TargetLowering.cpp revision 12d43f9baf83b6a2cc444c89bb688ebfe01a9fa1
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/CodeGen/Analysis.h"
18#include "llvm/CodeGen/MachineFrameInfo.h"
19#include "llvm/CodeGen/MachineFunction.h"
20#include "llvm/CodeGen/MachineJumpTableInfo.h"
21#include "llvm/CodeGen/SelectionDAG.h"
22#include "llvm/IR/DataLayout.h"
23#include "llvm/IR/DerivedTypes.h"
24#include "llvm/IR/GlobalVariable.h"
25#include "llvm/MC/MCAsmInfo.h"
26#include "llvm/MC/MCExpr.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Target/TargetLoweringObjectFile.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include <cctype>
34using namespace llvm;
35
36/// NOTE: The constructor takes ownership of TLOF.
37TargetLowering::TargetLowering(const TargetMachine &tm,
38                               const TargetLoweringObjectFile *tlof)
39  : TargetLoweringBase(tm, tlof) {}
40
41const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42  return NULL;
43}
44
45/// Check whether a given call node is in tail position within its function. If
46/// so, it sets Chain to the input chain of the tail call.
47bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
48                                          SDValue &Chain) const {
49  const Function *F = DAG.getMachineFunction().getFunction();
50
51  // Conservatively require the attributes of the call to match those of
52  // the return. Ignore noalias because it doesn't affect the call sequence.
53  AttributeSet CallerAttrs = F->getAttributes();
54  if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex)
55      .removeAttribute(Attribute::NoAlias).hasAttributes())
56    return false;
57
58  // It's not safe to eliminate the sign / zero extension of the return value.
59  if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
60      CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
61    return false;
62
63  // Check if the only use is a function return node.
64  return isUsedByReturnOnly(Node, Chain);
65}
66
67
68/// Generate a libcall taking the given operands as arguments and returning a
69/// result of type RetVT.
70std::pair<SDValue, SDValue>
71TargetLowering::makeLibCall(SelectionDAG &DAG,
72                            RTLIB::Libcall LC, EVT RetVT,
73                            const SDValue *Ops, unsigned NumOps,
74                            bool isSigned, SDLoc dl,
75                            bool doesNotReturn,
76                            bool isReturnValueUsed) const {
77  TargetLowering::ArgListTy Args;
78  Args.reserve(NumOps);
79
80  TargetLowering::ArgListEntry Entry;
81  for (unsigned i = 0; i != NumOps; ++i) {
82    Entry.Node = Ops[i];
83    Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
84    Entry.isSExt = isSigned;
85    Entry.isZExt = !isSigned;
86    Args.push_back(Entry);
87  }
88  SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy());
89
90  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
91  TargetLowering::
92  CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
93                    false, 0, getLibcallCallingConv(LC),
94                    /*isTailCall=*/false,
95                    doesNotReturn, isReturnValueUsed, Callee, Args,
96                    DAG, dl);
97  return LowerCallTo(CLI);
98}
99
100
101/// SoftenSetCCOperands - Soften the operands of a comparison.  This code is
102/// shared among BR_CC, SELECT_CC, and SETCC handlers.
103void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
104                                         SDValue &NewLHS, SDValue &NewRHS,
105                                         ISD::CondCode &CCCode,
106                                         SDLoc dl) const {
107  assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
108         && "Unsupported setcc type!");
109
110  // Expand into one or more soft-fp libcall(s).
111  RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
112  switch (CCCode) {
113  case ISD::SETEQ:
114  case ISD::SETOEQ:
115    LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
116          (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128;
117    break;
118  case ISD::SETNE:
119  case ISD::SETUNE:
120    LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
121          (VT == MVT::f64) ? RTLIB::UNE_F64 : RTLIB::UNE_F128;
122    break;
123  case ISD::SETGE:
124  case ISD::SETOGE:
125    LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
126          (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128;
127    break;
128  case ISD::SETLT:
129  case ISD::SETOLT:
130    LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
131          (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
132    break;
133  case ISD::SETLE:
134  case ISD::SETOLE:
135    LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
136          (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128;
137    break;
138  case ISD::SETGT:
139  case ISD::SETOGT:
140    LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
141          (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128;
142    break;
143  case ISD::SETUO:
144    LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
145          (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128;
146    break;
147  case ISD::SETO:
148    LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
149          (VT == MVT::f64) ? RTLIB::O_F64 : RTLIB::O_F128;
150    break;
151  default:
152    LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
153          (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128;
154    switch (CCCode) {
155    case ISD::SETONE:
156      // SETONE = SETOLT | SETOGT
157      LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
158            (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
159      // Fallthrough
160    case ISD::SETUGT:
161      LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
162            (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128;
163      break;
164    case ISD::SETUGE:
165      LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
166            (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128;
167      break;
168    case ISD::SETULT:
169      LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
170            (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
171      break;
172    case ISD::SETULE:
173      LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
174            (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128;
175      break;
176    case ISD::SETUEQ:
177      LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
178            (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128;
179      break;
180    default: llvm_unreachable("Do not know how to soften this setcc!");
181    }
182  }
183
184  // Use the target specific return value for comparions lib calls.
185  EVT RetVT = getCmpLibcallReturnType();
186  SDValue Ops[2] = { NewLHS, NewRHS };
187  NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, 2, false/*sign irrelevant*/,
188                       dl).first;
189  NewRHS = DAG.getConstant(0, RetVT);
190  CCCode = getCmpLibcallCC(LC1);
191  if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
192    SDValue Tmp = DAG.getNode(ISD::SETCC, dl,
193                              getSetCCResultType(*DAG.getContext(), RetVT),
194                              NewLHS, NewRHS, DAG.getCondCode(CCCode));
195    NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, 2, false/*sign irrelevant*/,
196                         dl).first;
197    NewLHS = DAG.getNode(ISD::SETCC, dl,
198                         getSetCCResultType(*DAG.getContext(), RetVT), NewLHS,
199                         NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
200    NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
201    NewRHS = SDValue();
202  }
203}
204
205/// getJumpTableEncoding - Return the entry encoding for a jump table in the
206/// current function.  The returned value is a member of the
207/// MachineJumpTableInfo::JTEntryKind enum.
208unsigned TargetLowering::getJumpTableEncoding() const {
209  // In non-pic modes, just use the address of a block.
210  if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
211    return MachineJumpTableInfo::EK_BlockAddress;
212
213  // In PIC mode, if the target supports a GPRel32 directive, use it.
214  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
215    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
216
217  // Otherwise, use a label difference.
218  return MachineJumpTableInfo::EK_LabelDifference32;
219}
220
221SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
222                                                 SelectionDAG &DAG) const {
223  // If our PIC model is GP relative, use the global offset table as the base.
224  unsigned JTEncoding = getJumpTableEncoding();
225
226  if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
227      (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
228    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(0));
229
230  return Table;
231}
232
233/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
234/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
235/// MCExpr.
236const MCExpr *
237TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
238                                             unsigned JTI,MCContext &Ctx) const{
239  // The normal PIC reloc base is the label at the start of the jump table.
240  return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
241}
242
243bool
244TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
245  // Assume that everything is safe in static mode.
246  if (getTargetMachine().getRelocationModel() == Reloc::Static)
247    return true;
248
249  // In dynamic-no-pic mode, assume that known defined values are safe.
250  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
251      GA &&
252      !GA->getGlobal()->isDeclaration() &&
253      !GA->getGlobal()->isWeakForLinker())
254    return true;
255
256  // Otherwise assume nothing is safe.
257  return false;
258}
259
260//===----------------------------------------------------------------------===//
261//  Optimization Methods
262//===----------------------------------------------------------------------===//
263
264/// ShrinkDemandedConstant - Check to see if the specified operand of the
265/// specified instruction is a constant integer.  If so, check to see if there
266/// are any bits set in the constant that are not demanded.  If so, shrink the
267/// constant and return true.
268bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
269                                                        const APInt &Demanded) {
270  SDLoc dl(Op);
271
272  // FIXME: ISD::SELECT, ISD::SELECT_CC
273  switch (Op.getOpcode()) {
274  default: break;
275  case ISD::XOR:
276  case ISD::AND:
277  case ISD::OR: {
278    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
279    if (!C) return false;
280
281    if (Op.getOpcode() == ISD::XOR &&
282        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
283      return false;
284
285    // if we can expand it to have all bits set, do it
286    if (C->getAPIntValue().intersects(~Demanded)) {
287      EVT VT = Op.getValueType();
288      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
289                                DAG.getConstant(Demanded &
290                                                C->getAPIntValue(),
291                                                VT));
292      return CombineTo(Op, New);
293    }
294
295    break;
296  }
297  }
298
299  return false;
300}
301
302/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
303/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
304/// cast, but it could be generalized for targets with other types of
305/// implicit widening casts.
306bool
307TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
308                                                    unsigned BitWidth,
309                                                    const APInt &Demanded,
310                                                    SDLoc dl) {
311  assert(Op.getNumOperands() == 2 &&
312         "ShrinkDemandedOp only supports binary operators!");
313  assert(Op.getNode()->getNumValues() == 1 &&
314         "ShrinkDemandedOp only supports nodes with one result!");
315
316  // Don't do this if the node has another user, which may require the
317  // full value.
318  if (!Op.getNode()->hasOneUse())
319    return false;
320
321  // Search for the smallest integer type with free casts to and from
322  // Op's type. For expedience, just check power-of-2 integer types.
323  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
324  unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros();
325  unsigned SmallVTBits = DemandedSize;
326  if (!isPowerOf2_32(SmallVTBits))
327    SmallVTBits = NextPowerOf2(SmallVTBits);
328  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
329    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
330    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
331        TLI.isZExtFree(SmallVT, Op.getValueType())) {
332      // We found a type with free casts.
333      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
334                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
335                                          Op.getNode()->getOperand(0)),
336                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
337                                          Op.getNode()->getOperand(1)));
338      bool NeedZext = DemandedSize > SmallVTBits;
339      SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND,
340                              dl, Op.getValueType(), X);
341      return CombineTo(Op, Z);
342    }
343  }
344  return false;
345}
346
347/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
348/// DemandedMask bits of the result of Op are ever used downstream.  If we can
349/// use this information to simplify Op, create a new simplified DAG node and
350/// return true, returning the original and new nodes in Old and New. Otherwise,
351/// analyze the expression and return a mask of KnownOne and KnownZero bits for
352/// the expression (used to simplify the caller).  The KnownZero/One bits may
353/// only be accurate for those bits in the DemandedMask.
354bool TargetLowering::SimplifyDemandedBits(SDValue Op,
355                                          const APInt &DemandedMask,
356                                          APInt &KnownZero,
357                                          APInt &KnownOne,
358                                          TargetLoweringOpt &TLO,
359                                          unsigned Depth) const {
360  unsigned BitWidth = DemandedMask.getBitWidth();
361  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
362         "Mask size mismatches value type size!");
363  APInt NewMask = DemandedMask;
364  SDLoc dl(Op);
365
366  // Don't know anything.
367  KnownZero = KnownOne = APInt(BitWidth, 0);
368
369  // Other users may use these bits.
370  if (!Op.getNode()->hasOneUse()) {
371    if (Depth != 0) {
372      // If not at the root, Just compute the KnownZero/KnownOne bits to
373      // simplify things downstream.
374      TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
375      return false;
376    }
377    // If this is the root being simplified, allow it to have multiple uses,
378    // just set the NewMask to all bits.
379    NewMask = APInt::getAllOnesValue(BitWidth);
380  } else if (DemandedMask == 0) {
381    // Not demanding any bits from Op.
382    if (Op.getOpcode() != ISD::UNDEF)
383      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
384    return false;
385  } else if (Depth == 6) {        // Limit search depth.
386    return false;
387  }
388
389  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
390  switch (Op.getOpcode()) {
391  case ISD::Constant:
392    // We know all of the bits for a constant!
393    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
394    KnownZero = ~KnownOne;
395    return false;   // Don't fall through, will infinitely loop.
396  case ISD::AND:
397    // If the RHS is a constant, check to see if the LHS would be zero without
398    // using the bits from the RHS.  Below, we use knowledge about the RHS to
399    // simplify the LHS, here we're using information from the LHS to simplify
400    // the RHS.
401    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
402      APInt LHSZero, LHSOne;
403      // Do not increment Depth here; that can cause an infinite loop.
404      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), LHSZero, LHSOne, Depth);
405      // If the LHS already has zeros where RHSC does, this and is dead.
406      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
407        return TLO.CombineTo(Op, Op.getOperand(0));
408      // If any of the set bits in the RHS are known zero on the LHS, shrink
409      // the constant.
410      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
411        return true;
412    }
413
414    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
415                             KnownOne, TLO, Depth+1))
416      return true;
417    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
418    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
419                             KnownZero2, KnownOne2, TLO, Depth+1))
420      return true;
421    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
422
423    // If all of the demanded bits are known one on one side, return the other.
424    // These bits cannot contribute to the result of the 'and'.
425    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
426      return TLO.CombineTo(Op, Op.getOperand(0));
427    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
428      return TLO.CombineTo(Op, Op.getOperand(1));
429    // If all of the demanded bits in the inputs are known zeros, return zero.
430    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
431      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
432    // If the RHS is a constant, see if we can simplify it.
433    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
434      return true;
435    // If the operation can be done in a smaller type, do so.
436    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
437      return true;
438
439    // Output known-1 bits are only known if set in both the LHS & RHS.
440    KnownOne &= KnownOne2;
441    // Output known-0 are known to be clear if zero in either the LHS | RHS.
442    KnownZero |= KnownZero2;
443    break;
444  case ISD::OR:
445    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
446                             KnownOne, TLO, Depth+1))
447      return true;
448    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
449    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
450                             KnownZero2, KnownOne2, TLO, Depth+1))
451      return true;
452    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
453
454    // If all of the demanded bits are known zero on one side, return the other.
455    // These bits cannot contribute to the result of the 'or'.
456    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
457      return TLO.CombineTo(Op, Op.getOperand(0));
458    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
459      return TLO.CombineTo(Op, Op.getOperand(1));
460    // If all of the potentially set bits on one side are known to be set on
461    // the other side, just use the 'other' side.
462    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
463      return TLO.CombineTo(Op, Op.getOperand(0));
464    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
465      return TLO.CombineTo(Op, Op.getOperand(1));
466    // If the RHS is a constant, see if we can simplify it.
467    if (TLO.ShrinkDemandedConstant(Op, NewMask))
468      return true;
469    // If the operation can be done in a smaller type, do so.
470    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
471      return true;
472
473    // Output known-0 bits are only known if clear in both the LHS & RHS.
474    KnownZero &= KnownZero2;
475    // Output known-1 are known to be set if set in either the LHS | RHS.
476    KnownOne |= KnownOne2;
477    break;
478  case ISD::XOR:
479    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
480                             KnownOne, TLO, Depth+1))
481      return true;
482    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
483    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
484                             KnownOne2, TLO, Depth+1))
485      return true;
486    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
487
488    // If all of the demanded bits are known zero on one side, return the other.
489    // These bits cannot contribute to the result of the 'xor'.
490    if ((KnownZero & NewMask) == NewMask)
491      return TLO.CombineTo(Op, Op.getOperand(0));
492    if ((KnownZero2 & NewMask) == NewMask)
493      return TLO.CombineTo(Op, Op.getOperand(1));
494    // If the operation can be done in a smaller type, do so.
495    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
496      return true;
497
498    // If all of the unknown bits are known to be zero on one side or the other
499    // (but not both) turn this into an *inclusive* or.
500    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
501    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
502      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
503                                               Op.getOperand(0),
504                                               Op.getOperand(1)));
505
506    // Output known-0 bits are known if clear or set in both the LHS & RHS.
507    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
508    // Output known-1 are known to be set if set in only one of the LHS, RHS.
509    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
510
511    // If all of the demanded bits on one side are known, and all of the set
512    // bits on that side are also known to be set on the other side, turn this
513    // into an AND, as we know the bits will be cleared.
514    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
515    // NB: it is okay if more bits are known than are requested
516    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side
517      if (KnownOne == KnownOne2) { // set bits are the same on both sides
518        EVT VT = Op.getValueType();
519        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
520        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
521                                                 Op.getOperand(0), ANDC));
522      }
523    }
524
525    // If the RHS is a constant, see if we can simplify it.
526    // for XOR, we prefer to force bits to 1 if they will make a -1.
527    // if we can't force bits, try to shrink constant
528    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
529      APInt Expanded = C->getAPIntValue() | (~NewMask);
530      // if we can expand it to have all bits set, do it
531      if (Expanded.isAllOnesValue()) {
532        if (Expanded != C->getAPIntValue()) {
533          EVT VT = Op.getValueType();
534          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
535                                          TLO.DAG.getConstant(Expanded, VT));
536          return TLO.CombineTo(Op, New);
537        }
538        // if it already has all the bits set, nothing to change
539        // but don't shrink either!
540      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
541        return true;
542      }
543    }
544
545    KnownZero = KnownZeroOut;
546    KnownOne  = KnownOneOut;
547    break;
548  case ISD::SELECT:
549    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
550                             KnownOne, TLO, Depth+1))
551      return true;
552    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
553                             KnownOne2, TLO, Depth+1))
554      return true;
555    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
556    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
557
558    // If the operands are constants, see if we can simplify them.
559    if (TLO.ShrinkDemandedConstant(Op, NewMask))
560      return true;
561
562    // Only known if known in both the LHS and RHS.
563    KnownOne &= KnownOne2;
564    KnownZero &= KnownZero2;
565    break;
566  case ISD::SELECT_CC:
567    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
568                             KnownOne, TLO, Depth+1))
569      return true;
570    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
571                             KnownOne2, TLO, Depth+1))
572      return true;
573    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
574    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
575
576    // If the operands are constants, see if we can simplify them.
577    if (TLO.ShrinkDemandedConstant(Op, NewMask))
578      return true;
579
580    // Only known if known in both the LHS and RHS.
581    KnownOne &= KnownOne2;
582    KnownZero &= KnownZero2;
583    break;
584  case ISD::SHL:
585    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
586      unsigned ShAmt = SA->getZExtValue();
587      SDValue InOp = Op.getOperand(0);
588
589      // If the shift count is an invalid immediate, don't do anything.
590      if (ShAmt >= BitWidth)
591        break;
592
593      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
594      // single shift.  We can do this if the bottom bits (which are shifted
595      // out) are never demanded.
596      if (InOp.getOpcode() == ISD::SRL &&
597          isa<ConstantSDNode>(InOp.getOperand(1))) {
598        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
599          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
600          unsigned Opc = ISD::SHL;
601          int Diff = ShAmt-C1;
602          if (Diff < 0) {
603            Diff = -Diff;
604            Opc = ISD::SRL;
605          }
606
607          SDValue NewSA =
608            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
609          EVT VT = Op.getValueType();
610          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
611                                                   InOp.getOperand(0), NewSA));
612        }
613      }
614
615      if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
616                               KnownZero, KnownOne, TLO, Depth+1))
617        return true;
618
619      // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
620      // are not demanded. This will likely allow the anyext to be folded away.
621      if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
622        SDValue InnerOp = InOp.getNode()->getOperand(0);
623        EVT InnerVT = InnerOp.getValueType();
624        unsigned InnerBits = InnerVT.getSizeInBits();
625        if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
626            isTypeDesirableForOp(ISD::SHL, InnerVT)) {
627          EVT ShTy = getShiftAmountTy(InnerVT);
628          if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
629            ShTy = InnerVT;
630          SDValue NarrowShl =
631            TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
632                            TLO.DAG.getConstant(ShAmt, ShTy));
633          return
634            TLO.CombineTo(Op,
635                          TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
636                                          NarrowShl));
637        }
638      }
639
640      KnownZero <<= SA->getZExtValue();
641      KnownOne  <<= SA->getZExtValue();
642      // low bits known zero.
643      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
644    }
645    break;
646  case ISD::SRL:
647    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
648      EVT VT = Op.getValueType();
649      unsigned ShAmt = SA->getZExtValue();
650      unsigned VTSize = VT.getSizeInBits();
651      SDValue InOp = Op.getOperand(0);
652
653      // If the shift count is an invalid immediate, don't do anything.
654      if (ShAmt >= BitWidth)
655        break;
656
657      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
658      // single shift.  We can do this if the top bits (which are shifted out)
659      // are never demanded.
660      if (InOp.getOpcode() == ISD::SHL &&
661          isa<ConstantSDNode>(InOp.getOperand(1))) {
662        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
663          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
664          unsigned Opc = ISD::SRL;
665          int Diff = ShAmt-C1;
666          if (Diff < 0) {
667            Diff = -Diff;
668            Opc = ISD::SHL;
669          }
670
671          SDValue NewSA =
672            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
673          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
674                                                   InOp.getOperand(0), NewSA));
675        }
676      }
677
678      // Compute the new bits that are at the top now.
679      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
680                               KnownZero, KnownOne, TLO, Depth+1))
681        return true;
682      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
683      KnownZero = KnownZero.lshr(ShAmt);
684      KnownOne  = KnownOne.lshr(ShAmt);
685
686      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
687      KnownZero |= HighBits;  // High bits known zero.
688    }
689    break;
690  case ISD::SRA:
691    // If this is an arithmetic shift right and only the low-bit is set, we can
692    // always convert this into a logical shr, even if the shift amount is
693    // variable.  The low bit of the shift cannot be an input sign bit unless
694    // the shift amount is >= the size of the datatype, which is undefined.
695    if (NewMask == 1)
696      return TLO.CombineTo(Op,
697                           TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
698                                           Op.getOperand(0), Op.getOperand(1)));
699
700    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
701      EVT VT = Op.getValueType();
702      unsigned ShAmt = SA->getZExtValue();
703
704      // If the shift count is an invalid immediate, don't do anything.
705      if (ShAmt >= BitWidth)
706        break;
707
708      APInt InDemandedMask = (NewMask << ShAmt);
709
710      // If any of the demanded bits are produced by the sign extension, we also
711      // demand the input sign bit.
712      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
713      if (HighBits.intersects(NewMask))
714        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
715
716      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
717                               KnownZero, KnownOne, TLO, Depth+1))
718        return true;
719      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
720      KnownZero = KnownZero.lshr(ShAmt);
721      KnownOne  = KnownOne.lshr(ShAmt);
722
723      // Handle the sign bit, adjusted to where it is now in the mask.
724      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
725
726      // If the input sign bit is known to be zero, or if none of the top bits
727      // are demanded, turn this into an unsigned shift right.
728      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
729        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
730                                                 Op.getOperand(0),
731                                                 Op.getOperand(1)));
732      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
733        KnownOne |= HighBits;
734      }
735    }
736    break;
737  case ISD::SIGN_EXTEND_INREG: {
738    EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
739
740    APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
741    // If we only care about the highest bit, don't bother shifting right.
742    if (MsbMask == DemandedMask) {
743      unsigned ShAmt = ExVT.getScalarType().getSizeInBits();
744      SDValue InOp = Op.getOperand(0);
745
746      // Compute the correct shift amount type, which must be getShiftAmountTy
747      // for scalar types after legalization.
748      EVT ShiftAmtTy = Op.getValueType();
749      if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
750        ShiftAmtTy = getShiftAmountTy(ShiftAmtTy);
751
752      SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy);
753      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
754                                            Op.getValueType(), InOp, ShiftAmt));
755    }
756
757    // Sign extension.  Compute the demanded bits in the result that are not
758    // present in the input.
759    APInt NewBits =
760      APInt::getHighBitsSet(BitWidth,
761                            BitWidth - ExVT.getScalarType().getSizeInBits());
762
763    // If none of the extended bits are demanded, eliminate the sextinreg.
764    if ((NewBits & NewMask) == 0)
765      return TLO.CombineTo(Op, Op.getOperand(0));
766
767    APInt InSignBit =
768      APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth);
769    APInt InputDemandedBits =
770      APInt::getLowBitsSet(BitWidth,
771                           ExVT.getScalarType().getSizeInBits()) &
772      NewMask;
773
774    // Since the sign extended bits are demanded, we know that the sign
775    // bit is demanded.
776    InputDemandedBits |= InSignBit;
777
778    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
779                             KnownZero, KnownOne, TLO, Depth+1))
780      return true;
781    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
782
783    // If the sign bit of the input is known set or clear, then we know the
784    // top bits of the result.
785
786    // If the input sign bit is known zero, convert this into a zero extension.
787    if (KnownZero.intersects(InSignBit))
788      return TLO.CombineTo(Op,
789                          TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT));
790
791    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
792      KnownOne |= NewBits;
793      KnownZero &= ~NewBits;
794    } else {                       // Input sign bit unknown
795      KnownZero &= ~NewBits;
796      KnownOne &= ~NewBits;
797    }
798    break;
799  }
800  case ISD::ZERO_EXTEND: {
801    unsigned OperandBitWidth =
802      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
803    APInt InMask = NewMask.trunc(OperandBitWidth);
804
805    // If none of the top bits are demanded, convert this into an any_extend.
806    APInt NewBits =
807      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
808    if (!NewBits.intersects(NewMask))
809      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
810                                               Op.getValueType(),
811                                               Op.getOperand(0)));
812
813    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
814                             KnownZero, KnownOne, TLO, Depth+1))
815      return true;
816    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
817    KnownZero = KnownZero.zext(BitWidth);
818    KnownOne = KnownOne.zext(BitWidth);
819    KnownZero |= NewBits;
820    break;
821  }
822  case ISD::SIGN_EXTEND: {
823    EVT InVT = Op.getOperand(0).getValueType();
824    unsigned InBits = InVT.getScalarType().getSizeInBits();
825    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
826    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
827    APInt NewBits   = ~InMask & NewMask;
828
829    // If none of the top bits are demanded, convert this into an any_extend.
830    if (NewBits == 0)
831      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
832                                              Op.getValueType(),
833                                              Op.getOperand(0)));
834
835    // Since some of the sign extended bits are demanded, we know that the sign
836    // bit is demanded.
837    APInt InDemandedBits = InMask & NewMask;
838    InDemandedBits |= InSignBit;
839    InDemandedBits = InDemandedBits.trunc(InBits);
840
841    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
842                             KnownOne, TLO, Depth+1))
843      return true;
844    KnownZero = KnownZero.zext(BitWidth);
845    KnownOne = KnownOne.zext(BitWidth);
846
847    // If the sign bit is known zero, convert this to a zero extend.
848    if (KnownZero.intersects(InSignBit))
849      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
850                                               Op.getValueType(),
851                                               Op.getOperand(0)));
852
853    // If the sign bit is known one, the top bits match.
854    if (KnownOne.intersects(InSignBit)) {
855      KnownOne |= NewBits;
856      assert((KnownZero & NewBits) == 0);
857    } else {   // Otherwise, top bits aren't known.
858      assert((KnownOne & NewBits) == 0);
859      assert((KnownZero & NewBits) == 0);
860    }
861    break;
862  }
863  case ISD::ANY_EXTEND: {
864    unsigned OperandBitWidth =
865      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
866    APInt InMask = NewMask.trunc(OperandBitWidth);
867    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
868                             KnownZero, KnownOne, TLO, Depth+1))
869      return true;
870    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
871    KnownZero = KnownZero.zext(BitWidth);
872    KnownOne = KnownOne.zext(BitWidth);
873    break;
874  }
875  case ISD::TRUNCATE: {
876    // Simplify the input, using demanded bit information, and compute the known
877    // zero/one bits live out.
878    unsigned OperandBitWidth =
879      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
880    APInt TruncMask = NewMask.zext(OperandBitWidth);
881    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
882                             KnownZero, KnownOne, TLO, Depth+1))
883      return true;
884    KnownZero = KnownZero.trunc(BitWidth);
885    KnownOne = KnownOne.trunc(BitWidth);
886
887    // If the input is only used by this truncate, see if we can shrink it based
888    // on the known demanded bits.
889    if (Op.getOperand(0).getNode()->hasOneUse()) {
890      SDValue In = Op.getOperand(0);
891      switch (In.getOpcode()) {
892      default: break;
893      case ISD::SRL:
894        // Shrink SRL by a constant if none of the high bits shifted in are
895        // demanded.
896        if (TLO.LegalTypes() &&
897            !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
898          // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
899          // undesirable.
900          break;
901        ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
902        if (!ShAmt)
903          break;
904        SDValue Shift = In.getOperand(1);
905        if (TLO.LegalTypes()) {
906          uint64_t ShVal = ShAmt->getZExtValue();
907          Shift =
908            TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
909        }
910
911        APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
912                                               OperandBitWidth - BitWidth);
913        HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
914
915        if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
916          // None of the shifted in bits are needed.  Add a truncate of the
917          // shift input, then shift it.
918          SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
919                                             Op.getValueType(),
920                                             In.getOperand(0));
921          return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
922                                                   Op.getValueType(),
923                                                   NewTrunc,
924                                                   Shift));
925        }
926        break;
927      }
928    }
929
930    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
931    break;
932  }
933  case ISD::AssertZext: {
934    // AssertZext demands all of the high bits, plus any of the low bits
935    // demanded by its users.
936    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
937    APInt InMask = APInt::getLowBitsSet(BitWidth,
938                                        VT.getSizeInBits());
939    if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
940                             KnownZero, KnownOne, TLO, Depth+1))
941      return true;
942    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
943
944    KnownZero |= ~InMask & NewMask;
945    break;
946  }
947  case ISD::BITCAST:
948    // If this is an FP->Int bitcast and if the sign bit is the only
949    // thing demanded, turn this into a FGETSIGN.
950    if (!TLO.LegalOperations() &&
951        !Op.getValueType().isVector() &&
952        !Op.getOperand(0).getValueType().isVector() &&
953        NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
954        Op.getOperand(0).getValueType().isFloatingPoint()) {
955      bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
956      bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
957      if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) {
958        EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
959        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
960        // place.  We expect the SHL to be eliminated by other optimizations.
961        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
962        unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
963        if (!OpVTLegal && OpVTSizeInBits > 32)
964          Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
965        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
966        SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType());
967        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
968                                                 Op.getValueType(),
969                                                 Sign, ShAmt));
970      }
971    }
972    break;
973  case ISD::ADD:
974  case ISD::MUL:
975  case ISD::SUB: {
976    // Add, Sub, and Mul don't demand any bits in positions beyond that
977    // of the highest bit demanded of them.
978    APInt LoMask = APInt::getLowBitsSet(BitWidth,
979                                        BitWidth - NewMask.countLeadingZeros());
980    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
981                             KnownOne2, TLO, Depth+1))
982      return true;
983    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
984                             KnownOne2, TLO, Depth+1))
985      return true;
986    // See if the operation should be performed at a smaller bit width.
987    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
988      return true;
989  }
990  // FALL THROUGH
991  default:
992    // Just use ComputeMaskedBits to compute output bits.
993    TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
994    break;
995  }
996
997  // If we know the value of all of the demanded bits, return this as a
998  // constant.
999  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1000    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1001
1002  return false;
1003}
1004
1005/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1006/// in Mask are known to be either zero or one and return them in the
1007/// KnownZero/KnownOne bitsets.
1008void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1009                                                    APInt &KnownZero,
1010                                                    APInt &KnownOne,
1011                                                    const SelectionDAG &DAG,
1012                                                    unsigned Depth) const {
1013  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1014          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1015          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1016          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1017         "Should use MaskedValueIsZero if you don't know whether Op"
1018         " is a target node!");
1019  KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
1020}
1021
1022/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1023/// targets that want to expose additional information about sign bits to the
1024/// DAG Combiner.
1025unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1026                                                         unsigned Depth) const {
1027  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1028          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1029          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1030          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1031         "Should use ComputeNumSignBits if you don't know whether Op"
1032         " is a target node!");
1033  return 1;
1034}
1035
1036/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1037/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1038/// determine which bit is set.
1039///
1040static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1041  // A left-shift of a constant one will have exactly one bit set, because
1042  // shifting the bit off the end is undefined.
1043  if (Val.getOpcode() == ISD::SHL)
1044    if (ConstantSDNode *C =
1045         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1046      if (C->getAPIntValue() == 1)
1047        return true;
1048
1049  // Similarly, a right-shift of a constant sign-bit will have exactly
1050  // one bit set.
1051  if (Val.getOpcode() == ISD::SRL)
1052    if (ConstantSDNode *C =
1053         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1054      if (C->getAPIntValue().isSignBit())
1055        return true;
1056
1057  // More could be done here, though the above checks are enough
1058  // to handle some common cases.
1059
1060  // Fall back to ComputeMaskedBits to catch other known cases.
1061  EVT OpVT = Val.getValueType();
1062  unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1063  APInt KnownZero, KnownOne;
1064  DAG.ComputeMaskedBits(Val, KnownZero, KnownOne);
1065  return (KnownZero.countPopulation() == BitWidth - 1) &&
1066         (KnownOne.countPopulation() == 1);
1067}
1068
1069/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1070/// and cc. If it is unable to simplify it, return a null SDValue.
1071SDValue
1072TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1073                              ISD::CondCode Cond, bool foldBooleans,
1074                              DAGCombinerInfo &DCI, SDLoc dl) const {
1075  SelectionDAG &DAG = DCI.DAG;
1076
1077  // These setcc operations always fold.
1078  switch (Cond) {
1079  default: break;
1080  case ISD::SETFALSE:
1081  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1082  case ISD::SETTRUE:
1083  case ISD::SETTRUE2: {
1084    TargetLowering::BooleanContent Cnt = getBooleanContents(VT.isVector());
1085    return DAG.getConstant(
1086        Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, VT);
1087  }
1088  }
1089
1090  // Ensure that the constant occurs on the RHS, and fold constant
1091  // comparisons.
1092  ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
1093  if (isa<ConstantSDNode>(N0.getNode()) &&
1094      (DCI.isBeforeLegalizeOps() ||
1095       isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
1096    return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
1097
1098  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1099    const APInt &C1 = N1C->getAPIntValue();
1100
1101    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1102    // equality comparison, then we're just comparing whether X itself is
1103    // zero.
1104    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1105        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1106        N0.getOperand(1).getOpcode() == ISD::Constant) {
1107      const APInt &ShAmt
1108        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1109      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1110          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1111        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1112          // (srl (ctlz x), 5) == 0  -> X != 0
1113          // (srl (ctlz x), 5) != 1  -> X != 0
1114          Cond = ISD::SETNE;
1115        } else {
1116          // (srl (ctlz x), 5) != 0  -> X == 0
1117          // (srl (ctlz x), 5) == 1  -> X == 0
1118          Cond = ISD::SETEQ;
1119        }
1120        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1121        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1122                            Zero, Cond);
1123      }
1124    }
1125
1126    SDValue CTPOP = N0;
1127    // Look through truncs that don't change the value of a ctpop.
1128    if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1129      CTPOP = N0.getOperand(0);
1130
1131    if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1132        (N0 == CTPOP || N0.getValueType().getSizeInBits() >
1133                        Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
1134      EVT CTVT = CTPOP.getValueType();
1135      SDValue CTOp = CTPOP.getOperand(0);
1136
1137      // (ctpop x) u< 2 -> (x & x-1) == 0
1138      // (ctpop x) u> 1 -> (x & x-1) != 0
1139      if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1140        SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1141                                  DAG.getConstant(1, CTVT));
1142        SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1143        ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1144        return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
1145      }
1146
1147      // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1148    }
1149
1150    // (zext x) == C --> x == (trunc C)
1151    if (DCI.isBeforeLegalize() && N0->hasOneUse() &&
1152        (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1153      unsigned MinBits = N0.getValueSizeInBits();
1154      SDValue PreZExt;
1155      if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1156        // ZExt
1157        MinBits = N0->getOperand(0).getValueSizeInBits();
1158        PreZExt = N0->getOperand(0);
1159      } else if (N0->getOpcode() == ISD::AND) {
1160        // DAGCombine turns costly ZExts into ANDs
1161        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1162          if ((C->getAPIntValue()+1).isPowerOf2()) {
1163            MinBits = C->getAPIntValue().countTrailingOnes();
1164            PreZExt = N0->getOperand(0);
1165          }
1166      } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
1167        // ZEXTLOAD
1168        if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1169          MinBits = LN0->getMemoryVT().getSizeInBits();
1170          PreZExt = N0;
1171        }
1172      }
1173
1174      // Make sure we're not losing bits from the constant.
1175      if (MinBits > 0 &&
1176          MinBits < C1.getBitWidth() && MinBits >= C1.getActiveBits()) {
1177        EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
1178        if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
1179          // Will get folded away.
1180          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt);
1181          SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
1182          return DAG.getSetCC(dl, VT, Trunc, C, Cond);
1183        }
1184      }
1185    }
1186
1187    // If the LHS is '(and load, const)', the RHS is 0,
1188    // the test is for equality or unsigned, and all 1 bits of the const are
1189    // in the same partial word, see if we can shorten the load.
1190    if (DCI.isBeforeLegalize() &&
1191        !ISD::isSignedIntSetCC(Cond) &&
1192        N0.getOpcode() == ISD::AND && C1 == 0 &&
1193        N0.getNode()->hasOneUse() &&
1194        isa<LoadSDNode>(N0.getOperand(0)) &&
1195        N0.getOperand(0).getNode()->hasOneUse() &&
1196        isa<ConstantSDNode>(N0.getOperand(1))) {
1197      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1198      APInt bestMask;
1199      unsigned bestWidth = 0, bestOffset = 0;
1200      if (!Lod->isVolatile() && Lod->isUnindexed()) {
1201        unsigned origWidth = N0.getValueType().getSizeInBits();
1202        unsigned maskWidth = origWidth;
1203        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1204        // 8 bits, but have to be careful...
1205        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1206          origWidth = Lod->getMemoryVT().getSizeInBits();
1207        const APInt &Mask =
1208          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1209        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1210          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1211          for (unsigned offset=0; offset<origWidth/width; offset++) {
1212            if ((newMask & Mask) == Mask) {
1213              if (!getDataLayout()->isLittleEndian())
1214                bestOffset = (origWidth/width - offset - 1) * (width/8);
1215              else
1216                bestOffset = (uint64_t)offset * (width/8);
1217              bestMask = Mask.lshr(offset * (width/8) * 8);
1218              bestWidth = width;
1219              break;
1220            }
1221            newMask = newMask << width;
1222          }
1223        }
1224      }
1225      if (bestWidth) {
1226        EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
1227        if (newVT.isRound()) {
1228          EVT PtrType = Lod->getOperand(1).getValueType();
1229          SDValue Ptr = Lod->getBasePtr();
1230          if (bestOffset != 0)
1231            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1232                              DAG.getConstant(bestOffset, PtrType));
1233          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1234          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1235                                Lod->getPointerInfo().getWithOffset(bestOffset),
1236                                        false, false, false, NewAlign);
1237          return DAG.getSetCC(dl, VT,
1238                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1239                                      DAG.getConstant(bestMask.trunc(bestWidth),
1240                                                      newVT)),
1241                              DAG.getConstant(0LL, newVT), Cond);
1242        }
1243      }
1244    }
1245
1246    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1247    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1248      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1249
1250      // If the comparison constant has bits in the upper part, the
1251      // zero-extended value could never match.
1252      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1253                                              C1.getBitWidth() - InSize))) {
1254        switch (Cond) {
1255        case ISD::SETUGT:
1256        case ISD::SETUGE:
1257        case ISD::SETEQ: return DAG.getConstant(0, VT);
1258        case ISD::SETULT:
1259        case ISD::SETULE:
1260        case ISD::SETNE: return DAG.getConstant(1, VT);
1261        case ISD::SETGT:
1262        case ISD::SETGE:
1263          // True if the sign bit of C1 is set.
1264          return DAG.getConstant(C1.isNegative(), VT);
1265        case ISD::SETLT:
1266        case ISD::SETLE:
1267          // True if the sign bit of C1 isn't set.
1268          return DAG.getConstant(C1.isNonNegative(), VT);
1269        default:
1270          break;
1271        }
1272      }
1273
1274      // Otherwise, we can perform the comparison with the low bits.
1275      switch (Cond) {
1276      case ISD::SETEQ:
1277      case ISD::SETNE:
1278      case ISD::SETUGT:
1279      case ISD::SETUGE:
1280      case ISD::SETULT:
1281      case ISD::SETULE: {
1282        EVT newVT = N0.getOperand(0).getValueType();
1283        if (DCI.isBeforeLegalizeOps() ||
1284            (isOperationLegal(ISD::SETCC, newVT) &&
1285             getCondCodeAction(Cond, newVT.getSimpleVT())==Legal))
1286          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1287                              DAG.getConstant(C1.trunc(InSize), newVT),
1288                              Cond);
1289        break;
1290      }
1291      default:
1292        break;   // todo, be more careful with signed comparisons
1293      }
1294    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1295               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1296      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1297      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1298      EVT ExtDstTy = N0.getValueType();
1299      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1300
1301      // If the constant doesn't fit into the number of bits for the source of
1302      // the sign extension, it is impossible for both sides to be equal.
1303      if (C1.getMinSignedBits() > ExtSrcTyBits)
1304        return DAG.getConstant(Cond == ISD::SETNE, VT);
1305
1306      SDValue ZextOp;
1307      EVT Op0Ty = N0.getOperand(0).getValueType();
1308      if (Op0Ty == ExtSrcTy) {
1309        ZextOp = N0.getOperand(0);
1310      } else {
1311        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1312        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1313                              DAG.getConstant(Imm, Op0Ty));
1314      }
1315      if (!DCI.isCalledByLegalizer())
1316        DCI.AddToWorklist(ZextOp.getNode());
1317      // Otherwise, make this a use of a zext.
1318      return DAG.getSetCC(dl, VT, ZextOp,
1319                          DAG.getConstant(C1 & APInt::getLowBitsSet(
1320                                                              ExtDstTyBits,
1321                                                              ExtSrcTyBits),
1322                                          ExtDstTy),
1323                          Cond);
1324    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1325                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1326      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1327      if (N0.getOpcode() == ISD::SETCC &&
1328          isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1329        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
1330        if (TrueWhenTrue)
1331          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1332        // Invert the condition.
1333        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1334        CC = ISD::getSetCCInverse(CC,
1335                                  N0.getOperand(0).getValueType().isInteger());
1336        if (DCI.isBeforeLegalizeOps() ||
1337            isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
1338          return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1339      }
1340
1341      if ((N0.getOpcode() == ISD::XOR ||
1342           (N0.getOpcode() == ISD::AND &&
1343            N0.getOperand(0).getOpcode() == ISD::XOR &&
1344            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1345          isa<ConstantSDNode>(N0.getOperand(1)) &&
1346          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1347        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1348        // can only do this if the top bits are known zero.
1349        unsigned BitWidth = N0.getValueSizeInBits();
1350        if (DAG.MaskedValueIsZero(N0,
1351                                  APInt::getHighBitsSet(BitWidth,
1352                                                        BitWidth-1))) {
1353          // Okay, get the un-inverted input value.
1354          SDValue Val;
1355          if (N0.getOpcode() == ISD::XOR)
1356            Val = N0.getOperand(0);
1357          else {
1358            assert(N0.getOpcode() == ISD::AND &&
1359                    N0.getOperand(0).getOpcode() == ISD::XOR);
1360            // ((X^1)&1)^1 -> X & 1
1361            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1362                              N0.getOperand(0).getOperand(0),
1363                              N0.getOperand(1));
1364          }
1365
1366          return DAG.getSetCC(dl, VT, Val, N1,
1367                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1368        }
1369      } else if (N1C->getAPIntValue() == 1 &&
1370                 (VT == MVT::i1 ||
1371                  getBooleanContents(false) == ZeroOrOneBooleanContent)) {
1372        SDValue Op0 = N0;
1373        if (Op0.getOpcode() == ISD::TRUNCATE)
1374          Op0 = Op0.getOperand(0);
1375
1376        if ((Op0.getOpcode() == ISD::XOR) &&
1377            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
1378            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
1379          // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
1380          Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
1381          return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
1382                              Cond);
1383        }
1384        if (Op0.getOpcode() == ISD::AND &&
1385            isa<ConstantSDNode>(Op0.getOperand(1)) &&
1386            cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
1387          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
1388          if (Op0.getValueType().bitsGT(VT))
1389            Op0 = DAG.getNode(ISD::AND, dl, VT,
1390                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
1391                          DAG.getConstant(1, VT));
1392          else if (Op0.getValueType().bitsLT(VT))
1393            Op0 = DAG.getNode(ISD::AND, dl, VT,
1394                        DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
1395                        DAG.getConstant(1, VT));
1396
1397          return DAG.getSetCC(dl, VT, Op0,
1398                              DAG.getConstant(0, Op0.getValueType()),
1399                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1400        }
1401        if (Op0.getOpcode() == ISD::AssertZext &&
1402            cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
1403          return DAG.getSetCC(dl, VT, Op0,
1404                              DAG.getConstant(0, Op0.getValueType()),
1405                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1406      }
1407    }
1408
1409    APInt MinVal, MaxVal;
1410    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1411    if (ISD::isSignedIntSetCC(Cond)) {
1412      MinVal = APInt::getSignedMinValue(OperandBitSize);
1413      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1414    } else {
1415      MinVal = APInt::getMinValue(OperandBitSize);
1416      MaxVal = APInt::getMaxValue(OperandBitSize);
1417    }
1418
1419    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1420    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1421      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1422      // X >= C0 --> X > (C0-1)
1423      return DAG.getSetCC(dl, VT, N0,
1424                          DAG.getConstant(C1-1, N1.getValueType()),
1425                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1426    }
1427
1428    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1429      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1430      // X <= C0 --> X < (C0+1)
1431      return DAG.getSetCC(dl, VT, N0,
1432                          DAG.getConstant(C1+1, N1.getValueType()),
1433                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1434    }
1435
1436    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1437      return DAG.getConstant(0, VT);      // X < MIN --> false
1438    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1439      return DAG.getConstant(1, VT);      // X >= MIN --> true
1440    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1441      return DAG.getConstant(0, VT);      // X > MAX --> false
1442    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1443      return DAG.getConstant(1, VT);      // X <= MAX --> true
1444
1445    // Canonicalize setgt X, Min --> setne X, Min
1446    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1447      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1448    // Canonicalize setlt X, Max --> setne X, Max
1449    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1450      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1451
1452    // If we have setult X, 1, turn it into seteq X, 0
1453    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1454      return DAG.getSetCC(dl, VT, N0,
1455                          DAG.getConstant(MinVal, N0.getValueType()),
1456                          ISD::SETEQ);
1457    // If we have setugt X, Max-1, turn it into seteq X, Max
1458    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1459      return DAG.getSetCC(dl, VT, N0,
1460                          DAG.getConstant(MaxVal, N0.getValueType()),
1461                          ISD::SETEQ);
1462
1463    // If we have "setcc X, C0", check to see if we can shrink the immediate
1464    // by changing cc.
1465
1466    // SETUGT X, SINTMAX  -> SETLT X, 0
1467    if (Cond == ISD::SETUGT &&
1468        C1 == APInt::getSignedMaxValue(OperandBitSize))
1469      return DAG.getSetCC(dl, VT, N0,
1470                          DAG.getConstant(0, N1.getValueType()),
1471                          ISD::SETLT);
1472
1473    // SETULT X, SINTMIN  -> SETGT X, -1
1474    if (Cond == ISD::SETULT &&
1475        C1 == APInt::getSignedMinValue(OperandBitSize)) {
1476      SDValue ConstMinusOne =
1477          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
1478                          N1.getValueType());
1479      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1480    }
1481
1482    // Fold bit comparisons when we can.
1483    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1484        (VT == N0.getValueType() ||
1485         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
1486        N0.getOpcode() == ISD::AND)
1487      if (ConstantSDNode *AndRHS =
1488                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1489        EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
1490          getPointerTy() : getShiftAmountTy(N0.getValueType());
1491        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1492          // Perform the xform if the AND RHS is a single bit.
1493          if (AndRHS->getAPIntValue().isPowerOf2()) {
1494            return DAG.getNode(ISD::TRUNCATE, dl, VT,
1495                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1496                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
1497          }
1498        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
1499          // (X & 8) == 8  -->  (X & 8) >> 3
1500          // Perform the xform if C1 is a single bit.
1501          if (C1.isPowerOf2()) {
1502            return DAG.getNode(ISD::TRUNCATE, dl, VT,
1503                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1504                                      DAG.getConstant(C1.logBase2(), ShiftTy)));
1505          }
1506        }
1507      }
1508
1509    if (C1.getMinSignedBits() <= 64 &&
1510        !isLegalICmpImmediate(C1.getSExtValue())) {
1511      // (X & -256) == 256 -> (X >> 8) == 1
1512      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1513          N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
1514        if (ConstantSDNode *AndRHS =
1515            dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1516          const APInt &AndRHSC = AndRHS->getAPIntValue();
1517          if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
1518            unsigned ShiftBits = AndRHSC.countTrailingZeros();
1519            EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
1520              getPointerTy() : getShiftAmountTy(N0.getValueType());
1521            EVT CmpTy = N0.getValueType();
1522            SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
1523                                        DAG.getConstant(ShiftBits, ShiftTy));
1524            SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), CmpTy);
1525            return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
1526          }
1527        }
1528      } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
1529                 Cond == ISD::SETULE || Cond == ISD::SETUGT) {
1530        bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
1531        // X <  0x100000000 -> (X >> 32) <  1
1532        // X >= 0x100000000 -> (X >> 32) >= 1
1533        // X <= 0x0ffffffff -> (X >> 32) <  1
1534        // X >  0x0ffffffff -> (X >> 32) >= 1
1535        unsigned ShiftBits;
1536        APInt NewC = C1;
1537        ISD::CondCode NewCond = Cond;
1538        if (AdjOne) {
1539          ShiftBits = C1.countTrailingOnes();
1540          NewC = NewC + 1;
1541          NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1542        } else {
1543          ShiftBits = C1.countTrailingZeros();
1544        }
1545        NewC = NewC.lshr(ShiftBits);
1546        if (ShiftBits && isLegalICmpImmediate(NewC.getSExtValue())) {
1547          EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
1548            getPointerTy() : getShiftAmountTy(N0.getValueType());
1549          EVT CmpTy = N0.getValueType();
1550          SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
1551                                      DAG.getConstant(ShiftBits, ShiftTy));
1552          SDValue CmpRHS = DAG.getConstant(NewC, CmpTy);
1553          return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
1554        }
1555      }
1556    }
1557  }
1558
1559  if (isa<ConstantFPSDNode>(N0.getNode())) {
1560    // Constant fold or commute setcc.
1561    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1562    if (O.getNode()) return O;
1563  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1564    // If the RHS of an FP comparison is a constant, simplify it away in
1565    // some cases.
1566    if (CFP->getValueAPF().isNaN()) {
1567      // If an operand is known to be a nan, we can fold it.
1568      switch (ISD::getUnorderedFlavor(Cond)) {
1569      default: llvm_unreachable("Unknown flavor!");
1570      case 0:  // Known false.
1571        return DAG.getConstant(0, VT);
1572      case 1:  // Known true.
1573        return DAG.getConstant(1, VT);
1574      case 2:  // Undefined.
1575        return DAG.getUNDEF(VT);
1576      }
1577    }
1578
1579    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1580    // constant if knowing that the operand is non-nan is enough.  We prefer to
1581    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1582    // materialize 0.0.
1583    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1584      return DAG.getSetCC(dl, VT, N0, N0, Cond);
1585
1586    // If the condition is not legal, see if we can find an equivalent one
1587    // which is legal.
1588    if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
1589      // If the comparison was an awkward floating-point == or != and one of
1590      // the comparison operands is infinity or negative infinity, convert the
1591      // condition to a less-awkward <= or >=.
1592      if (CFP->getValueAPF().isInfinity()) {
1593        if (CFP->getValueAPF().isNegative()) {
1594          if (Cond == ISD::SETOEQ &&
1595              isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
1596            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
1597          if (Cond == ISD::SETUEQ &&
1598              isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
1599            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
1600          if (Cond == ISD::SETUNE &&
1601              isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
1602            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
1603          if (Cond == ISD::SETONE &&
1604              isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
1605            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
1606        } else {
1607          if (Cond == ISD::SETOEQ &&
1608              isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
1609            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
1610          if (Cond == ISD::SETUEQ &&
1611              isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
1612            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
1613          if (Cond == ISD::SETUNE &&
1614              isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
1615            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
1616          if (Cond == ISD::SETONE &&
1617              isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
1618            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
1619        }
1620      }
1621    }
1622  }
1623
1624  if (N0 == N1) {
1625    // The sext(setcc()) => setcc() optimization relies on the appropriate
1626    // constant being emitted.
1627    uint64_t EqVal = 0;
1628    switch (getBooleanContents(N0.getValueType().isVector())) {
1629    case UndefinedBooleanContent:
1630    case ZeroOrOneBooleanContent:
1631      EqVal = ISD::isTrueWhenEqual(Cond);
1632      break;
1633    case ZeroOrNegativeOneBooleanContent:
1634      EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
1635      break;
1636    }
1637
1638    // We can always fold X == X for integer setcc's.
1639    if (N0.getValueType().isInteger()) {
1640      return DAG.getConstant(EqVal, VT);
1641    }
1642    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1643    if (UOF == 2)   // FP operators that are undefined on NaNs.
1644      return DAG.getConstant(EqVal, VT);
1645    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1646      return DAG.getConstant(EqVal, VT);
1647    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1648    // if it is not already.
1649    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1650    if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
1651          getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal))
1652      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
1653  }
1654
1655  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1656      N0.getValueType().isInteger()) {
1657    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1658        N0.getOpcode() == ISD::XOR) {
1659      // Simplify (X+Y) == (X+Z) -->  Y == Z
1660      if (N0.getOpcode() == N1.getOpcode()) {
1661        if (N0.getOperand(0) == N1.getOperand(0))
1662          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
1663        if (N0.getOperand(1) == N1.getOperand(1))
1664          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
1665        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1666          // If X op Y == Y op X, try other combinations.
1667          if (N0.getOperand(0) == N1.getOperand(1))
1668            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
1669                                Cond);
1670          if (N0.getOperand(1) == N1.getOperand(0))
1671            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
1672                                Cond);
1673        }
1674      }
1675
1676      // If RHS is a legal immediate value for a compare instruction, we need
1677      // to be careful about increasing register pressure needlessly.
1678      bool LegalRHSImm = false;
1679
1680      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1681        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1682          // Turn (X+C1) == C2 --> X == C2-C1
1683          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
1684            return DAG.getSetCC(dl, VT, N0.getOperand(0),
1685                                DAG.getConstant(RHSC->getAPIntValue()-
1686                                                LHSR->getAPIntValue(),
1687                                N0.getValueType()), Cond);
1688          }
1689
1690          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1691          if (N0.getOpcode() == ISD::XOR)
1692            // If we know that all of the inverted bits are zero, don't bother
1693            // performing the inversion.
1694            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1695              return
1696                DAG.getSetCC(dl, VT, N0.getOperand(0),
1697                             DAG.getConstant(LHSR->getAPIntValue() ^
1698                                               RHSC->getAPIntValue(),
1699                                             N0.getValueType()),
1700                             Cond);
1701        }
1702
1703        // Turn (C1-X) == C2 --> X == C1-C2
1704        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1705          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
1706            return
1707              DAG.getSetCC(dl, VT, N0.getOperand(1),
1708                           DAG.getConstant(SUBC->getAPIntValue() -
1709                                             RHSC->getAPIntValue(),
1710                                           N0.getValueType()),
1711                           Cond);
1712          }
1713        }
1714
1715        // Could RHSC fold directly into a compare?
1716        if (RHSC->getValueType(0).getSizeInBits() <= 64)
1717          LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
1718      }
1719
1720      // Simplify (X+Z) == X -->  Z == 0
1721      // Don't do this if X is an immediate that can fold into a cmp
1722      // instruction and X+Z has other uses. It could be an induction variable
1723      // chain, and the transform would increase register pressure.
1724      if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
1725        if (N0.getOperand(0) == N1)
1726          return DAG.getSetCC(dl, VT, N0.getOperand(1),
1727                              DAG.getConstant(0, N0.getValueType()), Cond);
1728        if (N0.getOperand(1) == N1) {
1729          if (DAG.isCommutativeBinOp(N0.getOpcode()))
1730            return DAG.getSetCC(dl, VT, N0.getOperand(0),
1731                                DAG.getConstant(0, N0.getValueType()), Cond);
1732          if (N0.getNode()->hasOneUse()) {
1733            assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1734            // (Z-X) == X  --> Z == X<<1
1735            SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1,
1736                       DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
1737            if (!DCI.isCalledByLegalizer())
1738              DCI.AddToWorklist(SH.getNode());
1739            return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
1740          }
1741        }
1742      }
1743    }
1744
1745    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1746        N1.getOpcode() == ISD::XOR) {
1747      // Simplify  X == (X+Z) -->  Z == 0
1748      if (N1.getOperand(0) == N0)
1749        return DAG.getSetCC(dl, VT, N1.getOperand(1),
1750                        DAG.getConstant(0, N1.getValueType()), Cond);
1751      if (N1.getOperand(1) == N0) {
1752        if (DAG.isCommutativeBinOp(N1.getOpcode()))
1753          return DAG.getSetCC(dl, VT, N1.getOperand(0),
1754                          DAG.getConstant(0, N1.getValueType()), Cond);
1755        if (N1.getNode()->hasOneUse()) {
1756          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1757          // X == (Z-X)  --> X<<1 == Z
1758          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
1759                       DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
1760          if (!DCI.isCalledByLegalizer())
1761            DCI.AddToWorklist(SH.getNode());
1762          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
1763        }
1764      }
1765    }
1766
1767    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
1768    // Note that where y is variable and is known to have at most
1769    // one bit set (for example, if it is z&1) we cannot do this;
1770    // the expressions are not equivalent when y==0.
1771    if (N0.getOpcode() == ISD::AND)
1772      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
1773        if (ValueHasExactlyOneBitSet(N1, DAG)) {
1774          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1775          if (DCI.isBeforeLegalizeOps() ||
1776              isCondCodeLegal(Cond, N0.getSimpleValueType())) {
1777            SDValue Zero = DAG.getConstant(0, N1.getValueType());
1778            return DAG.getSetCC(dl, VT, N0, Zero, Cond);
1779          }
1780        }
1781      }
1782    if (N1.getOpcode() == ISD::AND)
1783      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
1784        if (ValueHasExactlyOneBitSet(N0, DAG)) {
1785          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1786          if (DCI.isBeforeLegalizeOps() ||
1787              isCondCodeLegal(Cond, N1.getSimpleValueType())) {
1788            SDValue Zero = DAG.getConstant(0, N0.getValueType());
1789            return DAG.getSetCC(dl, VT, N1, Zero, Cond);
1790          }
1791        }
1792      }
1793  }
1794
1795  // Fold away ALL boolean setcc's.
1796  SDValue Temp;
1797  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1798    switch (Cond) {
1799    default: llvm_unreachable("Unknown integer setcc!");
1800    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
1801      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
1802      N0 = DAG.getNOT(dl, Temp, MVT::i1);
1803      if (!DCI.isCalledByLegalizer())
1804        DCI.AddToWorklist(Temp.getNode());
1805      break;
1806    case ISD::SETNE:  // X != Y   -->  (X^Y)
1807      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
1808      break;
1809    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
1810    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
1811      Temp = DAG.getNOT(dl, N0, MVT::i1);
1812      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
1813      if (!DCI.isCalledByLegalizer())
1814        DCI.AddToWorklist(Temp.getNode());
1815      break;
1816    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
1817    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
1818      Temp = DAG.getNOT(dl, N1, MVT::i1);
1819      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
1820      if (!DCI.isCalledByLegalizer())
1821        DCI.AddToWorklist(Temp.getNode());
1822      break;
1823    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
1824    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
1825      Temp = DAG.getNOT(dl, N0, MVT::i1);
1826      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
1827      if (!DCI.isCalledByLegalizer())
1828        DCI.AddToWorklist(Temp.getNode());
1829      break;
1830    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
1831    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
1832      Temp = DAG.getNOT(dl, N1, MVT::i1);
1833      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
1834      break;
1835    }
1836    if (VT != MVT::i1) {
1837      if (!DCI.isCalledByLegalizer())
1838        DCI.AddToWorklist(N0.getNode());
1839      // FIXME: If running after legalize, we probably can't do this.
1840      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
1841    }
1842    return N0;
1843  }
1844
1845  // Could not fold it.
1846  return SDValue();
1847}
1848
1849/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
1850/// node is a GlobalAddress + offset.
1851bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
1852                                    int64_t &Offset) const {
1853  if (isa<GlobalAddressSDNode>(N)) {
1854    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
1855    GA = GASD->getGlobal();
1856    Offset += GASD->getOffset();
1857    return true;
1858  }
1859
1860  if (N->getOpcode() == ISD::ADD) {
1861    SDValue N1 = N->getOperand(0);
1862    SDValue N2 = N->getOperand(1);
1863    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
1864      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
1865      if (V) {
1866        Offset += V->getSExtValue();
1867        return true;
1868      }
1869    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
1870      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
1871      if (V) {
1872        Offset += V->getSExtValue();
1873        return true;
1874      }
1875    }
1876  }
1877
1878  return false;
1879}
1880
1881
1882SDValue TargetLowering::
1883PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1884  // Default implementation: no optimization.
1885  return SDValue();
1886}
1887
1888//===----------------------------------------------------------------------===//
1889//  Inline Assembler Implementation Methods
1890//===----------------------------------------------------------------------===//
1891
1892
1893TargetLowering::ConstraintType
1894TargetLowering::getConstraintType(const std::string &Constraint) const {
1895  unsigned S = Constraint.size();
1896
1897  if (S == 1) {
1898    switch (Constraint[0]) {
1899    default: break;
1900    case 'r': return C_RegisterClass;
1901    case 'm':    // memory
1902    case 'o':    // offsetable
1903    case 'V':    // not offsetable
1904      return C_Memory;
1905    case 'i':    // Simple Integer or Relocatable Constant
1906    case 'n':    // Simple Integer
1907    case 'E':    // Floating Point Constant
1908    case 'F':    // Floating Point Constant
1909    case 's':    // Relocatable Constant
1910    case 'p':    // Address.
1911    case 'X':    // Allow ANY value.
1912    case 'I':    // Target registers.
1913    case 'J':
1914    case 'K':
1915    case 'L':
1916    case 'M':
1917    case 'N':
1918    case 'O':
1919    case 'P':
1920    case '<':
1921    case '>':
1922      return C_Other;
1923    }
1924  }
1925
1926  if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
1927    if (S == 8 && !Constraint.compare(1, 6, "memory", 6))  // "{memory}"
1928      return C_Memory;
1929    return C_Register;
1930  }
1931  return C_Unknown;
1932}
1933
1934/// LowerXConstraint - try to replace an X constraint, which matches anything,
1935/// with another that has more specific requirements based on the type of the
1936/// corresponding operand.
1937const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
1938  if (ConstraintVT.isInteger())
1939    return "r";
1940  if (ConstraintVT.isFloatingPoint())
1941    return "f";      // works for many targets
1942  return 0;
1943}
1944
1945/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1946/// vector.  If it is invalid, don't add anything to Ops.
1947void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
1948                                                  std::string &Constraint,
1949                                                  std::vector<SDValue> &Ops,
1950                                                  SelectionDAG &DAG) const {
1951
1952  if (Constraint.length() > 1) return;
1953
1954  char ConstraintLetter = Constraint[0];
1955  switch (ConstraintLetter) {
1956  default: break;
1957  case 'X':     // Allows any operand; labels (basic block) use this.
1958    if (Op.getOpcode() == ISD::BasicBlock) {
1959      Ops.push_back(Op);
1960      return;
1961    }
1962    // fall through
1963  case 'i':    // Simple Integer or Relocatable Constant
1964  case 'n':    // Simple Integer
1965  case 's': {  // Relocatable Constant
1966    // These operands are interested in values of the form (GV+C), where C may
1967    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
1968    // is possible and fine if either GV or C are missing.
1969    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1970    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1971
1972    // If we have "(add GV, C)", pull out GV/C
1973    if (Op.getOpcode() == ISD::ADD) {
1974      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1975      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1976      if (C == 0 || GA == 0) {
1977        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1978        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1979      }
1980      if (C == 0 || GA == 0)
1981        C = 0, GA = 0;
1982    }
1983
1984    // If we find a valid operand, map to the TargetXXX version so that the
1985    // value itself doesn't get selected.
1986    if (GA) {   // Either &GV   or   &GV+C
1987      if (ConstraintLetter != 'n') {
1988        int64_t Offs = GA->getOffset();
1989        if (C) Offs += C->getZExtValue();
1990        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
1991                                                 C ? SDLoc(C) : SDLoc(),
1992                                                 Op.getValueType(), Offs));
1993        return;
1994      }
1995    }
1996    if (C) {   // just C, no GV.
1997      // Simple constants are not allowed for 's'.
1998      if (ConstraintLetter != 's') {
1999        // gcc prints these as sign extended.  Sign extend value to 64 bits
2000        // now; without this it would get ZExt'd later in
2001        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2002        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2003                                            MVT::i64));
2004        return;
2005      }
2006    }
2007    break;
2008  }
2009  }
2010}
2011
2012std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2013getRegForInlineAsmConstraint(const std::string &Constraint,
2014                             MVT VT) const {
2015  if (Constraint[0] != '{')
2016    return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
2017  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2018
2019  // Remove the braces from around the name.
2020  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2021
2022  std::pair<unsigned, const TargetRegisterClass*> R =
2023    std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2024
2025  // Figure out which register class contains this reg.
2026  const TargetRegisterInfo *RI = getTargetMachine().getRegisterInfo();
2027  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2028       E = RI->regclass_end(); RCI != E; ++RCI) {
2029    const TargetRegisterClass *RC = *RCI;
2030
2031    // If none of the value types for this register class are valid, we
2032    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2033    if (!isLegalRC(RC))
2034      continue;
2035
2036    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2037         I != E; ++I) {
2038      if (RegName.equals_lower(RI->getName(*I))) {
2039        std::pair<unsigned, const TargetRegisterClass*> S =
2040          std::make_pair(*I, RC);
2041
2042        // If this register class has the requested value type, return it,
2043        // otherwise keep searching and return the first class found
2044        // if no other is found which explicitly has the requested type.
2045        if (RC->hasType(VT))
2046          return S;
2047        else if (!R.second)
2048          R = S;
2049      }
2050    }
2051  }
2052
2053  return R;
2054}
2055
2056//===----------------------------------------------------------------------===//
2057// Constraint Selection.
2058
2059/// isMatchingInputConstraint - Return true of this is an input operand that is
2060/// a matching constraint like "4".
2061bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2062  assert(!ConstraintCode.empty() && "No known constraint!");
2063  return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
2064}
2065
2066/// getMatchedOperand - If this is an input matching constraint, this method
2067/// returns the output operand it matches.
2068unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2069  assert(!ConstraintCode.empty() && "No known constraint!");
2070  return atoi(ConstraintCode.c_str());
2071}
2072
2073
2074/// ParseConstraints - Split up the constraint string from the inline
2075/// assembly value into the specific constraints and their prefixes,
2076/// and also tie in the associated operand values.
2077/// If this returns an empty vector, and if the constraint string itself
2078/// isn't empty, there was an error parsing.
2079TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
2080    ImmutableCallSite CS) const {
2081  /// ConstraintOperands - Information about all of the constraints.
2082  AsmOperandInfoVector ConstraintOperands;
2083  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2084  unsigned maCount = 0; // Largest number of multiple alternative constraints.
2085
2086  // Do a prepass over the constraints, canonicalizing them, and building up the
2087  // ConstraintOperands list.
2088  InlineAsm::ConstraintInfoVector
2089    ConstraintInfos = IA->ParseConstraints();
2090
2091  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2092  unsigned ResNo = 0;   // ResNo - The result number of the next output.
2093
2094  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
2095    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
2096    AsmOperandInfo &OpInfo = ConstraintOperands.back();
2097
2098    // Update multiple alternative constraint count.
2099    if (OpInfo.multipleAlternatives.size() > maCount)
2100      maCount = OpInfo.multipleAlternatives.size();
2101
2102    OpInfo.ConstraintVT = MVT::Other;
2103
2104    // Compute the value type for each operand.
2105    switch (OpInfo.Type) {
2106    case InlineAsm::isOutput:
2107      // Indirect outputs just consume an argument.
2108      if (OpInfo.isIndirect) {
2109        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2110        break;
2111      }
2112
2113      // The return value of the call is this value.  As such, there is no
2114      // corresponding argument.
2115      assert(!CS.getType()->isVoidTy() &&
2116             "Bad inline asm!");
2117      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
2118        OpInfo.ConstraintVT = getSimpleValueType(STy->getElementType(ResNo));
2119      } else {
2120        assert(ResNo == 0 && "Asm only has one result!");
2121        OpInfo.ConstraintVT = getSimpleValueType(CS.getType());
2122      }
2123      ++ResNo;
2124      break;
2125    case InlineAsm::isInput:
2126      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2127      break;
2128    case InlineAsm::isClobber:
2129      // Nothing to do.
2130      break;
2131    }
2132
2133    if (OpInfo.CallOperandVal) {
2134      llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2135      if (OpInfo.isIndirect) {
2136        llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2137        if (!PtrTy)
2138          report_fatal_error("Indirect operand for inline asm not a pointer!");
2139        OpTy = PtrTy->getElementType();
2140      }
2141
2142      // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2143      if (StructType *STy = dyn_cast<StructType>(OpTy))
2144        if (STy->getNumElements() == 1)
2145          OpTy = STy->getElementType(0);
2146
2147      // If OpTy is not a single value, it may be a struct/union that we
2148      // can tile with integers.
2149      if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2150        unsigned BitSize = getDataLayout()->getTypeSizeInBits(OpTy);
2151        switch (BitSize) {
2152        default: break;
2153        case 1:
2154        case 8:
2155        case 16:
2156        case 32:
2157        case 64:
2158        case 128:
2159          OpInfo.ConstraintVT =
2160            MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2161          break;
2162        }
2163      } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
2164        OpInfo.ConstraintVT = MVT::getIntegerVT(
2165            8*getDataLayout()->getPointerSize(PT->getAddressSpace()));
2166      } else {
2167        OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
2168      }
2169    }
2170  }
2171
2172  // If we have multiple alternative constraints, select the best alternative.
2173  if (ConstraintInfos.size()) {
2174    if (maCount) {
2175      unsigned bestMAIndex = 0;
2176      int bestWeight = -1;
2177      // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2178      int weight = -1;
2179      unsigned maIndex;
2180      // Compute the sums of the weights for each alternative, keeping track
2181      // of the best (highest weight) one so far.
2182      for (maIndex = 0; maIndex < maCount; ++maIndex) {
2183        int weightSum = 0;
2184        for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2185            cIndex != eIndex; ++cIndex) {
2186          AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2187          if (OpInfo.Type == InlineAsm::isClobber)
2188            continue;
2189
2190          // If this is an output operand with a matching input operand,
2191          // look up the matching input. If their types mismatch, e.g. one
2192          // is an integer, the other is floating point, or their sizes are
2193          // different, flag it as an maCantMatch.
2194          if (OpInfo.hasMatchingInput()) {
2195            AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2196            if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2197              if ((OpInfo.ConstraintVT.isInteger() !=
2198                   Input.ConstraintVT.isInteger()) ||
2199                  (OpInfo.ConstraintVT.getSizeInBits() !=
2200                   Input.ConstraintVT.getSizeInBits())) {
2201                weightSum = -1;  // Can't match.
2202                break;
2203              }
2204            }
2205          }
2206          weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2207          if (weight == -1) {
2208            weightSum = -1;
2209            break;
2210          }
2211          weightSum += weight;
2212        }
2213        // Update best.
2214        if (weightSum > bestWeight) {
2215          bestWeight = weightSum;
2216          bestMAIndex = maIndex;
2217        }
2218      }
2219
2220      // Now select chosen alternative in each constraint.
2221      for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2222          cIndex != eIndex; ++cIndex) {
2223        AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2224        if (cInfo.Type == InlineAsm::isClobber)
2225          continue;
2226        cInfo.selectAlternative(bestMAIndex);
2227      }
2228    }
2229  }
2230
2231  // Check and hook up tied operands, choose constraint code to use.
2232  for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2233      cIndex != eIndex; ++cIndex) {
2234    AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2235
2236    // If this is an output operand with a matching input operand, look up the
2237    // matching input. If their types mismatch, e.g. one is an integer, the
2238    // other is floating point, or their sizes are different, flag it as an
2239    // error.
2240    if (OpInfo.hasMatchingInput()) {
2241      AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2242
2243      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2244        std::pair<unsigned, const TargetRegisterClass*> MatchRC =
2245          getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
2246                                       OpInfo.ConstraintVT);
2247        std::pair<unsigned, const TargetRegisterClass*> InputRC =
2248          getRegForInlineAsmConstraint(Input.ConstraintCode,
2249                                       Input.ConstraintVT);
2250        if ((OpInfo.ConstraintVT.isInteger() !=
2251             Input.ConstraintVT.isInteger()) ||
2252            (MatchRC.second != InputRC.second)) {
2253          report_fatal_error("Unsupported asm: input constraint"
2254                             " with a matching output constraint of"
2255                             " incompatible type!");
2256        }
2257      }
2258
2259    }
2260  }
2261
2262  return ConstraintOperands;
2263}
2264
2265
2266/// getConstraintGenerality - Return an integer indicating how general CT
2267/// is.
2268static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2269  switch (CT) {
2270  case TargetLowering::C_Other:
2271  case TargetLowering::C_Unknown:
2272    return 0;
2273  case TargetLowering::C_Register:
2274    return 1;
2275  case TargetLowering::C_RegisterClass:
2276    return 2;
2277  case TargetLowering::C_Memory:
2278    return 3;
2279  }
2280  llvm_unreachable("Invalid constraint type");
2281}
2282
2283/// Examine constraint type and operand type and determine a weight value.
2284/// This object must already have been set up with the operand type
2285/// and the current alternative constraint selected.
2286TargetLowering::ConstraintWeight
2287  TargetLowering::getMultipleConstraintMatchWeight(
2288    AsmOperandInfo &info, int maIndex) const {
2289  InlineAsm::ConstraintCodeVector *rCodes;
2290  if (maIndex >= (int)info.multipleAlternatives.size())
2291    rCodes = &info.Codes;
2292  else
2293    rCodes = &info.multipleAlternatives[maIndex].Codes;
2294  ConstraintWeight BestWeight = CW_Invalid;
2295
2296  // Loop over the options, keeping track of the most general one.
2297  for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
2298    ConstraintWeight weight =
2299      getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
2300    if (weight > BestWeight)
2301      BestWeight = weight;
2302  }
2303
2304  return BestWeight;
2305}
2306
2307/// Examine constraint type and operand type and determine a weight value.
2308/// This object must already have been set up with the operand type
2309/// and the current alternative constraint selected.
2310TargetLowering::ConstraintWeight
2311  TargetLowering::getSingleConstraintMatchWeight(
2312    AsmOperandInfo &info, const char *constraint) const {
2313  ConstraintWeight weight = CW_Invalid;
2314  Value *CallOperandVal = info.CallOperandVal;
2315    // If we don't have a value, we can't do a match,
2316    // but allow it at the lowest weight.
2317  if (CallOperandVal == NULL)
2318    return CW_Default;
2319  // Look at the constraint type.
2320  switch (*constraint) {
2321    case 'i': // immediate integer.
2322    case 'n': // immediate integer with a known value.
2323      if (isa<ConstantInt>(CallOperandVal))
2324        weight = CW_Constant;
2325      break;
2326    case 's': // non-explicit intregal immediate.
2327      if (isa<GlobalValue>(CallOperandVal))
2328        weight = CW_Constant;
2329      break;
2330    case 'E': // immediate float if host format.
2331    case 'F': // immediate float.
2332      if (isa<ConstantFP>(CallOperandVal))
2333        weight = CW_Constant;
2334      break;
2335    case '<': // memory operand with autodecrement.
2336    case '>': // memory operand with autoincrement.
2337    case 'm': // memory operand.
2338    case 'o': // offsettable memory operand
2339    case 'V': // non-offsettable memory operand
2340      weight = CW_Memory;
2341      break;
2342    case 'r': // general register.
2343    case 'g': // general register, memory operand or immediate integer.
2344              // note: Clang converts "g" to "imr".
2345      if (CallOperandVal->getType()->isIntegerTy())
2346        weight = CW_Register;
2347      break;
2348    case 'X': // any operand.
2349    default:
2350      weight = CW_Default;
2351      break;
2352  }
2353  return weight;
2354}
2355
2356/// ChooseConstraint - If there are multiple different constraints that we
2357/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2358/// This is somewhat tricky: constraints fall into four classes:
2359///    Other         -> immediates and magic values
2360///    Register      -> one specific register
2361///    RegisterClass -> a group of regs
2362///    Memory        -> memory
2363/// Ideally, we would pick the most specific constraint possible: if we have
2364/// something that fits into a register, we would pick it.  The problem here
2365/// is that if we have something that could either be in a register or in
2366/// memory that use of the register could cause selection of *other*
2367/// operands to fail: they might only succeed if we pick memory.  Because of
2368/// this the heuristic we use is:
2369///
2370///  1) If there is an 'other' constraint, and if the operand is valid for
2371///     that constraint, use it.  This makes us take advantage of 'i'
2372///     constraints when available.
2373///  2) Otherwise, pick the most general constraint present.  This prefers
2374///     'm' over 'r', for example.
2375///
2376static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2377                             const TargetLowering &TLI,
2378                             SDValue Op, SelectionDAG *DAG) {
2379  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2380  unsigned BestIdx = 0;
2381  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2382  int BestGenerality = -1;
2383
2384  // Loop over the options, keeping track of the most general one.
2385  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2386    TargetLowering::ConstraintType CType =
2387      TLI.getConstraintType(OpInfo.Codes[i]);
2388
2389    // If this is an 'other' constraint, see if the operand is valid for it.
2390    // For example, on X86 we might have an 'rI' constraint.  If the operand
2391    // is an integer in the range [0..31] we want to use I (saving a load
2392    // of a register), otherwise we must use 'r'.
2393    if (CType == TargetLowering::C_Other && Op.getNode()) {
2394      assert(OpInfo.Codes[i].size() == 1 &&
2395             "Unhandled multi-letter 'other' constraint");
2396      std::vector<SDValue> ResultOps;
2397      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
2398                                       ResultOps, *DAG);
2399      if (!ResultOps.empty()) {
2400        BestType = CType;
2401        BestIdx = i;
2402        break;
2403      }
2404    }
2405
2406    // Things with matching constraints can only be registers, per gcc
2407    // documentation.  This mainly affects "g" constraints.
2408    if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
2409      continue;
2410
2411    // This constraint letter is more general than the previous one, use it.
2412    int Generality = getConstraintGenerality(CType);
2413    if (Generality > BestGenerality) {
2414      BestType = CType;
2415      BestIdx = i;
2416      BestGenerality = Generality;
2417    }
2418  }
2419
2420  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2421  OpInfo.ConstraintType = BestType;
2422}
2423
2424/// ComputeConstraintToUse - Determines the constraint code and constraint
2425/// type to use for the specific AsmOperandInfo, setting
2426/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2427void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2428                                            SDValue Op,
2429                                            SelectionDAG *DAG) const {
2430  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2431
2432  // Single-letter constraints ('r') are very common.
2433  if (OpInfo.Codes.size() == 1) {
2434    OpInfo.ConstraintCode = OpInfo.Codes[0];
2435    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2436  } else {
2437    ChooseConstraint(OpInfo, *this, Op, DAG);
2438  }
2439
2440  // 'X' matches anything.
2441  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2442    // Labels and constants are handled elsewhere ('X' is the only thing
2443    // that matches labels).  For Functions, the type here is the type of
2444    // the result, which is not what we want to look at; leave them alone.
2445    Value *v = OpInfo.CallOperandVal;
2446    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2447      OpInfo.CallOperandVal = v;
2448      return;
2449    }
2450
2451    // Otherwise, try to resolve it to something we know about by looking at
2452    // the actual operand type.
2453    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2454      OpInfo.ConstraintCode = Repl;
2455      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2456    }
2457  }
2458}
2459
2460/// \brief Given an exact SDIV by a constant, create a multiplication
2461/// with the multiplicative inverse of the constant.
2462SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl,
2463                                       SelectionDAG &DAG) const {
2464  ConstantSDNode *C = cast<ConstantSDNode>(Op2);
2465  APInt d = C->getAPIntValue();
2466  assert(d != 0 && "Division by zero!");
2467
2468  // Shift the value upfront if it is even, so the LSB is one.
2469  unsigned ShAmt = d.countTrailingZeros();
2470  if (ShAmt) {
2471    // TODO: For UDIV use SRL instead of SRA.
2472    SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType()));
2473    Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt);
2474    d = d.ashr(ShAmt);
2475  }
2476
2477  // Calculate the multiplicative inverse, using Newton's method.
2478  APInt t, xn = d;
2479  while ((t = d*xn) != 1)
2480    xn *= APInt(d.getBitWidth(), 2) - t;
2481
2482  Op2 = DAG.getConstant(xn, Op1.getValueType());
2483  return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
2484}
2485
2486/// \brief Given an ISD::SDIV node expressing a divide by constant,
2487/// return a DAG expression to select that will generate the same value by
2488/// multiplying by a magic number.  See:
2489/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2490SDValue TargetLowering::
2491BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
2492          std::vector<SDNode*> *Created) const {
2493  EVT VT = N->getValueType(0);
2494  SDLoc dl(N);
2495
2496  // Check to see if we can do this.
2497  // FIXME: We should be more aggressive here.
2498  if (!isTypeLegal(VT))
2499    return SDValue();
2500
2501  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2502  APInt::ms magics = d.magic();
2503
2504  // Multiply the numerator (operand 0) by the magic value
2505  // FIXME: We should support doing a MUL in a wider type
2506  SDValue Q;
2507  if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
2508                            isOperationLegalOrCustom(ISD::MULHS, VT))
2509    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2510                    DAG.getConstant(magics.m, VT));
2511  else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
2512                                 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2513    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2514                              N->getOperand(0),
2515                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2516  else
2517    return SDValue();       // No mulhs or equvialent
2518  // If d > 0 and m < 0, add the numerator
2519  if (d.isStrictlyPositive() && magics.m.isNegative()) {
2520    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2521    if (Created)
2522      Created->push_back(Q.getNode());
2523  }
2524  // If d < 0 and m > 0, subtract the numerator.
2525  if (d.isNegative() && magics.m.isStrictlyPositive()) {
2526    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2527    if (Created)
2528      Created->push_back(Q.getNode());
2529  }
2530  // Shift right algebraic if shift value is nonzero
2531  if (magics.s > 0) {
2532    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2533                 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
2534    if (Created)
2535      Created->push_back(Q.getNode());
2536  }
2537  // Extract the sign bit and add it to the quotient
2538  SDValue T =
2539    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2540                                           getShiftAmountTy(Q.getValueType())));
2541  if (Created)
2542    Created->push_back(T.getNode());
2543  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2544}
2545
2546/// \brief Given an ISD::UDIV node expressing a divide by constant,
2547/// return a DAG expression to select that will generate the same value by
2548/// multiplying by a magic number.  See:
2549/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2550SDValue TargetLowering::
2551BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
2552          std::vector<SDNode*> *Created) const {
2553  EVT VT = N->getValueType(0);
2554  SDLoc dl(N);
2555
2556  // Check to see if we can do this.
2557  // FIXME: We should be more aggressive here.
2558  if (!isTypeLegal(VT))
2559    return SDValue();
2560
2561  // FIXME: We should use a narrower constant when the upper
2562  // bits are known to be zero.
2563  const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2564  APInt::mu magics = N1C.magicu();
2565
2566  SDValue Q = N->getOperand(0);
2567
2568  // If the divisor is even, we can avoid using the expensive fixup by shifting
2569  // the divided value upfront.
2570  if (magics.a != 0 && !N1C[0]) {
2571    unsigned Shift = N1C.countTrailingZeros();
2572    Q = DAG.getNode(ISD::SRL, dl, VT, Q,
2573                    DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
2574    if (Created)
2575      Created->push_back(Q.getNode());
2576
2577    // Get magic number for the shifted divisor.
2578    magics = N1C.lshr(Shift).magicu(Shift);
2579    assert(magics.a == 0 && "Should use cheap fixup now");
2580  }
2581
2582  // Multiply the numerator (operand 0) by the magic value
2583  // FIXME: We should support doing a MUL in a wider type
2584  if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
2585                            isOperationLegalOrCustom(ISD::MULHU, VT))
2586    Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
2587  else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
2588                                 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2589    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
2590                            DAG.getConstant(magics.m, VT)).getNode(), 1);
2591  else
2592    return SDValue();       // No mulhu or equvialent
2593  if (Created)
2594    Created->push_back(Q.getNode());
2595
2596  if (magics.a == 0) {
2597    assert(magics.s < N1C.getBitWidth() &&
2598           "We shouldn't generate an undefined shift!");
2599    return DAG.getNode(ISD::SRL, dl, VT, Q,
2600                 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
2601  } else {
2602    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2603    if (Created)
2604      Created->push_back(NPQ.getNode());
2605    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2606                      DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
2607    if (Created)
2608      Created->push_back(NPQ.getNode());
2609    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2610    if (Created)
2611      Created->push_back(NPQ.getNode());
2612    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2613             DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
2614  }
2615}
2616