TargetLowering.cpp revision 0c3e67860af417febb1fa9e870ece912a16085ac
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/MC/MCAsmInfo.h"
16#include "llvm/MC/MCExpr.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetLoweringObjectFile.h"
19#include "llvm/Target/TargetMachine.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/CodeGen/Analysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineJumpTableInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/MathExtras.h"
32#include <cctype>
33using namespace llvm;
34
35/// We are in the process of implementing a new TypeLegalization action
36/// - the promotion of vector elements. This feature is disabled by default
37/// and only enabled using this flag.
38static cl::opt<bool>
39AllowPromoteIntElem("promote-elements", cl::Hidden,
40  cl::desc("Allow promotion of integer vector element types"));
41
42namespace llvm {
43TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
44  bool isLocal = GV->hasLocalLinkage();
45  bool isDeclaration = GV->isDeclaration();
46  // FIXME: what should we do for protected and internal visibility?
47  // For variables, is internal different from hidden?
48  bool isHidden = GV->hasHiddenVisibility();
49
50  if (reloc == Reloc::PIC_) {
51    if (isLocal || isHidden)
52      return TLSModel::LocalDynamic;
53    else
54      return TLSModel::GeneralDynamic;
55  } else {
56    if (!isDeclaration || isHidden)
57      return TLSModel::LocalExec;
58    else
59      return TLSModel::InitialExec;
60  }
61}
62}
63
64/// InitLibcallNames - Set default libcall names.
65///
66static void InitLibcallNames(const char **Names) {
67  Names[RTLIB::SHL_I16] = "__ashlhi3";
68  Names[RTLIB::SHL_I32] = "__ashlsi3";
69  Names[RTLIB::SHL_I64] = "__ashldi3";
70  Names[RTLIB::SHL_I128] = "__ashlti3";
71  Names[RTLIB::SRL_I16] = "__lshrhi3";
72  Names[RTLIB::SRL_I32] = "__lshrsi3";
73  Names[RTLIB::SRL_I64] = "__lshrdi3";
74  Names[RTLIB::SRL_I128] = "__lshrti3";
75  Names[RTLIB::SRA_I16] = "__ashrhi3";
76  Names[RTLIB::SRA_I32] = "__ashrsi3";
77  Names[RTLIB::SRA_I64] = "__ashrdi3";
78  Names[RTLIB::SRA_I128] = "__ashrti3";
79  Names[RTLIB::MUL_I8] = "__mulqi3";
80  Names[RTLIB::MUL_I16] = "__mulhi3";
81  Names[RTLIB::MUL_I32] = "__mulsi3";
82  Names[RTLIB::MUL_I64] = "__muldi3";
83  Names[RTLIB::MUL_I128] = "__multi3";
84  Names[RTLIB::SDIV_I8] = "__divqi3";
85  Names[RTLIB::SDIV_I16] = "__divhi3";
86  Names[RTLIB::SDIV_I32] = "__divsi3";
87  Names[RTLIB::SDIV_I64] = "__divdi3";
88  Names[RTLIB::SDIV_I128] = "__divti3";
89  Names[RTLIB::UDIV_I8] = "__udivqi3";
90  Names[RTLIB::UDIV_I16] = "__udivhi3";
91  Names[RTLIB::UDIV_I32] = "__udivsi3";
92  Names[RTLIB::UDIV_I64] = "__udivdi3";
93  Names[RTLIB::UDIV_I128] = "__udivti3";
94  Names[RTLIB::SREM_I8] = "__modqi3";
95  Names[RTLIB::SREM_I16] = "__modhi3";
96  Names[RTLIB::SREM_I32] = "__modsi3";
97  Names[RTLIB::SREM_I64] = "__moddi3";
98  Names[RTLIB::SREM_I128] = "__modti3";
99  Names[RTLIB::UREM_I8] = "__umodqi3";
100  Names[RTLIB::UREM_I16] = "__umodhi3";
101  Names[RTLIB::UREM_I32] = "__umodsi3";
102  Names[RTLIB::UREM_I64] = "__umoddi3";
103  Names[RTLIB::UREM_I128] = "__umodti3";
104
105  // These are generally not available.
106  Names[RTLIB::SDIVREM_I8] = 0;
107  Names[RTLIB::SDIVREM_I16] = 0;
108  Names[RTLIB::SDIVREM_I32] = 0;
109  Names[RTLIB::SDIVREM_I64] = 0;
110  Names[RTLIB::SDIVREM_I128] = 0;
111  Names[RTLIB::UDIVREM_I8] = 0;
112  Names[RTLIB::UDIVREM_I16] = 0;
113  Names[RTLIB::UDIVREM_I32] = 0;
114  Names[RTLIB::UDIVREM_I64] = 0;
115  Names[RTLIB::UDIVREM_I128] = 0;
116
117  Names[RTLIB::NEG_I32] = "__negsi2";
118  Names[RTLIB::NEG_I64] = "__negdi2";
119  Names[RTLIB::ADD_F32] = "__addsf3";
120  Names[RTLIB::ADD_F64] = "__adddf3";
121  Names[RTLIB::ADD_F80] = "__addxf3";
122  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
123  Names[RTLIB::SUB_F32] = "__subsf3";
124  Names[RTLIB::SUB_F64] = "__subdf3";
125  Names[RTLIB::SUB_F80] = "__subxf3";
126  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
127  Names[RTLIB::MUL_F32] = "__mulsf3";
128  Names[RTLIB::MUL_F64] = "__muldf3";
129  Names[RTLIB::MUL_F80] = "__mulxf3";
130  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
131  Names[RTLIB::DIV_F32] = "__divsf3";
132  Names[RTLIB::DIV_F64] = "__divdf3";
133  Names[RTLIB::DIV_F80] = "__divxf3";
134  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
135  Names[RTLIB::REM_F32] = "fmodf";
136  Names[RTLIB::REM_F64] = "fmod";
137  Names[RTLIB::REM_F80] = "fmodl";
138  Names[RTLIB::REM_PPCF128] = "fmodl";
139  Names[RTLIB::POWI_F32] = "__powisf2";
140  Names[RTLIB::POWI_F64] = "__powidf2";
141  Names[RTLIB::POWI_F80] = "__powixf2";
142  Names[RTLIB::POWI_PPCF128] = "__powitf2";
143  Names[RTLIB::SQRT_F32] = "sqrtf";
144  Names[RTLIB::SQRT_F64] = "sqrt";
145  Names[RTLIB::SQRT_F80] = "sqrtl";
146  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
147  Names[RTLIB::LOG_F32] = "logf";
148  Names[RTLIB::LOG_F64] = "log";
149  Names[RTLIB::LOG_F80] = "logl";
150  Names[RTLIB::LOG_PPCF128] = "logl";
151  Names[RTLIB::LOG2_F32] = "log2f";
152  Names[RTLIB::LOG2_F64] = "log2";
153  Names[RTLIB::LOG2_F80] = "log2l";
154  Names[RTLIB::LOG2_PPCF128] = "log2l";
155  Names[RTLIB::LOG10_F32] = "log10f";
156  Names[RTLIB::LOG10_F64] = "log10";
157  Names[RTLIB::LOG10_F80] = "log10l";
158  Names[RTLIB::LOG10_PPCF128] = "log10l";
159  Names[RTLIB::EXP_F32] = "expf";
160  Names[RTLIB::EXP_F64] = "exp";
161  Names[RTLIB::EXP_F80] = "expl";
162  Names[RTLIB::EXP_PPCF128] = "expl";
163  Names[RTLIB::EXP2_F32] = "exp2f";
164  Names[RTLIB::EXP2_F64] = "exp2";
165  Names[RTLIB::EXP2_F80] = "exp2l";
166  Names[RTLIB::EXP2_PPCF128] = "exp2l";
167  Names[RTLIB::SIN_F32] = "sinf";
168  Names[RTLIB::SIN_F64] = "sin";
169  Names[RTLIB::SIN_F80] = "sinl";
170  Names[RTLIB::SIN_PPCF128] = "sinl";
171  Names[RTLIB::COS_F32] = "cosf";
172  Names[RTLIB::COS_F64] = "cos";
173  Names[RTLIB::COS_F80] = "cosl";
174  Names[RTLIB::COS_PPCF128] = "cosl";
175  Names[RTLIB::POW_F32] = "powf";
176  Names[RTLIB::POW_F64] = "pow";
177  Names[RTLIB::POW_F80] = "powl";
178  Names[RTLIB::POW_PPCF128] = "powl";
179  Names[RTLIB::CEIL_F32] = "ceilf";
180  Names[RTLIB::CEIL_F64] = "ceil";
181  Names[RTLIB::CEIL_F80] = "ceill";
182  Names[RTLIB::CEIL_PPCF128] = "ceill";
183  Names[RTLIB::TRUNC_F32] = "truncf";
184  Names[RTLIB::TRUNC_F64] = "trunc";
185  Names[RTLIB::TRUNC_F80] = "truncl";
186  Names[RTLIB::TRUNC_PPCF128] = "truncl";
187  Names[RTLIB::RINT_F32] = "rintf";
188  Names[RTLIB::RINT_F64] = "rint";
189  Names[RTLIB::RINT_F80] = "rintl";
190  Names[RTLIB::RINT_PPCF128] = "rintl";
191  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
192  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
193  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
194  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
195  Names[RTLIB::FLOOR_F32] = "floorf";
196  Names[RTLIB::FLOOR_F64] = "floor";
197  Names[RTLIB::FLOOR_F80] = "floorl";
198  Names[RTLIB::FLOOR_PPCF128] = "floorl";
199  Names[RTLIB::COPYSIGN_F32] = "copysignf";
200  Names[RTLIB::COPYSIGN_F64] = "copysign";
201  Names[RTLIB::COPYSIGN_F80] = "copysignl";
202  Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
203  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
204  Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
205  Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
206  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
207  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
208  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
209  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
210  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
211  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
212  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
213  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
214  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
215  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
216  Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
217  Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
218  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
219  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
220  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
221  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
222  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
223  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
224  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
225  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
226  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
227  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
228  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
229  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
230  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
231  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
232  Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
233  Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
234  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
235  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
236  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
237  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
238  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
239  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
240  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
241  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
242  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
243  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
244  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
245  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
246  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
247  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
248  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
249  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
250  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
251  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
252  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
253  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
254  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
255  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
256  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
257  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
258  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
259  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
260  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
261  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
262  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
263  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
264  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
265  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
266  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
267  Names[RTLIB::OEQ_F32] = "__eqsf2";
268  Names[RTLIB::OEQ_F64] = "__eqdf2";
269  Names[RTLIB::UNE_F32] = "__nesf2";
270  Names[RTLIB::UNE_F64] = "__nedf2";
271  Names[RTLIB::OGE_F32] = "__gesf2";
272  Names[RTLIB::OGE_F64] = "__gedf2";
273  Names[RTLIB::OLT_F32] = "__ltsf2";
274  Names[RTLIB::OLT_F64] = "__ltdf2";
275  Names[RTLIB::OLE_F32] = "__lesf2";
276  Names[RTLIB::OLE_F64] = "__ledf2";
277  Names[RTLIB::OGT_F32] = "__gtsf2";
278  Names[RTLIB::OGT_F64] = "__gtdf2";
279  Names[RTLIB::UO_F32] = "__unordsf2";
280  Names[RTLIB::UO_F64] = "__unorddf2";
281  Names[RTLIB::O_F32] = "__unordsf2";
282  Names[RTLIB::O_F64] = "__unorddf2";
283  Names[RTLIB::MEMCPY] = "memcpy";
284  Names[RTLIB::MEMMOVE] = "memmove";
285  Names[RTLIB::MEMSET] = "memset";
286  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
287  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
288  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
289  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
290  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
291  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
292  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
293  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
294  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
295  Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
296  Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
297  Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
298  Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
299  Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
300  Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
301  Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
302  Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
303  Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
304  Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
305  Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
306  Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
307  Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
308  Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
309  Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
310  Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
311  Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
312  Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
313  Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and-xor_4";
314  Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
315  Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
316  Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
317  Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
318  Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
319}
320
321/// InitLibcallCallingConvs - Set default libcall CallingConvs.
322///
323static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
324  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
325    CCs[i] = CallingConv::C;
326  }
327}
328
329/// getFPEXT - Return the FPEXT_*_* value for the given types, or
330/// UNKNOWN_LIBCALL if there is none.
331RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
332  if (OpVT == MVT::f32) {
333    if (RetVT == MVT::f64)
334      return FPEXT_F32_F64;
335  }
336
337  return UNKNOWN_LIBCALL;
338}
339
340/// getFPROUND - Return the FPROUND_*_* value for the given types, or
341/// UNKNOWN_LIBCALL if there is none.
342RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
343  if (RetVT == MVT::f32) {
344    if (OpVT == MVT::f64)
345      return FPROUND_F64_F32;
346    if (OpVT == MVT::f80)
347      return FPROUND_F80_F32;
348    if (OpVT == MVT::ppcf128)
349      return FPROUND_PPCF128_F32;
350  } else if (RetVT == MVT::f64) {
351    if (OpVT == MVT::f80)
352      return FPROUND_F80_F64;
353    if (OpVT == MVT::ppcf128)
354      return FPROUND_PPCF128_F64;
355  }
356
357  return UNKNOWN_LIBCALL;
358}
359
360/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
361/// UNKNOWN_LIBCALL if there is none.
362RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
363  if (OpVT == MVT::f32) {
364    if (RetVT == MVT::i8)
365      return FPTOSINT_F32_I8;
366    if (RetVT == MVT::i16)
367      return FPTOSINT_F32_I16;
368    if (RetVT == MVT::i32)
369      return FPTOSINT_F32_I32;
370    if (RetVT == MVT::i64)
371      return FPTOSINT_F32_I64;
372    if (RetVT == MVT::i128)
373      return FPTOSINT_F32_I128;
374  } else if (OpVT == MVT::f64) {
375    if (RetVT == MVT::i8)
376      return FPTOSINT_F64_I8;
377    if (RetVT == MVT::i16)
378      return FPTOSINT_F64_I16;
379    if (RetVT == MVT::i32)
380      return FPTOSINT_F64_I32;
381    if (RetVT == MVT::i64)
382      return FPTOSINT_F64_I64;
383    if (RetVT == MVT::i128)
384      return FPTOSINT_F64_I128;
385  } else if (OpVT == MVT::f80) {
386    if (RetVT == MVT::i32)
387      return FPTOSINT_F80_I32;
388    if (RetVT == MVT::i64)
389      return FPTOSINT_F80_I64;
390    if (RetVT == MVT::i128)
391      return FPTOSINT_F80_I128;
392  } else if (OpVT == MVT::ppcf128) {
393    if (RetVT == MVT::i32)
394      return FPTOSINT_PPCF128_I32;
395    if (RetVT == MVT::i64)
396      return FPTOSINT_PPCF128_I64;
397    if (RetVT == MVT::i128)
398      return FPTOSINT_PPCF128_I128;
399  }
400  return UNKNOWN_LIBCALL;
401}
402
403/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
404/// UNKNOWN_LIBCALL if there is none.
405RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
406  if (OpVT == MVT::f32) {
407    if (RetVT == MVT::i8)
408      return FPTOUINT_F32_I8;
409    if (RetVT == MVT::i16)
410      return FPTOUINT_F32_I16;
411    if (RetVT == MVT::i32)
412      return FPTOUINT_F32_I32;
413    if (RetVT == MVT::i64)
414      return FPTOUINT_F32_I64;
415    if (RetVT == MVT::i128)
416      return FPTOUINT_F32_I128;
417  } else if (OpVT == MVT::f64) {
418    if (RetVT == MVT::i8)
419      return FPTOUINT_F64_I8;
420    if (RetVT == MVT::i16)
421      return FPTOUINT_F64_I16;
422    if (RetVT == MVT::i32)
423      return FPTOUINT_F64_I32;
424    if (RetVT == MVT::i64)
425      return FPTOUINT_F64_I64;
426    if (RetVT == MVT::i128)
427      return FPTOUINT_F64_I128;
428  } else if (OpVT == MVT::f80) {
429    if (RetVT == MVT::i32)
430      return FPTOUINT_F80_I32;
431    if (RetVT == MVT::i64)
432      return FPTOUINT_F80_I64;
433    if (RetVT == MVT::i128)
434      return FPTOUINT_F80_I128;
435  } else if (OpVT == MVT::ppcf128) {
436    if (RetVT == MVT::i32)
437      return FPTOUINT_PPCF128_I32;
438    if (RetVT == MVT::i64)
439      return FPTOUINT_PPCF128_I64;
440    if (RetVT == MVT::i128)
441      return FPTOUINT_PPCF128_I128;
442  }
443  return UNKNOWN_LIBCALL;
444}
445
446/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
447/// UNKNOWN_LIBCALL if there is none.
448RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
449  if (OpVT == MVT::i32) {
450    if (RetVT == MVT::f32)
451      return SINTTOFP_I32_F32;
452    else if (RetVT == MVT::f64)
453      return SINTTOFP_I32_F64;
454    else if (RetVT == MVT::f80)
455      return SINTTOFP_I32_F80;
456    else if (RetVT == MVT::ppcf128)
457      return SINTTOFP_I32_PPCF128;
458  } else if (OpVT == MVT::i64) {
459    if (RetVT == MVT::f32)
460      return SINTTOFP_I64_F32;
461    else if (RetVT == MVT::f64)
462      return SINTTOFP_I64_F64;
463    else if (RetVT == MVT::f80)
464      return SINTTOFP_I64_F80;
465    else if (RetVT == MVT::ppcf128)
466      return SINTTOFP_I64_PPCF128;
467  } else if (OpVT == MVT::i128) {
468    if (RetVT == MVT::f32)
469      return SINTTOFP_I128_F32;
470    else if (RetVT == MVT::f64)
471      return SINTTOFP_I128_F64;
472    else if (RetVT == MVT::f80)
473      return SINTTOFP_I128_F80;
474    else if (RetVT == MVT::ppcf128)
475      return SINTTOFP_I128_PPCF128;
476  }
477  return UNKNOWN_LIBCALL;
478}
479
480/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
481/// UNKNOWN_LIBCALL if there is none.
482RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
483  if (OpVT == MVT::i32) {
484    if (RetVT == MVT::f32)
485      return UINTTOFP_I32_F32;
486    else if (RetVT == MVT::f64)
487      return UINTTOFP_I32_F64;
488    else if (RetVT == MVT::f80)
489      return UINTTOFP_I32_F80;
490    else if (RetVT == MVT::ppcf128)
491      return UINTTOFP_I32_PPCF128;
492  } else if (OpVT == MVT::i64) {
493    if (RetVT == MVT::f32)
494      return UINTTOFP_I64_F32;
495    else if (RetVT == MVT::f64)
496      return UINTTOFP_I64_F64;
497    else if (RetVT == MVT::f80)
498      return UINTTOFP_I64_F80;
499    else if (RetVT == MVT::ppcf128)
500      return UINTTOFP_I64_PPCF128;
501  } else if (OpVT == MVT::i128) {
502    if (RetVT == MVT::f32)
503      return UINTTOFP_I128_F32;
504    else if (RetVT == MVT::f64)
505      return UINTTOFP_I128_F64;
506    else if (RetVT == MVT::f80)
507      return UINTTOFP_I128_F80;
508    else if (RetVT == MVT::ppcf128)
509      return UINTTOFP_I128_PPCF128;
510  }
511  return UNKNOWN_LIBCALL;
512}
513
514/// InitCmpLibcallCCs - Set default comparison libcall CC.
515///
516static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
517  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
518  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
519  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
520  CCs[RTLIB::UNE_F32] = ISD::SETNE;
521  CCs[RTLIB::UNE_F64] = ISD::SETNE;
522  CCs[RTLIB::OGE_F32] = ISD::SETGE;
523  CCs[RTLIB::OGE_F64] = ISD::SETGE;
524  CCs[RTLIB::OLT_F32] = ISD::SETLT;
525  CCs[RTLIB::OLT_F64] = ISD::SETLT;
526  CCs[RTLIB::OLE_F32] = ISD::SETLE;
527  CCs[RTLIB::OLE_F64] = ISD::SETLE;
528  CCs[RTLIB::OGT_F32] = ISD::SETGT;
529  CCs[RTLIB::OGT_F64] = ISD::SETGT;
530  CCs[RTLIB::UO_F32] = ISD::SETNE;
531  CCs[RTLIB::UO_F64] = ISD::SETNE;
532  CCs[RTLIB::O_F32] = ISD::SETEQ;
533  CCs[RTLIB::O_F64] = ISD::SETEQ;
534}
535
536/// NOTE: The constructor takes ownership of TLOF.
537TargetLowering::TargetLowering(const TargetMachine &tm,
538                               const TargetLoweringObjectFile *tlof)
539  : TM(tm), TD(TM.getTargetData()), TLOF(*tlof),
540  mayPromoteElements(AllowPromoteIntElem) {
541  // All operations default to being supported.
542  memset(OpActions, 0, sizeof(OpActions));
543  memset(LoadExtActions, 0, sizeof(LoadExtActions));
544  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
545  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
546  memset(CondCodeActions, 0, sizeof(CondCodeActions));
547
548  // Set default actions for various operations.
549  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
550    // Default all indexed load / store to expand.
551    for (unsigned IM = (unsigned)ISD::PRE_INC;
552         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
553      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
554      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
555    }
556
557    // These operations default to expand.
558    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
559    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
560  }
561
562  // Most targets ignore the @llvm.prefetch intrinsic.
563  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
564
565  // ConstantFP nodes default to expand.  Targets can either change this to
566  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
567  // to optimize expansions for certain constants.
568  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
569  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
570  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
571
572  // These library functions default to expand.
573  setOperationAction(ISD::FLOG , MVT::f64, Expand);
574  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
575  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
576  setOperationAction(ISD::FEXP , MVT::f64, Expand);
577  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
578  setOperationAction(ISD::FLOG , MVT::f32, Expand);
579  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
580  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
581  setOperationAction(ISD::FEXP , MVT::f32, Expand);
582  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
583
584  // Default ISD::TRAP to expand (which turns it into abort).
585  setOperationAction(ISD::TRAP, MVT::Other, Expand);
586
587  IsLittleEndian = TD->isLittleEndian();
588  PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
589  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
590  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
591  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
592  maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize
593    = maxStoresPerMemmoveOptSize = 4;
594  benefitFromCodePlacementOpt = false;
595  UseUnderscoreSetJmp = false;
596  UseUnderscoreLongJmp = false;
597  SelectIsExpensive = false;
598  IntDivIsCheap = false;
599  Pow2DivIsCheap = false;
600  JumpIsExpensive = false;
601  StackPointerRegisterToSaveRestore = 0;
602  ExceptionPointerRegister = 0;
603  ExceptionSelectorRegister = 0;
604  BooleanContents = UndefinedBooleanContent;
605  SchedPreferenceInfo = Sched::Latency;
606  JumpBufSize = 0;
607  JumpBufAlignment = 0;
608  MinFunctionAlignment = 0;
609  PrefFunctionAlignment = 0;
610  PrefLoopAlignment = 0;
611  MinStackArgumentAlignment = 1;
612  ShouldFoldAtomicFences = false;
613
614  InitLibcallNames(LibcallRoutineNames);
615  InitCmpLibcallCCs(CmpLibcallCCs);
616  InitLibcallCallingConvs(LibcallCallingConvs);
617}
618
619TargetLowering::~TargetLowering() {
620  delete &TLOF;
621}
622
623MVT TargetLowering::getShiftAmountTy(EVT LHSTy) const {
624  return MVT::getIntegerVT(8*TD->getPointerSize());
625}
626
627/// canOpTrap - Returns true if the operation can trap for the value type.
628/// VT must be a legal type.
629bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
630  assert(isTypeLegal(VT));
631  switch (Op) {
632  default:
633    return false;
634  case ISD::FDIV:
635  case ISD::FREM:
636  case ISD::SDIV:
637  case ISD::UDIV:
638  case ISD::SREM:
639  case ISD::UREM:
640    return true;
641  }
642}
643
644
645static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
646                                          unsigned &NumIntermediates,
647                                          EVT &RegisterVT,
648                                          TargetLowering *TLI) {
649  // Figure out the right, legal destination reg to copy into.
650  unsigned NumElts = VT.getVectorNumElements();
651  MVT EltTy = VT.getVectorElementType();
652
653  unsigned NumVectorRegs = 1;
654
655  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
656  // could break down into LHS/RHS like LegalizeDAG does.
657  if (!isPowerOf2_32(NumElts)) {
658    NumVectorRegs = NumElts;
659    NumElts = 1;
660  }
661
662  // Divide the input until we get to a supported size.  This will always
663  // end with a scalar if the target doesn't support vectors.
664  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
665    NumElts >>= 1;
666    NumVectorRegs <<= 1;
667  }
668
669  NumIntermediates = NumVectorRegs;
670
671  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
672  if (!TLI->isTypeLegal(NewVT))
673    NewVT = EltTy;
674  IntermediateVT = NewVT;
675
676  unsigned NewVTSize = NewVT.getSizeInBits();
677
678  // Convert sizes such as i33 to i64.
679  if (!isPowerOf2_32(NewVTSize))
680    NewVTSize = NextPowerOf2(NewVTSize);
681
682  EVT DestVT = TLI->getRegisterType(NewVT);
683  RegisterVT = DestVT;
684  if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
685    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
686
687  // Otherwise, promotion or legal types use the same number of registers as
688  // the vector decimated to the appropriate level.
689  return NumVectorRegs;
690}
691
692/// isLegalRC - Return true if the value types that can be represented by the
693/// specified register class are all legal.
694bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const {
695  for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
696       I != E; ++I) {
697    if (isTypeLegal(*I))
698      return true;
699  }
700  return false;
701}
702
703/// hasLegalSuperRegRegClasses - Return true if the specified register class
704/// has one or more super-reg register classes that are legal.
705bool
706TargetLowering::hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const{
707  if (*RC->superregclasses_begin() == 0)
708    return false;
709  for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
710         E = RC->superregclasses_end(); I != E; ++I) {
711    const TargetRegisterClass *RRC = *I;
712    if (isLegalRC(RRC))
713      return true;
714  }
715  return false;
716}
717
718/// findRepresentativeClass - Return the largest legal super-reg register class
719/// of the register class for the specified type and its associated "cost".
720std::pair<const TargetRegisterClass*, uint8_t>
721TargetLowering::findRepresentativeClass(EVT VT) const {
722  const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
723  if (!RC)
724    return std::make_pair(RC, 0);
725  const TargetRegisterClass *BestRC = RC;
726  for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
727         E = RC->superregclasses_end(); I != E; ++I) {
728    const TargetRegisterClass *RRC = *I;
729    if (RRC->isASubClass() || !isLegalRC(RRC))
730      continue;
731    if (!hasLegalSuperRegRegClasses(RRC))
732      return std::make_pair(RRC, 1);
733    BestRC = RRC;
734  }
735  return std::make_pair(BestRC, 1);
736}
737
738
739/// computeRegisterProperties - Once all of the register classes are added,
740/// this allows us to compute derived properties we expose.
741void TargetLowering::computeRegisterProperties() {
742  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
743         "Too many value types for ValueTypeActions to hold!");
744
745  // Everything defaults to needing one register.
746  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
747    NumRegistersForVT[i] = 1;
748    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
749  }
750  // ...except isVoid, which doesn't need any registers.
751  NumRegistersForVT[MVT::isVoid] = 0;
752
753  // Find the largest integer register class.
754  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
755  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
756    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
757
758  // Every integer value type larger than this largest register takes twice as
759  // many registers to represent as the previous ValueType.
760  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
761    EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
762    if (!ExpandedVT.isInteger())
763      break;
764    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
765    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
766    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
767    ValueTypeActions.setTypeAction(ExpandedVT, TypeExpandInteger);
768  }
769
770  // Inspect all of the ValueType's smaller than the largest integer
771  // register to see which ones need promotion.
772  unsigned LegalIntReg = LargestIntReg;
773  for (unsigned IntReg = LargestIntReg - 1;
774       IntReg >= (unsigned)MVT::i1; --IntReg) {
775    EVT IVT = (MVT::SimpleValueType)IntReg;
776    if (isTypeLegal(IVT)) {
777      LegalIntReg = IntReg;
778    } else {
779      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
780        (MVT::SimpleValueType)LegalIntReg;
781      ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
782    }
783  }
784
785  // ppcf128 type is really two f64's.
786  if (!isTypeLegal(MVT::ppcf128)) {
787    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
788    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
789    TransformToType[MVT::ppcf128] = MVT::f64;
790    ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
791  }
792
793  // Decide how to handle f64. If the target does not have native f64 support,
794  // expand it to i64 and we will be generating soft float library calls.
795  if (!isTypeLegal(MVT::f64)) {
796    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
797    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
798    TransformToType[MVT::f64] = MVT::i64;
799    ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
800  }
801
802  // Decide how to handle f32. If the target does not have native support for
803  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
804  if (!isTypeLegal(MVT::f32)) {
805    if (isTypeLegal(MVT::f64)) {
806      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
807      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
808      TransformToType[MVT::f32] = MVT::f64;
809      ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
810    } else {
811      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
812      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
813      TransformToType[MVT::f32] = MVT::i32;
814      ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
815    }
816  }
817
818  // Loop over all of the vector value types to see which need transformations.
819  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
820       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
821    MVT VT = (MVT::SimpleValueType)i;
822    if (isTypeLegal(VT)) continue;
823
824    // Determine if there is a legal wider type.  If so, we should promote to
825    // that wider vector type.
826    EVT EltVT = VT.getVectorElementType();
827    unsigned NElts = VT.getVectorNumElements();
828    if (NElts != 1) {
829      bool IsLegalWiderType = false;
830      // If we allow the promotion of vector elements using a flag,
831      // then return TypePromoteInteger on vector elements.
832      // First try to promote the elements of integer vectors. If no legal
833      // promotion was found, fallback to the widen-vector method.
834      if (mayPromoteElements)
835      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
836        EVT SVT = (MVT::SimpleValueType)nVT;
837        // Promote vectors of integers to vectors with the same number
838        // of elements, with a wider element type.
839        if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
840            && SVT.getVectorNumElements() == NElts &&
841            isTypeLegal(SVT) && SVT.getScalarType().isInteger()) {
842          TransformToType[i] = SVT;
843          RegisterTypeForVT[i] = SVT;
844          NumRegistersForVT[i] = 1;
845          ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
846          IsLegalWiderType = true;
847          break;
848        }
849      }
850
851      if (IsLegalWiderType) continue;
852
853      // Try to widen the vector.
854      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
855        EVT SVT = (MVT::SimpleValueType)nVT;
856        if (SVT.getVectorElementType() == EltVT &&
857            SVT.getVectorNumElements() > NElts &&
858            isTypeLegal(SVT)) {
859          TransformToType[i] = SVT;
860          RegisterTypeForVT[i] = SVT;
861          NumRegistersForVT[i] = 1;
862          ValueTypeActions.setTypeAction(VT, TypeWidenVector);
863          IsLegalWiderType = true;
864          break;
865        }
866      }
867      if (IsLegalWiderType) continue;
868    }
869
870    MVT IntermediateVT;
871    EVT RegisterVT;
872    unsigned NumIntermediates;
873    NumRegistersForVT[i] =
874      getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
875                                RegisterVT, this);
876    RegisterTypeForVT[i] = RegisterVT;
877
878    EVT NVT = VT.getPow2VectorType();
879    if (NVT == VT) {
880      // Type is already a power of 2.  The default action is to split.
881      TransformToType[i] = MVT::Other;
882      unsigned NumElts = VT.getVectorNumElements();
883      ValueTypeActions.setTypeAction(VT,
884            NumElts > 1 ? TypeSplitVector : TypeScalarizeVector);
885    } else {
886      TransformToType[i] = NVT;
887      ValueTypeActions.setTypeAction(VT, TypeWidenVector);
888    }
889  }
890
891  // Determine the 'representative' register class for each value type.
892  // An representative register class is the largest (meaning one which is
893  // not a sub-register class / subreg register class) legal register class for
894  // a group of value types. For example, on i386, i8, i16, and i32
895  // representative would be GR32; while on x86_64 it's GR64.
896  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
897    const TargetRegisterClass* RRC;
898    uint8_t Cost;
899    tie(RRC, Cost) =  findRepresentativeClass((MVT::SimpleValueType)i);
900    RepRegClassForVT[i] = RRC;
901    RepRegClassCostForVT[i] = Cost;
902  }
903}
904
905const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
906  return NULL;
907}
908
909
910MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
911  return PointerTy.SimpleTy;
912}
913
914MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
915  return MVT::i32; // return the default value
916}
917
918/// getVectorTypeBreakdown - Vector types are broken down into some number of
919/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
920/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
921/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
922///
923/// This method returns the number of registers needed, and the VT for each
924/// register.  It also returns the VT and quantity of the intermediate values
925/// before they are promoted/expanded.
926///
927unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
928                                                EVT &IntermediateVT,
929                                                unsigned &NumIntermediates,
930                                                EVT &RegisterVT) const {
931  unsigned NumElts = VT.getVectorNumElements();
932
933  // If there is a wider vector type with the same element type as this one,
934  // we should widen to that legal vector type.  This handles things like
935  // <2 x float> -> <4 x float>.
936  if (NumElts != 1 && getTypeAction(Context, VT) == TypeWidenVector) {
937    RegisterVT = getTypeToTransformTo(Context, VT);
938    if (isTypeLegal(RegisterVT)) {
939      IntermediateVT = RegisterVT;
940      NumIntermediates = 1;
941      return 1;
942    }
943  }
944
945  // Figure out the right, legal destination reg to copy into.
946  EVT EltTy = VT.getVectorElementType();
947
948  unsigned NumVectorRegs = 1;
949
950  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
951  // could break down into LHS/RHS like LegalizeDAG does.
952  if (!isPowerOf2_32(NumElts)) {
953    NumVectorRegs = NumElts;
954    NumElts = 1;
955  }
956
957  // Divide the input until we get to a supported size.  This will always
958  // end with a scalar if the target doesn't support vectors.
959  while (NumElts > 1 && !isTypeLegal(
960                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
961    NumElts >>= 1;
962    NumVectorRegs <<= 1;
963  }
964
965  NumIntermediates = NumVectorRegs;
966
967  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
968  if (!isTypeLegal(NewVT))
969    NewVT = EltTy;
970  IntermediateVT = NewVT;
971
972  EVT DestVT = getRegisterType(Context, NewVT);
973  RegisterVT = DestVT;
974  unsigned NewVTSize = NewVT.getSizeInBits();
975
976  // Convert sizes such as i33 to i64.
977  if (!isPowerOf2_32(NewVTSize))
978    NewVTSize = NextPowerOf2(NewVTSize);
979
980  if (DestVT.bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
981    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
982
983  // Otherwise, promotion or legal types use the same number of registers as
984  // the vector decimated to the appropriate level.
985  return NumVectorRegs;
986}
987
988/// Get the EVTs and ArgFlags collections that represent the legalized return
989/// type of the given function.  This does not require a DAG or a return value,
990/// and is suitable for use before any DAGs for the function are constructed.
991/// TODO: Move this out of TargetLowering.cpp.
992void llvm::GetReturnInfo(const Type* ReturnType, Attributes attr,
993                         SmallVectorImpl<ISD::OutputArg> &Outs,
994                         const TargetLowering &TLI,
995                         SmallVectorImpl<uint64_t> *Offsets) {
996  SmallVector<EVT, 4> ValueVTs;
997  ComputeValueVTs(TLI, ReturnType, ValueVTs);
998  unsigned NumValues = ValueVTs.size();
999  if (NumValues == 0) return;
1000  unsigned Offset = 0;
1001
1002  for (unsigned j = 0, f = NumValues; j != f; ++j) {
1003    EVT VT = ValueVTs[j];
1004    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1005
1006    if (attr & Attribute::SExt)
1007      ExtendKind = ISD::SIGN_EXTEND;
1008    else if (attr & Attribute::ZExt)
1009      ExtendKind = ISD::ZERO_EXTEND;
1010
1011    // FIXME: C calling convention requires the return type to be promoted to
1012    // at least 32-bit. But this is not necessary for non-C calling
1013    // conventions. The frontend should mark functions whose return values
1014    // require promoting with signext or zeroext attributes.
1015    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1016      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1017      if (VT.bitsLT(MinVT))
1018        VT = MinVT;
1019    }
1020
1021    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
1022    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
1023    unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
1024                        PartVT.getTypeForEVT(ReturnType->getContext()));
1025
1026    // 'inreg' on function refers to return value
1027    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1028    if (attr & Attribute::InReg)
1029      Flags.setInReg();
1030
1031    // Propagate extension type if any
1032    if (attr & Attribute::SExt)
1033      Flags.setSExt();
1034    else if (attr & Attribute::ZExt)
1035      Flags.setZExt();
1036
1037    for (unsigned i = 0; i < NumParts; ++i) {
1038      Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true));
1039      if (Offsets) {
1040        Offsets->push_back(Offset);
1041        Offset += PartSize;
1042      }
1043    }
1044  }
1045}
1046
1047/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1048/// function arguments in the caller parameter area.  This is the actual
1049/// alignment, not its logarithm.
1050unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
1051  return TD->getCallFrameTypeAlignment(Ty);
1052}
1053
1054/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1055/// current function.  The returned value is a member of the
1056/// MachineJumpTableInfo::JTEntryKind enum.
1057unsigned TargetLowering::getJumpTableEncoding() const {
1058  // In non-pic modes, just use the address of a block.
1059  if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
1060    return MachineJumpTableInfo::EK_BlockAddress;
1061
1062  // In PIC mode, if the target supports a GPRel32 directive, use it.
1063  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
1064    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
1065
1066  // Otherwise, use a label difference.
1067  return MachineJumpTableInfo::EK_LabelDifference32;
1068}
1069
1070SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1071                                                 SelectionDAG &DAG) const {
1072  // If our PIC model is GP relative, use the global offset table as the base.
1073  if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
1074    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1075  return Table;
1076}
1077
1078/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1079/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1080/// MCExpr.
1081const MCExpr *
1082TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
1083                                             unsigned JTI,MCContext &Ctx) const{
1084  // The normal PIC reloc base is the label at the start of the jump table.
1085  return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
1086}
1087
1088bool
1089TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
1090  // Assume that everything is safe in static mode.
1091  if (getTargetMachine().getRelocationModel() == Reloc::Static)
1092    return true;
1093
1094  // In dynamic-no-pic mode, assume that known defined values are safe.
1095  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
1096      GA &&
1097      !GA->getGlobal()->isDeclaration() &&
1098      !GA->getGlobal()->isWeakForLinker())
1099    return true;
1100
1101  // Otherwise assume nothing is safe.
1102  return false;
1103}
1104
1105//===----------------------------------------------------------------------===//
1106//  Optimization Methods
1107//===----------------------------------------------------------------------===//
1108
1109/// ShrinkDemandedConstant - Check to see if the specified operand of the
1110/// specified instruction is a constant integer.  If so, check to see if there
1111/// are any bits set in the constant that are not demanded.  If so, shrink the
1112/// constant and return true.
1113bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
1114                                                        const APInt &Demanded) {
1115  DebugLoc dl = Op.getDebugLoc();
1116
1117  // FIXME: ISD::SELECT, ISD::SELECT_CC
1118  switch (Op.getOpcode()) {
1119  default: break;
1120  case ISD::XOR:
1121  case ISD::AND:
1122  case ISD::OR: {
1123    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1124    if (!C) return false;
1125
1126    if (Op.getOpcode() == ISD::XOR &&
1127        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
1128      return false;
1129
1130    // if we can expand it to have all bits set, do it
1131    if (C->getAPIntValue().intersects(~Demanded)) {
1132      EVT VT = Op.getValueType();
1133      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
1134                                DAG.getConstant(Demanded &
1135                                                C->getAPIntValue(),
1136                                                VT));
1137      return CombineTo(Op, New);
1138    }
1139
1140    break;
1141  }
1142  }
1143
1144  return false;
1145}
1146
1147/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
1148/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
1149/// cast, but it could be generalized for targets with other types of
1150/// implicit widening casts.
1151bool
1152TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
1153                                                    unsigned BitWidth,
1154                                                    const APInt &Demanded,
1155                                                    DebugLoc dl) {
1156  assert(Op.getNumOperands() == 2 &&
1157         "ShrinkDemandedOp only supports binary operators!");
1158  assert(Op.getNode()->getNumValues() == 1 &&
1159         "ShrinkDemandedOp only supports nodes with one result!");
1160
1161  // Don't do this if the node has another user, which may require the
1162  // full value.
1163  if (!Op.getNode()->hasOneUse())
1164    return false;
1165
1166  // Search for the smallest integer type with free casts to and from
1167  // Op's type. For expedience, just check power-of-2 integer types.
1168  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1169  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
1170  if (!isPowerOf2_32(SmallVTBits))
1171    SmallVTBits = NextPowerOf2(SmallVTBits);
1172  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1173    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
1174    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
1175        TLI.isZExtFree(SmallVT, Op.getValueType())) {
1176      // We found a type with free casts.
1177      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
1178                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1179                                          Op.getNode()->getOperand(0)),
1180                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1181                                          Op.getNode()->getOperand(1)));
1182      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
1183      return CombineTo(Op, Z);
1184    }
1185  }
1186  return false;
1187}
1188
1189/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
1190/// DemandedMask bits of the result of Op are ever used downstream.  If we can
1191/// use this information to simplify Op, create a new simplified DAG node and
1192/// return true, returning the original and new nodes in Old and New. Otherwise,
1193/// analyze the expression and return a mask of KnownOne and KnownZero bits for
1194/// the expression (used to simplify the caller).  The KnownZero/One bits may
1195/// only be accurate for those bits in the DemandedMask.
1196bool TargetLowering::SimplifyDemandedBits(SDValue Op,
1197                                          const APInt &DemandedMask,
1198                                          APInt &KnownZero,
1199                                          APInt &KnownOne,
1200                                          TargetLoweringOpt &TLO,
1201                                          unsigned Depth) const {
1202  unsigned BitWidth = DemandedMask.getBitWidth();
1203  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
1204         "Mask size mismatches value type size!");
1205  APInt NewMask = DemandedMask;
1206  DebugLoc dl = Op.getDebugLoc();
1207
1208  // Don't know anything.
1209  KnownZero = KnownOne = APInt(BitWidth, 0);
1210
1211  // Other users may use these bits.
1212  if (!Op.getNode()->hasOneUse()) {
1213    if (Depth != 0) {
1214      // If not at the root, Just compute the KnownZero/KnownOne bits to
1215      // simplify things downstream.
1216      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
1217      return false;
1218    }
1219    // If this is the root being simplified, allow it to have multiple uses,
1220    // just set the NewMask to all bits.
1221    NewMask = APInt::getAllOnesValue(BitWidth);
1222  } else if (DemandedMask == 0) {
1223    // Not demanding any bits from Op.
1224    if (Op.getOpcode() != ISD::UNDEF)
1225      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
1226    return false;
1227  } else if (Depth == 6) {        // Limit search depth.
1228    return false;
1229  }
1230
1231  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
1232  switch (Op.getOpcode()) {
1233  case ISD::Constant:
1234    // We know all of the bits for a constant!
1235    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
1236    KnownZero = ~KnownOne & NewMask;
1237    return false;   // Don't fall through, will infinitely loop.
1238  case ISD::AND:
1239    // If the RHS is a constant, check to see if the LHS would be zero without
1240    // using the bits from the RHS.  Below, we use knowledge about the RHS to
1241    // simplify the LHS, here we're using information from the LHS to simplify
1242    // the RHS.
1243    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1244      APInt LHSZero, LHSOne;
1245      // Do not increment Depth here; that can cause an infinite loop.
1246      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
1247                                LHSZero, LHSOne, Depth);
1248      // If the LHS already has zeros where RHSC does, this and is dead.
1249      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1250        return TLO.CombineTo(Op, Op.getOperand(0));
1251      // If any of the set bits in the RHS are known zero on the LHS, shrink
1252      // the constant.
1253      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1254        return true;
1255    }
1256
1257    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1258                             KnownOne, TLO, Depth+1))
1259      return true;
1260    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1261    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1262                             KnownZero2, KnownOne2, TLO, Depth+1))
1263      return true;
1264    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1265
1266    // If all of the demanded bits are known one on one side, return the other.
1267    // These bits cannot contribute to the result of the 'and'.
1268    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1269      return TLO.CombineTo(Op, Op.getOperand(0));
1270    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1271      return TLO.CombineTo(Op, Op.getOperand(1));
1272    // If all of the demanded bits in the inputs are known zeros, return zero.
1273    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1274      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1275    // If the RHS is a constant, see if we can simplify it.
1276    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1277      return true;
1278    // If the operation can be done in a smaller type, do so.
1279    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1280      return true;
1281
1282    // Output known-1 bits are only known if set in both the LHS & RHS.
1283    KnownOne &= KnownOne2;
1284    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1285    KnownZero |= KnownZero2;
1286    break;
1287  case ISD::OR:
1288    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1289                             KnownOne, TLO, Depth+1))
1290      return true;
1291    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1292    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1293                             KnownZero2, KnownOne2, TLO, Depth+1))
1294      return true;
1295    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1296
1297    // If all of the demanded bits are known zero on one side, return the other.
1298    // These bits cannot contribute to the result of the 'or'.
1299    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1300      return TLO.CombineTo(Op, Op.getOperand(0));
1301    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1302      return TLO.CombineTo(Op, Op.getOperand(1));
1303    // If all of the potentially set bits on one side are known to be set on
1304    // the other side, just use the 'other' side.
1305    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1306      return TLO.CombineTo(Op, Op.getOperand(0));
1307    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1308      return TLO.CombineTo(Op, Op.getOperand(1));
1309    // If the RHS is a constant, see if we can simplify it.
1310    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1311      return true;
1312    // If the operation can be done in a smaller type, do so.
1313    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1314      return true;
1315
1316    // Output known-0 bits are only known if clear in both the LHS & RHS.
1317    KnownZero &= KnownZero2;
1318    // Output known-1 are known to be set if set in either the LHS | RHS.
1319    KnownOne |= KnownOne2;
1320    break;
1321  case ISD::XOR:
1322    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1323                             KnownOne, TLO, Depth+1))
1324      return true;
1325    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1326    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1327                             KnownOne2, TLO, Depth+1))
1328      return true;
1329    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1330
1331    // If all of the demanded bits are known zero on one side, return the other.
1332    // These bits cannot contribute to the result of the 'xor'.
1333    if ((KnownZero & NewMask) == NewMask)
1334      return TLO.CombineTo(Op, Op.getOperand(0));
1335    if ((KnownZero2 & NewMask) == NewMask)
1336      return TLO.CombineTo(Op, Op.getOperand(1));
1337    // If the operation can be done in a smaller type, do so.
1338    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1339      return true;
1340
1341    // If all of the unknown bits are known to be zero on one side or the other
1342    // (but not both) turn this into an *inclusive* or.
1343    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1344    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1345      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1346                                               Op.getOperand(0),
1347                                               Op.getOperand(1)));
1348
1349    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1350    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1351    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1352    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1353
1354    // If all of the demanded bits on one side are known, and all of the set
1355    // bits on that side are also known to be set on the other side, turn this
1356    // into an AND, as we know the bits will be cleared.
1357    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1358    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1359      if ((KnownOne & KnownOne2) == KnownOne) {
1360        EVT VT = Op.getValueType();
1361        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1362        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1363                                                 Op.getOperand(0), ANDC));
1364      }
1365    }
1366
1367    // If the RHS is a constant, see if we can simplify it.
1368    // for XOR, we prefer to force bits to 1 if they will make a -1.
1369    // if we can't force bits, try to shrink constant
1370    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1371      APInt Expanded = C->getAPIntValue() | (~NewMask);
1372      // if we can expand it to have all bits set, do it
1373      if (Expanded.isAllOnesValue()) {
1374        if (Expanded != C->getAPIntValue()) {
1375          EVT VT = Op.getValueType();
1376          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1377                                          TLO.DAG.getConstant(Expanded, VT));
1378          return TLO.CombineTo(Op, New);
1379        }
1380        // if it already has all the bits set, nothing to change
1381        // but don't shrink either!
1382      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1383        return true;
1384      }
1385    }
1386
1387    KnownZero = KnownZeroOut;
1388    KnownOne  = KnownOneOut;
1389    break;
1390  case ISD::SELECT:
1391    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1392                             KnownOne, TLO, Depth+1))
1393      return true;
1394    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1395                             KnownOne2, TLO, Depth+1))
1396      return true;
1397    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1398    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1399
1400    // If the operands are constants, see if we can simplify them.
1401    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1402      return true;
1403
1404    // Only known if known in both the LHS and RHS.
1405    KnownOne &= KnownOne2;
1406    KnownZero &= KnownZero2;
1407    break;
1408  case ISD::SELECT_CC:
1409    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1410                             KnownOne, TLO, Depth+1))
1411      return true;
1412    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1413                             KnownOne2, TLO, Depth+1))
1414      return true;
1415    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1416    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1417
1418    // If the operands are constants, see if we can simplify them.
1419    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1420      return true;
1421
1422    // Only known if known in both the LHS and RHS.
1423    KnownOne &= KnownOne2;
1424    KnownZero &= KnownZero2;
1425    break;
1426  case ISD::SHL:
1427    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1428      unsigned ShAmt = SA->getZExtValue();
1429      SDValue InOp = Op.getOperand(0);
1430
1431      // If the shift count is an invalid immediate, don't do anything.
1432      if (ShAmt >= BitWidth)
1433        break;
1434
1435      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1436      // single shift.  We can do this if the bottom bits (which are shifted
1437      // out) are never demanded.
1438      if (InOp.getOpcode() == ISD::SRL &&
1439          isa<ConstantSDNode>(InOp.getOperand(1))) {
1440        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1441          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1442          unsigned Opc = ISD::SHL;
1443          int Diff = ShAmt-C1;
1444          if (Diff < 0) {
1445            Diff = -Diff;
1446            Opc = ISD::SRL;
1447          }
1448
1449          SDValue NewSA =
1450            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1451          EVT VT = Op.getValueType();
1452          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1453                                                   InOp.getOperand(0), NewSA));
1454        }
1455      }
1456
1457      if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
1458                               KnownZero, KnownOne, TLO, Depth+1))
1459        return true;
1460
1461      // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1462      // are not demanded. This will likely allow the anyext to be folded away.
1463      if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
1464        SDValue InnerOp = InOp.getNode()->getOperand(0);
1465        EVT InnerVT = InnerOp.getValueType();
1466        if ((APInt::getHighBitsSet(BitWidth,
1467                                   BitWidth - InnerVT.getSizeInBits()) &
1468               DemandedMask) == 0 &&
1469            isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1470          EVT ShTy = getShiftAmountTy(InnerVT);
1471          if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1472            ShTy = InnerVT;
1473          SDValue NarrowShl =
1474            TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1475                            TLO.DAG.getConstant(ShAmt, ShTy));
1476          return
1477            TLO.CombineTo(Op,
1478                          TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
1479                                          NarrowShl));
1480        }
1481      }
1482
1483      KnownZero <<= SA->getZExtValue();
1484      KnownOne  <<= SA->getZExtValue();
1485      // low bits known zero.
1486      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1487    }
1488    break;
1489  case ISD::SRL:
1490    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1491      EVT VT = Op.getValueType();
1492      unsigned ShAmt = SA->getZExtValue();
1493      unsigned VTSize = VT.getSizeInBits();
1494      SDValue InOp = Op.getOperand(0);
1495
1496      // If the shift count is an invalid immediate, don't do anything.
1497      if (ShAmt >= BitWidth)
1498        break;
1499
1500      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1501      // single shift.  We can do this if the top bits (which are shifted out)
1502      // are never demanded.
1503      if (InOp.getOpcode() == ISD::SHL &&
1504          isa<ConstantSDNode>(InOp.getOperand(1))) {
1505        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1506          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1507          unsigned Opc = ISD::SRL;
1508          int Diff = ShAmt-C1;
1509          if (Diff < 0) {
1510            Diff = -Diff;
1511            Opc = ISD::SHL;
1512          }
1513
1514          SDValue NewSA =
1515            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1516          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1517                                                   InOp.getOperand(0), NewSA));
1518        }
1519      }
1520
1521      // Compute the new bits that are at the top now.
1522      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1523                               KnownZero, KnownOne, TLO, Depth+1))
1524        return true;
1525      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1526      KnownZero = KnownZero.lshr(ShAmt);
1527      KnownOne  = KnownOne.lshr(ShAmt);
1528
1529      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1530      KnownZero |= HighBits;  // High bits known zero.
1531    }
1532    break;
1533  case ISD::SRA:
1534    // If this is an arithmetic shift right and only the low-bit is set, we can
1535    // always convert this into a logical shr, even if the shift amount is
1536    // variable.  The low bit of the shift cannot be an input sign bit unless
1537    // the shift amount is >= the size of the datatype, which is undefined.
1538    if (DemandedMask == 1)
1539      return TLO.CombineTo(Op,
1540                           TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1541                                           Op.getOperand(0), Op.getOperand(1)));
1542
1543    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1544      EVT VT = Op.getValueType();
1545      unsigned ShAmt = SA->getZExtValue();
1546
1547      // If the shift count is an invalid immediate, don't do anything.
1548      if (ShAmt >= BitWidth)
1549        break;
1550
1551      APInt InDemandedMask = (NewMask << ShAmt);
1552
1553      // If any of the demanded bits are produced by the sign extension, we also
1554      // demand the input sign bit.
1555      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1556      if (HighBits.intersects(NewMask))
1557        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1558
1559      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1560                               KnownZero, KnownOne, TLO, Depth+1))
1561        return true;
1562      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1563      KnownZero = KnownZero.lshr(ShAmt);
1564      KnownOne  = KnownOne.lshr(ShAmt);
1565
1566      // Handle the sign bit, adjusted to where it is now in the mask.
1567      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1568
1569      // If the input sign bit is known to be zero, or if none of the top bits
1570      // are demanded, turn this into an unsigned shift right.
1571      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1572        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1573                                                 Op.getOperand(0),
1574                                                 Op.getOperand(1)));
1575      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1576        KnownOne |= HighBits;
1577      }
1578    }
1579    break;
1580  case ISD::SIGN_EXTEND_INREG: {
1581    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1582
1583    // Sign extension.  Compute the demanded bits in the result that are not
1584    // present in the input.
1585    APInt NewBits =
1586      APInt::getHighBitsSet(BitWidth,
1587                            BitWidth - EVT.getScalarType().getSizeInBits());
1588
1589    // If none of the extended bits are demanded, eliminate the sextinreg.
1590    if ((NewBits & NewMask) == 0)
1591      return TLO.CombineTo(Op, Op.getOperand(0));
1592
1593    APInt InSignBit =
1594      APInt::getSignBit(EVT.getScalarType().getSizeInBits()).zext(BitWidth);
1595    APInt InputDemandedBits =
1596      APInt::getLowBitsSet(BitWidth,
1597                           EVT.getScalarType().getSizeInBits()) &
1598      NewMask;
1599
1600    // Since the sign extended bits are demanded, we know that the sign
1601    // bit is demanded.
1602    InputDemandedBits |= InSignBit;
1603
1604    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1605                             KnownZero, KnownOne, TLO, Depth+1))
1606      return true;
1607    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1608
1609    // If the sign bit of the input is known set or clear, then we know the
1610    // top bits of the result.
1611
1612    // If the input sign bit is known zero, convert this into a zero extension.
1613    if (KnownZero.intersects(InSignBit))
1614      return TLO.CombineTo(Op,
1615                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1616
1617    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1618      KnownOne |= NewBits;
1619      KnownZero &= ~NewBits;
1620    } else {                       // Input sign bit unknown
1621      KnownZero &= ~NewBits;
1622      KnownOne &= ~NewBits;
1623    }
1624    break;
1625  }
1626  case ISD::ZERO_EXTEND: {
1627    unsigned OperandBitWidth =
1628      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1629    APInt InMask = NewMask.trunc(OperandBitWidth);
1630
1631    // If none of the top bits are demanded, convert this into an any_extend.
1632    APInt NewBits =
1633      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1634    if (!NewBits.intersects(NewMask))
1635      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1636                                               Op.getValueType(),
1637                                               Op.getOperand(0)));
1638
1639    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1640                             KnownZero, KnownOne, TLO, Depth+1))
1641      return true;
1642    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1643    KnownZero = KnownZero.zext(BitWidth);
1644    KnownOne = KnownOne.zext(BitWidth);
1645    KnownZero |= NewBits;
1646    break;
1647  }
1648  case ISD::SIGN_EXTEND: {
1649    EVT InVT = Op.getOperand(0).getValueType();
1650    unsigned InBits = InVT.getScalarType().getSizeInBits();
1651    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1652    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1653    APInt NewBits   = ~InMask & NewMask;
1654
1655    // If none of the top bits are demanded, convert this into an any_extend.
1656    if (NewBits == 0)
1657      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1658                                              Op.getValueType(),
1659                                              Op.getOperand(0)));
1660
1661    // Since some of the sign extended bits are demanded, we know that the sign
1662    // bit is demanded.
1663    APInt InDemandedBits = InMask & NewMask;
1664    InDemandedBits |= InSignBit;
1665    InDemandedBits = InDemandedBits.trunc(InBits);
1666
1667    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1668                             KnownOne, TLO, Depth+1))
1669      return true;
1670    KnownZero = KnownZero.zext(BitWidth);
1671    KnownOne = KnownOne.zext(BitWidth);
1672
1673    // If the sign bit is known zero, convert this to a zero extend.
1674    if (KnownZero.intersects(InSignBit))
1675      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1676                                               Op.getValueType(),
1677                                               Op.getOperand(0)));
1678
1679    // If the sign bit is known one, the top bits match.
1680    if (KnownOne.intersects(InSignBit)) {
1681      KnownOne  |= NewBits;
1682      KnownZero &= ~NewBits;
1683    } else {   // Otherwise, top bits aren't known.
1684      KnownOne  &= ~NewBits;
1685      KnownZero &= ~NewBits;
1686    }
1687    break;
1688  }
1689  case ISD::ANY_EXTEND: {
1690    unsigned OperandBitWidth =
1691      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1692    APInt InMask = NewMask.trunc(OperandBitWidth);
1693    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1694                             KnownZero, KnownOne, TLO, Depth+1))
1695      return true;
1696    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1697    KnownZero = KnownZero.zext(BitWidth);
1698    KnownOne = KnownOne.zext(BitWidth);
1699    break;
1700  }
1701  case ISD::TRUNCATE: {
1702    // Simplify the input, using demanded bit information, and compute the known
1703    // zero/one bits live out.
1704    unsigned OperandBitWidth =
1705      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1706    APInt TruncMask = NewMask.zext(OperandBitWidth);
1707    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1708                             KnownZero, KnownOne, TLO, Depth+1))
1709      return true;
1710    KnownZero = KnownZero.trunc(BitWidth);
1711    KnownOne = KnownOne.trunc(BitWidth);
1712
1713    // If the input is only used by this truncate, see if we can shrink it based
1714    // on the known demanded bits.
1715    if (Op.getOperand(0).getNode()->hasOneUse()) {
1716      SDValue In = Op.getOperand(0);
1717      switch (In.getOpcode()) {
1718      default: break;
1719      case ISD::SRL:
1720        // Shrink SRL by a constant if none of the high bits shifted in are
1721        // demanded.
1722        if (TLO.LegalTypes() &&
1723            !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1724          // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1725          // undesirable.
1726          break;
1727        ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1728        if (!ShAmt)
1729          break;
1730        SDValue Shift = In.getOperand(1);
1731        if (TLO.LegalTypes()) {
1732          uint64_t ShVal = ShAmt->getZExtValue();
1733          Shift =
1734            TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
1735        }
1736
1737        APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1738                                               OperandBitWidth - BitWidth);
1739        HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
1740
1741        if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1742          // None of the shifted in bits are needed.  Add a truncate of the
1743          // shift input, then shift it.
1744          SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1745                                             Op.getValueType(),
1746                                             In.getOperand(0));
1747          return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1748                                                   Op.getValueType(),
1749                                                   NewTrunc,
1750                                                   Shift));
1751        }
1752        break;
1753      }
1754    }
1755
1756    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1757    break;
1758  }
1759  case ISD::AssertZext: {
1760    // Demand all the bits of the input that are demanded in the output.
1761    // The low bits are obvious; the high bits are demanded because we're
1762    // asserting that they're zero here.
1763    if (SimplifyDemandedBits(Op.getOperand(0), NewMask,
1764                             KnownZero, KnownOne, TLO, Depth+1))
1765      return true;
1766    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1767
1768    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1769    APInt InMask = APInt::getLowBitsSet(BitWidth,
1770                                        VT.getSizeInBits());
1771    KnownZero |= ~InMask & NewMask;
1772    break;
1773  }
1774  case ISD::BITCAST:
1775    // If this is an FP->Int bitcast and if the sign bit is the only
1776    // thing demanded, turn this into a FGETSIGN.
1777    if (!Op.getOperand(0).getValueType().isVector() &&
1778        NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
1779        Op.getOperand(0).getValueType().isFloatingPoint()) {
1780      bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
1781      bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1782      if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) {
1783        EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
1784        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1785        // place.  We expect the SHL to be eliminated by other optimizations.
1786        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
1787        unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
1788        if (!OpVTLegal && OpVTSizeInBits > 32)
1789          Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
1790        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1791        SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType());
1792        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1793                                                 Op.getValueType(),
1794                                                 Sign, ShAmt));
1795      }
1796    }
1797    break;
1798  case ISD::ADD:
1799  case ISD::MUL:
1800  case ISD::SUB: {
1801    // Add, Sub, and Mul don't demand any bits in positions beyond that
1802    // of the highest bit demanded of them.
1803    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1804                                        BitWidth - NewMask.countLeadingZeros());
1805    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1806                             KnownOne2, TLO, Depth+1))
1807      return true;
1808    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1809                             KnownOne2, TLO, Depth+1))
1810      return true;
1811    // See if the operation should be performed at a smaller bit width.
1812    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1813      return true;
1814  }
1815  // FALL THROUGH
1816  default:
1817    // Just use ComputeMaskedBits to compute output bits.
1818    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1819    break;
1820  }
1821
1822  // If we know the value of all of the demanded bits, return this as a
1823  // constant.
1824  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1825    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1826
1827  return false;
1828}
1829
1830/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1831/// in Mask are known to be either zero or one and return them in the
1832/// KnownZero/KnownOne bitsets.
1833void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1834                                                    const APInt &Mask,
1835                                                    APInt &KnownZero,
1836                                                    APInt &KnownOne,
1837                                                    const SelectionDAG &DAG,
1838                                                    unsigned Depth) const {
1839  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1840          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1841          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1842          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1843         "Should use MaskedValueIsZero if you don't know whether Op"
1844         " is a target node!");
1845  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1846}
1847
1848/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1849/// targets that want to expose additional information about sign bits to the
1850/// DAG Combiner.
1851unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1852                                                         unsigned Depth) const {
1853  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1854          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1855          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1856          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1857         "Should use ComputeNumSignBits if you don't know whether Op"
1858         " is a target node!");
1859  return 1;
1860}
1861
1862/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1863/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1864/// determine which bit is set.
1865///
1866static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1867  // A left-shift of a constant one will have exactly one bit set, because
1868  // shifting the bit off the end is undefined.
1869  if (Val.getOpcode() == ISD::SHL)
1870    if (ConstantSDNode *C =
1871         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1872      if (C->getAPIntValue() == 1)
1873        return true;
1874
1875  // Similarly, a right-shift of a constant sign-bit will have exactly
1876  // one bit set.
1877  if (Val.getOpcode() == ISD::SRL)
1878    if (ConstantSDNode *C =
1879         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1880      if (C->getAPIntValue().isSignBit())
1881        return true;
1882
1883  // More could be done here, though the above checks are enough
1884  // to handle some common cases.
1885
1886  // Fall back to ComputeMaskedBits to catch other known cases.
1887  EVT OpVT = Val.getValueType();
1888  unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1889  APInt Mask = APInt::getAllOnesValue(BitWidth);
1890  APInt KnownZero, KnownOne;
1891  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1892  return (KnownZero.countPopulation() == BitWidth - 1) &&
1893         (KnownOne.countPopulation() == 1);
1894}
1895
1896/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1897/// and cc. If it is unable to simplify it, return a null SDValue.
1898SDValue
1899TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1900                              ISD::CondCode Cond, bool foldBooleans,
1901                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1902  SelectionDAG &DAG = DCI.DAG;
1903
1904  // These setcc operations always fold.
1905  switch (Cond) {
1906  default: break;
1907  case ISD::SETFALSE:
1908  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1909  case ISD::SETTRUE:
1910  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1911  }
1912
1913  // Ensure that the constant occurs on the RHS, and fold constant
1914  // comparisons.
1915  if (isa<ConstantSDNode>(N0.getNode()))
1916    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1917
1918  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1919    const APInt &C1 = N1C->getAPIntValue();
1920
1921    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1922    // equality comparison, then we're just comparing whether X itself is
1923    // zero.
1924    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1925        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1926        N0.getOperand(1).getOpcode() == ISD::Constant) {
1927      const APInt &ShAmt
1928        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1929      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1930          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1931        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1932          // (srl (ctlz x), 5) == 0  -> X != 0
1933          // (srl (ctlz x), 5) != 1  -> X != 0
1934          Cond = ISD::SETNE;
1935        } else {
1936          // (srl (ctlz x), 5) != 0  -> X == 0
1937          // (srl (ctlz x), 5) == 1  -> X == 0
1938          Cond = ISD::SETEQ;
1939        }
1940        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1941        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1942                            Zero, Cond);
1943      }
1944    }
1945
1946    SDValue CTPOP = N0;
1947    // Look through truncs that don't change the value of a ctpop.
1948    if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1949      CTPOP = N0.getOperand(0);
1950
1951    if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1952        (N0 == CTPOP || N0.getValueType().getSizeInBits() >
1953                        Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
1954      EVT CTVT = CTPOP.getValueType();
1955      SDValue CTOp = CTPOP.getOperand(0);
1956
1957      // (ctpop x) u< 2 -> (x & x-1) == 0
1958      // (ctpop x) u> 1 -> (x & x-1) != 0
1959      if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1960        SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1961                                  DAG.getConstant(1, CTVT));
1962        SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1963        ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1964        return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
1965      }
1966
1967      // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1968    }
1969
1970    // (zext x) == C --> x == (trunc C)
1971    if (DCI.isBeforeLegalize() && N0->hasOneUse() &&
1972        (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1973      unsigned MinBits = N0.getValueSizeInBits();
1974      SDValue PreZExt;
1975      if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1976        // ZExt
1977        MinBits = N0->getOperand(0).getValueSizeInBits();
1978        PreZExt = N0->getOperand(0);
1979      } else if (N0->getOpcode() == ISD::AND) {
1980        // DAGCombine turns costly ZExts into ANDs
1981        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1982          if ((C->getAPIntValue()+1).isPowerOf2()) {
1983            MinBits = C->getAPIntValue().countTrailingOnes();
1984            PreZExt = N0->getOperand(0);
1985          }
1986      } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
1987        // ZEXTLOAD
1988        if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1989          MinBits = LN0->getMemoryVT().getSizeInBits();
1990          PreZExt = N0;
1991        }
1992      }
1993
1994      // Make sure we're not loosing bits from the constant.
1995      if (MinBits < C1.getBitWidth() && MinBits > C1.getActiveBits()) {
1996        EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
1997        if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
1998          // Will get folded away.
1999          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt);
2000          SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
2001          return DAG.getSetCC(dl, VT, Trunc, C, Cond);
2002        }
2003      }
2004    }
2005
2006    // If the LHS is '(and load, const)', the RHS is 0,
2007    // the test is for equality or unsigned, and all 1 bits of the const are
2008    // in the same partial word, see if we can shorten the load.
2009    if (DCI.isBeforeLegalize() &&
2010        N0.getOpcode() == ISD::AND && C1 == 0 &&
2011        N0.getNode()->hasOneUse() &&
2012        isa<LoadSDNode>(N0.getOperand(0)) &&
2013        N0.getOperand(0).getNode()->hasOneUse() &&
2014        isa<ConstantSDNode>(N0.getOperand(1))) {
2015      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
2016      APInt bestMask;
2017      unsigned bestWidth = 0, bestOffset = 0;
2018      if (!Lod->isVolatile() && Lod->isUnindexed()) {
2019        unsigned origWidth = N0.getValueType().getSizeInBits();
2020        unsigned maskWidth = origWidth;
2021        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
2022        // 8 bits, but have to be careful...
2023        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
2024          origWidth = Lod->getMemoryVT().getSizeInBits();
2025        const APInt &Mask =
2026          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2027        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
2028          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
2029          for (unsigned offset=0; offset<origWidth/width; offset++) {
2030            if ((newMask & Mask) == Mask) {
2031              if (!TD->isLittleEndian())
2032                bestOffset = (origWidth/width - offset - 1) * (width/8);
2033              else
2034                bestOffset = (uint64_t)offset * (width/8);
2035              bestMask = Mask.lshr(offset * (width/8) * 8);
2036              bestWidth = width;
2037              break;
2038            }
2039            newMask = newMask << width;
2040          }
2041        }
2042      }
2043      if (bestWidth) {
2044        EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
2045        if (newVT.isRound()) {
2046          EVT PtrType = Lod->getOperand(1).getValueType();
2047          SDValue Ptr = Lod->getBasePtr();
2048          if (bestOffset != 0)
2049            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
2050                              DAG.getConstant(bestOffset, PtrType));
2051          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
2052          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
2053                                Lod->getPointerInfo().getWithOffset(bestOffset),
2054                                        false, false, NewAlign);
2055          return DAG.getSetCC(dl, VT,
2056                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
2057                                      DAG.getConstant(bestMask.trunc(bestWidth),
2058                                                      newVT)),
2059                              DAG.getConstant(0LL, newVT), Cond);
2060        }
2061      }
2062    }
2063
2064    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
2065    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
2066      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
2067
2068      // If the comparison constant has bits in the upper part, the
2069      // zero-extended value could never match.
2070      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
2071                                              C1.getBitWidth() - InSize))) {
2072        switch (Cond) {
2073        case ISD::SETUGT:
2074        case ISD::SETUGE:
2075        case ISD::SETEQ: return DAG.getConstant(0, VT);
2076        case ISD::SETULT:
2077        case ISD::SETULE:
2078        case ISD::SETNE: return DAG.getConstant(1, VT);
2079        case ISD::SETGT:
2080        case ISD::SETGE:
2081          // True if the sign bit of C1 is set.
2082          return DAG.getConstant(C1.isNegative(), VT);
2083        case ISD::SETLT:
2084        case ISD::SETLE:
2085          // True if the sign bit of C1 isn't set.
2086          return DAG.getConstant(C1.isNonNegative(), VT);
2087        default:
2088          break;
2089        }
2090      }
2091
2092      // Otherwise, we can perform the comparison with the low bits.
2093      switch (Cond) {
2094      case ISD::SETEQ:
2095      case ISD::SETNE:
2096      case ISD::SETUGT:
2097      case ISD::SETUGE:
2098      case ISD::SETULT:
2099      case ISD::SETULE: {
2100        EVT newVT = N0.getOperand(0).getValueType();
2101        if (DCI.isBeforeLegalizeOps() ||
2102            (isOperationLegal(ISD::SETCC, newVT) &&
2103              getCondCodeAction(Cond, newVT)==Legal))
2104          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2105                              DAG.getConstant(C1.trunc(InSize), newVT),
2106                              Cond);
2107        break;
2108      }
2109      default:
2110        break;   // todo, be more careful with signed comparisons
2111      }
2112    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2113               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2114      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
2115      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
2116      EVT ExtDstTy = N0.getValueType();
2117      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
2118
2119      // If the constant doesn't fit into the number of bits for the source of
2120      // the sign extension, it is impossible for both sides to be equal.
2121      if (C1.getMinSignedBits() > ExtSrcTyBits)
2122        return DAG.getConstant(Cond == ISD::SETNE, VT);
2123
2124      SDValue ZextOp;
2125      EVT Op0Ty = N0.getOperand(0).getValueType();
2126      if (Op0Ty == ExtSrcTy) {
2127        ZextOp = N0.getOperand(0);
2128      } else {
2129        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
2130        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
2131                              DAG.getConstant(Imm, Op0Ty));
2132      }
2133      if (!DCI.isCalledByLegalizer())
2134        DCI.AddToWorklist(ZextOp.getNode());
2135      // Otherwise, make this a use of a zext.
2136      return DAG.getSetCC(dl, VT, ZextOp,
2137                          DAG.getConstant(C1 & APInt::getLowBitsSet(
2138                                                              ExtDstTyBits,
2139                                                              ExtSrcTyBits),
2140                                          ExtDstTy),
2141                          Cond);
2142    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
2143                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2144      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
2145      if (N0.getOpcode() == ISD::SETCC &&
2146          isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2147        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
2148        if (TrueWhenTrue)
2149          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2150        // Invert the condition.
2151        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2152        CC = ISD::getSetCCInverse(CC,
2153                                  N0.getOperand(0).getValueType().isInteger());
2154        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2155      }
2156
2157      if ((N0.getOpcode() == ISD::XOR ||
2158           (N0.getOpcode() == ISD::AND &&
2159            N0.getOperand(0).getOpcode() == ISD::XOR &&
2160            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2161          isa<ConstantSDNode>(N0.getOperand(1)) &&
2162          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
2163        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
2164        // can only do this if the top bits are known zero.
2165        unsigned BitWidth = N0.getValueSizeInBits();
2166        if (DAG.MaskedValueIsZero(N0,
2167                                  APInt::getHighBitsSet(BitWidth,
2168                                                        BitWidth-1))) {
2169          // Okay, get the un-inverted input value.
2170          SDValue Val;
2171          if (N0.getOpcode() == ISD::XOR)
2172            Val = N0.getOperand(0);
2173          else {
2174            assert(N0.getOpcode() == ISD::AND &&
2175                    N0.getOperand(0).getOpcode() == ISD::XOR);
2176            // ((X^1)&1)^1 -> X & 1
2177            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2178                              N0.getOperand(0).getOperand(0),
2179                              N0.getOperand(1));
2180          }
2181
2182          return DAG.getSetCC(dl, VT, Val, N1,
2183                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2184        }
2185      } else if (N1C->getAPIntValue() == 1 &&
2186                 (VT == MVT::i1 ||
2187                  getBooleanContents() == ZeroOrOneBooleanContent)) {
2188        SDValue Op0 = N0;
2189        if (Op0.getOpcode() == ISD::TRUNCATE)
2190          Op0 = Op0.getOperand(0);
2191
2192        if ((Op0.getOpcode() == ISD::XOR) &&
2193            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2194            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2195          // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2196          Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2197          return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2198                              Cond);
2199        } else if (Op0.getOpcode() == ISD::AND &&
2200                isa<ConstantSDNode>(Op0.getOperand(1)) &&
2201                cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
2202          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2203          if (Op0.getValueType().bitsGT(VT))
2204            Op0 = DAG.getNode(ISD::AND, dl, VT,
2205                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2206                          DAG.getConstant(1, VT));
2207          else if (Op0.getValueType().bitsLT(VT))
2208            Op0 = DAG.getNode(ISD::AND, dl, VT,
2209                        DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2210                        DAG.getConstant(1, VT));
2211
2212          return DAG.getSetCC(dl, VT, Op0,
2213                              DAG.getConstant(0, Op0.getValueType()),
2214                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2215        }
2216      }
2217    }
2218
2219    APInt MinVal, MaxVal;
2220    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
2221    if (ISD::isSignedIntSetCC(Cond)) {
2222      MinVal = APInt::getSignedMinValue(OperandBitSize);
2223      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2224    } else {
2225      MinVal = APInt::getMinValue(OperandBitSize);
2226      MaxVal = APInt::getMaxValue(OperandBitSize);
2227    }
2228
2229    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2230    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2231      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
2232      // X >= C0 --> X > (C0-1)
2233      return DAG.getSetCC(dl, VT, N0,
2234                          DAG.getConstant(C1-1, N1.getValueType()),
2235                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
2236    }
2237
2238    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2239      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
2240      // X <= C0 --> X < (C0+1)
2241      return DAG.getSetCC(dl, VT, N0,
2242                          DAG.getConstant(C1+1, N1.getValueType()),
2243                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
2244    }
2245
2246    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
2247      return DAG.getConstant(0, VT);      // X < MIN --> false
2248    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
2249      return DAG.getConstant(1, VT);      // X >= MIN --> true
2250    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
2251      return DAG.getConstant(0, VT);      // X > MAX --> false
2252    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
2253      return DAG.getConstant(1, VT);      // X <= MAX --> true
2254
2255    // Canonicalize setgt X, Min --> setne X, Min
2256    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
2257      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2258    // Canonicalize setlt X, Max --> setne X, Max
2259    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
2260      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2261
2262    // If we have setult X, 1, turn it into seteq X, 0
2263    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
2264      return DAG.getSetCC(dl, VT, N0,
2265                          DAG.getConstant(MinVal, N0.getValueType()),
2266                          ISD::SETEQ);
2267    // If we have setugt X, Max-1, turn it into seteq X, Max
2268    else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
2269      return DAG.getSetCC(dl, VT, N0,
2270                          DAG.getConstant(MaxVal, N0.getValueType()),
2271                          ISD::SETEQ);
2272
2273    // If we have "setcc X, C0", check to see if we can shrink the immediate
2274    // by changing cc.
2275
2276    // SETUGT X, SINTMAX  -> SETLT X, 0
2277    if (Cond == ISD::SETUGT &&
2278        C1 == APInt::getSignedMaxValue(OperandBitSize))
2279      return DAG.getSetCC(dl, VT, N0,
2280                          DAG.getConstant(0, N1.getValueType()),
2281                          ISD::SETLT);
2282
2283    // SETULT X, SINTMIN  -> SETGT X, -1
2284    if (Cond == ISD::SETULT &&
2285        C1 == APInt::getSignedMinValue(OperandBitSize)) {
2286      SDValue ConstMinusOne =
2287          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
2288                          N1.getValueType());
2289      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2290    }
2291
2292    // Fold bit comparisons when we can.
2293    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2294        (VT == N0.getValueType() ||
2295         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2296        N0.getOpcode() == ISD::AND)
2297      if (ConstantSDNode *AndRHS =
2298                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2299        EVT ShiftTy = DCI.isBeforeLegalize() ?
2300          getPointerTy() : getShiftAmountTy(N0.getValueType());
2301        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2302          // Perform the xform if the AND RHS is a single bit.
2303          if (AndRHS->getAPIntValue().isPowerOf2()) {
2304            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2305                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2306                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
2307          }
2308        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2309          // (X & 8) == 8  -->  (X & 8) >> 3
2310          // Perform the xform if C1 is a single bit.
2311          if (C1.isPowerOf2()) {
2312            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2313                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2314                                      DAG.getConstant(C1.logBase2(), ShiftTy)));
2315          }
2316        }
2317      }
2318  }
2319
2320  if (isa<ConstantFPSDNode>(N0.getNode())) {
2321    // Constant fold or commute setcc.
2322    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2323    if (O.getNode()) return O;
2324  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2325    // If the RHS of an FP comparison is a constant, simplify it away in
2326    // some cases.
2327    if (CFP->getValueAPF().isNaN()) {
2328      // If an operand is known to be a nan, we can fold it.
2329      switch (ISD::getUnorderedFlavor(Cond)) {
2330      default: llvm_unreachable("Unknown flavor!");
2331      case 0:  // Known false.
2332        return DAG.getConstant(0, VT);
2333      case 1:  // Known true.
2334        return DAG.getConstant(1, VT);
2335      case 2:  // Undefined.
2336        return DAG.getUNDEF(VT);
2337      }
2338    }
2339
2340    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2341    // constant if knowing that the operand is non-nan is enough.  We prefer to
2342    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2343    // materialize 0.0.
2344    if (Cond == ISD::SETO || Cond == ISD::SETUO)
2345      return DAG.getSetCC(dl, VT, N0, N0, Cond);
2346
2347    // If the condition is not legal, see if we can find an equivalent one
2348    // which is legal.
2349    if (!isCondCodeLegal(Cond, N0.getValueType())) {
2350      // If the comparison was an awkward floating-point == or != and one of
2351      // the comparison operands is infinity or negative infinity, convert the
2352      // condition to a less-awkward <= or >=.
2353      if (CFP->getValueAPF().isInfinity()) {
2354        if (CFP->getValueAPF().isNegative()) {
2355          if (Cond == ISD::SETOEQ &&
2356              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2357            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2358          if (Cond == ISD::SETUEQ &&
2359              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2360            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2361          if (Cond == ISD::SETUNE &&
2362              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2363            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2364          if (Cond == ISD::SETONE &&
2365              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2366            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2367        } else {
2368          if (Cond == ISD::SETOEQ &&
2369              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2370            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2371          if (Cond == ISD::SETUEQ &&
2372              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2373            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2374          if (Cond == ISD::SETUNE &&
2375              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2376            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2377          if (Cond == ISD::SETONE &&
2378              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2379            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2380        }
2381      }
2382    }
2383  }
2384
2385  if (N0 == N1) {
2386    // We can always fold X == X for integer setcc's.
2387    if (N0.getValueType().isInteger())
2388      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2389    unsigned UOF = ISD::getUnorderedFlavor(Cond);
2390    if (UOF == 2)   // FP operators that are undefined on NaNs.
2391      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2392    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2393      return DAG.getConstant(UOF, VT);
2394    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2395    // if it is not already.
2396    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2397    if (NewCond != Cond)
2398      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2399  }
2400
2401  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2402      N0.getValueType().isInteger()) {
2403    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2404        N0.getOpcode() == ISD::XOR) {
2405      // Simplify (X+Y) == (X+Z) -->  Y == Z
2406      if (N0.getOpcode() == N1.getOpcode()) {
2407        if (N0.getOperand(0) == N1.getOperand(0))
2408          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2409        if (N0.getOperand(1) == N1.getOperand(1))
2410          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2411        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2412          // If X op Y == Y op X, try other combinations.
2413          if (N0.getOperand(0) == N1.getOperand(1))
2414            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2415                                Cond);
2416          if (N0.getOperand(1) == N1.getOperand(0))
2417            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2418                                Cond);
2419        }
2420      }
2421
2422      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2423        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2424          // Turn (X+C1) == C2 --> X == C2-C1
2425          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2426            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2427                                DAG.getConstant(RHSC->getAPIntValue()-
2428                                                LHSR->getAPIntValue(),
2429                                N0.getValueType()), Cond);
2430          }
2431
2432          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2433          if (N0.getOpcode() == ISD::XOR)
2434            // If we know that all of the inverted bits are zero, don't bother
2435            // performing the inversion.
2436            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2437              return
2438                DAG.getSetCC(dl, VT, N0.getOperand(0),
2439                             DAG.getConstant(LHSR->getAPIntValue() ^
2440                                               RHSC->getAPIntValue(),
2441                                             N0.getValueType()),
2442                             Cond);
2443        }
2444
2445        // Turn (C1-X) == C2 --> X == C1-C2
2446        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2447          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2448            return
2449              DAG.getSetCC(dl, VT, N0.getOperand(1),
2450                           DAG.getConstant(SUBC->getAPIntValue() -
2451                                             RHSC->getAPIntValue(),
2452                                           N0.getValueType()),
2453                           Cond);
2454          }
2455        }
2456      }
2457
2458      // Simplify (X+Z) == X -->  Z == 0
2459      if (N0.getOperand(0) == N1)
2460        return DAG.getSetCC(dl, VT, N0.getOperand(1),
2461                        DAG.getConstant(0, N0.getValueType()), Cond);
2462      if (N0.getOperand(1) == N1) {
2463        if (DAG.isCommutativeBinOp(N0.getOpcode()))
2464          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2465                          DAG.getConstant(0, N0.getValueType()), Cond);
2466        else if (N0.getNode()->hasOneUse()) {
2467          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2468          // (Z-X) == X  --> Z == X<<1
2469          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
2470                                     N1,
2471                       DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
2472          if (!DCI.isCalledByLegalizer())
2473            DCI.AddToWorklist(SH.getNode());
2474          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2475        }
2476      }
2477    }
2478
2479    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2480        N1.getOpcode() == ISD::XOR) {
2481      // Simplify  X == (X+Z) -->  Z == 0
2482      if (N1.getOperand(0) == N0) {
2483        return DAG.getSetCC(dl, VT, N1.getOperand(1),
2484                        DAG.getConstant(0, N1.getValueType()), Cond);
2485      } else if (N1.getOperand(1) == N0) {
2486        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2487          return DAG.getSetCC(dl, VT, N1.getOperand(0),
2488                          DAG.getConstant(0, N1.getValueType()), Cond);
2489        } else if (N1.getNode()->hasOneUse()) {
2490          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2491          // X == (Z-X)  --> X<<1 == Z
2492          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2493                       DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
2494          if (!DCI.isCalledByLegalizer())
2495            DCI.AddToWorklist(SH.getNode());
2496          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2497        }
2498      }
2499    }
2500
2501    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2502    // Note that where y is variable and is known to have at most
2503    // one bit set (for example, if it is z&1) we cannot do this;
2504    // the expressions are not equivalent when y==0.
2505    if (N0.getOpcode() == ISD::AND)
2506      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2507        if (ValueHasExactlyOneBitSet(N1, DAG)) {
2508          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2509          SDValue Zero = DAG.getConstant(0, N1.getValueType());
2510          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2511        }
2512      }
2513    if (N1.getOpcode() == ISD::AND)
2514      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2515        if (ValueHasExactlyOneBitSet(N0, DAG)) {
2516          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2517          SDValue Zero = DAG.getConstant(0, N0.getValueType());
2518          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2519        }
2520      }
2521  }
2522
2523  // Fold away ALL boolean setcc's.
2524  SDValue Temp;
2525  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2526    switch (Cond) {
2527    default: llvm_unreachable("Unknown integer setcc!");
2528    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2529      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2530      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2531      if (!DCI.isCalledByLegalizer())
2532        DCI.AddToWorklist(Temp.getNode());
2533      break;
2534    case ISD::SETNE:  // X != Y   -->  (X^Y)
2535      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2536      break;
2537    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2538    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2539      Temp = DAG.getNOT(dl, N0, MVT::i1);
2540      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2541      if (!DCI.isCalledByLegalizer())
2542        DCI.AddToWorklist(Temp.getNode());
2543      break;
2544    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2545    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2546      Temp = DAG.getNOT(dl, N1, MVT::i1);
2547      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2548      if (!DCI.isCalledByLegalizer())
2549        DCI.AddToWorklist(Temp.getNode());
2550      break;
2551    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2552    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2553      Temp = DAG.getNOT(dl, N0, MVT::i1);
2554      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2555      if (!DCI.isCalledByLegalizer())
2556        DCI.AddToWorklist(Temp.getNode());
2557      break;
2558    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2559    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2560      Temp = DAG.getNOT(dl, N1, MVT::i1);
2561      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2562      break;
2563    }
2564    if (VT != MVT::i1) {
2565      if (!DCI.isCalledByLegalizer())
2566        DCI.AddToWorklist(N0.getNode());
2567      // FIXME: If running after legalize, we probably can't do this.
2568      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2569    }
2570    return N0;
2571  }
2572
2573  // Could not fold it.
2574  return SDValue();
2575}
2576
2577/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2578/// node is a GlobalAddress + offset.
2579bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2580                                    int64_t &Offset) const {
2581  if (isa<GlobalAddressSDNode>(N)) {
2582    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2583    GA = GASD->getGlobal();
2584    Offset += GASD->getOffset();
2585    return true;
2586  }
2587
2588  if (N->getOpcode() == ISD::ADD) {
2589    SDValue N1 = N->getOperand(0);
2590    SDValue N2 = N->getOperand(1);
2591    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2592      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2593      if (V) {
2594        Offset += V->getSExtValue();
2595        return true;
2596      }
2597    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2598      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2599      if (V) {
2600        Offset += V->getSExtValue();
2601        return true;
2602      }
2603    }
2604  }
2605
2606  return false;
2607}
2608
2609
2610SDValue TargetLowering::
2611PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2612  // Default implementation: no optimization.
2613  return SDValue();
2614}
2615
2616//===----------------------------------------------------------------------===//
2617//  Inline Assembler Implementation Methods
2618//===----------------------------------------------------------------------===//
2619
2620
2621TargetLowering::ConstraintType
2622TargetLowering::getConstraintType(const std::string &Constraint) const {
2623  // FIXME: lots more standard ones to handle.
2624  if (Constraint.size() == 1) {
2625    switch (Constraint[0]) {
2626    default: break;
2627    case 'r': return C_RegisterClass;
2628    case 'm':    // memory
2629    case 'o':    // offsetable
2630    case 'V':    // not offsetable
2631      return C_Memory;
2632    case 'i':    // Simple Integer or Relocatable Constant
2633    case 'n':    // Simple Integer
2634    case 'E':    // Floating Point Constant
2635    case 'F':    // Floating Point Constant
2636    case 's':    // Relocatable Constant
2637    case 'p':    // Address.
2638    case 'X':    // Allow ANY value.
2639    case 'I':    // Target registers.
2640    case 'J':
2641    case 'K':
2642    case 'L':
2643    case 'M':
2644    case 'N':
2645    case 'O':
2646    case 'P':
2647    case '<':
2648    case '>':
2649      return C_Other;
2650    }
2651  }
2652
2653  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2654      Constraint[Constraint.size()-1] == '}')
2655    return C_Register;
2656  return C_Unknown;
2657}
2658
2659/// LowerXConstraint - try to replace an X constraint, which matches anything,
2660/// with another that has more specific requirements based on the type of the
2661/// corresponding operand.
2662const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2663  if (ConstraintVT.isInteger())
2664    return "r";
2665  if (ConstraintVT.isFloatingPoint())
2666    return "f";      // works for many targets
2667  return 0;
2668}
2669
2670/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2671/// vector.  If it is invalid, don't add anything to Ops.
2672void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2673                                                  std::string &Constraint,
2674                                                  std::vector<SDValue> &Ops,
2675                                                  SelectionDAG &DAG) const {
2676
2677  if (Constraint.length() > 1) return;
2678
2679  char ConstraintLetter = Constraint[0];
2680  switch (ConstraintLetter) {
2681  default: break;
2682  case 'X':     // Allows any operand; labels (basic block) use this.
2683    if (Op.getOpcode() == ISD::BasicBlock) {
2684      Ops.push_back(Op);
2685      return;
2686    }
2687    // fall through
2688  case 'i':    // Simple Integer or Relocatable Constant
2689  case 'n':    // Simple Integer
2690  case 's': {  // Relocatable Constant
2691    // These operands are interested in values of the form (GV+C), where C may
2692    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2693    // is possible and fine if either GV or C are missing.
2694    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2695    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2696
2697    // If we have "(add GV, C)", pull out GV/C
2698    if (Op.getOpcode() == ISD::ADD) {
2699      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2700      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2701      if (C == 0 || GA == 0) {
2702        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2703        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2704      }
2705      if (C == 0 || GA == 0)
2706        C = 0, GA = 0;
2707    }
2708
2709    // If we find a valid operand, map to the TargetXXX version so that the
2710    // value itself doesn't get selected.
2711    if (GA) {   // Either &GV   or   &GV+C
2712      if (ConstraintLetter != 'n') {
2713        int64_t Offs = GA->getOffset();
2714        if (C) Offs += C->getZExtValue();
2715        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2716                                                 C ? C->getDebugLoc() : DebugLoc(),
2717                                                 Op.getValueType(), Offs));
2718        return;
2719      }
2720    }
2721    if (C) {   // just C, no GV.
2722      // Simple constants are not allowed for 's'.
2723      if (ConstraintLetter != 's') {
2724        // gcc prints these as sign extended.  Sign extend value to 64 bits
2725        // now; without this it would get ZExt'd later in
2726        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2727        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2728                                            MVT::i64));
2729        return;
2730      }
2731    }
2732    break;
2733  }
2734  }
2735}
2736
2737std::vector<unsigned> TargetLowering::
2738getRegClassForInlineAsmConstraint(const std::string &Constraint,
2739                                  EVT VT) const {
2740  return std::vector<unsigned>();
2741}
2742
2743
2744std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2745getRegForInlineAsmConstraint(const std::string &Constraint,
2746                             EVT VT) const {
2747  if (Constraint[0] != '{')
2748    return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
2749  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2750
2751  // Remove the braces from around the name.
2752  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2753
2754  // Figure out which register class contains this reg.
2755  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2756  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2757       E = RI->regclass_end(); RCI != E; ++RCI) {
2758    const TargetRegisterClass *RC = *RCI;
2759
2760    // If none of the value types for this register class are valid, we
2761    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2762    bool isLegal = false;
2763    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2764         I != E; ++I) {
2765      if (isTypeLegal(*I)) {
2766        isLegal = true;
2767        break;
2768      }
2769    }
2770
2771    if (!isLegal) continue;
2772
2773    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2774         I != E; ++I) {
2775      if (RegName.equals_lower(RI->getName(*I)))
2776        return std::make_pair(*I, RC);
2777    }
2778  }
2779
2780  return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2781}
2782
2783//===----------------------------------------------------------------------===//
2784// Constraint Selection.
2785
2786/// isMatchingInputConstraint - Return true of this is an input operand that is
2787/// a matching constraint like "4".
2788bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2789  assert(!ConstraintCode.empty() && "No known constraint!");
2790  return isdigit(ConstraintCode[0]);
2791}
2792
2793/// getMatchedOperand - If this is an input matching constraint, this method
2794/// returns the output operand it matches.
2795unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2796  assert(!ConstraintCode.empty() && "No known constraint!");
2797  return atoi(ConstraintCode.c_str());
2798}
2799
2800
2801/// ParseConstraints - Split up the constraint string from the inline
2802/// assembly value into the specific constraints and their prefixes,
2803/// and also tie in the associated operand values.
2804/// If this returns an empty vector, and if the constraint string itself
2805/// isn't empty, there was an error parsing.
2806TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
2807    ImmutableCallSite CS) const {
2808  /// ConstraintOperands - Information about all of the constraints.
2809  AsmOperandInfoVector ConstraintOperands;
2810  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2811  unsigned maCount = 0; // Largest number of multiple alternative constraints.
2812
2813  // Do a prepass over the constraints, canonicalizing them, and building up the
2814  // ConstraintOperands list.
2815  InlineAsm::ConstraintInfoVector
2816    ConstraintInfos = IA->ParseConstraints();
2817
2818  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2819  unsigned ResNo = 0;   // ResNo - The result number of the next output.
2820
2821  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
2822    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
2823    AsmOperandInfo &OpInfo = ConstraintOperands.back();
2824
2825    // Update multiple alternative constraint count.
2826    if (OpInfo.multipleAlternatives.size() > maCount)
2827      maCount = OpInfo.multipleAlternatives.size();
2828
2829    OpInfo.ConstraintVT = MVT::Other;
2830
2831    // Compute the value type for each operand.
2832    switch (OpInfo.Type) {
2833    case InlineAsm::isOutput:
2834      // Indirect outputs just consume an argument.
2835      if (OpInfo.isIndirect) {
2836        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2837        break;
2838      }
2839
2840      // The return value of the call is this value.  As such, there is no
2841      // corresponding argument.
2842      assert(!CS.getType()->isVoidTy() &&
2843             "Bad inline asm!");
2844      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
2845        OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo));
2846      } else {
2847        assert(ResNo == 0 && "Asm only has one result!");
2848        OpInfo.ConstraintVT = getValueType(CS.getType());
2849      }
2850      ++ResNo;
2851      break;
2852    case InlineAsm::isInput:
2853      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2854      break;
2855    case InlineAsm::isClobber:
2856      // Nothing to do.
2857      break;
2858    }
2859
2860    if (OpInfo.CallOperandVal) {
2861      const llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2862      if (OpInfo.isIndirect) {
2863        const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2864        if (!PtrTy)
2865          report_fatal_error("Indirect operand for inline asm not a pointer!");
2866        OpTy = PtrTy->getElementType();
2867      }
2868
2869      // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2870      if (const StructType *STy = dyn_cast<StructType>(OpTy))
2871        if (STy->getNumElements() == 1)
2872          OpTy = STy->getElementType(0);
2873
2874      // If OpTy is not a single value, it may be a struct/union that we
2875      // can tile with integers.
2876      if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2877        unsigned BitSize = TD->getTypeSizeInBits(OpTy);
2878        switch (BitSize) {
2879        default: break;
2880        case 1:
2881        case 8:
2882        case 16:
2883        case 32:
2884        case 64:
2885        case 128:
2886          OpInfo.ConstraintVT =
2887              EVT::getEVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2888          break;
2889        }
2890      } else if (dyn_cast<PointerType>(OpTy)) {
2891        OpInfo.ConstraintVT = MVT::getIntegerVT(8*TD->getPointerSize());
2892      } else {
2893        OpInfo.ConstraintVT = EVT::getEVT(OpTy, true);
2894      }
2895    }
2896  }
2897
2898  // If we have multiple alternative constraints, select the best alternative.
2899  if (ConstraintInfos.size()) {
2900    if (maCount) {
2901      unsigned bestMAIndex = 0;
2902      int bestWeight = -1;
2903      // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2904      int weight = -1;
2905      unsigned maIndex;
2906      // Compute the sums of the weights for each alternative, keeping track
2907      // of the best (highest weight) one so far.
2908      for (maIndex = 0; maIndex < maCount; ++maIndex) {
2909        int weightSum = 0;
2910        for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2911            cIndex != eIndex; ++cIndex) {
2912          AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2913          if (OpInfo.Type == InlineAsm::isClobber)
2914            continue;
2915
2916          // If this is an output operand with a matching input operand,
2917          // look up the matching input. If their types mismatch, e.g. one
2918          // is an integer, the other is floating point, or their sizes are
2919          // different, flag it as an maCantMatch.
2920          if (OpInfo.hasMatchingInput()) {
2921            AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2922            if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2923              if ((OpInfo.ConstraintVT.isInteger() !=
2924                   Input.ConstraintVT.isInteger()) ||
2925                  (OpInfo.ConstraintVT.getSizeInBits() !=
2926                   Input.ConstraintVT.getSizeInBits())) {
2927                weightSum = -1;  // Can't match.
2928                break;
2929              }
2930            }
2931          }
2932          weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2933          if (weight == -1) {
2934            weightSum = -1;
2935            break;
2936          }
2937          weightSum += weight;
2938        }
2939        // Update best.
2940        if (weightSum > bestWeight) {
2941          bestWeight = weightSum;
2942          bestMAIndex = maIndex;
2943        }
2944      }
2945
2946      // Now select chosen alternative in each constraint.
2947      for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2948          cIndex != eIndex; ++cIndex) {
2949        AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2950        if (cInfo.Type == InlineAsm::isClobber)
2951          continue;
2952        cInfo.selectAlternative(bestMAIndex);
2953      }
2954    }
2955  }
2956
2957  // Check and hook up tied operands, choose constraint code to use.
2958  for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2959      cIndex != eIndex; ++cIndex) {
2960    AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2961
2962    // If this is an output operand with a matching input operand, look up the
2963    // matching input. If their types mismatch, e.g. one is an integer, the
2964    // other is floating point, or their sizes are different, flag it as an
2965    // error.
2966    if (OpInfo.hasMatchingInput()) {
2967      AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2968
2969      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2970        if ((OpInfo.ConstraintVT.isInteger() !=
2971             Input.ConstraintVT.isInteger()) ||
2972            (OpInfo.ConstraintVT.getSizeInBits() !=
2973             Input.ConstraintVT.getSizeInBits())) {
2974          report_fatal_error("Unsupported asm: input constraint"
2975                             " with a matching output constraint of"
2976                             " incompatible type!");
2977        }
2978      }
2979
2980    }
2981  }
2982
2983  return ConstraintOperands;
2984}
2985
2986
2987/// getConstraintGenerality - Return an integer indicating how general CT
2988/// is.
2989static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2990  switch (CT) {
2991  default: llvm_unreachable("Unknown constraint type!");
2992  case TargetLowering::C_Other:
2993  case TargetLowering::C_Unknown:
2994    return 0;
2995  case TargetLowering::C_Register:
2996    return 1;
2997  case TargetLowering::C_RegisterClass:
2998    return 2;
2999  case TargetLowering::C_Memory:
3000    return 3;
3001  }
3002}
3003
3004/// Examine constraint type and operand type and determine a weight value.
3005/// This object must already have been set up with the operand type
3006/// and the current alternative constraint selected.
3007TargetLowering::ConstraintWeight
3008  TargetLowering::getMultipleConstraintMatchWeight(
3009    AsmOperandInfo &info, int maIndex) const {
3010  InlineAsm::ConstraintCodeVector *rCodes;
3011  if (maIndex >= (int)info.multipleAlternatives.size())
3012    rCodes = &info.Codes;
3013  else
3014    rCodes = &info.multipleAlternatives[maIndex].Codes;
3015  ConstraintWeight BestWeight = CW_Invalid;
3016
3017  // Loop over the options, keeping track of the most general one.
3018  for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
3019    ConstraintWeight weight =
3020      getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
3021    if (weight > BestWeight)
3022      BestWeight = weight;
3023  }
3024
3025  return BestWeight;
3026}
3027
3028/// Examine constraint type and operand type and determine a weight value.
3029/// This object must already have been set up with the operand type
3030/// and the current alternative constraint selected.
3031TargetLowering::ConstraintWeight
3032  TargetLowering::getSingleConstraintMatchWeight(
3033    AsmOperandInfo &info, const char *constraint) const {
3034  ConstraintWeight weight = CW_Invalid;
3035  Value *CallOperandVal = info.CallOperandVal;
3036    // If we don't have a value, we can't do a match,
3037    // but allow it at the lowest weight.
3038  if (CallOperandVal == NULL)
3039    return CW_Default;
3040  // Look at the constraint type.
3041  switch (*constraint) {
3042    case 'i': // immediate integer.
3043    case 'n': // immediate integer with a known value.
3044      if (isa<ConstantInt>(CallOperandVal))
3045        weight = CW_Constant;
3046      break;
3047    case 's': // non-explicit intregal immediate.
3048      if (isa<GlobalValue>(CallOperandVal))
3049        weight = CW_Constant;
3050      break;
3051    case 'E': // immediate float if host format.
3052    case 'F': // immediate float.
3053      if (isa<ConstantFP>(CallOperandVal))
3054        weight = CW_Constant;
3055      break;
3056    case '<': // memory operand with autodecrement.
3057    case '>': // memory operand with autoincrement.
3058    case 'm': // memory operand.
3059    case 'o': // offsettable memory operand
3060    case 'V': // non-offsettable memory operand
3061      weight = CW_Memory;
3062      break;
3063    case 'r': // general register.
3064    case 'g': // general register, memory operand or immediate integer.
3065              // note: Clang converts "g" to "imr".
3066      if (CallOperandVal->getType()->isIntegerTy())
3067        weight = CW_Register;
3068      break;
3069    case 'X': // any operand.
3070    default:
3071      weight = CW_Default;
3072      break;
3073  }
3074  return weight;
3075}
3076
3077/// ChooseConstraint - If there are multiple different constraints that we
3078/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
3079/// This is somewhat tricky: constraints fall into four classes:
3080///    Other         -> immediates and magic values
3081///    Register      -> one specific register
3082///    RegisterClass -> a group of regs
3083///    Memory        -> memory
3084/// Ideally, we would pick the most specific constraint possible: if we have
3085/// something that fits into a register, we would pick it.  The problem here
3086/// is that if we have something that could either be in a register or in
3087/// memory that use of the register could cause selection of *other*
3088/// operands to fail: they might only succeed if we pick memory.  Because of
3089/// this the heuristic we use is:
3090///
3091///  1) If there is an 'other' constraint, and if the operand is valid for
3092///     that constraint, use it.  This makes us take advantage of 'i'
3093///     constraints when available.
3094///  2) Otherwise, pick the most general constraint present.  This prefers
3095///     'm' over 'r', for example.
3096///
3097static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
3098                             const TargetLowering &TLI,
3099                             SDValue Op, SelectionDAG *DAG) {
3100  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
3101  unsigned BestIdx = 0;
3102  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
3103  int BestGenerality = -1;
3104
3105  // Loop over the options, keeping track of the most general one.
3106  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
3107    TargetLowering::ConstraintType CType =
3108      TLI.getConstraintType(OpInfo.Codes[i]);
3109
3110    // If this is an 'other' constraint, see if the operand is valid for it.
3111    // For example, on X86 we might have an 'rI' constraint.  If the operand
3112    // is an integer in the range [0..31] we want to use I (saving a load
3113    // of a register), otherwise we must use 'r'.
3114    if (CType == TargetLowering::C_Other && Op.getNode()) {
3115      assert(OpInfo.Codes[i].size() == 1 &&
3116             "Unhandled multi-letter 'other' constraint");
3117      std::vector<SDValue> ResultOps;
3118      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
3119                                       ResultOps, *DAG);
3120      if (!ResultOps.empty()) {
3121        BestType = CType;
3122        BestIdx = i;
3123        break;
3124      }
3125    }
3126
3127    // Things with matching constraints can only be registers, per gcc
3128    // documentation.  This mainly affects "g" constraints.
3129    if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
3130      continue;
3131
3132    // This constraint letter is more general than the previous one, use it.
3133    int Generality = getConstraintGenerality(CType);
3134    if (Generality > BestGenerality) {
3135      BestType = CType;
3136      BestIdx = i;
3137      BestGenerality = Generality;
3138    }
3139  }
3140
3141  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
3142  OpInfo.ConstraintType = BestType;
3143}
3144
3145/// ComputeConstraintToUse - Determines the constraint code and constraint
3146/// type to use for the specific AsmOperandInfo, setting
3147/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
3148void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3149                                            SDValue Op,
3150                                            SelectionDAG *DAG) const {
3151  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
3152
3153  // Single-letter constraints ('r') are very common.
3154  if (OpInfo.Codes.size() == 1) {
3155    OpInfo.ConstraintCode = OpInfo.Codes[0];
3156    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3157  } else {
3158    ChooseConstraint(OpInfo, *this, Op, DAG);
3159  }
3160
3161  // 'X' matches anything.
3162  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
3163    // Labels and constants are handled elsewhere ('X' is the only thing
3164    // that matches labels).  For Functions, the type here is the type of
3165    // the result, which is not what we want to look at; leave them alone.
3166    Value *v = OpInfo.CallOperandVal;
3167    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
3168      OpInfo.CallOperandVal = v;
3169      return;
3170    }
3171
3172    // Otherwise, try to resolve it to something we know about by looking at
3173    // the actual operand type.
3174    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
3175      OpInfo.ConstraintCode = Repl;
3176      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3177    }
3178  }
3179}
3180
3181//===----------------------------------------------------------------------===//
3182//  Loop Strength Reduction hooks
3183//===----------------------------------------------------------------------===//
3184
3185/// isLegalAddressingMode - Return true if the addressing mode represented
3186/// by AM is legal for this target, for a load/store of the specified type.
3187bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
3188                                           const Type *Ty) const {
3189  // The default implementation of this implements a conservative RISCy, r+r and
3190  // r+i addr mode.
3191
3192  // Allows a sign-extended 16-bit immediate field.
3193  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3194    return false;
3195
3196  // No global is ever allowed as a base.
3197  if (AM.BaseGV)
3198    return false;
3199
3200  // Only support r+r,
3201  switch (AM.Scale) {
3202  case 0:  // "r+i" or just "i", depending on HasBaseReg.
3203    break;
3204  case 1:
3205    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
3206      return false;
3207    // Otherwise we have r+r or r+i.
3208    break;
3209  case 2:
3210    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
3211      return false;
3212    // Allow 2*r as r+r.
3213    break;
3214  }
3215
3216  return true;
3217}
3218
3219/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
3220/// return a DAG expression to select that will generate the same value by
3221/// multiplying by a magic number.  See:
3222/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3223SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
3224                                  std::vector<SDNode*>* Created) const {
3225  EVT VT = N->getValueType(0);
3226  DebugLoc dl= N->getDebugLoc();
3227
3228  // Check to see if we can do this.
3229  // FIXME: We should be more aggressive here.
3230  if (!isTypeLegal(VT))
3231    return SDValue();
3232
3233  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3234  APInt::ms magics = d.magic();
3235
3236  // Multiply the numerator (operand 0) by the magic value
3237  // FIXME: We should support doing a MUL in a wider type
3238  SDValue Q;
3239  if (isOperationLegalOrCustom(ISD::MULHS, VT))
3240    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
3241                    DAG.getConstant(magics.m, VT));
3242  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
3243    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
3244                              N->getOperand(0),
3245                              DAG.getConstant(magics.m, VT)).getNode(), 1);
3246  else
3247    return SDValue();       // No mulhs or equvialent
3248  // If d > 0 and m < 0, add the numerator
3249  if (d.isStrictlyPositive() && magics.m.isNegative()) {
3250    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
3251    if (Created)
3252      Created->push_back(Q.getNode());
3253  }
3254  // If d < 0 and m > 0, subtract the numerator.
3255  if (d.isNegative() && magics.m.isStrictlyPositive()) {
3256    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
3257    if (Created)
3258      Created->push_back(Q.getNode());
3259  }
3260  // Shift right algebraic if shift value is nonzero
3261  if (magics.s > 0) {
3262    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
3263                 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3264    if (Created)
3265      Created->push_back(Q.getNode());
3266  }
3267  // Extract the sign bit and add it to the quotient
3268  SDValue T =
3269    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
3270                                           getShiftAmountTy(Q.getValueType())));
3271  if (Created)
3272    Created->push_back(T.getNode());
3273  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3274}
3275
3276/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
3277/// return a DAG expression to select that will generate the same value by
3278/// multiplying by a magic number.  See:
3279/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3280SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
3281                                  std::vector<SDNode*>* Created) const {
3282  EVT VT = N->getValueType(0);
3283  DebugLoc dl = N->getDebugLoc();
3284
3285  // Check to see if we can do this.
3286  // FIXME: We should be more aggressive here.
3287  if (!isTypeLegal(VT))
3288    return SDValue();
3289
3290  // FIXME: We should use a narrower constant when the upper
3291  // bits are known to be zero.
3292  const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3293  APInt::mu magics = N1C.magicu();
3294
3295  SDValue Q = N->getOperand(0);
3296
3297  // If the divisor is even, we can avoid using the expensive fixup by shifting
3298  // the divided value upfront.
3299  if (magics.a != 0 && !N1C[0]) {
3300    unsigned Shift = N1C.countTrailingZeros();
3301    Q = DAG.getNode(ISD::SRL, dl, VT, Q,
3302                    DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
3303    if (Created)
3304      Created->push_back(Q.getNode());
3305
3306    // Get magic number for the shifted divisor.
3307    magics = N1C.lshr(Shift).magicu(Shift);
3308    assert(magics.a == 0 && "Should use cheap fixup now");
3309  }
3310
3311  // Multiply the numerator (operand 0) by the magic value
3312  // FIXME: We should support doing a MUL in a wider type
3313  if (isOperationLegalOrCustom(ISD::MULHU, VT))
3314    Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
3315  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
3316    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
3317                            DAG.getConstant(magics.m, VT)).getNode(), 1);
3318  else
3319    return SDValue();       // No mulhu or equvialent
3320  if (Created)
3321    Created->push_back(Q.getNode());
3322
3323  if (magics.a == 0) {
3324    assert(magics.s < N1C.getBitWidth() &&
3325           "We shouldn't generate an undefined shift!");
3326    return DAG.getNode(ISD::SRL, dl, VT, Q,
3327                 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3328  } else {
3329    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
3330    if (Created)
3331      Created->push_back(NPQ.getNode());
3332    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
3333                      DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
3334    if (Created)
3335      Created->push_back(NPQ.getNode());
3336    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3337    if (Created)
3338      Created->push_back(NPQ.getNode());
3339    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
3340             DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
3341  }
3342}
3343