TargetLowering.cpp revision 07538ad975994123317fe5b32daed4bf28683a1d
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/MC/MCAsmInfo.h"
16#include "llvm/MC/MCExpr.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetLoweringObjectFile.h"
19#include "llvm/Target/TargetMachine.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/CodeGen/Analysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineJumpTableInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/MathExtras.h"
31using namespace llvm;
32
33namespace llvm {
34TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
35  bool isLocal = GV->hasLocalLinkage();
36  bool isDeclaration = GV->isDeclaration();
37  // FIXME: what should we do for protected and internal visibility?
38  // For variables, is internal different from hidden?
39  bool isHidden = GV->hasHiddenVisibility();
40
41  if (reloc == Reloc::PIC_) {
42    if (isLocal || isHidden)
43      return TLSModel::LocalDynamic;
44    else
45      return TLSModel::GeneralDynamic;
46  } else {
47    if (!isDeclaration || isHidden)
48      return TLSModel::LocalExec;
49    else
50      return TLSModel::InitialExec;
51  }
52}
53}
54
55/// InitLibcallNames - Set default libcall names.
56///
57static void InitLibcallNames(const char **Names) {
58  Names[RTLIB::SHL_I16] = "__ashlhi3";
59  Names[RTLIB::SHL_I32] = "__ashlsi3";
60  Names[RTLIB::SHL_I64] = "__ashldi3";
61  Names[RTLIB::SHL_I128] = "__ashlti3";
62  Names[RTLIB::SRL_I16] = "__lshrhi3";
63  Names[RTLIB::SRL_I32] = "__lshrsi3";
64  Names[RTLIB::SRL_I64] = "__lshrdi3";
65  Names[RTLIB::SRL_I128] = "__lshrti3";
66  Names[RTLIB::SRA_I16] = "__ashrhi3";
67  Names[RTLIB::SRA_I32] = "__ashrsi3";
68  Names[RTLIB::SRA_I64] = "__ashrdi3";
69  Names[RTLIB::SRA_I128] = "__ashrti3";
70  Names[RTLIB::MUL_I8] = "__mulqi3";
71  Names[RTLIB::MUL_I16] = "__mulhi3";
72  Names[RTLIB::MUL_I32] = "__mulsi3";
73  Names[RTLIB::MUL_I64] = "__muldi3";
74  Names[RTLIB::MUL_I128] = "__multi3";
75  Names[RTLIB::SDIV_I8] = "__divqi3";
76  Names[RTLIB::SDIV_I16] = "__divhi3";
77  Names[RTLIB::SDIV_I32] = "__divsi3";
78  Names[RTLIB::SDIV_I64] = "__divdi3";
79  Names[RTLIB::SDIV_I128] = "__divti3";
80  Names[RTLIB::UDIV_I8] = "__udivqi3";
81  Names[RTLIB::UDIV_I16] = "__udivhi3";
82  Names[RTLIB::UDIV_I32] = "__udivsi3";
83  Names[RTLIB::UDIV_I64] = "__udivdi3";
84  Names[RTLIB::UDIV_I128] = "__udivti3";
85  Names[RTLIB::SREM_I8] = "__modqi3";
86  Names[RTLIB::SREM_I16] = "__modhi3";
87  Names[RTLIB::SREM_I32] = "__modsi3";
88  Names[RTLIB::SREM_I64] = "__moddi3";
89  Names[RTLIB::SREM_I128] = "__modti3";
90  Names[RTLIB::UREM_I8] = "__umodqi3";
91  Names[RTLIB::UREM_I16] = "__umodhi3";
92  Names[RTLIB::UREM_I32] = "__umodsi3";
93  Names[RTLIB::UREM_I64] = "__umoddi3";
94  Names[RTLIB::UREM_I128] = "__umodti3";
95  Names[RTLIB::NEG_I32] = "__negsi2";
96  Names[RTLIB::NEG_I64] = "__negdi2";
97  Names[RTLIB::ADD_F32] = "__addsf3";
98  Names[RTLIB::ADD_F64] = "__adddf3";
99  Names[RTLIB::ADD_F80] = "__addxf3";
100  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
101  Names[RTLIB::SUB_F32] = "__subsf3";
102  Names[RTLIB::SUB_F64] = "__subdf3";
103  Names[RTLIB::SUB_F80] = "__subxf3";
104  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
105  Names[RTLIB::MUL_F32] = "__mulsf3";
106  Names[RTLIB::MUL_F64] = "__muldf3";
107  Names[RTLIB::MUL_F80] = "__mulxf3";
108  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
109  Names[RTLIB::DIV_F32] = "__divsf3";
110  Names[RTLIB::DIV_F64] = "__divdf3";
111  Names[RTLIB::DIV_F80] = "__divxf3";
112  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
113  Names[RTLIB::REM_F32] = "fmodf";
114  Names[RTLIB::REM_F64] = "fmod";
115  Names[RTLIB::REM_F80] = "fmodl";
116  Names[RTLIB::REM_PPCF128] = "fmodl";
117  Names[RTLIB::POWI_F32] = "__powisf2";
118  Names[RTLIB::POWI_F64] = "__powidf2";
119  Names[RTLIB::POWI_F80] = "__powixf2";
120  Names[RTLIB::POWI_PPCF128] = "__powitf2";
121  Names[RTLIB::SQRT_F32] = "sqrtf";
122  Names[RTLIB::SQRT_F64] = "sqrt";
123  Names[RTLIB::SQRT_F80] = "sqrtl";
124  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
125  Names[RTLIB::LOG_F32] = "logf";
126  Names[RTLIB::LOG_F64] = "log";
127  Names[RTLIB::LOG_F80] = "logl";
128  Names[RTLIB::LOG_PPCF128] = "logl";
129  Names[RTLIB::LOG2_F32] = "log2f";
130  Names[RTLIB::LOG2_F64] = "log2";
131  Names[RTLIB::LOG2_F80] = "log2l";
132  Names[RTLIB::LOG2_PPCF128] = "log2l";
133  Names[RTLIB::LOG10_F32] = "log10f";
134  Names[RTLIB::LOG10_F64] = "log10";
135  Names[RTLIB::LOG10_F80] = "log10l";
136  Names[RTLIB::LOG10_PPCF128] = "log10l";
137  Names[RTLIB::EXP_F32] = "expf";
138  Names[RTLIB::EXP_F64] = "exp";
139  Names[RTLIB::EXP_F80] = "expl";
140  Names[RTLIB::EXP_PPCF128] = "expl";
141  Names[RTLIB::EXP2_F32] = "exp2f";
142  Names[RTLIB::EXP2_F64] = "exp2";
143  Names[RTLIB::EXP2_F80] = "exp2l";
144  Names[RTLIB::EXP2_PPCF128] = "exp2l";
145  Names[RTLIB::SIN_F32] = "sinf";
146  Names[RTLIB::SIN_F64] = "sin";
147  Names[RTLIB::SIN_F80] = "sinl";
148  Names[RTLIB::SIN_PPCF128] = "sinl";
149  Names[RTLIB::COS_F32] = "cosf";
150  Names[RTLIB::COS_F64] = "cos";
151  Names[RTLIB::COS_F80] = "cosl";
152  Names[RTLIB::COS_PPCF128] = "cosl";
153  Names[RTLIB::POW_F32] = "powf";
154  Names[RTLIB::POW_F64] = "pow";
155  Names[RTLIB::POW_F80] = "powl";
156  Names[RTLIB::POW_PPCF128] = "powl";
157  Names[RTLIB::CEIL_F32] = "ceilf";
158  Names[RTLIB::CEIL_F64] = "ceil";
159  Names[RTLIB::CEIL_F80] = "ceill";
160  Names[RTLIB::CEIL_PPCF128] = "ceill";
161  Names[RTLIB::TRUNC_F32] = "truncf";
162  Names[RTLIB::TRUNC_F64] = "trunc";
163  Names[RTLIB::TRUNC_F80] = "truncl";
164  Names[RTLIB::TRUNC_PPCF128] = "truncl";
165  Names[RTLIB::RINT_F32] = "rintf";
166  Names[RTLIB::RINT_F64] = "rint";
167  Names[RTLIB::RINT_F80] = "rintl";
168  Names[RTLIB::RINT_PPCF128] = "rintl";
169  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
170  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
171  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
172  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
173  Names[RTLIB::FLOOR_F32] = "floorf";
174  Names[RTLIB::FLOOR_F64] = "floor";
175  Names[RTLIB::FLOOR_F80] = "floorl";
176  Names[RTLIB::FLOOR_PPCF128] = "floorl";
177  Names[RTLIB::COPYSIGN_F32] = "copysignf";
178  Names[RTLIB::COPYSIGN_F64] = "copysign";
179  Names[RTLIB::COPYSIGN_F80] = "copysignl";
180  Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
181  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
182  Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
183  Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
184  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
185  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
186  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
187  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
188  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
189  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
190  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
191  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
192  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
193  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
194  Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
195  Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
196  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
197  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
198  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
199  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
200  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
201  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
202  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
203  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
204  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
205  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
206  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
207  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
208  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
209  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
210  Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
211  Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
212  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
213  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
214  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
215  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
216  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
217  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
218  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
219  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
220  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
221  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
222  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
223  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
224  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
225  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
226  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
227  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
228  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
229  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
230  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
231  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
232  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
233  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
234  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
235  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
236  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
237  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
238  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
239  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
240  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
241  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
242  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
243  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
244  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
245  Names[RTLIB::OEQ_F32] = "__eqsf2";
246  Names[RTLIB::OEQ_F64] = "__eqdf2";
247  Names[RTLIB::UNE_F32] = "__nesf2";
248  Names[RTLIB::UNE_F64] = "__nedf2";
249  Names[RTLIB::OGE_F32] = "__gesf2";
250  Names[RTLIB::OGE_F64] = "__gedf2";
251  Names[RTLIB::OLT_F32] = "__ltsf2";
252  Names[RTLIB::OLT_F64] = "__ltdf2";
253  Names[RTLIB::OLE_F32] = "__lesf2";
254  Names[RTLIB::OLE_F64] = "__ledf2";
255  Names[RTLIB::OGT_F32] = "__gtsf2";
256  Names[RTLIB::OGT_F64] = "__gtdf2";
257  Names[RTLIB::UO_F32] = "__unordsf2";
258  Names[RTLIB::UO_F64] = "__unorddf2";
259  Names[RTLIB::O_F32] = "__unordsf2";
260  Names[RTLIB::O_F64] = "__unorddf2";
261  Names[RTLIB::MEMCPY] = "memcpy";
262  Names[RTLIB::MEMMOVE] = "memmove";
263  Names[RTLIB::MEMSET] = "memset";
264  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
265  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
266  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
267  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
268  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
269  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
270  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
271  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
272  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
273  Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
274  Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
275  Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
276  Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
277  Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
278  Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
279  Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
280  Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
281  Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
282  Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
283  Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
284  Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
285  Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
286  Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
287  Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
288  Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
289  Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
290  Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
291  Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and-xor_4";
292  Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
293  Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
294  Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
295  Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
296  Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
297}
298
299/// InitLibcallCallingConvs - Set default libcall CallingConvs.
300///
301static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
302  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
303    CCs[i] = CallingConv::C;
304  }
305}
306
307/// getFPEXT - Return the FPEXT_*_* value for the given types, or
308/// UNKNOWN_LIBCALL if there is none.
309RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
310  if (OpVT == MVT::f32) {
311    if (RetVT == MVT::f64)
312      return FPEXT_F32_F64;
313  }
314
315  return UNKNOWN_LIBCALL;
316}
317
318/// getFPROUND - Return the FPROUND_*_* value for the given types, or
319/// UNKNOWN_LIBCALL if there is none.
320RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
321  if (RetVT == MVT::f32) {
322    if (OpVT == MVT::f64)
323      return FPROUND_F64_F32;
324    if (OpVT == MVT::f80)
325      return FPROUND_F80_F32;
326    if (OpVT == MVT::ppcf128)
327      return FPROUND_PPCF128_F32;
328  } else if (RetVT == MVT::f64) {
329    if (OpVT == MVT::f80)
330      return FPROUND_F80_F64;
331    if (OpVT == MVT::ppcf128)
332      return FPROUND_PPCF128_F64;
333  }
334
335  return UNKNOWN_LIBCALL;
336}
337
338/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
339/// UNKNOWN_LIBCALL if there is none.
340RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
341  if (OpVT == MVT::f32) {
342    if (RetVT == MVT::i8)
343      return FPTOSINT_F32_I8;
344    if (RetVT == MVT::i16)
345      return FPTOSINT_F32_I16;
346    if (RetVT == MVT::i32)
347      return FPTOSINT_F32_I32;
348    if (RetVT == MVT::i64)
349      return FPTOSINT_F32_I64;
350    if (RetVT == MVT::i128)
351      return FPTOSINT_F32_I128;
352  } else if (OpVT == MVT::f64) {
353    if (RetVT == MVT::i8)
354      return FPTOSINT_F64_I8;
355    if (RetVT == MVT::i16)
356      return FPTOSINT_F64_I16;
357    if (RetVT == MVT::i32)
358      return FPTOSINT_F64_I32;
359    if (RetVT == MVT::i64)
360      return FPTOSINT_F64_I64;
361    if (RetVT == MVT::i128)
362      return FPTOSINT_F64_I128;
363  } else if (OpVT == MVT::f80) {
364    if (RetVT == MVT::i32)
365      return FPTOSINT_F80_I32;
366    if (RetVT == MVT::i64)
367      return FPTOSINT_F80_I64;
368    if (RetVT == MVT::i128)
369      return FPTOSINT_F80_I128;
370  } else if (OpVT == MVT::ppcf128) {
371    if (RetVT == MVT::i32)
372      return FPTOSINT_PPCF128_I32;
373    if (RetVT == MVT::i64)
374      return FPTOSINT_PPCF128_I64;
375    if (RetVT == MVT::i128)
376      return FPTOSINT_PPCF128_I128;
377  }
378  return UNKNOWN_LIBCALL;
379}
380
381/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
382/// UNKNOWN_LIBCALL if there is none.
383RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
384  if (OpVT == MVT::f32) {
385    if (RetVT == MVT::i8)
386      return FPTOUINT_F32_I8;
387    if (RetVT == MVT::i16)
388      return FPTOUINT_F32_I16;
389    if (RetVT == MVT::i32)
390      return FPTOUINT_F32_I32;
391    if (RetVT == MVT::i64)
392      return FPTOUINT_F32_I64;
393    if (RetVT == MVT::i128)
394      return FPTOUINT_F32_I128;
395  } else if (OpVT == MVT::f64) {
396    if (RetVT == MVT::i8)
397      return FPTOUINT_F64_I8;
398    if (RetVT == MVT::i16)
399      return FPTOUINT_F64_I16;
400    if (RetVT == MVT::i32)
401      return FPTOUINT_F64_I32;
402    if (RetVT == MVT::i64)
403      return FPTOUINT_F64_I64;
404    if (RetVT == MVT::i128)
405      return FPTOUINT_F64_I128;
406  } else if (OpVT == MVT::f80) {
407    if (RetVT == MVT::i32)
408      return FPTOUINT_F80_I32;
409    if (RetVT == MVT::i64)
410      return FPTOUINT_F80_I64;
411    if (RetVT == MVT::i128)
412      return FPTOUINT_F80_I128;
413  } else if (OpVT == MVT::ppcf128) {
414    if (RetVT == MVT::i32)
415      return FPTOUINT_PPCF128_I32;
416    if (RetVT == MVT::i64)
417      return FPTOUINT_PPCF128_I64;
418    if (RetVT == MVT::i128)
419      return FPTOUINT_PPCF128_I128;
420  }
421  return UNKNOWN_LIBCALL;
422}
423
424/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
425/// UNKNOWN_LIBCALL if there is none.
426RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
427  if (OpVT == MVT::i32) {
428    if (RetVT == MVT::f32)
429      return SINTTOFP_I32_F32;
430    else if (RetVT == MVT::f64)
431      return SINTTOFP_I32_F64;
432    else if (RetVT == MVT::f80)
433      return SINTTOFP_I32_F80;
434    else if (RetVT == MVT::ppcf128)
435      return SINTTOFP_I32_PPCF128;
436  } else if (OpVT == MVT::i64) {
437    if (RetVT == MVT::f32)
438      return SINTTOFP_I64_F32;
439    else if (RetVT == MVT::f64)
440      return SINTTOFP_I64_F64;
441    else if (RetVT == MVT::f80)
442      return SINTTOFP_I64_F80;
443    else if (RetVT == MVT::ppcf128)
444      return SINTTOFP_I64_PPCF128;
445  } else if (OpVT == MVT::i128) {
446    if (RetVT == MVT::f32)
447      return SINTTOFP_I128_F32;
448    else if (RetVT == MVT::f64)
449      return SINTTOFP_I128_F64;
450    else if (RetVT == MVT::f80)
451      return SINTTOFP_I128_F80;
452    else if (RetVT == MVT::ppcf128)
453      return SINTTOFP_I128_PPCF128;
454  }
455  return UNKNOWN_LIBCALL;
456}
457
458/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
459/// UNKNOWN_LIBCALL if there is none.
460RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
461  if (OpVT == MVT::i32) {
462    if (RetVT == MVT::f32)
463      return UINTTOFP_I32_F32;
464    else if (RetVT == MVT::f64)
465      return UINTTOFP_I32_F64;
466    else if (RetVT == MVT::f80)
467      return UINTTOFP_I32_F80;
468    else if (RetVT == MVT::ppcf128)
469      return UINTTOFP_I32_PPCF128;
470  } else if (OpVT == MVT::i64) {
471    if (RetVT == MVT::f32)
472      return UINTTOFP_I64_F32;
473    else if (RetVT == MVT::f64)
474      return UINTTOFP_I64_F64;
475    else if (RetVT == MVT::f80)
476      return UINTTOFP_I64_F80;
477    else if (RetVT == MVT::ppcf128)
478      return UINTTOFP_I64_PPCF128;
479  } else if (OpVT == MVT::i128) {
480    if (RetVT == MVT::f32)
481      return UINTTOFP_I128_F32;
482    else if (RetVT == MVT::f64)
483      return UINTTOFP_I128_F64;
484    else if (RetVT == MVT::f80)
485      return UINTTOFP_I128_F80;
486    else if (RetVT == MVT::ppcf128)
487      return UINTTOFP_I128_PPCF128;
488  }
489  return UNKNOWN_LIBCALL;
490}
491
492/// InitCmpLibcallCCs - Set default comparison libcall CC.
493///
494static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
495  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
496  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
497  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
498  CCs[RTLIB::UNE_F32] = ISD::SETNE;
499  CCs[RTLIB::UNE_F64] = ISD::SETNE;
500  CCs[RTLIB::OGE_F32] = ISD::SETGE;
501  CCs[RTLIB::OGE_F64] = ISD::SETGE;
502  CCs[RTLIB::OLT_F32] = ISD::SETLT;
503  CCs[RTLIB::OLT_F64] = ISD::SETLT;
504  CCs[RTLIB::OLE_F32] = ISD::SETLE;
505  CCs[RTLIB::OLE_F64] = ISD::SETLE;
506  CCs[RTLIB::OGT_F32] = ISD::SETGT;
507  CCs[RTLIB::OGT_F64] = ISD::SETGT;
508  CCs[RTLIB::UO_F32] = ISD::SETNE;
509  CCs[RTLIB::UO_F64] = ISD::SETNE;
510  CCs[RTLIB::O_F32] = ISD::SETEQ;
511  CCs[RTLIB::O_F64] = ISD::SETEQ;
512}
513
514/// NOTE: The constructor takes ownership of TLOF.
515TargetLowering::TargetLowering(const TargetMachine &tm,
516                               const TargetLoweringObjectFile *tlof)
517  : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
518  // All operations default to being supported.
519  memset(OpActions, 0, sizeof(OpActions));
520  memset(LoadExtActions, 0, sizeof(LoadExtActions));
521  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
522  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
523  memset(CondCodeActions, 0, sizeof(CondCodeActions));
524
525  // Set default actions for various operations.
526  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
527    // Default all indexed load / store to expand.
528    for (unsigned IM = (unsigned)ISD::PRE_INC;
529         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
530      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
531      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
532    }
533
534    // These operations default to expand.
535    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
536    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
537  }
538
539  // Most targets ignore the @llvm.prefetch intrinsic.
540  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
541
542  // ConstantFP nodes default to expand.  Targets can either change this to
543  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
544  // to optimize expansions for certain constants.
545  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
546  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
547  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
548
549  // These library functions default to expand.
550  setOperationAction(ISD::FLOG , MVT::f64, Expand);
551  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
552  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
553  setOperationAction(ISD::FEXP , MVT::f64, Expand);
554  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
555  setOperationAction(ISD::FLOG , MVT::f32, Expand);
556  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
557  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
558  setOperationAction(ISD::FEXP , MVT::f32, Expand);
559  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
560
561  // Default ISD::TRAP to expand (which turns it into abort).
562  setOperationAction(ISD::TRAP, MVT::Other, Expand);
563
564  IsLittleEndian = TD->isLittleEndian();
565  ShiftAmountTy = PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
566  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
567  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
568  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
569  benefitFromCodePlacementOpt = false;
570  UseUnderscoreSetJmp = false;
571  UseUnderscoreLongJmp = false;
572  SelectIsExpensive = false;
573  IntDivIsCheap = false;
574  Pow2DivIsCheap = false;
575  StackPointerRegisterToSaveRestore = 0;
576  ExceptionPointerRegister = 0;
577  ExceptionSelectorRegister = 0;
578  BooleanContents = UndefinedBooleanContent;
579  SchedPreferenceInfo = Sched::Latency;
580  JumpBufSize = 0;
581  JumpBufAlignment = 0;
582  PrefLoopAlignment = 0;
583  MinStackArgumentAlignment = 1;
584  ShouldFoldAtomicFences = false;
585
586  InitLibcallNames(LibcallRoutineNames);
587  InitCmpLibcallCCs(CmpLibcallCCs);
588  InitLibcallCallingConvs(LibcallCallingConvs);
589}
590
591TargetLowering::~TargetLowering() {
592  delete &TLOF;
593}
594
595/// canOpTrap - Returns true if the operation can trap for the value type.
596/// VT must be a legal type.
597bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
598  assert(isTypeLegal(VT));
599  switch (Op) {
600  default:
601    return false;
602  case ISD::FDIV:
603  case ISD::FREM:
604  case ISD::SDIV:
605  case ISD::UDIV:
606  case ISD::SREM:
607  case ISD::UREM:
608    return true;
609  }
610}
611
612
613static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
614                                          unsigned &NumIntermediates,
615                                          EVT &RegisterVT,
616                                          TargetLowering *TLI) {
617  // Figure out the right, legal destination reg to copy into.
618  unsigned NumElts = VT.getVectorNumElements();
619  MVT EltTy = VT.getVectorElementType();
620
621  unsigned NumVectorRegs = 1;
622
623  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
624  // could break down into LHS/RHS like LegalizeDAG does.
625  if (!isPowerOf2_32(NumElts)) {
626    NumVectorRegs = NumElts;
627    NumElts = 1;
628  }
629
630  // Divide the input until we get to a supported size.  This will always
631  // end with a scalar if the target doesn't support vectors.
632  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
633    NumElts >>= 1;
634    NumVectorRegs <<= 1;
635  }
636
637  NumIntermediates = NumVectorRegs;
638
639  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
640  if (!TLI->isTypeLegal(NewVT))
641    NewVT = EltTy;
642  IntermediateVT = NewVT;
643
644  EVT DestVT = TLI->getRegisterType(NewVT);
645  RegisterVT = DestVT;
646  if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
647    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
648
649  // Otherwise, promotion or legal types use the same number of registers as
650  // the vector decimated to the appropriate level.
651  return NumVectorRegs;
652}
653
654/// computeRegisterProperties - Once all of the register classes are added,
655/// this allows us to compute derived properties we expose.
656void TargetLowering::computeRegisterProperties() {
657  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
658         "Too many value types for ValueTypeActions to hold!");
659
660  // Everything defaults to needing one register.
661  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
662    NumRegistersForVT[i] = 1;
663    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
664  }
665  // ...except isVoid, which doesn't need any registers.
666  NumRegistersForVT[MVT::isVoid] = 0;
667
668  // Find the largest integer register class.
669  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
670  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
671    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
672
673  // Every integer value type larger than this largest register takes twice as
674  // many registers to represent as the previous ValueType.
675  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
676    EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
677    if (!ExpandedVT.isInteger())
678      break;
679    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
680    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
681    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
682    ValueTypeActions.setTypeAction(ExpandedVT, Expand);
683  }
684
685  // Inspect all of the ValueType's smaller than the largest integer
686  // register to see which ones need promotion.
687  unsigned LegalIntReg = LargestIntReg;
688  for (unsigned IntReg = LargestIntReg - 1;
689       IntReg >= (unsigned)MVT::i1; --IntReg) {
690    EVT IVT = (MVT::SimpleValueType)IntReg;
691    if (isTypeLegal(IVT)) {
692      LegalIntReg = IntReg;
693    } else {
694      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
695        (MVT::SimpleValueType)LegalIntReg;
696      ValueTypeActions.setTypeAction(IVT, Promote);
697    }
698  }
699
700  // ppcf128 type is really two f64's.
701  if (!isTypeLegal(MVT::ppcf128)) {
702    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
703    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
704    TransformToType[MVT::ppcf128] = MVT::f64;
705    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
706  }
707
708  // Decide how to handle f64. If the target does not have native f64 support,
709  // expand it to i64 and we will be generating soft float library calls.
710  if (!isTypeLegal(MVT::f64)) {
711    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
712    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
713    TransformToType[MVT::f64] = MVT::i64;
714    ValueTypeActions.setTypeAction(MVT::f64, Expand);
715  }
716
717  // Decide how to handle f32. If the target does not have native support for
718  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
719  if (!isTypeLegal(MVT::f32)) {
720    if (isTypeLegal(MVT::f64)) {
721      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
722      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
723      TransformToType[MVT::f32] = MVT::f64;
724      ValueTypeActions.setTypeAction(MVT::f32, Promote);
725    } else {
726      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
727      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
728      TransformToType[MVT::f32] = MVT::i32;
729      ValueTypeActions.setTypeAction(MVT::f32, Expand);
730    }
731  }
732
733  // Loop over all of the vector value types to see which need transformations.
734  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
735       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
736    MVT VT = (MVT::SimpleValueType)i;
737    if (isTypeLegal(VT)) continue;
738
739    MVT IntermediateVT;
740    EVT RegisterVT;
741    unsigned NumIntermediates;
742    NumRegistersForVT[i] =
743      getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
744                                RegisterVT, this);
745    RegisterTypeForVT[i] = RegisterVT;
746
747    // Determine if there is a legal wider type.
748    bool IsLegalWiderType = false;
749    EVT EltVT = VT.getVectorElementType();
750    unsigned NElts = VT.getVectorNumElements();
751    for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
752      EVT SVT = (MVT::SimpleValueType)nVT;
753      if (isTypeSynthesizable(SVT) && SVT.getVectorElementType() == EltVT &&
754          SVT.getVectorNumElements() > NElts && NElts != 1) {
755        TransformToType[i] = SVT;
756        ValueTypeActions.setTypeAction(VT, Promote);
757        IsLegalWiderType = true;
758        break;
759      }
760    }
761    if (!IsLegalWiderType) {
762      EVT NVT = VT.getPow2VectorType();
763      if (NVT == VT) {
764        // Type is already a power of 2.  The default action is to split.
765        TransformToType[i] = MVT::Other;
766        ValueTypeActions.setTypeAction(VT, Expand);
767      } else {
768        TransformToType[i] = NVT;
769        ValueTypeActions.setTypeAction(VT, Promote);
770      }
771    }
772  }
773}
774
775const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
776  return NULL;
777}
778
779
780MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
781  return PointerTy.SimpleTy;
782}
783
784MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
785  return MVT::i32; // return the default value
786}
787
788/// getVectorTypeBreakdown - Vector types are broken down into some number of
789/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
790/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
791/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
792///
793/// This method returns the number of registers needed, and the VT for each
794/// register.  It also returns the VT and quantity of the intermediate values
795/// before they are promoted/expanded.
796///
797unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
798                                                EVT &IntermediateVT,
799                                                unsigned &NumIntermediates,
800                                                EVT &RegisterVT) const {
801  // Figure out the right, legal destination reg to copy into.
802  unsigned NumElts = VT.getVectorNumElements();
803  EVT EltTy = VT.getVectorElementType();
804
805  unsigned NumVectorRegs = 1;
806
807  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
808  // could break down into LHS/RHS like LegalizeDAG does.
809  if (!isPowerOf2_32(NumElts)) {
810    NumVectorRegs = NumElts;
811    NumElts = 1;
812  }
813
814  // Divide the input until we get to a supported size.  This will always
815  // end with a scalar if the target doesn't support vectors.
816  while (NumElts > 1 && !isTypeLegal(
817                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
818    NumElts >>= 1;
819    NumVectorRegs <<= 1;
820  }
821
822  NumIntermediates = NumVectorRegs;
823
824  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
825  if (!isTypeLegal(NewVT))
826    NewVT = EltTy;
827  IntermediateVT = NewVT;
828
829  EVT DestVT = getRegisterType(Context, NewVT);
830  RegisterVT = DestVT;
831  if (DestVT.bitsLT(NewVT)) {
832    // Value is expanded, e.g. i64 -> i16.
833    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
834  } else {
835    // Otherwise, promotion or legal types use the same number of registers as
836    // the vector decimated to the appropriate level.
837    return NumVectorRegs;
838  }
839
840  return 1;
841}
842
843/// Get the EVTs and ArgFlags collections that represent the legalized return
844/// type of the given function.  This does not require a DAG or a return value,
845/// and is suitable for use before any DAGs for the function are constructed.
846/// TODO: Move this out of TargetLowering.cpp.
847void llvm::GetReturnInfo(const Type* ReturnType, Attributes attr,
848                         SmallVectorImpl<ISD::OutputArg> &Outs,
849                         const TargetLowering &TLI,
850                         SmallVectorImpl<uint64_t> *Offsets) {
851  SmallVector<EVT, 4> ValueVTs;
852  ComputeValueVTs(TLI, ReturnType, ValueVTs);
853  unsigned NumValues = ValueVTs.size();
854  if (NumValues == 0) return;
855  unsigned Offset = 0;
856
857  for (unsigned j = 0, f = NumValues; j != f; ++j) {
858    EVT VT = ValueVTs[j];
859    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
860
861    if (attr & Attribute::SExt)
862      ExtendKind = ISD::SIGN_EXTEND;
863    else if (attr & Attribute::ZExt)
864      ExtendKind = ISD::ZERO_EXTEND;
865
866    // FIXME: C calling convention requires the return type to be promoted to
867    // at least 32-bit. But this is not necessary for non-C calling
868    // conventions. The frontend should mark functions whose return values
869    // require promoting with signext or zeroext attributes.
870    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
871      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
872      if (VT.bitsLT(MinVT))
873        VT = MinVT;
874    }
875
876    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
877    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
878    unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
879                        PartVT.getTypeForEVT(ReturnType->getContext()));
880
881    // 'inreg' on function refers to return value
882    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
883    if (attr & Attribute::InReg)
884      Flags.setInReg();
885
886    // Propagate extension type if any
887    if (attr & Attribute::SExt)
888      Flags.setSExt();
889    else if (attr & Attribute::ZExt)
890      Flags.setZExt();
891
892    for (unsigned i = 0; i < NumParts; ++i) {
893      Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true));
894      if (Offsets) {
895        Offsets->push_back(Offset);
896        Offset += PartSize;
897      }
898    }
899  }
900}
901
902/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
903/// function arguments in the caller parameter area.  This is the actual
904/// alignment, not its logarithm.
905unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
906  return TD->getCallFrameTypeAlignment(Ty);
907}
908
909/// getJumpTableEncoding - Return the entry encoding for a jump table in the
910/// current function.  The returned value is a member of the
911/// MachineJumpTableInfo::JTEntryKind enum.
912unsigned TargetLowering::getJumpTableEncoding() const {
913  // In non-pic modes, just use the address of a block.
914  if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
915    return MachineJumpTableInfo::EK_BlockAddress;
916
917  // In PIC mode, if the target supports a GPRel32 directive, use it.
918  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
919    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
920
921  // Otherwise, use a label difference.
922  return MachineJumpTableInfo::EK_LabelDifference32;
923}
924
925SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
926                                                 SelectionDAG &DAG) const {
927  // If our PIC model is GP relative, use the global offset table as the base.
928  if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
929    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
930  return Table;
931}
932
933/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
934/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
935/// MCExpr.
936const MCExpr *
937TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
938                                             unsigned JTI,MCContext &Ctx) const{
939  // The normal PIC reloc base is the label at the start of the jump table.
940  return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
941}
942
943bool
944TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
945  // Assume that everything is safe in static mode.
946  if (getTargetMachine().getRelocationModel() == Reloc::Static)
947    return true;
948
949  // In dynamic-no-pic mode, assume that known defined values are safe.
950  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
951      GA &&
952      !GA->getGlobal()->isDeclaration() &&
953      !GA->getGlobal()->isWeakForLinker())
954    return true;
955
956  // Otherwise assume nothing is safe.
957  return false;
958}
959
960//===----------------------------------------------------------------------===//
961//  Optimization Methods
962//===----------------------------------------------------------------------===//
963
964/// ShrinkDemandedConstant - Check to see if the specified operand of the
965/// specified instruction is a constant integer.  If so, check to see if there
966/// are any bits set in the constant that are not demanded.  If so, shrink the
967/// constant and return true.
968bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
969                                                        const APInt &Demanded) {
970  DebugLoc dl = Op.getDebugLoc();
971
972  // FIXME: ISD::SELECT, ISD::SELECT_CC
973  switch (Op.getOpcode()) {
974  default: break;
975  case ISD::XOR:
976  case ISD::AND:
977  case ISD::OR: {
978    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
979    if (!C) return false;
980
981    if (Op.getOpcode() == ISD::XOR &&
982        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
983      return false;
984
985    // if we can expand it to have all bits set, do it
986    if (C->getAPIntValue().intersects(~Demanded)) {
987      EVT VT = Op.getValueType();
988      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
989                                DAG.getConstant(Demanded &
990                                                C->getAPIntValue(),
991                                                VT));
992      return CombineTo(Op, New);
993    }
994
995    break;
996  }
997  }
998
999  return false;
1000}
1001
1002/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
1003/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
1004/// cast, but it could be generalized for targets with other types of
1005/// implicit widening casts.
1006bool
1007TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
1008                                                    unsigned BitWidth,
1009                                                    const APInt &Demanded,
1010                                                    DebugLoc dl) {
1011  assert(Op.getNumOperands() == 2 &&
1012         "ShrinkDemandedOp only supports binary operators!");
1013  assert(Op.getNode()->getNumValues() == 1 &&
1014         "ShrinkDemandedOp only supports nodes with one result!");
1015
1016  // Don't do this if the node has another user, which may require the
1017  // full value.
1018  if (!Op.getNode()->hasOneUse())
1019    return false;
1020
1021  // Search for the smallest integer type with free casts to and from
1022  // Op's type. For expedience, just check power-of-2 integer types.
1023  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1024  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
1025  if (!isPowerOf2_32(SmallVTBits))
1026    SmallVTBits = NextPowerOf2(SmallVTBits);
1027  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1028    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
1029    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
1030        TLI.isZExtFree(SmallVT, Op.getValueType())) {
1031      // We found a type with free casts.
1032      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
1033                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1034                                          Op.getNode()->getOperand(0)),
1035                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1036                                          Op.getNode()->getOperand(1)));
1037      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
1038      return CombineTo(Op, Z);
1039    }
1040  }
1041  return false;
1042}
1043
1044/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
1045/// DemandedMask bits of the result of Op are ever used downstream.  If we can
1046/// use this information to simplify Op, create a new simplified DAG node and
1047/// return true, returning the original and new nodes in Old and New. Otherwise,
1048/// analyze the expression and return a mask of KnownOne and KnownZero bits for
1049/// the expression (used to simplify the caller).  The KnownZero/One bits may
1050/// only be accurate for those bits in the DemandedMask.
1051bool TargetLowering::SimplifyDemandedBits(SDValue Op,
1052                                          const APInt &DemandedMask,
1053                                          APInt &KnownZero,
1054                                          APInt &KnownOne,
1055                                          TargetLoweringOpt &TLO,
1056                                          unsigned Depth) const {
1057  unsigned BitWidth = DemandedMask.getBitWidth();
1058  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
1059         "Mask size mismatches value type size!");
1060  APInt NewMask = DemandedMask;
1061  DebugLoc dl = Op.getDebugLoc();
1062
1063  // Don't know anything.
1064  KnownZero = KnownOne = APInt(BitWidth, 0);
1065
1066  // Other users may use these bits.
1067  if (!Op.getNode()->hasOneUse()) {
1068    if (Depth != 0) {
1069      // If not at the root, Just compute the KnownZero/KnownOne bits to
1070      // simplify things downstream.
1071      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
1072      return false;
1073    }
1074    // If this is the root being simplified, allow it to have multiple uses,
1075    // just set the NewMask to all bits.
1076    NewMask = APInt::getAllOnesValue(BitWidth);
1077  } else if (DemandedMask == 0) {
1078    // Not demanding any bits from Op.
1079    if (Op.getOpcode() != ISD::UNDEF)
1080      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
1081    return false;
1082  } else if (Depth == 6) {        // Limit search depth.
1083    return false;
1084  }
1085
1086  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
1087  switch (Op.getOpcode()) {
1088  case ISD::Constant:
1089    // We know all of the bits for a constant!
1090    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
1091    KnownZero = ~KnownOne & NewMask;
1092    return false;   // Don't fall through, will infinitely loop.
1093  case ISD::AND:
1094    // If the RHS is a constant, check to see if the LHS would be zero without
1095    // using the bits from the RHS.  Below, we use knowledge about the RHS to
1096    // simplify the LHS, here we're using information from the LHS to simplify
1097    // the RHS.
1098    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1099      APInt LHSZero, LHSOne;
1100      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
1101                                LHSZero, LHSOne, Depth+1);
1102      // If the LHS already has zeros where RHSC does, this and is dead.
1103      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1104        return TLO.CombineTo(Op, Op.getOperand(0));
1105      // If any of the set bits in the RHS are known zero on the LHS, shrink
1106      // the constant.
1107      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1108        return true;
1109    }
1110
1111    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1112                             KnownOne, TLO, Depth+1))
1113      return true;
1114    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1115    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1116                             KnownZero2, KnownOne2, TLO, Depth+1))
1117      return true;
1118    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1119
1120    // If all of the demanded bits are known one on one side, return the other.
1121    // These bits cannot contribute to the result of the 'and'.
1122    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1123      return TLO.CombineTo(Op, Op.getOperand(0));
1124    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1125      return TLO.CombineTo(Op, Op.getOperand(1));
1126    // If all of the demanded bits in the inputs are known zeros, return zero.
1127    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1128      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1129    // If the RHS is a constant, see if we can simplify it.
1130    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1131      return true;
1132    // If the operation can be done in a smaller type, do so.
1133    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1134      return true;
1135
1136    // Output known-1 bits are only known if set in both the LHS & RHS.
1137    KnownOne &= KnownOne2;
1138    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1139    KnownZero |= KnownZero2;
1140    break;
1141  case ISD::OR:
1142    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1143                             KnownOne, TLO, Depth+1))
1144      return true;
1145    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1146    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1147                             KnownZero2, KnownOne2, TLO, Depth+1))
1148      return true;
1149    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1150
1151    // If all of the demanded bits are known zero on one side, return the other.
1152    // These bits cannot contribute to the result of the 'or'.
1153    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1154      return TLO.CombineTo(Op, Op.getOperand(0));
1155    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1156      return TLO.CombineTo(Op, Op.getOperand(1));
1157    // If all of the potentially set bits on one side are known to be set on
1158    // the other side, just use the 'other' side.
1159    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1160      return TLO.CombineTo(Op, Op.getOperand(0));
1161    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1162      return TLO.CombineTo(Op, Op.getOperand(1));
1163    // If the RHS is a constant, see if we can simplify it.
1164    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1165      return true;
1166    // If the operation can be done in a smaller type, do so.
1167    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1168      return true;
1169
1170    // Output known-0 bits are only known if clear in both the LHS & RHS.
1171    KnownZero &= KnownZero2;
1172    // Output known-1 are known to be set if set in either the LHS | RHS.
1173    KnownOne |= KnownOne2;
1174    break;
1175  case ISD::XOR:
1176    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1177                             KnownOne, TLO, Depth+1))
1178      return true;
1179    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1180    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1181                             KnownOne2, TLO, Depth+1))
1182      return true;
1183    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1184
1185    // If all of the demanded bits are known zero on one side, return the other.
1186    // These bits cannot contribute to the result of the 'xor'.
1187    if ((KnownZero & NewMask) == NewMask)
1188      return TLO.CombineTo(Op, Op.getOperand(0));
1189    if ((KnownZero2 & NewMask) == NewMask)
1190      return TLO.CombineTo(Op, Op.getOperand(1));
1191    // If the operation can be done in a smaller type, do so.
1192    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1193      return true;
1194
1195    // If all of the unknown bits are known to be zero on one side or the other
1196    // (but not both) turn this into an *inclusive* or.
1197    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1198    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1199      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1200                                               Op.getOperand(0),
1201                                               Op.getOperand(1)));
1202
1203    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1204    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1205    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1206    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1207
1208    // If all of the demanded bits on one side are known, and all of the set
1209    // bits on that side are also known to be set on the other side, turn this
1210    // into an AND, as we know the bits will be cleared.
1211    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1212    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1213      if ((KnownOne & KnownOne2) == KnownOne) {
1214        EVT VT = Op.getValueType();
1215        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1216        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1217                                                 Op.getOperand(0), ANDC));
1218      }
1219    }
1220
1221    // If the RHS is a constant, see if we can simplify it.
1222    // for XOR, we prefer to force bits to 1 if they will make a -1.
1223    // if we can't force bits, try to shrink constant
1224    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1225      APInt Expanded = C->getAPIntValue() | (~NewMask);
1226      // if we can expand it to have all bits set, do it
1227      if (Expanded.isAllOnesValue()) {
1228        if (Expanded != C->getAPIntValue()) {
1229          EVT VT = Op.getValueType();
1230          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1231                                          TLO.DAG.getConstant(Expanded, VT));
1232          return TLO.CombineTo(Op, New);
1233        }
1234        // if it already has all the bits set, nothing to change
1235        // but don't shrink either!
1236      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1237        return true;
1238      }
1239    }
1240
1241    KnownZero = KnownZeroOut;
1242    KnownOne  = KnownOneOut;
1243    break;
1244  case ISD::SELECT:
1245    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1246                             KnownOne, TLO, Depth+1))
1247      return true;
1248    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1249                             KnownOne2, TLO, Depth+1))
1250      return true;
1251    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1252    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1253
1254    // If the operands are constants, see if we can simplify them.
1255    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1256      return true;
1257
1258    // Only known if known in both the LHS and RHS.
1259    KnownOne &= KnownOne2;
1260    KnownZero &= KnownZero2;
1261    break;
1262  case ISD::SELECT_CC:
1263    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1264                             KnownOne, TLO, Depth+1))
1265      return true;
1266    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1267                             KnownOne2, TLO, Depth+1))
1268      return true;
1269    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1270    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1271
1272    // If the operands are constants, see if we can simplify them.
1273    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1274      return true;
1275
1276    // Only known if known in both the LHS and RHS.
1277    KnownOne &= KnownOne2;
1278    KnownZero &= KnownZero2;
1279    break;
1280  case ISD::SHL:
1281    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1282      unsigned ShAmt = SA->getZExtValue();
1283      SDValue InOp = Op.getOperand(0);
1284
1285      // If the shift count is an invalid immediate, don't do anything.
1286      if (ShAmt >= BitWidth)
1287        break;
1288
1289      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1290      // single shift.  We can do this if the bottom bits (which are shifted
1291      // out) are never demanded.
1292      if (InOp.getOpcode() == ISD::SRL &&
1293          isa<ConstantSDNode>(InOp.getOperand(1))) {
1294        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1295          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1296          unsigned Opc = ISD::SHL;
1297          int Diff = ShAmt-C1;
1298          if (Diff < 0) {
1299            Diff = -Diff;
1300            Opc = ISD::SRL;
1301          }
1302
1303          SDValue NewSA =
1304            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1305          EVT VT = Op.getValueType();
1306          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1307                                                   InOp.getOperand(0), NewSA));
1308        }
1309      }
1310
1311      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
1312                               KnownZero, KnownOne, TLO, Depth+1))
1313        return true;
1314      KnownZero <<= SA->getZExtValue();
1315      KnownOne  <<= SA->getZExtValue();
1316      // low bits known zero.
1317      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1318    }
1319    break;
1320  case ISD::SRL:
1321    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1322      EVT VT = Op.getValueType();
1323      unsigned ShAmt = SA->getZExtValue();
1324      unsigned VTSize = VT.getSizeInBits();
1325      SDValue InOp = Op.getOperand(0);
1326
1327      // If the shift count is an invalid immediate, don't do anything.
1328      if (ShAmt >= BitWidth)
1329        break;
1330
1331      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1332      // single shift.  We can do this if the top bits (which are shifted out)
1333      // are never demanded.
1334      if (InOp.getOpcode() == ISD::SHL &&
1335          isa<ConstantSDNode>(InOp.getOperand(1))) {
1336        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1337          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1338          unsigned Opc = ISD::SRL;
1339          int Diff = ShAmt-C1;
1340          if (Diff < 0) {
1341            Diff = -Diff;
1342            Opc = ISD::SHL;
1343          }
1344
1345          SDValue NewSA =
1346            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1347          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1348                                                   InOp.getOperand(0), NewSA));
1349        }
1350      }
1351
1352      // Compute the new bits that are at the top now.
1353      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1354                               KnownZero, KnownOne, TLO, Depth+1))
1355        return true;
1356      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1357      KnownZero = KnownZero.lshr(ShAmt);
1358      KnownOne  = KnownOne.lshr(ShAmt);
1359
1360      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1361      KnownZero |= HighBits;  // High bits known zero.
1362    }
1363    break;
1364  case ISD::SRA:
1365    // If this is an arithmetic shift right and only the low-bit is set, we can
1366    // always convert this into a logical shr, even if the shift amount is
1367    // variable.  The low bit of the shift cannot be an input sign bit unless
1368    // the shift amount is >= the size of the datatype, which is undefined.
1369    if (DemandedMask == 1)
1370      return TLO.CombineTo(Op,
1371                           TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1372                                           Op.getOperand(0), Op.getOperand(1)));
1373
1374    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1375      EVT VT = Op.getValueType();
1376      unsigned ShAmt = SA->getZExtValue();
1377
1378      // If the shift count is an invalid immediate, don't do anything.
1379      if (ShAmt >= BitWidth)
1380        break;
1381
1382      APInt InDemandedMask = (NewMask << ShAmt);
1383
1384      // If any of the demanded bits are produced by the sign extension, we also
1385      // demand the input sign bit.
1386      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1387      if (HighBits.intersects(NewMask))
1388        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1389
1390      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1391                               KnownZero, KnownOne, TLO, Depth+1))
1392        return true;
1393      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1394      KnownZero = KnownZero.lshr(ShAmt);
1395      KnownOne  = KnownOne.lshr(ShAmt);
1396
1397      // Handle the sign bit, adjusted to where it is now in the mask.
1398      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1399
1400      // If the input sign bit is known to be zero, or if none of the top bits
1401      // are demanded, turn this into an unsigned shift right.
1402      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1403        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1404                                                 Op.getOperand(0),
1405                                                 Op.getOperand(1)));
1406      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1407        KnownOne |= HighBits;
1408      }
1409    }
1410    break;
1411  case ISD::SIGN_EXTEND_INREG: {
1412    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1413
1414    // Sign extension.  Compute the demanded bits in the result that are not
1415    // present in the input.
1416    APInt NewBits =
1417      APInt::getHighBitsSet(BitWidth,
1418                            BitWidth - EVT.getScalarType().getSizeInBits()) &
1419      NewMask;
1420
1421    // If none of the extended bits are demanded, eliminate the sextinreg.
1422    if (NewBits == 0)
1423      return TLO.CombineTo(Op, Op.getOperand(0));
1424
1425    APInt InSignBit = APInt::getSignBit(EVT.getScalarType().getSizeInBits());
1426    InSignBit.zext(BitWidth);
1427    APInt InputDemandedBits =
1428      APInt::getLowBitsSet(BitWidth,
1429                           EVT.getScalarType().getSizeInBits()) &
1430      NewMask;
1431
1432    // Since the sign extended bits are demanded, we know that the sign
1433    // bit is demanded.
1434    InputDemandedBits |= InSignBit;
1435
1436    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1437                             KnownZero, KnownOne, TLO, Depth+1))
1438      return true;
1439    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1440
1441    // If the sign bit of the input is known set or clear, then we know the
1442    // top bits of the result.
1443
1444    // If the input sign bit is known zero, convert this into a zero extension.
1445    if (KnownZero.intersects(InSignBit))
1446      return TLO.CombineTo(Op,
1447                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1448
1449    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1450      KnownOne |= NewBits;
1451      KnownZero &= ~NewBits;
1452    } else {                       // Input sign bit unknown
1453      KnownZero &= ~NewBits;
1454      KnownOne &= ~NewBits;
1455    }
1456    break;
1457  }
1458  case ISD::ZERO_EXTEND: {
1459    unsigned OperandBitWidth =
1460      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1461    APInt InMask = NewMask;
1462    InMask.trunc(OperandBitWidth);
1463
1464    // If none of the top bits are demanded, convert this into an any_extend.
1465    APInt NewBits =
1466      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1467    if (!NewBits.intersects(NewMask))
1468      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1469                                               Op.getValueType(),
1470                                               Op.getOperand(0)));
1471
1472    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1473                             KnownZero, KnownOne, TLO, Depth+1))
1474      return true;
1475    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1476    KnownZero.zext(BitWidth);
1477    KnownOne.zext(BitWidth);
1478    KnownZero |= NewBits;
1479    break;
1480  }
1481  case ISD::SIGN_EXTEND: {
1482    EVT InVT = Op.getOperand(0).getValueType();
1483    unsigned InBits = InVT.getScalarType().getSizeInBits();
1484    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1485    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1486    APInt NewBits   = ~InMask & NewMask;
1487
1488    // If none of the top bits are demanded, convert this into an any_extend.
1489    if (NewBits == 0)
1490      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1491                                              Op.getValueType(),
1492                                              Op.getOperand(0)));
1493
1494    // Since some of the sign extended bits are demanded, we know that the sign
1495    // bit is demanded.
1496    APInt InDemandedBits = InMask & NewMask;
1497    InDemandedBits |= InSignBit;
1498    InDemandedBits.trunc(InBits);
1499
1500    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1501                             KnownOne, TLO, Depth+1))
1502      return true;
1503    KnownZero.zext(BitWidth);
1504    KnownOne.zext(BitWidth);
1505
1506    // If the sign bit is known zero, convert this to a zero extend.
1507    if (KnownZero.intersects(InSignBit))
1508      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1509                                               Op.getValueType(),
1510                                               Op.getOperand(0)));
1511
1512    // If the sign bit is known one, the top bits match.
1513    if (KnownOne.intersects(InSignBit)) {
1514      KnownOne  |= NewBits;
1515      KnownZero &= ~NewBits;
1516    } else {   // Otherwise, top bits aren't known.
1517      KnownOne  &= ~NewBits;
1518      KnownZero &= ~NewBits;
1519    }
1520    break;
1521  }
1522  case ISD::ANY_EXTEND: {
1523    unsigned OperandBitWidth =
1524      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1525    APInt InMask = NewMask;
1526    InMask.trunc(OperandBitWidth);
1527    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1528                             KnownZero, KnownOne, TLO, Depth+1))
1529      return true;
1530    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1531    KnownZero.zext(BitWidth);
1532    KnownOne.zext(BitWidth);
1533    break;
1534  }
1535  case ISD::TRUNCATE: {
1536    // Simplify the input, using demanded bit information, and compute the known
1537    // zero/one bits live out.
1538    unsigned OperandBitWidth =
1539      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1540    APInt TruncMask = NewMask;
1541    TruncMask.zext(OperandBitWidth);
1542    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1543                             KnownZero, KnownOne, TLO, Depth+1))
1544      return true;
1545    KnownZero.trunc(BitWidth);
1546    KnownOne.trunc(BitWidth);
1547
1548    // If the input is only used by this truncate, see if we can shrink it based
1549    // on the known demanded bits.
1550    if (Op.getOperand(0).getNode()->hasOneUse()) {
1551      SDValue In = Op.getOperand(0);
1552      switch (In.getOpcode()) {
1553      default: break;
1554      case ISD::SRL:
1555        // Shrink SRL by a constant if none of the high bits shifted in are
1556        // demanded.
1557        if (TLO.LegalTypes() &&
1558            !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1559          // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1560          // undesirable.
1561          break;
1562        ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1563        if (!ShAmt)
1564          break;
1565        APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1566                                               OperandBitWidth - BitWidth);
1567        HighBits = HighBits.lshr(ShAmt->getZExtValue());
1568        HighBits.trunc(BitWidth);
1569
1570        if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1571          // None of the shifted in bits are needed.  Add a truncate of the
1572          // shift input, then shift it.
1573          SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1574                                             Op.getValueType(),
1575                                             In.getOperand(0));
1576          return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1577                                                   Op.getValueType(),
1578                                                   NewTrunc,
1579                                                   In.getOperand(1)));
1580        }
1581        break;
1582      }
1583    }
1584
1585    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1586    break;
1587  }
1588  case ISD::AssertZext: {
1589    // Demand all the bits of the input that are demanded in the output.
1590    // The low bits are obvious; the high bits are demanded because we're
1591    // asserting that they're zero here.
1592    if (SimplifyDemandedBits(Op.getOperand(0), NewMask,
1593                             KnownZero, KnownOne, TLO, Depth+1))
1594      return true;
1595    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1596
1597    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1598    APInt InMask = APInt::getLowBitsSet(BitWidth,
1599                                        VT.getSizeInBits());
1600    KnownZero |= ~InMask & NewMask;
1601    break;
1602  }
1603  case ISD::BIT_CONVERT:
1604#if 0
1605    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1606    // is demanded, turn this into a FGETSIGN.
1607    if (NewMask == EVT::getIntegerVTSignBit(Op.getValueType()) &&
1608        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1609        !MVT::isVector(Op.getOperand(0).getValueType())) {
1610      // Only do this xform if FGETSIGN is valid or if before legalize.
1611      if (!TLO.AfterLegalize ||
1612          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1613        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1614        // place.  We expect the SHL to be eliminated by other optimizations.
1615        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1616                                         Op.getOperand(0));
1617        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1618        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1619        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1620                                                 Sign, ShAmt));
1621      }
1622    }
1623#endif
1624    break;
1625  case ISD::ADD:
1626  case ISD::MUL:
1627  case ISD::SUB: {
1628    // Add, Sub, and Mul don't demand any bits in positions beyond that
1629    // of the highest bit demanded of them.
1630    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1631                                        BitWidth - NewMask.countLeadingZeros());
1632    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1633                             KnownOne2, TLO, Depth+1))
1634      return true;
1635    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1636                             KnownOne2, TLO, Depth+1))
1637      return true;
1638    // See if the operation should be performed at a smaller bit width.
1639    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1640      return true;
1641  }
1642  // FALL THROUGH
1643  default:
1644    // Just use ComputeMaskedBits to compute output bits.
1645    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1646    break;
1647  }
1648
1649  // If we know the value of all of the demanded bits, return this as a
1650  // constant.
1651  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1652    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1653
1654  return false;
1655}
1656
1657/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1658/// in Mask are known to be either zero or one and return them in the
1659/// KnownZero/KnownOne bitsets.
1660void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1661                                                    const APInt &Mask,
1662                                                    APInt &KnownZero,
1663                                                    APInt &KnownOne,
1664                                                    const SelectionDAG &DAG,
1665                                                    unsigned Depth) const {
1666  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1667          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1668          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1669          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1670         "Should use MaskedValueIsZero if you don't know whether Op"
1671         " is a target node!");
1672  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1673}
1674
1675/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1676/// targets that want to expose additional information about sign bits to the
1677/// DAG Combiner.
1678unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1679                                                         unsigned Depth) const {
1680  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1681          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1682          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1683          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1684         "Should use ComputeNumSignBits if you don't know whether Op"
1685         " is a target node!");
1686  return 1;
1687}
1688
1689/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1690/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1691/// determine which bit is set.
1692///
1693static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1694  // A left-shift of a constant one will have exactly one bit set, because
1695  // shifting the bit off the end is undefined.
1696  if (Val.getOpcode() == ISD::SHL)
1697    if (ConstantSDNode *C =
1698         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1699      if (C->getAPIntValue() == 1)
1700        return true;
1701
1702  // Similarly, a right-shift of a constant sign-bit will have exactly
1703  // one bit set.
1704  if (Val.getOpcode() == ISD::SRL)
1705    if (ConstantSDNode *C =
1706         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1707      if (C->getAPIntValue().isSignBit())
1708        return true;
1709
1710  // More could be done here, though the above checks are enough
1711  // to handle some common cases.
1712
1713  // Fall back to ComputeMaskedBits to catch other known cases.
1714  EVT OpVT = Val.getValueType();
1715  unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1716  APInt Mask = APInt::getAllOnesValue(BitWidth);
1717  APInt KnownZero, KnownOne;
1718  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1719  return (KnownZero.countPopulation() == BitWidth - 1) &&
1720         (KnownOne.countPopulation() == 1);
1721}
1722
1723/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1724/// and cc. If it is unable to simplify it, return a null SDValue.
1725SDValue
1726TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1727                              ISD::CondCode Cond, bool foldBooleans,
1728                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1729  SelectionDAG &DAG = DCI.DAG;
1730  LLVMContext &Context = *DAG.getContext();
1731
1732  // These setcc operations always fold.
1733  switch (Cond) {
1734  default: break;
1735  case ISD::SETFALSE:
1736  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1737  case ISD::SETTRUE:
1738  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1739  }
1740
1741  if (isa<ConstantSDNode>(N0.getNode())) {
1742    // Ensure that the constant occurs on the RHS, and fold constant
1743    // comparisons.
1744    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1745  }
1746
1747  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1748    const APInt &C1 = N1C->getAPIntValue();
1749
1750    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1751    // equality comparison, then we're just comparing whether X itself is
1752    // zero.
1753    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1754        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1755        N0.getOperand(1).getOpcode() == ISD::Constant) {
1756      const APInt &ShAmt
1757        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1758      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1759          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1760        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1761          // (srl (ctlz x), 5) == 0  -> X != 0
1762          // (srl (ctlz x), 5) != 1  -> X != 0
1763          Cond = ISD::SETNE;
1764        } else {
1765          // (srl (ctlz x), 5) != 0  -> X == 0
1766          // (srl (ctlz x), 5) == 1  -> X == 0
1767          Cond = ISD::SETEQ;
1768        }
1769        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1770        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1771                            Zero, Cond);
1772      }
1773    }
1774
1775    // If the LHS is '(and load, const)', the RHS is 0,
1776    // the test is for equality or unsigned, and all 1 bits of the const are
1777    // in the same partial word, see if we can shorten the load.
1778    if (DCI.isBeforeLegalize() &&
1779        N0.getOpcode() == ISD::AND && C1 == 0 &&
1780        N0.getNode()->hasOneUse() &&
1781        isa<LoadSDNode>(N0.getOperand(0)) &&
1782        N0.getOperand(0).getNode()->hasOneUse() &&
1783        isa<ConstantSDNode>(N0.getOperand(1))) {
1784      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1785      APInt bestMask;
1786      unsigned bestWidth = 0, bestOffset = 0;
1787      if (!Lod->isVolatile() && Lod->isUnindexed()) {
1788        unsigned origWidth = N0.getValueType().getSizeInBits();
1789        unsigned maskWidth = origWidth;
1790        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1791        // 8 bits, but have to be careful...
1792        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1793          origWidth = Lod->getMemoryVT().getSizeInBits();
1794        const APInt &Mask =
1795          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1796        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1797          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1798          for (unsigned offset=0; offset<origWidth/width; offset++) {
1799            if ((newMask & Mask) == Mask) {
1800              if (!TD->isLittleEndian())
1801                bestOffset = (origWidth/width - offset - 1) * (width/8);
1802              else
1803                bestOffset = (uint64_t)offset * (width/8);
1804              bestMask = Mask.lshr(offset * (width/8) * 8);
1805              bestWidth = width;
1806              break;
1807            }
1808            newMask = newMask << width;
1809          }
1810        }
1811      }
1812      if (bestWidth) {
1813        EVT newVT = EVT::getIntegerVT(Context, bestWidth);
1814        if (newVT.isRound()) {
1815          EVT PtrType = Lod->getOperand(1).getValueType();
1816          SDValue Ptr = Lod->getBasePtr();
1817          if (bestOffset != 0)
1818            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1819                              DAG.getConstant(bestOffset, PtrType));
1820          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1821          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1822                                        Lod->getSrcValue(),
1823                                        Lod->getSrcValueOffset() + bestOffset,
1824                                        false, false, NewAlign);
1825          return DAG.getSetCC(dl, VT,
1826                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1827                                      DAG.getConstant(bestMask.trunc(bestWidth),
1828                                                      newVT)),
1829                              DAG.getConstant(0LL, newVT), Cond);
1830        }
1831      }
1832    }
1833
1834    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1835    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1836      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1837
1838      // If the comparison constant has bits in the upper part, the
1839      // zero-extended value could never match.
1840      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1841                                              C1.getBitWidth() - InSize))) {
1842        switch (Cond) {
1843        case ISD::SETUGT:
1844        case ISD::SETUGE:
1845        case ISD::SETEQ: return DAG.getConstant(0, VT);
1846        case ISD::SETULT:
1847        case ISD::SETULE:
1848        case ISD::SETNE: return DAG.getConstant(1, VT);
1849        case ISD::SETGT:
1850        case ISD::SETGE:
1851          // True if the sign bit of C1 is set.
1852          return DAG.getConstant(C1.isNegative(), VT);
1853        case ISD::SETLT:
1854        case ISD::SETLE:
1855          // True if the sign bit of C1 isn't set.
1856          return DAG.getConstant(C1.isNonNegative(), VT);
1857        default:
1858          break;
1859        }
1860      }
1861
1862      // Otherwise, we can perform the comparison with the low bits.
1863      switch (Cond) {
1864      case ISD::SETEQ:
1865      case ISD::SETNE:
1866      case ISD::SETUGT:
1867      case ISD::SETUGE:
1868      case ISD::SETULT:
1869      case ISD::SETULE: {
1870        EVT newVT = N0.getOperand(0).getValueType();
1871        if (DCI.isBeforeLegalizeOps() ||
1872            (isOperationLegal(ISD::SETCC, newVT) &&
1873              getCondCodeAction(Cond, newVT)==Legal))
1874          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1875                              DAG.getConstant(APInt(C1).trunc(InSize), newVT),
1876                              Cond);
1877        break;
1878      }
1879      default:
1880        break;   // todo, be more careful with signed comparisons
1881      }
1882    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1883               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1884      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1885      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1886      EVT ExtDstTy = N0.getValueType();
1887      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1888
1889      // If the extended part has any inconsistent bits, it cannot ever
1890      // compare equal.  In other words, they have to be all ones or all
1891      // zeros.
1892      APInt ExtBits =
1893        APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1894      if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1895        return DAG.getConstant(Cond == ISD::SETNE, VT);
1896
1897      SDValue ZextOp;
1898      EVT Op0Ty = N0.getOperand(0).getValueType();
1899      if (Op0Ty == ExtSrcTy) {
1900        ZextOp = N0.getOperand(0);
1901      } else {
1902        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1903        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1904                              DAG.getConstant(Imm, Op0Ty));
1905      }
1906      if (!DCI.isCalledByLegalizer())
1907        DCI.AddToWorklist(ZextOp.getNode());
1908      // Otherwise, make this a use of a zext.
1909      return DAG.getSetCC(dl, VT, ZextOp,
1910                          DAG.getConstant(C1 & APInt::getLowBitsSet(
1911                                                              ExtDstTyBits,
1912                                                              ExtSrcTyBits),
1913                                          ExtDstTy),
1914                          Cond);
1915    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1916                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1917      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1918      if (N0.getOpcode() == ISD::SETCC &&
1919          isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1920        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
1921        if (TrueWhenTrue)
1922          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1923        // Invert the condition.
1924        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1925        CC = ISD::getSetCCInverse(CC,
1926                                  N0.getOperand(0).getValueType().isInteger());
1927        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1928      }
1929
1930      if ((N0.getOpcode() == ISD::XOR ||
1931           (N0.getOpcode() == ISD::AND &&
1932            N0.getOperand(0).getOpcode() == ISD::XOR &&
1933            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1934          isa<ConstantSDNode>(N0.getOperand(1)) &&
1935          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1936        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1937        // can only do this if the top bits are known zero.
1938        unsigned BitWidth = N0.getValueSizeInBits();
1939        if (DAG.MaskedValueIsZero(N0,
1940                                  APInt::getHighBitsSet(BitWidth,
1941                                                        BitWidth-1))) {
1942          // Okay, get the un-inverted input value.
1943          SDValue Val;
1944          if (N0.getOpcode() == ISD::XOR)
1945            Val = N0.getOperand(0);
1946          else {
1947            assert(N0.getOpcode() == ISD::AND &&
1948                    N0.getOperand(0).getOpcode() == ISD::XOR);
1949            // ((X^1)&1)^1 -> X & 1
1950            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1951                              N0.getOperand(0).getOperand(0),
1952                              N0.getOperand(1));
1953          }
1954
1955          return DAG.getSetCC(dl, VT, Val, N1,
1956                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1957        }
1958      } else if (N1C->getAPIntValue() == 1 &&
1959                 (VT == MVT::i1 ||
1960                  getBooleanContents() == ZeroOrOneBooleanContent)) {
1961        SDValue Op0 = N0;
1962        if (Op0.getOpcode() == ISD::TRUNCATE)
1963          Op0 = Op0.getOperand(0);
1964
1965        if ((Op0.getOpcode() == ISD::XOR) &&
1966            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
1967            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
1968          // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
1969          Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
1970          return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
1971                              Cond);
1972        } else if (Op0.getOpcode() == ISD::AND &&
1973                isa<ConstantSDNode>(Op0.getOperand(1)) &&
1974                cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
1975          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
1976          if (Op0.getValueType().bitsGT(VT))
1977            Op0 = DAG.getNode(ISD::AND, dl, VT,
1978                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
1979                          DAG.getConstant(1, VT));
1980          else if (Op0.getValueType().bitsLT(VT))
1981            Op0 = DAG.getNode(ISD::AND, dl, VT,
1982                        DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
1983                        DAG.getConstant(1, VT));
1984
1985          return DAG.getSetCC(dl, VT, Op0,
1986                              DAG.getConstant(0, Op0.getValueType()),
1987                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1988        }
1989      }
1990    }
1991
1992    APInt MinVal, MaxVal;
1993    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1994    if (ISD::isSignedIntSetCC(Cond)) {
1995      MinVal = APInt::getSignedMinValue(OperandBitSize);
1996      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1997    } else {
1998      MinVal = APInt::getMinValue(OperandBitSize);
1999      MaxVal = APInt::getMaxValue(OperandBitSize);
2000    }
2001
2002    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2003    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2004      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
2005      // X >= C0 --> X > (C0-1)
2006      return DAG.getSetCC(dl, VT, N0,
2007                          DAG.getConstant(C1-1, N1.getValueType()),
2008                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
2009    }
2010
2011    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2012      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
2013      // X <= C0 --> X < (C0+1)
2014      return DAG.getSetCC(dl, VT, N0,
2015                          DAG.getConstant(C1+1, N1.getValueType()),
2016                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
2017    }
2018
2019    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
2020      return DAG.getConstant(0, VT);      // X < MIN --> false
2021    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
2022      return DAG.getConstant(1, VT);      // X >= MIN --> true
2023    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
2024      return DAG.getConstant(0, VT);      // X > MAX --> false
2025    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
2026      return DAG.getConstant(1, VT);      // X <= MAX --> true
2027
2028    // Canonicalize setgt X, Min --> setne X, Min
2029    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
2030      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2031    // Canonicalize setlt X, Max --> setne X, Max
2032    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
2033      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2034
2035    // If we have setult X, 1, turn it into seteq X, 0
2036    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
2037      return DAG.getSetCC(dl, VT, N0,
2038                          DAG.getConstant(MinVal, N0.getValueType()),
2039                          ISD::SETEQ);
2040    // If we have setugt X, Max-1, turn it into seteq X, Max
2041    else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
2042      return DAG.getSetCC(dl, VT, N0,
2043                          DAG.getConstant(MaxVal, N0.getValueType()),
2044                          ISD::SETEQ);
2045
2046    // If we have "setcc X, C0", check to see if we can shrink the immediate
2047    // by changing cc.
2048
2049    // SETUGT X, SINTMAX  -> SETLT X, 0
2050    if (Cond == ISD::SETUGT &&
2051        C1 == APInt::getSignedMaxValue(OperandBitSize))
2052      return DAG.getSetCC(dl, VT, N0,
2053                          DAG.getConstant(0, N1.getValueType()),
2054                          ISD::SETLT);
2055
2056    // SETULT X, SINTMIN  -> SETGT X, -1
2057    if (Cond == ISD::SETULT &&
2058        C1 == APInt::getSignedMinValue(OperandBitSize)) {
2059      SDValue ConstMinusOne =
2060          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
2061                          N1.getValueType());
2062      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2063    }
2064
2065    // Fold bit comparisons when we can.
2066    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2067        (VT == N0.getValueType() ||
2068         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2069        N0.getOpcode() == ISD::AND)
2070      if (ConstantSDNode *AndRHS =
2071                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2072        EVT ShiftTy = DCI.isBeforeLegalize() ?
2073          getPointerTy() : getShiftAmountTy();
2074        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2075          // Perform the xform if the AND RHS is a single bit.
2076          if (AndRHS->getAPIntValue().isPowerOf2()) {
2077            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2078                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2079                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
2080          }
2081        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2082          // (X & 8) == 8  -->  (X & 8) >> 3
2083          // Perform the xform if C1 is a single bit.
2084          if (C1.isPowerOf2()) {
2085            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2086                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2087                                      DAG.getConstant(C1.logBase2(), ShiftTy)));
2088          }
2089        }
2090      }
2091  }
2092
2093  if (isa<ConstantFPSDNode>(N0.getNode())) {
2094    // Constant fold or commute setcc.
2095    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2096    if (O.getNode()) return O;
2097  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2098    // If the RHS of an FP comparison is a constant, simplify it away in
2099    // some cases.
2100    if (CFP->getValueAPF().isNaN()) {
2101      // If an operand is known to be a nan, we can fold it.
2102      switch (ISD::getUnorderedFlavor(Cond)) {
2103      default: llvm_unreachable("Unknown flavor!");
2104      case 0:  // Known false.
2105        return DAG.getConstant(0, VT);
2106      case 1:  // Known true.
2107        return DAG.getConstant(1, VT);
2108      case 2:  // Undefined.
2109        return DAG.getUNDEF(VT);
2110      }
2111    }
2112
2113    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2114    // constant if knowing that the operand is non-nan is enough.  We prefer to
2115    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2116    // materialize 0.0.
2117    if (Cond == ISD::SETO || Cond == ISD::SETUO)
2118      return DAG.getSetCC(dl, VT, N0, N0, Cond);
2119
2120    // If the condition is not legal, see if we can find an equivalent one
2121    // which is legal.
2122    if (!isCondCodeLegal(Cond, N0.getValueType())) {
2123      // If the comparison was an awkward floating-point == or != and one of
2124      // the comparison operands is infinity or negative infinity, convert the
2125      // condition to a less-awkward <= or >=.
2126      if (CFP->getValueAPF().isInfinity()) {
2127        if (CFP->getValueAPF().isNegative()) {
2128          if (Cond == ISD::SETOEQ &&
2129              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2130            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2131          if (Cond == ISD::SETUEQ &&
2132              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2133            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2134          if (Cond == ISD::SETUNE &&
2135              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2136            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2137          if (Cond == ISD::SETONE &&
2138              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2139            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2140        } else {
2141          if (Cond == ISD::SETOEQ &&
2142              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2143            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2144          if (Cond == ISD::SETUEQ &&
2145              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2146            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2147          if (Cond == ISD::SETUNE &&
2148              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2149            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2150          if (Cond == ISD::SETONE &&
2151              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2152            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2153        }
2154      }
2155    }
2156  }
2157
2158  if (N0 == N1) {
2159    // We can always fold X == X for integer setcc's.
2160    if (N0.getValueType().isInteger())
2161      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2162    unsigned UOF = ISD::getUnorderedFlavor(Cond);
2163    if (UOF == 2)   // FP operators that are undefined on NaNs.
2164      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2165    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2166      return DAG.getConstant(UOF, VT);
2167    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2168    // if it is not already.
2169    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2170    if (NewCond != Cond)
2171      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2172  }
2173
2174  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2175      N0.getValueType().isInteger()) {
2176    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2177        N0.getOpcode() == ISD::XOR) {
2178      // Simplify (X+Y) == (X+Z) -->  Y == Z
2179      if (N0.getOpcode() == N1.getOpcode()) {
2180        if (N0.getOperand(0) == N1.getOperand(0))
2181          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2182        if (N0.getOperand(1) == N1.getOperand(1))
2183          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2184        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2185          // If X op Y == Y op X, try other combinations.
2186          if (N0.getOperand(0) == N1.getOperand(1))
2187            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2188                                Cond);
2189          if (N0.getOperand(1) == N1.getOperand(0))
2190            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2191                                Cond);
2192        }
2193      }
2194
2195      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2196        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2197          // Turn (X+C1) == C2 --> X == C2-C1
2198          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2199            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2200                                DAG.getConstant(RHSC->getAPIntValue()-
2201                                                LHSR->getAPIntValue(),
2202                                N0.getValueType()), Cond);
2203          }
2204
2205          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2206          if (N0.getOpcode() == ISD::XOR)
2207            // If we know that all of the inverted bits are zero, don't bother
2208            // performing the inversion.
2209            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2210              return
2211                DAG.getSetCC(dl, VT, N0.getOperand(0),
2212                             DAG.getConstant(LHSR->getAPIntValue() ^
2213                                               RHSC->getAPIntValue(),
2214                                             N0.getValueType()),
2215                             Cond);
2216        }
2217
2218        // Turn (C1-X) == C2 --> X == C1-C2
2219        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2220          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2221            return
2222              DAG.getSetCC(dl, VT, N0.getOperand(1),
2223                           DAG.getConstant(SUBC->getAPIntValue() -
2224                                             RHSC->getAPIntValue(),
2225                                           N0.getValueType()),
2226                           Cond);
2227          }
2228        }
2229      }
2230
2231      // Simplify (X+Z) == X -->  Z == 0
2232      if (N0.getOperand(0) == N1)
2233        return DAG.getSetCC(dl, VT, N0.getOperand(1),
2234                        DAG.getConstant(0, N0.getValueType()), Cond);
2235      if (N0.getOperand(1) == N1) {
2236        if (DAG.isCommutativeBinOp(N0.getOpcode()))
2237          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2238                          DAG.getConstant(0, N0.getValueType()), Cond);
2239        else if (N0.getNode()->hasOneUse()) {
2240          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2241          // (Z-X) == X  --> Z == X<<1
2242          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
2243                                     N1,
2244                                     DAG.getConstant(1, getShiftAmountTy()));
2245          if (!DCI.isCalledByLegalizer())
2246            DCI.AddToWorklist(SH.getNode());
2247          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2248        }
2249      }
2250    }
2251
2252    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2253        N1.getOpcode() == ISD::XOR) {
2254      // Simplify  X == (X+Z) -->  Z == 0
2255      if (N1.getOperand(0) == N0) {
2256        return DAG.getSetCC(dl, VT, N1.getOperand(1),
2257                        DAG.getConstant(0, N1.getValueType()), Cond);
2258      } else if (N1.getOperand(1) == N0) {
2259        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2260          return DAG.getSetCC(dl, VT, N1.getOperand(0),
2261                          DAG.getConstant(0, N1.getValueType()), Cond);
2262        } else if (N1.getNode()->hasOneUse()) {
2263          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2264          // X == (Z-X)  --> X<<1 == Z
2265          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2266                                     DAG.getConstant(1, getShiftAmountTy()));
2267          if (!DCI.isCalledByLegalizer())
2268            DCI.AddToWorklist(SH.getNode());
2269          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2270        }
2271      }
2272    }
2273
2274    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2275    // Note that where y is variable and is known to have at most
2276    // one bit set (for example, if it is z&1) we cannot do this;
2277    // the expressions are not equivalent when y==0.
2278    if (N0.getOpcode() == ISD::AND)
2279      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2280        if (ValueHasExactlyOneBitSet(N1, DAG)) {
2281          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2282          SDValue Zero = DAG.getConstant(0, N1.getValueType());
2283          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2284        }
2285      }
2286    if (N1.getOpcode() == ISD::AND)
2287      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2288        if (ValueHasExactlyOneBitSet(N0, DAG)) {
2289          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2290          SDValue Zero = DAG.getConstant(0, N0.getValueType());
2291          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2292        }
2293      }
2294  }
2295
2296  // Fold away ALL boolean setcc's.
2297  SDValue Temp;
2298  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2299    switch (Cond) {
2300    default: llvm_unreachable("Unknown integer setcc!");
2301    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2302      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2303      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2304      if (!DCI.isCalledByLegalizer())
2305        DCI.AddToWorklist(Temp.getNode());
2306      break;
2307    case ISD::SETNE:  // X != Y   -->  (X^Y)
2308      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2309      break;
2310    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2311    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2312      Temp = DAG.getNOT(dl, N0, MVT::i1);
2313      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2314      if (!DCI.isCalledByLegalizer())
2315        DCI.AddToWorklist(Temp.getNode());
2316      break;
2317    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2318    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2319      Temp = DAG.getNOT(dl, N1, MVT::i1);
2320      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2321      if (!DCI.isCalledByLegalizer())
2322        DCI.AddToWorklist(Temp.getNode());
2323      break;
2324    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2325    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2326      Temp = DAG.getNOT(dl, N0, MVT::i1);
2327      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2328      if (!DCI.isCalledByLegalizer())
2329        DCI.AddToWorklist(Temp.getNode());
2330      break;
2331    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2332    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2333      Temp = DAG.getNOT(dl, N1, MVT::i1);
2334      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2335      break;
2336    }
2337    if (VT != MVT::i1) {
2338      if (!DCI.isCalledByLegalizer())
2339        DCI.AddToWorklist(N0.getNode());
2340      // FIXME: If running after legalize, we probably can't do this.
2341      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2342    }
2343    return N0;
2344  }
2345
2346  // Could not fold it.
2347  return SDValue();
2348}
2349
2350/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2351/// node is a GlobalAddress + offset.
2352bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue* &GA,
2353                                    int64_t &Offset) const {
2354  if (isa<GlobalAddressSDNode>(N)) {
2355    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2356    GA = GASD->getGlobal();
2357    Offset += GASD->getOffset();
2358    return true;
2359  }
2360
2361  if (N->getOpcode() == ISD::ADD) {
2362    SDValue N1 = N->getOperand(0);
2363    SDValue N2 = N->getOperand(1);
2364    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2365      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2366      if (V) {
2367        Offset += V->getSExtValue();
2368        return true;
2369      }
2370    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2371      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2372      if (V) {
2373        Offset += V->getSExtValue();
2374        return true;
2375      }
2376    }
2377  }
2378  return false;
2379}
2380
2381
2382SDValue TargetLowering::
2383PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2384  // Default implementation: no optimization.
2385  return SDValue();
2386}
2387
2388//===----------------------------------------------------------------------===//
2389//  Inline Assembler Implementation Methods
2390//===----------------------------------------------------------------------===//
2391
2392
2393TargetLowering::ConstraintType
2394TargetLowering::getConstraintType(const std::string &Constraint) const {
2395  // FIXME: lots more standard ones to handle.
2396  if (Constraint.size() == 1) {
2397    switch (Constraint[0]) {
2398    default: break;
2399    case 'r': return C_RegisterClass;
2400    case 'm':    // memory
2401    case 'o':    // offsetable
2402    case 'V':    // not offsetable
2403      return C_Memory;
2404    case 'i':    // Simple Integer or Relocatable Constant
2405    case 'n':    // Simple Integer
2406    case 's':    // Relocatable Constant
2407    case 'X':    // Allow ANY value.
2408    case 'I':    // Target registers.
2409    case 'J':
2410    case 'K':
2411    case 'L':
2412    case 'M':
2413    case 'N':
2414    case 'O':
2415    case 'P':
2416      return C_Other;
2417    }
2418  }
2419
2420  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2421      Constraint[Constraint.size()-1] == '}')
2422    return C_Register;
2423  return C_Unknown;
2424}
2425
2426/// LowerXConstraint - try to replace an X constraint, which matches anything,
2427/// with another that has more specific requirements based on the type of the
2428/// corresponding operand.
2429const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2430  if (ConstraintVT.isInteger())
2431    return "r";
2432  if (ConstraintVT.isFloatingPoint())
2433    return "f";      // works for many targets
2434  return 0;
2435}
2436
2437/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2438/// vector.  If it is invalid, don't add anything to Ops.
2439void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2440                                                  char ConstraintLetter,
2441                                                  std::vector<SDValue> &Ops,
2442                                                  SelectionDAG &DAG) const {
2443  switch (ConstraintLetter) {
2444  default: break;
2445  case 'X':     // Allows any operand; labels (basic block) use this.
2446    if (Op.getOpcode() == ISD::BasicBlock) {
2447      Ops.push_back(Op);
2448      return;
2449    }
2450    // fall through
2451  case 'i':    // Simple Integer or Relocatable Constant
2452  case 'n':    // Simple Integer
2453  case 's': {  // Relocatable Constant
2454    // These operands are interested in values of the form (GV+C), where C may
2455    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2456    // is possible and fine if either GV or C are missing.
2457    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2458    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2459
2460    // If we have "(add GV, C)", pull out GV/C
2461    if (Op.getOpcode() == ISD::ADD) {
2462      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2463      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2464      if (C == 0 || GA == 0) {
2465        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2466        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2467      }
2468      if (C == 0 || GA == 0)
2469        C = 0, GA = 0;
2470    }
2471
2472    // If we find a valid operand, map to the TargetXXX version so that the
2473    // value itself doesn't get selected.
2474    if (GA) {   // Either &GV   or   &GV+C
2475      if (ConstraintLetter != 'n') {
2476        int64_t Offs = GA->getOffset();
2477        if (C) Offs += C->getZExtValue();
2478        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2479                                                 C ? C->getDebugLoc() : DebugLoc(),
2480                                                 Op.getValueType(), Offs));
2481        return;
2482      }
2483    }
2484    if (C) {   // just C, no GV.
2485      // Simple constants are not allowed for 's'.
2486      if (ConstraintLetter != 's') {
2487        // gcc prints these as sign extended.  Sign extend value to 64 bits
2488        // now; without this it would get ZExt'd later in
2489        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2490        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2491                                            MVT::i64));
2492        return;
2493      }
2494    }
2495    break;
2496  }
2497  }
2498}
2499
2500std::vector<unsigned> TargetLowering::
2501getRegClassForInlineAsmConstraint(const std::string &Constraint,
2502                                  EVT VT) const {
2503  return std::vector<unsigned>();
2504}
2505
2506
2507std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2508getRegForInlineAsmConstraint(const std::string &Constraint,
2509                             EVT VT) const {
2510  if (Constraint[0] != '{')
2511    return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
2512  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2513
2514  // Remove the braces from around the name.
2515  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2516
2517  // Figure out which register class contains this reg.
2518  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2519  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2520       E = RI->regclass_end(); RCI != E; ++RCI) {
2521    const TargetRegisterClass *RC = *RCI;
2522
2523    // If none of the value types for this register class are valid, we
2524    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2525    bool isLegal = false;
2526    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2527         I != E; ++I) {
2528      if (isTypeLegal(*I)) {
2529        isLegal = true;
2530        break;
2531      }
2532    }
2533
2534    if (!isLegal) continue;
2535
2536    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2537         I != E; ++I) {
2538      if (RegName.equals_lower(RI->getName(*I)))
2539        return std::make_pair(*I, RC);
2540    }
2541  }
2542
2543  return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2544}
2545
2546//===----------------------------------------------------------------------===//
2547// Constraint Selection.
2548
2549/// isMatchingInputConstraint - Return true of this is an input operand that is
2550/// a matching constraint like "4".
2551bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2552  assert(!ConstraintCode.empty() && "No known constraint!");
2553  return isdigit(ConstraintCode[0]);
2554}
2555
2556/// getMatchedOperand - If this is an input matching constraint, this method
2557/// returns the output operand it matches.
2558unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2559  assert(!ConstraintCode.empty() && "No known constraint!");
2560  return atoi(ConstraintCode.c_str());
2561}
2562
2563
2564/// getConstraintGenerality - Return an integer indicating how general CT
2565/// is.
2566static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2567  switch (CT) {
2568  default: llvm_unreachable("Unknown constraint type!");
2569  case TargetLowering::C_Other:
2570  case TargetLowering::C_Unknown:
2571    return 0;
2572  case TargetLowering::C_Register:
2573    return 1;
2574  case TargetLowering::C_RegisterClass:
2575    return 2;
2576  case TargetLowering::C_Memory:
2577    return 3;
2578  }
2579}
2580
2581/// ChooseConstraint - If there are multiple different constraints that we
2582/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2583/// This is somewhat tricky: constraints fall into four classes:
2584///    Other         -> immediates and magic values
2585///    Register      -> one specific register
2586///    RegisterClass -> a group of regs
2587///    Memory        -> memory
2588/// Ideally, we would pick the most specific constraint possible: if we have
2589/// something that fits into a register, we would pick it.  The problem here
2590/// is that if we have something that could either be in a register or in
2591/// memory that use of the register could cause selection of *other*
2592/// operands to fail: they might only succeed if we pick memory.  Because of
2593/// this the heuristic we use is:
2594///
2595///  1) If there is an 'other' constraint, and if the operand is valid for
2596///     that constraint, use it.  This makes us take advantage of 'i'
2597///     constraints when available.
2598///  2) Otherwise, pick the most general constraint present.  This prefers
2599///     'm' over 'r', for example.
2600///
2601static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2602                             const TargetLowering &TLI,
2603                             SDValue Op, SelectionDAG *DAG) {
2604  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2605  unsigned BestIdx = 0;
2606  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2607  int BestGenerality = -1;
2608
2609  // Loop over the options, keeping track of the most general one.
2610  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2611    TargetLowering::ConstraintType CType =
2612      TLI.getConstraintType(OpInfo.Codes[i]);
2613
2614    // If this is an 'other' constraint, see if the operand is valid for it.
2615    // For example, on X86 we might have an 'rI' constraint.  If the operand
2616    // is an integer in the range [0..31] we want to use I (saving a load
2617    // of a register), otherwise we must use 'r'.
2618    if (CType == TargetLowering::C_Other && Op.getNode()) {
2619      assert(OpInfo.Codes[i].size() == 1 &&
2620             "Unhandled multi-letter 'other' constraint");
2621      std::vector<SDValue> ResultOps;
2622      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0],
2623                                       ResultOps, *DAG);
2624      if (!ResultOps.empty()) {
2625        BestType = CType;
2626        BestIdx = i;
2627        break;
2628      }
2629    }
2630
2631    // Things with matching constraints can only be registers, per gcc
2632    // documentation.  This mainly affects "g" constraints.
2633    if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
2634      continue;
2635
2636    // This constraint letter is more general than the previous one, use it.
2637    int Generality = getConstraintGenerality(CType);
2638    if (Generality > BestGenerality) {
2639      BestType = CType;
2640      BestIdx = i;
2641      BestGenerality = Generality;
2642    }
2643  }
2644
2645  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2646  OpInfo.ConstraintType = BestType;
2647}
2648
2649/// ComputeConstraintToUse - Determines the constraint code and constraint
2650/// type to use for the specific AsmOperandInfo, setting
2651/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2652void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2653                                            SDValue Op,
2654                                            SelectionDAG *DAG) const {
2655  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2656
2657  // Single-letter constraints ('r') are very common.
2658  if (OpInfo.Codes.size() == 1) {
2659    OpInfo.ConstraintCode = OpInfo.Codes[0];
2660    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2661  } else {
2662    ChooseConstraint(OpInfo, *this, Op, DAG);
2663  }
2664
2665  // 'X' matches anything.
2666  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2667    // Labels and constants are handled elsewhere ('X' is the only thing
2668    // that matches labels).  For Functions, the type here is the type of
2669    // the result, which is not what we want to look at; leave them alone.
2670    Value *v = OpInfo.CallOperandVal;
2671    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2672      OpInfo.CallOperandVal = v;
2673      return;
2674    }
2675
2676    // Otherwise, try to resolve it to something we know about by looking at
2677    // the actual operand type.
2678    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2679      OpInfo.ConstraintCode = Repl;
2680      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2681    }
2682  }
2683}
2684
2685//===----------------------------------------------------------------------===//
2686//  Loop Strength Reduction hooks
2687//===----------------------------------------------------------------------===//
2688
2689/// isLegalAddressingMode - Return true if the addressing mode represented
2690/// by AM is legal for this target, for a load/store of the specified type.
2691bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2692                                           const Type *Ty) const {
2693  // The default implementation of this implements a conservative RISCy, r+r and
2694  // r+i addr mode.
2695
2696  // Allows a sign-extended 16-bit immediate field.
2697  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2698    return false;
2699
2700  // No global is ever allowed as a base.
2701  if (AM.BaseGV)
2702    return false;
2703
2704  // Only support r+r,
2705  switch (AM.Scale) {
2706  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2707    break;
2708  case 1:
2709    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2710      return false;
2711    // Otherwise we have r+r or r+i.
2712    break;
2713  case 2:
2714    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2715      return false;
2716    // Allow 2*r as r+r.
2717    break;
2718  }
2719
2720  return true;
2721}
2722
2723/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2724/// return a DAG expression to select that will generate the same value by
2725/// multiplying by a magic number.  See:
2726/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2727SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2728                                  std::vector<SDNode*>* Created) const {
2729  EVT VT = N->getValueType(0);
2730  DebugLoc dl= N->getDebugLoc();
2731
2732  // Check to see if we can do this.
2733  // FIXME: We should be more aggressive here.
2734  if (!isTypeLegal(VT))
2735    return SDValue();
2736
2737  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2738  APInt::ms magics = d.magic();
2739
2740  // Multiply the numerator (operand 0) by the magic value
2741  // FIXME: We should support doing a MUL in a wider type
2742  SDValue Q;
2743  if (isOperationLegalOrCustom(ISD::MULHS, VT))
2744    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2745                    DAG.getConstant(magics.m, VT));
2746  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2747    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2748                              N->getOperand(0),
2749                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2750  else
2751    return SDValue();       // No mulhs or equvialent
2752  // If d > 0 and m < 0, add the numerator
2753  if (d.isStrictlyPositive() && magics.m.isNegative()) {
2754    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2755    if (Created)
2756      Created->push_back(Q.getNode());
2757  }
2758  // If d < 0 and m > 0, subtract the numerator.
2759  if (d.isNegative() && magics.m.isStrictlyPositive()) {
2760    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2761    if (Created)
2762      Created->push_back(Q.getNode());
2763  }
2764  // Shift right algebraic if shift value is nonzero
2765  if (magics.s > 0) {
2766    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2767                    DAG.getConstant(magics.s, getShiftAmountTy()));
2768    if (Created)
2769      Created->push_back(Q.getNode());
2770  }
2771  // Extract the sign bit and add it to the quotient
2772  SDValue T =
2773    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2774                                                 getShiftAmountTy()));
2775  if (Created)
2776    Created->push_back(T.getNode());
2777  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2778}
2779
2780/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2781/// return a DAG expression to select that will generate the same value by
2782/// multiplying by a magic number.  See:
2783/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2784SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2785                                  std::vector<SDNode*>* Created) const {
2786  EVT VT = N->getValueType(0);
2787  DebugLoc dl = N->getDebugLoc();
2788
2789  // Check to see if we can do this.
2790  // FIXME: We should be more aggressive here.
2791  if (!isTypeLegal(VT))
2792    return SDValue();
2793
2794  // FIXME: We should use a narrower constant when the upper
2795  // bits are known to be zero.
2796  ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
2797  APInt::mu magics = N1C->getAPIntValue().magicu();
2798
2799  // Multiply the numerator (operand 0) by the magic value
2800  // FIXME: We should support doing a MUL in a wider type
2801  SDValue Q;
2802  if (isOperationLegalOrCustom(ISD::MULHU, VT))
2803    Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
2804                    DAG.getConstant(magics.m, VT));
2805  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2806    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
2807                              N->getOperand(0),
2808                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2809  else
2810    return SDValue();       // No mulhu or equvialent
2811  if (Created)
2812    Created->push_back(Q.getNode());
2813
2814  if (magics.a == 0) {
2815    assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
2816           "We shouldn't generate an undefined shift!");
2817    return DAG.getNode(ISD::SRL, dl, VT, Q,
2818                       DAG.getConstant(magics.s, getShiftAmountTy()));
2819  } else {
2820    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2821    if (Created)
2822      Created->push_back(NPQ.getNode());
2823    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2824                      DAG.getConstant(1, getShiftAmountTy()));
2825    if (Created)
2826      Created->push_back(NPQ.getNode());
2827    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2828    if (Created)
2829      Created->push_back(NPQ.getNode());
2830    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2831                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2832  }
2833}
2834