TargetLowering.cpp revision 0a9481f44fe4fc76e59109992940a76b2a3f9b3b
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/MC/MCAsmInfo.h"
16#include "llvm/MC/MCExpr.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetLoweringObjectFile.h"
19#include "llvm/Target/TargetMachine.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/CodeGen/Analysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineJumpTableInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/MathExtras.h"
31#include <cctype>
32using namespace llvm;
33
34namespace llvm {
35TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
36  bool isLocal = GV->hasLocalLinkage();
37  bool isDeclaration = GV->isDeclaration();
38  // FIXME: what should we do for protected and internal visibility?
39  // For variables, is internal different from hidden?
40  bool isHidden = GV->hasHiddenVisibility();
41
42  if (reloc == Reloc::PIC_) {
43    if (isLocal || isHidden)
44      return TLSModel::LocalDynamic;
45    else
46      return TLSModel::GeneralDynamic;
47  } else {
48    if (!isDeclaration || isHidden)
49      return TLSModel::LocalExec;
50    else
51      return TLSModel::InitialExec;
52  }
53}
54}
55
56/// InitLibcallNames - Set default libcall names.
57///
58static void InitLibcallNames(const char **Names) {
59  Names[RTLIB::SHL_I16] = "__ashlhi3";
60  Names[RTLIB::SHL_I32] = "__ashlsi3";
61  Names[RTLIB::SHL_I64] = "__ashldi3";
62  Names[RTLIB::SHL_I128] = "__ashlti3";
63  Names[RTLIB::SRL_I16] = "__lshrhi3";
64  Names[RTLIB::SRL_I32] = "__lshrsi3";
65  Names[RTLIB::SRL_I64] = "__lshrdi3";
66  Names[RTLIB::SRL_I128] = "__lshrti3";
67  Names[RTLIB::SRA_I16] = "__ashrhi3";
68  Names[RTLIB::SRA_I32] = "__ashrsi3";
69  Names[RTLIB::SRA_I64] = "__ashrdi3";
70  Names[RTLIB::SRA_I128] = "__ashrti3";
71  Names[RTLIB::MUL_I8] = "__mulqi3";
72  Names[RTLIB::MUL_I16] = "__mulhi3";
73  Names[RTLIB::MUL_I32] = "__mulsi3";
74  Names[RTLIB::MUL_I64] = "__muldi3";
75  Names[RTLIB::MUL_I128] = "__multi3";
76  Names[RTLIB::SDIV_I8] = "__divqi3";
77  Names[RTLIB::SDIV_I16] = "__divhi3";
78  Names[RTLIB::SDIV_I32] = "__divsi3";
79  Names[RTLIB::SDIV_I64] = "__divdi3";
80  Names[RTLIB::SDIV_I128] = "__divti3";
81  Names[RTLIB::UDIV_I8] = "__udivqi3";
82  Names[RTLIB::UDIV_I16] = "__udivhi3";
83  Names[RTLIB::UDIV_I32] = "__udivsi3";
84  Names[RTLIB::UDIV_I64] = "__udivdi3";
85  Names[RTLIB::UDIV_I128] = "__udivti3";
86  Names[RTLIB::SREM_I8] = "__modqi3";
87  Names[RTLIB::SREM_I16] = "__modhi3";
88  Names[RTLIB::SREM_I32] = "__modsi3";
89  Names[RTLIB::SREM_I64] = "__moddi3";
90  Names[RTLIB::SREM_I128] = "__modti3";
91  Names[RTLIB::UREM_I8] = "__umodqi3";
92  Names[RTLIB::UREM_I16] = "__umodhi3";
93  Names[RTLIB::UREM_I32] = "__umodsi3";
94  Names[RTLIB::UREM_I64] = "__umoddi3";
95  Names[RTLIB::UREM_I128] = "__umodti3";
96  Names[RTLIB::NEG_I32] = "__negsi2";
97  Names[RTLIB::NEG_I64] = "__negdi2";
98  Names[RTLIB::ADD_F32] = "__addsf3";
99  Names[RTLIB::ADD_F64] = "__adddf3";
100  Names[RTLIB::ADD_F80] = "__addxf3";
101  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
102  Names[RTLIB::SUB_F32] = "__subsf3";
103  Names[RTLIB::SUB_F64] = "__subdf3";
104  Names[RTLIB::SUB_F80] = "__subxf3";
105  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
106  Names[RTLIB::MUL_F32] = "__mulsf3";
107  Names[RTLIB::MUL_F64] = "__muldf3";
108  Names[RTLIB::MUL_F80] = "__mulxf3";
109  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
110  Names[RTLIB::DIV_F32] = "__divsf3";
111  Names[RTLIB::DIV_F64] = "__divdf3";
112  Names[RTLIB::DIV_F80] = "__divxf3";
113  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
114  Names[RTLIB::REM_F32] = "fmodf";
115  Names[RTLIB::REM_F64] = "fmod";
116  Names[RTLIB::REM_F80] = "fmodl";
117  Names[RTLIB::REM_PPCF128] = "fmodl";
118  Names[RTLIB::POWI_F32] = "__powisf2";
119  Names[RTLIB::POWI_F64] = "__powidf2";
120  Names[RTLIB::POWI_F80] = "__powixf2";
121  Names[RTLIB::POWI_PPCF128] = "__powitf2";
122  Names[RTLIB::SQRT_F32] = "sqrtf";
123  Names[RTLIB::SQRT_F64] = "sqrt";
124  Names[RTLIB::SQRT_F80] = "sqrtl";
125  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
126  Names[RTLIB::LOG_F32] = "logf";
127  Names[RTLIB::LOG_F64] = "log";
128  Names[RTLIB::LOG_F80] = "logl";
129  Names[RTLIB::LOG_PPCF128] = "logl";
130  Names[RTLIB::LOG2_F32] = "log2f";
131  Names[RTLIB::LOG2_F64] = "log2";
132  Names[RTLIB::LOG2_F80] = "log2l";
133  Names[RTLIB::LOG2_PPCF128] = "log2l";
134  Names[RTLIB::LOG10_F32] = "log10f";
135  Names[RTLIB::LOG10_F64] = "log10";
136  Names[RTLIB::LOG10_F80] = "log10l";
137  Names[RTLIB::LOG10_PPCF128] = "log10l";
138  Names[RTLIB::EXP_F32] = "expf";
139  Names[RTLIB::EXP_F64] = "exp";
140  Names[RTLIB::EXP_F80] = "expl";
141  Names[RTLIB::EXP_PPCF128] = "expl";
142  Names[RTLIB::EXP2_F32] = "exp2f";
143  Names[RTLIB::EXP2_F64] = "exp2";
144  Names[RTLIB::EXP2_F80] = "exp2l";
145  Names[RTLIB::EXP2_PPCF128] = "exp2l";
146  Names[RTLIB::SIN_F32] = "sinf";
147  Names[RTLIB::SIN_F64] = "sin";
148  Names[RTLIB::SIN_F80] = "sinl";
149  Names[RTLIB::SIN_PPCF128] = "sinl";
150  Names[RTLIB::COS_F32] = "cosf";
151  Names[RTLIB::COS_F64] = "cos";
152  Names[RTLIB::COS_F80] = "cosl";
153  Names[RTLIB::COS_PPCF128] = "cosl";
154  Names[RTLIB::POW_F32] = "powf";
155  Names[RTLIB::POW_F64] = "pow";
156  Names[RTLIB::POW_F80] = "powl";
157  Names[RTLIB::POW_PPCF128] = "powl";
158  Names[RTLIB::CEIL_F32] = "ceilf";
159  Names[RTLIB::CEIL_F64] = "ceil";
160  Names[RTLIB::CEIL_F80] = "ceill";
161  Names[RTLIB::CEIL_PPCF128] = "ceill";
162  Names[RTLIB::TRUNC_F32] = "truncf";
163  Names[RTLIB::TRUNC_F64] = "trunc";
164  Names[RTLIB::TRUNC_F80] = "truncl";
165  Names[RTLIB::TRUNC_PPCF128] = "truncl";
166  Names[RTLIB::RINT_F32] = "rintf";
167  Names[RTLIB::RINT_F64] = "rint";
168  Names[RTLIB::RINT_F80] = "rintl";
169  Names[RTLIB::RINT_PPCF128] = "rintl";
170  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
171  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
172  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
173  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
174  Names[RTLIB::FLOOR_F32] = "floorf";
175  Names[RTLIB::FLOOR_F64] = "floor";
176  Names[RTLIB::FLOOR_F80] = "floorl";
177  Names[RTLIB::FLOOR_PPCF128] = "floorl";
178  Names[RTLIB::COPYSIGN_F32] = "copysignf";
179  Names[RTLIB::COPYSIGN_F64] = "copysign";
180  Names[RTLIB::COPYSIGN_F80] = "copysignl";
181  Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
182  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
183  Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
184  Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
185  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
186  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
187  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
188  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
189  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
190  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
191  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
192  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
193  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
194  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
195  Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
196  Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
197  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
198  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
199  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
200  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
201  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
202  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
203  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
204  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
205  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
206  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
207  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
208  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
209  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
210  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
211  Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
212  Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
213  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
214  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
215  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
216  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
217  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
218  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
219  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
220  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
221  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
222  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
223  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
224  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
225  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
226  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
227  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
228  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
229  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
230  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
231  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
232  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
233  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
234  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
235  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
236  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
237  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
238  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
239  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
240  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
241  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
242  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
243  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
244  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
245  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
246  Names[RTLIB::OEQ_F32] = "__eqsf2";
247  Names[RTLIB::OEQ_F64] = "__eqdf2";
248  Names[RTLIB::UNE_F32] = "__nesf2";
249  Names[RTLIB::UNE_F64] = "__nedf2";
250  Names[RTLIB::OGE_F32] = "__gesf2";
251  Names[RTLIB::OGE_F64] = "__gedf2";
252  Names[RTLIB::OLT_F32] = "__ltsf2";
253  Names[RTLIB::OLT_F64] = "__ltdf2";
254  Names[RTLIB::OLE_F32] = "__lesf2";
255  Names[RTLIB::OLE_F64] = "__ledf2";
256  Names[RTLIB::OGT_F32] = "__gtsf2";
257  Names[RTLIB::OGT_F64] = "__gtdf2";
258  Names[RTLIB::UO_F32] = "__unordsf2";
259  Names[RTLIB::UO_F64] = "__unorddf2";
260  Names[RTLIB::O_F32] = "__unordsf2";
261  Names[RTLIB::O_F64] = "__unorddf2";
262  Names[RTLIB::MEMCPY] = "memcpy";
263  Names[RTLIB::MEMMOVE] = "memmove";
264  Names[RTLIB::MEMSET] = "memset";
265  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
266  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
267  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
268  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
269  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
270  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
271  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
272  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
273  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
274  Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
275  Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
276  Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
277  Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
278  Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
279  Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
280  Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
281  Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
282  Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
283  Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
284  Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
285  Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
286  Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
287  Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
288  Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
289  Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
290  Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
291  Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
292  Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and-xor_4";
293  Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
294  Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
295  Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
296  Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
297  Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
298}
299
300/// InitLibcallCallingConvs - Set default libcall CallingConvs.
301///
302static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
303  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
304    CCs[i] = CallingConv::C;
305  }
306}
307
308/// getFPEXT - Return the FPEXT_*_* value for the given types, or
309/// UNKNOWN_LIBCALL if there is none.
310RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
311  if (OpVT == MVT::f32) {
312    if (RetVT == MVT::f64)
313      return FPEXT_F32_F64;
314  }
315
316  return UNKNOWN_LIBCALL;
317}
318
319/// getFPROUND - Return the FPROUND_*_* value for the given types, or
320/// UNKNOWN_LIBCALL if there is none.
321RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
322  if (RetVT == MVT::f32) {
323    if (OpVT == MVT::f64)
324      return FPROUND_F64_F32;
325    if (OpVT == MVT::f80)
326      return FPROUND_F80_F32;
327    if (OpVT == MVT::ppcf128)
328      return FPROUND_PPCF128_F32;
329  } else if (RetVT == MVT::f64) {
330    if (OpVT == MVT::f80)
331      return FPROUND_F80_F64;
332    if (OpVT == MVT::ppcf128)
333      return FPROUND_PPCF128_F64;
334  }
335
336  return UNKNOWN_LIBCALL;
337}
338
339/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
340/// UNKNOWN_LIBCALL if there is none.
341RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
342  if (OpVT == MVT::f32) {
343    if (RetVT == MVT::i8)
344      return FPTOSINT_F32_I8;
345    if (RetVT == MVT::i16)
346      return FPTOSINT_F32_I16;
347    if (RetVT == MVT::i32)
348      return FPTOSINT_F32_I32;
349    if (RetVT == MVT::i64)
350      return FPTOSINT_F32_I64;
351    if (RetVT == MVT::i128)
352      return FPTOSINT_F32_I128;
353  } else if (OpVT == MVT::f64) {
354    if (RetVT == MVT::i8)
355      return FPTOSINT_F64_I8;
356    if (RetVT == MVT::i16)
357      return FPTOSINT_F64_I16;
358    if (RetVT == MVT::i32)
359      return FPTOSINT_F64_I32;
360    if (RetVT == MVT::i64)
361      return FPTOSINT_F64_I64;
362    if (RetVT == MVT::i128)
363      return FPTOSINT_F64_I128;
364  } else if (OpVT == MVT::f80) {
365    if (RetVT == MVT::i32)
366      return FPTOSINT_F80_I32;
367    if (RetVT == MVT::i64)
368      return FPTOSINT_F80_I64;
369    if (RetVT == MVT::i128)
370      return FPTOSINT_F80_I128;
371  } else if (OpVT == MVT::ppcf128) {
372    if (RetVT == MVT::i32)
373      return FPTOSINT_PPCF128_I32;
374    if (RetVT == MVT::i64)
375      return FPTOSINT_PPCF128_I64;
376    if (RetVT == MVT::i128)
377      return FPTOSINT_PPCF128_I128;
378  }
379  return UNKNOWN_LIBCALL;
380}
381
382/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
383/// UNKNOWN_LIBCALL if there is none.
384RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
385  if (OpVT == MVT::f32) {
386    if (RetVT == MVT::i8)
387      return FPTOUINT_F32_I8;
388    if (RetVT == MVT::i16)
389      return FPTOUINT_F32_I16;
390    if (RetVT == MVT::i32)
391      return FPTOUINT_F32_I32;
392    if (RetVT == MVT::i64)
393      return FPTOUINT_F32_I64;
394    if (RetVT == MVT::i128)
395      return FPTOUINT_F32_I128;
396  } else if (OpVT == MVT::f64) {
397    if (RetVT == MVT::i8)
398      return FPTOUINT_F64_I8;
399    if (RetVT == MVT::i16)
400      return FPTOUINT_F64_I16;
401    if (RetVT == MVT::i32)
402      return FPTOUINT_F64_I32;
403    if (RetVT == MVT::i64)
404      return FPTOUINT_F64_I64;
405    if (RetVT == MVT::i128)
406      return FPTOUINT_F64_I128;
407  } else if (OpVT == MVT::f80) {
408    if (RetVT == MVT::i32)
409      return FPTOUINT_F80_I32;
410    if (RetVT == MVT::i64)
411      return FPTOUINT_F80_I64;
412    if (RetVT == MVT::i128)
413      return FPTOUINT_F80_I128;
414  } else if (OpVT == MVT::ppcf128) {
415    if (RetVT == MVT::i32)
416      return FPTOUINT_PPCF128_I32;
417    if (RetVT == MVT::i64)
418      return FPTOUINT_PPCF128_I64;
419    if (RetVT == MVT::i128)
420      return FPTOUINT_PPCF128_I128;
421  }
422  return UNKNOWN_LIBCALL;
423}
424
425/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
426/// UNKNOWN_LIBCALL if there is none.
427RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
428  if (OpVT == MVT::i32) {
429    if (RetVT == MVT::f32)
430      return SINTTOFP_I32_F32;
431    else if (RetVT == MVT::f64)
432      return SINTTOFP_I32_F64;
433    else if (RetVT == MVT::f80)
434      return SINTTOFP_I32_F80;
435    else if (RetVT == MVT::ppcf128)
436      return SINTTOFP_I32_PPCF128;
437  } else if (OpVT == MVT::i64) {
438    if (RetVT == MVT::f32)
439      return SINTTOFP_I64_F32;
440    else if (RetVT == MVT::f64)
441      return SINTTOFP_I64_F64;
442    else if (RetVT == MVT::f80)
443      return SINTTOFP_I64_F80;
444    else if (RetVT == MVT::ppcf128)
445      return SINTTOFP_I64_PPCF128;
446  } else if (OpVT == MVT::i128) {
447    if (RetVT == MVT::f32)
448      return SINTTOFP_I128_F32;
449    else if (RetVT == MVT::f64)
450      return SINTTOFP_I128_F64;
451    else if (RetVT == MVT::f80)
452      return SINTTOFP_I128_F80;
453    else if (RetVT == MVT::ppcf128)
454      return SINTTOFP_I128_PPCF128;
455  }
456  return UNKNOWN_LIBCALL;
457}
458
459/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
460/// UNKNOWN_LIBCALL if there is none.
461RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
462  if (OpVT == MVT::i32) {
463    if (RetVT == MVT::f32)
464      return UINTTOFP_I32_F32;
465    else if (RetVT == MVT::f64)
466      return UINTTOFP_I32_F64;
467    else if (RetVT == MVT::f80)
468      return UINTTOFP_I32_F80;
469    else if (RetVT == MVT::ppcf128)
470      return UINTTOFP_I32_PPCF128;
471  } else if (OpVT == MVT::i64) {
472    if (RetVT == MVT::f32)
473      return UINTTOFP_I64_F32;
474    else if (RetVT == MVT::f64)
475      return UINTTOFP_I64_F64;
476    else if (RetVT == MVT::f80)
477      return UINTTOFP_I64_F80;
478    else if (RetVT == MVT::ppcf128)
479      return UINTTOFP_I64_PPCF128;
480  } else if (OpVT == MVT::i128) {
481    if (RetVT == MVT::f32)
482      return UINTTOFP_I128_F32;
483    else if (RetVT == MVT::f64)
484      return UINTTOFP_I128_F64;
485    else if (RetVT == MVT::f80)
486      return UINTTOFP_I128_F80;
487    else if (RetVT == MVT::ppcf128)
488      return UINTTOFP_I128_PPCF128;
489  }
490  return UNKNOWN_LIBCALL;
491}
492
493/// InitCmpLibcallCCs - Set default comparison libcall CC.
494///
495static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
496  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
497  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
498  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
499  CCs[RTLIB::UNE_F32] = ISD::SETNE;
500  CCs[RTLIB::UNE_F64] = ISD::SETNE;
501  CCs[RTLIB::OGE_F32] = ISD::SETGE;
502  CCs[RTLIB::OGE_F64] = ISD::SETGE;
503  CCs[RTLIB::OLT_F32] = ISD::SETLT;
504  CCs[RTLIB::OLT_F64] = ISD::SETLT;
505  CCs[RTLIB::OLE_F32] = ISD::SETLE;
506  CCs[RTLIB::OLE_F64] = ISD::SETLE;
507  CCs[RTLIB::OGT_F32] = ISD::SETGT;
508  CCs[RTLIB::OGT_F64] = ISD::SETGT;
509  CCs[RTLIB::UO_F32] = ISD::SETNE;
510  CCs[RTLIB::UO_F64] = ISD::SETNE;
511  CCs[RTLIB::O_F32] = ISD::SETEQ;
512  CCs[RTLIB::O_F64] = ISD::SETEQ;
513}
514
515/// NOTE: The constructor takes ownership of TLOF.
516TargetLowering::TargetLowering(const TargetMachine &tm,
517                               const TargetLoweringObjectFile *tlof)
518  : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
519  // All operations default to being supported.
520  memset(OpActions, 0, sizeof(OpActions));
521  memset(LoadExtActions, 0, sizeof(LoadExtActions));
522  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
523  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
524  memset(CondCodeActions, 0, sizeof(CondCodeActions));
525
526  // Set default actions for various operations.
527  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
528    // Default all indexed load / store to expand.
529    for (unsigned IM = (unsigned)ISD::PRE_INC;
530         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
531      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
532      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
533    }
534
535    // These operations default to expand.
536    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
537    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
538  }
539
540  // Most targets ignore the @llvm.prefetch intrinsic.
541  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
542
543  // ConstantFP nodes default to expand.  Targets can either change this to
544  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
545  // to optimize expansions for certain constants.
546  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
547  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
548  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
549
550  // These library functions default to expand.
551  setOperationAction(ISD::FLOG , MVT::f64, Expand);
552  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
553  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
554  setOperationAction(ISD::FEXP , MVT::f64, Expand);
555  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
556  setOperationAction(ISD::FLOG , MVT::f32, Expand);
557  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
558  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
559  setOperationAction(ISD::FEXP , MVT::f32, Expand);
560  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
561
562  // Default ISD::TRAP to expand (which turns it into abort).
563  setOperationAction(ISD::TRAP, MVT::Other, Expand);
564
565  IsLittleEndian = TD->isLittleEndian();
566  ShiftAmountTy = PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
567  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
568  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
569  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
570  maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize
571    = maxStoresPerMemmoveOptSize = 4;
572  benefitFromCodePlacementOpt = false;
573  UseUnderscoreSetJmp = false;
574  UseUnderscoreLongJmp = false;
575  SelectIsExpensive = false;
576  IntDivIsCheap = false;
577  Pow2DivIsCheap = false;
578  JumpIsExpensive = false;
579  StackPointerRegisterToSaveRestore = 0;
580  ExceptionPointerRegister = 0;
581  ExceptionSelectorRegister = 0;
582  BooleanContents = UndefinedBooleanContent;
583  SchedPreferenceInfo = Sched::Latency;
584  JumpBufSize = 0;
585  JumpBufAlignment = 0;
586  PrefLoopAlignment = 0;
587  MinStackArgumentAlignment = 1;
588  ShouldFoldAtomicFences = false;
589
590  InitLibcallNames(LibcallRoutineNames);
591  InitCmpLibcallCCs(CmpLibcallCCs);
592  InitLibcallCallingConvs(LibcallCallingConvs);
593}
594
595TargetLowering::~TargetLowering() {
596  delete &TLOF;
597}
598
599/// canOpTrap - Returns true if the operation can trap for the value type.
600/// VT must be a legal type.
601bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
602  assert(isTypeLegal(VT));
603  switch (Op) {
604  default:
605    return false;
606  case ISD::FDIV:
607  case ISD::FREM:
608  case ISD::SDIV:
609  case ISD::UDIV:
610  case ISD::SREM:
611  case ISD::UREM:
612    return true;
613  }
614}
615
616
617static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
618                                          unsigned &NumIntermediates,
619                                          EVT &RegisterVT,
620                                          TargetLowering *TLI) {
621  // Figure out the right, legal destination reg to copy into.
622  unsigned NumElts = VT.getVectorNumElements();
623  MVT EltTy = VT.getVectorElementType();
624
625  unsigned NumVectorRegs = 1;
626
627  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
628  // could break down into LHS/RHS like LegalizeDAG does.
629  if (!isPowerOf2_32(NumElts)) {
630    NumVectorRegs = NumElts;
631    NumElts = 1;
632  }
633
634  // Divide the input until we get to a supported size.  This will always
635  // end with a scalar if the target doesn't support vectors.
636  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
637    NumElts >>= 1;
638    NumVectorRegs <<= 1;
639  }
640
641  NumIntermediates = NumVectorRegs;
642
643  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
644  if (!TLI->isTypeLegal(NewVT))
645    NewVT = EltTy;
646  IntermediateVT = NewVT;
647
648  EVT DestVT = TLI->getRegisterType(NewVT);
649  RegisterVT = DestVT;
650  if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
651    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
652
653  // Otherwise, promotion or legal types use the same number of registers as
654  // the vector decimated to the appropriate level.
655  return NumVectorRegs;
656}
657
658/// isLegalRC - Return true if the value types that can be represented by the
659/// specified register class are all legal.
660bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const {
661  for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
662       I != E; ++I) {
663    if (isTypeLegal(*I))
664      return true;
665  }
666  return false;
667}
668
669/// hasLegalSuperRegRegClasses - Return true if the specified register class
670/// has one or more super-reg register classes that are legal.
671bool
672TargetLowering::hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const{
673  if (*RC->superregclasses_begin() == 0)
674    return false;
675  for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
676         E = RC->superregclasses_end(); I != E; ++I) {
677    const TargetRegisterClass *RRC = *I;
678    if (isLegalRC(RRC))
679      return true;
680  }
681  return false;
682}
683
684/// findRepresentativeClass - Return the largest legal super-reg register class
685/// of the register class for the specified type and its associated "cost".
686std::pair<const TargetRegisterClass*, uint8_t>
687TargetLowering::findRepresentativeClass(EVT VT) const {
688  const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
689  if (!RC)
690    return std::make_pair(RC, 0);
691  const TargetRegisterClass *BestRC = RC;
692  for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
693         E = RC->superregclasses_end(); I != E; ++I) {
694    const TargetRegisterClass *RRC = *I;
695    if (RRC->isASubClass() || !isLegalRC(RRC))
696      continue;
697    if (!hasLegalSuperRegRegClasses(RRC))
698      return std::make_pair(RRC, 1);
699    BestRC = RRC;
700  }
701  return std::make_pair(BestRC, 1);
702}
703
704
705/// computeRegisterProperties - Once all of the register classes are added,
706/// this allows us to compute derived properties we expose.
707void TargetLowering::computeRegisterProperties() {
708  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
709         "Too many value types for ValueTypeActions to hold!");
710
711  // Everything defaults to needing one register.
712  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
713    NumRegistersForVT[i] = 1;
714    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
715  }
716  // ...except isVoid, which doesn't need any registers.
717  NumRegistersForVT[MVT::isVoid] = 0;
718
719  // Find the largest integer register class.
720  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
721  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
722    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
723
724  // Every integer value type larger than this largest register takes twice as
725  // many registers to represent as the previous ValueType.
726  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
727    EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
728    if (!ExpandedVT.isInteger())
729      break;
730    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
731    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
732    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
733    ValueTypeActions.setTypeAction(ExpandedVT, Expand);
734  }
735
736  // Inspect all of the ValueType's smaller than the largest integer
737  // register to see which ones need promotion.
738  unsigned LegalIntReg = LargestIntReg;
739  for (unsigned IntReg = LargestIntReg - 1;
740       IntReg >= (unsigned)MVT::i1; --IntReg) {
741    EVT IVT = (MVT::SimpleValueType)IntReg;
742    if (isTypeLegal(IVT)) {
743      LegalIntReg = IntReg;
744    } else {
745      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
746        (MVT::SimpleValueType)LegalIntReg;
747      ValueTypeActions.setTypeAction(IVT, Promote);
748    }
749  }
750
751  // ppcf128 type is really two f64's.
752  if (!isTypeLegal(MVT::ppcf128)) {
753    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
754    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
755    TransformToType[MVT::ppcf128] = MVT::f64;
756    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
757  }
758
759  // Decide how to handle f64. If the target does not have native f64 support,
760  // expand it to i64 and we will be generating soft float library calls.
761  if (!isTypeLegal(MVT::f64)) {
762    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
763    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
764    TransformToType[MVT::f64] = MVT::i64;
765    ValueTypeActions.setTypeAction(MVT::f64, Expand);
766  }
767
768  // Decide how to handle f32. If the target does not have native support for
769  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
770  if (!isTypeLegal(MVT::f32)) {
771    if (isTypeLegal(MVT::f64)) {
772      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
773      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
774      TransformToType[MVT::f32] = MVT::f64;
775      ValueTypeActions.setTypeAction(MVT::f32, Promote);
776    } else {
777      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
778      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
779      TransformToType[MVT::f32] = MVT::i32;
780      ValueTypeActions.setTypeAction(MVT::f32, Expand);
781    }
782  }
783
784  // Loop over all of the vector value types to see which need transformations.
785  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
786       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
787    MVT VT = (MVT::SimpleValueType)i;
788    if (isTypeLegal(VT)) continue;
789
790    // Determine if there is a legal wider type.  If so, we should promote to
791    // that wider vector type.
792    EVT EltVT = VT.getVectorElementType();
793    unsigned NElts = VT.getVectorNumElements();
794    if (NElts != 1) {
795      bool IsLegalWiderType = false;
796      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
797        EVT SVT = (MVT::SimpleValueType)nVT;
798        if (SVT.getVectorElementType() == EltVT &&
799            SVT.getVectorNumElements() > NElts &&
800            isTypeLegal(SVT)) {
801          TransformToType[i] = SVT;
802          RegisterTypeForVT[i] = SVT;
803          NumRegistersForVT[i] = 1;
804          ValueTypeActions.setTypeAction(VT, Promote);
805          IsLegalWiderType = true;
806          break;
807        }
808      }
809      if (IsLegalWiderType) continue;
810    }
811
812    MVT IntermediateVT;
813    EVT RegisterVT;
814    unsigned NumIntermediates;
815    NumRegistersForVT[i] =
816      getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
817                                RegisterVT, this);
818    RegisterTypeForVT[i] = RegisterVT;
819
820    EVT NVT = VT.getPow2VectorType();
821    if (NVT == VT) {
822      // Type is already a power of 2.  The default action is to split.
823      TransformToType[i] = MVT::Other;
824      ValueTypeActions.setTypeAction(VT, Expand);
825    } else {
826      TransformToType[i] = NVT;
827      ValueTypeActions.setTypeAction(VT, Promote);
828    }
829  }
830
831  // Determine the 'representative' register class for each value type.
832  // An representative register class is the largest (meaning one which is
833  // not a sub-register class / subreg register class) legal register class for
834  // a group of value types. For example, on i386, i8, i16, and i32
835  // representative would be GR32; while on x86_64 it's GR64.
836  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
837    const TargetRegisterClass* RRC;
838    uint8_t Cost;
839    tie(RRC, Cost) =  findRepresentativeClass((MVT::SimpleValueType)i);
840    RepRegClassForVT[i] = RRC;
841    RepRegClassCostForVT[i] = Cost;
842  }
843}
844
845const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
846  return NULL;
847}
848
849
850MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
851  return PointerTy.SimpleTy;
852}
853
854MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
855  return MVT::i32; // return the default value
856}
857
858/// getVectorTypeBreakdown - Vector types are broken down into some number of
859/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
860/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
861/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
862///
863/// This method returns the number of registers needed, and the VT for each
864/// register.  It also returns the VT and quantity of the intermediate values
865/// before they are promoted/expanded.
866///
867unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
868                                                EVT &IntermediateVT,
869                                                unsigned &NumIntermediates,
870                                                EVT &RegisterVT) const {
871  unsigned NumElts = VT.getVectorNumElements();
872
873  // If there is a wider vector type with the same element type as this one,
874  // we should widen to that legal vector type.  This handles things like
875  // <2 x float> -> <4 x float>.
876  if (NumElts != 1 && getTypeAction(VT) == Promote) {
877    RegisterVT = getTypeToTransformTo(Context, VT);
878    if (isTypeLegal(RegisterVT)) {
879      IntermediateVT = RegisterVT;
880      NumIntermediates = 1;
881      return 1;
882    }
883  }
884
885  // Figure out the right, legal destination reg to copy into.
886  EVT EltTy = VT.getVectorElementType();
887
888  unsigned NumVectorRegs = 1;
889
890  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
891  // could break down into LHS/RHS like LegalizeDAG does.
892  if (!isPowerOf2_32(NumElts)) {
893    NumVectorRegs = NumElts;
894    NumElts = 1;
895  }
896
897  // Divide the input until we get to a supported size.  This will always
898  // end with a scalar if the target doesn't support vectors.
899  while (NumElts > 1 && !isTypeLegal(
900                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
901    NumElts >>= 1;
902    NumVectorRegs <<= 1;
903  }
904
905  NumIntermediates = NumVectorRegs;
906
907  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
908  if (!isTypeLegal(NewVT))
909    NewVT = EltTy;
910  IntermediateVT = NewVT;
911
912  EVT DestVT = getRegisterType(Context, NewVT);
913  RegisterVT = DestVT;
914  if (DestVT.bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
915    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
916
917  // Otherwise, promotion or legal types use the same number of registers as
918  // the vector decimated to the appropriate level.
919  return NumVectorRegs;
920}
921
922/// Get the EVTs and ArgFlags collections that represent the legalized return
923/// type of the given function.  This does not require a DAG or a return value,
924/// and is suitable for use before any DAGs for the function are constructed.
925/// TODO: Move this out of TargetLowering.cpp.
926void llvm::GetReturnInfo(const Type* ReturnType, Attributes attr,
927                         SmallVectorImpl<ISD::OutputArg> &Outs,
928                         const TargetLowering &TLI,
929                         SmallVectorImpl<uint64_t> *Offsets) {
930  SmallVector<EVT, 4> ValueVTs;
931  ComputeValueVTs(TLI, ReturnType, ValueVTs);
932  unsigned NumValues = ValueVTs.size();
933  if (NumValues == 0) return;
934  unsigned Offset = 0;
935
936  for (unsigned j = 0, f = NumValues; j != f; ++j) {
937    EVT VT = ValueVTs[j];
938    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
939
940    if (attr & Attribute::SExt)
941      ExtendKind = ISD::SIGN_EXTEND;
942    else if (attr & Attribute::ZExt)
943      ExtendKind = ISD::ZERO_EXTEND;
944
945    // FIXME: C calling convention requires the return type to be promoted to
946    // at least 32-bit. But this is not necessary for non-C calling
947    // conventions. The frontend should mark functions whose return values
948    // require promoting with signext or zeroext attributes.
949    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
950      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
951      if (VT.bitsLT(MinVT))
952        VT = MinVT;
953    }
954
955    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
956    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
957    unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
958                        PartVT.getTypeForEVT(ReturnType->getContext()));
959
960    // 'inreg' on function refers to return value
961    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
962    if (attr & Attribute::InReg)
963      Flags.setInReg();
964
965    // Propagate extension type if any
966    if (attr & Attribute::SExt)
967      Flags.setSExt();
968    else if (attr & Attribute::ZExt)
969      Flags.setZExt();
970
971    for (unsigned i = 0; i < NumParts; ++i) {
972      Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true));
973      if (Offsets) {
974        Offsets->push_back(Offset);
975        Offset += PartSize;
976      }
977    }
978  }
979}
980
981/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
982/// function arguments in the caller parameter area.  This is the actual
983/// alignment, not its logarithm.
984unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
985  return TD->getCallFrameTypeAlignment(Ty);
986}
987
988/// getJumpTableEncoding - Return the entry encoding for a jump table in the
989/// current function.  The returned value is a member of the
990/// MachineJumpTableInfo::JTEntryKind enum.
991unsigned TargetLowering::getJumpTableEncoding() const {
992  // In non-pic modes, just use the address of a block.
993  if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
994    return MachineJumpTableInfo::EK_BlockAddress;
995
996  // In PIC mode, if the target supports a GPRel32 directive, use it.
997  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
998    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
999
1000  // Otherwise, use a label difference.
1001  return MachineJumpTableInfo::EK_LabelDifference32;
1002}
1003
1004SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1005                                                 SelectionDAG &DAG) const {
1006  // If our PIC model is GP relative, use the global offset table as the base.
1007  if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
1008    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1009  return Table;
1010}
1011
1012/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1013/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1014/// MCExpr.
1015const MCExpr *
1016TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
1017                                             unsigned JTI,MCContext &Ctx) const{
1018  // The normal PIC reloc base is the label at the start of the jump table.
1019  return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
1020}
1021
1022bool
1023TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
1024  // Assume that everything is safe in static mode.
1025  if (getTargetMachine().getRelocationModel() == Reloc::Static)
1026    return true;
1027
1028  // In dynamic-no-pic mode, assume that known defined values are safe.
1029  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
1030      GA &&
1031      !GA->getGlobal()->isDeclaration() &&
1032      !GA->getGlobal()->isWeakForLinker())
1033    return true;
1034
1035  // Otherwise assume nothing is safe.
1036  return false;
1037}
1038
1039//===----------------------------------------------------------------------===//
1040//  Optimization Methods
1041//===----------------------------------------------------------------------===//
1042
1043/// ShrinkDemandedConstant - Check to see if the specified operand of the
1044/// specified instruction is a constant integer.  If so, check to see if there
1045/// are any bits set in the constant that are not demanded.  If so, shrink the
1046/// constant and return true.
1047bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
1048                                                        const APInt &Demanded) {
1049  DebugLoc dl = Op.getDebugLoc();
1050
1051  // FIXME: ISD::SELECT, ISD::SELECT_CC
1052  switch (Op.getOpcode()) {
1053  default: break;
1054  case ISD::XOR:
1055  case ISD::AND:
1056  case ISD::OR: {
1057    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1058    if (!C) return false;
1059
1060    if (Op.getOpcode() == ISD::XOR &&
1061        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
1062      return false;
1063
1064    // if we can expand it to have all bits set, do it
1065    if (C->getAPIntValue().intersects(~Demanded)) {
1066      EVT VT = Op.getValueType();
1067      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
1068                                DAG.getConstant(Demanded &
1069                                                C->getAPIntValue(),
1070                                                VT));
1071      return CombineTo(Op, New);
1072    }
1073
1074    break;
1075  }
1076  }
1077
1078  return false;
1079}
1080
1081/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
1082/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
1083/// cast, but it could be generalized for targets with other types of
1084/// implicit widening casts.
1085bool
1086TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
1087                                                    unsigned BitWidth,
1088                                                    const APInt &Demanded,
1089                                                    DebugLoc dl) {
1090  assert(Op.getNumOperands() == 2 &&
1091         "ShrinkDemandedOp only supports binary operators!");
1092  assert(Op.getNode()->getNumValues() == 1 &&
1093         "ShrinkDemandedOp only supports nodes with one result!");
1094
1095  // Don't do this if the node has another user, which may require the
1096  // full value.
1097  if (!Op.getNode()->hasOneUse())
1098    return false;
1099
1100  // Search for the smallest integer type with free casts to and from
1101  // Op's type. For expedience, just check power-of-2 integer types.
1102  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1103  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
1104  if (!isPowerOf2_32(SmallVTBits))
1105    SmallVTBits = NextPowerOf2(SmallVTBits);
1106  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1107    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
1108    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
1109        TLI.isZExtFree(SmallVT, Op.getValueType())) {
1110      // We found a type with free casts.
1111      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
1112                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1113                                          Op.getNode()->getOperand(0)),
1114                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1115                                          Op.getNode()->getOperand(1)));
1116      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
1117      return CombineTo(Op, Z);
1118    }
1119  }
1120  return false;
1121}
1122
1123/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
1124/// DemandedMask bits of the result of Op are ever used downstream.  If we can
1125/// use this information to simplify Op, create a new simplified DAG node and
1126/// return true, returning the original and new nodes in Old and New. Otherwise,
1127/// analyze the expression and return a mask of KnownOne and KnownZero bits for
1128/// the expression (used to simplify the caller).  The KnownZero/One bits may
1129/// only be accurate for those bits in the DemandedMask.
1130bool TargetLowering::SimplifyDemandedBits(SDValue Op,
1131                                          const APInt &DemandedMask,
1132                                          APInt &KnownZero,
1133                                          APInt &KnownOne,
1134                                          TargetLoweringOpt &TLO,
1135                                          unsigned Depth) const {
1136  unsigned BitWidth = DemandedMask.getBitWidth();
1137  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
1138         "Mask size mismatches value type size!");
1139  APInt NewMask = DemandedMask;
1140  DebugLoc dl = Op.getDebugLoc();
1141
1142  // Don't know anything.
1143  KnownZero = KnownOne = APInt(BitWidth, 0);
1144
1145  // Other users may use these bits.
1146  if (!Op.getNode()->hasOneUse()) {
1147    if (Depth != 0) {
1148      // If not at the root, Just compute the KnownZero/KnownOne bits to
1149      // simplify things downstream.
1150      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
1151      return false;
1152    }
1153    // If this is the root being simplified, allow it to have multiple uses,
1154    // just set the NewMask to all bits.
1155    NewMask = APInt::getAllOnesValue(BitWidth);
1156  } else if (DemandedMask == 0) {
1157    // Not demanding any bits from Op.
1158    if (Op.getOpcode() != ISD::UNDEF)
1159      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
1160    return false;
1161  } else if (Depth == 6) {        // Limit search depth.
1162    return false;
1163  }
1164
1165  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
1166  switch (Op.getOpcode()) {
1167  case ISD::Constant:
1168    // We know all of the bits for a constant!
1169    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
1170    KnownZero = ~KnownOne & NewMask;
1171    return false;   // Don't fall through, will infinitely loop.
1172  case ISD::AND:
1173    // If the RHS is a constant, check to see if the LHS would be zero without
1174    // using the bits from the RHS.  Below, we use knowledge about the RHS to
1175    // simplify the LHS, here we're using information from the LHS to simplify
1176    // the RHS.
1177    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1178      APInt LHSZero, LHSOne;
1179      // Do not increment Depth here; that can cause an infinite loop.
1180      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
1181                                LHSZero, LHSOne, Depth);
1182      // If the LHS already has zeros where RHSC does, this and is dead.
1183      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1184        return TLO.CombineTo(Op, Op.getOperand(0));
1185      // If any of the set bits in the RHS are known zero on the LHS, shrink
1186      // the constant.
1187      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1188        return true;
1189    }
1190
1191    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1192                             KnownOne, TLO, Depth+1))
1193      return true;
1194    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1195    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1196                             KnownZero2, KnownOne2, TLO, Depth+1))
1197      return true;
1198    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1199
1200    // If all of the demanded bits are known one on one side, return the other.
1201    // These bits cannot contribute to the result of the 'and'.
1202    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1203      return TLO.CombineTo(Op, Op.getOperand(0));
1204    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1205      return TLO.CombineTo(Op, Op.getOperand(1));
1206    // If all of the demanded bits in the inputs are known zeros, return zero.
1207    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1208      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1209    // If the RHS is a constant, see if we can simplify it.
1210    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1211      return true;
1212    // If the operation can be done in a smaller type, do so.
1213    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1214      return true;
1215
1216    // Output known-1 bits are only known if set in both the LHS & RHS.
1217    KnownOne &= KnownOne2;
1218    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1219    KnownZero |= KnownZero2;
1220    break;
1221  case ISD::OR:
1222    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1223                             KnownOne, TLO, Depth+1))
1224      return true;
1225    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1226    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1227                             KnownZero2, KnownOne2, TLO, Depth+1))
1228      return true;
1229    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1230
1231    // If all of the demanded bits are known zero on one side, return the other.
1232    // These bits cannot contribute to the result of the 'or'.
1233    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1234      return TLO.CombineTo(Op, Op.getOperand(0));
1235    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1236      return TLO.CombineTo(Op, Op.getOperand(1));
1237    // If all of the potentially set bits on one side are known to be set on
1238    // the other side, just use the 'other' side.
1239    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1240      return TLO.CombineTo(Op, Op.getOperand(0));
1241    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1242      return TLO.CombineTo(Op, Op.getOperand(1));
1243    // If the RHS is a constant, see if we can simplify it.
1244    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1245      return true;
1246    // If the operation can be done in a smaller type, do so.
1247    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1248      return true;
1249
1250    // Output known-0 bits are only known if clear in both the LHS & RHS.
1251    KnownZero &= KnownZero2;
1252    // Output known-1 are known to be set if set in either the LHS | RHS.
1253    KnownOne |= KnownOne2;
1254    break;
1255  case ISD::XOR:
1256    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1257                             KnownOne, TLO, Depth+1))
1258      return true;
1259    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1260    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1261                             KnownOne2, TLO, Depth+1))
1262      return true;
1263    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1264
1265    // If all of the demanded bits are known zero on one side, return the other.
1266    // These bits cannot contribute to the result of the 'xor'.
1267    if ((KnownZero & NewMask) == NewMask)
1268      return TLO.CombineTo(Op, Op.getOperand(0));
1269    if ((KnownZero2 & NewMask) == NewMask)
1270      return TLO.CombineTo(Op, Op.getOperand(1));
1271    // If the operation can be done in a smaller type, do so.
1272    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1273      return true;
1274
1275    // If all of the unknown bits are known to be zero on one side or the other
1276    // (but not both) turn this into an *inclusive* or.
1277    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1278    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1279      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1280                                               Op.getOperand(0),
1281                                               Op.getOperand(1)));
1282
1283    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1284    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1285    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1286    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1287
1288    // If all of the demanded bits on one side are known, and all of the set
1289    // bits on that side are also known to be set on the other side, turn this
1290    // into an AND, as we know the bits will be cleared.
1291    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1292    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1293      if ((KnownOne & KnownOne2) == KnownOne) {
1294        EVT VT = Op.getValueType();
1295        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1296        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1297                                                 Op.getOperand(0), ANDC));
1298      }
1299    }
1300
1301    // If the RHS is a constant, see if we can simplify it.
1302    // for XOR, we prefer to force bits to 1 if they will make a -1.
1303    // if we can't force bits, try to shrink constant
1304    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1305      APInt Expanded = C->getAPIntValue() | (~NewMask);
1306      // if we can expand it to have all bits set, do it
1307      if (Expanded.isAllOnesValue()) {
1308        if (Expanded != C->getAPIntValue()) {
1309          EVT VT = Op.getValueType();
1310          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1311                                          TLO.DAG.getConstant(Expanded, VT));
1312          return TLO.CombineTo(Op, New);
1313        }
1314        // if it already has all the bits set, nothing to change
1315        // but don't shrink either!
1316      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1317        return true;
1318      }
1319    }
1320
1321    KnownZero = KnownZeroOut;
1322    KnownOne  = KnownOneOut;
1323    break;
1324  case ISD::SELECT:
1325    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1326                             KnownOne, TLO, Depth+1))
1327      return true;
1328    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1329                             KnownOne2, TLO, Depth+1))
1330      return true;
1331    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1332    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1333
1334    // If the operands are constants, see if we can simplify them.
1335    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1336      return true;
1337
1338    // Only known if known in both the LHS and RHS.
1339    KnownOne &= KnownOne2;
1340    KnownZero &= KnownZero2;
1341    break;
1342  case ISD::SELECT_CC:
1343    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1344                             KnownOne, TLO, Depth+1))
1345      return true;
1346    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1347                             KnownOne2, TLO, Depth+1))
1348      return true;
1349    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1350    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1351
1352    // If the operands are constants, see if we can simplify them.
1353    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1354      return true;
1355
1356    // Only known if known in both the LHS and RHS.
1357    KnownOne &= KnownOne2;
1358    KnownZero &= KnownZero2;
1359    break;
1360  case ISD::SHL:
1361    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1362      unsigned ShAmt = SA->getZExtValue();
1363      SDValue InOp = Op.getOperand(0);
1364
1365      // If the shift count is an invalid immediate, don't do anything.
1366      if (ShAmt >= BitWidth)
1367        break;
1368
1369      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1370      // single shift.  We can do this if the bottom bits (which are shifted
1371      // out) are never demanded.
1372      if (InOp.getOpcode() == ISD::SRL &&
1373          isa<ConstantSDNode>(InOp.getOperand(1))) {
1374        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1375          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1376          unsigned Opc = ISD::SHL;
1377          int Diff = ShAmt-C1;
1378          if (Diff < 0) {
1379            Diff = -Diff;
1380            Opc = ISD::SRL;
1381          }
1382
1383          SDValue NewSA =
1384            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1385          EVT VT = Op.getValueType();
1386          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1387                                                   InOp.getOperand(0), NewSA));
1388        }
1389      }
1390
1391      if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
1392                               KnownZero, KnownOne, TLO, Depth+1))
1393        return true;
1394
1395      // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1396      // are not demanded. This will likely allow the anyext to be folded away.
1397      if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
1398        SDValue InnerOp = InOp.getNode()->getOperand(0);
1399        EVT InnerVT = InnerOp.getValueType();
1400        if ((APInt::getHighBitsSet(BitWidth,
1401                                   BitWidth - InnerVT.getSizeInBits()) &
1402               DemandedMask) == 0 &&
1403            isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1404          EVT ShTy = getShiftAmountTy();
1405          if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1406            ShTy = InnerVT;
1407          SDValue NarrowShl =
1408            TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1409                            TLO.DAG.getConstant(ShAmt, ShTy));
1410          return
1411            TLO.CombineTo(Op,
1412                          TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
1413                                          NarrowShl));
1414        }
1415      }
1416
1417      KnownZero <<= SA->getZExtValue();
1418      KnownOne  <<= SA->getZExtValue();
1419      // low bits known zero.
1420      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1421    }
1422    break;
1423  case ISD::SRL:
1424    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1425      EVT VT = Op.getValueType();
1426      unsigned ShAmt = SA->getZExtValue();
1427      unsigned VTSize = VT.getSizeInBits();
1428      SDValue InOp = Op.getOperand(0);
1429
1430      // If the shift count is an invalid immediate, don't do anything.
1431      if (ShAmt >= BitWidth)
1432        break;
1433
1434      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1435      // single shift.  We can do this if the top bits (which are shifted out)
1436      // are never demanded.
1437      if (InOp.getOpcode() == ISD::SHL &&
1438          isa<ConstantSDNode>(InOp.getOperand(1))) {
1439        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1440          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1441          unsigned Opc = ISD::SRL;
1442          int Diff = ShAmt-C1;
1443          if (Diff < 0) {
1444            Diff = -Diff;
1445            Opc = ISD::SHL;
1446          }
1447
1448          SDValue NewSA =
1449            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1450          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1451                                                   InOp.getOperand(0), NewSA));
1452        }
1453      }
1454
1455      // Compute the new bits that are at the top now.
1456      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1457                               KnownZero, KnownOne, TLO, Depth+1))
1458        return true;
1459      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1460      KnownZero = KnownZero.lshr(ShAmt);
1461      KnownOne  = KnownOne.lshr(ShAmt);
1462
1463      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1464      KnownZero |= HighBits;  // High bits known zero.
1465    }
1466    break;
1467  case ISD::SRA:
1468    // If this is an arithmetic shift right and only the low-bit is set, we can
1469    // always convert this into a logical shr, even if the shift amount is
1470    // variable.  The low bit of the shift cannot be an input sign bit unless
1471    // the shift amount is >= the size of the datatype, which is undefined.
1472    if (DemandedMask == 1)
1473      return TLO.CombineTo(Op,
1474                           TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1475                                           Op.getOperand(0), Op.getOperand(1)));
1476
1477    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1478      EVT VT = Op.getValueType();
1479      unsigned ShAmt = SA->getZExtValue();
1480
1481      // If the shift count is an invalid immediate, don't do anything.
1482      if (ShAmt >= BitWidth)
1483        break;
1484
1485      APInt InDemandedMask = (NewMask << ShAmt);
1486
1487      // If any of the demanded bits are produced by the sign extension, we also
1488      // demand the input sign bit.
1489      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1490      if (HighBits.intersects(NewMask))
1491        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1492
1493      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1494                               KnownZero, KnownOne, TLO, Depth+1))
1495        return true;
1496      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1497      KnownZero = KnownZero.lshr(ShAmt);
1498      KnownOne  = KnownOne.lshr(ShAmt);
1499
1500      // Handle the sign bit, adjusted to where it is now in the mask.
1501      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1502
1503      // If the input sign bit is known to be zero, or if none of the top bits
1504      // are demanded, turn this into an unsigned shift right.
1505      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1506        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1507                                                 Op.getOperand(0),
1508                                                 Op.getOperand(1)));
1509      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1510        KnownOne |= HighBits;
1511      }
1512    }
1513    break;
1514  case ISD::SIGN_EXTEND_INREG: {
1515    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1516
1517    // Sign extension.  Compute the demanded bits in the result that are not
1518    // present in the input.
1519    APInt NewBits =
1520      APInt::getHighBitsSet(BitWidth,
1521                            BitWidth - EVT.getScalarType().getSizeInBits());
1522
1523    // If none of the extended bits are demanded, eliminate the sextinreg.
1524    if ((NewBits & NewMask) == 0)
1525      return TLO.CombineTo(Op, Op.getOperand(0));
1526
1527    APInt InSignBit =
1528      APInt::getSignBit(EVT.getScalarType().getSizeInBits()).zext(BitWidth);
1529    APInt InputDemandedBits =
1530      APInt::getLowBitsSet(BitWidth,
1531                           EVT.getScalarType().getSizeInBits()) &
1532      NewMask;
1533
1534    // Since the sign extended bits are demanded, we know that the sign
1535    // bit is demanded.
1536    InputDemandedBits |= InSignBit;
1537
1538    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1539                             KnownZero, KnownOne, TLO, Depth+1))
1540      return true;
1541    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1542
1543    // If the sign bit of the input is known set or clear, then we know the
1544    // top bits of the result.
1545
1546    // If the input sign bit is known zero, convert this into a zero extension.
1547    if (KnownZero.intersects(InSignBit))
1548      return TLO.CombineTo(Op,
1549                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1550
1551    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1552      KnownOne |= NewBits;
1553      KnownZero &= ~NewBits;
1554    } else {                       // Input sign bit unknown
1555      KnownZero &= ~NewBits;
1556      KnownOne &= ~NewBits;
1557    }
1558    break;
1559  }
1560  case ISD::ZERO_EXTEND: {
1561    unsigned OperandBitWidth =
1562      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1563    APInt InMask = NewMask.trunc(OperandBitWidth);
1564
1565    // If none of the top bits are demanded, convert this into an any_extend.
1566    APInt NewBits =
1567      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1568    if (!NewBits.intersects(NewMask))
1569      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1570                                               Op.getValueType(),
1571                                               Op.getOperand(0)));
1572
1573    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1574                             KnownZero, KnownOne, TLO, Depth+1))
1575      return true;
1576    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1577    KnownZero = KnownZero.zext(BitWidth);
1578    KnownOne = KnownOne.zext(BitWidth);
1579    KnownZero |= NewBits;
1580    break;
1581  }
1582  case ISD::SIGN_EXTEND: {
1583    EVT InVT = Op.getOperand(0).getValueType();
1584    unsigned InBits = InVT.getScalarType().getSizeInBits();
1585    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1586    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1587    APInt NewBits   = ~InMask & NewMask;
1588
1589    // If none of the top bits are demanded, convert this into an any_extend.
1590    if (NewBits == 0)
1591      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1592                                              Op.getValueType(),
1593                                              Op.getOperand(0)));
1594
1595    // Since some of the sign extended bits are demanded, we know that the sign
1596    // bit is demanded.
1597    APInt InDemandedBits = InMask & NewMask;
1598    InDemandedBits |= InSignBit;
1599    InDemandedBits = InDemandedBits.trunc(InBits);
1600
1601    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1602                             KnownOne, TLO, Depth+1))
1603      return true;
1604    KnownZero = KnownZero.zext(BitWidth);
1605    KnownOne = KnownOne.zext(BitWidth);
1606
1607    // If the sign bit is known zero, convert this to a zero extend.
1608    if (KnownZero.intersects(InSignBit))
1609      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1610                                               Op.getValueType(),
1611                                               Op.getOperand(0)));
1612
1613    // If the sign bit is known one, the top bits match.
1614    if (KnownOne.intersects(InSignBit)) {
1615      KnownOne  |= NewBits;
1616      KnownZero &= ~NewBits;
1617    } else {   // Otherwise, top bits aren't known.
1618      KnownOne  &= ~NewBits;
1619      KnownZero &= ~NewBits;
1620    }
1621    break;
1622  }
1623  case ISD::ANY_EXTEND: {
1624    unsigned OperandBitWidth =
1625      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1626    APInt InMask = NewMask.trunc(OperandBitWidth);
1627    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1628                             KnownZero, KnownOne, TLO, Depth+1))
1629      return true;
1630    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1631    KnownZero = KnownZero.zext(BitWidth);
1632    KnownOne = KnownOne.zext(BitWidth);
1633    break;
1634  }
1635  case ISD::TRUNCATE: {
1636    // Simplify the input, using demanded bit information, and compute the known
1637    // zero/one bits live out.
1638    unsigned OperandBitWidth =
1639      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1640    APInt TruncMask = NewMask.zext(OperandBitWidth);
1641    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1642                             KnownZero, KnownOne, TLO, Depth+1))
1643      return true;
1644    KnownZero = KnownZero.trunc(BitWidth);
1645    KnownOne = KnownOne.trunc(BitWidth);
1646
1647    // If the input is only used by this truncate, see if we can shrink it based
1648    // on the known demanded bits.
1649    if (Op.getOperand(0).getNode()->hasOneUse()) {
1650      SDValue In = Op.getOperand(0);
1651      switch (In.getOpcode()) {
1652      default: break;
1653      case ISD::SRL:
1654        // Shrink SRL by a constant if none of the high bits shifted in are
1655        // demanded.
1656        if (TLO.LegalTypes() &&
1657            !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1658          // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1659          // undesirable.
1660          break;
1661        ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1662        if (!ShAmt)
1663          break;
1664        APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1665                                               OperandBitWidth - BitWidth);
1666        HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
1667
1668        if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1669          // None of the shifted in bits are needed.  Add a truncate of the
1670          // shift input, then shift it.
1671          SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1672                                             Op.getValueType(),
1673                                             In.getOperand(0));
1674          return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1675                                                   Op.getValueType(),
1676                                                   NewTrunc,
1677                                                   In.getOperand(1)));
1678        }
1679        break;
1680      }
1681    }
1682
1683    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1684    break;
1685  }
1686  case ISD::AssertZext: {
1687    // Demand all the bits of the input that are demanded in the output.
1688    // The low bits are obvious; the high bits are demanded because we're
1689    // asserting that they're zero here.
1690    if (SimplifyDemandedBits(Op.getOperand(0), NewMask,
1691                             KnownZero, KnownOne, TLO, Depth+1))
1692      return true;
1693    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1694
1695    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1696    APInt InMask = APInt::getLowBitsSet(BitWidth,
1697                                        VT.getSizeInBits());
1698    KnownZero |= ~InMask & NewMask;
1699    break;
1700  }
1701  case ISD::BITCAST:
1702#if 0
1703    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1704    // is demanded, turn this into a FGETSIGN.
1705    if (NewMask == EVT::getIntegerVTSignBit(Op.getValueType()) &&
1706        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1707        !MVT::isVector(Op.getOperand(0).getValueType())) {
1708      // Only do this xform if FGETSIGN is valid or if before legalize.
1709      if (!TLO.AfterLegalize ||
1710          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1711        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1712        // place.  We expect the SHL to be eliminated by other optimizations.
1713        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1714                                         Op.getOperand(0));
1715        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1716        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1717        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1718                                                 Sign, ShAmt));
1719      }
1720    }
1721#endif
1722    break;
1723  case ISD::ADD:
1724  case ISD::MUL:
1725  case ISD::SUB: {
1726    // Add, Sub, and Mul don't demand any bits in positions beyond that
1727    // of the highest bit demanded of them.
1728    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1729                                        BitWidth - NewMask.countLeadingZeros());
1730    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1731                             KnownOne2, TLO, Depth+1))
1732      return true;
1733    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1734                             KnownOne2, TLO, Depth+1))
1735      return true;
1736    // See if the operation should be performed at a smaller bit width.
1737    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1738      return true;
1739  }
1740  // FALL THROUGH
1741  default:
1742    // Just use ComputeMaskedBits to compute output bits.
1743    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1744    break;
1745  }
1746
1747  // If we know the value of all of the demanded bits, return this as a
1748  // constant.
1749  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1750    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1751
1752  return false;
1753}
1754
1755/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1756/// in Mask are known to be either zero or one and return them in the
1757/// KnownZero/KnownOne bitsets.
1758void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1759                                                    const APInt &Mask,
1760                                                    APInt &KnownZero,
1761                                                    APInt &KnownOne,
1762                                                    const SelectionDAG &DAG,
1763                                                    unsigned Depth) const {
1764  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1765          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1766          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1767          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1768         "Should use MaskedValueIsZero if you don't know whether Op"
1769         " is a target node!");
1770  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1771}
1772
1773/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1774/// targets that want to expose additional information about sign bits to the
1775/// DAG Combiner.
1776unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1777                                                         unsigned Depth) const {
1778  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1779          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1780          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1781          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1782         "Should use ComputeNumSignBits if you don't know whether Op"
1783         " is a target node!");
1784  return 1;
1785}
1786
1787/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1788/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1789/// determine which bit is set.
1790///
1791static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1792  // A left-shift of a constant one will have exactly one bit set, because
1793  // shifting the bit off the end is undefined.
1794  if (Val.getOpcode() == ISD::SHL)
1795    if (ConstantSDNode *C =
1796         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1797      if (C->getAPIntValue() == 1)
1798        return true;
1799
1800  // Similarly, a right-shift of a constant sign-bit will have exactly
1801  // one bit set.
1802  if (Val.getOpcode() == ISD::SRL)
1803    if (ConstantSDNode *C =
1804         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1805      if (C->getAPIntValue().isSignBit())
1806        return true;
1807
1808  // More could be done here, though the above checks are enough
1809  // to handle some common cases.
1810
1811  // Fall back to ComputeMaskedBits to catch other known cases.
1812  EVT OpVT = Val.getValueType();
1813  unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1814  APInt Mask = APInt::getAllOnesValue(BitWidth);
1815  APInt KnownZero, KnownOne;
1816  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1817  return (KnownZero.countPopulation() == BitWidth - 1) &&
1818         (KnownOne.countPopulation() == 1);
1819}
1820
1821/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1822/// and cc. If it is unable to simplify it, return a null SDValue.
1823SDValue
1824TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1825                              ISD::CondCode Cond, bool foldBooleans,
1826                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1827  SelectionDAG &DAG = DCI.DAG;
1828  LLVMContext &Context = *DAG.getContext();
1829
1830  // These setcc operations always fold.
1831  switch (Cond) {
1832  default: break;
1833  case ISD::SETFALSE:
1834  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1835  case ISD::SETTRUE:
1836  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1837  }
1838
1839  if (isa<ConstantSDNode>(N0.getNode())) {
1840    // Ensure that the constant occurs on the RHS, and fold constant
1841    // comparisons.
1842    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1843  }
1844
1845  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1846    const APInt &C1 = N1C->getAPIntValue();
1847
1848    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1849    // equality comparison, then we're just comparing whether X itself is
1850    // zero.
1851    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1852        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1853        N0.getOperand(1).getOpcode() == ISD::Constant) {
1854      const APInt &ShAmt
1855        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1856      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1857          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1858        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1859          // (srl (ctlz x), 5) == 0  -> X != 0
1860          // (srl (ctlz x), 5) != 1  -> X != 0
1861          Cond = ISD::SETNE;
1862        } else {
1863          // (srl (ctlz x), 5) != 0  -> X == 0
1864          // (srl (ctlz x), 5) == 1  -> X == 0
1865          Cond = ISD::SETEQ;
1866        }
1867        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1868        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1869                            Zero, Cond);
1870      }
1871    }
1872
1873    SDValue CTPOP = N0;
1874    // Look through truncs that don't change the value of a ctpop.
1875    if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1876      CTPOP = N0.getOperand(0);
1877
1878    if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1879        (N0 == CTPOP || N0.getValueType().getSizeInBits() >
1880                        Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
1881      EVT CTVT = CTPOP.getValueType();
1882      SDValue CTOp = CTPOP.getOperand(0);
1883
1884      // (ctpop x) u< 2 -> (x & x-1) == 0
1885      // (ctpop x) u> 1 -> (x & x-1) != 0
1886      if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1887        SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1888                                  DAG.getConstant(1, CTVT));
1889        SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1890        ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1891        return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
1892      }
1893
1894      // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1895    }
1896
1897    // If the LHS is '(and load, const)', the RHS is 0,
1898    // the test is for equality or unsigned, and all 1 bits of the const are
1899    // in the same partial word, see if we can shorten the load.
1900    if (DCI.isBeforeLegalize() &&
1901        N0.getOpcode() == ISD::AND && C1 == 0 &&
1902        N0.getNode()->hasOneUse() &&
1903        isa<LoadSDNode>(N0.getOperand(0)) &&
1904        N0.getOperand(0).getNode()->hasOneUse() &&
1905        isa<ConstantSDNode>(N0.getOperand(1))) {
1906      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1907      APInt bestMask;
1908      unsigned bestWidth = 0, bestOffset = 0;
1909      if (!Lod->isVolatile() && Lod->isUnindexed()) {
1910        unsigned origWidth = N0.getValueType().getSizeInBits();
1911        unsigned maskWidth = origWidth;
1912        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1913        // 8 bits, but have to be careful...
1914        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1915          origWidth = Lod->getMemoryVT().getSizeInBits();
1916        const APInt &Mask =
1917          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1918        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1919          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1920          for (unsigned offset=0; offset<origWidth/width; offset++) {
1921            if ((newMask & Mask) == Mask) {
1922              if (!TD->isLittleEndian())
1923                bestOffset = (origWidth/width - offset - 1) * (width/8);
1924              else
1925                bestOffset = (uint64_t)offset * (width/8);
1926              bestMask = Mask.lshr(offset * (width/8) * 8);
1927              bestWidth = width;
1928              break;
1929            }
1930            newMask = newMask << width;
1931          }
1932        }
1933      }
1934      if (bestWidth) {
1935        EVT newVT = EVT::getIntegerVT(Context, bestWidth);
1936        if (newVT.isRound()) {
1937          EVT PtrType = Lod->getOperand(1).getValueType();
1938          SDValue Ptr = Lod->getBasePtr();
1939          if (bestOffset != 0)
1940            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1941                              DAG.getConstant(bestOffset, PtrType));
1942          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1943          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1944                                Lod->getPointerInfo().getWithOffset(bestOffset),
1945                                        false, false, NewAlign);
1946          return DAG.getSetCC(dl, VT,
1947                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1948                                      DAG.getConstant(bestMask.trunc(bestWidth),
1949                                                      newVT)),
1950                              DAG.getConstant(0LL, newVT), Cond);
1951        }
1952      }
1953    }
1954
1955    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1956    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1957      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1958
1959      // If the comparison constant has bits in the upper part, the
1960      // zero-extended value could never match.
1961      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1962                                              C1.getBitWidth() - InSize))) {
1963        switch (Cond) {
1964        case ISD::SETUGT:
1965        case ISD::SETUGE:
1966        case ISD::SETEQ: return DAG.getConstant(0, VT);
1967        case ISD::SETULT:
1968        case ISD::SETULE:
1969        case ISD::SETNE: return DAG.getConstant(1, VT);
1970        case ISD::SETGT:
1971        case ISD::SETGE:
1972          // True if the sign bit of C1 is set.
1973          return DAG.getConstant(C1.isNegative(), VT);
1974        case ISD::SETLT:
1975        case ISD::SETLE:
1976          // True if the sign bit of C1 isn't set.
1977          return DAG.getConstant(C1.isNonNegative(), VT);
1978        default:
1979          break;
1980        }
1981      }
1982
1983      // Otherwise, we can perform the comparison with the low bits.
1984      switch (Cond) {
1985      case ISD::SETEQ:
1986      case ISD::SETNE:
1987      case ISD::SETUGT:
1988      case ISD::SETUGE:
1989      case ISD::SETULT:
1990      case ISD::SETULE: {
1991        EVT newVT = N0.getOperand(0).getValueType();
1992        if (DCI.isBeforeLegalizeOps() ||
1993            (isOperationLegal(ISD::SETCC, newVT) &&
1994              getCondCodeAction(Cond, newVT)==Legal))
1995          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1996                              DAG.getConstant(C1.trunc(InSize), newVT),
1997                              Cond);
1998        break;
1999      }
2000      default:
2001        break;   // todo, be more careful with signed comparisons
2002      }
2003    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2004               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2005      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
2006      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
2007      EVT ExtDstTy = N0.getValueType();
2008      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
2009
2010      // If the constant doesn't fit into the number of bits for the source of
2011      // the sign extension, it is impossible for both sides to be equal.
2012      if (C1.getMinSignedBits() > ExtSrcTyBits)
2013        return DAG.getConstant(Cond == ISD::SETNE, VT);
2014
2015      SDValue ZextOp;
2016      EVT Op0Ty = N0.getOperand(0).getValueType();
2017      if (Op0Ty == ExtSrcTy) {
2018        ZextOp = N0.getOperand(0);
2019      } else {
2020        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
2021        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
2022                              DAG.getConstant(Imm, Op0Ty));
2023      }
2024      if (!DCI.isCalledByLegalizer())
2025        DCI.AddToWorklist(ZextOp.getNode());
2026      // Otherwise, make this a use of a zext.
2027      return DAG.getSetCC(dl, VT, ZextOp,
2028                          DAG.getConstant(C1 & APInt::getLowBitsSet(
2029                                                              ExtDstTyBits,
2030                                                              ExtSrcTyBits),
2031                                          ExtDstTy),
2032                          Cond);
2033    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
2034                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2035      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
2036      if (N0.getOpcode() == ISD::SETCC &&
2037          isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2038        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
2039        if (TrueWhenTrue)
2040          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2041        // Invert the condition.
2042        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2043        CC = ISD::getSetCCInverse(CC,
2044                                  N0.getOperand(0).getValueType().isInteger());
2045        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2046      }
2047
2048      if ((N0.getOpcode() == ISD::XOR ||
2049           (N0.getOpcode() == ISD::AND &&
2050            N0.getOperand(0).getOpcode() == ISD::XOR &&
2051            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2052          isa<ConstantSDNode>(N0.getOperand(1)) &&
2053          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
2054        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
2055        // can only do this if the top bits are known zero.
2056        unsigned BitWidth = N0.getValueSizeInBits();
2057        if (DAG.MaskedValueIsZero(N0,
2058                                  APInt::getHighBitsSet(BitWidth,
2059                                                        BitWidth-1))) {
2060          // Okay, get the un-inverted input value.
2061          SDValue Val;
2062          if (N0.getOpcode() == ISD::XOR)
2063            Val = N0.getOperand(0);
2064          else {
2065            assert(N0.getOpcode() == ISD::AND &&
2066                    N0.getOperand(0).getOpcode() == ISD::XOR);
2067            // ((X^1)&1)^1 -> X & 1
2068            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2069                              N0.getOperand(0).getOperand(0),
2070                              N0.getOperand(1));
2071          }
2072
2073          return DAG.getSetCC(dl, VT, Val, N1,
2074                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2075        }
2076      } else if (N1C->getAPIntValue() == 1 &&
2077                 (VT == MVT::i1 ||
2078                  getBooleanContents() == ZeroOrOneBooleanContent)) {
2079        SDValue Op0 = N0;
2080        if (Op0.getOpcode() == ISD::TRUNCATE)
2081          Op0 = Op0.getOperand(0);
2082
2083        if ((Op0.getOpcode() == ISD::XOR) &&
2084            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2085            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2086          // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2087          Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2088          return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2089                              Cond);
2090        } else if (Op0.getOpcode() == ISD::AND &&
2091                isa<ConstantSDNode>(Op0.getOperand(1)) &&
2092                cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
2093          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2094          if (Op0.getValueType().bitsGT(VT))
2095            Op0 = DAG.getNode(ISD::AND, dl, VT,
2096                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2097                          DAG.getConstant(1, VT));
2098          else if (Op0.getValueType().bitsLT(VT))
2099            Op0 = DAG.getNode(ISD::AND, dl, VT,
2100                        DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2101                        DAG.getConstant(1, VT));
2102
2103          return DAG.getSetCC(dl, VT, Op0,
2104                              DAG.getConstant(0, Op0.getValueType()),
2105                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2106        }
2107      }
2108    }
2109
2110    APInt MinVal, MaxVal;
2111    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
2112    if (ISD::isSignedIntSetCC(Cond)) {
2113      MinVal = APInt::getSignedMinValue(OperandBitSize);
2114      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2115    } else {
2116      MinVal = APInt::getMinValue(OperandBitSize);
2117      MaxVal = APInt::getMaxValue(OperandBitSize);
2118    }
2119
2120    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2121    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2122      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
2123      // X >= C0 --> X > (C0-1)
2124      return DAG.getSetCC(dl, VT, N0,
2125                          DAG.getConstant(C1-1, N1.getValueType()),
2126                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
2127    }
2128
2129    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2130      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
2131      // X <= C0 --> X < (C0+1)
2132      return DAG.getSetCC(dl, VT, N0,
2133                          DAG.getConstant(C1+1, N1.getValueType()),
2134                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
2135    }
2136
2137    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
2138      return DAG.getConstant(0, VT);      // X < MIN --> false
2139    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
2140      return DAG.getConstant(1, VT);      // X >= MIN --> true
2141    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
2142      return DAG.getConstant(0, VT);      // X > MAX --> false
2143    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
2144      return DAG.getConstant(1, VT);      // X <= MAX --> true
2145
2146    // Canonicalize setgt X, Min --> setne X, Min
2147    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
2148      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2149    // Canonicalize setlt X, Max --> setne X, Max
2150    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
2151      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2152
2153    // If we have setult X, 1, turn it into seteq X, 0
2154    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
2155      return DAG.getSetCC(dl, VT, N0,
2156                          DAG.getConstant(MinVal, N0.getValueType()),
2157                          ISD::SETEQ);
2158    // If we have setugt X, Max-1, turn it into seteq X, Max
2159    else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
2160      return DAG.getSetCC(dl, VT, N0,
2161                          DAG.getConstant(MaxVal, N0.getValueType()),
2162                          ISD::SETEQ);
2163
2164    // If we have "setcc X, C0", check to see if we can shrink the immediate
2165    // by changing cc.
2166
2167    // SETUGT X, SINTMAX  -> SETLT X, 0
2168    if (Cond == ISD::SETUGT &&
2169        C1 == APInt::getSignedMaxValue(OperandBitSize))
2170      return DAG.getSetCC(dl, VT, N0,
2171                          DAG.getConstant(0, N1.getValueType()),
2172                          ISD::SETLT);
2173
2174    // SETULT X, SINTMIN  -> SETGT X, -1
2175    if (Cond == ISD::SETULT &&
2176        C1 == APInt::getSignedMinValue(OperandBitSize)) {
2177      SDValue ConstMinusOne =
2178          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
2179                          N1.getValueType());
2180      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2181    }
2182
2183    // Fold bit comparisons when we can.
2184    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2185        (VT == N0.getValueType() ||
2186         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2187        N0.getOpcode() == ISD::AND)
2188      if (ConstantSDNode *AndRHS =
2189                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2190        EVT ShiftTy = DCI.isBeforeLegalize() ?
2191          getPointerTy() : getShiftAmountTy();
2192        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2193          // Perform the xform if the AND RHS is a single bit.
2194          if (AndRHS->getAPIntValue().isPowerOf2()) {
2195            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2196                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2197                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
2198          }
2199        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2200          // (X & 8) == 8  -->  (X & 8) >> 3
2201          // Perform the xform if C1 is a single bit.
2202          if (C1.isPowerOf2()) {
2203            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2204                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2205                                      DAG.getConstant(C1.logBase2(), ShiftTy)));
2206          }
2207        }
2208      }
2209  }
2210
2211  if (isa<ConstantFPSDNode>(N0.getNode())) {
2212    // Constant fold or commute setcc.
2213    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2214    if (O.getNode()) return O;
2215  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2216    // If the RHS of an FP comparison is a constant, simplify it away in
2217    // some cases.
2218    if (CFP->getValueAPF().isNaN()) {
2219      // If an operand is known to be a nan, we can fold it.
2220      switch (ISD::getUnorderedFlavor(Cond)) {
2221      default: llvm_unreachable("Unknown flavor!");
2222      case 0:  // Known false.
2223        return DAG.getConstant(0, VT);
2224      case 1:  // Known true.
2225        return DAG.getConstant(1, VT);
2226      case 2:  // Undefined.
2227        return DAG.getUNDEF(VT);
2228      }
2229    }
2230
2231    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2232    // constant if knowing that the operand is non-nan is enough.  We prefer to
2233    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2234    // materialize 0.0.
2235    if (Cond == ISD::SETO || Cond == ISD::SETUO)
2236      return DAG.getSetCC(dl, VT, N0, N0, Cond);
2237
2238    // If the condition is not legal, see if we can find an equivalent one
2239    // which is legal.
2240    if (!isCondCodeLegal(Cond, N0.getValueType())) {
2241      // If the comparison was an awkward floating-point == or != and one of
2242      // the comparison operands is infinity or negative infinity, convert the
2243      // condition to a less-awkward <= or >=.
2244      if (CFP->getValueAPF().isInfinity()) {
2245        if (CFP->getValueAPF().isNegative()) {
2246          if (Cond == ISD::SETOEQ &&
2247              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2248            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2249          if (Cond == ISD::SETUEQ &&
2250              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2251            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2252          if (Cond == ISD::SETUNE &&
2253              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2254            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2255          if (Cond == ISD::SETONE &&
2256              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2257            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2258        } else {
2259          if (Cond == ISD::SETOEQ &&
2260              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2261            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2262          if (Cond == ISD::SETUEQ &&
2263              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2264            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2265          if (Cond == ISD::SETUNE &&
2266              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2267            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2268          if (Cond == ISD::SETONE &&
2269              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2270            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2271        }
2272      }
2273    }
2274  }
2275
2276  if (N0 == N1) {
2277    // We can always fold X == X for integer setcc's.
2278    if (N0.getValueType().isInteger())
2279      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2280    unsigned UOF = ISD::getUnorderedFlavor(Cond);
2281    if (UOF == 2)   // FP operators that are undefined on NaNs.
2282      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2283    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2284      return DAG.getConstant(UOF, VT);
2285    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2286    // if it is not already.
2287    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2288    if (NewCond != Cond)
2289      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2290  }
2291
2292  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2293      N0.getValueType().isInteger()) {
2294    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2295        N0.getOpcode() == ISD::XOR) {
2296      // Simplify (X+Y) == (X+Z) -->  Y == Z
2297      if (N0.getOpcode() == N1.getOpcode()) {
2298        if (N0.getOperand(0) == N1.getOperand(0))
2299          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2300        if (N0.getOperand(1) == N1.getOperand(1))
2301          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2302        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2303          // If X op Y == Y op X, try other combinations.
2304          if (N0.getOperand(0) == N1.getOperand(1))
2305            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2306                                Cond);
2307          if (N0.getOperand(1) == N1.getOperand(0))
2308            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2309                                Cond);
2310        }
2311      }
2312
2313      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2314        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2315          // Turn (X+C1) == C2 --> X == C2-C1
2316          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2317            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2318                                DAG.getConstant(RHSC->getAPIntValue()-
2319                                                LHSR->getAPIntValue(),
2320                                N0.getValueType()), Cond);
2321          }
2322
2323          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2324          if (N0.getOpcode() == ISD::XOR)
2325            // If we know that all of the inverted bits are zero, don't bother
2326            // performing the inversion.
2327            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2328              return
2329                DAG.getSetCC(dl, VT, N0.getOperand(0),
2330                             DAG.getConstant(LHSR->getAPIntValue() ^
2331                                               RHSC->getAPIntValue(),
2332                                             N0.getValueType()),
2333                             Cond);
2334        }
2335
2336        // Turn (C1-X) == C2 --> X == C1-C2
2337        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2338          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2339            return
2340              DAG.getSetCC(dl, VT, N0.getOperand(1),
2341                           DAG.getConstant(SUBC->getAPIntValue() -
2342                                             RHSC->getAPIntValue(),
2343                                           N0.getValueType()),
2344                           Cond);
2345          }
2346        }
2347      }
2348
2349      // Simplify (X+Z) == X -->  Z == 0
2350      if (N0.getOperand(0) == N1)
2351        return DAG.getSetCC(dl, VT, N0.getOperand(1),
2352                        DAG.getConstant(0, N0.getValueType()), Cond);
2353      if (N0.getOperand(1) == N1) {
2354        if (DAG.isCommutativeBinOp(N0.getOpcode()))
2355          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2356                          DAG.getConstant(0, N0.getValueType()), Cond);
2357        else if (N0.getNode()->hasOneUse()) {
2358          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2359          // (Z-X) == X  --> Z == X<<1
2360          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
2361                                     N1,
2362                                     DAG.getConstant(1, getShiftAmountTy()));
2363          if (!DCI.isCalledByLegalizer())
2364            DCI.AddToWorklist(SH.getNode());
2365          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2366        }
2367      }
2368    }
2369
2370    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2371        N1.getOpcode() == ISD::XOR) {
2372      // Simplify  X == (X+Z) -->  Z == 0
2373      if (N1.getOperand(0) == N0) {
2374        return DAG.getSetCC(dl, VT, N1.getOperand(1),
2375                        DAG.getConstant(0, N1.getValueType()), Cond);
2376      } else if (N1.getOperand(1) == N0) {
2377        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2378          return DAG.getSetCC(dl, VT, N1.getOperand(0),
2379                          DAG.getConstant(0, N1.getValueType()), Cond);
2380        } else if (N1.getNode()->hasOneUse()) {
2381          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2382          // X == (Z-X)  --> X<<1 == Z
2383          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2384                                     DAG.getConstant(1, getShiftAmountTy()));
2385          if (!DCI.isCalledByLegalizer())
2386            DCI.AddToWorklist(SH.getNode());
2387          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2388        }
2389      }
2390    }
2391
2392    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2393    // Note that where y is variable and is known to have at most
2394    // one bit set (for example, if it is z&1) we cannot do this;
2395    // the expressions are not equivalent when y==0.
2396    if (N0.getOpcode() == ISD::AND)
2397      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2398        if (ValueHasExactlyOneBitSet(N1, DAG)) {
2399          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2400          SDValue Zero = DAG.getConstant(0, N1.getValueType());
2401          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2402        }
2403      }
2404    if (N1.getOpcode() == ISD::AND)
2405      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2406        if (ValueHasExactlyOneBitSet(N0, DAG)) {
2407          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2408          SDValue Zero = DAG.getConstant(0, N0.getValueType());
2409          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2410        }
2411      }
2412  }
2413
2414  // Fold away ALL boolean setcc's.
2415  SDValue Temp;
2416  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2417    switch (Cond) {
2418    default: llvm_unreachable("Unknown integer setcc!");
2419    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2420      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2421      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2422      if (!DCI.isCalledByLegalizer())
2423        DCI.AddToWorklist(Temp.getNode());
2424      break;
2425    case ISD::SETNE:  // X != Y   -->  (X^Y)
2426      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2427      break;
2428    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2429    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2430      Temp = DAG.getNOT(dl, N0, MVT::i1);
2431      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2432      if (!DCI.isCalledByLegalizer())
2433        DCI.AddToWorklist(Temp.getNode());
2434      break;
2435    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2436    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2437      Temp = DAG.getNOT(dl, N1, MVT::i1);
2438      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2439      if (!DCI.isCalledByLegalizer())
2440        DCI.AddToWorklist(Temp.getNode());
2441      break;
2442    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2443    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2444      Temp = DAG.getNOT(dl, N0, MVT::i1);
2445      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2446      if (!DCI.isCalledByLegalizer())
2447        DCI.AddToWorklist(Temp.getNode());
2448      break;
2449    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2450    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2451      Temp = DAG.getNOT(dl, N1, MVT::i1);
2452      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2453      break;
2454    }
2455    if (VT != MVT::i1) {
2456      if (!DCI.isCalledByLegalizer())
2457        DCI.AddToWorklist(N0.getNode());
2458      // FIXME: If running after legalize, we probably can't do this.
2459      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2460    }
2461    return N0;
2462  }
2463
2464  // Could not fold it.
2465  return SDValue();
2466}
2467
2468/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2469/// node is a GlobalAddress + offset.
2470bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2471                                    int64_t &Offset) const {
2472  if (isa<GlobalAddressSDNode>(N)) {
2473    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2474    GA = GASD->getGlobal();
2475    Offset += GASD->getOffset();
2476    return true;
2477  }
2478
2479  if (N->getOpcode() == ISD::ADD) {
2480    SDValue N1 = N->getOperand(0);
2481    SDValue N2 = N->getOperand(1);
2482    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2483      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2484      if (V) {
2485        Offset += V->getSExtValue();
2486        return true;
2487      }
2488    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2489      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2490      if (V) {
2491        Offset += V->getSExtValue();
2492        return true;
2493      }
2494    }
2495  }
2496
2497  return false;
2498}
2499
2500
2501SDValue TargetLowering::
2502PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2503  // Default implementation: no optimization.
2504  return SDValue();
2505}
2506
2507//===----------------------------------------------------------------------===//
2508//  Inline Assembler Implementation Methods
2509//===----------------------------------------------------------------------===//
2510
2511
2512TargetLowering::ConstraintType
2513TargetLowering::getConstraintType(const std::string &Constraint) const {
2514  // FIXME: lots more standard ones to handle.
2515  if (Constraint.size() == 1) {
2516    switch (Constraint[0]) {
2517    default: break;
2518    case 'r': return C_RegisterClass;
2519    case 'm':    // memory
2520    case 'o':    // offsetable
2521    case 'V':    // not offsetable
2522      return C_Memory;
2523    case 'i':    // Simple Integer or Relocatable Constant
2524    case 'n':    // Simple Integer
2525    case 'E':    // Floating Point Constant
2526    case 'F':    // Floating Point Constant
2527    case 's':    // Relocatable Constant
2528    case 'p':    // Address.
2529    case 'X':    // Allow ANY value.
2530    case 'I':    // Target registers.
2531    case 'J':
2532    case 'K':
2533    case 'L':
2534    case 'M':
2535    case 'N':
2536    case 'O':
2537    case 'P':
2538    case '<':
2539    case '>':
2540      return C_Other;
2541    }
2542  }
2543
2544  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2545      Constraint[Constraint.size()-1] == '}')
2546    return C_Register;
2547  return C_Unknown;
2548}
2549
2550/// LowerXConstraint - try to replace an X constraint, which matches anything,
2551/// with another that has more specific requirements based on the type of the
2552/// corresponding operand.
2553const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2554  if (ConstraintVT.isInteger())
2555    return "r";
2556  if (ConstraintVT.isFloatingPoint())
2557    return "f";      // works for many targets
2558  return 0;
2559}
2560
2561/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2562/// vector.  If it is invalid, don't add anything to Ops.
2563void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2564                                                  char ConstraintLetter,
2565                                                  std::vector<SDValue> &Ops,
2566                                                  SelectionDAG &DAG) const {
2567  switch (ConstraintLetter) {
2568  default: break;
2569  case 'X':     // Allows any operand; labels (basic block) use this.
2570    if (Op.getOpcode() == ISD::BasicBlock) {
2571      Ops.push_back(Op);
2572      return;
2573    }
2574    // fall through
2575  case 'i':    // Simple Integer or Relocatable Constant
2576  case 'n':    // Simple Integer
2577  case 's': {  // Relocatable Constant
2578    // These operands are interested in values of the form (GV+C), where C may
2579    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2580    // is possible and fine if either GV or C are missing.
2581    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2582    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2583
2584    // If we have "(add GV, C)", pull out GV/C
2585    if (Op.getOpcode() == ISD::ADD) {
2586      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2587      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2588      if (C == 0 || GA == 0) {
2589        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2590        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2591      }
2592      if (C == 0 || GA == 0)
2593        C = 0, GA = 0;
2594    }
2595
2596    // If we find a valid operand, map to the TargetXXX version so that the
2597    // value itself doesn't get selected.
2598    if (GA) {   // Either &GV   or   &GV+C
2599      if (ConstraintLetter != 'n') {
2600        int64_t Offs = GA->getOffset();
2601        if (C) Offs += C->getZExtValue();
2602        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2603                                                 C ? C->getDebugLoc() : DebugLoc(),
2604                                                 Op.getValueType(), Offs));
2605        return;
2606      }
2607    }
2608    if (C) {   // just C, no GV.
2609      // Simple constants are not allowed for 's'.
2610      if (ConstraintLetter != 's') {
2611        // gcc prints these as sign extended.  Sign extend value to 64 bits
2612        // now; without this it would get ZExt'd later in
2613        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2614        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2615                                            MVT::i64));
2616        return;
2617      }
2618    }
2619    break;
2620  }
2621  }
2622}
2623
2624std::vector<unsigned> TargetLowering::
2625getRegClassForInlineAsmConstraint(const std::string &Constraint,
2626                                  EVT VT) const {
2627  return std::vector<unsigned>();
2628}
2629
2630
2631std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2632getRegForInlineAsmConstraint(const std::string &Constraint,
2633                             EVT VT) const {
2634  if (Constraint[0] != '{')
2635    return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
2636  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2637
2638  // Remove the braces from around the name.
2639  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2640
2641  // Figure out which register class contains this reg.
2642  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2643  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2644       E = RI->regclass_end(); RCI != E; ++RCI) {
2645    const TargetRegisterClass *RC = *RCI;
2646
2647    // If none of the value types for this register class are valid, we
2648    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2649    bool isLegal = false;
2650    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2651         I != E; ++I) {
2652      if (isTypeLegal(*I)) {
2653        isLegal = true;
2654        break;
2655      }
2656    }
2657
2658    if (!isLegal) continue;
2659
2660    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2661         I != E; ++I) {
2662      if (RegName.equals_lower(RI->getName(*I)))
2663        return std::make_pair(*I, RC);
2664    }
2665  }
2666
2667  return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2668}
2669
2670//===----------------------------------------------------------------------===//
2671// Constraint Selection.
2672
2673/// isMatchingInputConstraint - Return true of this is an input operand that is
2674/// a matching constraint like "4".
2675bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2676  assert(!ConstraintCode.empty() && "No known constraint!");
2677  return isdigit(ConstraintCode[0]);
2678}
2679
2680/// getMatchedOperand - If this is an input matching constraint, this method
2681/// returns the output operand it matches.
2682unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2683  assert(!ConstraintCode.empty() && "No known constraint!");
2684  return atoi(ConstraintCode.c_str());
2685}
2686
2687
2688/// ParseConstraints - Split up the constraint string from the inline
2689/// assembly value into the specific constraints and their prefixes,
2690/// and also tie in the associated operand values.
2691/// If this returns an empty vector, and if the constraint string itself
2692/// isn't empty, there was an error parsing.
2693TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
2694    ImmutableCallSite CS) const {
2695  /// ConstraintOperands - Information about all of the constraints.
2696  AsmOperandInfoVector ConstraintOperands;
2697  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2698  unsigned maCount = 0; // Largest number of multiple alternative constraints.
2699
2700  // Do a prepass over the constraints, canonicalizing them, and building up the
2701  // ConstraintOperands list.
2702  InlineAsm::ConstraintInfoVector
2703    ConstraintInfos = IA->ParseConstraints();
2704
2705  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2706  unsigned ResNo = 0;   // ResNo - The result number of the next output.
2707
2708  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
2709    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
2710    AsmOperandInfo &OpInfo = ConstraintOperands.back();
2711
2712    // Update multiple alternative constraint count.
2713    if (OpInfo.multipleAlternatives.size() > maCount)
2714      maCount = OpInfo.multipleAlternatives.size();
2715
2716    OpInfo.ConstraintVT = MVT::Other;
2717
2718    // Compute the value type for each operand.
2719    switch (OpInfo.Type) {
2720    case InlineAsm::isOutput:
2721      // Indirect outputs just consume an argument.
2722      if (OpInfo.isIndirect) {
2723        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2724        break;
2725      }
2726
2727      // The return value of the call is this value.  As such, there is no
2728      // corresponding argument.
2729      assert(!CS.getType()->isVoidTy() &&
2730             "Bad inline asm!");
2731      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
2732        OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo));
2733      } else {
2734        assert(ResNo == 0 && "Asm only has one result!");
2735        OpInfo.ConstraintVT = getValueType(CS.getType());
2736      }
2737      ++ResNo;
2738      break;
2739    case InlineAsm::isInput:
2740      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2741      break;
2742    case InlineAsm::isClobber:
2743      // Nothing to do.
2744      break;
2745    }
2746
2747    if (OpInfo.CallOperandVal) {
2748      const llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2749      if (OpInfo.isIndirect) {
2750        const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2751        if (!PtrTy)
2752          report_fatal_error("Indirect operand for inline asm not a pointer!");
2753        OpTy = PtrTy->getElementType();
2754      }
2755      // If OpTy is not a single value, it may be a struct/union that we
2756      // can tile with integers.
2757      if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2758        unsigned BitSize = TD->getTypeSizeInBits(OpTy);
2759        switch (BitSize) {
2760        default: break;
2761        case 1:
2762        case 8:
2763        case 16:
2764        case 32:
2765        case 64:
2766        case 128:
2767          OpInfo.ConstraintVT =
2768              EVT::getEVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2769          break;
2770        }
2771      } else if (dyn_cast<PointerType>(OpTy)) {
2772        OpInfo.ConstraintVT = MVT::getIntegerVT(8*TD->getPointerSize());
2773      } else {
2774        OpInfo.ConstraintVT = EVT::getEVT(OpTy, true);
2775      }
2776    }
2777  }
2778
2779  // If we have multiple alternative constraints, select the best alternative.
2780  if (ConstraintInfos.size()) {
2781    if (maCount) {
2782      unsigned bestMAIndex = 0;
2783      int bestWeight = -1;
2784      // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2785      int weight = -1;
2786      unsigned maIndex;
2787      // Compute the sums of the weights for each alternative, keeping track
2788      // of the best (highest weight) one so far.
2789      for (maIndex = 0; maIndex < maCount; ++maIndex) {
2790        int weightSum = 0;
2791        for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2792            cIndex != eIndex; ++cIndex) {
2793          AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2794          if (OpInfo.Type == InlineAsm::isClobber)
2795            continue;
2796
2797          // If this is an output operand with a matching input operand,
2798          // look up the matching input. If their types mismatch, e.g. one
2799          // is an integer, the other is floating point, or their sizes are
2800          // different, flag it as an maCantMatch.
2801          if (OpInfo.hasMatchingInput()) {
2802            AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2803            if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2804              if ((OpInfo.ConstraintVT.isInteger() !=
2805                   Input.ConstraintVT.isInteger()) ||
2806                  (OpInfo.ConstraintVT.getSizeInBits() !=
2807                   Input.ConstraintVT.getSizeInBits())) {
2808                weightSum = -1;  // Can't match.
2809                break;
2810              }
2811            }
2812          }
2813          weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2814          if (weight == -1) {
2815            weightSum = -1;
2816            break;
2817          }
2818          weightSum += weight;
2819        }
2820        // Update best.
2821        if (weightSum > bestWeight) {
2822          bestWeight = weightSum;
2823          bestMAIndex = maIndex;
2824        }
2825      }
2826
2827      // Now select chosen alternative in each constraint.
2828      for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2829          cIndex != eIndex; ++cIndex) {
2830        AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2831        if (cInfo.Type == InlineAsm::isClobber)
2832          continue;
2833        cInfo.selectAlternative(bestMAIndex);
2834      }
2835    }
2836  }
2837
2838  // Check and hook up tied operands, choose constraint code to use.
2839  for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2840      cIndex != eIndex; ++cIndex) {
2841    AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2842
2843    // If this is an output operand with a matching input operand, look up the
2844    // matching input. If their types mismatch, e.g. one is an integer, the
2845    // other is floating point, or their sizes are different, flag it as an
2846    // error.
2847    if (OpInfo.hasMatchingInput()) {
2848      AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2849
2850      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2851        if ((OpInfo.ConstraintVT.isInteger() !=
2852             Input.ConstraintVT.isInteger()) ||
2853            (OpInfo.ConstraintVT.getSizeInBits() !=
2854             Input.ConstraintVT.getSizeInBits())) {
2855          report_fatal_error("Unsupported asm: input constraint"
2856                             " with a matching output constraint of"
2857                             " incompatible type!");
2858        }
2859      }
2860
2861    }
2862  }
2863
2864  return ConstraintOperands;
2865}
2866
2867
2868/// getConstraintGenerality - Return an integer indicating how general CT
2869/// is.
2870static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2871  switch (CT) {
2872  default: llvm_unreachable("Unknown constraint type!");
2873  case TargetLowering::C_Other:
2874  case TargetLowering::C_Unknown:
2875    return 0;
2876  case TargetLowering::C_Register:
2877    return 1;
2878  case TargetLowering::C_RegisterClass:
2879    return 2;
2880  case TargetLowering::C_Memory:
2881    return 3;
2882  }
2883}
2884
2885/// Examine constraint type and operand type and determine a weight value.
2886/// This object must already have been set up with the operand type
2887/// and the current alternative constraint selected.
2888TargetLowering::ConstraintWeight
2889  TargetLowering::getMultipleConstraintMatchWeight(
2890    AsmOperandInfo &info, int maIndex) const {
2891  InlineAsm::ConstraintCodeVector *rCodes;
2892  if (maIndex >= (int)info.multipleAlternatives.size())
2893    rCodes = &info.Codes;
2894  else
2895    rCodes = &info.multipleAlternatives[maIndex].Codes;
2896  ConstraintWeight BestWeight = CW_Invalid;
2897
2898  // Loop over the options, keeping track of the most general one.
2899  for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
2900    ConstraintWeight weight =
2901      getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
2902    if (weight > BestWeight)
2903      BestWeight = weight;
2904  }
2905
2906  return BestWeight;
2907}
2908
2909/// Examine constraint type and operand type and determine a weight value.
2910/// This object must already have been set up with the operand type
2911/// and the current alternative constraint selected.
2912TargetLowering::ConstraintWeight
2913  TargetLowering::getSingleConstraintMatchWeight(
2914    AsmOperandInfo &info, const char *constraint) const {
2915  ConstraintWeight weight = CW_Invalid;
2916  Value *CallOperandVal = info.CallOperandVal;
2917    // If we don't have a value, we can't do a match,
2918    // but allow it at the lowest weight.
2919  if (CallOperandVal == NULL)
2920    return CW_Default;
2921  // Look at the constraint type.
2922  switch (*constraint) {
2923    case 'i': // immediate integer.
2924    case 'n': // immediate integer with a known value.
2925      if (isa<ConstantInt>(CallOperandVal))
2926        weight = CW_Constant;
2927      break;
2928    case 's': // non-explicit intregal immediate.
2929      if (isa<GlobalValue>(CallOperandVal))
2930        weight = CW_Constant;
2931      break;
2932    case 'E': // immediate float if host format.
2933    case 'F': // immediate float.
2934      if (isa<ConstantFP>(CallOperandVal))
2935        weight = CW_Constant;
2936      break;
2937    case '<': // memory operand with autodecrement.
2938    case '>': // memory operand with autoincrement.
2939    case 'm': // memory operand.
2940    case 'o': // offsettable memory operand
2941    case 'V': // non-offsettable memory operand
2942      weight = CW_Memory;
2943      break;
2944    case 'r': // general register.
2945    case 'g': // general register, memory operand or immediate integer.
2946              // note: Clang converts "g" to "imr".
2947      if (CallOperandVal->getType()->isIntegerTy())
2948        weight = CW_Register;
2949      break;
2950    case 'X': // any operand.
2951    default:
2952      weight = CW_Default;
2953      break;
2954  }
2955  return weight;
2956}
2957
2958/// ChooseConstraint - If there are multiple different constraints that we
2959/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2960/// This is somewhat tricky: constraints fall into four classes:
2961///    Other         -> immediates and magic values
2962///    Register      -> one specific register
2963///    RegisterClass -> a group of regs
2964///    Memory        -> memory
2965/// Ideally, we would pick the most specific constraint possible: if we have
2966/// something that fits into a register, we would pick it.  The problem here
2967/// is that if we have something that could either be in a register or in
2968/// memory that use of the register could cause selection of *other*
2969/// operands to fail: they might only succeed if we pick memory.  Because of
2970/// this the heuristic we use is:
2971///
2972///  1) If there is an 'other' constraint, and if the operand is valid for
2973///     that constraint, use it.  This makes us take advantage of 'i'
2974///     constraints when available.
2975///  2) Otherwise, pick the most general constraint present.  This prefers
2976///     'm' over 'r', for example.
2977///
2978static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2979                             const TargetLowering &TLI,
2980                             SDValue Op, SelectionDAG *DAG) {
2981  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2982  unsigned BestIdx = 0;
2983  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2984  int BestGenerality = -1;
2985
2986  // Loop over the options, keeping track of the most general one.
2987  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2988    TargetLowering::ConstraintType CType =
2989      TLI.getConstraintType(OpInfo.Codes[i]);
2990
2991    // If this is an 'other' constraint, see if the operand is valid for it.
2992    // For example, on X86 we might have an 'rI' constraint.  If the operand
2993    // is an integer in the range [0..31] we want to use I (saving a load
2994    // of a register), otherwise we must use 'r'.
2995    if (CType == TargetLowering::C_Other && Op.getNode()) {
2996      assert(OpInfo.Codes[i].size() == 1 &&
2997             "Unhandled multi-letter 'other' constraint");
2998      std::vector<SDValue> ResultOps;
2999      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0],
3000                                       ResultOps, *DAG);
3001      if (!ResultOps.empty()) {
3002        BestType = CType;
3003        BestIdx = i;
3004        break;
3005      }
3006    }
3007
3008    // Things with matching constraints can only be registers, per gcc
3009    // documentation.  This mainly affects "g" constraints.
3010    if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
3011      continue;
3012
3013    // This constraint letter is more general than the previous one, use it.
3014    int Generality = getConstraintGenerality(CType);
3015    if (Generality > BestGenerality) {
3016      BestType = CType;
3017      BestIdx = i;
3018      BestGenerality = Generality;
3019    }
3020  }
3021
3022  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
3023  OpInfo.ConstraintType = BestType;
3024}
3025
3026/// ComputeConstraintToUse - Determines the constraint code and constraint
3027/// type to use for the specific AsmOperandInfo, setting
3028/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
3029void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3030                                            SDValue Op,
3031                                            SelectionDAG *DAG) const {
3032  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
3033
3034  // Single-letter constraints ('r') are very common.
3035  if (OpInfo.Codes.size() == 1) {
3036    OpInfo.ConstraintCode = OpInfo.Codes[0];
3037    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3038  } else {
3039    ChooseConstraint(OpInfo, *this, Op, DAG);
3040  }
3041
3042  // 'X' matches anything.
3043  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
3044    // Labels and constants are handled elsewhere ('X' is the only thing
3045    // that matches labels).  For Functions, the type here is the type of
3046    // the result, which is not what we want to look at; leave them alone.
3047    Value *v = OpInfo.CallOperandVal;
3048    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
3049      OpInfo.CallOperandVal = v;
3050      return;
3051    }
3052
3053    // Otherwise, try to resolve it to something we know about by looking at
3054    // the actual operand type.
3055    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
3056      OpInfo.ConstraintCode = Repl;
3057      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3058    }
3059  }
3060}
3061
3062//===----------------------------------------------------------------------===//
3063//  Loop Strength Reduction hooks
3064//===----------------------------------------------------------------------===//
3065
3066/// isLegalAddressingMode - Return true if the addressing mode represented
3067/// by AM is legal for this target, for a load/store of the specified type.
3068bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
3069                                           const Type *Ty) const {
3070  // The default implementation of this implements a conservative RISCy, r+r and
3071  // r+i addr mode.
3072
3073  // Allows a sign-extended 16-bit immediate field.
3074  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3075    return false;
3076
3077  // No global is ever allowed as a base.
3078  if (AM.BaseGV)
3079    return false;
3080
3081  // Only support r+r,
3082  switch (AM.Scale) {
3083  case 0:  // "r+i" or just "i", depending on HasBaseReg.
3084    break;
3085  case 1:
3086    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
3087      return false;
3088    // Otherwise we have r+r or r+i.
3089    break;
3090  case 2:
3091    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
3092      return false;
3093    // Allow 2*r as r+r.
3094    break;
3095  }
3096
3097  return true;
3098}
3099
3100/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
3101/// return a DAG expression to select that will generate the same value by
3102/// multiplying by a magic number.  See:
3103/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3104SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
3105                                  std::vector<SDNode*>* Created) const {
3106  EVT VT = N->getValueType(0);
3107  DebugLoc dl= N->getDebugLoc();
3108
3109  // Check to see if we can do this.
3110  // FIXME: We should be more aggressive here.
3111  if (!isTypeLegal(VT))
3112    return SDValue();
3113
3114  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3115  APInt::ms magics = d.magic();
3116
3117  // Multiply the numerator (operand 0) by the magic value
3118  // FIXME: We should support doing a MUL in a wider type
3119  SDValue Q;
3120  if (isOperationLegalOrCustom(ISD::MULHS, VT))
3121    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
3122                    DAG.getConstant(magics.m, VT));
3123  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
3124    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
3125                              N->getOperand(0),
3126                              DAG.getConstant(magics.m, VT)).getNode(), 1);
3127  else
3128    return SDValue();       // No mulhs or equvialent
3129  // If d > 0 and m < 0, add the numerator
3130  if (d.isStrictlyPositive() && magics.m.isNegative()) {
3131    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
3132    if (Created)
3133      Created->push_back(Q.getNode());
3134  }
3135  // If d < 0 and m > 0, subtract the numerator.
3136  if (d.isNegative() && magics.m.isStrictlyPositive()) {
3137    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
3138    if (Created)
3139      Created->push_back(Q.getNode());
3140  }
3141  // Shift right algebraic if shift value is nonzero
3142  if (magics.s > 0) {
3143    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
3144                    DAG.getConstant(magics.s, getShiftAmountTy()));
3145    if (Created)
3146      Created->push_back(Q.getNode());
3147  }
3148  // Extract the sign bit and add it to the quotient
3149  SDValue T =
3150    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
3151                                                 getShiftAmountTy()));
3152  if (Created)
3153    Created->push_back(T.getNode());
3154  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3155}
3156
3157/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
3158/// return a DAG expression to select that will generate the same value by
3159/// multiplying by a magic number.  See:
3160/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3161SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
3162                                  std::vector<SDNode*>* Created) const {
3163  EVT VT = N->getValueType(0);
3164  DebugLoc dl = N->getDebugLoc();
3165
3166  // Check to see if we can do this.
3167  // FIXME: We should be more aggressive here.
3168  if (!isTypeLegal(VT))
3169    return SDValue();
3170
3171  // FIXME: We should use a narrower constant when the upper
3172  // bits are known to be zero.
3173  ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
3174  APInt::mu magics = N1C->getAPIntValue().magicu();
3175
3176  // Multiply the numerator (operand 0) by the magic value
3177  // FIXME: We should support doing a MUL in a wider type
3178  SDValue Q;
3179  if (isOperationLegalOrCustom(ISD::MULHU, VT))
3180    Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
3181                    DAG.getConstant(magics.m, VT));
3182  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
3183    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
3184                              N->getOperand(0),
3185                              DAG.getConstant(magics.m, VT)).getNode(), 1);
3186  else
3187    return SDValue();       // No mulhu or equvialent
3188  if (Created)
3189    Created->push_back(Q.getNode());
3190
3191  if (magics.a == 0) {
3192    assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
3193           "We shouldn't generate an undefined shift!");
3194    return DAG.getNode(ISD::SRL, dl, VT, Q,
3195                       DAG.getConstant(magics.s, getShiftAmountTy()));
3196  } else {
3197    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
3198    if (Created)
3199      Created->push_back(NPQ.getNode());
3200    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
3201                      DAG.getConstant(1, getShiftAmountTy()));
3202    if (Created)
3203      Created->push_back(NPQ.getNode());
3204    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3205    if (Created)
3206      Created->push_back(NPQ.getNode());
3207    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
3208                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
3209  }
3210}
3211