1597    InDemandedBits |= InSignBit;
1598    InDemandedBits = InDemandedBits.trunc(InBits);
1599
1600    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1601                             KnownOne, TLO, Depth+1))
1602      return true;
1603    KnownZero = KnownZero.zext(BitWidth);
1604    KnownOne = KnownOne.zext(BitWidth);
1605
1606    // If the sign bit is known zero, convert this to a zero extend.
1607    if (KnownZero.intersects(InSignBit))
1608      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1609                                               Op.getValueType(),
1610                                               Op.getOperand(0)));
1611
1612    // If the sign bit is known one, the top bits match.
1613    if (KnownOne.intersects(InSignBit)) {
1614      KnownOne  |= NewBits;
1615      KnownZero &= ~NewBits;
1616    } else {   // Otherwise, top bits aren't known.
1617      KnownOne  &= ~NewBits;
1618      KnownZero &= ~NewBits;
1619    }
1620    break;
1621  }
1622  case ISD::ANY_EXTEND: {
1623    unsigned OperandBitWidth =
1624      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1625    APInt InMask = NewMask.trunc(OperandBitWidth);
1626    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1627                             KnownZero, KnownOne, TLO, Depth+1))
1628      return true;
1629    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1630    KnownZero = KnownZero.zext(BitWidth);
1631    KnownOne = KnownOne.zext(BitWidth);
1632    break;
1633  }
1634  case ISD::TRUNCATE: {
1635    // Simplify the input, using demanded bit information, and compute the known
1636    // zero/one bits live out.
1637    unsigned OperandBitWidth =
1638      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1639    APInt TruncMask = NewMask.zext(OperandBitWidth);
1640    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1641                             KnownZero, KnownOne, TLO, Depth+1))
1642      return true;
1643    KnownZero = KnownZero.trunc(BitWidth);
1644    KnownOne = KnownOne.trunc(BitWidth);
1645
1646    // If the input is only used by this truncate, see if we can shrink it based
1647    // on the known demanded bits.
1648    if (Op.getOperand(0).getNode()->hasOneUse()) {
1649      SDValue In = Op.getOperand(0);
1650      switch (In.getOpcode()) {
1651      default: break;
1652      case ISD::SRL:
1653        // Shrink SRL by a constant if none of the high bits shifted in are
1654        // demanded.
1655        if (TLO.LegalTypes() &&
1656            !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1657          // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1658          // undesirable.
1659          break;
1660        ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1661        if (!ShAmt)
1662          break;
1663        APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1664                                               OperandBitWidth - BitWidth);
1665        HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
1666
1667        if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1668          // None of the shifted in bits are needed.  Add a truncate of the
1669          // shift input, then shift it.
1670          SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1671                                             Op.getValueType(),
1672                                             In.getOperand(0));
1673          return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1674                                                   Op.getValueType(),
1675                                                   NewTrunc,
1676                                                   In.getOperand(1)));
1677        }
1678        break;
1679      }
1680    }
1681
1682    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1683    break;
1684  }
1685  case ISD::AssertZext: {
1686    // Demand all the bits of the input that are demanded in the output.
1687    // The low bits are obvious; the high bits are demanded because we're
1688    // asserting that they're zero here.
1689    if (SimplifyDemandedBits(Op.getOperand(0), NewMask,
1690                             KnownZero, KnownOne, TLO, Depth+1))
1691      return true;
1692    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1693
1694    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1695    APInt InMask = APInt::getLowBitsSet(BitWidth,
1696                                        VT.getSizeInBits());
1697    KnownZero |= ~InMask & NewMask;
1698    break;
1699  }
1700  case ISD::BITCAST:
1701#if 0
1702    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1703    // is demanded, turn this into a FGETSIGN.
1704    if (NewMask == EVT::getIntegerVTSignBit(Op.getValueType()) &&
1705        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1706        !MVT::isVector(Op.getOperand(0).getValueType())) {
1707      // Only do this xform if FGETSIGN is valid or if before legalize.
1708      if (!TLO.AfterLegalize ||
1709          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1710        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1711        // place.  We expect the SHL to be eliminated by other optimizations.
1712        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1713                                         Op.getOperand(0));
1714        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1715        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1716        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1717                                                 Sign, ShAmt));
1718      }
1719    }
1720#endif
1721    break;
1722  case ISD::ADD:
1723  case ISD::MUL:
1724  case ISD::SUB: {
1725    // Add, Sub, and Mul don't demand any bits in positions beyond that
1726    // of the highest bit demanded of them.
1727    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1728                                        BitWidth - NewMask.countLeadingZeros());
1729    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1730                             KnownOne2, TLO, Depth+1))
1731      return true;
1732    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1733                             KnownOne2, TLO, Depth+1))
1734      return true;
1735    // See if the operation should be performed at a smaller bit width.
1736    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1737      return true;
1738  }
1739  // FALL THROUGH
1740  default:
1741    // Just use ComputeMaskedBits to compute output bits.
1742    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1743    break;
1744  }
1745
1746  // If we know the value of all of the demanded bits, return this as a
1747  // constant.
1748  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1749    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1750
1751  return false;
1752}
1753
1754/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1755/// in Mask are known to be either zero or one and return them in the
1756/// KnownZero/KnownOne bitsets.
1757void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1758                                                    const APInt &Mask,
1759                                                    APInt &KnownZero,
1760                                                    APInt &KnownOne,
1761                                                    const SelectionDAG &DAG,
1762                                                    unsigned Depth) const {
1763  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1764          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1765          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1766          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1767         "Should use MaskedValueIsZero if you don't know whether Op"
1768         " is a target node!");
1769  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1770}
1771
1772/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1773/// targets that want to expose additional information about sign bits to the
1774/// DAG Combiner.
1775unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1776                                                         unsigned Depth) const {
1777  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1778          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1779          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1780          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1781         "Should use ComputeNumSignBits if you don't know whether Op"
1782         " is a target node!");
1783  return 1;
1784}
1785
1786/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1787/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1788/// determine which bit is set.
1789///
1790static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1791  // A left-shift of a constant one will have exactly one bit set, because
1792  // shifting the bit off the end is undefined.
1793  if (Val.getOpcode() == ISD::SHL)
1794    if (ConstantSDNode *C =
1795         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1796      if (C->getAPIntValue() == 1)
1797        return true;
1798
1799  // Similarly, a right-shift of a constant sign-bit will have exactly
1800  // one bit set.
1801  if (Val.getOpcode() == ISD::SRL)
1802    if (ConstantSDNode *C =
1803         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1804      if (C->getAPIntValue().isSignBit())
1805        return true;
1806
1807  // More could be done here, though the above checks are enough
1808  // to handle some common cases.
1809
1810  // Fall back to ComputeMaskedBits to catch other known cases.
1811  EVT OpVT = Val.getValueType();
1812  unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1813  APInt Mask = APInt::getAllOnesValue(BitWidth);
1814  APInt KnownZero, KnownOne;
1815  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1816  return (KnownZero.countPopulation() == BitWidth - 1) &&
1817         (KnownOne.countPopulation() == 1);
1818}
1819
1820/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1821/// and cc. If it is unable to simplify it, return a null SDValue.
1822SDValue
1823TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1824                              ISD::CondCode Cond, bool foldBooleans,
1825                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1826  SelectionDAG &DAG = DCI.DAG;
1827  LLVMContext &Context = *DAG.getContext();
1828
1829  // These setcc operations always fold.
1830  switch (Cond) {
1831  default: break;
1832  case ISD::SETFALSE:
1833  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1834  case ISD::SETTRUE:
1835  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1836  }
1837
1838  if (isa<ConstantSDNode>(N0.getNode())) {
1839    // Ensure that the constant occurs on the RHS, and fold constant
1840    // comparisons.
1841    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1842  }
1843
1844  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1845    const APInt &C1 = N1C->getAPIntValue();
1846
1847    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1848    // equality comparison, then we're just comparing whether X itself is
1849    // zero.
1850    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1851        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1852        N0.getOperand(1).getOpcode() == ISD::Constant) {
1853      const APInt &ShAmt
1854        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1855      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1856          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1857        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1858          // (srl (ctlz x), 5) == 0  -> X != 0
1859          // (srl (ctlz x), 5) != 1  -> X != 0
1860          Cond = ISD::SETNE;
1861        } else {
1862          // (srl (ctlz x), 5) != 0  -> X == 0
1863          // (srl (ctlz x), 5) == 1  -> X == 0
1864          Cond = ISD::SETEQ;
1865        }
1866        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1867        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1868                            Zero, Cond);
1869      }
1870    }
1871
1872    // If the LHS is '(and load, const)', the RHS is 0,
1873    // the test is for equality or unsigned, and all 1 bits of the const are
1874    // in the same partial word, see if we can shorten the load.
1875    if (DCI.isBeforeLegalize() &&
1876        N0.getOpcode() == ISD::AND && C1 == 0 &&
1877        N0.getNode()->hasOneUse() &&
1878        isa<LoadSDNode>(N0.getOperand(0)) &&
1879        N0.getOperand(0).getNode()->hasOneUse() &&
1880        isa<ConstantSDNode>(N0.getOperand(1))) {
1881      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1882      APInt bestMask;
1883      unsigned bestWidth = 0, bestOffset = 0;
1884      if (!Lod->isVolatile() && Lod->isUnindexed()) {
1885        unsigned origWidth = N0.getValueType().getSizeInBits();
1886        unsigned maskWidth = origWidth;
1887        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1888        // 8 bits, but have to be careful...
1889        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1890          origWidth = Lod->getMemoryVT().getSizeInBits();
1891        const APInt &Mask =
1892          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1893        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1894          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1895          for (unsigned offset=0; offset<origWidth/width; offset++) {
1896            if ((newMask & Mask) == Mask) {
1897              if (!TD->isLittleEndian())
1898                bestOffset = (origWidth/width - offset - 1) * (width/8);
1899              else
1900                bestOffset = (uint64_t)offset * (width/8);
1901              bestMask = Mask.lshr(offset * (width/8) * 8);
1902              bestWidth = width;
1903              break;
1904            }
1905            newMask = newMask << width;
1906          }
1907        }
1908      }
1909      if (bestWidth) {
1910        EVT newVT = EVT::getIntegerVT(Context, bestWidth);
1911        if (newVT.isRound()) {
1912          EVT PtrType = Lod->getOperand(1).getValueType();
1913          SDValue Ptr = Lod->getBasePtr();
1914          if (bestOffset != 0)
1915            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1916                              DAG.getConstant(bestOffset, PtrType));
1917          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1918          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1919                                Lod->getPointerInfo().getWithOffset(bestOffset),
1920                                        false, false, NewAlign);
1921          return DAG.getSetCC(dl, VT,
1922                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1923                                      DAG.getConstant(bestMask.trunc(bestWidth),
1924                                                      newVT)),
1925                              DAG.getConstant(0LL, newVT), Cond);
1926        }
1927      }
1928    }
1929
1930    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1931    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1932      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1933
1934      // If the comparison constant has bits in the upper part, the
1935      // zero-extended value could never match.
1936      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1937                                              C1.getBitWidth() - InSize))) {
1938        switch (Cond) {
1939        case ISD::SETUGT:
1940        case ISD::SETUGE:
1941        case ISD::SETEQ: return DAG.getConstant(0, VT);
1942        case ISD::SETULT:
1943        case ISD::SETULE:
1944        case ISD::SETNE: return DAG.getConstant(1, VT);
1945        case ISD::SETGT:
1946        case ISD::SETGE:
1947          // True if the sign bit of C1 is set.
1948          return DAG.getConstant(C1.isNegative(), VT);
1949        case ISD::SETLT:
1950        case ISD::SETLE:
1951          // True if the sign bit of C1 isn't set.
1952          return DAG.getConstant(C1.isNonNegative(), VT);
1953        default:
1954          break;
1955        }
1956      }
1957
1958      // Otherwise, we can perform the comparison with the low bits.
1959      switch (Cond) {
1960      case ISD::SETEQ:
1961      case ISD::SETNE:
1962      case ISD::SETUGT:
1963      case ISD::SETUGE:
1964      case ISD::SETULT:
1965      case ISD::SETULE: {
1966        EVT newVT = N0.getOperand(0).getValueType();
1967        if (DCI.isBeforeLegalizeOps() ||
1968            (isOperationLegal(ISD::SETCC, newVT) &&
1969              getCondCodeAction(Cond, newVT)==Legal))
1970          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1971                              DAG.getConstant(C1.trunc(InSize), newVT),
1972                              Cond);
1973        break;
1974      }
1975      default:
1976        break;   // todo, be more careful with signed comparisons
1977      }
1978    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1979               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1980      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1981      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1982      EVT ExtDstTy = N0.getValueType();
1983      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1984
1985      // If the constant doesn't fit into the number of bits for the source of
1986      // the sign extension, it is impossible for both sides to be equal.
1987      if (C1.getMinSignedBits() > ExtSrcTyBits)
1988        return DAG.getConstant(Cond == ISD::SETNE, VT);
1989
1990      SDValue ZextOp;
1991      EVT Op0Ty = N0.getOperand(0).getValueType();
1992      if (Op0Ty == ExtSrcTy) {
1993        ZextOp = N0.getOperand(0);
1994      } else {
1995        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1996        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1997                              DAG.getConstant(Imm, Op0Ty));
1998      }
1999      if (!DCI.isCalledByLegalizer())
2000        DCI.AddToWorklist(ZextOp.getNode());
2001      // Otherwise, make this a use of a zext.
2002      return DAG.getSetCC(dl, VT, ZextOp,
2003                          DAG.getConstant(C1 & APInt::getLowBitsSet(
2004                                                              ExtDstTyBits,
2005                                                              ExtSrcTyBits),
2006                                          ExtDstTy),
2007                          Cond);
2008    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
2009                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2010      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
2011      if (N0.getOpcode() == ISD::SETCC &&
2012          isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2013        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
2014        if (TrueWhenTrue)
2015          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2016        // Invert the condition.
2017        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2018        CC = ISD::getSetCCInverse(CC,
2019                                  N0.getOperand(0).getValueType().isInteger());
2020        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2021      }
2022
2023      if ((N0.getOpcode() == ISD::XOR ||
2024           (N0.getOpcode() == ISD::AND &&
2025            N0.getOperand(0).getOpcode() == ISD::XOR &&
2026            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2027          isa<ConstantSDNode>(N0.getOperand(1)) &&
2028          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
2029        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
2030        // can only do this if the top bits are known zero.
2031        unsigned BitWidth = N0.getValueSizeInBits();
2032        if (DAG.MaskedValueIsZero(N0,
2033                                  APInt::getHighBitsSet(BitWidth,
2034                                                        BitWidth-1))) {
2035          // Okay, get the un-inverted input value.
2036          SDValue Val;
2037          if (N0.getOpcode() == ISD::XOR)
2038            Val = N0.getOperand(0);
2039          else {
2040            assert(N0.getOpcode() == ISD::AND &&
2041                    N0.getOperand(0).getOpcode() == ISD::XOR);
2042            // ((X^1)&1)^1 -> X & 1
2043            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2044                              N0.getOperand(0).getOperand(0),
2045                              N0.getOperand(1));
2046          }
2047
2048          return DAG.getSetCC(dl, VT, Val, N1,
2049                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2050        }
2051      } else if (N1C->getAPIntValue() == 1 &&
2052                 (VT == MVT::i1 ||
2053                  getBooleanContents() == ZeroOrOneBooleanContent)) {
2054        SDValue Op0 = N0;
2055        if (Op0.getOpcode() == ISD::TRUNCATE)
2056          Op0 = Op0.getOperand(0);
2057
2058        if ((Op0.getOpcode() == ISD::XOR) &&
2059            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2060            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2061          // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2062          Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2063          return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2064                              Cond);
2065        } else if (Op0.getOpcode() == ISD::AND &&
2066                isa<ConstantSDNode>(Op0.getOperand(1)) &&
2067                cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
2068          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2069          if (Op0.getValueType().bitsGT(VT))
2070            Op0 = DAG.getNode(ISD::AND, dl, VT,
2071                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2072                          DAG.getConstant(1, VT));
2073          else if (Op0.getValueType().bitsLT(VT))
2074            Op0 = DAG.getNode(ISD::AND, dl, VT,
2075                        DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2076                        DAG.getConstant(1, VT));
2077
2078          return DAG.getSetCC(dl, VT, Op0,
2079                              DAG.getConstant(0, Op0.getValueType()),
2080                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2081        }
2082      }
2083    }
2084
2085    APInt MinVal, MaxVal;
2086    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
2087    if (ISD::isSignedIntSetCC(Cond)) {
2088      MinVal = APInt::getSignedMinValue(OperandBitSize);
2089      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2090    } else {
2091      MinVal = APInt::getMinValue(OperandBitSize);
2092      MaxVal = APInt::getMaxValue(OperandBitSize);
2093    }
2094
2095    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2096    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2097      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
2098      // X >= C0 --> X > (C0-1)
2099      return DAG.getSetCC(dl, VT, N0,
2100                          DAG.getConstant(C1-1, N1.getValueType()),
2101                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
2102    }
2103
2104    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2105      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
2106      // X <= C0 --> X < (C0+1)
2107      return DAG.getSetCC(dl, VT, N0,
2108                          DAG.getConstant(C1+1, N1.getValueType()),
2109                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
2110    }
2111
2112    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
2113      return DAG.getConstant(0, VT);      // X < MIN --> false
2114    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
2115      return DAG.getConstant(1, VT);      // X >= MIN --> true
2116    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
2117      return DAG.getConstant(0, VT);      // X > MAX --> false
2118    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
2119      return DAG.getConstant(1, VT);      // X <= MAX --> true
2120
2121    // Canonicalize setgt X, Min --> setne X, Min
2122    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
2123      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2124    // Canonicalize setlt X, Max --> setne X, Max
2125    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
2126      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2127
2128    // If we have setult X, 1, turn it into seteq X, 0
2129    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
2130      return DAG.getSetCC(dl, VT, N0,
2131                          DAG.getConstant(MinVal, N0.getValueType()),
2132                          ISD::SETEQ);
2133    // If we have setugt X, Max-1, turn it into seteq X, Max
2134    else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
2135      return DAG.getSetCC(dl, VT, N0,
2136                          DAG.getConstant(MaxVal, N0.getValueType()),
2137                          ISD::SETEQ);
2138
2139    // If we have "setcc X, C0", check to see if we can shrink the immediate
2140    // by changing cc.
2141
2142    // SETUGT X, SINTMAX  -> SETLT X, 0
2143    if (Cond == ISD::SETUGT &&
2144        C1 == APInt::getSignedMaxValue(OperandBitSize))
2145      return DAG.getSetCC(dl, VT, N0,
2146                          DAG.getConstant(0, N1.getValueType()),
2147                          ISD::SETLT);
2148
2149    // SETULT X, SINTMIN  -> SETGT X, -1
2150    if (Cond == ISD::SETULT &&
2151        C1 == APInt::getSignedMinValue(OperandBitSize)) {
2152      SDValue ConstMinusOne =
2153          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
2154                          N1.getValueType());
2155      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2156    }
2157
2158    // Fold bit comparisons when we can.
2159    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2160        (VT == N0.getValueType() ||
2161         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2162        N0.getOpcode() == ISD::AND)
2163      if (ConstantSDNode *AndRHS =
2164                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2165        EVT ShiftTy = DCI.isBeforeLegalize() ?
2166          getPointerTy() : getShiftAmountTy();
2167        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2168          // Perform the xform if the AND RHS is a single bit.
2169          if (AndRHS->getAPIntValue().isPowerOf2()) {
2170            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2171                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2172                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
2173          }
2174        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2175          // (X & 8) == 8  -->  (X & 8) >> 3
2176          // Perform the xform if C1 is a single bit.
2177          if (C1.isPowerOf2()) {
2178            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2179                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2180                                      DAG.getConstant(C1.logBase2(), ShiftTy)));
2181          }
2182        }
2183      }
2184  }
2185
2186  if (isa<ConstantFPSDNode>(N0.getNode())) {
2187    // Constant fold or commute setcc.
2188    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2189    if (O.getNode()) return O;
2190  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2191    // If the RHS of an FP comparison is a constant, simplify it away in
2192    // some cases.
2193    if (CFP->getValueAPF().isNaN()) {
2194      // If an operand is known to be a nan, we can fold it.
2195      switch (ISD::getUnorderedFlavor(Cond)) {
2196      default: llvm_unreachable("Unknown flavor!");
2197      case 0:  // Known false.
2198        return DAG.getConstant(0, VT);
2199      case 1:  // Known true.
2200        return DAG.getConstant(1, VT);
2201      case 2:  // Undefined.
2202        return DAG.getUNDEF(VT);
2203      }
2204    }
2205
2206    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2207    // constant if knowing that the operand is non-nan is enough.  We prefer to
2208    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2209    // materialize 0.0.
2210    if (Cond == ISD::SETO || Cond == ISD::SETUO)
2211      return DAG.getSetCC(dl, VT, N0, N0, Cond);
2212
2213    // If the condition is not legal, see if we can find an equivalent one
2214    // which is legal.
2215    if (!isCondCodeLegal(Cond, N0.getValueType())) {
2216      // If the comparison was an awkward floating-point == or != and one of
2217      // the comparison operands is infinity or negative infinity, convert the
2218      // condition to a less-awkward <= or >=.
2219      if (CFP->getValueAPF().isInfinity()) {
2220        if (CFP->getValueAPF().isNegative()) {
2221          if (Cond == ISD::SETOEQ &&
2222              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2223            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2224          if (Cond == ISD::SETUEQ &&
2225              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2226            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2227          if (Cond == ISD::SETUNE &&
2228              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2229            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2230          if (Cond == ISD::SETONE &&
2231              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2232            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2233        } else {
2234          if (Cond == ISD::SETOEQ &&
2235              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2236            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2237          if (Cond == ISD::SETUEQ &&
2238              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2239            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2240          if (Cond == ISD::SETUNE &&
2241              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2242            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2243          if (Cond == ISD::SETONE &&
2244              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2245            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2246        }
2247      }
2248    }
2249  }
2250
2251  if (N0 == N1) {
2252    // We can always fold X == X for integer setcc's.
2253    if (N0.getValueType().isInteger())
2254      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2255    unsigned UOF = ISD::getUnorderedFlavor(Cond);
2256    if (UOF == 2)   // FP operators that are undefined on NaNs.
2257      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2258    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2259      return DAG.getConstant(UOF, VT);
2260    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2261    // if it is not already.
2262    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2263    if (NewCond != Cond)
2264      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2265  }
2266
2267  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2268      N0.getValueType().isInteger()) {
2269    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2270        N0.getOpcode() == ISD::XOR) {
2271      // Simplify (X+Y) == (X+Z) -->  Y == Z
2272      if (N0.getOpcode() == N1.getOpcode()) {
2273        if (N0.getOperand(0) == N1.getOperand(0))
2274          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2275        if (N0.getOperand(1) == N1.getOperand(1))
2276          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2277        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2278          // If X op Y == Y op X, try other combinations.
2279          if (N0.getOperand(0) == N1.getOperand(1))
2280            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2281                                Cond);
2282          if (N0.getOperand(1) == N1.getOperand(0))
2283            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2284                                Cond);
2285        }
2286      }
2287
2288      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2289        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2290          // Turn (X+C1) == C2 --> X == C2-C1
2291          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2292            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2293                                DAG.getConstant(RHSC->getAPIntValue()-
2294                                                LHSR->getAPIntValue(),
2295                                N0.getValueType()), Cond);
2296          }
2297
2298          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2299          if (N0.getOpcode() == ISD::XOR)
2300            // If we know that all of the inverted bits are zero, don't bother
2301            // performing the inversion.
2302            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2303              return
2304                DAG.getSetCC(dl, VT, N0.getOperand(0),
2305                             DAG.getConstant(LHSR->getAPIntValue() ^
2306                                               RHSC->getAPIntValue(),
2307                                             N0.getValueType()),
2308                             Cond);
2309        }
2310
2311        // Turn (C1-X) == C2 --> X == C1-C2
2312        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2313          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2314            return
2315              DAG.getSetCC(dl, VT, N0.getOperand(1),
2316                           DAG.getConstant(SUBC->getAPIntValue() -
2317                                             RHSC->getAPIntValue(),
2318                                           N0.getValueType()),
2319                           Cond);
2320          }
2321        }
2322      }
2323
2324      // Simplify (X+Z) == X -->  Z == 0
2325      if (N0.getOperand(0) == N1)
2326        return DAG.getSetCC(dl, VT, N0.getOperand(1),
2327                        DAG.getConstant(0, N0.getValueType()), Cond);
2328      if (N0.getOperand(1) == N1) {
2329        if (DAG.isCommutativeBinOp(N0.getOpcode()))
2330          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2331                          DAG.getConstant(0, N0.getValueType()), Cond);
2332        else if (N0.getNode()->hasOneUse()) {
2333          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2334          // (Z-X) == X  --> Z == X<<1
2335          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
2336                                     N1,
2337                                     DAG.getConstant(1, getShiftAmountTy()));
2338          if (!DCI.isCalledByLegalizer())
2339            DCI.AddToWorklist(SH.getNode());
2340          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2341        }
2342      }
2343    }
2344
2345    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2346        N1.getOpcode() == ISD::XOR) {
2347      // Simplify  X == (X+Z) -->  Z == 0
2348      if (N1.getOperand(0) == N0) {
2349        return DAG.getSetCC(dl, VT, N1.getOperand(1),
2350                        DAG.getConstant(0, N1.getValueType()), Cond);
2351      } else if (N1.getOperand(1) == N0) {
2352        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2353          return DAG.getSetCC(dl, VT, N1.getOperand(0),
2354                          DAG.getConstant(0, N1.getValueType()), Cond);
2355        } else if (N1.getNode()->hasOneUse()) {
2356          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2357          // X == (Z-X)  --> X<<1 == Z
2358          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2359                                     DAG.getConstant(1, getShiftAmountTy()));
2360          if (!DCI.isCalledByLegalizer())
2361            DCI.AddToWorklist(SH.getNode());
2362          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2363        }
2364      }
2365    }
2366
2367    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2368    // Note that where y is variable and is known to have at most
2369    // one bit set (for example, if it is z&1) we cannot do this;
2370    // the expressions are not equivalent when y==0.
2371    if (N0.getOpcode() == ISD::AND)
2372      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2373        if (ValueHasExactlyOneBitSet(N1, DAG)) {
2374          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2375          SDValue Zero = DAG.getConstant(0, N1.getValueType());
2376          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2377        }
2378      }
2379    if (N1.getOpcode() == ISD::AND)
2380      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2381        if (ValueHasExactlyOneBitSet(N0, DAG)) {
2382          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2383          SDValue Zero = DAG.getConstant(0, N0.getValueType());
2384          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2385        }
2386      }
2387  }
2388
2389  // Fold away ALL boolean setcc's.
2390  SDValue Temp;
2391  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2392    switch (Cond) {
2393    default: llvm_unreachable("Unknown integer setcc!");
2394    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2395      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2396      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2397      if (!DCI.isCalledByLegalizer())
2398        DCI.AddToWorklist(Temp.getNode());
2399      break;
2400    case ISD::SETNE:  // X != Y   -->  (X^Y)
2401      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2402      break;
2403    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2404    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2405      Temp = DAG.getNOT(dl, N0, MVT::i1);
2406      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2407      if (!DCI.isCalledByLegalizer())
2408        DCI.AddToWorklist(Temp.getNode());
2409      break;
2410    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2411    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2412      Temp = DAG.getNOT(dl, N1, MVT::i1);
2413      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2414      if (!DCI.isCalledByLegalizer())
2415        DCI.AddToWorklist(Temp.getNode());
2416      break;
2417    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2418    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2419      Temp = DAG.getNOT(dl, N0, MVT::i1);
2420      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2421      if (!DCI.isCalledByLegalizer())
2422        DCI.AddToWorklist(Temp.getNode());
2423      break;
2424    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2425    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2426      Temp = DAG.getNOT(dl, N1, MVT::i1);
2427      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2428      break;
2429    }
2430    if (VT != MVT::i1) {
2431      if (!DCI.isCalledByLegalizer())
2432        DCI.AddToWorklist(N0.getNode());
2433      // FIXME: If running after legalize, we probably can't do this.
2434      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2435    }
2436    return N0;
2437  }
2438
2439  // Could not fold it.
2440  return SDValue();
2441}
2442
2443/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2444/// node is a GlobalAddress + offset.
2445bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue* &GA,
2446                                    int64_t &Offset) const {
2447  if (isa<GlobalAddressSDNode>(N)) {
2448    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2449    GA = GASD->getGlobal();
2450    Offset += GASD->getOffset();
2451    return true;
2452  }
2453
2454  if (N->getOpcode() == ISD::ADD) {
2455    SDValue N1 = N->getOperand(0);
2456    SDValue N2 = N->getOperand(1);
2457    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2458      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2459      if (V) {
2460        Offset += V->getSExtValue();
2461        return true;
2462      }
2463    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2464      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2465      if (V) {
2466        Offset += V->getSExtValue();
2467        return true;
2468      }
2469    }
2470  }
2471  return false;
2472}
2473
2474
2475SDValue TargetLowering::
2476PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2477  // Default implementation: no optimization.
2478  return SDValue();
2479}
2480
2481//===----------------------------------------------------------------------===//
2482//  Inline Assembler Implementation Methods
2483//===----------------------------------------------------------------------===//
2484
2485
2486TargetLowering::ConstraintType
2487TargetLowering::getConstraintType(const std::string &Constraint) const {
2488  // FIXME: lots more standard ones to handle.
2489  if (Constraint.size() == 1) {
2490    switch (Constraint[0]) {
2491    default: break;
2492    case 'r': return C_RegisterClass;
2493    case 'm':    // memory
2494    case 'o':    // offsetable
2495    case 'V':    // not offsetable
2496      return C_Memory;
2497    case 'i':    // Simple Integer or Relocatable Constant
2498    case 'n':    // Simple Integer
2499    case 'E':    // Floating Point Constant
2500    case 'F':    // Floating Point Constant
2501    case 's':    // Relocatable Constant
2502    case 'p':    // Address.
2503    case 'X':    // Allow ANY value.
2504    case 'I':    // Target registers.
2505    case 'J':
2506    case 'K':
2507    case 'L':
2508    case 'M':
2509    case 'N':
2510    case 'O':
2511    case 'P':
2512    case '<':
2513    case '>':
2514      return C_Other;
2515    }
2516  }
2517
2518  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2519      Constraint[Constraint.size()-1] == '}')
2520    return C_Register;
2521  return C_Unknown;
2522}
2523
2524/// LowerXConstraint - try to replace an X constraint, which matches anything,
2525/// with another that has more specific requirements based on the type of the
2526/// corresponding operand.
2527const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2528  if (ConstraintVT.isInteger())
2529    return "r";
2530  if (ConstraintVT.isFloatingPoint())
2531    return "f";      // works for many targets
2532  return 0;
2533}
2534
2535/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2536/// vector.  If it is invalid, don't add anything to Ops.
2537void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2538                                                  char ConstraintLetter,
2539                                                  std::vector<SDValue> &Ops,
2540                                                  SelectionDAG &DAG) const {
2541  switch (ConstraintLetter) {
2542  default: break;
2543  case 'X':     // Allows any operand; labels (basic block) use this.
2544    if (Op.getOpcode() == ISD::BasicBlock) {
2545      Ops.push_back(Op);
2546      return;
2547    }
2548    // fall through
2549  case 'i':    // Simple Integer or Relocatable Constant
2550  case 'n':    // Simple Integer
2551  case 's': {  // Relocatable Constant
2552    // These operands are interested in values of the form (GV+C), where C may
2553    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2554    // is possible and fine if either GV or C are missing.
2555    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2556    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2557
2558    // If we have "(add GV, C)", pull out GV/C
2559    if (Op.getOpcode() == ISD::ADD) {
2560      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2561      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2562      if (C == 0 || GA == 0) {
2563        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2564        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2565      }
2566      if (C == 0 || GA == 0)
2567        C = 0, GA = 0;
2568    }
2569
2570    // If we find a valid operand, map to the TargetXXX version so that the
2571    // value itself doesn't get selected.
2572    if (GA) {   // Either &GV   or   &GV+C
2573      if (ConstraintLetter != 'n') {
2574        int64_t Offs = GA->getOffset();
2575        if (C) Offs += C->getZExtValue();
2576        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2577                                                 C ? C->getDebugLoc() : DebugLoc(),
2578                                                 Op.getValueType(), Offs));
2579        return;
2580      }
2581    }
2582    if (C) {   // just C, no GV.
2583      // Simple constants are not allowed for 's'.
2584      if (ConstraintLetter != 's') {
2585        // gcc prints these as sign extended.  Sign extend value to 64 bits
2586        // now; without this it would get ZExt'd later in
2587        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2588        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2589                                            MVT::i64));
2590        return;
2591      }
2592    }
2593    break;
2594  }
2595  }
2596}
2597
2598std::vector<unsigned> TargetLowering::
2599getRegClassForInlineAsmConstraint(const std::string &Constraint,
2600                                  EVT VT) const {
2601  return std::vector<unsigned>();
2602}
2603
2604
2605std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2606getRegForInlineAsmConstraint(const std::string &Constraint,
2607                             EVT VT) const {
2608  if (Constraint[0] != '{')
2609    return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
2610  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2611
2612  // Remove the braces from around the name.
2613  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2614
2615  // Figure out which register class contains this reg.
2616  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2617  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2618       E = RI->regclass_end(); RCI != E; ++RCI) {
2619    const TargetRegisterClass *RC = *RCI;
2620
2621    // If none of the value types for this register class are valid, we
2622    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2623    bool isLegal = false;
2624    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2625         I != E; ++I) {
2626      if (isTypeLegal(*I)) {
2627        isLegal = true;
2628        break;
2629      }
2630    }
2631
2632    if (!isLegal) continue;
2633
2634    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2635         I != E; ++I) {
2636      if (RegName.equals_lower(RI->getName(*I)))
2637        return std::make_pair(*I, RC);
2638    }
2639  }
2640
2641  return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2642}
2643
2644//===----------------------------------------------------------------------===//
2645// Constraint Selection.
2646
2647/// isMatchingInputConstraint - Return true of this is an input operand that is
2648/// a matching constraint like "4".
2649bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2650  assert(!ConstraintCode.empty() && "No known constraint!");
2651  return isdigit(ConstraintCode[0]);
2652}
2653
2654/// getMatchedOperand - If this is an input matching constraint, this method
2655/// returns the output operand it matches.
2656unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2657  assert(!ConstraintCode.empty() && "No known constraint!");
2658  return atoi(ConstraintCode.c_str());
2659}
2660
2661
2662/// ParseConstraints - Split up the constraint string from the inline
2663/// assembly value into the specific constraints and their prefixes,
2664/// and also tie in the associated operand values.
2665/// If this returns an empty vector, and if the constraint string itself
2666/// isn't empty, there was an error parsing.
2667TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
2668    ImmutableCallSite CS) const {
2669  /// ConstraintOperands - Information about all of the constraints.
2670  AsmOperandInfoVector ConstraintOperands;
2671  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2672  unsigned maCount = 0; // Largest number of multiple alternative constraints.
2673
2674  // Do a prepass over the constraints, canonicalizing them, and building up the
2675  // ConstraintOperands list.
2676  InlineAsm::ConstraintInfoVector
2677    ConstraintInfos = IA->ParseConstraints();
2678
2679  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2680  unsigned ResNo = 0;   // ResNo - The result number of the next output.
2681
2682  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
2683    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
2684    AsmOperandInfo &OpInfo = ConstraintOperands.back();
2685
2686    // Update multiple alternative constraint count.
2687    if (OpInfo.multipleAlternatives.size() > maCount)
2688      maCount = OpInfo.multipleAlternatives.size();
2689
2690    OpInfo.ConstraintVT = MVT::Other;
2691
2692    // Compute the value type for each operand.
2693    switch (OpInfo.Type) {
2694    case InlineAsm::isOutput:
2695      // Indirect outputs just consume an argument.
2696      if (OpInfo.isIndirect) {
2697        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2698        break;
2699      }
2700
2701      // The return value of the call is this value.  As such, there is no
2702      // corresponding argument.
2703      assert(!CS.getType()->isVoidTy() &&
2704             "Bad inline asm!");
2705      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
2706        OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo));
2707      } else {
2708        assert(ResNo == 0 && "Asm only has one result!");
2709        OpInfo.ConstraintVT = getValueType(CS.getType());
2710      }
2711      ++ResNo;
2712      break;
2713    case InlineAsm::isInput:
2714      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2715      break;
2716    case InlineAsm::isClobber:
2717      // Nothing to do.
2718      break;
2719    }
2720
2721    if (OpInfo.CallOperandVal) {
2722      const llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2723      if (OpInfo.isIndirect) {
2724        const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2725        if (!PtrTy)
2726          report_fatal_error("Indirect operand for inline asm not a pointer!");
2727        OpTy = PtrTy->getElementType();
2728      }
2729      // If OpTy is not a single value, it may be a struct/union that we
2730      // can tile with integers.
2731      if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2732        unsigned BitSize = TD->getTypeSizeInBits(OpTy);
2733        switch (BitSize) {
2734        default: break;
2735        case 1:
2736        case 8:
2737        case 16:
2738        case 32:
2739        case 64:
2740        case 128:
2741          OpInfo.ConstraintVT =
2742              EVT::getEVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2743          break;
2744        }
2745      } else if (dyn_cast<PointerType>(OpTy)) {
2746        OpInfo.ConstraintVT = MVT::getIntegerVT(8*TD->getPointerSize());
2747      } else {
2748        OpInfo.ConstraintVT = EVT::getEVT(OpTy, true);
2749      }
2750    }
2751  }
2752
2753  // If we have multiple alternative constraints, select the best alternative.
2754  if (ConstraintInfos.size()) {
2755    if (maCount) {
2756      unsigned bestMAIndex = 0;
2757      int bestWeight = -1;
2758      // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2759      int weight = -1;
2760      unsigned maIndex;
2761      // Compute the sums of the weights for each alternative, keeping track
2762      // of the best (highest weight) one so far.
2763      for (maIndex = 0; maIndex < maCount; ++maIndex) {
2764        int weightSum = 0;
2765        for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2766            cIndex != eIndex; ++cIndex) {
2767          AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2768          if (OpInfo.Type == InlineAsm::isClobber)
2769            continue;
2770
2771          // If this is an output operand with a matching input operand,
2772          // look up the matching input. If their types mismatch, e.g. one
2773          // is an integer, the other is floating point, or their sizes are
2774          // different, flag it as an maCantMatch.
2775          if (OpInfo.hasMatchingInput()) {
2776            AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2777            if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2778              if ((OpInfo.ConstraintVT.isInteger() !=
2779                   Input.ConstraintVT.isInteger()) ||
2780                  (OpInfo.ConstraintVT.getSizeInBits() !=
2781                   Input.ConstraintVT.getSizeInBits())) {
2782                weightSum = -1;  // Can't match.
2783                break;
2784              }
2785            }
2786          }
2787          weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2788          if (weight == -1) {
2789            weightSum = -1;
2790            break;
2791          }
2792          weightSum += weight;
2793        }
2794        // Update best.
2795        if (weightSum > bestWeight) {
2796          bestWeight = weightSum;
2797          bestMAIndex = maIndex;
2798        }
2799      }
2800
2801      // Now select chosen alternative in each constraint.
2802      for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2803          cIndex != eIndex; ++cIndex) {
2804        AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2805        if (cInfo.Type == InlineAsm::isClobber)
2806          continue;
2807        cInfo.selectAlternative(bestMAIndex);
2808      }
2809    }
2810  }
2811
2812  // Check and hook up tied operands, choose constraint code to use.
2813  for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2814      cIndex != eIndex; ++cIndex) {
2815    AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2816
2817    // If this is an output operand with a matching input operand, look up the
2818    // matching input. If their types mismatch, e.g. one is an integer, the
2819    // other is floating point, or their sizes are different, flag it as an
2820    // error.
2821    if (OpInfo.hasMatchingInput()) {
2822      AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2823
2824      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2825        if ((OpInfo.ConstraintVT.isInteger() !=
2826             Input.ConstraintVT.isInteger()) ||
2827            (OpInfo.ConstraintVT.getSizeInBits() !=
2828             Input.ConstraintVT.getSizeInBits())) {
2829          report_fatal_error("Unsupported asm: input constraint"
2830                             " with a matching output constraint of"
2831                             " incompatible type!");
2832        }
2833      }
2834
2835    }
2836  }
2837
2838  return ConstraintOperands;
2839}
2840
2841
2842/// getConstraintGenerality - Return an integer indicating how general CT
2843/// is.
2844static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2845  switch (CT) {
2846  default: llvm_unreachable("Unknown constraint type!");
2847  case TargetLowering::C_Other:
2848  case TargetLowering::C_Unknown:
2849    return 0;
2850  case TargetLowering::C_Register:
2851    return 1;
2852  case TargetLowering::C_RegisterClass:
2853    return 2;
2854  case TargetLowering::C_Memory:
2855    return 3;
2856  }
2857}
2858
2859/// Examine constraint type and operand type and determine a weight value.
2860/// This object must already have been set up with the operand type
2861/// and the current alternative constraint selected.
2862TargetLowering::ConstraintWeight
2863  TargetLowering::getMultipleConstraintMatchWeight(
2864    AsmOperandInfo &info, int maIndex) const {
2865  InlineAsm::ConstraintCodeVector *rCodes;
2866  if (maIndex >= (int)info.multipleAlternatives.size())
2867    rCodes = &info.Codes;
2868  else
2869    rCodes = &info.multipleAlternatives[maIndex].Codes;
2870  ConstraintWeight BestWeight = CW_Invalid;
2871
2872  // Loop over the options, keeping track of the most general one.
2873  for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
2874    ConstraintWeight weight =
2875      getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
2876    if (weight > BestWeight)
2877      BestWeight = weight;
2878  }
2879
2880  return BestWeight;
2881}
2882
2883/// Examine constraint type and operand type and determine a weight value.
2884/// This object must already have been set up with the operand type
2885/// and the current alternative constraint selected.
2886TargetLowering::ConstraintWeight
2887  TargetLowering::getSingleConstraintMatchWeight(
2888    AsmOperandInfo &info, const char *constraint) const {
2889  ConstraintWeight weight = CW_Invalid;
2890  Value *CallOperandVal = info.CallOperandVal;
2891    // If we don't have a value, we can't do a match,
2892    // but allow it at the lowest weight.
2893  if (CallOperandVal == NULL)
2894    return CW_Default;
2895  // Look at the constraint type.
2896  switch (*constraint) {
2897    case 'i': // immediate integer.
2898    case 'n': // immediate integer with a known value.
2899      if (isa<ConstantInt>(CallOperandVal))
2900        weight = CW_Constant;
2901      break;
2902    case 's': // non-explicit intregal immediate.
2903      if (isa<GlobalValue>(CallOperandVal))
2904        weight = CW_Constant;
2905      break;
2906    case 'E': // immediate float if host format.
2907    case 'F': // immediate float.
2908      if (isa<ConstantFP>(CallOperandVal))
2909        weight = CW_Constant;
2910      break;
2911    case '<': // memory operand with autodecrement.
2912    case '>': // memory operand with autoincrement.
2913    case 'm': // memory operand.
2914    case 'o': // offsettable memory operand
2915    case 'V': // non-offsettable memory operand
2916      weight = CW_Memory;
2917      break;
2918    case 'r': // general register.
2919    case 'g': // general register, memory operand or immediate integer.
2920              // note: Clang converts "g" to "imr".
2921      if (CallOperandVal->getType()->isIntegerTy())
2922        weight = CW_Register;
2923      break;
2924    case 'X': // any operand.
2925    default:
2926      weight = CW_Default;
2927      break;
2928  }
2929  return weight;
2930}
2931
2932/// ChooseConstraint - If there are multiple different constraints that we
2933/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2934/// This is somewhat tricky: constraints fall into four classes:
2935///    Other         -> immediates and magic values
2936///    Register      -> one specific register
2937///    RegisterClass -> a group of regs
2938///    Memory        -> memory
2939/// Ideally, we would pick the most specific constraint possible: if we have
2940/// something that fits into a register, we would pick it.  The problem here
2941/// is that if we have something that could either be in a register or in
2942/// memory that use of the register could cause selection of *other*
2943/// operands to fail: they might only succeed if we pick memory.  Because of
2944/// this the heuristic we use is:
2945///
2946///  1) If there is an 'other' constraint, and if the operand is valid for
2947///     that constraint, use it.  This makes us take advantage of 'i'
2948///     constraints when available.
2949///  2) Otherwise, pick the most general constraint present.  This prefers
2950///     'm' over 'r', for example.
2951///
2952static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2953                             const TargetLowering &TLI,
2954                             SDValue Op, SelectionDAG *DAG) {
2955  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2956  unsigned BestIdx = 0;
2957  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2958  int BestGenerality = -1;
2959
2960  // Loop over the options, keeping track of the most general one.
2961  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2962    TargetLowering::ConstraintType CType =
2963      TLI.getConstraintType(OpInfo.Codes[i]);
2964
2965    // If this is an 'other' constraint, see if the operand is valid for it.
2966    // For example, on X86 we might have an 'rI' constraint.  If the operand
2967    // is an integer in the range [0..31] we want to use I (saving a load
2968    // of a register), otherwise we must use 'r'.
2969    if (CType == TargetLowering::C_Other && Op.getNode()) {
2970      assert(OpInfo.Codes[i].size() == 1 &&
2971             "Unhandled multi-letter 'other' constraint");
2972      std::vector<SDValue> ResultOps;
2973      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0],
2974                                       ResultOps, *DAG);
2975      if (!ResultOps.empty()) {
2976        BestType = CType;
2977        BestIdx = i;
2978        break;
2979      }
2980    }
2981
2982    // Things with matching constraints can only be registers, per gcc
2983    // documentation.  This mainly affects "g" constraints.
2984    if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
2985      continue;
2986
2987    // This constraint letter is more general than the previous one, use it.
2988    int Generality = getConstraintGenerality(CType);
2989    if (Generality > BestGenerality) {
2990      BestType = CType;
2991      BestIdx = i;
2992      BestGenerality = Generality;
2993    }
2994  }
2995
2996  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2997  OpInfo.ConstraintType = BestType;
2998}
2999
3000/// ComputeConstraintToUse - Determines the constraint code and constraint
3001/// type to use for the specific AsmOperandInfo, setting
3002/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
3003void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3004                                            SDValue Op,
3005                                            SelectionDAG *DAG) const {
3006  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
3007
3008  // Single-letter constraints ('r') are very common.
3009  if (OpInfo.Codes.size() == 1) {
3010    OpInfo.ConstraintCode = OpInfo.Codes[0];
3011    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3012  } else {
3013    ChooseConstraint(OpInfo, *this, Op, DAG);
3014  }
3015
3016  // 'X' matches anything.
3017  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
3018    // Labels and constants are handled elsewhere ('X' is the only thing
3019    // that matches labels).  For Functions, the type here is the type of
3020    // the result, which is not what we want to look at; leave them alone.
3021    Value *v = OpInfo.CallOperandVal;
3022    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
3023      OpInfo.CallOperandVal = v;
3024      return;
3025    }
3026
3027    // Otherwise, try to resolve it to something we know about by looking at
3028    // the actual operand type.
3029    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
3030      OpInfo.ConstraintCode = Repl;
3031      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3032    }
3033  }
3034}
3035
3036//===----------------------------------------------------------------------===//
3037//  Loop Strength Reduction hooks
3038//===----------------------------------------------------------------------===//
3039
3040/// isLegalAddressingMode - Return true if the addressing mode represented
3041/// by AM is legal for this target, for a load/store of the specified type.
3042bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
3043                                           const Type *Ty) const {
3044  // The default implementation of this implements a conservative RISCy, r+r and
3045  // r+i addr mode.
3046
3047  // Allows a sign-extended 16-bit immediate field.
3048  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3049    return false;
3050
3051  // No global is ever allowed as a base.
3052  if (AM.BaseGV)
3053    return false;
3054
3055  // Only support r+r,
3056  switch (AM.Scale) {
3057  case 0:  // "r+i" or just "i", depending on HasBaseReg.
3058    break;
3059  case 1:
3060    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
3061      return false;
3062    // Otherwise we have r+r or r+i.
3063    break;
3064  case 2:
3065    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
3066      return false;
3067    // Allow 2*r as r+r.
3068    break;
3069  }
3070
3071  return true;
3072}
3073
3074/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
3075/// return a DAG expression to select that will generate the same value by
3076/// multiplying by a magic number.  See:
3077/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3078SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
3079                                  std::vector<SDNode*>* Created) const {
3080  EVT VT = N->getValueType(0);
3081  DebugLoc dl= N->getDebugLoc();
3082
3083  // Check to see if we can do this.
3084  // FIXME: We should be more aggressive here.
3085  if (!isTypeLegal(VT))
3086    return SDValue();
3087
3088  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3089  APInt::ms magics = d.magic();
3090
3091  // Multiply the numerator (operand 0) by the magic value
3092  // FIXME: We should support doing a MUL in a wider type
3093  SDValue Q;
3094  if (isOperationLegalOrCustom(ISD::MULHS, VT))
3095    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
3096                    DAG.getConstant(magics.m, VT));
3097  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
3098    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
3099                              N->getOperand(0),
3100                              DAG.getConstant(magics.m, VT)).getNode(), 1);
3101  else
3102    return SDValue();       // No mulhs or equvialent
3103  // If d > 0 and m < 0, add the numerator
3104  if (d.isStrictlyPositive() && magics.m.isNegative()) {
3105    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
3106    if (Created)
3107      Created->push_back(Q.getNode());
3108  }
3109  // If d < 0 and m > 0, subtract the numerator.
3110  if (d.isNegative() && magics.m.isStrictlyPositive()) {
3111    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
3112    if (Created)
3113      Created->push_back(Q.getNode());
3114  }
3115  // Shift right algebraic if shift value is nonzero
3116  if (magics.s > 0) {
3117    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
3118                    DAG.getConstant(magics.s, getShiftAmountTy()));
3119    if (Created)
3120      Created->push_back(Q.getNode());
3121  }
3122  // Extract the sign bit and add it to the quotient
3123  SDValue T =
3124    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
3125                                                 getShiftAmountTy()));
3126  if (Created)
3127    Created->push_back(T.getNode());
3128  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3129}
3130
3131/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
3132/// return a DAG expression to select that will generate the same value by
3133/// multiplying by a magic number.  See:
3134/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3135SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
3136                                  std::vector<SDNode*>* Created) const {
3137  EVT VT = N->getValueType(0);
3138  DebugLoc dl = N->getDebugLoc();
3139
3140  // Check to see if we can do this.
3141  // FIXME: We should be more aggressive here.
3142  if (!isTypeLegal(VT))
3143    return SDValue();
3144
3145  // FIXME: We should use a narrower constant when the upper
3146  // bits are known to be zero.
3147  ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
3148  APInt::mu magics = N1C->getAPIntValue().magicu();
3149
3150  // Multiply the numerator (operand 0) by the magic value
3151  // FIXME: We should support doing a MUL in a wider type
3152  SDValue Q;
3153  if (isOperationLegalOrCustom(ISD::MULHU, VT))
3154    Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
3155                    DAG.getConstant(magics.m, VT));
3156  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
3157    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
3158                              N->getOperand(0),
3159                              DAG.getConstant(magics.m, VT)).getNode(), 1);
3160  else
3161    return SDValue();       // No mulhu or equvialent
3162  if (Created)
3163    Created->push_back(Q.getNode());
3164
3165  if (magics.a == 0) {
3166    assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
3167           "We shouldn't generate an undefined shift!");
3168    return DAG.getNode(ISD::SRL, dl, VT, Q,
3169                       DAG.getConstant(magics.s, getShiftAmountTy()));
3170  } else {
3171    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
3172    if (Created)
3173      Created->push_back(NPQ.getNode());
3174    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
3175                      DAG.getConstant(1, getShiftAmountTy()));
3176    if (Created)
3177      Created->push_back(NPQ.getNode());
3178    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3179    if (Created)
3180      Created->push_back(NPQ.getNode());
3181    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
3182                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
3183  }
3184}
3185