TargetLowering.cpp revision 155615d7dc4e4fbfd3b7273720a76356468edf46
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/ADT/BitVector.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/CodeGen/Analysis.h"
18#include "llvm/CodeGen/MachineFrameInfo.h"
19#include "llvm/CodeGen/MachineFunction.h"
20#include "llvm/CodeGen/MachineJumpTableInfo.h"
21#include "llvm/CodeGen/SelectionDAG.h"
22#include "llvm/IR/DataLayout.h"
23#include "llvm/IR/DerivedTypes.h"
24#include "llvm/IR/GlobalVariable.h"
25#include "llvm/MC/MCAsmInfo.h"
26#include "llvm/MC/MCExpr.h"
27#include "llvm/Support/CommandLine.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/MathExtras.h"
30#include "llvm/Target/TargetLoweringObjectFile.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Target/TargetRegisterInfo.h"
33#include <cctype>
34using namespace llvm;
35
36/// NOTE: The constructor takes ownership of TLOF.
37TargetLowering::TargetLowering(const TargetMachine &tm,
38                               const TargetLoweringObjectFile *tlof)
39  : TargetLoweringBase(tm, tlof) {}
40
41const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42  return NULL;
43}
44
45/// Check whether a given call node is in tail position within its function. If
46/// so, it sets Chain to the input chain of the tail call.
47bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
48                                          SDValue &Chain) const {
49  const Function *F = DAG.getMachineFunction().getFunction();
50
51  // Conservatively require the attributes of the call to match those of
52  // the return. Ignore noalias because it doesn't affect the call sequence.
53  AttributeSet CallerAttrs = F->getAttributes();
54  if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex)
55      .removeAttribute(Attribute::NoAlias).hasAttributes())
56    return false;
57
58  // It's not safe to eliminate the sign / zero extension of the return value.
59  if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
60      CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
61    return false;
62
63  // Check if the only use is a function return node.
64  return isUsedByReturnOnly(Node, Chain);
65}
66
67
68/// Generate a libcall taking the given operands as arguments and returning a
69/// result of type RetVT.
70SDValue TargetLowering::makeLibCall(SelectionDAG &DAG,
71                                    RTLIB::Libcall LC, EVT RetVT,
72                                    const SDValue *Ops, unsigned NumOps,
73                                    bool isSigned, SDLoc dl) const {
74  TargetLowering::ArgListTy Args;
75  Args.reserve(NumOps);
76
77  TargetLowering::ArgListEntry Entry;
78  for (unsigned i = 0; i != NumOps; ++i) {
79    Entry.Node = Ops[i];
80    Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
81    Entry.isSExt = isSigned;
82    Entry.isZExt = !isSigned;
83    Args.push_back(Entry);
84  }
85  SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), getPointerTy());
86
87  Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
88  TargetLowering::
89  CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
90                    false, 0, getLibcallCallingConv(LC),
91                    /*isTailCall=*/false,
92                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
93                    Callee, Args, DAG, dl);
94  std::pair<SDValue,SDValue> CallInfo = LowerCallTo(CLI);
95
96  return CallInfo.first;
97}
98
99
100/// SoftenSetCCOperands - Soften the operands of a comparison.  This code is
101/// shared among BR_CC, SELECT_CC, and SETCC handlers.
102void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
103                                         SDValue &NewLHS, SDValue &NewRHS,
104                                         ISD::CondCode &CCCode,
105                                         SDLoc dl) const {
106  assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128)
107         && "Unsupported setcc type!");
108
109  // Expand into one or more soft-fp libcall(s).
110  RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
111  switch (CCCode) {
112  case ISD::SETEQ:
113  case ISD::SETOEQ:
114    LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
115          (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128;
116    break;
117  case ISD::SETNE:
118  case ISD::SETUNE:
119    LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
120          (VT == MVT::f64) ? RTLIB::UNE_F64 : RTLIB::UNE_F128;
121    break;
122  case ISD::SETGE:
123  case ISD::SETOGE:
124    LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
125          (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128;
126    break;
127  case ISD::SETLT:
128  case ISD::SETOLT:
129    LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
130          (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
131    break;
132  case ISD::SETLE:
133  case ISD::SETOLE:
134    LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
135          (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128;
136    break;
137  case ISD::SETGT:
138  case ISD::SETOGT:
139    LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
140          (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128;
141    break;
142  case ISD::SETUO:
143    LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
144          (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128;
145    break;
146  case ISD::SETO:
147    LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
148          (VT == MVT::f64) ? RTLIB::O_F64 : RTLIB::O_F128;
149    break;
150  default:
151    LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
152          (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128;
153    switch (CCCode) {
154    case ISD::SETONE:
155      // SETONE = SETOLT | SETOGT
156      LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
157            (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
158      // Fallthrough
159    case ISD::SETUGT:
160      LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
161            (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128;
162      break;
163    case ISD::SETUGE:
164      LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
165            (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128;
166      break;
167    case ISD::SETULT:
168      LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
169            (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128;
170      break;
171    case ISD::SETULE:
172      LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
173            (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128;
174      break;
175    case ISD::SETUEQ:
176      LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
177            (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128;
178      break;
179    default: llvm_unreachable("Do not know how to soften this setcc!");
180    }
181  }
182
183  // Use the target specific return value for comparions lib calls.
184  EVT RetVT = getCmpLibcallReturnType();
185  SDValue Ops[2] = { NewLHS, NewRHS };
186  NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, 2, false/*sign irrelevant*/, dl);
187  NewRHS = DAG.getConstant(0, RetVT);
188  CCCode = getCmpLibcallCC(LC1);
189  if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
190    SDValue Tmp = DAG.getNode(ISD::SETCC, dl,
191                              getSetCCResultType(*DAG.getContext(), RetVT),
192                              NewLHS, NewRHS, DAG.getCondCode(CCCode));
193    NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, 2, false/*sign irrelevant*/, dl);
194    NewLHS = DAG.getNode(ISD::SETCC, dl,
195                         getSetCCResultType(*DAG.getContext(), RetVT), NewLHS,
196                         NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
197    NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
198    NewRHS = SDValue();
199  }
200}
201
202/// getJumpTableEncoding - Return the entry encoding for a jump table in the
203/// current function.  The returned value is a member of the
204/// MachineJumpTableInfo::JTEntryKind enum.
205unsigned TargetLowering::getJumpTableEncoding() const {
206  // In non-pic modes, just use the address of a block.
207  if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
208    return MachineJumpTableInfo::EK_BlockAddress;
209
210  // In PIC mode, if the target supports a GPRel32 directive, use it.
211  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
212    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
213
214  // Otherwise, use a label difference.
215  return MachineJumpTableInfo::EK_LabelDifference32;
216}
217
218SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
219                                                 SelectionDAG &DAG) const {
220  // If our PIC model is GP relative, use the global offset table as the base.
221  unsigned JTEncoding = getJumpTableEncoding();
222
223  if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
224      (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
225    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(0));
226
227  return Table;
228}
229
230/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
231/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
232/// MCExpr.
233const MCExpr *
234TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
235                                             unsigned JTI,MCContext &Ctx) const{
236  // The normal PIC reloc base is the label at the start of the jump table.
237  return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
238}
239
240bool
241TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
242  // Assume that everything is safe in static mode.
243  if (getTargetMachine().getRelocationModel() == Reloc::Static)
244    return true;
245
246  // In dynamic-no-pic mode, assume that known defined values are safe.
247  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
248      GA &&
249      !GA->getGlobal()->isDeclaration() &&
250      !GA->getGlobal()->isWeakForLinker())
251    return true;
252
253  // Otherwise assume nothing is safe.
254  return false;
255}
256
257//===----------------------------------------------------------------------===//
258//  Optimization Methods
259//===----------------------------------------------------------------------===//
260
261/// ShrinkDemandedConstant - Check to see if the specified operand of the
262/// specified instruction is a constant integer.  If so, check to see if there
263/// are any bits set in the constant that are not demanded.  If so, shrink the
264/// constant and return true.
265bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
266                                                        const APInt &Demanded) {
267  SDLoc dl(Op);
268
269  // FIXME: ISD::SELECT, ISD::SELECT_CC
270  switch (Op.getOpcode()) {
271  default: break;
272  case ISD::XOR:
273  case ISD::AND:
274  case ISD::OR: {
275    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
276    if (!C) return false;
277
278    if (Op.getOpcode() == ISD::XOR &&
279        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
280      return false;
281
282    // if we can expand it to have all bits set, do it
283    if (C->getAPIntValue().intersects(~Demanded)) {
284      EVT VT = Op.getValueType();
285      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
286                                DAG.getConstant(Demanded &
287                                                C->getAPIntValue(),
288                                                VT));
289      return CombineTo(Op, New);
290    }
291
292    break;
293  }
294  }
295
296  return false;
297}
298
299/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
300/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
301/// cast, but it could be generalized for targets with other types of
302/// implicit widening casts.
303bool
304TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
305                                                    unsigned BitWidth,
306                                                    const APInt &Demanded,
307                                                    SDLoc dl) {
308  assert(Op.getNumOperands() == 2 &&
309         "ShrinkDemandedOp only supports binary operators!");
310  assert(Op.getNode()->getNumValues() == 1 &&
311         "ShrinkDemandedOp only supports nodes with one result!");
312
313  // Don't do this if the node has another user, which may require the
314  // full value.
315  if (!Op.getNode()->hasOneUse())
316    return false;
317
318  // Search for the smallest integer type with free casts to and from
319  // Op's type. For expedience, just check power-of-2 integer types.
320  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
321  unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros();
322  unsigned SmallVTBits = DemandedSize;
323  if (!isPowerOf2_32(SmallVTBits))
324    SmallVTBits = NextPowerOf2(SmallVTBits);
325  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
326    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
327    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
328        TLI.isZExtFree(SmallVT, Op.getValueType())) {
329      // We found a type with free casts.
330      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
331                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
332                                          Op.getNode()->getOperand(0)),
333                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
334                                          Op.getNode()->getOperand(1)));
335      bool NeedZext = DemandedSize > SmallVTBits;
336      SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND,
337                              dl, Op.getValueType(), X);
338      return CombineTo(Op, Z);
339    }
340  }
341  return false;
342}
343
344/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
345/// DemandedMask bits of the result of Op are ever used downstream.  If we can
346/// use this information to simplify Op, create a new simplified DAG node and
347/// return true, returning the original and new nodes in Old and New. Otherwise,
348/// analyze the expression and return a mask of KnownOne and KnownZero bits for
349/// the expression (used to simplify the caller).  The KnownZero/One bits may
350/// only be accurate for those bits in the DemandedMask.
351bool TargetLowering::SimplifyDemandedBits(SDValue Op,
352                                          const APInt &DemandedMask,
353                                          APInt &KnownZero,
354                                          APInt &KnownOne,
355                                          TargetLoweringOpt &TLO,
356                                          unsigned Depth) const {
357  unsigned BitWidth = DemandedMask.getBitWidth();
358  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
359         "Mask size mismatches value type size!");
360  APInt NewMask = DemandedMask;
361  SDLoc dl(Op);
362
363  // Don't know anything.
364  KnownZero = KnownOne = APInt(BitWidth, 0);
365
366  // Other users may use these bits.
367  if (!Op.getNode()->hasOneUse()) {
368    if (Depth != 0) {
369      // If not at the root, Just compute the KnownZero/KnownOne bits to
370      // simplify things downstream.
371      TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
372      return false;
373    }
374    // If this is the root being simplified, allow it to have multiple uses,
375    // just set the NewMask to all bits.
376    NewMask = APInt::getAllOnesValue(BitWidth);
377  } else if (DemandedMask == 0) {
378    // Not demanding any bits from Op.
379    if (Op.getOpcode() != ISD::UNDEF)
380      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
381    return false;
382  } else if (Depth == 6) {        // Limit search depth.
383    return false;
384  }
385
386  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
387  switch (Op.getOpcode()) {
388  case ISD::Constant:
389    // We know all of the bits for a constant!
390    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
391    KnownZero = ~KnownOne;
392    return false;   // Don't fall through, will infinitely loop.
393  case ISD::AND:
394    // If the RHS is a constant, check to see if the LHS would be zero without
395    // using the bits from the RHS.  Below, we use knowledge about the RHS to
396    // simplify the LHS, here we're using information from the LHS to simplify
397    // the RHS.
398    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
399      APInt LHSZero, LHSOne;
400      // Do not increment Depth here; that can cause an infinite loop.
401      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), LHSZero, LHSOne, Depth);
402      // If the LHS already has zeros where RHSC does, this and is dead.
403      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
404        return TLO.CombineTo(Op, Op.getOperand(0));
405      // If any of the set bits in the RHS are known zero on the LHS, shrink
406      // the constant.
407      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
408        return true;
409    }
410
411    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
412                             KnownOne, TLO, Depth+1))
413      return true;
414    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
415    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
416                             KnownZero2, KnownOne2, TLO, Depth+1))
417      return true;
418    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
419
420    // If all of the demanded bits are known one on one side, return the other.
421    // These bits cannot contribute to the result of the 'and'.
422    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
423      return TLO.CombineTo(Op, Op.getOperand(0));
424    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
425      return TLO.CombineTo(Op, Op.getOperand(1));
426    // If all of the demanded bits in the inputs are known zeros, return zero.
427    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
428      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
429    // If the RHS is a constant, see if we can simplify it.
430    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
431      return true;
432    // If the operation can be done in a smaller type, do so.
433    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
434      return true;
435
436    // Output known-1 bits are only known if set in both the LHS & RHS.
437    KnownOne &= KnownOne2;
438    // Output known-0 are known to be clear if zero in either the LHS | RHS.
439    KnownZero |= KnownZero2;
440    break;
441  case ISD::OR:
442    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
443                             KnownOne, TLO, Depth+1))
444      return true;
445    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
446    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
447                             KnownZero2, KnownOne2, TLO, Depth+1))
448      return true;
449    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
450
451    // If all of the demanded bits are known zero on one side, return the other.
452    // These bits cannot contribute to the result of the 'or'.
453    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
454      return TLO.CombineTo(Op, Op.getOperand(0));
455    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
456      return TLO.CombineTo(Op, Op.getOperand(1));
457    // If all of the potentially set bits on one side are known to be set on
458    // the other side, just use the 'other' side.
459    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
460      return TLO.CombineTo(Op, Op.getOperand(0));
461    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
462      return TLO.CombineTo(Op, Op.getOperand(1));
463    // If the RHS is a constant, see if we can simplify it.
464    if (TLO.ShrinkDemandedConstant(Op, NewMask))
465      return true;
466    // If the operation can be done in a smaller type, do so.
467    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
468      return true;
469
470    // Output known-0 bits are only known if clear in both the LHS & RHS.
471    KnownZero &= KnownZero2;
472    // Output known-1 are known to be set if set in either the LHS | RHS.
473    KnownOne |= KnownOne2;
474    break;
475  case ISD::XOR:
476    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
477                             KnownOne, TLO, Depth+1))
478      return true;
479    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
480    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
481                             KnownOne2, TLO, Depth+1))
482      return true;
483    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
484
485    // If all of the demanded bits are known zero on one side, return the other.
486    // These bits cannot contribute to the result of the 'xor'.
487    if ((KnownZero & NewMask) == NewMask)
488      return TLO.CombineTo(Op, Op.getOperand(0));
489    if ((KnownZero2 & NewMask) == NewMask)
490      return TLO.CombineTo(Op, Op.getOperand(1));
491    // If the operation can be done in a smaller type, do so.
492    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
493      return true;
494
495    // If all of the unknown bits are known to be zero on one side or the other
496    // (but not both) turn this into an *inclusive* or.
497    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
498    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
499      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
500                                               Op.getOperand(0),
501                                               Op.getOperand(1)));
502
503    // Output known-0 bits are known if clear or set in both the LHS & RHS.
504    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
505    // Output known-1 are known to be set if set in only one of the LHS, RHS.
506    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
507
508    // If all of the demanded bits on one side are known, and all of the set
509    // bits on that side are also known to be set on the other side, turn this
510    // into an AND, as we know the bits will be cleared.
511    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
512    // NB: it is okay if more bits are known than are requested
513    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side
514      if (KnownOne == KnownOne2) { // set bits are the same on both sides
515        EVT VT = Op.getValueType();
516        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
517        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
518                                                 Op.getOperand(0), ANDC));
519      }
520    }
521
522    // If the RHS is a constant, see if we can simplify it.
523    // for XOR, we prefer to force bits to 1 if they will make a -1.
524    // if we can't force bits, try to shrink constant
525    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
526      APInt Expanded = C->getAPIntValue() | (~NewMask);
527      // if we can expand it to have all bits set, do it
528      if (Expanded.isAllOnesValue()) {
529        if (Expanded != C->getAPIntValue()) {
530          EVT VT = Op.getValueType();
531          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
532                                          TLO.DAG.getConstant(Expanded, VT));
533          return TLO.CombineTo(Op, New);
534        }
535        // if it already has all the bits set, nothing to change
536        // but don't shrink either!
537      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
538        return true;
539      }
540    }
541
542    KnownZero = KnownZeroOut;
543    KnownOne  = KnownOneOut;
544    break;
545  case ISD::SELECT:
546    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
547                             KnownOne, TLO, Depth+1))
548      return true;
549    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
550                             KnownOne2, TLO, Depth+1))
551      return true;
552    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
553    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
554
555    // If the operands are constants, see if we can simplify them.
556    if (TLO.ShrinkDemandedConstant(Op, NewMask))
557      return true;
558
559    // Only known if known in both the LHS and RHS.
560    KnownOne &= KnownOne2;
561    KnownZero &= KnownZero2;
562    break;
563  case ISD::SELECT_CC:
564    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
565                             KnownOne, TLO, Depth+1))
566      return true;
567    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
568                             KnownOne2, TLO, Depth+1))
569      return true;
570    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
571    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
572
573    // If the operands are constants, see if we can simplify them.
574    if (TLO.ShrinkDemandedConstant(Op, NewMask))
575      return true;
576
577    // Only known if known in both the LHS and RHS.
578    KnownOne &= KnownOne2;
579    KnownZero &= KnownZero2;
580    break;
581  case ISD::SHL:
582    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
583      unsigned ShAmt = SA->getZExtValue();
584      SDValue InOp = Op.getOperand(0);
585
586      // If the shift count is an invalid immediate, don't do anything.
587      if (ShAmt >= BitWidth)
588        break;
589
590      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
591      // single shift.  We can do this if the bottom bits (which are shifted
592      // out) are never demanded.
593      if (InOp.getOpcode() == ISD::SRL &&
594          isa<ConstantSDNode>(InOp.getOperand(1))) {
595        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
596          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
597          unsigned Opc = ISD::SHL;
598          int Diff = ShAmt-C1;
599          if (Diff < 0) {
600            Diff = -Diff;
601            Opc = ISD::SRL;
602          }
603
604          SDValue NewSA =
605            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
606          EVT VT = Op.getValueType();
607          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
608                                                   InOp.getOperand(0), NewSA));
609        }
610      }
611
612      if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
613                               KnownZero, KnownOne, TLO, Depth+1))
614        return true;
615
616      // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
617      // are not demanded. This will likely allow the anyext to be folded away.
618      if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
619        SDValue InnerOp = InOp.getNode()->getOperand(0);
620        EVT InnerVT = InnerOp.getValueType();
621        unsigned InnerBits = InnerVT.getSizeInBits();
622        if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
623            isTypeDesirableForOp(ISD::SHL, InnerVT)) {
624          EVT ShTy = getShiftAmountTy(InnerVT);
625          if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
626            ShTy = InnerVT;
627          SDValue NarrowShl =
628            TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
629                            TLO.DAG.getConstant(ShAmt, ShTy));
630          return
631            TLO.CombineTo(Op,
632                          TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
633                                          NarrowShl));
634        }
635      }
636
637      KnownZero <<= SA->getZExtValue();
638      KnownOne  <<= SA->getZExtValue();
639      // low bits known zero.
640      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
641    }
642    break;
643  case ISD::SRL:
644    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
645      EVT VT = Op.getValueType();
646      unsigned ShAmt = SA->getZExtValue();
647      unsigned VTSize = VT.getSizeInBits();
648      SDValue InOp = Op.getOperand(0);
649
650      // If the shift count is an invalid immediate, don't do anything.
651      if (ShAmt >= BitWidth)
652        break;
653
654      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
655      // single shift.  We can do this if the top bits (which are shifted out)
656      // are never demanded.
657      if (InOp.getOpcode() == ISD::SHL &&
658          isa<ConstantSDNode>(InOp.getOperand(1))) {
659        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
660          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
661          unsigned Opc = ISD::SRL;
662          int Diff = ShAmt-C1;
663          if (Diff < 0) {
664            Diff = -Diff;
665            Opc = ISD::SHL;
666          }
667
668          SDValue NewSA =
669            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
670          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
671                                                   InOp.getOperand(0), NewSA));
672        }
673      }
674
675      // Compute the new bits that are at the top now.
676      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
677                               KnownZero, KnownOne, TLO, Depth+1))
678        return true;
679      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
680      KnownZero = KnownZero.lshr(ShAmt);
681      KnownOne  = KnownOne.lshr(ShAmt);
682
683      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
684      KnownZero |= HighBits;  // High bits known zero.
685    }
686    break;
687  case ISD::SRA:
688    // If this is an arithmetic shift right and only the low-bit is set, we can
689    // always convert this into a logical shr, even if the shift amount is
690    // variable.  The low bit of the shift cannot be an input sign bit unless
691    // the shift amount is >= the size of the datatype, which is undefined.
692    if (NewMask == 1)
693      return TLO.CombineTo(Op,
694                           TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
695                                           Op.getOperand(0), Op.getOperand(1)));
696
697    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
698      EVT VT = Op.getValueType();
699      unsigned ShAmt = SA->getZExtValue();
700
701      // If the shift count is an invalid immediate, don't do anything.
702      if (ShAmt >= BitWidth)
703        break;
704
705      APInt InDemandedMask = (NewMask << ShAmt);
706
707      // If any of the demanded bits are produced by the sign extension, we also
708      // demand the input sign bit.
709      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
710      if (HighBits.intersects(NewMask))
711        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
712
713      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
714                               KnownZero, KnownOne, TLO, Depth+1))
715        return true;
716      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
717      KnownZero = KnownZero.lshr(ShAmt);
718      KnownOne  = KnownOne.lshr(ShAmt);
719
720      // Handle the sign bit, adjusted to where it is now in the mask.
721      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
722
723      // If the input sign bit is known to be zero, or if none of the top bits
724      // are demanded, turn this into an unsigned shift right.
725      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
726        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
727                                                 Op.getOperand(0),
728                                                 Op.getOperand(1)));
729      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
730        KnownOne |= HighBits;
731      }
732    }
733    break;
734  case ISD::SIGN_EXTEND_INREG: {
735    EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
736
737    APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
738    // If we only care about the highest bit, don't bother shifting right.
739    if (MsbMask == DemandedMask) {
740      unsigned ShAmt = ExVT.getScalarType().getSizeInBits();
741      SDValue InOp = Op.getOperand(0);
742
743      // Compute the correct shift amount type, which must be getShiftAmountTy
744      // for scalar types after legalization.
745      EVT ShiftAmtTy = Op.getValueType();
746      if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
747        ShiftAmtTy = getShiftAmountTy(ShiftAmtTy);
748
749      SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy);
750      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
751                                            Op.getValueType(), InOp, ShiftAmt));
752    }
753
754    // Sign extension.  Compute the demanded bits in the result that are not
755    // present in the input.
756    APInt NewBits =
757      APInt::getHighBitsSet(BitWidth,
758                            BitWidth - ExVT.getScalarType().getSizeInBits());
759
760    // If none of the extended bits are demanded, eliminate the sextinreg.
761    if ((NewBits & NewMask) == 0)
762      return TLO.CombineTo(Op, Op.getOperand(0));
763
764    APInt InSignBit =
765      APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth);
766    APInt InputDemandedBits =
767      APInt::getLowBitsSet(BitWidth,
768                           ExVT.getScalarType().getSizeInBits()) &
769      NewMask;
770
771    // Since the sign extended bits are demanded, we know that the sign
772    // bit is demanded.
773    InputDemandedBits |= InSignBit;
774
775    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
776                             KnownZero, KnownOne, TLO, Depth+1))
777      return true;
778    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
779
780    // If the sign bit of the input is known set or clear, then we know the
781    // top bits of the result.
782
783    // If the input sign bit is known zero, convert this into a zero extension.
784    if (KnownZero.intersects(InSignBit))
785      return TLO.CombineTo(Op,
786                          TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT));
787
788    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
789      KnownOne |= NewBits;
790      KnownZero &= ~NewBits;
791    } else {                       // Input sign bit unknown
792      KnownZero &= ~NewBits;
793      KnownOne &= ~NewBits;
794    }
795    break;
796  }
797  case ISD::ZERO_EXTEND: {
798    unsigned OperandBitWidth =
799      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
800    APInt InMask = NewMask.trunc(OperandBitWidth);
801
802    // If none of the top bits are demanded, convert this into an any_extend.
803    APInt NewBits =
804      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
805    if (!NewBits.intersects(NewMask))
806      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
807                                               Op.getValueType(),
808                                               Op.getOperand(0)));
809
810    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
811                             KnownZero, KnownOne, TLO, Depth+1))
812      return true;
813    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
814    KnownZero = KnownZero.zext(BitWidth);
815    KnownOne = KnownOne.zext(BitWidth);
816    KnownZero |= NewBits;
817    break;
818  }
819  case ISD::SIGN_EXTEND: {
820    EVT InVT = Op.getOperand(0).getValueType();
821    unsigned InBits = InVT.getScalarType().getSizeInBits();
822    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
823    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
824    APInt NewBits   = ~InMask & NewMask;
825
826    // If none of the top bits are demanded, convert this into an any_extend.
827    if (NewBits == 0)
828      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
829                                              Op.getValueType(),
830                                              Op.getOperand(0)));
831
832    // Since some of the sign extended bits are demanded, we know that the sign
833    // bit is demanded.
834    APInt InDemandedBits = InMask & NewMask;
835    InDemandedBits |= InSignBit;
836    InDemandedBits = InDemandedBits.trunc(InBits);
837
838    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
839                             KnownOne, TLO, Depth+1))
840      return true;
841    KnownZero = KnownZero.zext(BitWidth);
842    KnownOne = KnownOne.zext(BitWidth);
843
844    // If the sign bit is known zero, convert this to a zero extend.
845    if (KnownZero.intersects(InSignBit))
846      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
847                                               Op.getValueType(),
848                                               Op.getOperand(0)));
849
850    // If the sign bit is known one, the top bits match.
851    if (KnownOne.intersects(InSignBit)) {
852      KnownOne |= NewBits;
853      assert((KnownZero & NewBits) == 0);
854    } else {   // Otherwise, top bits aren't known.
855      assert((KnownOne & NewBits) == 0);
856      assert((KnownZero & NewBits) == 0);
857    }
858    break;
859  }
860  case ISD::ANY_EXTEND: {
861    unsigned OperandBitWidth =
862      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
863    APInt InMask = NewMask.trunc(OperandBitWidth);
864    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
865                             KnownZero, KnownOne, TLO, Depth+1))
866      return true;
867    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
868    KnownZero = KnownZero.zext(BitWidth);
869    KnownOne = KnownOne.zext(BitWidth);
870    break;
871  }
872  case ISD::TRUNCATE: {
873    // Simplify the input, using demanded bit information, and compute the known
874    // zero/one bits live out.
875    unsigned OperandBitWidth =
876      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
877    APInt TruncMask = NewMask.zext(OperandBitWidth);
878    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
879                             KnownZero, KnownOne, TLO, Depth+1))
880      return true;
881    KnownZero = KnownZero.trunc(BitWidth);
882    KnownOne = KnownOne.trunc(BitWidth);
883
884    // If the input is only used by this truncate, see if we can shrink it based
885    // on the known demanded bits.
886    if (Op.getOperand(0).getNode()->hasOneUse()) {
887      SDValue In = Op.getOperand(0);
888      switch (In.getOpcode()) {
889      default: break;
890      case ISD::SRL:
891        // Shrink SRL by a constant if none of the high bits shifted in are
892        // demanded.
893        if (TLO.LegalTypes() &&
894            !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
895          // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
896          // undesirable.
897          break;
898        ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
899        if (!ShAmt)
900          break;
901        SDValue Shift = In.getOperand(1);
902        if (TLO.LegalTypes()) {
903          uint64_t ShVal = ShAmt->getZExtValue();
904          Shift =
905            TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
906        }
907
908        APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
909                                               OperandBitWidth - BitWidth);
910        HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
911
912        if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
913          // None of the shifted in bits are needed.  Add a truncate of the
914          // shift input, then shift it.
915          SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
916                                             Op.getValueType(),
917                                             In.getOperand(0));
918          return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
919                                                   Op.getValueType(),
920                                                   NewTrunc,
921                                                   Shift));
922        }
923        break;
924      }
925    }
926
927    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
928    break;
929  }
930  case ISD::AssertZext: {
931    // AssertZext demands all of the high bits, plus any of the low bits
932    // demanded by its users.
933    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
934    APInt InMask = APInt::getLowBitsSet(BitWidth,
935                                        VT.getSizeInBits());
936    if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
937                             KnownZero, KnownOne, TLO, Depth+1))
938      return true;
939    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
940
941    KnownZero |= ~InMask & NewMask;
942    break;
943  }
944  case ISD::BITCAST:
945    // If this is an FP->Int bitcast and if the sign bit is the only
946    // thing demanded, turn this into a FGETSIGN.
947    if (!TLO.LegalOperations() &&
948        !Op.getValueType().isVector() &&
949        !Op.getOperand(0).getValueType().isVector() &&
950        NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
951        Op.getOperand(0).getValueType().isFloatingPoint()) {
952      bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
953      bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
954      if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) {
955        EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
956        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
957        // place.  We expect the SHL to be eliminated by other optimizations.
958        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
959        unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
960        if (!OpVTLegal && OpVTSizeInBits > 32)
961          Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
962        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
963        SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType());
964        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
965                                                 Op.getValueType(),
966                                                 Sign, ShAmt));
967      }
968    }
969    break;
970  case ISD::ADD:
971  case ISD::MUL:
972  case ISD::SUB: {
973    // Add, Sub, and Mul don't demand any bits in positions beyond that
974    // of the highest bit demanded of them.
975    APInt LoMask = APInt::getLowBitsSet(BitWidth,
976                                        BitWidth - NewMask.countLeadingZeros());
977    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
978                             KnownOne2, TLO, Depth+1))
979      return true;
980    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
981                             KnownOne2, TLO, Depth+1))
982      return true;
983    // See if the operation should be performed at a smaller bit width.
984    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
985      return true;
986  }
987  // FALL THROUGH
988  default:
989    // Just use ComputeMaskedBits to compute output bits.
990    TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
991    break;
992  }
993
994  // If we know the value of all of the demanded bits, return this as a
995  // constant.
996  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
997    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
998
999  return false;
1000}
1001
1002/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1003/// in Mask are known to be either zero or one and return them in the
1004/// KnownZero/KnownOne bitsets.
1005void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1006                                                    APInt &KnownZero,
1007                                                    APInt &KnownOne,
1008                                                    const SelectionDAG &DAG,
1009                                                    unsigned Depth) const {
1010  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1011          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1012          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1013          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1014         "Should use MaskedValueIsZero if you don't know whether Op"
1015         " is a target node!");
1016  KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
1017}
1018
1019/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1020/// targets that want to expose additional information about sign bits to the
1021/// DAG Combiner.
1022unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1023                                                         unsigned Depth) const {
1024  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1025          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1026          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1027          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1028         "Should use ComputeNumSignBits if you don't know whether Op"
1029         " is a target node!");
1030  return 1;
1031}
1032
1033/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1034/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1035/// determine which bit is set.
1036///
1037static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1038  // A left-shift of a constant one will have exactly one bit set, because
1039  // shifting the bit off the end is undefined.
1040  if (Val.getOpcode() == ISD::SHL)
1041    if (ConstantSDNode *C =
1042         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1043      if (C->getAPIntValue() == 1)
1044        return true;
1045
1046  // Similarly, a right-shift of a constant sign-bit will have exactly
1047  // one bit set.
1048  if (Val.getOpcode() == ISD::SRL)
1049    if (ConstantSDNode *C =
1050         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1051      if (C->getAPIntValue().isSignBit())
1052        return true;
1053
1054  // More could be done here, though the above checks are enough
1055  // to handle some common cases.
1056
1057  // Fall back to ComputeMaskedBits to catch other known cases.
1058  EVT OpVT = Val.getValueType();
1059  unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1060  APInt KnownZero, KnownOne;
1061  DAG.ComputeMaskedBits(Val, KnownZero, KnownOne);
1062  return (KnownZero.countPopulation() == BitWidth - 1) &&
1063         (KnownOne.countPopulation() == 1);
1064}
1065
1066/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1067/// and cc. If it is unable to simplify it, return a null SDValue.
1068SDValue
1069TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1070                              ISD::CondCode Cond, bool foldBooleans,
1071                              DAGCombinerInfo &DCI, SDLoc dl) const {
1072  SelectionDAG &DAG = DCI.DAG;
1073
1074  // These setcc operations always fold.
1075  switch (Cond) {
1076  default: break;
1077  case ISD::SETFALSE:
1078  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1079  case ISD::SETTRUE:
1080  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1081  }
1082
1083  // Ensure that the constant occurs on the RHS, and fold constant
1084  // comparisons.
1085  if (isa<ConstantSDNode>(N0.getNode()))
1086    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1087
1088  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1089    const APInt &C1 = N1C->getAPIntValue();
1090
1091    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1092    // equality comparison, then we're just comparing whether X itself is
1093    // zero.
1094    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1095        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1096        N0.getOperand(1).getOpcode() == ISD::Constant) {
1097      const APInt &ShAmt
1098        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1099      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1100          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1101        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1102          // (srl (ctlz x), 5) == 0  -> X != 0
1103          // (srl (ctlz x), 5) != 1  -> X != 0
1104          Cond = ISD::SETNE;
1105        } else {
1106          // (srl (ctlz x), 5) != 0  -> X == 0
1107          // (srl (ctlz x), 5) == 1  -> X == 0
1108          Cond = ISD::SETEQ;
1109        }
1110        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1111        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1112                            Zero, Cond);
1113      }
1114    }
1115
1116    SDValue CTPOP = N0;
1117    // Look through truncs that don't change the value of a ctpop.
1118    if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1119      CTPOP = N0.getOperand(0);
1120
1121    if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1122        (N0 == CTPOP || N0.getValueType().getSizeInBits() >
1123                        Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
1124      EVT CTVT = CTPOP.getValueType();
1125      SDValue CTOp = CTPOP.getOperand(0);
1126
1127      // (ctpop x) u< 2 -> (x & x-1) == 0
1128      // (ctpop x) u> 1 -> (x & x-1) != 0
1129      if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1130        SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1131                                  DAG.getConstant(1, CTVT));
1132        SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1133        ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1134        return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
1135      }
1136
1137      // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1138    }
1139
1140    // (zext x) == C --> x == (trunc C)
1141    if (DCI.isBeforeLegalize() && N0->hasOneUse() &&
1142        (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1143      unsigned MinBits = N0.getValueSizeInBits();
1144      SDValue PreZExt;
1145      if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1146        // ZExt
1147        MinBits = N0->getOperand(0).getValueSizeInBits();
1148        PreZExt = N0->getOperand(0);
1149      } else if (N0->getOpcode() == ISD::AND) {
1150        // DAGCombine turns costly ZExts into ANDs
1151        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1152          if ((C->getAPIntValue()+1).isPowerOf2()) {
1153            MinBits = C->getAPIntValue().countTrailingOnes();
1154            PreZExt = N0->getOperand(0);
1155          }
1156      } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
1157        // ZEXTLOAD
1158        if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1159          MinBits = LN0->getMemoryVT().getSizeInBits();
1160          PreZExt = N0;
1161        }
1162      }
1163
1164      // Make sure we're not losing bits from the constant.
1165      if (MinBits > 0 &&
1166          MinBits < C1.getBitWidth() && MinBits >= C1.getActiveBits()) {
1167        EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
1168        if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
1169          // Will get folded away.
1170          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt);
1171          SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
1172          return DAG.getSetCC(dl, VT, Trunc, C, Cond);
1173        }
1174      }
1175    }
1176
1177    // If the LHS is '(and load, const)', the RHS is 0,
1178    // the test is for equality or unsigned, and all 1 bits of the const are
1179    // in the same partial word, see if we can shorten the load.
1180    if (DCI.isBeforeLegalize() &&
1181        N0.getOpcode() == ISD::AND && C1 == 0 &&
1182        N0.getNode()->hasOneUse() &&
1183        isa<LoadSDNode>(N0.getOperand(0)) &&
1184        N0.getOperand(0).getNode()->hasOneUse() &&
1185        isa<ConstantSDNode>(N0.getOperand(1))) {
1186      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1187      APInt bestMask;
1188      unsigned bestWidth = 0, bestOffset = 0;
1189      if (!Lod->isVolatile() && Lod->isUnindexed()) {
1190        unsigned origWidth = N0.getValueType().getSizeInBits();
1191        unsigned maskWidth = origWidth;
1192        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1193        // 8 bits, but have to be careful...
1194        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1195          origWidth = Lod->getMemoryVT().getSizeInBits();
1196        const APInt &Mask =
1197          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1198        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1199          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1200          for (unsigned offset=0; offset<origWidth/width; offset++) {
1201            if ((newMask & Mask) == Mask) {
1202              if (!getDataLayout()->isLittleEndian())
1203                bestOffset = (origWidth/width - offset - 1) * (width/8);
1204              else
1205                bestOffset = (uint64_t)offset * (width/8);
1206              bestMask = Mask.lshr(offset * (width/8) * 8);
1207              bestWidth = width;
1208              break;
1209            }
1210            newMask = newMask << width;
1211          }
1212        }
1213      }
1214      if (bestWidth) {
1215        EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
1216        if (newVT.isRound()) {
1217          EVT PtrType = Lod->getOperand(1).getValueType();
1218          SDValue Ptr = Lod->getBasePtr();
1219          if (bestOffset != 0)
1220            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1221                              DAG.getConstant(bestOffset, PtrType));
1222          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1223          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1224                                Lod->getPointerInfo().getWithOffset(bestOffset),
1225                                        false, false, false, NewAlign);
1226          return DAG.getSetCC(dl, VT,
1227                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1228                                      DAG.getConstant(bestMask.trunc(bestWidth),
1229                                                      newVT)),
1230                              DAG.getConstant(0LL, newVT), Cond);
1231        }
1232      }
1233    }
1234
1235    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1236    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1237      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1238
1239      // If the comparison constant has bits in the upper part, the
1240      // zero-extended value could never match.
1241      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1242                                              C1.getBitWidth() - InSize))) {
1243        switch (Cond) {
1244        case ISD::SETUGT:
1245        case ISD::SETUGE:
1246        case ISD::SETEQ: return DAG.getConstant(0, VT);
1247        case ISD::SETULT:
1248        case ISD::SETULE:
1249        case ISD::SETNE: return DAG.getConstant(1, VT);
1250        case ISD::SETGT:
1251        case ISD::SETGE:
1252          // True if the sign bit of C1 is set.
1253          return DAG.getConstant(C1.isNegative(), VT);
1254        case ISD::SETLT:
1255        case ISD::SETLE:
1256          // True if the sign bit of C1 isn't set.
1257          return DAG.getConstant(C1.isNonNegative(), VT);
1258        default:
1259          break;
1260        }
1261      }
1262
1263      // Otherwise, we can perform the comparison with the low bits.
1264      switch (Cond) {
1265      case ISD::SETEQ:
1266      case ISD::SETNE:
1267      case ISD::SETUGT:
1268      case ISD::SETUGE:
1269      case ISD::SETULT:
1270      case ISD::SETULE: {
1271        EVT newVT = N0.getOperand(0).getValueType();
1272        if (DCI.isBeforeLegalizeOps() ||
1273            (isOperationLegal(ISD::SETCC, newVT) &&
1274             getCondCodeAction(Cond, newVT.getSimpleVT())==Legal))
1275          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1276                              DAG.getConstant(C1.trunc(InSize), newVT),
1277                              Cond);
1278        break;
1279      }
1280      default:
1281        break;   // todo, be more careful with signed comparisons
1282      }
1283    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1284               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1285      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1286      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1287      EVT ExtDstTy = N0.getValueType();
1288      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1289
1290      // If the constant doesn't fit into the number of bits for the source of
1291      // the sign extension, it is impossible for both sides to be equal.
1292      if (C1.getMinSignedBits() > ExtSrcTyBits)
1293        return DAG.getConstant(Cond == ISD::SETNE, VT);
1294
1295      SDValue ZextOp;
1296      EVT Op0Ty = N0.getOperand(0).getValueType();
1297      if (Op0Ty == ExtSrcTy) {
1298        ZextOp = N0.getOperand(0);
1299      } else {
1300        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1301        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1302                              DAG.getConstant(Imm, Op0Ty));
1303      }
1304      if (!DCI.isCalledByLegalizer())
1305        DCI.AddToWorklist(ZextOp.getNode());
1306      // Otherwise, make this a use of a zext.
1307      return DAG.getSetCC(dl, VT, ZextOp,
1308                          DAG.getConstant(C1 & APInt::getLowBitsSet(
1309                                                              ExtDstTyBits,
1310                                                              ExtSrcTyBits),
1311                                          ExtDstTy),
1312                          Cond);
1313    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1314                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1315      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1316      if (N0.getOpcode() == ISD::SETCC &&
1317          isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1318        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
1319        if (TrueWhenTrue)
1320          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1321        // Invert the condition.
1322        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1323        CC = ISD::getSetCCInverse(CC,
1324                                  N0.getOperand(0).getValueType().isInteger());
1325        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1326      }
1327
1328      if ((N0.getOpcode() == ISD::XOR ||
1329           (N0.getOpcode() == ISD::AND &&
1330            N0.getOperand(0).getOpcode() == ISD::XOR &&
1331            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1332          isa<ConstantSDNode>(N0.getOperand(1)) &&
1333          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1334        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1335        // can only do this if the top bits are known zero.
1336        unsigned BitWidth = N0.getValueSizeInBits();
1337        if (DAG.MaskedValueIsZero(N0,
1338                                  APInt::getHighBitsSet(BitWidth,
1339                                                        BitWidth-1))) {
1340          // Okay, get the un-inverted input value.
1341          SDValue Val;
1342          if (N0.getOpcode() == ISD::XOR)
1343            Val = N0.getOperand(0);
1344          else {
1345            assert(N0.getOpcode() == ISD::AND &&
1346                    N0.getOperand(0).getOpcode() == ISD::XOR);
1347            // ((X^1)&1)^1 -> X & 1
1348            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1349                              N0.getOperand(0).getOperand(0),
1350                              N0.getOperand(1));
1351          }
1352
1353          return DAG.getSetCC(dl, VT, Val, N1,
1354                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1355        }
1356      } else if (N1C->getAPIntValue() == 1 &&
1357                 (VT == MVT::i1 ||
1358                  getBooleanContents(false) == ZeroOrOneBooleanContent)) {
1359        SDValue Op0 = N0;
1360        if (Op0.getOpcode() == ISD::TRUNCATE)
1361          Op0 = Op0.getOperand(0);
1362
1363        if ((Op0.getOpcode() == ISD::XOR) &&
1364            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
1365            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
1366          // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
1367          Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
1368          return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
1369                              Cond);
1370        }
1371        if (Op0.getOpcode() == ISD::AND &&
1372            isa<ConstantSDNode>(Op0.getOperand(1)) &&
1373            cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
1374          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
1375          if (Op0.getValueType().bitsGT(VT))
1376            Op0 = DAG.getNode(ISD::AND, dl, VT,
1377                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
1378                          DAG.getConstant(1, VT));
1379          else if (Op0.getValueType().bitsLT(VT))
1380            Op0 = DAG.getNode(ISD::AND, dl, VT,
1381                        DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
1382                        DAG.getConstant(1, VT));
1383
1384          return DAG.getSetCC(dl, VT, Op0,
1385                              DAG.getConstant(0, Op0.getValueType()),
1386                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1387        }
1388        if (Op0.getOpcode() == ISD::AssertZext &&
1389            cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
1390          return DAG.getSetCC(dl, VT, Op0,
1391                              DAG.getConstant(0, Op0.getValueType()),
1392                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1393      }
1394    }
1395
1396    APInt MinVal, MaxVal;
1397    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1398    if (ISD::isSignedIntSetCC(Cond)) {
1399      MinVal = APInt::getSignedMinValue(OperandBitSize);
1400      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1401    } else {
1402      MinVal = APInt::getMinValue(OperandBitSize);
1403      MaxVal = APInt::getMaxValue(OperandBitSize);
1404    }
1405
1406    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1407    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1408      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1409      // X >= C0 --> X > (C0-1)
1410      return DAG.getSetCC(dl, VT, N0,
1411                          DAG.getConstant(C1-1, N1.getValueType()),
1412                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1413    }
1414
1415    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1416      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1417      // X <= C0 --> X < (C0+1)
1418      return DAG.getSetCC(dl, VT, N0,
1419                          DAG.getConstant(C1+1, N1.getValueType()),
1420                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1421    }
1422
1423    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1424      return DAG.getConstant(0, VT);      // X < MIN --> false
1425    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1426      return DAG.getConstant(1, VT);      // X >= MIN --> true
1427    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1428      return DAG.getConstant(0, VT);      // X > MAX --> false
1429    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1430      return DAG.getConstant(1, VT);      // X <= MAX --> true
1431
1432    // Canonicalize setgt X, Min --> setne X, Min
1433    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1434      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1435    // Canonicalize setlt X, Max --> setne X, Max
1436    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1437      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1438
1439    // If we have setult X, 1, turn it into seteq X, 0
1440    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1441      return DAG.getSetCC(dl, VT, N0,
1442                          DAG.getConstant(MinVal, N0.getValueType()),
1443                          ISD::SETEQ);
1444    // If we have setugt X, Max-1, turn it into seteq X, Max
1445    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1446      return DAG.getSetCC(dl, VT, N0,
1447                          DAG.getConstant(MaxVal, N0.getValueType()),
1448                          ISD::SETEQ);
1449
1450    // If we have "setcc X, C0", check to see if we can shrink the immediate
1451    // by changing cc.
1452
1453    // SETUGT X, SINTMAX  -> SETLT X, 0
1454    if (Cond == ISD::SETUGT &&
1455        C1 == APInt::getSignedMaxValue(OperandBitSize))
1456      return DAG.getSetCC(dl, VT, N0,
1457                          DAG.getConstant(0, N1.getValueType()),
1458                          ISD::SETLT);
1459
1460    // SETULT X, SINTMIN  -> SETGT X, -1
1461    if (Cond == ISD::SETULT &&
1462        C1 == APInt::getSignedMinValue(OperandBitSize)) {
1463      SDValue ConstMinusOne =
1464          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
1465                          N1.getValueType());
1466      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1467    }
1468
1469    // Fold bit comparisons when we can.
1470    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1471        (VT == N0.getValueType() ||
1472         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
1473        N0.getOpcode() == ISD::AND)
1474      if (ConstantSDNode *AndRHS =
1475                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1476        EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
1477          getPointerTy() : getShiftAmountTy(N0.getValueType());
1478        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1479          // Perform the xform if the AND RHS is a single bit.
1480          if (AndRHS->getAPIntValue().isPowerOf2()) {
1481            return DAG.getNode(ISD::TRUNCATE, dl, VT,
1482                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1483                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
1484          }
1485        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
1486          // (X & 8) == 8  -->  (X & 8) >> 3
1487          // Perform the xform if C1 is a single bit.
1488          if (C1.isPowerOf2()) {
1489            return DAG.getNode(ISD::TRUNCATE, dl, VT,
1490                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1491                                      DAG.getConstant(C1.logBase2(), ShiftTy)));
1492          }
1493        }
1494      }
1495
1496    if (C1.getMinSignedBits() <= 64 &&
1497        !isLegalICmpImmediate(C1.getSExtValue())) {
1498      // (X & -256) == 256 -> (X >> 8) == 1
1499      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1500          N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
1501        if (ConstantSDNode *AndRHS =
1502            dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1503          const APInt &AndRHSC = AndRHS->getAPIntValue();
1504          if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
1505            unsigned ShiftBits = AndRHSC.countTrailingZeros();
1506            EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
1507              getPointerTy() : getShiftAmountTy(N0.getValueType());
1508            EVT CmpTy = N0.getValueType();
1509            SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
1510                                        DAG.getConstant(ShiftBits, ShiftTy));
1511            SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), CmpTy);
1512            return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
1513          }
1514        }
1515      } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
1516                 Cond == ISD::SETULE || Cond == ISD::SETUGT) {
1517        bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
1518        // X <  0x100000000 -> (X >> 32) <  1
1519        // X >= 0x100000000 -> (X >> 32) >= 1
1520        // X <= 0x0ffffffff -> (X >> 32) <  1
1521        // X >  0x0ffffffff -> (X >> 32) >= 1
1522        unsigned ShiftBits;
1523        APInt NewC = C1;
1524        ISD::CondCode NewCond = Cond;
1525        if (AdjOne) {
1526          ShiftBits = C1.countTrailingOnes();
1527          NewC = NewC + 1;
1528          NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1529        } else {
1530          ShiftBits = C1.countTrailingZeros();
1531        }
1532        NewC = NewC.lshr(ShiftBits);
1533        if (ShiftBits && isLegalICmpImmediate(NewC.getSExtValue())) {
1534          EVT ShiftTy = DCI.isBeforeLegalizeOps() ?
1535            getPointerTy() : getShiftAmountTy(N0.getValueType());
1536          EVT CmpTy = N0.getValueType();
1537          SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
1538                                      DAG.getConstant(ShiftBits, ShiftTy));
1539          SDValue CmpRHS = DAG.getConstant(NewC, CmpTy);
1540          return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
1541        }
1542      }
1543    }
1544  }
1545
1546  if (isa<ConstantFPSDNode>(N0.getNode())) {
1547    // Constant fold or commute setcc.
1548    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1549    if (O.getNode()) return O;
1550  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1551    // If the RHS of an FP comparison is a constant, simplify it away in
1552    // some cases.
1553    if (CFP->getValueAPF().isNaN()) {
1554      // If an operand is known to be a nan, we can fold it.
1555      switch (ISD::getUnorderedFlavor(Cond)) {
1556      default: llvm_unreachable("Unknown flavor!");
1557      case 0:  // Known false.
1558        return DAG.getConstant(0, VT);
1559      case 1:  // Known true.
1560        return DAG.getConstant(1, VT);
1561      case 2:  // Undefined.
1562        return DAG.getUNDEF(VT);
1563      }
1564    }
1565
1566    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1567    // constant if knowing that the operand is non-nan is enough.  We prefer to
1568    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1569    // materialize 0.0.
1570    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1571      return DAG.getSetCC(dl, VT, N0, N0, Cond);
1572
1573    // If the condition is not legal, see if we can find an equivalent one
1574    // which is legal.
1575    if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
1576      // If the comparison was an awkward floating-point == or != and one of
1577      // the comparison operands is infinity or negative infinity, convert the
1578      // condition to a less-awkward <= or >=.
1579      if (CFP->getValueAPF().isInfinity()) {
1580        if (CFP->getValueAPF().isNegative()) {
1581          if (Cond == ISD::SETOEQ &&
1582              isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
1583            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
1584          if (Cond == ISD::SETUEQ &&
1585              isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
1586            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
1587          if (Cond == ISD::SETUNE &&
1588              isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
1589            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
1590          if (Cond == ISD::SETONE &&
1591              isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
1592            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
1593        } else {
1594          if (Cond == ISD::SETOEQ &&
1595              isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
1596            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
1597          if (Cond == ISD::SETUEQ &&
1598              isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
1599            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
1600          if (Cond == ISD::SETUNE &&
1601              isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
1602            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
1603          if (Cond == ISD::SETONE &&
1604              isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
1605            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
1606        }
1607      }
1608    }
1609  }
1610
1611  if (N0 == N1) {
1612    // The sext(setcc()) => setcc() optimization relies on the appropriate
1613    // constant being emitted.
1614    uint64_t EqVal = 0;
1615    switch (getBooleanContents(N0.getValueType().isVector())) {
1616    case UndefinedBooleanContent:
1617    case ZeroOrOneBooleanContent:
1618      EqVal = ISD::isTrueWhenEqual(Cond);
1619      break;
1620    case ZeroOrNegativeOneBooleanContent:
1621      EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
1622      break;
1623    }
1624
1625    // We can always fold X == X for integer setcc's.
1626    if (N0.getValueType().isInteger()) {
1627      return DAG.getConstant(EqVal, VT);
1628    }
1629    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1630    if (UOF == 2)   // FP operators that are undefined on NaNs.
1631      return DAG.getConstant(EqVal, VT);
1632    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1633      return DAG.getConstant(EqVal, VT);
1634    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1635    // if it is not already.
1636    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1637    if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
1638          getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal))
1639      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
1640  }
1641
1642  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1643      N0.getValueType().isInteger()) {
1644    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1645        N0.getOpcode() == ISD::XOR) {
1646      // Simplify (X+Y) == (X+Z) -->  Y == Z
1647      if (N0.getOpcode() == N1.getOpcode()) {
1648        if (N0.getOperand(0) == N1.getOperand(0))
1649          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
1650        if (N0.getOperand(1) == N1.getOperand(1))
1651          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
1652        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1653          // If X op Y == Y op X, try other combinations.
1654          if (N0.getOperand(0) == N1.getOperand(1))
1655            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
1656                                Cond);
1657          if (N0.getOperand(1) == N1.getOperand(0))
1658            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
1659                                Cond);
1660        }
1661      }
1662
1663      // If RHS is a legal immediate value for a compare instruction, we need
1664      // to be careful about increasing register pressure needlessly.
1665      bool LegalRHSImm = false;
1666
1667      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1668        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1669          // Turn (X+C1) == C2 --> X == C2-C1
1670          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
1671            return DAG.getSetCC(dl, VT, N0.getOperand(0),
1672                                DAG.getConstant(RHSC->getAPIntValue()-
1673                                                LHSR->getAPIntValue(),
1674                                N0.getValueType()), Cond);
1675          }
1676
1677          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1678          if (N0.getOpcode() == ISD::XOR)
1679            // If we know that all of the inverted bits are zero, don't bother
1680            // performing the inversion.
1681            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1682              return
1683                DAG.getSetCC(dl, VT, N0.getOperand(0),
1684                             DAG.getConstant(LHSR->getAPIntValue() ^
1685                                               RHSC->getAPIntValue(),
1686                                             N0.getValueType()),
1687                             Cond);
1688        }
1689
1690        // Turn (C1-X) == C2 --> X == C1-C2
1691        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1692          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
1693            return
1694              DAG.getSetCC(dl, VT, N0.getOperand(1),
1695                           DAG.getConstant(SUBC->getAPIntValue() -
1696                                             RHSC->getAPIntValue(),
1697                                           N0.getValueType()),
1698                           Cond);
1699          }
1700        }
1701
1702        // Could RHSC fold directly into a compare?
1703        if (RHSC->getValueType(0).getSizeInBits() <= 64)
1704          LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
1705      }
1706
1707      // Simplify (X+Z) == X -->  Z == 0
1708      // Don't do this if X is an immediate that can fold into a cmp
1709      // instruction and X+Z has other uses. It could be an induction variable
1710      // chain, and the transform would increase register pressure.
1711      if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
1712        if (N0.getOperand(0) == N1)
1713          return DAG.getSetCC(dl, VT, N0.getOperand(1),
1714                              DAG.getConstant(0, N0.getValueType()), Cond);
1715        if (N0.getOperand(1) == N1) {
1716          if (DAG.isCommutativeBinOp(N0.getOpcode()))
1717            return DAG.getSetCC(dl, VT, N0.getOperand(0),
1718                                DAG.getConstant(0, N0.getValueType()), Cond);
1719          if (N0.getNode()->hasOneUse()) {
1720            assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1721            // (Z-X) == X  --> Z == X<<1
1722            SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1,
1723                       DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
1724            if (!DCI.isCalledByLegalizer())
1725              DCI.AddToWorklist(SH.getNode());
1726            return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
1727          }
1728        }
1729      }
1730    }
1731
1732    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1733        N1.getOpcode() == ISD::XOR) {
1734      // Simplify  X == (X+Z) -->  Z == 0
1735      if (N1.getOperand(0) == N0)
1736        return DAG.getSetCC(dl, VT, N1.getOperand(1),
1737                        DAG.getConstant(0, N1.getValueType()), Cond);
1738      if (N1.getOperand(1) == N0) {
1739        if (DAG.isCommutativeBinOp(N1.getOpcode()))
1740          return DAG.getSetCC(dl, VT, N1.getOperand(0),
1741                          DAG.getConstant(0, N1.getValueType()), Cond);
1742        if (N1.getNode()->hasOneUse()) {
1743          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1744          // X == (Z-X)  --> X<<1 == Z
1745          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
1746                       DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
1747          if (!DCI.isCalledByLegalizer())
1748            DCI.AddToWorklist(SH.getNode());
1749          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
1750        }
1751      }
1752    }
1753
1754    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
1755    // Note that where y is variable and is known to have at most
1756    // one bit set (for example, if it is z&1) we cannot do this;
1757    // the expressions are not equivalent when y==0.
1758    if (N0.getOpcode() == ISD::AND)
1759      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
1760        if (ValueHasExactlyOneBitSet(N1, DAG)) {
1761          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1762          SDValue Zero = DAG.getConstant(0, N1.getValueType());
1763          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
1764        }
1765      }
1766    if (N1.getOpcode() == ISD::AND)
1767      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
1768        if (ValueHasExactlyOneBitSet(N0, DAG)) {
1769          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1770          SDValue Zero = DAG.getConstant(0, N0.getValueType());
1771          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
1772        }
1773      }
1774  }
1775
1776  // Fold away ALL boolean setcc's.
1777  SDValue Temp;
1778  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1779    switch (Cond) {
1780    default: llvm_unreachable("Unknown integer setcc!");
1781    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
1782      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
1783      N0 = DAG.getNOT(dl, Temp, MVT::i1);
1784      if (!DCI.isCalledByLegalizer())
1785        DCI.AddToWorklist(Temp.getNode());
1786      break;
1787    case ISD::SETNE:  // X != Y   -->  (X^Y)
1788      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
1789      break;
1790    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
1791    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
1792      Temp = DAG.getNOT(dl, N0, MVT::i1);
1793      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
1794      if (!DCI.isCalledByLegalizer())
1795        DCI.AddToWorklist(Temp.getNode());
1796      break;
1797    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
1798    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
1799      Temp = DAG.getNOT(dl, N1, MVT::i1);
1800      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
1801      if (!DCI.isCalledByLegalizer())
1802        DCI.AddToWorklist(Temp.getNode());
1803      break;
1804    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
1805    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
1806      Temp = DAG.getNOT(dl, N0, MVT::i1);
1807      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
1808      if (!DCI.isCalledByLegalizer())
1809        DCI.AddToWorklist(Temp.getNode());
1810      break;
1811    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
1812    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
1813      Temp = DAG.getNOT(dl, N1, MVT::i1);
1814      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
1815      break;
1816    }
1817    if (VT != MVT::i1) {
1818      if (!DCI.isCalledByLegalizer())
1819        DCI.AddToWorklist(N0.getNode());
1820      // FIXME: If running after legalize, we probably can't do this.
1821      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
1822    }
1823    return N0;
1824  }
1825
1826  // Could not fold it.
1827  return SDValue();
1828}
1829
1830/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
1831/// node is a GlobalAddress + offset.
1832bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
1833                                    int64_t &Offset) const {
1834  if (isa<GlobalAddressSDNode>(N)) {
1835    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
1836    GA = GASD->getGlobal();
1837    Offset += GASD->getOffset();
1838    return true;
1839  }
1840
1841  if (N->getOpcode() == ISD::ADD) {
1842    SDValue N1 = N->getOperand(0);
1843    SDValue N2 = N->getOperand(1);
1844    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
1845      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
1846      if (V) {
1847        Offset += V->getSExtValue();
1848        return true;
1849      }
1850    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
1851      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
1852      if (V) {
1853        Offset += V->getSExtValue();
1854        return true;
1855      }
1856    }
1857  }
1858
1859  return false;
1860}
1861
1862
1863SDValue TargetLowering::
1864PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1865  // Default implementation: no optimization.
1866  return SDValue();
1867}
1868
1869//===----------------------------------------------------------------------===//
1870//  Inline Assembler Implementation Methods
1871//===----------------------------------------------------------------------===//
1872
1873
1874TargetLowering::ConstraintType
1875TargetLowering::getConstraintType(const std::string &Constraint) const {
1876  unsigned S = Constraint.size();
1877
1878  if (S == 1) {
1879    switch (Constraint[0]) {
1880    default: break;
1881    case 'r': return C_RegisterClass;
1882    case 'm':    // memory
1883    case 'o':    // offsetable
1884    case 'V':    // not offsetable
1885      return C_Memory;
1886    case 'i':    // Simple Integer or Relocatable Constant
1887    case 'n':    // Simple Integer
1888    case 'E':    // Floating Point Constant
1889    case 'F':    // Floating Point Constant
1890    case 's':    // Relocatable Constant
1891    case 'p':    // Address.
1892    case 'X':    // Allow ANY value.
1893    case 'I':    // Target registers.
1894    case 'J':
1895    case 'K':
1896    case 'L':
1897    case 'M':
1898    case 'N':
1899    case 'O':
1900    case 'P':
1901    case '<':
1902    case '>':
1903      return C_Other;
1904    }
1905  }
1906
1907  if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
1908    if (S == 8 && !Constraint.compare(1, 6, "memory", 6))  // "{memory}"
1909      return C_Memory;
1910    return C_Register;
1911  }
1912  return C_Unknown;
1913}
1914
1915/// LowerXConstraint - try to replace an X constraint, which matches anything,
1916/// with another that has more specific requirements based on the type of the
1917/// corresponding operand.
1918const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
1919  if (ConstraintVT.isInteger())
1920    return "r";
1921  if (ConstraintVT.isFloatingPoint())
1922    return "f";      // works for many targets
1923  return 0;
1924}
1925
1926/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1927/// vector.  If it is invalid, don't add anything to Ops.
1928void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
1929                                                  std::string &Constraint,
1930                                                  std::vector<SDValue> &Ops,
1931                                                  SelectionDAG &DAG) const {
1932
1933  if (Constraint.length() > 1) return;
1934
1935  char ConstraintLetter = Constraint[0];
1936  switch (ConstraintLetter) {
1937  default: break;
1938  case 'X':     // Allows any operand; labels (basic block) use this.
1939    if (Op.getOpcode() == ISD::BasicBlock) {
1940      Ops.push_back(Op);
1941      return;
1942    }
1943    // fall through
1944  case 'i':    // Simple Integer or Relocatable Constant
1945  case 'n':    // Simple Integer
1946  case 's': {  // Relocatable Constant
1947    // These operands are interested in values of the form (GV+C), where C may
1948    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
1949    // is possible and fine if either GV or C are missing.
1950    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1951    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1952
1953    // If we have "(add GV, C)", pull out GV/C
1954    if (Op.getOpcode() == ISD::ADD) {
1955      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1956      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1957      if (C == 0 || GA == 0) {
1958        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1959        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1960      }
1961      if (C == 0 || GA == 0)
1962        C = 0, GA = 0;
1963    }
1964
1965    // If we find a valid operand, map to the TargetXXX version so that the
1966    // value itself doesn't get selected.
1967    if (GA) {   // Either &GV   or   &GV+C
1968      if (ConstraintLetter != 'n') {
1969        int64_t Offs = GA->getOffset();
1970        if (C) Offs += C->getZExtValue();
1971        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
1972                                                 C ? SDLoc(C) : SDLoc(),
1973                                                 Op.getValueType(), Offs));
1974        return;
1975      }
1976    }
1977    if (C) {   // just C, no GV.
1978      // Simple constants are not allowed for 's'.
1979      if (ConstraintLetter != 's') {
1980        // gcc prints these as sign extended.  Sign extend value to 64 bits
1981        // now; without this it would get ZExt'd later in
1982        // ScheduleDAGSDNodes::EmitNode, which is very generic.
1983        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
1984                                            MVT::i64));
1985        return;
1986      }
1987    }
1988    break;
1989  }
1990  }
1991}
1992
1993std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
1994getRegForInlineAsmConstraint(const std::string &Constraint,
1995                             MVT VT) const {
1996  if (Constraint[0] != '{')
1997    return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
1998  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1999
2000  // Remove the braces from around the name.
2001  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2002
2003  std::pair<unsigned, const TargetRegisterClass*> R =
2004    std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2005
2006  // Figure out which register class contains this reg.
2007  const TargetRegisterInfo *RI = getTargetMachine().getRegisterInfo();
2008  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2009       E = RI->regclass_end(); RCI != E; ++RCI) {
2010    const TargetRegisterClass *RC = *RCI;
2011
2012    // If none of the value types for this register class are valid, we
2013    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2014    if (!isLegalRC(RC))
2015      continue;
2016
2017    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2018         I != E; ++I) {
2019      if (RegName.equals_lower(RI->getName(*I))) {
2020        std::pair<unsigned, const TargetRegisterClass*> S =
2021          std::make_pair(*I, RC);
2022
2023        // If this register class has the requested value type, return it,
2024        // otherwise keep searching and return the first class found
2025        // if no other is found which explicitly has the requested type.
2026        if (RC->hasType(VT))
2027          return S;
2028        else if (!R.second)
2029          R = S;
2030      }
2031    }
2032  }
2033
2034  return R;
2035}
2036
2037//===----------------------------------------------------------------------===//
2038// Constraint Selection.
2039
2040/// isMatchingInputConstraint - Return true of this is an input operand that is
2041/// a matching constraint like "4".
2042bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2043  assert(!ConstraintCode.empty() && "No known constraint!");
2044  return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
2045}
2046
2047/// getMatchedOperand - If this is an input matching constraint, this method
2048/// returns the output operand it matches.
2049unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2050  assert(!ConstraintCode.empty() && "No known constraint!");
2051  return atoi(ConstraintCode.c_str());
2052}
2053
2054
2055/// ParseConstraints - Split up the constraint string from the inline
2056/// assembly value into the specific constraints and their prefixes,
2057/// and also tie in the associated operand values.
2058/// If this returns an empty vector, and if the constraint string itself
2059/// isn't empty, there was an error parsing.
2060TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
2061    ImmutableCallSite CS) const {
2062  /// ConstraintOperands - Information about all of the constraints.
2063  AsmOperandInfoVector ConstraintOperands;
2064  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2065  unsigned maCount = 0; // Largest number of multiple alternative constraints.
2066
2067  // Do a prepass over the constraints, canonicalizing them, and building up the
2068  // ConstraintOperands list.
2069  InlineAsm::ConstraintInfoVector
2070    ConstraintInfos = IA->ParseConstraints();
2071
2072  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2073  unsigned ResNo = 0;   // ResNo - The result number of the next output.
2074
2075  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
2076    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
2077    AsmOperandInfo &OpInfo = ConstraintOperands.back();
2078
2079    // Update multiple alternative constraint count.
2080    if (OpInfo.multipleAlternatives.size() > maCount)
2081      maCount = OpInfo.multipleAlternatives.size();
2082
2083    OpInfo.ConstraintVT = MVT::Other;
2084
2085    // Compute the value type for each operand.
2086    switch (OpInfo.Type) {
2087    case InlineAsm::isOutput:
2088      // Indirect outputs just consume an argument.
2089      if (OpInfo.isIndirect) {
2090        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2091        break;
2092      }
2093
2094      // The return value of the call is this value.  As such, there is no
2095      // corresponding argument.
2096      assert(!CS.getType()->isVoidTy() &&
2097             "Bad inline asm!");
2098      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
2099        OpInfo.ConstraintVT = getSimpleValueType(STy->getElementType(ResNo));
2100      } else {
2101        assert(ResNo == 0 && "Asm only has one result!");
2102        OpInfo.ConstraintVT = getSimpleValueType(CS.getType());
2103      }
2104      ++ResNo;
2105      break;
2106    case InlineAsm::isInput:
2107      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2108      break;
2109    case InlineAsm::isClobber:
2110      // Nothing to do.
2111      break;
2112    }
2113
2114    if (OpInfo.CallOperandVal) {
2115      llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2116      if (OpInfo.isIndirect) {
2117        llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2118        if (!PtrTy)
2119          report_fatal_error("Indirect operand for inline asm not a pointer!");
2120        OpTy = PtrTy->getElementType();
2121      }
2122
2123      // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2124      if (StructType *STy = dyn_cast<StructType>(OpTy))
2125        if (STy->getNumElements() == 1)
2126          OpTy = STy->getElementType(0);
2127
2128      // If OpTy is not a single value, it may be a struct/union that we
2129      // can tile with integers.
2130      if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2131        unsigned BitSize = getDataLayout()->getTypeSizeInBits(OpTy);
2132        switch (BitSize) {
2133        default: break;
2134        case 1:
2135        case 8:
2136        case 16:
2137        case 32:
2138        case 64:
2139        case 128:
2140          OpInfo.ConstraintVT =
2141            MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2142          break;
2143        }
2144      } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
2145        OpInfo.ConstraintVT = MVT::getIntegerVT(
2146            8*getDataLayout()->getPointerSize(PT->getAddressSpace()));
2147      } else {
2148        OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
2149      }
2150    }
2151  }
2152
2153  // If we have multiple alternative constraints, select the best alternative.
2154  if (ConstraintInfos.size()) {
2155    if (maCount) {
2156      unsigned bestMAIndex = 0;
2157      int bestWeight = -1;
2158      // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2159      int weight = -1;
2160      unsigned maIndex;
2161      // Compute the sums of the weights for each alternative, keeping track
2162      // of the best (highest weight) one so far.
2163      for (maIndex = 0; maIndex < maCount; ++maIndex) {
2164        int weightSum = 0;
2165        for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2166            cIndex != eIndex; ++cIndex) {
2167          AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2168          if (OpInfo.Type == InlineAsm::isClobber)
2169            continue;
2170
2171          // If this is an output operand with a matching input operand,
2172          // look up the matching input. If their types mismatch, e.g. one
2173          // is an integer, the other is floating point, or their sizes are
2174          // different, flag it as an maCantMatch.
2175          if (OpInfo.hasMatchingInput()) {
2176            AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2177            if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2178              if ((OpInfo.ConstraintVT.isInteger() !=
2179                   Input.ConstraintVT.isInteger()) ||
2180                  (OpInfo.ConstraintVT.getSizeInBits() !=
2181                   Input.ConstraintVT.getSizeInBits())) {
2182                weightSum = -1;  // Can't match.
2183                break;
2184              }
2185            }
2186          }
2187          weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2188          if (weight == -1) {
2189            weightSum = -1;
2190            break;
2191          }
2192          weightSum += weight;
2193        }
2194        // Update best.
2195        if (weightSum > bestWeight) {
2196          bestWeight = weightSum;
2197          bestMAIndex = maIndex;
2198        }
2199      }
2200
2201      // Now select chosen alternative in each constraint.
2202      for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2203          cIndex != eIndex; ++cIndex) {
2204        AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2205        if (cInfo.Type == InlineAsm::isClobber)
2206          continue;
2207        cInfo.selectAlternative(bestMAIndex);
2208      }
2209    }
2210  }
2211
2212  // Check and hook up tied operands, choose constraint code to use.
2213  for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2214      cIndex != eIndex; ++cIndex) {
2215    AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2216
2217    // If this is an output operand with a matching input operand, look up the
2218    // matching input. If their types mismatch, e.g. one is an integer, the
2219    // other is floating point, or their sizes are different, flag it as an
2220    // error.
2221    if (OpInfo.hasMatchingInput()) {
2222      AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2223
2224      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2225        std::pair<unsigned, const TargetRegisterClass*> MatchRC =
2226          getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
2227                                       OpInfo.ConstraintVT);
2228        std::pair<unsigned, const TargetRegisterClass*> InputRC =
2229          getRegForInlineAsmConstraint(Input.ConstraintCode,
2230                                       Input.ConstraintVT);
2231        if ((OpInfo.ConstraintVT.isInteger() !=
2232             Input.ConstraintVT.isInteger()) ||
2233            (MatchRC.second != InputRC.second)) {
2234          report_fatal_error("Unsupported asm: input constraint"
2235                             " with a matching output constraint of"
2236                             " incompatible type!");
2237        }
2238      }
2239
2240    }
2241  }
2242
2243  return ConstraintOperands;
2244}
2245
2246
2247/// getConstraintGenerality - Return an integer indicating how general CT
2248/// is.
2249static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2250  switch (CT) {
2251  case TargetLowering::C_Other:
2252  case TargetLowering::C_Unknown:
2253    return 0;
2254  case TargetLowering::C_Register:
2255    return 1;
2256  case TargetLowering::C_RegisterClass:
2257    return 2;
2258  case TargetLowering::C_Memory:
2259    return 3;
2260  }
2261  llvm_unreachable("Invalid constraint type");
2262}
2263
2264/// Examine constraint type and operand type and determine a weight value.
2265/// This object must already have been set up with the operand type
2266/// and the current alternative constraint selected.
2267TargetLowering::ConstraintWeight
2268  TargetLowering::getMultipleConstraintMatchWeight(
2269    AsmOperandInfo &info, int maIndex) const {
2270  InlineAsm::ConstraintCodeVector *rCodes;
2271  if (maIndex >= (int)info.multipleAlternatives.size())
2272    rCodes = &info.Codes;
2273  else
2274    rCodes = &info.multipleAlternatives[maIndex].Codes;
2275  ConstraintWeight BestWeight = CW_Invalid;
2276
2277  // Loop over the options, keeping track of the most general one.
2278  for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
2279    ConstraintWeight weight =
2280      getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
2281    if (weight > BestWeight)
2282      BestWeight = weight;
2283  }
2284
2285  return BestWeight;
2286}
2287
2288/// Examine constraint type and operand type and determine a weight value.
2289/// This object must already have been set up with the operand type
2290/// and the current alternative constraint selected.
2291TargetLowering::ConstraintWeight
2292  TargetLowering::getSingleConstraintMatchWeight(
2293    AsmOperandInfo &info, const char *constraint) const {
2294  ConstraintWeight weight = CW_Invalid;
2295  Value *CallOperandVal = info.CallOperandVal;
2296    // If we don't have a value, we can't do a match,
2297    // but allow it at the lowest weight.
2298  if (CallOperandVal == NULL)
2299    return CW_Default;
2300  // Look at the constraint type.
2301  switch (*constraint) {
2302    case 'i': // immediate integer.
2303    case 'n': // immediate integer with a known value.
2304      if (isa<ConstantInt>(CallOperandVal))
2305        weight = CW_Constant;
2306      break;
2307    case 's': // non-explicit intregal immediate.
2308      if (isa<GlobalValue>(CallOperandVal))
2309        weight = CW_Constant;
2310      break;
2311    case 'E': // immediate float if host format.
2312    case 'F': // immediate float.
2313      if (isa<ConstantFP>(CallOperandVal))
2314        weight = CW_Constant;
2315      break;
2316    case '<': // memory operand with autodecrement.
2317    case '>': // memory operand with autoincrement.
2318    case 'm': // memory operand.
2319    case 'o': // offsettable memory operand
2320    case 'V': // non-offsettable memory operand
2321      weight = CW_Memory;
2322      break;
2323    case 'r': // general register.
2324    case 'g': // general register, memory operand or immediate integer.
2325              // note: Clang converts "g" to "imr".
2326      if (CallOperandVal->getType()->isIntegerTy())
2327        weight = CW_Register;
2328      break;
2329    case 'X': // any operand.
2330    default:
2331      weight = CW_Default;
2332      break;
2333  }
2334  return weight;
2335}
2336
2337/// ChooseConstraint - If there are multiple different constraints that we
2338/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2339/// This is somewhat tricky: constraints fall into four classes:
2340///    Other         -> immediates and magic values
2341///    Register      -> one specific register
2342///    RegisterClass -> a group of regs
2343///    Memory        -> memory
2344/// Ideally, we would pick the most specific constraint possible: if we have
2345/// something that fits into a register, we would pick it.  The problem here
2346/// is that if we have something that could either be in a register or in
2347/// memory that use of the register could cause selection of *other*
2348/// operands to fail: they might only succeed if we pick memory.  Because of
2349/// this the heuristic we use is:
2350///
2351///  1) If there is an 'other' constraint, and if the operand is valid for
2352///     that constraint, use it.  This makes us take advantage of 'i'
2353///     constraints when available.
2354///  2) Otherwise, pick the most general constraint present.  This prefers
2355///     'm' over 'r', for example.
2356///
2357static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2358                             const TargetLowering &TLI,
2359                             SDValue Op, SelectionDAG *DAG) {
2360  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2361  unsigned BestIdx = 0;
2362  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2363  int BestGenerality = -1;
2364
2365  // Loop over the options, keeping track of the most general one.
2366  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2367    TargetLowering::ConstraintType CType =
2368      TLI.getConstraintType(OpInfo.Codes[i]);
2369
2370    // If this is an 'other' constraint, see if the operand is valid for it.
2371    // For example, on X86 we might have an 'rI' constraint.  If the operand
2372    // is an integer in the range [0..31] we want to use I (saving a load
2373    // of a register), otherwise we must use 'r'.
2374    if (CType == TargetLowering::C_Other && Op.getNode()) {
2375      assert(OpInfo.Codes[i].size() == 1 &&
2376             "Unhandled multi-letter 'other' constraint");
2377      std::vector<SDValue> ResultOps;
2378      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
2379                                       ResultOps, *DAG);
2380      if (!ResultOps.empty()) {
2381        BestType = CType;
2382        BestIdx = i;
2383        break;
2384      }
2385    }
2386
2387    // Things with matching constraints can only be registers, per gcc
2388    // documentation.  This mainly affects "g" constraints.
2389    if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
2390      continue;
2391
2392    // This constraint letter is more general than the previous one, use it.
2393    int Generality = getConstraintGenerality(CType);
2394    if (Generality > BestGenerality) {
2395      BestType = CType;
2396      BestIdx = i;
2397      BestGenerality = Generality;
2398    }
2399  }
2400
2401  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2402  OpInfo.ConstraintType = BestType;
2403}
2404
2405/// ComputeConstraintToUse - Determines the constraint code and constraint
2406/// type to use for the specific AsmOperandInfo, setting
2407/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2408void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2409                                            SDValue Op,
2410                                            SelectionDAG *DAG) const {
2411  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2412
2413  // Single-letter constraints ('r') are very common.
2414  if (OpInfo.Codes.size() == 1) {
2415    OpInfo.ConstraintCode = OpInfo.Codes[0];
2416    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2417  } else {
2418    ChooseConstraint(OpInfo, *this, Op, DAG);
2419  }
2420
2421  // 'X' matches anything.
2422  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2423    // Labels and constants are handled elsewhere ('X' is the only thing
2424    // that matches labels).  For Functions, the type here is the type of
2425    // the result, which is not what we want to look at; leave them alone.
2426    Value *v = OpInfo.CallOperandVal;
2427    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2428      OpInfo.CallOperandVal = v;
2429      return;
2430    }
2431
2432    // Otherwise, try to resolve it to something we know about by looking at
2433    // the actual operand type.
2434    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2435      OpInfo.ConstraintCode = Repl;
2436      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2437    }
2438  }
2439}
2440
2441/// \brief Given an exact SDIV by a constant, create a multiplication
2442/// with the multiplicative inverse of the constant.
2443SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, SDLoc dl,
2444                                       SelectionDAG &DAG) const {
2445  ConstantSDNode *C = cast<ConstantSDNode>(Op2);
2446  APInt d = C->getAPIntValue();
2447  assert(d != 0 && "Division by zero!");
2448
2449  // Shift the value upfront if it is even, so the LSB is one.
2450  unsigned ShAmt = d.countTrailingZeros();
2451  if (ShAmt) {
2452    // TODO: For UDIV use SRL instead of SRA.
2453    SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType()));
2454    Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt);
2455    d = d.ashr(ShAmt);
2456  }
2457
2458  // Calculate the multiplicative inverse, using Newton's method.
2459  APInt t, xn = d;
2460  while ((t = d*xn) != 1)
2461    xn *= APInt(d.getBitWidth(), 2) - t;
2462
2463  Op2 = DAG.getConstant(xn, Op1.getValueType());
2464  return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
2465}
2466
2467/// \brief Given an ISD::SDIV node expressing a divide by constant,
2468/// return a DAG expression to select that will generate the same value by
2469/// multiplying by a magic number.  See:
2470/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2471SDValue TargetLowering::
2472BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
2473          std::vector<SDNode*> *Created) const {
2474  EVT VT = N->getValueType(0);
2475  SDLoc dl(N);
2476
2477  // Check to see if we can do this.
2478  // FIXME: We should be more aggressive here.
2479  if (!isTypeLegal(VT))
2480    return SDValue();
2481
2482  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2483  APInt::ms magics = d.magic();
2484
2485  // Multiply the numerator (operand 0) by the magic value
2486  // FIXME: We should support doing a MUL in a wider type
2487  SDValue Q;
2488  if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
2489                            isOperationLegalOrCustom(ISD::MULHS, VT))
2490    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2491                    DAG.getConstant(magics.m, VT));
2492  else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
2493                                 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2494    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2495                              N->getOperand(0),
2496                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2497  else
2498    return SDValue();       // No mulhs or equvialent
2499  // If d > 0 and m < 0, add the numerator
2500  if (d.isStrictlyPositive() && magics.m.isNegative()) {
2501    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2502    if (Created)
2503      Created->push_back(Q.getNode());
2504  }
2505  // If d < 0 and m > 0, subtract the numerator.
2506  if (d.isNegative() && magics.m.isStrictlyPositive()) {
2507    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2508    if (Created)
2509      Created->push_back(Q.getNode());
2510  }
2511  // Shift right algebraic if shift value is nonzero
2512  if (magics.s > 0) {
2513    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2514                 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
2515    if (Created)
2516      Created->push_back(Q.getNode());
2517  }
2518  // Extract the sign bit and add it to the quotient
2519  SDValue T =
2520    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2521                                           getShiftAmountTy(Q.getValueType())));
2522  if (Created)
2523    Created->push_back(T.getNode());
2524  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2525}
2526
2527/// \brief Given an ISD::UDIV node expressing a divide by constant,
2528/// return a DAG expression to select that will generate the same value by
2529/// multiplying by a magic number.  See:
2530/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2531SDValue TargetLowering::
2532BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
2533          std::vector<SDNode*> *Created) const {
2534  EVT VT = N->getValueType(0);
2535  SDLoc dl(N);
2536
2537  // Check to see if we can do this.
2538  // FIXME: We should be more aggressive here.
2539  if (!isTypeLegal(VT))
2540    return SDValue();
2541
2542  // FIXME: We should use a narrower constant when the upper
2543  // bits are known to be zero.
2544  const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2545  APInt::mu magics = N1C.magicu();
2546
2547  SDValue Q = N->getOperand(0);
2548
2549  // If the divisor is even, we can avoid using the expensive fixup by shifting
2550  // the divided value upfront.
2551  if (magics.a != 0 && !N1C[0]) {
2552    unsigned Shift = N1C.countTrailingZeros();
2553    Q = DAG.getNode(ISD::SRL, dl, VT, Q,
2554                    DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
2555    if (Created)
2556      Created->push_back(Q.getNode());
2557
2558    // Get magic number for the shifted divisor.
2559    magics = N1C.lshr(Shift).magicu(Shift);
2560    assert(magics.a == 0 && "Should use cheap fixup now");
2561  }
2562
2563  // Multiply the numerator (operand 0) by the magic value
2564  // FIXME: We should support doing a MUL in a wider type
2565  if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
2566                            isOperationLegalOrCustom(ISD::MULHU, VT))
2567    Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
2568  else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
2569                                 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2570    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
2571                            DAG.getConstant(magics.m, VT)).getNode(), 1);
2572  else
2573    return SDValue();       // No mulhu or equvialent
2574  if (Created)
2575    Created->push_back(Q.getNode());
2576
2577  if (magics.a == 0) {
2578    assert(magics.s < N1C.getBitWidth() &&
2579           "We shouldn't generate an undefined shift!");
2580    return DAG.getNode(ISD::SRL, dl, VT, Q,
2581                 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
2582  } else {
2583    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2584    if (Created)
2585      Created->push_back(NPQ.getNode());
2586    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2587                      DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
2588    if (Created)
2589      Created->push_back(NPQ.getNode());
2590    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2591    if (Created)
2592      Created->push_back(NPQ.getNode());
2593    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2594             DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
2595  }
2596}
2597