TargetLowering.cpp revision 13151432edace19ee867a93b5c14573df4f75d24
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/MC/MCAsmInfo.h"
16#include "llvm/MC/MCExpr.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetLoweringObjectFile.h"
19#include "llvm/Target/TargetMachine.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineJumpTableInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/SelectionDAG.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/MathExtras.h"
30using namespace llvm;
31
32namespace llvm {
33TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
34  bool isLocal = GV->hasLocalLinkage();
35  bool isDeclaration = GV->isDeclaration();
36  // FIXME: what should we do for protected and internal visibility?
37  // For variables, is internal different from hidden?
38  bool isHidden = GV->hasHiddenVisibility();
39
40  if (reloc == Reloc::PIC_) {
41    if (isLocal || isHidden)
42      return TLSModel::LocalDynamic;
43    else
44      return TLSModel::GeneralDynamic;
45  } else {
46    if (!isDeclaration || isHidden)
47      return TLSModel::LocalExec;
48    else
49      return TLSModel::InitialExec;
50  }
51}
52}
53
54/// InitLibcallNames - Set default libcall names.
55///
56static void InitLibcallNames(const char **Names) {
57  Names[RTLIB::SHL_I16] = "__ashlhi3";
58  Names[RTLIB::SHL_I32] = "__ashlsi3";
59  Names[RTLIB::SHL_I64] = "__ashldi3";
60  Names[RTLIB::SHL_I128] = "__ashlti3";
61  Names[RTLIB::SRL_I16] = "__lshrhi3";
62  Names[RTLIB::SRL_I32] = "__lshrsi3";
63  Names[RTLIB::SRL_I64] = "__lshrdi3";
64  Names[RTLIB::SRL_I128] = "__lshrti3";
65  Names[RTLIB::SRA_I16] = "__ashrhi3";
66  Names[RTLIB::SRA_I32] = "__ashrsi3";
67  Names[RTLIB::SRA_I64] = "__ashrdi3";
68  Names[RTLIB::SRA_I128] = "__ashrti3";
69  Names[RTLIB::MUL_I8] = "__mulqi3";
70  Names[RTLIB::MUL_I16] = "__mulhi3";
71  Names[RTLIB::MUL_I32] = "__mulsi3";
72  Names[RTLIB::MUL_I64] = "__muldi3";
73  Names[RTLIB::MUL_I128] = "__multi3";
74  Names[RTLIB::SDIV_I8] = "__divqi3";
75  Names[RTLIB::SDIV_I16] = "__divhi3";
76  Names[RTLIB::SDIV_I32] = "__divsi3";
77  Names[RTLIB::SDIV_I64] = "__divdi3";
78  Names[RTLIB::SDIV_I128] = "__divti3";
79  Names[RTLIB::UDIV_I8] = "__udivqi3";
80  Names[RTLIB::UDIV_I16] = "__udivhi3";
81  Names[RTLIB::UDIV_I32] = "__udivsi3";
82  Names[RTLIB::UDIV_I64] = "__udivdi3";
83  Names[RTLIB::UDIV_I128] = "__udivti3";
84  Names[RTLIB::SREM_I8] = "__modqi3";
85  Names[RTLIB::SREM_I16] = "__modhi3";
86  Names[RTLIB::SREM_I32] = "__modsi3";
87  Names[RTLIB::SREM_I64] = "__moddi3";
88  Names[RTLIB::SREM_I128] = "__modti3";
89  Names[RTLIB::UREM_I8] = "__umodqi3";
90  Names[RTLIB::UREM_I16] = "__umodhi3";
91  Names[RTLIB::UREM_I32] = "__umodsi3";
92  Names[RTLIB::UREM_I64] = "__umoddi3";
93  Names[RTLIB::UREM_I128] = "__umodti3";
94  Names[RTLIB::NEG_I32] = "__negsi2";
95  Names[RTLIB::NEG_I64] = "__negdi2";
96  Names[RTLIB::ADD_F32] = "__addsf3";
97  Names[RTLIB::ADD_F64] = "__adddf3";
98  Names[RTLIB::ADD_F80] = "__addxf3";
99  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
100  Names[RTLIB::SUB_F32] = "__subsf3";
101  Names[RTLIB::SUB_F64] = "__subdf3";
102  Names[RTLIB::SUB_F80] = "__subxf3";
103  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
104  Names[RTLIB::MUL_F32] = "__mulsf3";
105  Names[RTLIB::MUL_F64] = "__muldf3";
106  Names[RTLIB::MUL_F80] = "__mulxf3";
107  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
108  Names[RTLIB::DIV_F32] = "__divsf3";
109  Names[RTLIB::DIV_F64] = "__divdf3";
110  Names[RTLIB::DIV_F80] = "__divxf3";
111  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
112  Names[RTLIB::REM_F32] = "fmodf";
113  Names[RTLIB::REM_F64] = "fmod";
114  Names[RTLIB::REM_F80] = "fmodl";
115  Names[RTLIB::REM_PPCF128] = "fmodl";
116  Names[RTLIB::POWI_F32] = "__powisf2";
117  Names[RTLIB::POWI_F64] = "__powidf2";
118  Names[RTLIB::POWI_F80] = "__powixf2";
119  Names[RTLIB::POWI_PPCF128] = "__powitf2";
120  Names[RTLIB::SQRT_F32] = "sqrtf";
121  Names[RTLIB::SQRT_F64] = "sqrt";
122  Names[RTLIB::SQRT_F80] = "sqrtl";
123  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
124  Names[RTLIB::LOG_F32] = "logf";
125  Names[RTLIB::LOG_F64] = "log";
126  Names[RTLIB::LOG_F80] = "logl";
127  Names[RTLIB::LOG_PPCF128] = "logl";
128  Names[RTLIB::LOG2_F32] = "log2f";
129  Names[RTLIB::LOG2_F64] = "log2";
130  Names[RTLIB::LOG2_F80] = "log2l";
131  Names[RTLIB::LOG2_PPCF128] = "log2l";
132  Names[RTLIB::LOG10_F32] = "log10f";
133  Names[RTLIB::LOG10_F64] = "log10";
134  Names[RTLIB::LOG10_F80] = "log10l";
135  Names[RTLIB::LOG10_PPCF128] = "log10l";
136  Names[RTLIB::EXP_F32] = "expf";
137  Names[RTLIB::EXP_F64] = "exp";
138  Names[RTLIB::EXP_F80] = "expl";
139  Names[RTLIB::EXP_PPCF128] = "expl";
140  Names[RTLIB::EXP2_F32] = "exp2f";
141  Names[RTLIB::EXP2_F64] = "exp2";
142  Names[RTLIB::EXP2_F80] = "exp2l";
143  Names[RTLIB::EXP2_PPCF128] = "exp2l";
144  Names[RTLIB::SIN_F32] = "sinf";
145  Names[RTLIB::SIN_F64] = "sin";
146  Names[RTLIB::SIN_F80] = "sinl";
147  Names[RTLIB::SIN_PPCF128] = "sinl";
148  Names[RTLIB::COS_F32] = "cosf";
149  Names[RTLIB::COS_F64] = "cos";
150  Names[RTLIB::COS_F80] = "cosl";
151  Names[RTLIB::COS_PPCF128] = "cosl";
152  Names[RTLIB::POW_F32] = "powf";
153  Names[RTLIB::POW_F64] = "pow";
154  Names[RTLIB::POW_F80] = "powl";
155  Names[RTLIB::POW_PPCF128] = "powl";
156  Names[RTLIB::CEIL_F32] = "ceilf";
157  Names[RTLIB::CEIL_F64] = "ceil";
158  Names[RTLIB::CEIL_F80] = "ceill";
159  Names[RTLIB::CEIL_PPCF128] = "ceill";
160  Names[RTLIB::TRUNC_F32] = "truncf";
161  Names[RTLIB::TRUNC_F64] = "trunc";
162  Names[RTLIB::TRUNC_F80] = "truncl";
163  Names[RTLIB::TRUNC_PPCF128] = "truncl";
164  Names[RTLIB::RINT_F32] = "rintf";
165  Names[RTLIB::RINT_F64] = "rint";
166  Names[RTLIB::RINT_F80] = "rintl";
167  Names[RTLIB::RINT_PPCF128] = "rintl";
168  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
169  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
170  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
171  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
172  Names[RTLIB::FLOOR_F32] = "floorf";
173  Names[RTLIB::FLOOR_F64] = "floor";
174  Names[RTLIB::FLOOR_F80] = "floorl";
175  Names[RTLIB::FLOOR_PPCF128] = "floorl";
176  Names[RTLIB::COPYSIGN_F32] = "copysignf";
177  Names[RTLIB::COPYSIGN_F64] = "copysign";
178  Names[RTLIB::COPYSIGN_F80] = "copysignl";
179  Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
180  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
181  Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
182  Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
183  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
184  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
185  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
186  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
187  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
188  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
189  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
190  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
191  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
192  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
193  Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
194  Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
195  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
196  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
197  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
198  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
199  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
200  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
201  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
202  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
203  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
204  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
205  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
206  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
207  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
208  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
209  Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
210  Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
211  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
212  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
213  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
214  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
215  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
216  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
217  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
218  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
219  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
220  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
221  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
222  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
223  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
224  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
225  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
226  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
227  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
228  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
229  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
230  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
231  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
232  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
233  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
234  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
235  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
236  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
237  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
238  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
239  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
240  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
241  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
242  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
243  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
244  Names[RTLIB::OEQ_F32] = "__eqsf2";
245  Names[RTLIB::OEQ_F64] = "__eqdf2";
246  Names[RTLIB::UNE_F32] = "__nesf2";
247  Names[RTLIB::UNE_F64] = "__nedf2";
248  Names[RTLIB::OGE_F32] = "__gesf2";
249  Names[RTLIB::OGE_F64] = "__gedf2";
250  Names[RTLIB::OLT_F32] = "__ltsf2";
251  Names[RTLIB::OLT_F64] = "__ltdf2";
252  Names[RTLIB::OLE_F32] = "__lesf2";
253  Names[RTLIB::OLE_F64] = "__ledf2";
254  Names[RTLIB::OGT_F32] = "__gtsf2";
255  Names[RTLIB::OGT_F64] = "__gtdf2";
256  Names[RTLIB::UO_F32] = "__unordsf2";
257  Names[RTLIB::UO_F64] = "__unorddf2";
258  Names[RTLIB::O_F32] = "__unordsf2";
259  Names[RTLIB::O_F64] = "__unorddf2";
260  Names[RTLIB::MEMCPY] = "memcpy";
261  Names[RTLIB::MEMMOVE] = "memmove";
262  Names[RTLIB::MEMSET] = "memset";
263  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
264  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
265  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
266  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
267  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
268  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
269  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
270  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
271  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
272  Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
273  Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
274  Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
275  Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
276  Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
277  Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
278  Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
279  Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
280  Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
281  Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
282  Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
283  Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
284  Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
285  Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
286  Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
287  Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
288  Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
289  Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
290  Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and-xor_4";
291  Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
292  Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
293  Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
294  Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
295  Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
296}
297
298/// InitLibcallCallingConvs - Set default libcall CallingConvs.
299///
300static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
301  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
302    CCs[i] = CallingConv::C;
303  }
304}
305
306/// getFPEXT - Return the FPEXT_*_* value for the given types, or
307/// UNKNOWN_LIBCALL if there is none.
308RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
309  if (OpVT == MVT::f32) {
310    if (RetVT == MVT::f64)
311      return FPEXT_F32_F64;
312  }
313
314  return UNKNOWN_LIBCALL;
315}
316
317/// getFPROUND - Return the FPROUND_*_* value for the given types, or
318/// UNKNOWN_LIBCALL if there is none.
319RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
320  if (RetVT == MVT::f32) {
321    if (OpVT == MVT::f64)
322      return FPROUND_F64_F32;
323    if (OpVT == MVT::f80)
324      return FPROUND_F80_F32;
325    if (OpVT == MVT::ppcf128)
326      return FPROUND_PPCF128_F32;
327  } else if (RetVT == MVT::f64) {
328    if (OpVT == MVT::f80)
329      return FPROUND_F80_F64;
330    if (OpVT == MVT::ppcf128)
331      return FPROUND_PPCF128_F64;
332  }
333
334  return UNKNOWN_LIBCALL;
335}
336
337/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
338/// UNKNOWN_LIBCALL if there is none.
339RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
340  if (OpVT == MVT::f32) {
341    if (RetVT == MVT::i8)
342      return FPTOSINT_F32_I8;
343    if (RetVT == MVT::i16)
344      return FPTOSINT_F32_I16;
345    if (RetVT == MVT::i32)
346      return FPTOSINT_F32_I32;
347    if (RetVT == MVT::i64)
348      return FPTOSINT_F32_I64;
349    if (RetVT == MVT::i128)
350      return FPTOSINT_F32_I128;
351  } else if (OpVT == MVT::f64) {
352    if (RetVT == MVT::i8)
353      return FPTOSINT_F64_I8;
354    if (RetVT == MVT::i16)
355      return FPTOSINT_F64_I16;
356    if (RetVT == MVT::i32)
357      return FPTOSINT_F64_I32;
358    if (RetVT == MVT::i64)
359      return FPTOSINT_F64_I64;
360    if (RetVT == MVT::i128)
361      return FPTOSINT_F64_I128;
362  } else if (OpVT == MVT::f80) {
363    if (RetVT == MVT::i32)
364      return FPTOSINT_F80_I32;
365    if (RetVT == MVT::i64)
366      return FPTOSINT_F80_I64;
367    if (RetVT == MVT::i128)
368      return FPTOSINT_F80_I128;
369  } else if (OpVT == MVT::ppcf128) {
370    if (RetVT == MVT::i32)
371      return FPTOSINT_PPCF128_I32;
372    if (RetVT == MVT::i64)
373      return FPTOSINT_PPCF128_I64;
374    if (RetVT == MVT::i128)
375      return FPTOSINT_PPCF128_I128;
376  }
377  return UNKNOWN_LIBCALL;
378}
379
380/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
381/// UNKNOWN_LIBCALL if there is none.
382RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
383  if (OpVT == MVT::f32) {
384    if (RetVT == MVT::i8)
385      return FPTOUINT_F32_I8;
386    if (RetVT == MVT::i16)
387      return FPTOUINT_F32_I16;
388    if (RetVT == MVT::i32)
389      return FPTOUINT_F32_I32;
390    if (RetVT == MVT::i64)
391      return FPTOUINT_F32_I64;
392    if (RetVT == MVT::i128)
393      return FPTOUINT_F32_I128;
394  } else if (OpVT == MVT::f64) {
395    if (RetVT == MVT::i8)
396      return FPTOUINT_F64_I8;
397    if (RetVT == MVT::i16)
398      return FPTOUINT_F64_I16;
399    if (RetVT == MVT::i32)
400      return FPTOUINT_F64_I32;
401    if (RetVT == MVT::i64)
402      return FPTOUINT_F64_I64;
403    if (RetVT == MVT::i128)
404      return FPTOUINT_F64_I128;
405  } else if (OpVT == MVT::f80) {
406    if (RetVT == MVT::i32)
407      return FPTOUINT_F80_I32;
408    if (RetVT == MVT::i64)
409      return FPTOUINT_F80_I64;
410    if (RetVT == MVT::i128)
411      return FPTOUINT_F80_I128;
412  } else if (OpVT == MVT::ppcf128) {
413    if (RetVT == MVT::i32)
414      return FPTOUINT_PPCF128_I32;
415    if (RetVT == MVT::i64)
416      return FPTOUINT_PPCF128_I64;
417    if (RetVT == MVT::i128)
418      return FPTOUINT_PPCF128_I128;
419  }
420  return UNKNOWN_LIBCALL;
421}
422
423/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
424/// UNKNOWN_LIBCALL if there is none.
425RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
426  if (OpVT == MVT::i32) {
427    if (RetVT == MVT::f32)
428      return SINTTOFP_I32_F32;
429    else if (RetVT == MVT::f64)
430      return SINTTOFP_I32_F64;
431    else if (RetVT == MVT::f80)
432      return SINTTOFP_I32_F80;
433    else if (RetVT == MVT::ppcf128)
434      return SINTTOFP_I32_PPCF128;
435  } else if (OpVT == MVT::i64) {
436    if (RetVT == MVT::f32)
437      return SINTTOFP_I64_F32;
438    else if (RetVT == MVT::f64)
439      return SINTTOFP_I64_F64;
440    else if (RetVT == MVT::f80)
441      return SINTTOFP_I64_F80;
442    else if (RetVT == MVT::ppcf128)
443      return SINTTOFP_I64_PPCF128;
444  } else if (OpVT == MVT::i128) {
445    if (RetVT == MVT::f32)
446      return SINTTOFP_I128_F32;
447    else if (RetVT == MVT::f64)
448      return SINTTOFP_I128_F64;
449    else if (RetVT == MVT::f80)
450      return SINTTOFP_I128_F80;
451    else if (RetVT == MVT::ppcf128)
452      return SINTTOFP_I128_PPCF128;
453  }
454  return UNKNOWN_LIBCALL;
455}
456
457/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
458/// UNKNOWN_LIBCALL if there is none.
459RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
460  if (OpVT == MVT::i32) {
461    if (RetVT == MVT::f32)
462      return UINTTOFP_I32_F32;
463    else if (RetVT == MVT::f64)
464      return UINTTOFP_I32_F64;
465    else if (RetVT == MVT::f80)
466      return UINTTOFP_I32_F80;
467    else if (RetVT == MVT::ppcf128)
468      return UINTTOFP_I32_PPCF128;
469  } else if (OpVT == MVT::i64) {
470    if (RetVT == MVT::f32)
471      return UINTTOFP_I64_F32;
472    else if (RetVT == MVT::f64)
473      return UINTTOFP_I64_F64;
474    else if (RetVT == MVT::f80)
475      return UINTTOFP_I64_F80;
476    else if (RetVT == MVT::ppcf128)
477      return UINTTOFP_I64_PPCF128;
478  } else if (OpVT == MVT::i128) {
479    if (RetVT == MVT::f32)
480      return UINTTOFP_I128_F32;
481    else if (RetVT == MVT::f64)
482      return UINTTOFP_I128_F64;
483    else if (RetVT == MVT::f80)
484      return UINTTOFP_I128_F80;
485    else if (RetVT == MVT::ppcf128)
486      return UINTTOFP_I128_PPCF128;
487  }
488  return UNKNOWN_LIBCALL;
489}
490
491/// InitCmpLibcallCCs - Set default comparison libcall CC.
492///
493static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
494  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
495  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
496  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
497  CCs[RTLIB::UNE_F32] = ISD::SETNE;
498  CCs[RTLIB::UNE_F64] = ISD::SETNE;
499  CCs[RTLIB::OGE_F32] = ISD::SETGE;
500  CCs[RTLIB::OGE_F64] = ISD::SETGE;
501  CCs[RTLIB::OLT_F32] = ISD::SETLT;
502  CCs[RTLIB::OLT_F64] = ISD::SETLT;
503  CCs[RTLIB::OLE_F32] = ISD::SETLE;
504  CCs[RTLIB::OLE_F64] = ISD::SETLE;
505  CCs[RTLIB::OGT_F32] = ISD::SETGT;
506  CCs[RTLIB::OGT_F64] = ISD::SETGT;
507  CCs[RTLIB::UO_F32] = ISD::SETNE;
508  CCs[RTLIB::UO_F64] = ISD::SETNE;
509  CCs[RTLIB::O_F32] = ISD::SETEQ;
510  CCs[RTLIB::O_F64] = ISD::SETEQ;
511}
512
513/// NOTE: The constructor takes ownership of TLOF.
514TargetLowering::TargetLowering(const TargetMachine &tm,
515                               const TargetLoweringObjectFile *tlof)
516  : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
517  // All operations default to being supported.
518  memset(OpActions, 0, sizeof(OpActions));
519  memset(LoadExtActions, 0, sizeof(LoadExtActions));
520  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
521  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
522  memset(CondCodeActions, 0, sizeof(CondCodeActions));
523
524  // Set default actions for various operations.
525  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
526    // Default all indexed load / store to expand.
527    for (unsigned IM = (unsigned)ISD::PRE_INC;
528         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
529      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
530      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
531    }
532
533    // These operations default to expand.
534    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
535    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
536  }
537
538  // Most targets ignore the @llvm.prefetch intrinsic.
539  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
540
541  // ConstantFP nodes default to expand.  Targets can either change this to
542  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
543  // to optimize expansions for certain constants.
544  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
545  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
546  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
547
548  // These library functions default to expand.
549  setOperationAction(ISD::FLOG , MVT::f64, Expand);
550  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
551  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
552  setOperationAction(ISD::FEXP , MVT::f64, Expand);
553  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
554  setOperationAction(ISD::FLOG , MVT::f32, Expand);
555  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
556  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
557  setOperationAction(ISD::FEXP , MVT::f32, Expand);
558  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
559
560  // Default ISD::TRAP to expand (which turns it into abort).
561  setOperationAction(ISD::TRAP, MVT::Other, Expand);
562
563  IsLittleEndian = TD->isLittleEndian();
564  ShiftAmountTy = PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
565  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
566  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
567  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
568  benefitFromCodePlacementOpt = false;
569  UseUnderscoreSetJmp = false;
570  UseUnderscoreLongJmp = false;
571  SelectIsExpensive = false;
572  IntDivIsCheap = false;
573  Pow2DivIsCheap = false;
574  StackPointerRegisterToSaveRestore = 0;
575  ExceptionPointerRegister = 0;
576  ExceptionSelectorRegister = 0;
577  BooleanContents = UndefinedBooleanContent;
578  SchedPreferenceInfo = Sched::Latency;
579  JumpBufSize = 0;
580  JumpBufAlignment = 0;
581  PrefLoopAlignment = 0;
582  ShouldFoldAtomicFences = false;
583
584  InitLibcallNames(LibcallRoutineNames);
585  InitCmpLibcallCCs(CmpLibcallCCs);
586  InitLibcallCallingConvs(LibcallCallingConvs);
587}
588
589TargetLowering::~TargetLowering() {
590  delete &TLOF;
591}
592
593/// canOpTrap - Returns true if the operation can trap for the value type.
594/// VT must be a legal type.
595bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
596  assert(isTypeLegal(VT));
597  switch (Op) {
598  default:
599    return false;
600  case ISD::FDIV:
601  case ISD::FREM:
602  case ISD::SDIV:
603  case ISD::UDIV:
604  case ISD::SREM:
605  case ISD::UREM:
606    return true;
607  }
608}
609
610
611static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
612                                       unsigned &NumIntermediates,
613                                       EVT &RegisterVT,
614                                       TargetLowering* TLI) {
615  // Figure out the right, legal destination reg to copy into.
616  unsigned NumElts = VT.getVectorNumElements();
617  MVT EltTy = VT.getVectorElementType();
618
619  unsigned NumVectorRegs = 1;
620
621  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
622  // could break down into LHS/RHS like LegalizeDAG does.
623  if (!isPowerOf2_32(NumElts)) {
624    NumVectorRegs = NumElts;
625    NumElts = 1;
626  }
627
628  // Divide the input until we get to a supported size.  This will always
629  // end with a scalar if the target doesn't support vectors.
630  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
631    NumElts >>= 1;
632    NumVectorRegs <<= 1;
633  }
634
635  NumIntermediates = NumVectorRegs;
636
637  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
638  if (!TLI->isTypeLegal(NewVT))
639    NewVT = EltTy;
640  IntermediateVT = NewVT;
641
642  EVT DestVT = TLI->getRegisterType(NewVT);
643  RegisterVT = DestVT;
644  if (EVT(DestVT).bitsLT(NewVT)) {
645    // Value is expanded, e.g. i64 -> i16.
646    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
647  } else {
648    // Otherwise, promotion or legal types use the same number of registers as
649    // the vector decimated to the appropriate level.
650    return NumVectorRegs;
651  }
652
653  return 1;
654}
655
656/// computeRegisterProperties - Once all of the register classes are added,
657/// this allows us to compute derived properties we expose.
658void TargetLowering::computeRegisterProperties() {
659  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
660         "Too many value types for ValueTypeActions to hold!");
661
662  // Everything defaults to needing one register.
663  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
664    NumRegistersForVT[i] = 1;
665    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
666  }
667  // ...except isVoid, which doesn't need any registers.
668  NumRegistersForVT[MVT::isVoid] = 0;
669
670  // Find the largest integer register class.
671  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
672  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
673    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
674
675  // Every integer value type larger than this largest register takes twice as
676  // many registers to represent as the previous ValueType.
677  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
678    EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
679    if (!ExpandedVT.isInteger())
680      break;
681    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
682    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
683    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
684    ValueTypeActions.setTypeAction(ExpandedVT, Expand);
685  }
686
687  // Inspect all of the ValueType's smaller than the largest integer
688  // register to see which ones need promotion.
689  unsigned LegalIntReg = LargestIntReg;
690  for (unsigned IntReg = LargestIntReg - 1;
691       IntReg >= (unsigned)MVT::i1; --IntReg) {
692    EVT IVT = (MVT::SimpleValueType)IntReg;
693    if (isTypeLegal(IVT)) {
694      LegalIntReg = IntReg;
695    } else {
696      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
697        (MVT::SimpleValueType)LegalIntReg;
698      ValueTypeActions.setTypeAction(IVT, Promote);
699    }
700  }
701
702  // ppcf128 type is really two f64's.
703  if (!isTypeLegal(MVT::ppcf128)) {
704    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
705    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
706    TransformToType[MVT::ppcf128] = MVT::f64;
707    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
708  }
709
710  // Decide how to handle f64. If the target does not have native f64 support,
711  // expand it to i64 and we will be generating soft float library calls.
712  if (!isTypeLegal(MVT::f64)) {
713    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
714    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
715    TransformToType[MVT::f64] = MVT::i64;
716    ValueTypeActions.setTypeAction(MVT::f64, Expand);
717  }
718
719  // Decide how to handle f32. If the target does not have native support for
720  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
721  if (!isTypeLegal(MVT::f32)) {
722    if (isTypeLegal(MVT::f64)) {
723      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
724      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
725      TransformToType[MVT::f32] = MVT::f64;
726      ValueTypeActions.setTypeAction(MVT::f32, Promote);
727    } else {
728      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
729      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
730      TransformToType[MVT::f32] = MVT::i32;
731      ValueTypeActions.setTypeAction(MVT::f32, Expand);
732    }
733  }
734
735  // Loop over all of the vector value types to see which need transformations.
736  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
737       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
738    MVT VT = (MVT::SimpleValueType)i;
739    if (!isTypeLegal(VT)) {
740      MVT IntermediateVT;
741      EVT RegisterVT;
742      unsigned NumIntermediates;
743      NumRegistersForVT[i] =
744        getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
745                                  RegisterVT, this);
746      RegisterTypeForVT[i] = RegisterVT;
747
748      // Determine if there is a legal wider type.
749      bool IsLegalWiderType = false;
750      EVT EltVT = VT.getVectorElementType();
751      unsigned NElts = VT.getVectorNumElements();
752      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
753        EVT SVT = (MVT::SimpleValueType)nVT;
754        if (isTypeSynthesizable(SVT) && SVT.getVectorElementType() == EltVT &&
755            SVT.getVectorNumElements() > NElts && NElts != 1) {
756          TransformToType[i] = SVT;
757          ValueTypeActions.setTypeAction(VT, Promote);
758          IsLegalWiderType = true;
759          break;
760        }
761      }
762      if (!IsLegalWiderType) {
763        EVT NVT = VT.getPow2VectorType();
764        if (NVT == VT) {
765          // Type is already a power of 2.  The default action is to split.
766          TransformToType[i] = MVT::Other;
767          ValueTypeActions.setTypeAction(VT, Expand);
768        } else {
769          TransformToType[i] = NVT;
770          ValueTypeActions.setTypeAction(VT, Promote);
771        }
772      }
773    }
774  }
775}
776
777const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
778  return NULL;
779}
780
781
782MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
783  return PointerTy.SimpleTy;
784}
785
786MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
787  return MVT::i32; // return the default value
788}
789
790/// getVectorTypeBreakdown - Vector types are broken down into some number of
791/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
792/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
793/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
794///
795/// This method returns the number of registers needed, and the VT for each
796/// register.  It also returns the VT and quantity of the intermediate values
797/// before they are promoted/expanded.
798///
799unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
800                                                EVT &IntermediateVT,
801                                                unsigned &NumIntermediates,
802                                                EVT &RegisterVT) const {
803  // Figure out the right, legal destination reg to copy into.
804  unsigned NumElts = VT.getVectorNumElements();
805  EVT EltTy = VT.getVectorElementType();
806
807  unsigned NumVectorRegs = 1;
808
809  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
810  // could break down into LHS/RHS like LegalizeDAG does.
811  if (!isPowerOf2_32(NumElts)) {
812    NumVectorRegs = NumElts;
813    NumElts = 1;
814  }
815
816  // Divide the input until we get to a supported size.  This will always
817  // end with a scalar if the target doesn't support vectors.
818  while (NumElts > 1 && !isTypeLegal(
819                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
820    NumElts >>= 1;
821    NumVectorRegs <<= 1;
822  }
823
824  NumIntermediates = NumVectorRegs;
825
826  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
827  if (!isTypeLegal(NewVT))
828    NewVT = EltTy;
829  IntermediateVT = NewVT;
830
831  EVT DestVT = getRegisterType(Context, NewVT);
832  RegisterVT = DestVT;
833  if (DestVT.bitsLT(NewVT)) {
834    // Value is expanded, e.g. i64 -> i16.
835    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
836  } else {
837    // Otherwise, promotion or legal types use the same number of registers as
838    // the vector decimated to the appropriate level.
839    return NumVectorRegs;
840  }
841
842  return 1;
843}
844
845/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
846/// function arguments in the caller parameter area.  This is the actual
847/// alignment, not its logarithm.
848unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
849  return TD->getCallFrameTypeAlignment(Ty);
850}
851
852/// getJumpTableEncoding - Return the entry encoding for a jump table in the
853/// current function.  The returned value is a member of the
854/// MachineJumpTableInfo::JTEntryKind enum.
855unsigned TargetLowering::getJumpTableEncoding() const {
856  // In non-pic modes, just use the address of a block.
857  if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
858    return MachineJumpTableInfo::EK_BlockAddress;
859
860  // In PIC mode, if the target supports a GPRel32 directive, use it.
861  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
862    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
863
864  // Otherwise, use a label difference.
865  return MachineJumpTableInfo::EK_LabelDifference32;
866}
867
868SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
869                                                 SelectionDAG &DAG) const {
870  // If our PIC model is GP relative, use the global offset table as the base.
871  if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
872    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
873  return Table;
874}
875
876/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
877/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
878/// MCExpr.
879const MCExpr *
880TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
881                                             unsigned JTI,MCContext &Ctx) const{
882  // The normal PIC reloc base is the label at the start of the jump table.
883  return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
884}
885
886bool
887TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
888  // Assume that everything is safe in static mode.
889  if (getTargetMachine().getRelocationModel() == Reloc::Static)
890    return true;
891
892  // In dynamic-no-pic mode, assume that known defined values are safe.
893  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
894      GA &&
895      !GA->getGlobal()->isDeclaration() &&
896      !GA->getGlobal()->isWeakForLinker())
897    return true;
898
899  // Otherwise assume nothing is safe.
900  return false;
901}
902
903//===----------------------------------------------------------------------===//
904//  Optimization Methods
905//===----------------------------------------------------------------------===//
906
907/// ShrinkDemandedConstant - Check to see if the specified operand of the
908/// specified instruction is a constant integer.  If so, check to see if there
909/// are any bits set in the constant that are not demanded.  If so, shrink the
910/// constant and return true.
911bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
912                                                        const APInt &Demanded) {
913  DebugLoc dl = Op.getDebugLoc();
914
915  // FIXME: ISD::SELECT, ISD::SELECT_CC
916  switch (Op.getOpcode()) {
917  default: break;
918  case ISD::XOR:
919  case ISD::AND:
920  case ISD::OR: {
921    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
922    if (!C) return false;
923
924    if (Op.getOpcode() == ISD::XOR &&
925        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
926      return false;
927
928    // if we can expand it to have all bits set, do it
929    if (C->getAPIntValue().intersects(~Demanded)) {
930      EVT VT = Op.getValueType();
931      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
932                                DAG.getConstant(Demanded &
933                                                C->getAPIntValue(),
934                                                VT));
935      return CombineTo(Op, New);
936    }
937
938    break;
939  }
940  }
941
942  return false;
943}
944
945/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
946/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
947/// cast, but it could be generalized for targets with other types of
948/// implicit widening casts.
949bool
950TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
951                                                    unsigned BitWidth,
952                                                    const APInt &Demanded,
953                                                    DebugLoc dl) {
954  assert(Op.getNumOperands() == 2 &&
955         "ShrinkDemandedOp only supports binary operators!");
956  assert(Op.getNode()->getNumValues() == 1 &&
957         "ShrinkDemandedOp only supports nodes with one result!");
958
959  // Don't do this if the node has another user, which may require the
960  // full value.
961  if (!Op.getNode()->hasOneUse())
962    return false;
963
964  // Search for the smallest integer type with free casts to and from
965  // Op's type. For expedience, just check power-of-2 integer types.
966  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
967  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
968  if (!isPowerOf2_32(SmallVTBits))
969    SmallVTBits = NextPowerOf2(SmallVTBits);
970  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
971    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
972    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
973        TLI.isZExtFree(SmallVT, Op.getValueType())) {
974      // We found a type with free casts.
975      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
976                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
977                                          Op.getNode()->getOperand(0)),
978                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
979                                          Op.getNode()->getOperand(1)));
980      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
981      return CombineTo(Op, Z);
982    }
983  }
984  return false;
985}
986
987/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
988/// DemandedMask bits of the result of Op are ever used downstream.  If we can
989/// use this information to simplify Op, create a new simplified DAG node and
990/// return true, returning the original and new nodes in Old and New. Otherwise,
991/// analyze the expression and return a mask of KnownOne and KnownZero bits for
992/// the expression (used to simplify the caller).  The KnownZero/One bits may
993/// only be accurate for those bits in the DemandedMask.
994bool TargetLowering::SimplifyDemandedBits(SDValue Op,
995                                          const APInt &DemandedMask,
996                                          APInt &KnownZero,
997                                          APInt &KnownOne,
998                                          TargetLoweringOpt &TLO,
999                                          unsigned Depth) const {
1000  unsigned BitWidth = DemandedMask.getBitWidth();
1001  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
1002         "Mask size mismatches value type size!");
1003  APInt NewMask = DemandedMask;
1004  DebugLoc dl = Op.getDebugLoc();
1005
1006  // Don't know anything.
1007  KnownZero = KnownOne = APInt(BitWidth, 0);
1008
1009  // Other users may use these bits.
1010  if (!Op.getNode()->hasOneUse()) {
1011    if (Depth != 0) {
1012      // If not at the root, Just compute the KnownZero/KnownOne bits to
1013      // simplify things downstream.
1014      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
1015      return false;
1016    }
1017    // If this is the root being simplified, allow it to have multiple uses,
1018    // just set the NewMask to all bits.
1019    NewMask = APInt::getAllOnesValue(BitWidth);
1020  } else if (DemandedMask == 0) {
1021    // Not demanding any bits from Op.
1022    if (Op.getOpcode() != ISD::UNDEF)
1023      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
1024    return false;
1025  } else if (Depth == 6) {        // Limit search depth.
1026    return false;
1027  }
1028
1029  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
1030  switch (Op.getOpcode()) {
1031  case ISD::Constant:
1032    // We know all of the bits for a constant!
1033    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
1034    KnownZero = ~KnownOne & NewMask;
1035    return false;   // Don't fall through, will infinitely loop.
1036  case ISD::AND:
1037    // If the RHS is a constant, check to see if the LHS would be zero without
1038    // using the bits from the RHS.  Below, we use knowledge about the RHS to
1039    // simplify the LHS, here we're using information from the LHS to simplify
1040    // the RHS.
1041    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1042      APInt LHSZero, LHSOne;
1043      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
1044                                LHSZero, LHSOne, Depth+1);
1045      // If the LHS already has zeros where RHSC does, this and is dead.
1046      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1047        return TLO.CombineTo(Op, Op.getOperand(0));
1048      // If any of the set bits in the RHS are known zero on the LHS, shrink
1049      // the constant.
1050      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1051        return true;
1052    }
1053
1054    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1055                             KnownOne, TLO, Depth+1))
1056      return true;
1057    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1058    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1059                             KnownZero2, KnownOne2, TLO, Depth+1))
1060      return true;
1061    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1062
1063    // If all of the demanded bits are known one on one side, return the other.
1064    // These bits cannot contribute to the result of the 'and'.
1065    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1066      return TLO.CombineTo(Op, Op.getOperand(0));
1067    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1068      return TLO.CombineTo(Op, Op.getOperand(1));
1069    // If all of the demanded bits in the inputs are known zeros, return zero.
1070    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1071      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1072    // If the RHS is a constant, see if we can simplify it.
1073    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1074      return true;
1075    // If the operation can be done in a smaller type, do so.
1076    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1077      return true;
1078
1079    // Output known-1 bits are only known if set in both the LHS & RHS.
1080    KnownOne &= KnownOne2;
1081    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1082    KnownZero |= KnownZero2;
1083    break;
1084  case ISD::OR:
1085    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1086                             KnownOne, TLO, Depth+1))
1087      return true;
1088    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1089    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1090                             KnownZero2, KnownOne2, TLO, Depth+1))
1091      return true;
1092    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1093
1094    // If all of the demanded bits are known zero on one side, return the other.
1095    // These bits cannot contribute to the result of the 'or'.
1096    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1097      return TLO.CombineTo(Op, Op.getOperand(0));
1098    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1099      return TLO.CombineTo(Op, Op.getOperand(1));
1100    // If all of the potentially set bits on one side are known to be set on
1101    // the other side, just use the 'other' side.
1102    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1103      return TLO.CombineTo(Op, Op.getOperand(0));
1104    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1105      return TLO.CombineTo(Op, Op.getOperand(1));
1106    // If the RHS is a constant, see if we can simplify it.
1107    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1108      return true;
1109    // If the operation can be done in a smaller type, do so.
1110    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1111      return true;
1112
1113    // Output known-0 bits are only known if clear in both the LHS & RHS.
1114    KnownZero &= KnownZero2;
1115    // Output known-1 are known to be set if set in either the LHS | RHS.
1116    KnownOne |= KnownOne2;
1117    break;
1118  case ISD::XOR:
1119    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1120                             KnownOne, TLO, Depth+1))
1121      return true;
1122    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1123    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1124                             KnownOne2, TLO, Depth+1))
1125      return true;
1126    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1127
1128    // If all of the demanded bits are known zero on one side, return the other.
1129    // These bits cannot contribute to the result of the 'xor'.
1130    if ((KnownZero & NewMask) == NewMask)
1131      return TLO.CombineTo(Op, Op.getOperand(0));
1132    if ((KnownZero2 & NewMask) == NewMask)
1133      return TLO.CombineTo(Op, Op.getOperand(1));
1134    // If the operation can be done in a smaller type, do so.
1135    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1136      return true;
1137
1138    // If all of the unknown bits are known to be zero on one side or the other
1139    // (but not both) turn this into an *inclusive* or.
1140    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1141    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1142      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1143                                               Op.getOperand(0),
1144                                               Op.getOperand(1)));
1145
1146    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1147    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1148    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1149    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1150
1151    // If all of the demanded bits on one side are known, and all of the set
1152    // bits on that side are also known to be set on the other side, turn this
1153    // into an AND, as we know the bits will be cleared.
1154    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1155    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1156      if ((KnownOne & KnownOne2) == KnownOne) {
1157        EVT VT = Op.getValueType();
1158        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1159        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1160                                                 Op.getOperand(0), ANDC));
1161      }
1162    }
1163
1164    // If the RHS is a constant, see if we can simplify it.
1165    // for XOR, we prefer to force bits to 1 if they will make a -1.
1166    // if we can't force bits, try to shrink constant
1167    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1168      APInt Expanded = C->getAPIntValue() | (~NewMask);
1169      // if we can expand it to have all bits set, do it
1170      if (Expanded.isAllOnesValue()) {
1171        if (Expanded != C->getAPIntValue()) {
1172          EVT VT = Op.getValueType();
1173          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1174                                          TLO.DAG.getConstant(Expanded, VT));
1175          return TLO.CombineTo(Op, New);
1176        }
1177        // if it already has all the bits set, nothing to change
1178        // but don't shrink either!
1179      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1180        return true;
1181      }
1182    }
1183
1184    KnownZero = KnownZeroOut;
1185    KnownOne  = KnownOneOut;
1186    break;
1187  case ISD::SELECT:
1188    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1189                             KnownOne, TLO, Depth+1))
1190      return true;
1191    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1192                             KnownOne2, TLO, Depth+1))
1193      return true;
1194    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1195    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1196
1197    // If the operands are constants, see if we can simplify them.
1198    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1199      return true;
1200
1201    // Only known if known in both the LHS and RHS.
1202    KnownOne &= KnownOne2;
1203    KnownZero &= KnownZero2;
1204    break;
1205  case ISD::SELECT_CC:
1206    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1207                             KnownOne, TLO, Depth+1))
1208      return true;
1209    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1210                             KnownOne2, TLO, Depth+1))
1211      return true;
1212    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1213    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1214
1215    // If the operands are constants, see if we can simplify them.
1216    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1217      return true;
1218
1219    // Only known if known in both the LHS and RHS.
1220    KnownOne &= KnownOne2;
1221    KnownZero &= KnownZero2;
1222    break;
1223  case ISD::SHL:
1224    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1225      unsigned ShAmt = SA->getZExtValue();
1226      SDValue InOp = Op.getOperand(0);
1227
1228      // If the shift count is an invalid immediate, don't do anything.
1229      if (ShAmt >= BitWidth)
1230        break;
1231
1232      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1233      // single shift.  We can do this if the bottom bits (which are shifted
1234      // out) are never demanded.
1235      if (InOp.getOpcode() == ISD::SRL &&
1236          isa<ConstantSDNode>(InOp.getOperand(1))) {
1237        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1238          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1239          unsigned Opc = ISD::SHL;
1240          int Diff = ShAmt-C1;
1241          if (Diff < 0) {
1242            Diff = -Diff;
1243            Opc = ISD::SRL;
1244          }
1245
1246          SDValue NewSA =
1247            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1248          EVT VT = Op.getValueType();
1249          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1250                                                   InOp.getOperand(0), NewSA));
1251        }
1252      }
1253
1254      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
1255                               KnownZero, KnownOne, TLO, Depth+1))
1256        return true;
1257      KnownZero <<= SA->getZExtValue();
1258      KnownOne  <<= SA->getZExtValue();
1259      // low bits known zero.
1260      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1261    }
1262    break;
1263  case ISD::SRL:
1264    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1265      EVT VT = Op.getValueType();
1266      unsigned ShAmt = SA->getZExtValue();
1267      unsigned VTSize = VT.getSizeInBits();
1268      SDValue InOp = Op.getOperand(0);
1269
1270      // If the shift count is an invalid immediate, don't do anything.
1271      if (ShAmt >= BitWidth)
1272        break;
1273
1274      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1275      // single shift.  We can do this if the top bits (which are shifted out)
1276      // are never demanded.
1277      if (InOp.getOpcode() == ISD::SHL &&
1278          isa<ConstantSDNode>(InOp.getOperand(1))) {
1279        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1280          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1281          unsigned Opc = ISD::SRL;
1282          int Diff = ShAmt-C1;
1283          if (Diff < 0) {
1284            Diff = -Diff;
1285            Opc = ISD::SHL;
1286          }
1287
1288          SDValue NewSA =
1289            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1290          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1291                                                   InOp.getOperand(0), NewSA));
1292        }
1293      }
1294
1295      // Compute the new bits that are at the top now.
1296      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1297                               KnownZero, KnownOne, TLO, Depth+1))
1298        return true;
1299      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1300      KnownZero = KnownZero.lshr(ShAmt);
1301      KnownOne  = KnownOne.lshr(ShAmt);
1302
1303      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1304      KnownZero |= HighBits;  // High bits known zero.
1305    }
1306    break;
1307  case ISD::SRA:
1308    // If this is an arithmetic shift right and only the low-bit is set, we can
1309    // always convert this into a logical shr, even if the shift amount is
1310    // variable.  The low bit of the shift cannot be an input sign bit unless
1311    // the shift amount is >= the size of the datatype, which is undefined.
1312    if (DemandedMask == 1)
1313      return TLO.CombineTo(Op,
1314                           TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1315                                           Op.getOperand(0), Op.getOperand(1)));
1316
1317    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1318      EVT VT = Op.getValueType();
1319      unsigned ShAmt = SA->getZExtValue();
1320
1321      // If the shift count is an invalid immediate, don't do anything.
1322      if (ShAmt >= BitWidth)
1323        break;
1324
1325      APInt InDemandedMask = (NewMask << ShAmt);
1326
1327      // If any of the demanded bits are produced by the sign extension, we also
1328      // demand the input sign bit.
1329      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1330      if (HighBits.intersects(NewMask))
1331        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1332
1333      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1334                               KnownZero, KnownOne, TLO, Depth+1))
1335        return true;
1336      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1337      KnownZero = KnownZero.lshr(ShAmt);
1338      KnownOne  = KnownOne.lshr(ShAmt);
1339
1340      // Handle the sign bit, adjusted to where it is now in the mask.
1341      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1342
1343      // If the input sign bit is known to be zero, or if none of the top bits
1344      // are demanded, turn this into an unsigned shift right.
1345      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1346        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1347                                                 Op.getOperand(0),
1348                                                 Op.getOperand(1)));
1349      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1350        KnownOne |= HighBits;
1351      }
1352    }
1353    break;
1354  case ISD::SIGN_EXTEND_INREG: {
1355    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1356
1357    // Sign extension.  Compute the demanded bits in the result that are not
1358    // present in the input.
1359    APInt NewBits =
1360      APInt::getHighBitsSet(BitWidth,
1361                            BitWidth - EVT.getScalarType().getSizeInBits()) &
1362      NewMask;
1363
1364    // If none of the extended bits are demanded, eliminate the sextinreg.
1365    if (NewBits == 0)
1366      return TLO.CombineTo(Op, Op.getOperand(0));
1367
1368    APInt InSignBit = APInt::getSignBit(EVT.getScalarType().getSizeInBits());
1369    InSignBit.zext(BitWidth);
1370    APInt InputDemandedBits =
1371      APInt::getLowBitsSet(BitWidth,
1372                           EVT.getScalarType().getSizeInBits()) &
1373      NewMask;
1374
1375    // Since the sign extended bits are demanded, we know that the sign
1376    // bit is demanded.
1377    InputDemandedBits |= InSignBit;
1378
1379    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1380                             KnownZero, KnownOne, TLO, Depth+1))
1381      return true;
1382    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1383
1384    // If the sign bit of the input is known set or clear, then we know the
1385    // top bits of the result.
1386
1387    // If the input sign bit is known zero, convert this into a zero extension.
1388    if (KnownZero.intersects(InSignBit))
1389      return TLO.CombineTo(Op,
1390                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1391
1392    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1393      KnownOne |= NewBits;
1394      KnownZero &= ~NewBits;
1395    } else {                       // Input sign bit unknown
1396      KnownZero &= ~NewBits;
1397      KnownOne &= ~NewBits;
1398    }
1399    break;
1400  }
1401  case ISD::ZERO_EXTEND: {
1402    unsigned OperandBitWidth =
1403      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1404    APInt InMask = NewMask;
1405    InMask.trunc(OperandBitWidth);
1406
1407    // If none of the top bits are demanded, convert this into an any_extend.
1408    APInt NewBits =
1409      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1410    if (!NewBits.intersects(NewMask))
1411      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1412                                               Op.getValueType(),
1413                                               Op.getOperand(0)));
1414
1415    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1416                             KnownZero, KnownOne, TLO, Depth+1))
1417      return true;
1418    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1419    KnownZero.zext(BitWidth);
1420    KnownOne.zext(BitWidth);
1421    KnownZero |= NewBits;
1422    break;
1423  }
1424  case ISD::SIGN_EXTEND: {
1425    EVT InVT = Op.getOperand(0).getValueType();
1426    unsigned InBits = InVT.getScalarType().getSizeInBits();
1427    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1428    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1429    APInt NewBits   = ~InMask & NewMask;
1430
1431    // If none of the top bits are demanded, convert this into an any_extend.
1432    if (NewBits == 0)
1433      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1434                                              Op.getValueType(),
1435                                              Op.getOperand(0)));
1436
1437    // Since some of the sign extended bits are demanded, we know that the sign
1438    // bit is demanded.
1439    APInt InDemandedBits = InMask & NewMask;
1440    InDemandedBits |= InSignBit;
1441    InDemandedBits.trunc(InBits);
1442
1443    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1444                             KnownOne, TLO, Depth+1))
1445      return true;
1446    KnownZero.zext(BitWidth);
1447    KnownOne.zext(BitWidth);
1448
1449    // If the sign bit is known zero, convert this to a zero extend.
1450    if (KnownZero.intersects(InSignBit))
1451      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1452                                               Op.getValueType(),
1453                                               Op.getOperand(0)));
1454
1455    // If the sign bit is known one, the top bits match.
1456    if (KnownOne.intersects(InSignBit)) {
1457      KnownOne  |= NewBits;
1458      KnownZero &= ~NewBits;
1459    } else {   // Otherwise, top bits aren't known.
1460      KnownOne  &= ~NewBits;
1461      KnownZero &= ~NewBits;
1462    }
1463    break;
1464  }
1465  case ISD::ANY_EXTEND: {
1466    unsigned OperandBitWidth =
1467      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1468    APInt InMask = NewMask;
1469    InMask.trunc(OperandBitWidth);
1470    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1471                             KnownZero, KnownOne, TLO, Depth+1))
1472      return true;
1473    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1474    KnownZero.zext(BitWidth);
1475    KnownOne.zext(BitWidth);
1476    break;
1477  }
1478  case ISD::TRUNCATE: {
1479    // Simplify the input, using demanded bit information, and compute the known
1480    // zero/one bits live out.
1481    unsigned OperandBitWidth =
1482      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1483    APInt TruncMask = NewMask;
1484    TruncMask.zext(OperandBitWidth);
1485    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1486                             KnownZero, KnownOne, TLO, Depth+1))
1487      return true;
1488    KnownZero.trunc(BitWidth);
1489    KnownOne.trunc(BitWidth);
1490
1491    // If the input is only used by this truncate, see if we can shrink it based
1492    // on the known demanded bits.
1493    if (Op.getOperand(0).getNode()->hasOneUse()) {
1494      SDValue In = Op.getOperand(0);
1495      switch (In.getOpcode()) {
1496      default: break;
1497      case ISD::SRL:
1498        // Shrink SRL by a constant if none of the high bits shifted in are
1499        // demanded.
1500        if (TLO.LegalTypes() &&
1501            !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1502          // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1503          // undesirable.
1504          break;
1505        ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1506        if (!ShAmt)
1507          break;
1508        APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1509                                               OperandBitWidth - BitWidth);
1510        HighBits = HighBits.lshr(ShAmt->getZExtValue());
1511        HighBits.trunc(BitWidth);
1512
1513        if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1514          // None of the shifted in bits are needed.  Add a truncate of the
1515          // shift input, then shift it.
1516          SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1517                                             Op.getValueType(),
1518                                             In.getOperand(0));
1519          return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1520                                                   Op.getValueType(),
1521                                                   NewTrunc,
1522                                                   In.getOperand(1)));
1523        }
1524        break;
1525      }
1526    }
1527
1528    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1529    break;
1530  }
1531  case ISD::AssertZext: {
1532    // Demand all the bits of the input that are demanded in the output.
1533    // The low bits are obvious; the high bits are demanded because we're
1534    // asserting that they're zero here.
1535    if (SimplifyDemandedBits(Op.getOperand(0), NewMask,
1536                             KnownZero, KnownOne, TLO, Depth+1))
1537      return true;
1538    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1539
1540    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1541    APInt InMask = APInt::getLowBitsSet(BitWidth,
1542                                        VT.getSizeInBits());
1543    KnownZero |= ~InMask & NewMask;
1544    break;
1545  }
1546  case ISD::BIT_CONVERT:
1547#if 0
1548    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1549    // is demanded, turn this into a FGETSIGN.
1550    if (NewMask == EVT::getIntegerVTSignBit(Op.getValueType()) &&
1551        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1552        !MVT::isVector(Op.getOperand(0).getValueType())) {
1553      // Only do this xform if FGETSIGN is valid or if before legalize.
1554      if (!TLO.AfterLegalize ||
1555          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1556        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1557        // place.  We expect the SHL to be eliminated by other optimizations.
1558        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1559                                         Op.getOperand(0));
1560        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1561        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1562        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1563                                                 Sign, ShAmt));
1564      }
1565    }
1566#endif
1567    break;
1568  case ISD::ADD:
1569  case ISD::MUL:
1570  case ISD::SUB: {
1571    // Add, Sub, and Mul don't demand any bits in positions beyond that
1572    // of the highest bit demanded of them.
1573    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1574                                        BitWidth - NewMask.countLeadingZeros());
1575    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1576                             KnownOne2, TLO, Depth+1))
1577      return true;
1578    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1579                             KnownOne2, TLO, Depth+1))
1580      return true;
1581    // See if the operation should be performed at a smaller bit width.
1582    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1583      return true;
1584  }
1585  // FALL THROUGH
1586  default:
1587    // Just use ComputeMaskedBits to compute output bits.
1588    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1589    break;
1590  }
1591
1592  // If we know the value of all of the demanded bits, return this as a
1593  // constant.
1594  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1595    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1596
1597  return false;
1598}
1599
1600/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1601/// in Mask are known to be either zero or one and return them in the
1602/// KnownZero/KnownOne bitsets.
1603void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1604                                                    const APInt &Mask,
1605                                                    APInt &KnownZero,
1606                                                    APInt &KnownOne,
1607                                                    const SelectionDAG &DAG,
1608                                                    unsigned Depth) const {
1609  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1610          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1611          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1612          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1613         "Should use MaskedValueIsZero if you don't know whether Op"
1614         " is a target node!");
1615  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1616}
1617
1618/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1619/// targets that want to expose additional information about sign bits to the
1620/// DAG Combiner.
1621unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1622                                                         unsigned Depth) const {
1623  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1624          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1625          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1626          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1627         "Should use ComputeNumSignBits if you don't know whether Op"
1628         " is a target node!");
1629  return 1;
1630}
1631
1632/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1633/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1634/// determine which bit is set.
1635///
1636static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1637  // A left-shift of a constant one will have exactly one bit set, because
1638  // shifting the bit off the end is undefined.
1639  if (Val.getOpcode() == ISD::SHL)
1640    if (ConstantSDNode *C =
1641         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1642      if (C->getAPIntValue() == 1)
1643        return true;
1644
1645  // Similarly, a right-shift of a constant sign-bit will have exactly
1646  // one bit set.
1647  if (Val.getOpcode() == ISD::SRL)
1648    if (ConstantSDNode *C =
1649         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1650      if (C->getAPIntValue().isSignBit())
1651        return true;
1652
1653  // More could be done here, though the above checks are enough
1654  // to handle some common cases.
1655
1656  // Fall back to ComputeMaskedBits to catch other known cases.
1657  EVT OpVT = Val.getValueType();
1658  unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1659  APInt Mask = APInt::getAllOnesValue(BitWidth);
1660  APInt KnownZero, KnownOne;
1661  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1662  return (KnownZero.countPopulation() == BitWidth - 1) &&
1663         (KnownOne.countPopulation() == 1);
1664}
1665
1666/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1667/// and cc. If it is unable to simplify it, return a null SDValue.
1668SDValue
1669TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1670                              ISD::CondCode Cond, bool foldBooleans,
1671                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1672  SelectionDAG &DAG = DCI.DAG;
1673  LLVMContext &Context = *DAG.getContext();
1674
1675  // These setcc operations always fold.
1676  switch (Cond) {
1677  default: break;
1678  case ISD::SETFALSE:
1679  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1680  case ISD::SETTRUE:
1681  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1682  }
1683
1684  if (isa<ConstantSDNode>(N0.getNode())) {
1685    // Ensure that the constant occurs on the RHS, and fold constant
1686    // comparisons.
1687    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1688  }
1689
1690  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1691    const APInt &C1 = N1C->getAPIntValue();
1692
1693    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1694    // equality comparison, then we're just comparing whether X itself is
1695    // zero.
1696    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1697        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1698        N0.getOperand(1).getOpcode() == ISD::Constant) {
1699      const APInt &ShAmt
1700        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1701      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1702          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1703        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1704          // (srl (ctlz x), 5) == 0  -> X != 0
1705          // (srl (ctlz x), 5) != 1  -> X != 0
1706          Cond = ISD::SETNE;
1707        } else {
1708          // (srl (ctlz x), 5) != 0  -> X == 0
1709          // (srl (ctlz x), 5) == 1  -> X == 0
1710          Cond = ISD::SETEQ;
1711        }
1712        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1713        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1714                            Zero, Cond);
1715      }
1716    }
1717
1718    // If the LHS is '(and load, const)', the RHS is 0,
1719    // the test is for equality or unsigned, and all 1 bits of the const are
1720    // in the same partial word, see if we can shorten the load.
1721    if (DCI.isBeforeLegalize() &&
1722        N0.getOpcode() == ISD::AND && C1 == 0 &&
1723        N0.getNode()->hasOneUse() &&
1724        isa<LoadSDNode>(N0.getOperand(0)) &&
1725        N0.getOperand(0).getNode()->hasOneUse() &&
1726        isa<ConstantSDNode>(N0.getOperand(1))) {
1727      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1728      APInt bestMask;
1729      unsigned bestWidth = 0, bestOffset = 0;
1730      if (!Lod->isVolatile() && Lod->isUnindexed()) {
1731        unsigned origWidth = N0.getValueType().getSizeInBits();
1732        unsigned maskWidth = origWidth;
1733        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1734        // 8 bits, but have to be careful...
1735        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1736          origWidth = Lod->getMemoryVT().getSizeInBits();
1737        const APInt &Mask =
1738          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1739        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1740          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1741          for (unsigned offset=0; offset<origWidth/width; offset++) {
1742            if ((newMask & Mask) == Mask) {
1743              if (!TD->isLittleEndian())
1744                bestOffset = (origWidth/width - offset - 1) * (width/8);
1745              else
1746                bestOffset = (uint64_t)offset * (width/8);
1747              bestMask = Mask.lshr(offset * (width/8) * 8);
1748              bestWidth = width;
1749              break;
1750            }
1751            newMask = newMask << width;
1752          }
1753        }
1754      }
1755      if (bestWidth) {
1756        EVT newVT = EVT::getIntegerVT(Context, bestWidth);
1757        if (newVT.isRound()) {
1758          EVT PtrType = Lod->getOperand(1).getValueType();
1759          SDValue Ptr = Lod->getBasePtr();
1760          if (bestOffset != 0)
1761            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1762                              DAG.getConstant(bestOffset, PtrType));
1763          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1764          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1765                                        Lod->getSrcValue(),
1766                                        Lod->getSrcValueOffset() + bestOffset,
1767                                        false, false, NewAlign);
1768          return DAG.getSetCC(dl, VT,
1769                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1770                                      DAG.getConstant(bestMask.trunc(bestWidth),
1771                                                      newVT)),
1772                              DAG.getConstant(0LL, newVT), Cond);
1773        }
1774      }
1775    }
1776
1777    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1778    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1779      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1780
1781      // If the comparison constant has bits in the upper part, the
1782      // zero-extended value could never match.
1783      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1784                                              C1.getBitWidth() - InSize))) {
1785        switch (Cond) {
1786        case ISD::SETUGT:
1787        case ISD::SETUGE:
1788        case ISD::SETEQ: return DAG.getConstant(0, VT);
1789        case ISD::SETULT:
1790        case ISD::SETULE:
1791        case ISD::SETNE: return DAG.getConstant(1, VT);
1792        case ISD::SETGT:
1793        case ISD::SETGE:
1794          // True if the sign bit of C1 is set.
1795          return DAG.getConstant(C1.isNegative(), VT);
1796        case ISD::SETLT:
1797        case ISD::SETLE:
1798          // True if the sign bit of C1 isn't set.
1799          return DAG.getConstant(C1.isNonNegative(), VT);
1800        default:
1801          break;
1802        }
1803      }
1804
1805      // Otherwise, we can perform the comparison with the low bits.
1806      switch (Cond) {
1807      case ISD::SETEQ:
1808      case ISD::SETNE:
1809      case ISD::SETUGT:
1810      case ISD::SETUGE:
1811      case ISD::SETULT:
1812      case ISD::SETULE: {
1813        EVT newVT = N0.getOperand(0).getValueType();
1814        if (DCI.isBeforeLegalizeOps() ||
1815            (isOperationLegal(ISD::SETCC, newVT) &&
1816              getCondCodeAction(Cond, newVT)==Legal))
1817          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1818                              DAG.getConstant(APInt(C1).trunc(InSize), newVT),
1819                              Cond);
1820        break;
1821      }
1822      default:
1823        break;   // todo, be more careful with signed comparisons
1824      }
1825    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1826               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1827      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1828      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1829      EVT ExtDstTy = N0.getValueType();
1830      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1831
1832      // If the extended part has any inconsistent bits, it cannot ever
1833      // compare equal.  In other words, they have to be all ones or all
1834      // zeros.
1835      APInt ExtBits =
1836        APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1837      if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1838        return DAG.getConstant(Cond == ISD::SETNE, VT);
1839
1840      SDValue ZextOp;
1841      EVT Op0Ty = N0.getOperand(0).getValueType();
1842      if (Op0Ty == ExtSrcTy) {
1843        ZextOp = N0.getOperand(0);
1844      } else {
1845        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1846        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1847                              DAG.getConstant(Imm, Op0Ty));
1848      }
1849      if (!DCI.isCalledByLegalizer())
1850        DCI.AddToWorklist(ZextOp.getNode());
1851      // Otherwise, make this a use of a zext.
1852      return DAG.getSetCC(dl, VT, ZextOp,
1853                          DAG.getConstant(C1 & APInt::getLowBitsSet(
1854                                                              ExtDstTyBits,
1855                                                              ExtSrcTyBits),
1856                                          ExtDstTy),
1857                          Cond);
1858    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1859                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1860      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1861      if (N0.getOpcode() == ISD::SETCC &&
1862          isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1863        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
1864        if (TrueWhenTrue)
1865          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1866        // Invert the condition.
1867        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1868        CC = ISD::getSetCCInverse(CC,
1869                                  N0.getOperand(0).getValueType().isInteger());
1870        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1871      }
1872
1873      if ((N0.getOpcode() == ISD::XOR ||
1874           (N0.getOpcode() == ISD::AND &&
1875            N0.getOperand(0).getOpcode() == ISD::XOR &&
1876            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1877          isa<ConstantSDNode>(N0.getOperand(1)) &&
1878          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1879        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1880        // can only do this if the top bits are known zero.
1881        unsigned BitWidth = N0.getValueSizeInBits();
1882        if (DAG.MaskedValueIsZero(N0,
1883                                  APInt::getHighBitsSet(BitWidth,
1884                                                        BitWidth-1))) {
1885          // Okay, get the un-inverted input value.
1886          SDValue Val;
1887          if (N0.getOpcode() == ISD::XOR)
1888            Val = N0.getOperand(0);
1889          else {
1890            assert(N0.getOpcode() == ISD::AND &&
1891                    N0.getOperand(0).getOpcode() == ISD::XOR);
1892            // ((X^1)&1)^1 -> X & 1
1893            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1894                              N0.getOperand(0).getOperand(0),
1895                              N0.getOperand(1));
1896          }
1897
1898          return DAG.getSetCC(dl, VT, Val, N1,
1899                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1900        }
1901      } else if (N1C->getAPIntValue() == 1 &&
1902                 (VT == MVT::i1 ||
1903                  getBooleanContents() == ZeroOrOneBooleanContent)) {
1904        SDValue Op0 = N0;
1905        if (Op0.getOpcode() == ISD::TRUNCATE)
1906          Op0 = Op0.getOperand(0);
1907
1908        if ((Op0.getOpcode() == ISD::XOR) &&
1909            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
1910            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
1911          // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
1912          Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
1913          return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
1914                              Cond);
1915        } else if (Op0.getOpcode() == ISD::AND &&
1916                isa<ConstantSDNode>(Op0.getOperand(1)) &&
1917                cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
1918          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
1919          if (Op0.getValueType().bitsGT(VT))
1920            Op0 = DAG.getNode(ISD::AND, dl, VT,
1921                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
1922                          DAG.getConstant(1, VT));
1923          else if (Op0.getValueType().bitsLT(VT))
1924            Op0 = DAG.getNode(ISD::AND, dl, VT,
1925                        DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
1926                        DAG.getConstant(1, VT));
1927
1928          return DAG.getSetCC(dl, VT, Op0,
1929                              DAG.getConstant(0, Op0.getValueType()),
1930                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1931        }
1932      }
1933    }
1934
1935    APInt MinVal, MaxVal;
1936    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1937    if (ISD::isSignedIntSetCC(Cond)) {
1938      MinVal = APInt::getSignedMinValue(OperandBitSize);
1939      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1940    } else {
1941      MinVal = APInt::getMinValue(OperandBitSize);
1942      MaxVal = APInt::getMaxValue(OperandBitSize);
1943    }
1944
1945    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1946    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1947      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1948      // X >= C0 --> X > (C0-1)
1949      return DAG.getSetCC(dl, VT, N0,
1950                          DAG.getConstant(C1-1, N1.getValueType()),
1951                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1952    }
1953
1954    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1955      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1956      // X <= C0 --> X < (C0+1)
1957      return DAG.getSetCC(dl, VT, N0,
1958                          DAG.getConstant(C1+1, N1.getValueType()),
1959                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1960    }
1961
1962    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1963      return DAG.getConstant(0, VT);      // X < MIN --> false
1964    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1965      return DAG.getConstant(1, VT);      // X >= MIN --> true
1966    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1967      return DAG.getConstant(0, VT);      // X > MAX --> false
1968    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1969      return DAG.getConstant(1, VT);      // X <= MAX --> true
1970
1971    // Canonicalize setgt X, Min --> setne X, Min
1972    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1973      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1974    // Canonicalize setlt X, Max --> setne X, Max
1975    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1976      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1977
1978    // If we have setult X, 1, turn it into seteq X, 0
1979    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1980      return DAG.getSetCC(dl, VT, N0,
1981                          DAG.getConstant(MinVal, N0.getValueType()),
1982                          ISD::SETEQ);
1983    // If we have setugt X, Max-1, turn it into seteq X, Max
1984    else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1985      return DAG.getSetCC(dl, VT, N0,
1986                          DAG.getConstant(MaxVal, N0.getValueType()),
1987                          ISD::SETEQ);
1988
1989    // If we have "setcc X, C0", check to see if we can shrink the immediate
1990    // by changing cc.
1991
1992    // SETUGT X, SINTMAX  -> SETLT X, 0
1993    if (Cond == ISD::SETUGT &&
1994        C1 == APInt::getSignedMaxValue(OperandBitSize))
1995      return DAG.getSetCC(dl, VT, N0,
1996                          DAG.getConstant(0, N1.getValueType()),
1997                          ISD::SETLT);
1998
1999    // SETULT X, SINTMIN  -> SETGT X, -1
2000    if (Cond == ISD::SETULT &&
2001        C1 == APInt::getSignedMinValue(OperandBitSize)) {
2002      SDValue ConstMinusOne =
2003          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
2004                          N1.getValueType());
2005      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2006    }
2007
2008    // Fold bit comparisons when we can.
2009    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2010        (VT == N0.getValueType() ||
2011         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2012        N0.getOpcode() == ISD::AND)
2013      if (ConstantSDNode *AndRHS =
2014                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2015        EVT ShiftTy = DCI.isBeforeLegalize() ?
2016          getPointerTy() : getShiftAmountTy();
2017        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2018          // Perform the xform if the AND RHS is a single bit.
2019          if (AndRHS->getAPIntValue().isPowerOf2()) {
2020            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2021                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2022                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
2023          }
2024        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2025          // (X & 8) == 8  -->  (X & 8) >> 3
2026          // Perform the xform if C1 is a single bit.
2027          if (C1.isPowerOf2()) {
2028            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2029                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2030                                      DAG.getConstant(C1.logBase2(), ShiftTy)));
2031          }
2032        }
2033      }
2034  }
2035
2036  if (isa<ConstantFPSDNode>(N0.getNode())) {
2037    // Constant fold or commute setcc.
2038    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2039    if (O.getNode()) return O;
2040  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2041    // If the RHS of an FP comparison is a constant, simplify it away in
2042    // some cases.
2043    if (CFP->getValueAPF().isNaN()) {
2044      // If an operand is known to be a nan, we can fold it.
2045      switch (ISD::getUnorderedFlavor(Cond)) {
2046      default: llvm_unreachable("Unknown flavor!");
2047      case 0:  // Known false.
2048        return DAG.getConstant(0, VT);
2049      case 1:  // Known true.
2050        return DAG.getConstant(1, VT);
2051      case 2:  // Undefined.
2052        return DAG.getUNDEF(VT);
2053      }
2054    }
2055
2056    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2057    // constant if knowing that the operand is non-nan is enough.  We prefer to
2058    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2059    // materialize 0.0.
2060    if (Cond == ISD::SETO || Cond == ISD::SETUO)
2061      return DAG.getSetCC(dl, VT, N0, N0, Cond);
2062
2063    // If the condition is not legal, see if we can find an equivalent one
2064    // which is legal.
2065    if (!isCondCodeLegal(Cond, N0.getValueType())) {
2066      // If the comparison was an awkward floating-point == or != and one of
2067      // the comparison operands is infinity or negative infinity, convert the
2068      // condition to a less-awkward <= or >=.
2069      if (CFP->getValueAPF().isInfinity()) {
2070        if (CFP->getValueAPF().isNegative()) {
2071          if (Cond == ISD::SETOEQ &&
2072              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2073            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2074          if (Cond == ISD::SETUEQ &&
2075              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2076            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2077          if (Cond == ISD::SETUNE &&
2078              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2079            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2080          if (Cond == ISD::SETONE &&
2081              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2082            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2083        } else {
2084          if (Cond == ISD::SETOEQ &&
2085              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2086            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2087          if (Cond == ISD::SETUEQ &&
2088              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2089            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2090          if (Cond == ISD::SETUNE &&
2091              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2092            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2093          if (Cond == ISD::SETONE &&
2094              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2095            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2096        }
2097      }
2098    }
2099  }
2100
2101  if (N0 == N1) {
2102    // We can always fold X == X for integer setcc's.
2103    if (N0.getValueType().isInteger())
2104      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2105    unsigned UOF = ISD::getUnorderedFlavor(Cond);
2106    if (UOF == 2)   // FP operators that are undefined on NaNs.
2107      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2108    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2109      return DAG.getConstant(UOF, VT);
2110    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2111    // if it is not already.
2112    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2113    if (NewCond != Cond)
2114      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2115  }
2116
2117  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2118      N0.getValueType().isInteger()) {
2119    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2120        N0.getOpcode() == ISD::XOR) {
2121      // Simplify (X+Y) == (X+Z) -->  Y == Z
2122      if (N0.getOpcode() == N1.getOpcode()) {
2123        if (N0.getOperand(0) == N1.getOperand(0))
2124          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2125        if (N0.getOperand(1) == N1.getOperand(1))
2126          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2127        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2128          // If X op Y == Y op X, try other combinations.
2129          if (N0.getOperand(0) == N1.getOperand(1))
2130            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2131                                Cond);
2132          if (N0.getOperand(1) == N1.getOperand(0))
2133            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2134                                Cond);
2135        }
2136      }
2137
2138      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2139        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2140          // Turn (X+C1) == C2 --> X == C2-C1
2141          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2142            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2143                                DAG.getConstant(RHSC->getAPIntValue()-
2144                                                LHSR->getAPIntValue(),
2145                                N0.getValueType()), Cond);
2146          }
2147
2148          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2149          if (N0.getOpcode() == ISD::XOR)
2150            // If we know that all of the inverted bits are zero, don't bother
2151            // performing the inversion.
2152            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2153              return
2154                DAG.getSetCC(dl, VT, N0.getOperand(0),
2155                             DAG.getConstant(LHSR->getAPIntValue() ^
2156                                               RHSC->getAPIntValue(),
2157                                             N0.getValueType()),
2158                             Cond);
2159        }
2160
2161        // Turn (C1-X) == C2 --> X == C1-C2
2162        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2163          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2164            return
2165              DAG.getSetCC(dl, VT, N0.getOperand(1),
2166                           DAG.getConstant(SUBC->getAPIntValue() -
2167                                             RHSC->getAPIntValue(),
2168                                           N0.getValueType()),
2169                           Cond);
2170          }
2171        }
2172      }
2173
2174      // Simplify (X+Z) == X -->  Z == 0
2175      if (N0.getOperand(0) == N1)
2176        return DAG.getSetCC(dl, VT, N0.getOperand(1),
2177                        DAG.getConstant(0, N0.getValueType()), Cond);
2178      if (N0.getOperand(1) == N1) {
2179        if (DAG.isCommutativeBinOp(N0.getOpcode()))
2180          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2181                          DAG.getConstant(0, N0.getValueType()), Cond);
2182        else if (N0.getNode()->hasOneUse()) {
2183          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2184          // (Z-X) == X  --> Z == X<<1
2185          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
2186                                     N1,
2187                                     DAG.getConstant(1, getShiftAmountTy()));
2188          if (!DCI.isCalledByLegalizer())
2189            DCI.AddToWorklist(SH.getNode());
2190          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2191        }
2192      }
2193    }
2194
2195    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2196        N1.getOpcode() == ISD::XOR) {
2197      // Simplify  X == (X+Z) -->  Z == 0
2198      if (N1.getOperand(0) == N0) {
2199        return DAG.getSetCC(dl, VT, N1.getOperand(1),
2200                        DAG.getConstant(0, N1.getValueType()), Cond);
2201      } else if (N1.getOperand(1) == N0) {
2202        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2203          return DAG.getSetCC(dl, VT, N1.getOperand(0),
2204                          DAG.getConstant(0, N1.getValueType()), Cond);
2205        } else if (N1.getNode()->hasOneUse()) {
2206          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2207          // X == (Z-X)  --> X<<1 == Z
2208          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2209                                     DAG.getConstant(1, getShiftAmountTy()));
2210          if (!DCI.isCalledByLegalizer())
2211            DCI.AddToWorklist(SH.getNode());
2212          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2213        }
2214      }
2215    }
2216
2217    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2218    // Note that where y is variable and is known to have at most
2219    // one bit set (for example, if it is z&1) we cannot do this;
2220    // the expressions are not equivalent when y==0.
2221    if (N0.getOpcode() == ISD::AND)
2222      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2223        if (ValueHasExactlyOneBitSet(N1, DAG)) {
2224          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2225          SDValue Zero = DAG.getConstant(0, N1.getValueType());
2226          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2227        }
2228      }
2229    if (N1.getOpcode() == ISD::AND)
2230      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2231        if (ValueHasExactlyOneBitSet(N0, DAG)) {
2232          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2233          SDValue Zero = DAG.getConstant(0, N0.getValueType());
2234          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2235        }
2236      }
2237  }
2238
2239  // Fold away ALL boolean setcc's.
2240  SDValue Temp;
2241  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2242    switch (Cond) {
2243    default: llvm_unreachable("Unknown integer setcc!");
2244    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2245      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2246      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2247      if (!DCI.isCalledByLegalizer())
2248        DCI.AddToWorklist(Temp.getNode());
2249      break;
2250    case ISD::SETNE:  // X != Y   -->  (X^Y)
2251      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2252      break;
2253    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2254    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2255      Temp = DAG.getNOT(dl, N0, MVT::i1);
2256      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2257      if (!DCI.isCalledByLegalizer())
2258        DCI.AddToWorklist(Temp.getNode());
2259      break;
2260    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2261    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2262      Temp = DAG.getNOT(dl, N1, MVT::i1);
2263      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2264      if (!DCI.isCalledByLegalizer())
2265        DCI.AddToWorklist(Temp.getNode());
2266      break;
2267    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2268    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2269      Temp = DAG.getNOT(dl, N0, MVT::i1);
2270      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2271      if (!DCI.isCalledByLegalizer())
2272        DCI.AddToWorklist(Temp.getNode());
2273      break;
2274    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2275    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2276      Temp = DAG.getNOT(dl, N1, MVT::i1);
2277      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2278      break;
2279    }
2280    if (VT != MVT::i1) {
2281      if (!DCI.isCalledByLegalizer())
2282        DCI.AddToWorklist(N0.getNode());
2283      // FIXME: If running after legalize, we probably can't do this.
2284      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2285    }
2286    return N0;
2287  }
2288
2289  // Could not fold it.
2290  return SDValue();
2291}
2292
2293/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2294/// node is a GlobalAddress + offset.
2295bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue* &GA,
2296                                    int64_t &Offset) const {
2297  if (isa<GlobalAddressSDNode>(N)) {
2298    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2299    GA = GASD->getGlobal();
2300    Offset += GASD->getOffset();
2301    return true;
2302  }
2303
2304  if (N->getOpcode() == ISD::ADD) {
2305    SDValue N1 = N->getOperand(0);
2306    SDValue N2 = N->getOperand(1);
2307    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2308      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2309      if (V) {
2310        Offset += V->getSExtValue();
2311        return true;
2312      }
2313    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2314      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2315      if (V) {
2316        Offset += V->getSExtValue();
2317        return true;
2318      }
2319    }
2320  }
2321  return false;
2322}
2323
2324
2325SDValue TargetLowering::
2326PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2327  // Default implementation: no optimization.
2328  return SDValue();
2329}
2330
2331//===----------------------------------------------------------------------===//
2332//  Inline Assembler Implementation Methods
2333//===----------------------------------------------------------------------===//
2334
2335
2336TargetLowering::ConstraintType
2337TargetLowering::getConstraintType(const std::string &Constraint) const {
2338  // FIXME: lots more standard ones to handle.
2339  if (Constraint.size() == 1) {
2340    switch (Constraint[0]) {
2341    default: break;
2342    case 'r': return C_RegisterClass;
2343    case 'm':    // memory
2344    case 'o':    // offsetable
2345    case 'V':    // not offsetable
2346      return C_Memory;
2347    case 'i':    // Simple Integer or Relocatable Constant
2348    case 'n':    // Simple Integer
2349    case 's':    // Relocatable Constant
2350    case 'X':    // Allow ANY value.
2351    case 'I':    // Target registers.
2352    case 'J':
2353    case 'K':
2354    case 'L':
2355    case 'M':
2356    case 'N':
2357    case 'O':
2358    case 'P':
2359      return C_Other;
2360    }
2361  }
2362
2363  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2364      Constraint[Constraint.size()-1] == '}')
2365    return C_Register;
2366  return C_Unknown;
2367}
2368
2369/// LowerXConstraint - try to replace an X constraint, which matches anything,
2370/// with another that has more specific requirements based on the type of the
2371/// corresponding operand.
2372const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2373  if (ConstraintVT.isInteger())
2374    return "r";
2375  if (ConstraintVT.isFloatingPoint())
2376    return "f";      // works for many targets
2377  return 0;
2378}
2379
2380/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2381/// vector.  If it is invalid, don't add anything to Ops.
2382void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2383                                                  char ConstraintLetter,
2384                                                  std::vector<SDValue> &Ops,
2385                                                  SelectionDAG &DAG) const {
2386  switch (ConstraintLetter) {
2387  default: break;
2388  case 'X':     // Allows any operand; labels (basic block) use this.
2389    if (Op.getOpcode() == ISD::BasicBlock) {
2390      Ops.push_back(Op);
2391      return;
2392    }
2393    // fall through
2394  case 'i':    // Simple Integer or Relocatable Constant
2395  case 'n':    // Simple Integer
2396  case 's': {  // Relocatable Constant
2397    // These operands are interested in values of the form (GV+C), where C may
2398    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2399    // is possible and fine if either GV or C are missing.
2400    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2401    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2402
2403    // If we have "(add GV, C)", pull out GV/C
2404    if (Op.getOpcode() == ISD::ADD) {
2405      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2406      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2407      if (C == 0 || GA == 0) {
2408        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2409        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2410      }
2411      if (C == 0 || GA == 0)
2412        C = 0, GA = 0;
2413    }
2414
2415    // If we find a valid operand, map to the TargetXXX version so that the
2416    // value itself doesn't get selected.
2417    if (GA) {   // Either &GV   or   &GV+C
2418      if (ConstraintLetter != 'n') {
2419        int64_t Offs = GA->getOffset();
2420        if (C) Offs += C->getZExtValue();
2421        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2422                                                 Op.getValueType(), Offs));
2423        return;
2424      }
2425    }
2426    if (C) {   // just C, no GV.
2427      // Simple constants are not allowed for 's'.
2428      if (ConstraintLetter != 's') {
2429        // gcc prints these as sign extended.  Sign extend value to 64 bits
2430        // now; without this it would get ZExt'd later in
2431        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2432        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2433                                            MVT::i64));
2434        return;
2435      }
2436    }
2437    break;
2438  }
2439  }
2440}
2441
2442std::vector<unsigned> TargetLowering::
2443getRegClassForInlineAsmConstraint(const std::string &Constraint,
2444                                  EVT VT) const {
2445  return std::vector<unsigned>();
2446}
2447
2448
2449std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2450getRegForInlineAsmConstraint(const std::string &Constraint,
2451                             EVT VT) const {
2452  if (Constraint[0] != '{')
2453    return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
2454  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2455
2456  // Remove the braces from around the name.
2457  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2458
2459  // Figure out which register class contains this reg.
2460  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2461  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2462       E = RI->regclass_end(); RCI != E; ++RCI) {
2463    const TargetRegisterClass *RC = *RCI;
2464
2465    // If none of the value types for this register class are valid, we
2466    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2467    bool isLegal = false;
2468    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2469         I != E; ++I) {
2470      if (isTypeLegal(*I)) {
2471        isLegal = true;
2472        break;
2473      }
2474    }
2475
2476    if (!isLegal) continue;
2477
2478    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2479         I != E; ++I) {
2480      if (RegName.equals_lower(RI->getName(*I)))
2481        return std::make_pair(*I, RC);
2482    }
2483  }
2484
2485  return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2486}
2487
2488//===----------------------------------------------------------------------===//
2489// Constraint Selection.
2490
2491/// isMatchingInputConstraint - Return true of this is an input operand that is
2492/// a matching constraint like "4".
2493bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2494  assert(!ConstraintCode.empty() && "No known constraint!");
2495  return isdigit(ConstraintCode[0]);
2496}
2497
2498/// getMatchedOperand - If this is an input matching constraint, this method
2499/// returns the output operand it matches.
2500unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2501  assert(!ConstraintCode.empty() && "No known constraint!");
2502  return atoi(ConstraintCode.c_str());
2503}
2504
2505
2506/// getConstraintGenerality - Return an integer indicating how general CT
2507/// is.
2508static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2509  switch (CT) {
2510  default: llvm_unreachable("Unknown constraint type!");
2511  case TargetLowering::C_Other:
2512  case TargetLowering::C_Unknown:
2513    return 0;
2514  case TargetLowering::C_Register:
2515    return 1;
2516  case TargetLowering::C_RegisterClass:
2517    return 2;
2518  case TargetLowering::C_Memory:
2519    return 3;
2520  }
2521}
2522
2523/// ChooseConstraint - If there are multiple different constraints that we
2524/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2525/// This is somewhat tricky: constraints fall into four classes:
2526///    Other         -> immediates and magic values
2527///    Register      -> one specific register
2528///    RegisterClass -> a group of regs
2529///    Memory        -> memory
2530/// Ideally, we would pick the most specific constraint possible: if we have
2531/// something that fits into a register, we would pick it.  The problem here
2532/// is that if we have something that could either be in a register or in
2533/// memory that use of the register could cause selection of *other*
2534/// operands to fail: they might only succeed if we pick memory.  Because of
2535/// this the heuristic we use is:
2536///
2537///  1) If there is an 'other' constraint, and if the operand is valid for
2538///     that constraint, use it.  This makes us take advantage of 'i'
2539///     constraints when available.
2540///  2) Otherwise, pick the most general constraint present.  This prefers
2541///     'm' over 'r', for example.
2542///
2543static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2544                             const TargetLowering &TLI,
2545                             SDValue Op, SelectionDAG *DAG) {
2546  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2547  unsigned BestIdx = 0;
2548  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2549  int BestGenerality = -1;
2550
2551  // Loop over the options, keeping track of the most general one.
2552  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2553    TargetLowering::ConstraintType CType =
2554      TLI.getConstraintType(OpInfo.Codes[i]);
2555
2556    // If this is an 'other' constraint, see if the operand is valid for it.
2557    // For example, on X86 we might have an 'rI' constraint.  If the operand
2558    // is an integer in the range [0..31] we want to use I (saving a load
2559    // of a register), otherwise we must use 'r'.
2560    if (CType == TargetLowering::C_Other && Op.getNode()) {
2561      assert(OpInfo.Codes[i].size() == 1 &&
2562             "Unhandled multi-letter 'other' constraint");
2563      std::vector<SDValue> ResultOps;
2564      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0],
2565                                       ResultOps, *DAG);
2566      if (!ResultOps.empty()) {
2567        BestType = CType;
2568        BestIdx = i;
2569        break;
2570      }
2571    }
2572
2573    // This constraint letter is more general than the previous one, use it.
2574    int Generality = getConstraintGenerality(CType);
2575    if (Generality > BestGenerality) {
2576      BestType = CType;
2577      BestIdx = i;
2578      BestGenerality = Generality;
2579    }
2580  }
2581
2582  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2583  OpInfo.ConstraintType = BestType;
2584}
2585
2586/// ComputeConstraintToUse - Determines the constraint code and constraint
2587/// type to use for the specific AsmOperandInfo, setting
2588/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2589void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2590                                            SDValue Op,
2591                                            SelectionDAG *DAG) const {
2592  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2593
2594  // Single-letter constraints ('r') are very common.
2595  if (OpInfo.Codes.size() == 1) {
2596    OpInfo.ConstraintCode = OpInfo.Codes[0];
2597    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2598  } else {
2599    ChooseConstraint(OpInfo, *this, Op, DAG);
2600  }
2601
2602  // 'X' matches anything.
2603  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2604    // Labels and constants are handled elsewhere ('X' is the only thing
2605    // that matches labels).  For Functions, the type here is the type of
2606    // the result, which is not what we want to look at; leave them alone.
2607    Value *v = OpInfo.CallOperandVal;
2608    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2609      OpInfo.CallOperandVal = v;
2610      return;
2611    }
2612
2613    // Otherwise, try to resolve it to something we know about by looking at
2614    // the actual operand type.
2615    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2616      OpInfo.ConstraintCode = Repl;
2617      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2618    }
2619  }
2620}
2621
2622//===----------------------------------------------------------------------===//
2623//  Loop Strength Reduction hooks
2624//===----------------------------------------------------------------------===//
2625
2626/// isLegalAddressingMode - Return true if the addressing mode represented
2627/// by AM is legal for this target, for a load/store of the specified type.
2628bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2629                                           const Type *Ty) const {
2630  // The default implementation of this implements a conservative RISCy, r+r and
2631  // r+i addr mode.
2632
2633  // Allows a sign-extended 16-bit immediate field.
2634  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2635    return false;
2636
2637  // No global is ever allowed as a base.
2638  if (AM.BaseGV)
2639    return false;
2640
2641  // Only support r+r,
2642  switch (AM.Scale) {
2643  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2644    break;
2645  case 1:
2646    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2647      return false;
2648    // Otherwise we have r+r or r+i.
2649    break;
2650  case 2:
2651    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2652      return false;
2653    // Allow 2*r as r+r.
2654    break;
2655  }
2656
2657  return true;
2658}
2659
2660/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2661/// return a DAG expression to select that will generate the same value by
2662/// multiplying by a magic number.  See:
2663/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2664SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2665                                  std::vector<SDNode*>* Created) const {
2666  EVT VT = N->getValueType(0);
2667  DebugLoc dl= N->getDebugLoc();
2668
2669  // Check to see if we can do this.
2670  // FIXME: We should be more aggressive here.
2671  if (!isTypeLegal(VT))
2672    return SDValue();
2673
2674  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2675  APInt::ms magics = d.magic();
2676
2677  // Multiply the numerator (operand 0) by the magic value
2678  // FIXME: We should support doing a MUL in a wider type
2679  SDValue Q;
2680  if (isOperationLegalOrCustom(ISD::MULHS, VT))
2681    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2682                    DAG.getConstant(magics.m, VT));
2683  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2684    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2685                              N->getOperand(0),
2686                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2687  else
2688    return SDValue();       // No mulhs or equvialent
2689  // If d > 0 and m < 0, add the numerator
2690  if (d.isStrictlyPositive() && magics.m.isNegative()) {
2691    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2692    if (Created)
2693      Created->push_back(Q.getNode());
2694  }
2695  // If d < 0 and m > 0, subtract the numerator.
2696  if (d.isNegative() && magics.m.isStrictlyPositive()) {
2697    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2698    if (Created)
2699      Created->push_back(Q.getNode());
2700  }
2701  // Shift right algebraic if shift value is nonzero
2702  if (magics.s > 0) {
2703    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2704                    DAG.getConstant(magics.s, getShiftAmountTy()));
2705    if (Created)
2706      Created->push_back(Q.getNode());
2707  }
2708  // Extract the sign bit and add it to the quotient
2709  SDValue T =
2710    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2711                                                 getShiftAmountTy()));
2712  if (Created)
2713    Created->push_back(T.getNode());
2714  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2715}
2716
2717/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2718/// return a DAG expression to select that will generate the same value by
2719/// multiplying by a magic number.  See:
2720/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2721SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2722                                  std::vector<SDNode*>* Created) const {
2723  EVT VT = N->getValueType(0);
2724  DebugLoc dl = N->getDebugLoc();
2725
2726  // Check to see if we can do this.
2727  // FIXME: We should be more aggressive here.
2728  if (!isTypeLegal(VT))
2729    return SDValue();
2730
2731  // FIXME: We should use a narrower constant when the upper
2732  // bits are known to be zero.
2733  ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
2734  APInt::mu magics = N1C->getAPIntValue().magicu();
2735
2736  // Multiply the numerator (operand 0) by the magic value
2737  // FIXME: We should support doing a MUL in a wider type
2738  SDValue Q;
2739  if (isOperationLegalOrCustom(ISD::MULHU, VT))
2740    Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
2741                    DAG.getConstant(magics.m, VT));
2742  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2743    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
2744                              N->getOperand(0),
2745                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2746  else
2747    return SDValue();       // No mulhu or equvialent
2748  if (Created)
2749    Created->push_back(Q.getNode());
2750
2751  if (magics.a == 0) {
2752    assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
2753           "We shouldn't generate an undefined shift!");
2754    return DAG.getNode(ISD::SRL, dl, VT, Q,
2755                       DAG.getConstant(magics.s, getShiftAmountTy()));
2756  } else {
2757    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2758    if (Created)
2759      Created->push_back(NPQ.getNode());
2760    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2761                      DAG.getConstant(1, getShiftAmountTy()));
2762    if (Created)
2763      Created->push_back(NPQ.getNode());
2764    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2765    if (Created)
2766      Created->push_back(NPQ.getNode());
2767    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2768                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2769  }
2770}
2771