TargetLowering.cpp revision 15c94d08ab2be2e3d00de4edbfc7adde6545a7db
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetAsmInfo.h"
15#include "llvm/Target/TargetLowering.h"
16#include "llvm/Target/TargetSubtarget.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/SelectionDAG.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/STLExtras.h"
26#include "llvm/Support/MathExtras.h"
27using namespace llvm;
28
29/// InitLibcallNames - Set default libcall names.
30///
31static void InitLibcallNames(const char **Names) {
32  Names[RTLIB::SHL_I16] = "__ashli16";
33  Names[RTLIB::SHL_I32] = "__ashlsi3";
34  Names[RTLIB::SHL_I64] = "__ashldi3";
35  Names[RTLIB::SHL_I128] = "__ashlti3";
36  Names[RTLIB::SRL_I16] = "__lshri16";
37  Names[RTLIB::SRL_I32] = "__lshrsi3";
38  Names[RTLIB::SRL_I64] = "__lshrdi3";
39  Names[RTLIB::SRL_I128] = "__lshrti3";
40  Names[RTLIB::SRA_I16] = "__ashri16";
41  Names[RTLIB::SRA_I32] = "__ashrsi3";
42  Names[RTLIB::SRA_I64] = "__ashrdi3";
43  Names[RTLIB::SRA_I128] = "__ashrti3";
44  Names[RTLIB::MUL_I16] = "__muli16";
45  Names[RTLIB::MUL_I32] = "__mulsi3";
46  Names[RTLIB::MUL_I64] = "__muldi3";
47  Names[RTLIB::MUL_I128] = "__multi3";
48  Names[RTLIB::SDIV_I32] = "__divsi3";
49  Names[RTLIB::SDIV_I64] = "__divdi3";
50  Names[RTLIB::SDIV_I128] = "__divti3";
51  Names[RTLIB::UDIV_I32] = "__udivsi3";
52  Names[RTLIB::UDIV_I64] = "__udivdi3";
53  Names[RTLIB::UDIV_I128] = "__udivti3";
54  Names[RTLIB::SREM_I32] = "__modsi3";
55  Names[RTLIB::SREM_I64] = "__moddi3";
56  Names[RTLIB::SREM_I128] = "__modti3";
57  Names[RTLIB::UREM_I32] = "__umodsi3";
58  Names[RTLIB::UREM_I64] = "__umoddi3";
59  Names[RTLIB::UREM_I128] = "__umodti3";
60  Names[RTLIB::NEG_I32] = "__negsi2";
61  Names[RTLIB::NEG_I64] = "__negdi2";
62  Names[RTLIB::ADD_F32] = "__addsf3";
63  Names[RTLIB::ADD_F64] = "__adddf3";
64  Names[RTLIB::ADD_F80] = "__addxf3";
65  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
66  Names[RTLIB::SUB_F32] = "__subsf3";
67  Names[RTLIB::SUB_F64] = "__subdf3";
68  Names[RTLIB::SUB_F80] = "__subxf3";
69  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
70  Names[RTLIB::MUL_F32] = "__mulsf3";
71  Names[RTLIB::MUL_F64] = "__muldf3";
72  Names[RTLIB::MUL_F80] = "__mulxf3";
73  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
74  Names[RTLIB::DIV_F32] = "__divsf3";
75  Names[RTLIB::DIV_F64] = "__divdf3";
76  Names[RTLIB::DIV_F80] = "__divxf3";
77  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
78  Names[RTLIB::REM_F32] = "fmodf";
79  Names[RTLIB::REM_F64] = "fmod";
80  Names[RTLIB::REM_F80] = "fmodl";
81  Names[RTLIB::REM_PPCF128] = "fmodl";
82  Names[RTLIB::POWI_F32] = "__powisf2";
83  Names[RTLIB::POWI_F64] = "__powidf2";
84  Names[RTLIB::POWI_F80] = "__powixf2";
85  Names[RTLIB::POWI_PPCF128] = "__powitf2";
86  Names[RTLIB::SQRT_F32] = "sqrtf";
87  Names[RTLIB::SQRT_F64] = "sqrt";
88  Names[RTLIB::SQRT_F80] = "sqrtl";
89  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
90  Names[RTLIB::LOG_F32] = "logf";
91  Names[RTLIB::LOG_F64] = "log";
92  Names[RTLIB::LOG_F80] = "logl";
93  Names[RTLIB::LOG_PPCF128] = "logl";
94  Names[RTLIB::LOG2_F32] = "log2f";
95  Names[RTLIB::LOG2_F64] = "log2";
96  Names[RTLIB::LOG2_F80] = "log2l";
97  Names[RTLIB::LOG2_PPCF128] = "log2l";
98  Names[RTLIB::LOG10_F32] = "log10f";
99  Names[RTLIB::LOG10_F64] = "log10";
100  Names[RTLIB::LOG10_F80] = "log10l";
101  Names[RTLIB::LOG10_PPCF128] = "log10l";
102  Names[RTLIB::EXP_F32] = "expf";
103  Names[RTLIB::EXP_F64] = "exp";
104  Names[RTLIB::EXP_F80] = "expl";
105  Names[RTLIB::EXP_PPCF128] = "expl";
106  Names[RTLIB::EXP2_F32] = "exp2f";
107  Names[RTLIB::EXP2_F64] = "exp2";
108  Names[RTLIB::EXP2_F80] = "exp2l";
109  Names[RTLIB::EXP2_PPCF128] = "exp2l";
110  Names[RTLIB::SIN_F32] = "sinf";
111  Names[RTLIB::SIN_F64] = "sin";
112  Names[RTLIB::SIN_F80] = "sinl";
113  Names[RTLIB::SIN_PPCF128] = "sinl";
114  Names[RTLIB::COS_F32] = "cosf";
115  Names[RTLIB::COS_F64] = "cos";
116  Names[RTLIB::COS_F80] = "cosl";
117  Names[RTLIB::COS_PPCF128] = "cosl";
118  Names[RTLIB::POW_F32] = "powf";
119  Names[RTLIB::POW_F64] = "pow";
120  Names[RTLIB::POW_F80] = "powl";
121  Names[RTLIB::POW_PPCF128] = "powl";
122  Names[RTLIB::CEIL_F32] = "ceilf";
123  Names[RTLIB::CEIL_F64] = "ceil";
124  Names[RTLIB::CEIL_F80] = "ceill";
125  Names[RTLIB::CEIL_PPCF128] = "ceill";
126  Names[RTLIB::TRUNC_F32] = "truncf";
127  Names[RTLIB::TRUNC_F64] = "trunc";
128  Names[RTLIB::TRUNC_F80] = "truncl";
129  Names[RTLIB::TRUNC_PPCF128] = "truncl";
130  Names[RTLIB::RINT_F32] = "rintf";
131  Names[RTLIB::RINT_F64] = "rint";
132  Names[RTLIB::RINT_F80] = "rintl";
133  Names[RTLIB::RINT_PPCF128] = "rintl";
134  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
135  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
136  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
137  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
138  Names[RTLIB::FLOOR_F32] = "floorf";
139  Names[RTLIB::FLOOR_F64] = "floor";
140  Names[RTLIB::FLOOR_F80] = "floorl";
141  Names[RTLIB::FLOOR_PPCF128] = "floorl";
142  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
143  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
144  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
145  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
146  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
147  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
148  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
149  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
150  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
151  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
152  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
153  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
154  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
155  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
156  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
157  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
158  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
159  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
160  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
161  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
162  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
163  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
164  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
165  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
166  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
167  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
168  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
169  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
170  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
171  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
172  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
173  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
174  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
175  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
176  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
177  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
178  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
179  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
180  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
181  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
182  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
183  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
184  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
185  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
186  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
187  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
188  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
189  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
190  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
191  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
192  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
193  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
194  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
195  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
196  Names[RTLIB::OEQ_F32] = "__eqsf2";
197  Names[RTLIB::OEQ_F64] = "__eqdf2";
198  Names[RTLIB::UNE_F32] = "__nesf2";
199  Names[RTLIB::UNE_F64] = "__nedf2";
200  Names[RTLIB::OGE_F32] = "__gesf2";
201  Names[RTLIB::OGE_F64] = "__gedf2";
202  Names[RTLIB::OLT_F32] = "__ltsf2";
203  Names[RTLIB::OLT_F64] = "__ltdf2";
204  Names[RTLIB::OLE_F32] = "__lesf2";
205  Names[RTLIB::OLE_F64] = "__ledf2";
206  Names[RTLIB::OGT_F32] = "__gtsf2";
207  Names[RTLIB::OGT_F64] = "__gtdf2";
208  Names[RTLIB::UO_F32] = "__unordsf2";
209  Names[RTLIB::UO_F64] = "__unorddf2";
210  Names[RTLIB::O_F32] = "__unordsf2";
211  Names[RTLIB::O_F64] = "__unorddf2";
212}
213
214/// getFPEXT - Return the FPEXT_*_* value for the given types, or
215/// UNKNOWN_LIBCALL if there is none.
216RTLIB::Libcall RTLIB::getFPEXT(MVT OpVT, MVT RetVT) {
217  if (OpVT == MVT::f32) {
218    if (RetVT == MVT::f64)
219      return FPEXT_F32_F64;
220  }
221  return UNKNOWN_LIBCALL;
222}
223
224/// getFPROUND - Return the FPROUND_*_* value for the given types, or
225/// UNKNOWN_LIBCALL if there is none.
226RTLIB::Libcall RTLIB::getFPROUND(MVT OpVT, MVT RetVT) {
227  if (RetVT == MVT::f32) {
228    if (OpVT == MVT::f64)
229      return FPROUND_F64_F32;
230    if (OpVT == MVT::f80)
231      return FPROUND_F80_F32;
232    if (OpVT == MVT::ppcf128)
233      return FPROUND_PPCF128_F32;
234  } else if (RetVT == MVT::f64) {
235    if (OpVT == MVT::f80)
236      return FPROUND_F80_F64;
237    if (OpVT == MVT::ppcf128)
238      return FPROUND_PPCF128_F64;
239  }
240  return UNKNOWN_LIBCALL;
241}
242
243/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
244/// UNKNOWN_LIBCALL if there is none.
245RTLIB::Libcall RTLIB::getFPTOSINT(MVT OpVT, MVT RetVT) {
246  if (OpVT == MVT::f32) {
247    if (RetVT == MVT::i32)
248      return FPTOSINT_F32_I32;
249    if (RetVT == MVT::i64)
250      return FPTOSINT_F32_I64;
251    if (RetVT == MVT::i128)
252      return FPTOSINT_F32_I128;
253  } else if (OpVT == MVT::f64) {
254    if (RetVT == MVT::i32)
255      return FPTOSINT_F64_I32;
256    if (RetVT == MVT::i64)
257      return FPTOSINT_F64_I64;
258    if (RetVT == MVT::i128)
259      return FPTOSINT_F64_I128;
260  } else if (OpVT == MVT::f80) {
261    if (RetVT == MVT::i32)
262      return FPTOSINT_F80_I32;
263    if (RetVT == MVT::i64)
264      return FPTOSINT_F80_I64;
265    if (RetVT == MVT::i128)
266      return FPTOSINT_F80_I128;
267  } else if (OpVT == MVT::ppcf128) {
268    if (RetVT == MVT::i32)
269      return FPTOSINT_PPCF128_I32;
270    if (RetVT == MVT::i64)
271      return FPTOSINT_PPCF128_I64;
272    if (RetVT == MVT::i128)
273      return FPTOSINT_PPCF128_I128;
274  }
275  return UNKNOWN_LIBCALL;
276}
277
278/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
279/// UNKNOWN_LIBCALL if there is none.
280RTLIB::Libcall RTLIB::getFPTOUINT(MVT OpVT, MVT RetVT) {
281  if (OpVT == MVT::f32) {
282    if (RetVT == MVT::i32)
283      return FPTOUINT_F32_I32;
284    if (RetVT == MVT::i64)
285      return FPTOUINT_F32_I64;
286    if (RetVT == MVT::i128)
287      return FPTOUINT_F32_I128;
288  } else if (OpVT == MVT::f64) {
289    if (RetVT == MVT::i32)
290      return FPTOUINT_F64_I32;
291    if (RetVT == MVT::i64)
292      return FPTOUINT_F64_I64;
293    if (RetVT == MVT::i128)
294      return FPTOUINT_F64_I128;
295  } else if (OpVT == MVT::f80) {
296    if (RetVT == MVT::i32)
297      return FPTOUINT_F80_I32;
298    if (RetVT == MVT::i64)
299      return FPTOUINT_F80_I64;
300    if (RetVT == MVT::i128)
301      return FPTOUINT_F80_I128;
302  } else if (OpVT == MVT::ppcf128) {
303    if (RetVT == MVT::i32)
304      return FPTOUINT_PPCF128_I32;
305    if (RetVT == MVT::i64)
306      return FPTOUINT_PPCF128_I64;
307    if (RetVT == MVT::i128)
308      return FPTOUINT_PPCF128_I128;
309  }
310  return UNKNOWN_LIBCALL;
311}
312
313/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
314/// UNKNOWN_LIBCALL if there is none.
315RTLIB::Libcall RTLIB::getSINTTOFP(MVT OpVT, MVT RetVT) {
316  if (OpVT == MVT::i32) {
317    if (RetVT == MVT::f32)
318      return SINTTOFP_I32_F32;
319    else if (RetVT == MVT::f64)
320      return SINTTOFP_I32_F64;
321    else if (RetVT == MVT::f80)
322      return SINTTOFP_I32_F80;
323    else if (RetVT == MVT::ppcf128)
324      return SINTTOFP_I32_PPCF128;
325  } else if (OpVT == MVT::i64) {
326    if (RetVT == MVT::f32)
327      return SINTTOFP_I64_F32;
328    else if (RetVT == MVT::f64)
329      return SINTTOFP_I64_F64;
330    else if (RetVT == MVT::f80)
331      return SINTTOFP_I64_F80;
332    else if (RetVT == MVT::ppcf128)
333      return SINTTOFP_I64_PPCF128;
334  } else if (OpVT == MVT::i128) {
335    if (RetVT == MVT::f32)
336      return SINTTOFP_I128_F32;
337    else if (RetVT == MVT::f64)
338      return SINTTOFP_I128_F64;
339    else if (RetVT == MVT::f80)
340      return SINTTOFP_I128_F80;
341    else if (RetVT == MVT::ppcf128)
342      return SINTTOFP_I128_PPCF128;
343  }
344  return UNKNOWN_LIBCALL;
345}
346
347/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
348/// UNKNOWN_LIBCALL if there is none.
349RTLIB::Libcall RTLIB::getUINTTOFP(MVT OpVT, MVT RetVT) {
350  if (OpVT == MVT::i32) {
351    if (RetVT == MVT::f32)
352      return UINTTOFP_I32_F32;
353    else if (RetVT == MVT::f64)
354      return UINTTOFP_I32_F64;
355    else if (RetVT == MVT::f80)
356      return UINTTOFP_I32_F80;
357    else if (RetVT == MVT::ppcf128)
358      return UINTTOFP_I32_PPCF128;
359  } else if (OpVT == MVT::i64) {
360    if (RetVT == MVT::f32)
361      return UINTTOFP_I64_F32;
362    else if (RetVT == MVT::f64)
363      return UINTTOFP_I64_F64;
364    else if (RetVT == MVT::f80)
365      return UINTTOFP_I64_F80;
366    else if (RetVT == MVT::ppcf128)
367      return UINTTOFP_I64_PPCF128;
368  } else if (OpVT == MVT::i128) {
369    if (RetVT == MVT::f32)
370      return UINTTOFP_I128_F32;
371    else if (RetVT == MVT::f64)
372      return UINTTOFP_I128_F64;
373    else if (RetVT == MVT::f80)
374      return UINTTOFP_I128_F80;
375    else if (RetVT == MVT::ppcf128)
376      return UINTTOFP_I128_PPCF128;
377  }
378  return UNKNOWN_LIBCALL;
379}
380
381/// InitCmpLibcallCCs - Set default comparison libcall CC.
382///
383static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
384  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
385  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
386  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
387  CCs[RTLIB::UNE_F32] = ISD::SETNE;
388  CCs[RTLIB::UNE_F64] = ISD::SETNE;
389  CCs[RTLIB::OGE_F32] = ISD::SETGE;
390  CCs[RTLIB::OGE_F64] = ISD::SETGE;
391  CCs[RTLIB::OLT_F32] = ISD::SETLT;
392  CCs[RTLIB::OLT_F64] = ISD::SETLT;
393  CCs[RTLIB::OLE_F32] = ISD::SETLE;
394  CCs[RTLIB::OLE_F64] = ISD::SETLE;
395  CCs[RTLIB::OGT_F32] = ISD::SETGT;
396  CCs[RTLIB::OGT_F64] = ISD::SETGT;
397  CCs[RTLIB::UO_F32] = ISD::SETNE;
398  CCs[RTLIB::UO_F64] = ISD::SETNE;
399  CCs[RTLIB::O_F32] = ISD::SETEQ;
400  CCs[RTLIB::O_F64] = ISD::SETEQ;
401}
402
403TargetLowering::TargetLowering(TargetMachine &tm)
404  : TM(tm), TD(TM.getTargetData()) {
405  // All operations default to being supported.
406  memset(OpActions, 0, sizeof(OpActions));
407  memset(LoadExtActions, 0, sizeof(LoadExtActions));
408  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
409  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
410  memset(ConvertActions, 0, sizeof(ConvertActions));
411  memset(CondCodeActions, 0, sizeof(CondCodeActions));
412
413  // Set default actions for various operations.
414  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
415    // Default all indexed load / store to expand.
416    for (unsigned IM = (unsigned)ISD::PRE_INC;
417         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
418      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
419      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
420    }
421
422    // These operations default to expand.
423    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
424  }
425
426  // Most targets ignore the @llvm.prefetch intrinsic.
427  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
428
429  // ConstantFP nodes default to expand.  Targets can either change this to
430  // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
431  // to optimize expansions for certain constants.
432  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
433  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
434  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
435
436  // These library functions default to expand.
437  setOperationAction(ISD::FLOG , MVT::f64, Expand);
438  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
439  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
440  setOperationAction(ISD::FEXP , MVT::f64, Expand);
441  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
442  setOperationAction(ISD::FLOG , MVT::f32, Expand);
443  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
444  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
445  setOperationAction(ISD::FEXP , MVT::f32, Expand);
446  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
447
448  // Default ISD::TRAP to expand (which turns it into abort).
449  setOperationAction(ISD::TRAP, MVT::Other, Expand);
450
451  IsLittleEndian = TD->isLittleEndian();
452  UsesGlobalOffsetTable = false;
453  ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType());
454  ShiftAmtHandling = Undefined;
455  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
456  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
457  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
458  allowUnalignedMemoryAccesses = false;
459  UseUnderscoreSetJmp = false;
460  UseUnderscoreLongJmp = false;
461  SelectIsExpensive = false;
462  IntDivIsCheap = false;
463  Pow2DivIsCheap = false;
464  StackPointerRegisterToSaveRestore = 0;
465  ExceptionPointerRegister = 0;
466  ExceptionSelectorRegister = 0;
467  BooleanContents = UndefinedBooleanContent;
468  SchedPreferenceInfo = SchedulingForLatency;
469  JumpBufSize = 0;
470  JumpBufAlignment = 0;
471  IfCvtBlockSizeLimit = 2;
472  IfCvtDupBlockSizeLimit = 0;
473  PrefLoopAlignment = 0;
474
475  InitLibcallNames(LibcallRoutineNames);
476  InitCmpLibcallCCs(CmpLibcallCCs);
477
478  // Tell Legalize whether the assembler supports DEBUG_LOC.
479  const TargetAsmInfo *TASM = TM.getTargetAsmInfo();
480  if (!TASM || !TASM->hasDotLocAndDotFile())
481    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
482}
483
484TargetLowering::~TargetLowering() {}
485
486/// computeRegisterProperties - Once all of the register classes are added,
487/// this allows us to compute derived properties we expose.
488void TargetLowering::computeRegisterProperties() {
489  assert(MVT::LAST_VALUETYPE <= 32 &&
490         "Too many value types for ValueTypeActions to hold!");
491
492  // Everything defaults to needing one register.
493  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
494    NumRegistersForVT[i] = 1;
495    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
496  }
497  // ...except isVoid, which doesn't need any registers.
498  NumRegistersForVT[MVT::isVoid] = 0;
499
500  // Find the largest integer register class.
501  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
502  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
503    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
504
505  // Every integer value type larger than this largest register takes twice as
506  // many registers to represent as the previous ValueType.
507  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
508    MVT EVT = (MVT::SimpleValueType)ExpandedReg;
509    if (!EVT.isInteger())
510      break;
511    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
512    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
513    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
514    ValueTypeActions.setTypeAction(EVT, Expand);
515  }
516
517  // Inspect all of the ValueType's smaller than the largest integer
518  // register to see which ones need promotion.
519  unsigned LegalIntReg = LargestIntReg;
520  for (unsigned IntReg = LargestIntReg - 1;
521       IntReg >= (unsigned)MVT::i1; --IntReg) {
522    MVT IVT = (MVT::SimpleValueType)IntReg;
523    if (isTypeLegal(IVT)) {
524      LegalIntReg = IntReg;
525    } else {
526      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
527        (MVT::SimpleValueType)LegalIntReg;
528      ValueTypeActions.setTypeAction(IVT, Promote);
529    }
530  }
531
532  // ppcf128 type is really two f64's.
533  if (!isTypeLegal(MVT::ppcf128)) {
534    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
535    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
536    TransformToType[MVT::ppcf128] = MVT::f64;
537    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
538  }
539
540  // Decide how to handle f64. If the target does not have native f64 support,
541  // expand it to i64 and we will be generating soft float library calls.
542  if (!isTypeLegal(MVT::f64)) {
543    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
544    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
545    TransformToType[MVT::f64] = MVT::i64;
546    ValueTypeActions.setTypeAction(MVT::f64, Expand);
547  }
548
549  // Decide how to handle f32. If the target does not have native support for
550  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
551  if (!isTypeLegal(MVT::f32)) {
552    if (isTypeLegal(MVT::f64)) {
553      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
554      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
555      TransformToType[MVT::f32] = MVT::f64;
556      ValueTypeActions.setTypeAction(MVT::f32, Promote);
557    } else {
558      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
559      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
560      TransformToType[MVT::f32] = MVT::i32;
561      ValueTypeActions.setTypeAction(MVT::f32, Expand);
562    }
563  }
564
565  // Loop over all of the vector value types to see which need transformations.
566  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
567       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
568    MVT VT = (MVT::SimpleValueType)i;
569    if (!isTypeLegal(VT)) {
570      MVT IntermediateVT, RegisterVT;
571      unsigned NumIntermediates;
572      NumRegistersForVT[i] =
573        getVectorTypeBreakdown(VT,
574                               IntermediateVT, NumIntermediates,
575                               RegisterVT);
576      RegisterTypeForVT[i] = RegisterVT;
577
578      // Determine if there is a legal wider type.
579      bool IsLegalWiderType = false;
580      MVT EltVT = VT.getVectorElementType();
581      unsigned NElts = VT.getVectorNumElements();
582      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
583        MVT SVT = (MVT::SimpleValueType)nVT;
584        if (isTypeLegal(SVT) && SVT.getVectorElementType() == EltVT &&
585            SVT.getVectorNumElements() > NElts) {
586          TransformToType[i] = SVT;
587          ValueTypeActions.setTypeAction(VT, Promote);
588          IsLegalWiderType = true;
589          break;
590        }
591      }
592      if (!IsLegalWiderType) {
593        MVT NVT = VT.getPow2VectorType();
594        if (NVT == VT) {
595          // Type is already a power of 2.  The default action is to split.
596          TransformToType[i] = MVT::Other;
597          ValueTypeActions.setTypeAction(VT, Expand);
598        } else {
599          TransformToType[i] = NVT;
600          ValueTypeActions.setTypeAction(VT, Promote);
601        }
602      }
603    }
604  }
605}
606
607const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
608  return NULL;
609}
610
611
612MVT TargetLowering::getSetCCResultType(MVT VT) const {
613  return getValueType(TD->getIntPtrType());
614}
615
616
617/// getVectorTypeBreakdown - Vector types are broken down into some number of
618/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
619/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
620/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
621///
622/// This method returns the number of registers needed, and the VT for each
623/// register.  It also returns the VT and quantity of the intermediate values
624/// before they are promoted/expanded.
625///
626unsigned TargetLowering::getVectorTypeBreakdown(MVT VT,
627                                                MVT &IntermediateVT,
628                                                unsigned &NumIntermediates,
629                                      MVT &RegisterVT) const {
630  // Figure out the right, legal destination reg to copy into.
631  unsigned NumElts = VT.getVectorNumElements();
632  MVT EltTy = VT.getVectorElementType();
633
634  unsigned NumVectorRegs = 1;
635
636  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
637  // could break down into LHS/RHS like LegalizeDAG does.
638  if (!isPowerOf2_32(NumElts)) {
639    NumVectorRegs = NumElts;
640    NumElts = 1;
641  }
642
643  // Divide the input until we get to a supported size.  This will always
644  // end with a scalar if the target doesn't support vectors.
645  while (NumElts > 1 && !isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
646    NumElts >>= 1;
647    NumVectorRegs <<= 1;
648  }
649
650  NumIntermediates = NumVectorRegs;
651
652  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
653  if (!isTypeLegal(NewVT))
654    NewVT = EltTy;
655  IntermediateVT = NewVT;
656
657  MVT DestVT = getTypeToTransformTo(NewVT);
658  RegisterVT = DestVT;
659  if (DestVT.bitsLT(NewVT)) {
660    // Value is expanded, e.g. i64 -> i16.
661    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
662  } else {
663    // Otherwise, promotion or legal types use the same number of registers as
664    // the vector decimated to the appropriate level.
665    return NumVectorRegs;
666  }
667
668  return 1;
669}
670
671/// getWidenVectorType: given a vector type, returns the type to widen to
672/// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
673/// If there is no vector type that we want to widen to, returns MVT::Other
674/// When and where to widen is target dependent based on the cost of
675/// scalarizing vs using the wider vector type.
676MVT TargetLowering::getWidenVectorType(MVT VT) const {
677  assert(VT.isVector());
678  if (isTypeLegal(VT))
679    return VT;
680
681  // Default is not to widen until moved to LegalizeTypes
682  return MVT::Other;
683}
684
685/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
686/// function arguments in the caller parameter area.  This is the actual
687/// alignment, not its logarithm.
688unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
689  return TD->getCallFrameTypeAlignment(Ty);
690}
691
692SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
693                                                 SelectionDAG &DAG) const {
694  if (usesGlobalOffsetTable())
695    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
696  return Table;
697}
698
699bool
700TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
701  // Assume that everything is safe in static mode.
702  if (getTargetMachine().getRelocationModel() == Reloc::Static)
703    return true;
704
705  // In dynamic-no-pic mode, assume that known defined values are safe.
706  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
707      GA &&
708      !GA->getGlobal()->isDeclaration() &&
709      !GA->getGlobal()->mayBeOverridden())
710    return true;
711
712  // Otherwise assume nothing is safe.
713  return false;
714}
715
716//===----------------------------------------------------------------------===//
717//  Optimization Methods
718//===----------------------------------------------------------------------===//
719
720/// ShrinkDemandedConstant - Check to see if the specified operand of the
721/// specified instruction is a constant integer.  If so, check to see if there
722/// are any bits set in the constant that are not demanded.  If so, shrink the
723/// constant and return true.
724bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
725                                                        const APInt &Demanded) {
726  // FIXME: ISD::SELECT, ISD::SELECT_CC
727  switch(Op.getOpcode()) {
728  default: break;
729  case ISD::AND:
730  case ISD::OR:
731  case ISD::XOR:
732    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
733      if (C->getAPIntValue().intersects(~Demanded)) {
734        MVT VT = Op.getValueType();
735        SDValue New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
736                                    DAG.getConstant(Demanded &
737                                                      C->getAPIntValue(),
738                                                    VT));
739        return CombineTo(Op, New);
740      }
741    break;
742  }
743  return false;
744}
745
746/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
747/// DemandedMask bits of the result of Op are ever used downstream.  If we can
748/// use this information to simplify Op, create a new simplified DAG node and
749/// return true, returning the original and new nodes in Old and New. Otherwise,
750/// analyze the expression and return a mask of KnownOne and KnownZero bits for
751/// the expression (used to simplify the caller).  The KnownZero/One bits may
752/// only be accurate for those bits in the DemandedMask.
753bool TargetLowering::SimplifyDemandedBits(SDValue Op,
754                                          const APInt &DemandedMask,
755                                          APInt &KnownZero,
756                                          APInt &KnownOne,
757                                          TargetLoweringOpt &TLO,
758                                          unsigned Depth) const {
759  unsigned BitWidth = DemandedMask.getBitWidth();
760  assert(Op.getValueSizeInBits() == BitWidth &&
761         "Mask size mismatches value type size!");
762  APInt NewMask = DemandedMask;
763
764  // Don't know anything.
765  KnownZero = KnownOne = APInt(BitWidth, 0);
766
767  // Other users may use these bits.
768  if (!Op.getNode()->hasOneUse()) {
769    if (Depth != 0) {
770      // If not at the root, Just compute the KnownZero/KnownOne bits to
771      // simplify things downstream.
772      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
773      return false;
774    }
775    // If this is the root being simplified, allow it to have multiple uses,
776    // just set the NewMask to all bits.
777    NewMask = APInt::getAllOnesValue(BitWidth);
778  } else if (DemandedMask == 0) {
779    // Not demanding any bits from Op.
780    if (Op.getOpcode() != ISD::UNDEF)
781      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
782    return false;
783  } else if (Depth == 6) {        // Limit search depth.
784    return false;
785  }
786
787  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
788  switch (Op.getOpcode()) {
789  case ISD::Constant:
790    // We know all of the bits for a constant!
791    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
792    KnownZero = ~KnownOne & NewMask;
793    return false;   // Don't fall through, will infinitely loop.
794  case ISD::AND:
795    // If the RHS is a constant, check to see if the LHS would be zero without
796    // using the bits from the RHS.  Below, we use knowledge about the RHS to
797    // simplify the LHS, here we're using information from the LHS to simplify
798    // the RHS.
799    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
800      APInt LHSZero, LHSOne;
801      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
802                                LHSZero, LHSOne, Depth+1);
803      // If the LHS already has zeros where RHSC does, this and is dead.
804      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
805        return TLO.CombineTo(Op, Op.getOperand(0));
806      // If any of the set bits in the RHS are known zero on the LHS, shrink
807      // the constant.
808      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
809        return true;
810    }
811
812    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
813                             KnownOne, TLO, Depth+1))
814      return true;
815    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
816    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
817                             KnownZero2, KnownOne2, TLO, Depth+1))
818      return true;
819    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
820
821    // If all of the demanded bits are known one on one side, return the other.
822    // These bits cannot contribute to the result of the 'and'.
823    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
824      return TLO.CombineTo(Op, Op.getOperand(0));
825    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
826      return TLO.CombineTo(Op, Op.getOperand(1));
827    // If all of the demanded bits in the inputs are known zeros, return zero.
828    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
829      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
830    // If the RHS is a constant, see if we can simplify it.
831    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
832      return true;
833
834    // Output known-1 bits are only known if set in both the LHS & RHS.
835    KnownOne &= KnownOne2;
836    // Output known-0 are known to be clear if zero in either the LHS | RHS.
837    KnownZero |= KnownZero2;
838    break;
839  case ISD::OR:
840    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
841                             KnownOne, TLO, Depth+1))
842      return true;
843    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
844    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
845                             KnownZero2, KnownOne2, TLO, Depth+1))
846      return true;
847    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
848
849    // If all of the demanded bits are known zero on one side, return the other.
850    // These bits cannot contribute to the result of the 'or'.
851    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
852      return TLO.CombineTo(Op, Op.getOperand(0));
853    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
854      return TLO.CombineTo(Op, Op.getOperand(1));
855    // If all of the potentially set bits on one side are known to be set on
856    // the other side, just use the 'other' side.
857    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
858      return TLO.CombineTo(Op, Op.getOperand(0));
859    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
860      return TLO.CombineTo(Op, Op.getOperand(1));
861    // If the RHS is a constant, see if we can simplify it.
862    if (TLO.ShrinkDemandedConstant(Op, NewMask))
863      return true;
864
865    // Output known-0 bits are only known if clear in both the LHS & RHS.
866    KnownZero &= KnownZero2;
867    // Output known-1 are known to be set if set in either the LHS | RHS.
868    KnownOne |= KnownOne2;
869    break;
870  case ISD::XOR:
871    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
872                             KnownOne, TLO, Depth+1))
873      return true;
874    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
875    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
876                             KnownOne2, TLO, Depth+1))
877      return true;
878    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
879
880    // If all of the demanded bits are known zero on one side, return the other.
881    // These bits cannot contribute to the result of the 'xor'.
882    if ((KnownZero & NewMask) == NewMask)
883      return TLO.CombineTo(Op, Op.getOperand(0));
884    if ((KnownZero2 & NewMask) == NewMask)
885      return TLO.CombineTo(Op, Op.getOperand(1));
886
887    // If all of the unknown bits are known to be zero on one side or the other
888    // (but not both) turn this into an *inclusive* or.
889    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
890    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
891      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
892                                               Op.getOperand(0),
893                                               Op.getOperand(1)));
894
895    // Output known-0 bits are known if clear or set in both the LHS & RHS.
896    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
897    // Output known-1 are known to be set if set in only one of the LHS, RHS.
898    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
899
900    // If all of the demanded bits on one side are known, and all of the set
901    // bits on that side are also known to be set on the other side, turn this
902    // into an AND, as we know the bits will be cleared.
903    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
904    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
905      if ((KnownOne & KnownOne2) == KnownOne) {
906        MVT VT = Op.getValueType();
907        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
908        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
909                                                 ANDC));
910      }
911    }
912
913    // If the RHS is a constant, see if we can simplify it.
914    // for XOR, we prefer to force bits to 1 if they will make a -1.
915    // if we can't force bits, try to shrink constant
916    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
917      APInt Expanded = C->getAPIntValue() | (~NewMask);
918      // if we can expand it to have all bits set, do it
919      if (Expanded.isAllOnesValue()) {
920        if (Expanded != C->getAPIntValue()) {
921          MVT VT = Op.getValueType();
922          SDValue New = TLO.DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
923                                          TLO.DAG.getConstant(Expanded, VT));
924          return TLO.CombineTo(Op, New);
925        }
926        // if it already has all the bits set, nothing to change
927        // but don't shrink either!
928      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
929        return true;
930      }
931    }
932
933    KnownZero = KnownZeroOut;
934    KnownOne  = KnownOneOut;
935    break;
936  case ISD::SELECT:
937    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
938                             KnownOne, TLO, Depth+1))
939      return true;
940    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
941                             KnownOne2, TLO, Depth+1))
942      return true;
943    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
944    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
945
946    // If the operands are constants, see if we can simplify them.
947    if (TLO.ShrinkDemandedConstant(Op, NewMask))
948      return true;
949
950    // Only known if known in both the LHS and RHS.
951    KnownOne &= KnownOne2;
952    KnownZero &= KnownZero2;
953    break;
954  case ISD::SELECT_CC:
955    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
956                             KnownOne, TLO, Depth+1))
957      return true;
958    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
959                             KnownOne2, TLO, Depth+1))
960      return true;
961    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
962    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
963
964    // If the operands are constants, see if we can simplify them.
965    if (TLO.ShrinkDemandedConstant(Op, NewMask))
966      return true;
967
968    // Only known if known in both the LHS and RHS.
969    KnownOne &= KnownOne2;
970    KnownZero &= KnownZero2;
971    break;
972  case ISD::SHL:
973    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
974      unsigned ShAmt = SA->getZExtValue();
975      SDValue InOp = Op.getOperand(0);
976
977      // If the shift count is an invalid immediate, don't do anything.
978      if (ShAmt >= BitWidth)
979        break;
980
981      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
982      // single shift.  We can do this if the bottom bits (which are shifted
983      // out) are never demanded.
984      if (InOp.getOpcode() == ISD::SRL &&
985          isa<ConstantSDNode>(InOp.getOperand(1))) {
986        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
987          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
988          unsigned Opc = ISD::SHL;
989          int Diff = ShAmt-C1;
990          if (Diff < 0) {
991            Diff = -Diff;
992            Opc = ISD::SRL;
993          }
994
995          SDValue NewSA =
996            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
997          MVT VT = Op.getValueType();
998          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
999                                                   InOp.getOperand(0), NewSA));
1000        }
1001      }
1002
1003      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
1004                               KnownZero, KnownOne, TLO, Depth+1))
1005        return true;
1006      KnownZero <<= SA->getZExtValue();
1007      KnownOne  <<= SA->getZExtValue();
1008      // low bits known zero.
1009      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1010    }
1011    break;
1012  case ISD::SRL:
1013    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1014      MVT VT = Op.getValueType();
1015      unsigned ShAmt = SA->getZExtValue();
1016      unsigned VTSize = VT.getSizeInBits();
1017      SDValue InOp = Op.getOperand(0);
1018
1019      // If the shift count is an invalid immediate, don't do anything.
1020      if (ShAmt >= BitWidth)
1021        break;
1022
1023      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1024      // single shift.  We can do this if the top bits (which are shifted out)
1025      // are never demanded.
1026      if (InOp.getOpcode() == ISD::SHL &&
1027          isa<ConstantSDNode>(InOp.getOperand(1))) {
1028        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1029          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1030          unsigned Opc = ISD::SRL;
1031          int Diff = ShAmt-C1;
1032          if (Diff < 0) {
1033            Diff = -Diff;
1034            Opc = ISD::SHL;
1035          }
1036
1037          SDValue NewSA =
1038            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1039          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
1040                                                   InOp.getOperand(0), NewSA));
1041        }
1042      }
1043
1044      // Compute the new bits that are at the top now.
1045      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1046                               KnownZero, KnownOne, TLO, Depth+1))
1047        return true;
1048      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1049      KnownZero = KnownZero.lshr(ShAmt);
1050      KnownOne  = KnownOne.lshr(ShAmt);
1051
1052      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1053      KnownZero |= HighBits;  // High bits known zero.
1054    }
1055    break;
1056  case ISD::SRA:
1057    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1058      MVT VT = Op.getValueType();
1059      unsigned ShAmt = SA->getZExtValue();
1060
1061      // If the shift count is an invalid immediate, don't do anything.
1062      if (ShAmt >= BitWidth)
1063        break;
1064
1065      APInt InDemandedMask = (NewMask << ShAmt);
1066
1067      // If any of the demanded bits are produced by the sign extension, we also
1068      // demand the input sign bit.
1069      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1070      if (HighBits.intersects(NewMask))
1071        InDemandedMask |= APInt::getSignBit(VT.getSizeInBits());
1072
1073      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1074                               KnownZero, KnownOne, TLO, Depth+1))
1075        return true;
1076      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1077      KnownZero = KnownZero.lshr(ShAmt);
1078      KnownOne  = KnownOne.lshr(ShAmt);
1079
1080      // Handle the sign bit, adjusted to where it is now in the mask.
1081      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1082
1083      // If the input sign bit is known to be zero, or if none of the top bits
1084      // are demanded, turn this into an unsigned shift right.
1085      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1086        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
1087                                                 Op.getOperand(1)));
1088      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1089        KnownOne |= HighBits;
1090      }
1091    }
1092    break;
1093  case ISD::SIGN_EXTEND_INREG: {
1094    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1095
1096    // Sign extension.  Compute the demanded bits in the result that are not
1097    // present in the input.
1098    APInt NewBits = APInt::getHighBitsSet(BitWidth,
1099                                          BitWidth - EVT.getSizeInBits()) &
1100                    NewMask;
1101
1102    // If none of the extended bits are demanded, eliminate the sextinreg.
1103    if (NewBits == 0)
1104      return TLO.CombineTo(Op, Op.getOperand(0));
1105
1106    APInt InSignBit = APInt::getSignBit(EVT.getSizeInBits());
1107    InSignBit.zext(BitWidth);
1108    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
1109                                                   EVT.getSizeInBits()) &
1110                              NewMask;
1111
1112    // Since the sign extended bits are demanded, we know that the sign
1113    // bit is demanded.
1114    InputDemandedBits |= InSignBit;
1115
1116    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1117                             KnownZero, KnownOne, TLO, Depth+1))
1118      return true;
1119    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1120
1121    // If the sign bit of the input is known set or clear, then we know the
1122    // top bits of the result.
1123
1124    // If the input sign bit is known zero, convert this into a zero extension.
1125    if (KnownZero.intersects(InSignBit))
1126      return TLO.CombineTo(Op,
1127                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
1128
1129    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1130      KnownOne |= NewBits;
1131      KnownZero &= ~NewBits;
1132    } else {                       // Input sign bit unknown
1133      KnownZero &= ~NewBits;
1134      KnownOne &= ~NewBits;
1135    }
1136    break;
1137  }
1138  case ISD::ZERO_EXTEND: {
1139    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1140    APInt InMask = NewMask;
1141    InMask.trunc(OperandBitWidth);
1142
1143    // If none of the top bits are demanded, convert this into an any_extend.
1144    APInt NewBits =
1145      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1146    if (!NewBits.intersects(NewMask))
1147      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
1148                                               Op.getValueType(),
1149                                               Op.getOperand(0)));
1150
1151    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1152                             KnownZero, KnownOne, TLO, Depth+1))
1153      return true;
1154    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1155    KnownZero.zext(BitWidth);
1156    KnownOne.zext(BitWidth);
1157    KnownZero |= NewBits;
1158    break;
1159  }
1160  case ISD::SIGN_EXTEND: {
1161    MVT InVT = Op.getOperand(0).getValueType();
1162    unsigned InBits = InVT.getSizeInBits();
1163    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1164    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1165    APInt NewBits   = ~InMask & NewMask;
1166
1167    // If none of the top bits are demanded, convert this into an any_extend.
1168    if (NewBits == 0)
1169      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
1170                                           Op.getOperand(0)));
1171
1172    // Since some of the sign extended bits are demanded, we know that the sign
1173    // bit is demanded.
1174    APInt InDemandedBits = InMask & NewMask;
1175    InDemandedBits |= InSignBit;
1176    InDemandedBits.trunc(InBits);
1177
1178    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1179                             KnownOne, TLO, Depth+1))
1180      return true;
1181    KnownZero.zext(BitWidth);
1182    KnownOne.zext(BitWidth);
1183
1184    // If the sign bit is known zero, convert this to a zero extend.
1185    if (KnownZero.intersects(InSignBit))
1186      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
1187                                               Op.getValueType(),
1188                                               Op.getOperand(0)));
1189
1190    // If the sign bit is known one, the top bits match.
1191    if (KnownOne.intersects(InSignBit)) {
1192      KnownOne  |= NewBits;
1193      KnownZero &= ~NewBits;
1194    } else {   // Otherwise, top bits aren't known.
1195      KnownOne  &= ~NewBits;
1196      KnownZero &= ~NewBits;
1197    }
1198    break;
1199  }
1200  case ISD::ANY_EXTEND: {
1201    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1202    APInt InMask = NewMask;
1203    InMask.trunc(OperandBitWidth);
1204    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1205                             KnownZero, KnownOne, TLO, Depth+1))
1206      return true;
1207    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1208    KnownZero.zext(BitWidth);
1209    KnownOne.zext(BitWidth);
1210    break;
1211  }
1212  case ISD::TRUNCATE: {
1213    // Simplify the input, using demanded bit information, and compute the known
1214    // zero/one bits live out.
1215    APInt TruncMask = NewMask;
1216    TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
1217    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1218                             KnownZero, KnownOne, TLO, Depth+1))
1219      return true;
1220    KnownZero.trunc(BitWidth);
1221    KnownOne.trunc(BitWidth);
1222
1223    // If the input is only used by this truncate, see if we can shrink it based
1224    // on the known demanded bits.
1225    if (Op.getOperand(0).getNode()->hasOneUse()) {
1226      SDValue In = Op.getOperand(0);
1227      unsigned InBitWidth = In.getValueSizeInBits();
1228      switch (In.getOpcode()) {
1229      default: break;
1230      case ISD::SRL:
1231        // Shrink SRL by a constant if none of the high bits shifted in are
1232        // demanded.
1233        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
1234          APInt HighBits = APInt::getHighBitsSet(InBitWidth,
1235                                                 InBitWidth - BitWidth);
1236          HighBits = HighBits.lshr(ShAmt->getZExtValue());
1237          HighBits.trunc(BitWidth);
1238
1239          if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1240            // None of the shifted in bits are needed.  Add a truncate of the
1241            // shift input, then shift it.
1242            SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
1243                                                 Op.getValueType(),
1244                                                 In.getOperand(0));
1245            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
1246                                                   NewTrunc, In.getOperand(1)));
1247          }
1248        }
1249        break;
1250      }
1251    }
1252
1253    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1254    break;
1255  }
1256  case ISD::AssertZext: {
1257    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1258    APInt InMask = APInt::getLowBitsSet(BitWidth,
1259                                        VT.getSizeInBits());
1260    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
1261                             KnownZero, KnownOne, TLO, Depth+1))
1262      return true;
1263    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1264    KnownZero |= ~InMask & NewMask;
1265    break;
1266  }
1267  case ISD::BIT_CONVERT:
1268#if 0
1269    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1270    // is demanded, turn this into a FGETSIGN.
1271    if (NewMask == MVT::getIntegerVTSignBit(Op.getValueType()) &&
1272        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1273        !MVT::isVector(Op.getOperand(0).getValueType())) {
1274      // Only do this xform if FGETSIGN is valid or if before legalize.
1275      if (!TLO.AfterLegalize ||
1276          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1277        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1278        // place.  We expect the SHL to be eliminated by other optimizations.
1279        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1280                                         Op.getOperand(0));
1281        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1282        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1283        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1284                                                 Sign, ShAmt));
1285      }
1286    }
1287#endif
1288    break;
1289  default:
1290    // Just use ComputeMaskedBits to compute output bits.
1291    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1292    break;
1293  }
1294
1295  // If we know the value of all of the demanded bits, return this as a
1296  // constant.
1297  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1298    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1299
1300  return false;
1301}
1302
1303/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1304/// in Mask are known to be either zero or one and return them in the
1305/// KnownZero/KnownOne bitsets.
1306void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1307                                                    const APInt &Mask,
1308                                                    APInt &KnownZero,
1309                                                    APInt &KnownOne,
1310                                                    const SelectionDAG &DAG,
1311                                                    unsigned Depth) const {
1312  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1313          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1314          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1315          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1316         "Should use MaskedValueIsZero if you don't know whether Op"
1317         " is a target node!");
1318  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1319}
1320
1321/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1322/// targets that want to expose additional information about sign bits to the
1323/// DAG Combiner.
1324unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1325                                                         unsigned Depth) const {
1326  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1327          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1328          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1329          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1330         "Should use ComputeNumSignBits if you don't know whether Op"
1331         " is a target node!");
1332  return 1;
1333}
1334
1335
1336/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1337/// and cc. If it is unable to simplify it, return a null SDValue.
1338SDValue
1339TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
1340                              ISD::CondCode Cond, bool foldBooleans,
1341                              DAGCombinerInfo &DCI) const {
1342  SelectionDAG &DAG = DCI.DAG;
1343
1344  // These setcc operations always fold.
1345  switch (Cond) {
1346  default: break;
1347  case ISD::SETFALSE:
1348  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1349  case ISD::SETTRUE:
1350  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1351  }
1352
1353  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1354    const APInt &C1 = N1C->getAPIntValue();
1355    if (isa<ConstantSDNode>(N0.getNode())) {
1356      return DAG.FoldSetCC(VT, N0, N1, Cond);
1357    } else {
1358      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1359      // equality comparison, then we're just comparing whether X itself is
1360      // zero.
1361      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1362          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1363          N0.getOperand(1).getOpcode() == ISD::Constant) {
1364        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1365        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1366            ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1367          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1368            // (srl (ctlz x), 5) == 0  -> X != 0
1369            // (srl (ctlz x), 5) != 1  -> X != 0
1370            Cond = ISD::SETNE;
1371          } else {
1372            // (srl (ctlz x), 5) != 0  -> X == 0
1373            // (srl (ctlz x), 5) == 1  -> X == 0
1374            Cond = ISD::SETEQ;
1375          }
1376          SDValue Zero = DAG.getConstant(0, N0.getValueType());
1377          return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
1378                              Zero, Cond);
1379        }
1380      }
1381
1382      // If the LHS is '(and load, const)', the RHS is 0,
1383      // the test is for equality or unsigned, and all 1 bits of the const are
1384      // in the same partial word, see if we can shorten the load.
1385      if (DCI.isBeforeLegalize() &&
1386          N0.getOpcode() == ISD::AND && C1 == 0 &&
1387          isa<LoadSDNode>(N0.getOperand(0)) &&
1388          N0.getOperand(0).getNode()->hasOneUse() &&
1389          isa<ConstantSDNode>(N0.getOperand(1))) {
1390        LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1391        uint64_t Mask = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1392        uint64_t bestMask = 0;
1393        unsigned bestWidth = 0, bestOffset = 0;
1394        if (!Lod->isVolatile() && Lod->isUnindexed()) {
1395          unsigned origWidth = N0.getValueType().getSizeInBits();
1396          // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1397          // 8 bits, but have to be careful...
1398          if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1399            origWidth = Lod->getMemoryVT().getSizeInBits();
1400          for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1401            uint64_t newMask = (1ULL << width) - 1;
1402            for (unsigned offset=0; offset<origWidth/width; offset++) {
1403              if ((newMask & Mask)==Mask) {
1404                if (!TD->isLittleEndian())
1405                  bestOffset = (origWidth/width - offset - 1) * (width/8);
1406                else
1407                  bestOffset = (uint64_t)offset * (width/8);
1408                bestMask = Mask >> (offset * (width/8) * 8);
1409                bestWidth = width;
1410                break;
1411              }
1412              newMask = newMask << width;
1413            }
1414          }
1415        }
1416        if (bestWidth) {
1417          MVT newVT = MVT::getIntegerVT(bestWidth);
1418          if (newVT.isRound()) {
1419            MVT PtrType = Lod->getOperand(1).getValueType();
1420            SDValue Ptr = Lod->getBasePtr();
1421            if (bestOffset != 0)
1422              Ptr = DAG.getNode(ISD::ADD, PtrType, Lod->getBasePtr(),
1423                                DAG.getConstant(bestOffset, PtrType));
1424            unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1425            SDValue NewLoad = DAG.getLoad(newVT, Lod->getChain(), Ptr,
1426                                          Lod->getSrcValue(),
1427                                          Lod->getSrcValueOffset() + bestOffset,
1428                                          false, NewAlign);
1429            return DAG.getSetCC(VT, DAG.getNode(ISD::AND, newVT, NewLoad,
1430                                            DAG.getConstant(bestMask, newVT)),
1431                                    DAG.getConstant(0LL, newVT), Cond);
1432          }
1433        }
1434      }
1435
1436      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1437      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1438        unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1439
1440        // If the comparison constant has bits in the upper part, the
1441        // zero-extended value could never match.
1442        if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1443                                                C1.getBitWidth() - InSize))) {
1444          switch (Cond) {
1445          case ISD::SETUGT:
1446          case ISD::SETUGE:
1447          case ISD::SETEQ: return DAG.getConstant(0, VT);
1448          case ISD::SETULT:
1449          case ISD::SETULE:
1450          case ISD::SETNE: return DAG.getConstant(1, VT);
1451          case ISD::SETGT:
1452          case ISD::SETGE:
1453            // True if the sign bit of C1 is set.
1454            return DAG.getConstant(C1.isNegative(), VT);
1455          case ISD::SETLT:
1456          case ISD::SETLE:
1457            // True if the sign bit of C1 isn't set.
1458            return DAG.getConstant(C1.isNonNegative(), VT);
1459          default:
1460            break;
1461          }
1462        }
1463
1464        // Otherwise, we can perform the comparison with the low bits.
1465        switch (Cond) {
1466        case ISD::SETEQ:
1467        case ISD::SETNE:
1468        case ISD::SETUGT:
1469        case ISD::SETUGE:
1470        case ISD::SETULT:
1471        case ISD::SETULE:
1472          return DAG.getSetCC(VT, N0.getOperand(0),
1473                          DAG.getConstant(APInt(C1).trunc(InSize),
1474                                          N0.getOperand(0).getValueType()),
1475                          Cond);
1476        default:
1477          break;   // todo, be more careful with signed comparisons
1478        }
1479      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1480                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1481        MVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1482        unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1483        MVT ExtDstTy = N0.getValueType();
1484        unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1485
1486        // If the extended part has any inconsistent bits, it cannot ever
1487        // compare equal.  In other words, they have to be all ones or all
1488        // zeros.
1489        APInt ExtBits =
1490          APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1491        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1492          return DAG.getConstant(Cond == ISD::SETNE, VT);
1493
1494        SDValue ZextOp;
1495        MVT Op0Ty = N0.getOperand(0).getValueType();
1496        if (Op0Ty == ExtSrcTy) {
1497          ZextOp = N0.getOperand(0);
1498        } else {
1499          APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1500          ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1501                               DAG.getConstant(Imm, Op0Ty));
1502        }
1503        if (!DCI.isCalledByLegalizer())
1504          DCI.AddToWorklist(ZextOp.getNode());
1505        // Otherwise, make this a use of a zext.
1506        return DAG.getSetCC(VT, ZextOp,
1507                            DAG.getConstant(C1 & APInt::getLowBitsSet(
1508                                                               ExtDstTyBits,
1509                                                               ExtSrcTyBits),
1510                                            ExtDstTy),
1511                            Cond);
1512      } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1513                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1514
1515        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1516        if (N0.getOpcode() == ISD::SETCC) {
1517          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getZExtValue() != 1);
1518          if (TrueWhenTrue)
1519            return N0;
1520
1521          // Invert the condition.
1522          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1523          CC = ISD::getSetCCInverse(CC,
1524                                   N0.getOperand(0).getValueType().isInteger());
1525          return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1526        }
1527
1528        if ((N0.getOpcode() == ISD::XOR ||
1529             (N0.getOpcode() == ISD::AND &&
1530              N0.getOperand(0).getOpcode() == ISD::XOR &&
1531              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1532            isa<ConstantSDNode>(N0.getOperand(1)) &&
1533            cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1534          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1535          // can only do this if the top bits are known zero.
1536          unsigned BitWidth = N0.getValueSizeInBits();
1537          if (DAG.MaskedValueIsZero(N0,
1538                                    APInt::getHighBitsSet(BitWidth,
1539                                                          BitWidth-1))) {
1540            // Okay, get the un-inverted input value.
1541            SDValue Val;
1542            if (N0.getOpcode() == ISD::XOR)
1543              Val = N0.getOperand(0);
1544            else {
1545              assert(N0.getOpcode() == ISD::AND &&
1546                     N0.getOperand(0).getOpcode() == ISD::XOR);
1547              // ((X^1)&1)^1 -> X & 1
1548              Val = DAG.getNode(ISD::AND, N0.getValueType(),
1549                                N0.getOperand(0).getOperand(0),
1550                                N0.getOperand(1));
1551            }
1552            return DAG.getSetCC(VT, Val, N1,
1553                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1554          }
1555        }
1556      }
1557
1558      APInt MinVal, MaxVal;
1559      unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1560      if (ISD::isSignedIntSetCC(Cond)) {
1561        MinVal = APInt::getSignedMinValue(OperandBitSize);
1562        MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1563      } else {
1564        MinVal = APInt::getMinValue(OperandBitSize);
1565        MaxVal = APInt::getMaxValue(OperandBitSize);
1566      }
1567
1568      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1569      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1570        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1571        // X >= C0 --> X > (C0-1)
1572        return DAG.getSetCC(VT, N0, DAG.getConstant(C1-1, N1.getValueType()),
1573                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1574      }
1575
1576      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1577        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1578        // X <= C0 --> X < (C0+1)
1579        return DAG.getSetCC(VT, N0, DAG.getConstant(C1+1, N1.getValueType()),
1580                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1581      }
1582
1583      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1584        return DAG.getConstant(0, VT);      // X < MIN --> false
1585      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1586        return DAG.getConstant(1, VT);      // X >= MIN --> true
1587      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1588        return DAG.getConstant(0, VT);      // X > MAX --> false
1589      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1590        return DAG.getConstant(1, VT);      // X <= MAX --> true
1591
1592      // Canonicalize setgt X, Min --> setne X, Min
1593      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1594        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1595      // Canonicalize setlt X, Max --> setne X, Max
1596      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1597        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1598
1599      // If we have setult X, 1, turn it into seteq X, 0
1600      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1601        return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1602                        ISD::SETEQ);
1603      // If we have setugt X, Max-1, turn it into seteq X, Max
1604      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1605        return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1606                        ISD::SETEQ);
1607
1608      // If we have "setcc X, C0", check to see if we can shrink the immediate
1609      // by changing cc.
1610
1611      // SETUGT X, SINTMAX  -> SETLT X, 0
1612      if (Cond == ISD::SETUGT &&
1613          C1 == APInt::getSignedMaxValue(OperandBitSize))
1614        return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1615                            ISD::SETLT);
1616
1617      // SETULT X, SINTMIN  -> SETGT X, -1
1618      if (Cond == ISD::SETULT &&
1619          C1 == APInt::getSignedMinValue(OperandBitSize)) {
1620        SDValue ConstMinusOne =
1621            DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
1622                            N1.getValueType());
1623        return DAG.getSetCC(VT, N0, ConstMinusOne, ISD::SETGT);
1624      }
1625
1626      // Fold bit comparisons when we can.
1627      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1628          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1629        if (ConstantSDNode *AndRHS =
1630                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1631          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1632            // Perform the xform if the AND RHS is a single bit.
1633            if (isPowerOf2_64(AndRHS->getZExtValue())) {
1634              return DAG.getNode(ISD::SRL, VT, N0,
1635                             DAG.getConstant(Log2_64(AndRHS->getZExtValue()),
1636                                             getShiftAmountTy()));
1637            }
1638          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getZExtValue()) {
1639            // (X & 8) == 8  -->  (X & 8) >> 3
1640            // Perform the xform if C1 is a single bit.
1641            if (C1.isPowerOf2()) {
1642              return DAG.getNode(ISD::SRL, VT, N0,
1643                          DAG.getConstant(C1.logBase2(), getShiftAmountTy()));
1644            }
1645          }
1646        }
1647    }
1648  } else if (isa<ConstantSDNode>(N0.getNode())) {
1649      // Ensure that the constant occurs on the RHS.
1650    return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1651  }
1652
1653  if (isa<ConstantFPSDNode>(N0.getNode())) {
1654    // Constant fold or commute setcc.
1655    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond);
1656    if (O.getNode()) return O;
1657  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1658    // If the RHS of an FP comparison is a constant, simplify it away in
1659    // some cases.
1660    if (CFP->getValueAPF().isNaN()) {
1661      // If an operand is known to be a nan, we can fold it.
1662      switch (ISD::getUnorderedFlavor(Cond)) {
1663      default: assert(0 && "Unknown flavor!");
1664      case 0:  // Known false.
1665        return DAG.getConstant(0, VT);
1666      case 1:  // Known true.
1667        return DAG.getConstant(1, VT);
1668      case 2:  // Undefined.
1669        return DAG.getNode(ISD::UNDEF, VT);
1670      }
1671    }
1672
1673    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1674    // constant if knowing that the operand is non-nan is enough.  We prefer to
1675    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1676    // materialize 0.0.
1677    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1678      return DAG.getSetCC(VT, N0, N0, Cond);
1679  }
1680
1681  if (N0 == N1) {
1682    // We can always fold X == X for integer setcc's.
1683    if (N0.getValueType().isInteger())
1684      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1685    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1686    if (UOF == 2)   // FP operators that are undefined on NaNs.
1687      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1688    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1689      return DAG.getConstant(UOF, VT);
1690    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1691    // if it is not already.
1692    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1693    if (NewCond != Cond)
1694      return DAG.getSetCC(VT, N0, N1, NewCond);
1695  }
1696
1697  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1698      N0.getValueType().isInteger()) {
1699    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1700        N0.getOpcode() == ISD::XOR) {
1701      // Simplify (X+Y) == (X+Z) -->  Y == Z
1702      if (N0.getOpcode() == N1.getOpcode()) {
1703        if (N0.getOperand(0) == N1.getOperand(0))
1704          return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1705        if (N0.getOperand(1) == N1.getOperand(1))
1706          return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1707        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1708          // If X op Y == Y op X, try other combinations.
1709          if (N0.getOperand(0) == N1.getOperand(1))
1710            return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1711          if (N0.getOperand(1) == N1.getOperand(0))
1712            return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1713        }
1714      }
1715
1716      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1717        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1718          // Turn (X+C1) == C2 --> X == C2-C1
1719          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
1720            return DAG.getSetCC(VT, N0.getOperand(0),
1721                                DAG.getConstant(RHSC->getAPIntValue()-
1722                                                LHSR->getAPIntValue(),
1723                                N0.getValueType()), Cond);
1724          }
1725
1726          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1727          if (N0.getOpcode() == ISD::XOR)
1728            // If we know that all of the inverted bits are zero, don't bother
1729            // performing the inversion.
1730            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1731              return
1732                DAG.getSetCC(VT, N0.getOperand(0),
1733                             DAG.getConstant(LHSR->getAPIntValue() ^
1734                                               RHSC->getAPIntValue(),
1735                                             N0.getValueType()),
1736                             Cond);
1737        }
1738
1739        // Turn (C1-X) == C2 --> X == C1-C2
1740        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1741          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
1742            return
1743              DAG.getSetCC(VT, N0.getOperand(1),
1744                           DAG.getConstant(SUBC->getAPIntValue() -
1745                                             RHSC->getAPIntValue(),
1746                                           N0.getValueType()),
1747                           Cond);
1748          }
1749        }
1750      }
1751
1752      // Simplify (X+Z) == X -->  Z == 0
1753      if (N0.getOperand(0) == N1)
1754        return DAG.getSetCC(VT, N0.getOperand(1),
1755                        DAG.getConstant(0, N0.getValueType()), Cond);
1756      if (N0.getOperand(1) == N1) {
1757        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1758          return DAG.getSetCC(VT, N0.getOperand(0),
1759                          DAG.getConstant(0, N0.getValueType()), Cond);
1760        else if (N0.getNode()->hasOneUse()) {
1761          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1762          // (Z-X) == X  --> Z == X<<1
1763          SDValue SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1764                                     N1,
1765                                     DAG.getConstant(1, getShiftAmountTy()));
1766          if (!DCI.isCalledByLegalizer())
1767            DCI.AddToWorklist(SH.getNode());
1768          return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1769        }
1770      }
1771    }
1772
1773    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1774        N1.getOpcode() == ISD::XOR) {
1775      // Simplify  X == (X+Z) -->  Z == 0
1776      if (N1.getOperand(0) == N0) {
1777        return DAG.getSetCC(VT, N1.getOperand(1),
1778                        DAG.getConstant(0, N1.getValueType()), Cond);
1779      } else if (N1.getOperand(1) == N0) {
1780        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1781          return DAG.getSetCC(VT, N1.getOperand(0),
1782                          DAG.getConstant(0, N1.getValueType()), Cond);
1783        } else if (N1.getNode()->hasOneUse()) {
1784          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1785          // X == (Z-X)  --> X<<1 == Z
1786          SDValue SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1787                                     DAG.getConstant(1, getShiftAmountTy()));
1788          if (!DCI.isCalledByLegalizer())
1789            DCI.AddToWorklist(SH.getNode());
1790          return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1791        }
1792      }
1793    }
1794  }
1795
1796  // Fold away ALL boolean setcc's.
1797  SDValue Temp;
1798  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1799    switch (Cond) {
1800    default: assert(0 && "Unknown integer setcc!");
1801    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
1802      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1803      N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1804      if (!DCI.isCalledByLegalizer())
1805        DCI.AddToWorklist(Temp.getNode());
1806      break;
1807    case ISD::SETNE:  // X != Y   -->  (X^Y)
1808      N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1809      break;
1810    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1811    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1812      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1813      N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1814      if (!DCI.isCalledByLegalizer())
1815        DCI.AddToWorklist(Temp.getNode());
1816      break;
1817    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
1818    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
1819      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1820      N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1821      if (!DCI.isCalledByLegalizer())
1822        DCI.AddToWorklist(Temp.getNode());
1823      break;
1824    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
1825    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
1826      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1827      N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1828      if (!DCI.isCalledByLegalizer())
1829        DCI.AddToWorklist(Temp.getNode());
1830      break;
1831    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
1832    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
1833      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1834      N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1835      break;
1836    }
1837    if (VT != MVT::i1) {
1838      if (!DCI.isCalledByLegalizer())
1839        DCI.AddToWorklist(N0.getNode());
1840      // FIXME: If running after legalize, we probably can't do this.
1841      N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1842    }
1843    return N0;
1844  }
1845
1846  // Could not fold it.
1847  return SDValue();
1848}
1849
1850/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
1851/// node is a GlobalAddress + offset.
1852bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
1853                                    int64_t &Offset) const {
1854  if (isa<GlobalAddressSDNode>(N)) {
1855    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
1856    GA = GASD->getGlobal();
1857    Offset += GASD->getOffset();
1858    return true;
1859  }
1860
1861  if (N->getOpcode() == ISD::ADD) {
1862    SDValue N1 = N->getOperand(0);
1863    SDValue N2 = N->getOperand(1);
1864    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
1865      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
1866      if (V) {
1867        Offset += V->getSExtValue();
1868        return true;
1869      }
1870    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
1871      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
1872      if (V) {
1873        Offset += V->getSExtValue();
1874        return true;
1875      }
1876    }
1877  }
1878  return false;
1879}
1880
1881
1882/// isConsecutiveLoad - Return true if LD (which must be a LoadSDNode) is
1883/// loading 'Bytes' bytes from a location that is 'Dist' units away from the
1884/// location that the 'Base' load is loading from.
1885bool TargetLowering::isConsecutiveLoad(SDNode *LD, SDNode *Base,
1886                                       unsigned Bytes, int Dist,
1887                                       const MachineFrameInfo *MFI) const {
1888  if (LD->getOperand(0).getNode() != Base->getOperand(0).getNode())
1889    return false;
1890  MVT VT = LD->getValueType(0);
1891  if (VT.getSizeInBits() / 8 != Bytes)
1892    return false;
1893
1894  SDValue Loc = LD->getOperand(1);
1895  SDValue BaseLoc = Base->getOperand(1);
1896  if (Loc.getOpcode() == ISD::FrameIndex) {
1897    if (BaseLoc.getOpcode() != ISD::FrameIndex)
1898      return false;
1899    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
1900    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
1901    int FS  = MFI->getObjectSize(FI);
1902    int BFS = MFI->getObjectSize(BFI);
1903    if (FS != BFS || FS != (int)Bytes) return false;
1904    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
1905  }
1906
1907  GlobalValue *GV1 = NULL;
1908  GlobalValue *GV2 = NULL;
1909  int64_t Offset1 = 0;
1910  int64_t Offset2 = 0;
1911  bool isGA1 = isGAPlusOffset(Loc.getNode(), GV1, Offset1);
1912  bool isGA2 = isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
1913  if (isGA1 && isGA2 && GV1 == GV2)
1914    return Offset1 == (Offset2 + Dist*Bytes);
1915  return false;
1916}
1917
1918
1919SDValue TargetLowering::
1920PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1921  // Default implementation: no optimization.
1922  return SDValue();
1923}
1924
1925//===----------------------------------------------------------------------===//
1926//  Inline Assembler Implementation Methods
1927//===----------------------------------------------------------------------===//
1928
1929
1930TargetLowering::ConstraintType
1931TargetLowering::getConstraintType(const std::string &Constraint) const {
1932  // FIXME: lots more standard ones to handle.
1933  if (Constraint.size() == 1) {
1934    switch (Constraint[0]) {
1935    default: break;
1936    case 'r': return C_RegisterClass;
1937    case 'm':    // memory
1938    case 'o':    // offsetable
1939    case 'V':    // not offsetable
1940      return C_Memory;
1941    case 'i':    // Simple Integer or Relocatable Constant
1942    case 'n':    // Simple Integer
1943    case 's':    // Relocatable Constant
1944    case 'X':    // Allow ANY value.
1945    case 'I':    // Target registers.
1946    case 'J':
1947    case 'K':
1948    case 'L':
1949    case 'M':
1950    case 'N':
1951    case 'O':
1952    case 'P':
1953      return C_Other;
1954    }
1955  }
1956
1957  if (Constraint.size() > 1 && Constraint[0] == '{' &&
1958      Constraint[Constraint.size()-1] == '}')
1959    return C_Register;
1960  return C_Unknown;
1961}
1962
1963/// LowerXConstraint - try to replace an X constraint, which matches anything,
1964/// with another that has more specific requirements based on the type of the
1965/// corresponding operand.
1966const char *TargetLowering::LowerXConstraint(MVT ConstraintVT) const{
1967  if (ConstraintVT.isInteger())
1968    return "r";
1969  if (ConstraintVT.isFloatingPoint())
1970    return "f";      // works for many targets
1971  return 0;
1972}
1973
1974/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1975/// vector.  If it is invalid, don't add anything to Ops.
1976void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
1977                                                  char ConstraintLetter,
1978                                                  bool hasMemory,
1979                                                  std::vector<SDValue> &Ops,
1980                                                  SelectionDAG &DAG) const {
1981  switch (ConstraintLetter) {
1982  default: break;
1983  case 'X':     // Allows any operand; labels (basic block) use this.
1984    if (Op.getOpcode() == ISD::BasicBlock) {
1985      Ops.push_back(Op);
1986      return;
1987    }
1988    // fall through
1989  case 'i':    // Simple Integer or Relocatable Constant
1990  case 'n':    // Simple Integer
1991  case 's': {  // Relocatable Constant
1992    // These operands are interested in values of the form (GV+C), where C may
1993    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
1994    // is possible and fine if either GV or C are missing.
1995    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1996    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1997
1998    // If we have "(add GV, C)", pull out GV/C
1999    if (Op.getOpcode() == ISD::ADD) {
2000      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2001      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2002      if (C == 0 || GA == 0) {
2003        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2004        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2005      }
2006      if (C == 0 || GA == 0)
2007        C = 0, GA = 0;
2008    }
2009
2010    // If we find a valid operand, map to the TargetXXX version so that the
2011    // value itself doesn't get selected.
2012    if (GA) {   // Either &GV   or   &GV+C
2013      if (ConstraintLetter != 'n') {
2014        int64_t Offs = GA->getOffset();
2015        if (C) Offs += C->getZExtValue();
2016        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2017                                                 Op.getValueType(), Offs));
2018        return;
2019      }
2020    }
2021    if (C) {   // just C, no GV.
2022      // Simple constants are not allowed for 's'.
2023      if (ConstraintLetter != 's') {
2024        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue(),
2025                                            Op.getValueType()));
2026        return;
2027      }
2028    }
2029    break;
2030  }
2031  }
2032}
2033
2034std::vector<unsigned> TargetLowering::
2035getRegClassForInlineAsmConstraint(const std::string &Constraint,
2036                                  MVT VT) const {
2037  return std::vector<unsigned>();
2038}
2039
2040
2041std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2042getRegForInlineAsmConstraint(const std::string &Constraint,
2043                             MVT VT) const {
2044  if (Constraint[0] != '{')
2045    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2046  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2047
2048  // Remove the braces from around the name.
2049  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
2050
2051  // Figure out which register class contains this reg.
2052  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2053  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2054       E = RI->regclass_end(); RCI != E; ++RCI) {
2055    const TargetRegisterClass *RC = *RCI;
2056
2057    // If none of the the value types for this register class are valid, we
2058    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2059    bool isLegal = false;
2060    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2061         I != E; ++I) {
2062      if (isTypeLegal(*I)) {
2063        isLegal = true;
2064        break;
2065      }
2066    }
2067
2068    if (!isLegal) continue;
2069
2070    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2071         I != E; ++I) {
2072      if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
2073        return std::make_pair(*I, RC);
2074    }
2075  }
2076
2077  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2078}
2079
2080//===----------------------------------------------------------------------===//
2081// Constraint Selection.
2082
2083/// isMatchingInputConstraint - Return true of this is an input operand that is
2084/// a matching constraint like "4".
2085bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2086  assert(!ConstraintCode.empty() && "No known constraint!");
2087  return isdigit(ConstraintCode[0]);
2088}
2089
2090/// getMatchedOperand - If this is an input matching constraint, this method
2091/// returns the output operand it matches.
2092unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2093  assert(!ConstraintCode.empty() && "No known constraint!");
2094  return atoi(ConstraintCode.c_str());
2095}
2096
2097
2098/// getConstraintGenerality - Return an integer indicating how general CT
2099/// is.
2100static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2101  switch (CT) {
2102  default: assert(0 && "Unknown constraint type!");
2103  case TargetLowering::C_Other:
2104  case TargetLowering::C_Unknown:
2105    return 0;
2106  case TargetLowering::C_Register:
2107    return 1;
2108  case TargetLowering::C_RegisterClass:
2109    return 2;
2110  case TargetLowering::C_Memory:
2111    return 3;
2112  }
2113}
2114
2115/// ChooseConstraint - If there are multiple different constraints that we
2116/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2117/// This is somewhat tricky: constraints fall into four classes:
2118///    Other         -> immediates and magic values
2119///    Register      -> one specific register
2120///    RegisterClass -> a group of regs
2121///    Memory        -> memory
2122/// Ideally, we would pick the most specific constraint possible: if we have
2123/// something that fits into a register, we would pick it.  The problem here
2124/// is that if we have something that could either be in a register or in
2125/// memory that use of the register could cause selection of *other*
2126/// operands to fail: they might only succeed if we pick memory.  Because of
2127/// this the heuristic we use is:
2128///
2129///  1) If there is an 'other' constraint, and if the operand is valid for
2130///     that constraint, use it.  This makes us take advantage of 'i'
2131///     constraints when available.
2132///  2) Otherwise, pick the most general constraint present.  This prefers
2133///     'm' over 'r', for example.
2134///
2135static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2136                             bool hasMemory,  const TargetLowering &TLI,
2137                             SDValue Op, SelectionDAG *DAG) {
2138  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2139  unsigned BestIdx = 0;
2140  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2141  int BestGenerality = -1;
2142
2143  // Loop over the options, keeping track of the most general one.
2144  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2145    TargetLowering::ConstraintType CType =
2146      TLI.getConstraintType(OpInfo.Codes[i]);
2147
2148    // If this is an 'other' constraint, see if the operand is valid for it.
2149    // For example, on X86 we might have an 'rI' constraint.  If the operand
2150    // is an integer in the range [0..31] we want to use I (saving a load
2151    // of a register), otherwise we must use 'r'.
2152    if (CType == TargetLowering::C_Other && Op.getNode()) {
2153      assert(OpInfo.Codes[i].size() == 1 &&
2154             "Unhandled multi-letter 'other' constraint");
2155      std::vector<SDValue> ResultOps;
2156      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
2157                                       ResultOps, *DAG);
2158      if (!ResultOps.empty()) {
2159        BestType = CType;
2160        BestIdx = i;
2161        break;
2162      }
2163    }
2164
2165    // This constraint letter is more general than the previous one, use it.
2166    int Generality = getConstraintGenerality(CType);
2167    if (Generality > BestGenerality) {
2168      BestType = CType;
2169      BestIdx = i;
2170      BestGenerality = Generality;
2171    }
2172  }
2173
2174  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2175  OpInfo.ConstraintType = BestType;
2176}
2177
2178/// ComputeConstraintToUse - Determines the constraint code and constraint
2179/// type to use for the specific AsmOperandInfo, setting
2180/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2181void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2182                                            SDValue Op,
2183                                            bool hasMemory,
2184                                            SelectionDAG *DAG) const {
2185  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2186
2187  // Single-letter constraints ('r') are very common.
2188  if (OpInfo.Codes.size() == 1) {
2189    OpInfo.ConstraintCode = OpInfo.Codes[0];
2190    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2191  } else {
2192    ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
2193  }
2194
2195  // 'X' matches anything.
2196  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2197    // Labels and constants are handled elsewhere ('X' is the only thing
2198    // that matches labels).
2199    if (isa<BasicBlock>(OpInfo.CallOperandVal) ||
2200        isa<ConstantInt>(OpInfo.CallOperandVal))
2201      return;
2202
2203    // Otherwise, try to resolve it to something we know about by looking at
2204    // the actual operand type.
2205    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2206      OpInfo.ConstraintCode = Repl;
2207      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2208    }
2209  }
2210}
2211
2212//===----------------------------------------------------------------------===//
2213//  Loop Strength Reduction hooks
2214//===----------------------------------------------------------------------===//
2215
2216/// isLegalAddressingMode - Return true if the addressing mode represented
2217/// by AM is legal for this target, for a load/store of the specified type.
2218bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2219                                           const Type *Ty) const {
2220  // The default implementation of this implements a conservative RISCy, r+r and
2221  // r+i addr mode.
2222
2223  // Allows a sign-extended 16-bit immediate field.
2224  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2225    return false;
2226
2227  // No global is ever allowed as a base.
2228  if (AM.BaseGV)
2229    return false;
2230
2231  // Only support r+r,
2232  switch (AM.Scale) {
2233  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2234    break;
2235  case 1:
2236    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2237      return false;
2238    // Otherwise we have r+r or r+i.
2239    break;
2240  case 2:
2241    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2242      return false;
2243    // Allow 2*r as r+r.
2244    break;
2245  }
2246
2247  return true;
2248}
2249
2250struct mu {
2251  APInt m;     // magic number
2252  bool a;      // add indicator
2253  unsigned s;  // shift amount
2254};
2255
2256/// magicu - calculate the magic numbers required to codegen an integer udiv as
2257/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
2258static mu magicu(const APInt& d) {
2259  unsigned p;
2260  APInt nc, delta, q1, r1, q2, r2;
2261  struct mu magu;
2262  magu.a = 0;               // initialize "add" indicator
2263  APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
2264  APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
2265  APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
2266
2267  nc = allOnes - (-d).urem(d);
2268  p = d.getBitWidth() - 1;  // initialize p
2269  q1 = signedMin.udiv(nc);  // initialize q1 = 2p/nc
2270  r1 = signedMin - q1*nc;   // initialize r1 = rem(2p,nc)
2271  q2 = signedMax.udiv(d);   // initialize q2 = (2p-1)/d
2272  r2 = signedMax - q2*d;    // initialize r2 = rem((2p-1),d)
2273  do {
2274    p = p + 1;
2275    if (r1.uge(nc - r1)) {
2276      q1 = q1 + q1 + 1;  // update q1
2277      r1 = r1 + r1 - nc; // update r1
2278    }
2279    else {
2280      q1 = q1+q1; // update q1
2281      r1 = r1+r1; // update r1
2282    }
2283    if ((r2 + 1).uge(d - r2)) {
2284      if (q2.uge(signedMax)) magu.a = 1;
2285      q2 = q2+q2 + 1;     // update q2
2286      r2 = r2+r2 + 1 - d; // update r2
2287    }
2288    else {
2289      if (q2.uge(signedMin)) magu.a = 1;
2290      q2 = q2+q2;     // update q2
2291      r2 = r2+r2 + 1; // update r2
2292    }
2293    delta = d - 1 - r2;
2294  } while (p < d.getBitWidth()*2 &&
2295           (q1.ult(delta) || (q1 == delta && r1 == 0)));
2296  magu.m = q2 + 1; // resulting magic number
2297  magu.s = p - d.getBitWidth();  // resulting shift
2298  return magu;
2299}
2300
2301// Magic for divide replacement
2302struct ms {
2303  APInt m;  // magic number
2304  unsigned s;  // shift amount
2305};
2306
2307/// magic - calculate the magic numbers required to codegen an integer sdiv as
2308/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
2309/// or -1.
2310static ms magic(const APInt& d) {
2311  unsigned p;
2312  APInt ad, anc, delta, q1, r1, q2, r2, t;
2313  APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
2314  APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
2315  APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
2316  struct ms mag;
2317
2318  ad = d.abs();
2319  t = signedMin + (d.lshr(d.getBitWidth() - 1));
2320  anc = t - 1 - t.urem(ad);   // absolute value of nc
2321  p = d.getBitWidth() - 1;    // initialize p
2322  q1 = signedMin.udiv(anc);   // initialize q1 = 2p/abs(nc)
2323  r1 = signedMin - q1*anc;    // initialize r1 = rem(2p,abs(nc))
2324  q2 = signedMin.udiv(ad);    // initialize q2 = 2p/abs(d)
2325  r2 = signedMin - q2*ad;     // initialize r2 = rem(2p,abs(d))
2326  do {
2327    p = p + 1;
2328    q1 = q1<<1;          // update q1 = 2p/abs(nc)
2329    r1 = r1<<1;          // update r1 = rem(2p/abs(nc))
2330    if (r1.uge(anc)) {  // must be unsigned comparison
2331      q1 = q1 + 1;
2332      r1 = r1 - anc;
2333    }
2334    q2 = q2<<1;          // update q2 = 2p/abs(d)
2335    r2 = r2<<1;          // update r2 = rem(2p/abs(d))
2336    if (r2.uge(ad)) {   // must be unsigned comparison
2337      q2 = q2 + 1;
2338      r2 = r2 - ad;
2339    }
2340    delta = ad - r2;
2341  } while (q1.ule(delta) || (q1 == delta && r1 == 0));
2342
2343  mag.m = q2 + 1;
2344  if (d.isNegative()) mag.m = -mag.m;   // resulting magic number
2345  mag.s = p - d.getBitWidth();          // resulting shift
2346  return mag;
2347}
2348
2349/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2350/// return a DAG expression to select that will generate the same value by
2351/// multiplying by a magic number.  See:
2352/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2353SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2354                                  std::vector<SDNode*>* Created) const {
2355  MVT VT = N->getValueType(0);
2356
2357  // Check to see if we can do this.
2358  // FIXME: We should be more aggressive here.
2359  if (!isTypeLegal(VT))
2360    return SDValue();
2361
2362  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2363  ms magics = magic(d);
2364
2365  // Multiply the numerator (operand 0) by the magic value
2366  // FIXME: We should support doing a MUL in a wider type
2367  SDValue Q;
2368  if (isOperationLegal(ISD::MULHS, VT))
2369    Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
2370                    DAG.getConstant(magics.m, VT));
2371  else if (isOperationLegal(ISD::SMUL_LOHI, VT))
2372    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(VT, VT),
2373                              N->getOperand(0),
2374                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2375  else
2376    return SDValue();       // No mulhs or equvialent
2377  // If d > 0 and m < 0, add the numerator
2378  if (d.isStrictlyPositive() && magics.m.isNegative()) {
2379    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
2380    if (Created)
2381      Created->push_back(Q.getNode());
2382  }
2383  // If d < 0 and m > 0, subtract the numerator.
2384  if (d.isNegative() && magics.m.isStrictlyPositive()) {
2385    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
2386    if (Created)
2387      Created->push_back(Q.getNode());
2388  }
2389  // Shift right algebraic if shift value is nonzero
2390  if (magics.s > 0) {
2391    Q = DAG.getNode(ISD::SRA, VT, Q,
2392                    DAG.getConstant(magics.s, getShiftAmountTy()));
2393    if (Created)
2394      Created->push_back(Q.getNode());
2395  }
2396  // Extract the sign bit and add it to the quotient
2397  SDValue T =
2398    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2399                                                 getShiftAmountTy()));
2400  if (Created)
2401    Created->push_back(T.getNode());
2402  return DAG.getNode(ISD::ADD, VT, Q, T);
2403}
2404
2405/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2406/// return a DAG expression to select that will generate the same value by
2407/// multiplying by a magic number.  See:
2408/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2409SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2410                                  std::vector<SDNode*>* Created) const {
2411  MVT VT = N->getValueType(0);
2412
2413  // Check to see if we can do this.
2414  // FIXME: We should be more aggressive here.
2415  if (!isTypeLegal(VT))
2416    return SDValue();
2417
2418  // FIXME: We should use a narrower constant when the upper
2419  // bits are known to be zero.
2420  ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
2421  mu magics = magicu(N1C->getAPIntValue());
2422
2423  // Multiply the numerator (operand 0) by the magic value
2424  // FIXME: We should support doing a MUL in a wider type
2425  SDValue Q;
2426  if (isOperationLegal(ISD::MULHU, VT))
2427    Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
2428                    DAG.getConstant(magics.m, VT));
2429  else if (isOperationLegal(ISD::UMUL_LOHI, VT))
2430    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(VT, VT),
2431                              N->getOperand(0),
2432                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2433  else
2434    return SDValue();       // No mulhu or equvialent
2435  if (Created)
2436    Created->push_back(Q.getNode());
2437
2438  if (magics.a == 0) {
2439    assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
2440           "We shouldn't generate an undefined shift!");
2441    return DAG.getNode(ISD::SRL, VT, Q,
2442                       DAG.getConstant(magics.s, getShiftAmountTy()));
2443  } else {
2444    SDValue NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
2445    if (Created)
2446      Created->push_back(NPQ.getNode());
2447    NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
2448                      DAG.getConstant(1, getShiftAmountTy()));
2449    if (Created)
2450      Created->push_back(NPQ.getNode());
2451    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
2452    if (Created)
2453      Created->push_back(NPQ.getNode());
2454    return DAG.getNode(ISD::SRL, VT, NPQ,
2455                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2456  }
2457}
2458