TargetLowering.cpp revision 24e1a9d3115a5bf4e1c21092ede0f6dfc0a810ad
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetAsmInfo.h"
15#include "llvm/Target/TargetLowering.h"
16#include "llvm/Target/TargetSubtarget.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/ADT/StringExtras.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/MathExtras.h"
26using namespace llvm;
27
28/// InitLibcallNames - Set default libcall names.
29///
30static void InitLibcallNames(const char **Names) {
31  Names[RTLIB::SHL_I32] = "__ashlsi3";
32  Names[RTLIB::SHL_I64] = "__ashldi3";
33  Names[RTLIB::SRL_I32] = "__lshrsi3";
34  Names[RTLIB::SRL_I64] = "__lshrdi3";
35  Names[RTLIB::SRA_I32] = "__ashrsi3";
36  Names[RTLIB::SRA_I64] = "__ashrdi3";
37  Names[RTLIB::MUL_I32] = "__mulsi3";
38  Names[RTLIB::MUL_I64] = "__muldi3";
39  Names[RTLIB::SDIV_I32] = "__divsi3";
40  Names[RTLIB::SDIV_I64] = "__divdi3";
41  Names[RTLIB::UDIV_I32] = "__udivsi3";
42  Names[RTLIB::UDIV_I64] = "__udivdi3";
43  Names[RTLIB::SREM_I32] = "__modsi3";
44  Names[RTLIB::SREM_I64] = "__moddi3";
45  Names[RTLIB::UREM_I32] = "__umodsi3";
46  Names[RTLIB::UREM_I64] = "__umoddi3";
47  Names[RTLIB::NEG_I32] = "__negsi2";
48  Names[RTLIB::NEG_I64] = "__negdi2";
49  Names[RTLIB::ADD_F32] = "__addsf3";
50  Names[RTLIB::ADD_F64] = "__adddf3";
51  Names[RTLIB::ADD_F80] = "__addxf3";
52  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
53  Names[RTLIB::SUB_F32] = "__subsf3";
54  Names[RTLIB::SUB_F64] = "__subdf3";
55  Names[RTLIB::SUB_F80] = "__subxf3";
56  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
57  Names[RTLIB::MUL_F32] = "__mulsf3";
58  Names[RTLIB::MUL_F64] = "__muldf3";
59  Names[RTLIB::MUL_F80] = "__mulxf3";
60  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
61  Names[RTLIB::DIV_F32] = "__divsf3";
62  Names[RTLIB::DIV_F64] = "__divdf3";
63  Names[RTLIB::DIV_F80] = "__divxf3";
64  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
65  Names[RTLIB::REM_F32] = "fmodf";
66  Names[RTLIB::REM_F64] = "fmod";
67  Names[RTLIB::REM_F80] = "fmodl";
68  Names[RTLIB::REM_PPCF128] = "fmodl";
69  Names[RTLIB::POWI_F32] = "__powisf2";
70  Names[RTLIB::POWI_F64] = "__powidf2";
71  Names[RTLIB::POWI_F80] = "__powixf2";
72  Names[RTLIB::POWI_PPCF128] = "__powitf2";
73  Names[RTLIB::SQRT_F32] = "sqrtf";
74  Names[RTLIB::SQRT_F64] = "sqrt";
75  Names[RTLIB::SQRT_F80] = "sqrtl";
76  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
77  Names[RTLIB::SIN_F32] = "sinf";
78  Names[RTLIB::SIN_F64] = "sin";
79  Names[RTLIB::SIN_F80] = "sinl";
80  Names[RTLIB::SIN_PPCF128] = "sinl";
81  Names[RTLIB::COS_F32] = "cosf";
82  Names[RTLIB::COS_F64] = "cos";
83  Names[RTLIB::COS_F80] = "cosl";
84  Names[RTLIB::COS_PPCF128] = "cosl";
85  Names[RTLIB::POW_F32] = "powf";
86  Names[RTLIB::POW_F64] = "pow";
87  Names[RTLIB::POW_F80] = "powl";
88  Names[RTLIB::POW_PPCF128] = "powl";
89  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
90  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
91  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
92  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
93  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
94  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
95  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
96  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
97  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
98  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
99  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
100  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
101  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
102  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
103  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
104  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
105  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
106  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
107  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
108  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
109  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
110  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
111  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
112  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
113  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
114  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
115  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
116  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
117  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
118  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
119  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
120  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
121  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
122  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
123  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
124  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
125  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
126  Names[RTLIB::OEQ_F32] = "__eqsf2";
127  Names[RTLIB::OEQ_F64] = "__eqdf2";
128  Names[RTLIB::UNE_F32] = "__nesf2";
129  Names[RTLIB::UNE_F64] = "__nedf2";
130  Names[RTLIB::OGE_F32] = "__gesf2";
131  Names[RTLIB::OGE_F64] = "__gedf2";
132  Names[RTLIB::OLT_F32] = "__ltsf2";
133  Names[RTLIB::OLT_F64] = "__ltdf2";
134  Names[RTLIB::OLE_F32] = "__lesf2";
135  Names[RTLIB::OLE_F64] = "__ledf2";
136  Names[RTLIB::OGT_F32] = "__gtsf2";
137  Names[RTLIB::OGT_F64] = "__gtdf2";
138  Names[RTLIB::UO_F32] = "__unordsf2";
139  Names[RTLIB::UO_F64] = "__unorddf2";
140  Names[RTLIB::O_F32] = "__unordsf2";
141  Names[RTLIB::O_F64] = "__unorddf2";
142}
143
144/// InitCmpLibcallCCs - Set default comparison libcall CC.
145///
146static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
147  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
148  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
149  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
150  CCs[RTLIB::UNE_F32] = ISD::SETNE;
151  CCs[RTLIB::UNE_F64] = ISD::SETNE;
152  CCs[RTLIB::OGE_F32] = ISD::SETGE;
153  CCs[RTLIB::OGE_F64] = ISD::SETGE;
154  CCs[RTLIB::OLT_F32] = ISD::SETLT;
155  CCs[RTLIB::OLT_F64] = ISD::SETLT;
156  CCs[RTLIB::OLE_F32] = ISD::SETLE;
157  CCs[RTLIB::OLE_F64] = ISD::SETLE;
158  CCs[RTLIB::OGT_F32] = ISD::SETGT;
159  CCs[RTLIB::OGT_F64] = ISD::SETGT;
160  CCs[RTLIB::UO_F32] = ISD::SETNE;
161  CCs[RTLIB::UO_F64] = ISD::SETNE;
162  CCs[RTLIB::O_F32] = ISD::SETEQ;
163  CCs[RTLIB::O_F64] = ISD::SETEQ;
164}
165
166TargetLowering::TargetLowering(TargetMachine &tm)
167  : TM(tm), TD(TM.getTargetData()) {
168  assert(ISD::BUILTIN_OP_END <= 156 &&
169         "Fixed size array in TargetLowering is not large enough!");
170  // All operations default to being supported.
171  memset(OpActions, 0, sizeof(OpActions));
172  memset(LoadXActions, 0, sizeof(LoadXActions));
173  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
174  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
175  memset(ConvertActions, 0, sizeof(ConvertActions));
176
177  // Set default actions for various operations.
178  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
179    // Default all indexed load / store to expand.
180    for (unsigned IM = (unsigned)ISD::PRE_INC;
181         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
182      setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand);
183      setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand);
184    }
185
186    // These operations default to expand.
187    setOperationAction(ISD::FGETSIGN, (MVT::ValueType)VT, Expand);
188  }
189
190  // Most targets ignore the @llvm.prefetch intrinsic.
191  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
192
193  // ConstantFP nodes default to expand.  Targets can either change this to
194  // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
195  // to optimize expansions for certain constants.
196  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
197  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
198  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
199
200  // Default ISD::TRAP to expand (which turns it into abort).
201  setOperationAction(ISD::TRAP, MVT::Other, Expand);
202
203  IsLittleEndian = TD->isLittleEndian();
204  UsesGlobalOffsetTable = false;
205  ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType());
206  ShiftAmtHandling = Undefined;
207  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
208  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
209  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
210  allowUnalignedMemoryAccesses = false;
211  UseUnderscoreSetJmp = false;
212  UseUnderscoreLongJmp = false;
213  SelectIsExpensive = false;
214  IntDivIsCheap = false;
215  Pow2DivIsCheap = false;
216  StackPointerRegisterToSaveRestore = 0;
217  ExceptionPointerRegister = 0;
218  ExceptionSelectorRegister = 0;
219  SetCCResultContents = UndefinedSetCCResult;
220  SchedPreferenceInfo = SchedulingForLatency;
221  JumpBufSize = 0;
222  JumpBufAlignment = 0;
223  IfCvtBlockSizeLimit = 2;
224  IfCvtDupBlockSizeLimit = 0;
225  PrefLoopAlignment = 0;
226
227  InitLibcallNames(LibcallRoutineNames);
228  InitCmpLibcallCCs(CmpLibcallCCs);
229
230  // Tell Legalize whether the assembler supports DEBUG_LOC.
231  if (!TM.getTargetAsmInfo()->hasDotLocAndDotFile())
232    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
233}
234
235TargetLowering::~TargetLowering() {}
236
237/// computeRegisterProperties - Once all of the register classes are added,
238/// this allows us to compute derived properties we expose.
239void TargetLowering::computeRegisterProperties() {
240  assert(MVT::LAST_VALUETYPE <= 32 &&
241         "Too many value types for ValueTypeActions to hold!");
242
243  // Everything defaults to needing one register.
244  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
245    NumRegistersForVT[i] = 1;
246    RegisterTypeForVT[i] = TransformToType[i] = i;
247  }
248  // ...except isVoid, which doesn't need any registers.
249  NumRegistersForVT[MVT::isVoid] = 0;
250
251  // Find the largest integer register class.
252  unsigned LargestIntReg = MVT::i128;
253  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
254    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
255
256  // Every integer value type larger than this largest register takes twice as
257  // many registers to represent as the previous ValueType.
258  for (MVT::ValueType ExpandedReg = LargestIntReg + 1;
259       MVT::isInteger(ExpandedReg); ++ExpandedReg) {
260    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
261    RegisterTypeForVT[ExpandedReg] = LargestIntReg;
262    TransformToType[ExpandedReg] = ExpandedReg - 1;
263    ValueTypeActions.setTypeAction(ExpandedReg, Expand);
264  }
265
266  // Inspect all of the ValueType's smaller than the largest integer
267  // register to see which ones need promotion.
268  MVT::ValueType LegalIntReg = LargestIntReg;
269  for (MVT::ValueType IntReg = LargestIntReg - 1;
270       IntReg >= MVT::i1; --IntReg) {
271    if (isTypeLegal(IntReg)) {
272      LegalIntReg = IntReg;
273    } else {
274      RegisterTypeForVT[IntReg] = TransformToType[IntReg] = LegalIntReg;
275      ValueTypeActions.setTypeAction(IntReg, Promote);
276    }
277  }
278
279  // ppcf128 type is really two f64's.
280  if (!isTypeLegal(MVT::ppcf128)) {
281    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
282    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
283    TransformToType[MVT::ppcf128] = MVT::f64;
284    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
285  }
286
287  // Decide how to handle f64. If the target does not have native f64 support,
288  // expand it to i64 and we will be generating soft float library calls.
289  if (!isTypeLegal(MVT::f64)) {
290    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
291    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
292    TransformToType[MVT::f64] = MVT::i64;
293    ValueTypeActions.setTypeAction(MVT::f64, Expand);
294  }
295
296  // Decide how to handle f32. If the target does not have native support for
297  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
298  if (!isTypeLegal(MVT::f32)) {
299    if (isTypeLegal(MVT::f64)) {
300      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
301      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
302      TransformToType[MVT::f32] = MVT::f64;
303      ValueTypeActions.setTypeAction(MVT::f32, Promote);
304    } else {
305      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
306      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
307      TransformToType[MVT::f32] = MVT::i32;
308      ValueTypeActions.setTypeAction(MVT::f32, Expand);
309    }
310  }
311
312  // Loop over all of the vector value types to see which need transformations.
313  for (MVT::ValueType i = MVT::FIRST_VECTOR_VALUETYPE;
314       i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
315    if (!isTypeLegal(i)) {
316      MVT::ValueType IntermediateVT, RegisterVT;
317      unsigned NumIntermediates;
318      NumRegistersForVT[i] =
319        getVectorTypeBreakdown(i,
320                               IntermediateVT, NumIntermediates,
321                               RegisterVT);
322      RegisterTypeForVT[i] = RegisterVT;
323      TransformToType[i] = MVT::Other; // this isn't actually used
324      ValueTypeActions.setTypeAction(i, Expand);
325    }
326  }
327}
328
329const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
330  return NULL;
331}
332
333
334MVT::ValueType
335TargetLowering::getSetCCResultType(const SDOperand &) const {
336  return getValueType(TD->getIntPtrType());
337}
338
339
340/// getVectorTypeBreakdown - Vector types are broken down into some number of
341/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
342/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
343/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
344///
345/// This method returns the number of registers needed, and the VT for each
346/// register.  It also returns the VT and quantity of the intermediate values
347/// before they are promoted/expanded.
348///
349unsigned TargetLowering::getVectorTypeBreakdown(MVT::ValueType VT,
350                                                MVT::ValueType &IntermediateVT,
351                                                unsigned &NumIntermediates,
352                                      MVT::ValueType &RegisterVT) const {
353  // Figure out the right, legal destination reg to copy into.
354  unsigned NumElts = MVT::getVectorNumElements(VT);
355  MVT::ValueType EltTy = MVT::getVectorElementType(VT);
356
357  unsigned NumVectorRegs = 1;
358
359  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
360  // could break down into LHS/RHS like LegalizeDAG does.
361  if (!isPowerOf2_32(NumElts)) {
362    NumVectorRegs = NumElts;
363    NumElts = 1;
364  }
365
366  // Divide the input until we get to a supported size.  This will always
367  // end with a scalar if the target doesn't support vectors.
368  while (NumElts > 1 &&
369         !isTypeLegal(MVT::getVectorType(EltTy, NumElts))) {
370    NumElts >>= 1;
371    NumVectorRegs <<= 1;
372  }
373
374  NumIntermediates = NumVectorRegs;
375
376  MVT::ValueType NewVT = MVT::getVectorType(EltTy, NumElts);
377  if (!isTypeLegal(NewVT))
378    NewVT = EltTy;
379  IntermediateVT = NewVT;
380
381  MVT::ValueType DestVT = getTypeToTransformTo(NewVT);
382  RegisterVT = DestVT;
383  if (DestVT < NewVT) {
384    // Value is expanded, e.g. i64 -> i16.
385    return NumVectorRegs*(MVT::getSizeInBits(NewVT)/MVT::getSizeInBits(DestVT));
386  } else {
387    // Otherwise, promotion or legal types use the same number of registers as
388    // the vector decimated to the appropriate level.
389    return NumVectorRegs;
390  }
391
392  return 1;
393}
394
395/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
396/// function arguments in the caller parameter area.  This is the actual
397/// alignment, not its logarithm.
398unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
399  return TD->getCallFrameTypeAlignment(Ty);
400}
401
402SDOperand TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
403                                                   SelectionDAG &DAG) const {
404  if (usesGlobalOffsetTable())
405    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
406  return Table;
407}
408
409//===----------------------------------------------------------------------===//
410//  Optimization Methods
411//===----------------------------------------------------------------------===//
412
413/// ShrinkDemandedConstant - Check to see if the specified operand of the
414/// specified instruction is a constant integer.  If so, check to see if there
415/// are any bits set in the constant that are not demanded.  If so, shrink the
416/// constant and return true.
417bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
418                                                        const APInt &Demanded) {
419  // FIXME: ISD::SELECT, ISD::SELECT_CC
420  switch(Op.getOpcode()) {
421  default: break;
422  case ISD::AND:
423  case ISD::OR:
424  case ISD::XOR:
425    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
426      if (C->getAPIntValue().intersects(~Demanded)) {
427        MVT::ValueType VT = Op.getValueType();
428        SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
429                                    DAG.getConstant(Demanded &
430                                                      C->getAPIntValue(),
431                                                    VT));
432        return CombineTo(Op, New);
433      }
434    break;
435  }
436  return false;
437}
438
439/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
440/// DemandedMask bits of the result of Op are ever used downstream.  If we can
441/// use this information to simplify Op, create a new simplified DAG node and
442/// return true, returning the original and new nodes in Old and New. Otherwise,
443/// analyze the expression and return a mask of KnownOne and KnownZero bits for
444/// the expression (used to simplify the caller).  The KnownZero/One bits may
445/// only be accurate for those bits in the DemandedMask.
446bool TargetLowering::SimplifyDemandedBits(SDOperand Op,
447                                          const APInt &DemandedMask,
448                                          APInt &KnownZero,
449                                          APInt &KnownOne,
450                                          TargetLoweringOpt &TLO,
451                                          unsigned Depth) const {
452  unsigned BitWidth = DemandedMask.getBitWidth();
453  assert(Op.getValueSizeInBits() == BitWidth &&
454         "Mask size mismatches value type size!");
455  APInt NewMask = DemandedMask;
456
457  // Don't know anything.
458  KnownZero = KnownOne = APInt(BitWidth, 0);
459
460  // Other users may use these bits.
461  if (!Op.Val->hasOneUse()) {
462    if (Depth != 0) {
463      // If not at the root, Just compute the KnownZero/KnownOne bits to
464      // simplify things downstream.
465      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
466      return false;
467    }
468    // If this is the root being simplified, allow it to have multiple uses,
469    // just set the NewMask to all bits.
470    NewMask = APInt::getAllOnesValue(BitWidth);
471  } else if (DemandedMask == 0) {
472    // Not demanding any bits from Op.
473    if (Op.getOpcode() != ISD::UNDEF)
474      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
475    return false;
476  } else if (Depth == 6) {        // Limit search depth.
477    return false;
478  }
479
480  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
481  switch (Op.getOpcode()) {
482  case ISD::Constant:
483    // We know all of the bits for a constant!
484    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
485    KnownZero = ~KnownOne & NewMask;
486    return false;   // Don't fall through, will infinitely loop.
487  case ISD::AND:
488    // If the RHS is a constant, check to see if the LHS would be zero without
489    // using the bits from the RHS.  Below, we use knowledge about the RHS to
490    // simplify the LHS, here we're using information from the LHS to simplify
491    // the RHS.
492    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
493      APInt LHSZero, LHSOne;
494      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
495                                LHSZero, LHSOne, Depth+1);
496      // If the LHS already has zeros where RHSC does, this and is dead.
497      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
498        return TLO.CombineTo(Op, Op.getOperand(0));
499      // If any of the set bits in the RHS are known zero on the LHS, shrink
500      // the constant.
501      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
502        return true;
503    }
504
505    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
506                             KnownOne, TLO, Depth+1))
507      return true;
508    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
509    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
510                             KnownZero2, KnownOne2, TLO, Depth+1))
511      return true;
512    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
513
514    // If all of the demanded bits are known one on one side, return the other.
515    // These bits cannot contribute to the result of the 'and'.
516    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
517      return TLO.CombineTo(Op, Op.getOperand(0));
518    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
519      return TLO.CombineTo(Op, Op.getOperand(1));
520    // If all of the demanded bits in the inputs are known zeros, return zero.
521    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
522      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
523    // If the RHS is a constant, see if we can simplify it.
524    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
525      return true;
526
527    // Output known-1 bits are only known if set in both the LHS & RHS.
528    KnownOne &= KnownOne2;
529    // Output known-0 are known to be clear if zero in either the LHS | RHS.
530    KnownZero |= KnownZero2;
531    break;
532  case ISD::OR:
533    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
534                             KnownOne, TLO, Depth+1))
535      return true;
536    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
537    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
538                             KnownZero2, KnownOne2, TLO, Depth+1))
539      return true;
540    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
541
542    // If all of the demanded bits are known zero on one side, return the other.
543    // These bits cannot contribute to the result of the 'or'.
544    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
545      return TLO.CombineTo(Op, Op.getOperand(0));
546    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
547      return TLO.CombineTo(Op, Op.getOperand(1));
548    // If all of the potentially set bits on one side are known to be set on
549    // the other side, just use the 'other' side.
550    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
551      return TLO.CombineTo(Op, Op.getOperand(0));
552    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
553      return TLO.CombineTo(Op, Op.getOperand(1));
554    // If the RHS is a constant, see if we can simplify it.
555    if (TLO.ShrinkDemandedConstant(Op, NewMask))
556      return true;
557
558    // Output known-0 bits are only known if clear in both the LHS & RHS.
559    KnownZero &= KnownZero2;
560    // Output known-1 are known to be set if set in either the LHS | RHS.
561    KnownOne |= KnownOne2;
562    break;
563  case ISD::XOR:
564    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
565                             KnownOne, TLO, Depth+1))
566      return true;
567    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
568    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
569                             KnownOne2, TLO, Depth+1))
570      return true;
571    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
572
573    // If all of the demanded bits are known zero on one side, return the other.
574    // These bits cannot contribute to the result of the 'xor'.
575    if ((KnownZero & NewMask) == NewMask)
576      return TLO.CombineTo(Op, Op.getOperand(0));
577    if ((KnownZero2 & NewMask) == NewMask)
578      return TLO.CombineTo(Op, Op.getOperand(1));
579
580    // If all of the unknown bits are known to be zero on one side or the other
581    // (but not both) turn this into an *inclusive* or.
582    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
583    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
584      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
585                                               Op.getOperand(0),
586                                               Op.getOperand(1)));
587
588    // Output known-0 bits are known if clear or set in both the LHS & RHS.
589    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
590    // Output known-1 are known to be set if set in only one of the LHS, RHS.
591    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
592
593    // If all of the demanded bits on one side are known, and all of the set
594    // bits on that side are also known to be set on the other side, turn this
595    // into an AND, as we know the bits will be cleared.
596    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
597    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
598      if ((KnownOne & KnownOne2) == KnownOne) {
599        MVT::ValueType VT = Op.getValueType();
600        SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
601        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
602                                                 ANDC));
603      }
604    }
605
606    // If the RHS is a constant, see if we can simplify it.
607    // for XOR, we prefer to force bits to 1 if they will make a -1.
608    // if we can't force bits, try to shrink constant
609    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
610      APInt Expanded = C->getAPIntValue() | (~NewMask);
611      // if we can expand it to have all bits set, do it
612      if (Expanded.isAllOnesValue()) {
613        if (Expanded != C->getAPIntValue()) {
614          MVT::ValueType VT = Op.getValueType();
615          SDOperand New = TLO.DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
616                                          TLO.DAG.getConstant(Expanded, VT));
617          return TLO.CombineTo(Op, New);
618        }
619        // if it already has all the bits set, nothing to change
620        // but don't shrink either!
621      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
622        return true;
623      }
624    }
625
626    KnownZero = KnownZeroOut;
627    KnownOne  = KnownOneOut;
628    break;
629  case ISD::SELECT:
630    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
631                             KnownOne, TLO, Depth+1))
632      return true;
633    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
634                             KnownOne2, TLO, Depth+1))
635      return true;
636    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
637    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
638
639    // If the operands are constants, see if we can simplify them.
640    if (TLO.ShrinkDemandedConstant(Op, NewMask))
641      return true;
642
643    // Only known if known in both the LHS and RHS.
644    KnownOne &= KnownOne2;
645    KnownZero &= KnownZero2;
646    break;
647  case ISD::SELECT_CC:
648    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
649                             KnownOne, TLO, Depth+1))
650      return true;
651    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
652                             KnownOne2, TLO, Depth+1))
653      return true;
654    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
655    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
656
657    // If the operands are constants, see if we can simplify them.
658    if (TLO.ShrinkDemandedConstant(Op, NewMask))
659      return true;
660
661    // Only known if known in both the LHS and RHS.
662    KnownOne &= KnownOne2;
663    KnownZero &= KnownZero2;
664    break;
665  case ISD::SHL:
666    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
667      unsigned ShAmt = SA->getValue();
668      SDOperand InOp = Op.getOperand(0);
669
670      // If the shift count is an invalid immediate, don't do anything.
671      if (ShAmt >= BitWidth)
672        break;
673
674      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
675      // single shift.  We can do this if the bottom bits (which are shifted
676      // out) are never demanded.
677      if (InOp.getOpcode() == ISD::SRL &&
678          isa<ConstantSDNode>(InOp.getOperand(1))) {
679        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
680          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
681          unsigned Opc = ISD::SHL;
682          int Diff = ShAmt-C1;
683          if (Diff < 0) {
684            Diff = -Diff;
685            Opc = ISD::SRL;
686          }
687
688          SDOperand NewSA =
689            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
690          MVT::ValueType VT = Op.getValueType();
691          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
692                                                   InOp.getOperand(0), NewSA));
693        }
694      }
695
696      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
697                               KnownZero, KnownOne, TLO, Depth+1))
698        return true;
699      KnownZero <<= SA->getValue();
700      KnownOne  <<= SA->getValue();
701      // low bits known zero.
702      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getValue());
703    }
704    break;
705  case ISD::SRL:
706    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
707      MVT::ValueType VT = Op.getValueType();
708      unsigned ShAmt = SA->getValue();
709      unsigned VTSize = MVT::getSizeInBits(VT);
710      SDOperand InOp = Op.getOperand(0);
711
712      // If the shift count is an invalid immediate, don't do anything.
713      if (ShAmt >= BitWidth)
714        break;
715
716      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
717      // single shift.  We can do this if the top bits (which are shifted out)
718      // are never demanded.
719      if (InOp.getOpcode() == ISD::SHL &&
720          isa<ConstantSDNode>(InOp.getOperand(1))) {
721        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
722          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
723          unsigned Opc = ISD::SRL;
724          int Diff = ShAmt-C1;
725          if (Diff < 0) {
726            Diff = -Diff;
727            Opc = ISD::SHL;
728          }
729
730          SDOperand NewSA =
731            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
732          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
733                                                   InOp.getOperand(0), NewSA));
734        }
735      }
736
737      // Compute the new bits that are at the top now.
738      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
739                               KnownZero, KnownOne, TLO, Depth+1))
740        return true;
741      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
742      KnownZero = KnownZero.lshr(ShAmt);
743      KnownOne  = KnownOne.lshr(ShAmt);
744
745      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
746      KnownZero |= HighBits;  // High bits known zero.
747    }
748    break;
749  case ISD::SRA:
750    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
751      MVT::ValueType VT = Op.getValueType();
752      unsigned ShAmt = SA->getValue();
753
754      // If the shift count is an invalid immediate, don't do anything.
755      if (ShAmt >= BitWidth)
756        break;
757
758      APInt InDemandedMask = (NewMask << ShAmt);
759
760      // If any of the demanded bits are produced by the sign extension, we also
761      // demand the input sign bit.
762      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
763      if (HighBits.intersects(NewMask))
764        InDemandedMask |= APInt::getSignBit(MVT::getSizeInBits(VT));
765
766      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
767                               KnownZero, KnownOne, TLO, Depth+1))
768        return true;
769      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
770      KnownZero = KnownZero.lshr(ShAmt);
771      KnownOne  = KnownOne.lshr(ShAmt);
772
773      // Handle the sign bit, adjusted to where it is now in the mask.
774      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
775
776      // If the input sign bit is known to be zero, or if none of the top bits
777      // are demanded, turn this into an unsigned shift right.
778      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
779        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
780                                                 Op.getOperand(1)));
781      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
782        KnownOne |= HighBits;
783      }
784    }
785    break;
786  case ISD::SIGN_EXTEND_INREG: {
787    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
788
789    // Sign extension.  Compute the demanded bits in the result that are not
790    // present in the input.
791    APInt NewBits = APInt::getHighBitsSet(BitWidth,
792                                          BitWidth - MVT::getSizeInBits(EVT)) &
793                    NewMask;
794
795    // If none of the extended bits are demanded, eliminate the sextinreg.
796    if (NewBits == 0)
797      return TLO.CombineTo(Op, Op.getOperand(0));
798
799    APInt InSignBit = APInt::getSignBit(MVT::getSizeInBits(EVT));
800    InSignBit.zext(BitWidth);
801    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
802                                                   MVT::getSizeInBits(EVT)) &
803                              NewMask;
804
805    // Since the sign extended bits are demanded, we know that the sign
806    // bit is demanded.
807    InputDemandedBits |= InSignBit;
808
809    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
810                             KnownZero, KnownOne, TLO, Depth+1))
811      return true;
812    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
813
814    // If the sign bit of the input is known set or clear, then we know the
815    // top bits of the result.
816
817    // If the input sign bit is known zero, convert this into a zero extension.
818    if (KnownZero.intersects(InSignBit))
819      return TLO.CombineTo(Op,
820                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
821
822    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
823      KnownOne |= NewBits;
824      KnownZero &= ~NewBits;
825    } else {                       // Input sign bit unknown
826      KnownZero &= ~NewBits;
827      KnownOne &= ~NewBits;
828    }
829    break;
830  }
831  case ISD::ZERO_EXTEND: {
832    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
833    APInt InMask = NewMask;
834    InMask.trunc(OperandBitWidth);
835
836    // If none of the top bits are demanded, convert this into an any_extend.
837    APInt NewBits =
838      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
839    if (!NewBits.intersects(NewMask))
840      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
841                                               Op.getValueType(),
842                                               Op.getOperand(0)));
843
844    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
845                             KnownZero, KnownOne, TLO, Depth+1))
846      return true;
847    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
848    KnownZero.zext(BitWidth);
849    KnownOne.zext(BitWidth);
850    KnownZero |= NewBits;
851    break;
852  }
853  case ISD::SIGN_EXTEND: {
854    MVT::ValueType InVT = Op.getOperand(0).getValueType();
855    unsigned InBits = MVT::getSizeInBits(InVT);
856    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
857    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
858    APInt NewBits   = ~InMask & NewMask;
859
860    // If none of the top bits are demanded, convert this into an any_extend.
861    if (NewBits == 0)
862      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
863                                           Op.getOperand(0)));
864
865    // Since some of the sign extended bits are demanded, we know that the sign
866    // bit is demanded.
867    APInt InDemandedBits = InMask & NewMask;
868    InDemandedBits |= InSignBit;
869    InDemandedBits.trunc(InBits);
870
871    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
872                             KnownOne, TLO, Depth+1))
873      return true;
874    KnownZero.zext(BitWidth);
875    KnownOne.zext(BitWidth);
876
877    // If the sign bit is known zero, convert this to a zero extend.
878    if (KnownZero.intersects(InSignBit))
879      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
880                                               Op.getValueType(),
881                                               Op.getOperand(0)));
882
883    // If the sign bit is known one, the top bits match.
884    if (KnownOne.intersects(InSignBit)) {
885      KnownOne  |= NewBits;
886      KnownZero &= ~NewBits;
887    } else {   // Otherwise, top bits aren't known.
888      KnownOne  &= ~NewBits;
889      KnownZero &= ~NewBits;
890    }
891    break;
892  }
893  case ISD::ANY_EXTEND: {
894    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
895    APInt InMask = NewMask;
896    InMask.trunc(OperandBitWidth);
897    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
898                             KnownZero, KnownOne, TLO, Depth+1))
899      return true;
900    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
901    KnownZero.zext(BitWidth);
902    KnownOne.zext(BitWidth);
903    break;
904  }
905  case ISD::TRUNCATE: {
906    // Simplify the input, using demanded bit information, and compute the known
907    // zero/one bits live out.
908    APInt TruncMask = NewMask;
909    TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
910    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
911                             KnownZero, KnownOne, TLO, Depth+1))
912      return true;
913    KnownZero.trunc(BitWidth);
914    KnownOne.trunc(BitWidth);
915
916    // If the input is only used by this truncate, see if we can shrink it based
917    // on the known demanded bits.
918    if (Op.getOperand(0).Val->hasOneUse()) {
919      SDOperand In = Op.getOperand(0);
920      unsigned InBitWidth = In.getValueSizeInBits();
921      switch (In.getOpcode()) {
922      default: break;
923      case ISD::SRL:
924        // Shrink SRL by a constant if none of the high bits shifted in are
925        // demanded.
926        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
927          APInt HighBits = APInt::getHighBitsSet(InBitWidth,
928                                                 InBitWidth - BitWidth);
929          HighBits = HighBits.lshr(ShAmt->getValue());
930          HighBits.trunc(BitWidth);
931
932          if (ShAmt->getValue() < BitWidth && !(HighBits & NewMask)) {
933            // None of the shifted in bits are needed.  Add a truncate of the
934            // shift input, then shift it.
935            SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
936                                                 Op.getValueType(),
937                                                 In.getOperand(0));
938            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
939                                                   NewTrunc, In.getOperand(1)));
940          }
941        }
942        break;
943      }
944    }
945
946    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
947    break;
948  }
949  case ISD::AssertZext: {
950    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
951    APInt InMask = APInt::getLowBitsSet(BitWidth,
952                                        MVT::getSizeInBits(VT));
953    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
954                             KnownZero, KnownOne, TLO, Depth+1))
955      return true;
956    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
957    KnownZero |= ~InMask & NewMask;
958    break;
959  }
960  case ISD::BIT_CONVERT:
961#if 0
962    // If this is an FP->Int bitcast and if the sign bit is the only thing that
963    // is demanded, turn this into a FGETSIGN.
964    if (NewMask == MVT::getIntVTSignBit(Op.getValueType()) &&
965        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
966        !MVT::isVector(Op.getOperand(0).getValueType())) {
967      // Only do this xform if FGETSIGN is valid or if before legalize.
968      if (!TLO.AfterLegalize ||
969          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
970        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
971        // place.  We expect the SHL to be eliminated by other optimizations.
972        SDOperand Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
973                                         Op.getOperand(0));
974        unsigned ShVal = MVT::getSizeInBits(Op.getValueType())-1;
975        SDOperand ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
976        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
977                                                 Sign, ShAmt));
978      }
979    }
980#endif
981    break;
982  case ISD::ADD:
983  case ISD::SUB:
984  case ISD::INTRINSIC_WO_CHAIN:
985  case ISD::INTRINSIC_W_CHAIN:
986  case ISD::INTRINSIC_VOID:
987  case ISD::CTTZ:
988  case ISD::CTLZ:
989  case ISD::CTPOP:
990  case ISD::LOAD:
991  case ISD::SETCC:
992  case ISD::FGETSIGN:
993    // Just use ComputeMaskedBits to compute output bits.
994    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
995    break;
996  }
997
998  // If we know the value of all of the demanded bits, return this as a
999  // constant.
1000  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1001    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1002
1003  return false;
1004}
1005
1006/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1007/// in Mask are known to be either zero or one and return them in the
1008/// KnownZero/KnownOne bitsets.
1009void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
1010                                                    const APInt &Mask,
1011                                                    APInt &KnownZero,
1012                                                    APInt &KnownOne,
1013                                                    const SelectionDAG &DAG,
1014                                                    unsigned Depth) const {
1015  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1016          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1017          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1018          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1019         "Should use MaskedValueIsZero if you don't know whether Op"
1020         " is a target node!");
1021  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1022}
1023
1024/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1025/// targets that want to expose additional information about sign bits to the
1026/// DAG Combiner.
1027unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
1028                                                         unsigned Depth) const {
1029  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1030          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1031          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1032          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1033         "Should use ComputeNumSignBits if you don't know whether Op"
1034         " is a target node!");
1035  return 1;
1036}
1037
1038
1039/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1040/// and cc. If it is unable to simplify it, return a null SDOperand.
1041SDOperand
1042TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
1043                              ISD::CondCode Cond, bool foldBooleans,
1044                              DAGCombinerInfo &DCI) const {
1045  SelectionDAG &DAG = DCI.DAG;
1046
1047  // These setcc operations always fold.
1048  switch (Cond) {
1049  default: break;
1050  case ISD::SETFALSE:
1051  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1052  case ISD::SETTRUE:
1053  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1054  }
1055
1056  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1057    const APInt &C1 = N1C->getAPIntValue();
1058    if (isa<ConstantSDNode>(N0.Val)) {
1059      return DAG.FoldSetCC(VT, N0, N1, Cond);
1060    } else {
1061      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1062      // equality comparison, then we're just comparing whether X itself is
1063      // zero.
1064      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1065          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1066          N0.getOperand(1).getOpcode() == ISD::Constant) {
1067        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1068        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1069            ShAmt == Log2_32(MVT::getSizeInBits(N0.getValueType()))) {
1070          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1071            // (srl (ctlz x), 5) == 0  -> X != 0
1072            // (srl (ctlz x), 5) != 1  -> X != 0
1073            Cond = ISD::SETNE;
1074          } else {
1075            // (srl (ctlz x), 5) != 0  -> X == 0
1076            // (srl (ctlz x), 5) == 1  -> X == 0
1077            Cond = ISD::SETEQ;
1078          }
1079          SDOperand Zero = DAG.getConstant(0, N0.getValueType());
1080          return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
1081                              Zero, Cond);
1082        }
1083      }
1084
1085      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1086      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1087        unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType());
1088
1089        // If the comparison constant has bits in the upper part, the
1090        // zero-extended value could never match.
1091        if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1092                                                C1.getBitWidth() - InSize))) {
1093          switch (Cond) {
1094          case ISD::SETUGT:
1095          case ISD::SETUGE:
1096          case ISD::SETEQ: return DAG.getConstant(0, VT);
1097          case ISD::SETULT:
1098          case ISD::SETULE:
1099          case ISD::SETNE: return DAG.getConstant(1, VT);
1100          case ISD::SETGT:
1101          case ISD::SETGE:
1102            // True if the sign bit of C1 is set.
1103            return DAG.getConstant(C1.isNegative(), VT);
1104          case ISD::SETLT:
1105          case ISD::SETLE:
1106            // True if the sign bit of C1 isn't set.
1107            return DAG.getConstant(C1.isNonNegative(), VT);
1108          default:
1109            break;
1110          }
1111        }
1112
1113        // Otherwise, we can perform the comparison with the low bits.
1114        switch (Cond) {
1115        case ISD::SETEQ:
1116        case ISD::SETNE:
1117        case ISD::SETUGT:
1118        case ISD::SETUGE:
1119        case ISD::SETULT:
1120        case ISD::SETULE:
1121          return DAG.getSetCC(VT, N0.getOperand(0),
1122                          DAG.getConstant(APInt(C1).trunc(InSize),
1123                                          N0.getOperand(0).getValueType()),
1124                          Cond);
1125        default:
1126          break;   // todo, be more careful with signed comparisons
1127        }
1128      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1129                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1130        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1131        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
1132        MVT::ValueType ExtDstTy = N0.getValueType();
1133        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
1134
1135        // If the extended part has any inconsistent bits, it cannot ever
1136        // compare equal.  In other words, they have to be all ones or all
1137        // zeros.
1138        APInt ExtBits =
1139          APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1140        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1141          return DAG.getConstant(Cond == ISD::SETNE, VT);
1142
1143        SDOperand ZextOp;
1144        MVT::ValueType Op0Ty = N0.getOperand(0).getValueType();
1145        if (Op0Ty == ExtSrcTy) {
1146          ZextOp = N0.getOperand(0);
1147        } else {
1148          APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1149          ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1150                               DAG.getConstant(Imm, Op0Ty));
1151        }
1152        if (!DCI.isCalledByLegalizer())
1153          DCI.AddToWorklist(ZextOp.Val);
1154        // Otherwise, make this a use of a zext.
1155        return DAG.getSetCC(VT, ZextOp,
1156                            DAG.getConstant(C1 & APInt::getLowBitsSet(
1157                                                               ExtDstTyBits,
1158                                                               ExtSrcTyBits),
1159                                            ExtDstTy),
1160                            Cond);
1161      } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1162                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1163
1164        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1165        if (N0.getOpcode() == ISD::SETCC) {
1166          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1);
1167          if (TrueWhenTrue)
1168            return N0;
1169
1170          // Invert the condition.
1171          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1172          CC = ISD::getSetCCInverse(CC,
1173                               MVT::isInteger(N0.getOperand(0).getValueType()));
1174          return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1175        }
1176
1177        if ((N0.getOpcode() == ISD::XOR ||
1178             (N0.getOpcode() == ISD::AND &&
1179              N0.getOperand(0).getOpcode() == ISD::XOR &&
1180              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1181            isa<ConstantSDNode>(N0.getOperand(1)) &&
1182            cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1183          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1184          // can only do this if the top bits are known zero.
1185          unsigned BitWidth = N0.getValueSizeInBits();
1186          if (DAG.MaskedValueIsZero(N0,
1187                                    APInt::getHighBitsSet(BitWidth,
1188                                                          BitWidth-1))) {
1189            // Okay, get the un-inverted input value.
1190            SDOperand Val;
1191            if (N0.getOpcode() == ISD::XOR)
1192              Val = N0.getOperand(0);
1193            else {
1194              assert(N0.getOpcode() == ISD::AND &&
1195                     N0.getOperand(0).getOpcode() == ISD::XOR);
1196              // ((X^1)&1)^1 -> X & 1
1197              Val = DAG.getNode(ISD::AND, N0.getValueType(),
1198                                N0.getOperand(0).getOperand(0),
1199                                N0.getOperand(1));
1200            }
1201            return DAG.getSetCC(VT, Val, N1,
1202                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1203          }
1204        }
1205      }
1206
1207      APInt MinVal, MaxVal;
1208      unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0));
1209      if (ISD::isSignedIntSetCC(Cond)) {
1210        MinVal = APInt::getSignedMinValue(OperandBitSize);
1211        MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1212      } else {
1213        MinVal = APInt::getMinValue(OperandBitSize);
1214        MaxVal = APInt::getMaxValue(OperandBitSize);
1215      }
1216
1217      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1218      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1219        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1220        // X >= C0 --> X > (C0-1)
1221        return DAG.getSetCC(VT, N0, DAG.getConstant(C1-1, N1.getValueType()),
1222                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1223      }
1224
1225      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1226        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1227        // X <= C0 --> X < (C0+1)
1228        return DAG.getSetCC(VT, N0, DAG.getConstant(C1+1, N1.getValueType()),
1229                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1230      }
1231
1232      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1233        return DAG.getConstant(0, VT);      // X < MIN --> false
1234      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1235        return DAG.getConstant(1, VT);      // X >= MIN --> true
1236      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1237        return DAG.getConstant(0, VT);      // X > MAX --> false
1238      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1239        return DAG.getConstant(1, VT);      // X <= MAX --> true
1240
1241      // Canonicalize setgt X, Min --> setne X, Min
1242      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1243        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1244      // Canonicalize setlt X, Max --> setne X, Max
1245      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1246        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1247
1248      // If we have setult X, 1, turn it into seteq X, 0
1249      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1250        return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1251                        ISD::SETEQ);
1252      // If we have setugt X, Max-1, turn it into seteq X, Max
1253      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1254        return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1255                        ISD::SETEQ);
1256
1257      // If we have "setcc X, C0", check to see if we can shrink the immediate
1258      // by changing cc.
1259
1260      // SETUGT X, SINTMAX  -> SETLT X, 0
1261      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1262          C1 == (~0ULL >> (65-OperandBitSize)))
1263        return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1264                            ISD::SETLT);
1265
1266      // FIXME: Implement the rest of these.
1267
1268      // Fold bit comparisons when we can.
1269      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1270          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1271        if (ConstantSDNode *AndRHS =
1272                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1273          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1274            // Perform the xform if the AND RHS is a single bit.
1275            if (isPowerOf2_64(AndRHS->getValue())) {
1276              return DAG.getNode(ISD::SRL, VT, N0,
1277                             DAG.getConstant(Log2_64(AndRHS->getValue()),
1278                                             getShiftAmountTy()));
1279            }
1280          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
1281            // (X & 8) == 8  -->  (X & 8) >> 3
1282            // Perform the xform if C1 is a single bit.
1283            if (C1.isPowerOf2()) {
1284              return DAG.getNode(ISD::SRL, VT, N0,
1285                          DAG.getConstant(C1.logBase2(), getShiftAmountTy()));
1286            }
1287          }
1288        }
1289    }
1290  } else if (isa<ConstantSDNode>(N0.Val)) {
1291      // Ensure that the constant occurs on the RHS.
1292    return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1293  }
1294
1295  if (isa<ConstantFPSDNode>(N0.Val)) {
1296    // Constant fold or commute setcc.
1297    SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond);
1298    if (O.Val) return O;
1299  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1300    // If the RHS of an FP comparison is a constant, simplify it away in
1301    // some cases.
1302    if (CFP->getValueAPF().isNaN()) {
1303      // If an operand is known to be a nan, we can fold it.
1304      switch (ISD::getUnorderedFlavor(Cond)) {
1305      default: assert(0 && "Unknown flavor!");
1306      case 0:  // Known false.
1307        return DAG.getConstant(0, VT);
1308      case 1:  // Known true.
1309        return DAG.getConstant(1, VT);
1310      case 2:  // Undefined.
1311        return DAG.getNode(ISD::UNDEF, VT);
1312      }
1313    }
1314
1315    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1316    // constant if knowing that the operand is non-nan is enough.  We prefer to
1317    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1318    // materialize 0.0.
1319    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1320      return DAG.getSetCC(VT, N0, N0, Cond);
1321  }
1322
1323  if (N0 == N1) {
1324    // We can always fold X == X for integer setcc's.
1325    if (MVT::isInteger(N0.getValueType()))
1326      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1327    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1328    if (UOF == 2)   // FP operators that are undefined on NaNs.
1329      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1330    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1331      return DAG.getConstant(UOF, VT);
1332    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1333    // if it is not already.
1334    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1335    if (NewCond != Cond)
1336      return DAG.getSetCC(VT, N0, N1, NewCond);
1337  }
1338
1339  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1340      MVT::isInteger(N0.getValueType())) {
1341    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1342        N0.getOpcode() == ISD::XOR) {
1343      // Simplify (X+Y) == (X+Z) -->  Y == Z
1344      if (N0.getOpcode() == N1.getOpcode()) {
1345        if (N0.getOperand(0) == N1.getOperand(0))
1346          return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1347        if (N0.getOperand(1) == N1.getOperand(1))
1348          return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1349        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1350          // If X op Y == Y op X, try other combinations.
1351          if (N0.getOperand(0) == N1.getOperand(1))
1352            return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1353          if (N0.getOperand(1) == N1.getOperand(0))
1354            return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1355        }
1356      }
1357
1358      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1359        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1360          // Turn (X+C1) == C2 --> X == C2-C1
1361          if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
1362            return DAG.getSetCC(VT, N0.getOperand(0),
1363                              DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
1364                                N0.getValueType()), Cond);
1365          }
1366
1367          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1368          if (N0.getOpcode() == ISD::XOR)
1369            // If we know that all of the inverted bits are zero, don't bother
1370            // performing the inversion.
1371            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1372              return
1373                DAG.getSetCC(VT, N0.getOperand(0),
1374                             DAG.getConstant(LHSR->getAPIntValue() ^
1375                                               RHSC->getAPIntValue(),
1376                                             N0.getValueType()),
1377                             Cond);
1378        }
1379
1380        // Turn (C1-X) == C2 --> X == C1-C2
1381        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1382          if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
1383            return
1384              DAG.getSetCC(VT, N0.getOperand(1),
1385                           DAG.getConstant(SUBC->getAPIntValue() -
1386                                             RHSC->getAPIntValue(),
1387                                           N0.getValueType()),
1388                           Cond);
1389          }
1390        }
1391      }
1392
1393      // Simplify (X+Z) == X -->  Z == 0
1394      if (N0.getOperand(0) == N1)
1395        return DAG.getSetCC(VT, N0.getOperand(1),
1396                        DAG.getConstant(0, N0.getValueType()), Cond);
1397      if (N0.getOperand(1) == N1) {
1398        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1399          return DAG.getSetCC(VT, N0.getOperand(0),
1400                          DAG.getConstant(0, N0.getValueType()), Cond);
1401        else if (N0.Val->hasOneUse()) {
1402          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1403          // (Z-X) == X  --> Z == X<<1
1404          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1405                                     N1,
1406                                     DAG.getConstant(1, getShiftAmountTy()));
1407          if (!DCI.isCalledByLegalizer())
1408            DCI.AddToWorklist(SH.Val);
1409          return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1410        }
1411      }
1412    }
1413
1414    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1415        N1.getOpcode() == ISD::XOR) {
1416      // Simplify  X == (X+Z) -->  Z == 0
1417      if (N1.getOperand(0) == N0) {
1418        return DAG.getSetCC(VT, N1.getOperand(1),
1419                        DAG.getConstant(0, N1.getValueType()), Cond);
1420      } else if (N1.getOperand(1) == N0) {
1421        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1422          return DAG.getSetCC(VT, N1.getOperand(0),
1423                          DAG.getConstant(0, N1.getValueType()), Cond);
1424        } else if (N1.Val->hasOneUse()) {
1425          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1426          // X == (Z-X)  --> X<<1 == Z
1427          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1428                                     DAG.getConstant(1, getShiftAmountTy()));
1429          if (!DCI.isCalledByLegalizer())
1430            DCI.AddToWorklist(SH.Val);
1431          return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1432        }
1433      }
1434    }
1435  }
1436
1437  // Fold away ALL boolean setcc's.
1438  SDOperand Temp;
1439  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1440    switch (Cond) {
1441    default: assert(0 && "Unknown integer setcc!");
1442    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
1443      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1444      N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1445      if (!DCI.isCalledByLegalizer())
1446        DCI.AddToWorklist(Temp.Val);
1447      break;
1448    case ISD::SETNE:  // X != Y   -->  (X^Y)
1449      N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1450      break;
1451    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1452    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1453      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1454      N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1455      if (!DCI.isCalledByLegalizer())
1456        DCI.AddToWorklist(Temp.Val);
1457      break;
1458    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
1459    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
1460      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1461      N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1462      if (!DCI.isCalledByLegalizer())
1463        DCI.AddToWorklist(Temp.Val);
1464      break;
1465    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
1466    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
1467      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1468      N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1469      if (!DCI.isCalledByLegalizer())
1470        DCI.AddToWorklist(Temp.Val);
1471      break;
1472    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
1473    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
1474      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1475      N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1476      break;
1477    }
1478    if (VT != MVT::i1) {
1479      if (!DCI.isCalledByLegalizer())
1480        DCI.AddToWorklist(N0.Val);
1481      // FIXME: If running after legalize, we probably can't do this.
1482      N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1483    }
1484    return N0;
1485  }
1486
1487  // Could not fold it.
1488  return SDOperand();
1489}
1490
1491SDOperand TargetLowering::
1492PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1493  // Default implementation: no optimization.
1494  return SDOperand();
1495}
1496
1497//===----------------------------------------------------------------------===//
1498//  Inline Assembler Implementation Methods
1499//===----------------------------------------------------------------------===//
1500
1501
1502TargetLowering::ConstraintType
1503TargetLowering::getConstraintType(const std::string &Constraint) const {
1504  // FIXME: lots more standard ones to handle.
1505  if (Constraint.size() == 1) {
1506    switch (Constraint[0]) {
1507    default: break;
1508    case 'r': return C_RegisterClass;
1509    case 'm':    // memory
1510    case 'o':    // offsetable
1511    case 'V':    // not offsetable
1512      return C_Memory;
1513    case 'i':    // Simple Integer or Relocatable Constant
1514    case 'n':    // Simple Integer
1515    case 's':    // Relocatable Constant
1516    case 'X':    // Allow ANY value.
1517    case 'I':    // Target registers.
1518    case 'J':
1519    case 'K':
1520    case 'L':
1521    case 'M':
1522    case 'N':
1523    case 'O':
1524    case 'P':
1525      return C_Other;
1526    }
1527  }
1528
1529  if (Constraint.size() > 1 && Constraint[0] == '{' &&
1530      Constraint[Constraint.size()-1] == '}')
1531    return C_Register;
1532  return C_Unknown;
1533}
1534
1535/// LowerXConstraint - try to replace an X constraint, which matches anything,
1536/// with another that has more specific requirements based on the type of the
1537/// corresponding operand.
1538const char *TargetLowering::LowerXConstraint(MVT::ValueType ConstraintVT) const{
1539  if (MVT::isInteger(ConstraintVT))
1540    return "r";
1541  if (MVT::isFloatingPoint(ConstraintVT))
1542    return "f";      // works for many targets
1543  return 0;
1544}
1545
1546/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1547/// vector.  If it is invalid, don't add anything to Ops.
1548void TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
1549                                                  char ConstraintLetter,
1550                                                  std::vector<SDOperand> &Ops,
1551                                                  SelectionDAG &DAG) const {
1552  switch (ConstraintLetter) {
1553  default: break;
1554  case 'X':     // Allows any operand; labels (basic block) use this.
1555    if (Op.getOpcode() == ISD::BasicBlock) {
1556      Ops.push_back(Op);
1557      return;
1558    }
1559    // fall through
1560  case 'i':    // Simple Integer or Relocatable Constant
1561  case 'n':    // Simple Integer
1562  case 's': {  // Relocatable Constant
1563    // These operands are interested in values of the form (GV+C), where C may
1564    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
1565    // is possible and fine if either GV or C are missing.
1566    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1567    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1568
1569    // If we have "(add GV, C)", pull out GV/C
1570    if (Op.getOpcode() == ISD::ADD) {
1571      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1572      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1573      if (C == 0 || GA == 0) {
1574        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1575        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1576      }
1577      if (C == 0 || GA == 0)
1578        C = 0, GA = 0;
1579    }
1580
1581    // If we find a valid operand, map to the TargetXXX version so that the
1582    // value itself doesn't get selected.
1583    if (GA) {   // Either &GV   or   &GV+C
1584      if (ConstraintLetter != 'n') {
1585        int64_t Offs = GA->getOffset();
1586        if (C) Offs += C->getValue();
1587        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
1588                                                 Op.getValueType(), Offs));
1589        return;
1590      }
1591    }
1592    if (C) {   // just C, no GV.
1593      // Simple constants are not allowed for 's'.
1594      if (ConstraintLetter != 's') {
1595        Ops.push_back(DAG.getTargetConstant(C->getValue(), Op.getValueType()));
1596        return;
1597      }
1598    }
1599    break;
1600  }
1601  }
1602}
1603
1604std::vector<unsigned> TargetLowering::
1605getRegClassForInlineAsmConstraint(const std::string &Constraint,
1606                                  MVT::ValueType VT) const {
1607  return std::vector<unsigned>();
1608}
1609
1610
1611std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
1612getRegForInlineAsmConstraint(const std::string &Constraint,
1613                             MVT::ValueType VT) const {
1614  if (Constraint[0] != '{')
1615    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1616  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1617
1618  // Remove the braces from around the name.
1619  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
1620
1621  // Figure out which register class contains this reg.
1622  const TargetRegisterInfo *RI = TM.getRegisterInfo();
1623  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1624       E = RI->regclass_end(); RCI != E; ++RCI) {
1625    const TargetRegisterClass *RC = *RCI;
1626
1627    // If none of the the value types for this register class are valid, we
1628    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1629    bool isLegal = false;
1630    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1631         I != E; ++I) {
1632      if (isTypeLegal(*I)) {
1633        isLegal = true;
1634        break;
1635      }
1636    }
1637
1638    if (!isLegal) continue;
1639
1640    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1641         I != E; ++I) {
1642      if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
1643        return std::make_pair(*I, RC);
1644    }
1645  }
1646
1647  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1648}
1649
1650//===----------------------------------------------------------------------===//
1651// Constraint Selection.
1652
1653/// getConstraintGenerality - Return an integer indicating how general CT
1654/// is.
1655static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
1656  switch (CT) {
1657  default: assert(0 && "Unknown constraint type!");
1658  case TargetLowering::C_Other:
1659  case TargetLowering::C_Unknown:
1660    return 0;
1661  case TargetLowering::C_Register:
1662    return 1;
1663  case TargetLowering::C_RegisterClass:
1664    return 2;
1665  case TargetLowering::C_Memory:
1666    return 3;
1667  }
1668}
1669
1670/// ChooseConstraint - If there are multiple different constraints that we
1671/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
1672/// This is somewhat tricky: constraints fall into four classes:
1673///    Other         -> immediates and magic values
1674///    Register      -> one specific register
1675///    RegisterClass -> a group of regs
1676///    Memory        -> memory
1677/// Ideally, we would pick the most specific constraint possible: if we have
1678/// something that fits into a register, we would pick it.  The problem here
1679/// is that if we have something that could either be in a register or in
1680/// memory that use of the register could cause selection of *other*
1681/// operands to fail: they might only succeed if we pick memory.  Because of
1682/// this the heuristic we use is:
1683///
1684///  1) If there is an 'other' constraint, and if the operand is valid for
1685///     that constraint, use it.  This makes us take advantage of 'i'
1686///     constraints when available.
1687///  2) Otherwise, pick the most general constraint present.  This prefers
1688///     'm' over 'r', for example.
1689///
1690static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
1691                             const TargetLowering &TLI,
1692                             SDOperand Op, SelectionDAG *DAG) {
1693  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
1694  unsigned BestIdx = 0;
1695  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
1696  int BestGenerality = -1;
1697
1698  // Loop over the options, keeping track of the most general one.
1699  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
1700    TargetLowering::ConstraintType CType =
1701      TLI.getConstraintType(OpInfo.Codes[i]);
1702
1703    // If this is an 'other' constraint, see if the operand is valid for it.
1704    // For example, on X86 we might have an 'rI' constraint.  If the operand
1705    // is an integer in the range [0..31] we want to use I (saving a load
1706    // of a register), otherwise we must use 'r'.
1707    if (CType == TargetLowering::C_Other && Op.Val) {
1708      assert(OpInfo.Codes[i].size() == 1 &&
1709             "Unhandled multi-letter 'other' constraint");
1710      std::vector<SDOperand> ResultOps;
1711      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0],
1712                                       ResultOps, *DAG);
1713      if (!ResultOps.empty()) {
1714        BestType = CType;
1715        BestIdx = i;
1716        break;
1717      }
1718    }
1719
1720    // This constraint letter is more general than the previous one, use it.
1721    int Generality = getConstraintGenerality(CType);
1722    if (Generality > BestGenerality) {
1723      BestType = CType;
1724      BestIdx = i;
1725      BestGenerality = Generality;
1726    }
1727  }
1728
1729  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
1730  OpInfo.ConstraintType = BestType;
1731}
1732
1733/// ComputeConstraintToUse - Determines the constraint code and constraint
1734/// type to use for the specific AsmOperandInfo, setting
1735/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
1736void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1737                                            SDOperand Op,
1738                                            SelectionDAG *DAG) const {
1739  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
1740
1741  // Single-letter constraints ('r') are very common.
1742  if (OpInfo.Codes.size() == 1) {
1743    OpInfo.ConstraintCode = OpInfo.Codes[0];
1744    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
1745  } else {
1746    ChooseConstraint(OpInfo, *this, Op, DAG);
1747  }
1748
1749  // 'X' matches anything.
1750  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
1751    // Labels and constants are handled elsewhere ('X' is the only thing
1752    // that matches labels).
1753    if (isa<BasicBlock>(OpInfo.CallOperandVal) ||
1754        isa<ConstantInt>(OpInfo.CallOperandVal))
1755      return;
1756
1757    // Otherwise, try to resolve it to something we know about by looking at
1758    // the actual operand type.
1759    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
1760      OpInfo.ConstraintCode = Repl;
1761      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
1762    }
1763  }
1764}
1765
1766//===----------------------------------------------------------------------===//
1767//  Loop Strength Reduction hooks
1768//===----------------------------------------------------------------------===//
1769
1770/// isLegalAddressingMode - Return true if the addressing mode represented
1771/// by AM is legal for this target, for a load/store of the specified type.
1772bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
1773                                           const Type *Ty) const {
1774  // The default implementation of this implements a conservative RISCy, r+r and
1775  // r+i addr mode.
1776
1777  // Allows a sign-extended 16-bit immediate field.
1778  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1779    return false;
1780
1781  // No global is ever allowed as a base.
1782  if (AM.BaseGV)
1783    return false;
1784
1785  // Only support r+r,
1786  switch (AM.Scale) {
1787  case 0:  // "r+i" or just "i", depending on HasBaseReg.
1788    break;
1789  case 1:
1790    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1791      return false;
1792    // Otherwise we have r+r or r+i.
1793    break;
1794  case 2:
1795    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1796      return false;
1797    // Allow 2*r as r+r.
1798    break;
1799  }
1800
1801  return true;
1802}
1803
1804// Magic for divide replacement
1805
1806struct ms {
1807  int64_t m;  // magic number
1808  int64_t s;  // shift amount
1809};
1810
1811struct mu {
1812  uint64_t m; // magic number
1813  int64_t a;  // add indicator
1814  int64_t s;  // shift amount
1815};
1816
1817/// magic - calculate the magic numbers required to codegen an integer sdiv as
1818/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1819/// or -1.
1820static ms magic32(int32_t d) {
1821  int32_t p;
1822  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
1823  const uint32_t two31 = 0x80000000U;
1824  struct ms mag;
1825
1826  ad = abs(d);
1827  t = two31 + ((uint32_t)d >> 31);
1828  anc = t - 1 - t%ad;   // absolute value of nc
1829  p = 31;               // initialize p
1830  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
1831  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1832  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
1833  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1834  do {
1835    p = p + 1;
1836    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1837    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1838    if (r1 >= anc) {  // must be unsigned comparison
1839      q1 = q1 + 1;
1840      r1 = r1 - anc;
1841    }
1842    q2 = 2*q2;        // update q2 = 2p/abs(d)
1843    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1844    if (r2 >= ad) {   // must be unsigned comparison
1845      q2 = q2 + 1;
1846      r2 = r2 - ad;
1847    }
1848    delta = ad - r2;
1849  } while (q1 < delta || (q1 == delta && r1 == 0));
1850
1851  mag.m = (int32_t)(q2 + 1); // make sure to sign extend
1852  if (d < 0) mag.m = -mag.m; // resulting magic number
1853  mag.s = p - 32;            // resulting shift
1854  return mag;
1855}
1856
1857/// magicu - calculate the magic numbers required to codegen an integer udiv as
1858/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1859static mu magicu32(uint32_t d) {
1860  int32_t p;
1861  uint32_t nc, delta, q1, r1, q2, r2;
1862  struct mu magu;
1863  magu.a = 0;               // initialize "add" indicator
1864  nc = - 1 - (-d)%d;
1865  p = 31;                   // initialize p
1866  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
1867  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
1868  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
1869  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
1870  do {
1871    p = p + 1;
1872    if (r1 >= nc - r1 ) {
1873      q1 = 2*q1 + 1;  // update q1
1874      r1 = 2*r1 - nc; // update r1
1875    }
1876    else {
1877      q1 = 2*q1; // update q1
1878      r1 = 2*r1; // update r1
1879    }
1880    if (r2 + 1 >= d - r2) {
1881      if (q2 >= 0x7FFFFFFF) magu.a = 1;
1882      q2 = 2*q2 + 1;     // update q2
1883      r2 = 2*r2 + 1 - d; // update r2
1884    }
1885    else {
1886      if (q2 >= 0x80000000) magu.a = 1;
1887      q2 = 2*q2;     // update q2
1888      r2 = 2*r2 + 1; // update r2
1889    }
1890    delta = d - 1 - r2;
1891  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
1892  magu.m = q2 + 1; // resulting magic number
1893  magu.s = p - 32;  // resulting shift
1894  return magu;
1895}
1896
1897/// magic - calculate the magic numbers required to codegen an integer sdiv as
1898/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1899/// or -1.
1900static ms magic64(int64_t d) {
1901  int64_t p;
1902  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
1903  const uint64_t two63 = 9223372036854775808ULL; // 2^63
1904  struct ms mag;
1905
1906  ad = d >= 0 ? d : -d;
1907  t = two63 + ((uint64_t)d >> 63);
1908  anc = t - 1 - t%ad;   // absolute value of nc
1909  p = 63;               // initialize p
1910  q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
1911  r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1912  q2 = two63/ad;        // initialize q2 = 2p/abs(d)
1913  r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1914  do {
1915    p = p + 1;
1916    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1917    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1918    if (r1 >= anc) {  // must be unsigned comparison
1919      q1 = q1 + 1;
1920      r1 = r1 - anc;
1921    }
1922    q2 = 2*q2;        // update q2 = 2p/abs(d)
1923    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1924    if (r2 >= ad) {   // must be unsigned comparison
1925      q2 = q2 + 1;
1926      r2 = r2 - ad;
1927    }
1928    delta = ad - r2;
1929  } while (q1 < delta || (q1 == delta && r1 == 0));
1930
1931  mag.m = q2 + 1;
1932  if (d < 0) mag.m = -mag.m; // resulting magic number
1933  mag.s = p - 64;            // resulting shift
1934  return mag;
1935}
1936
1937/// magicu - calculate the magic numbers required to codegen an integer udiv as
1938/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1939static mu magicu64(uint64_t d)
1940{
1941  int64_t p;
1942  uint64_t nc, delta, q1, r1, q2, r2;
1943  struct mu magu;
1944  magu.a = 0;               // initialize "add" indicator
1945  nc = - 1 - (-d)%d;
1946  p = 63;                   // initialize p
1947  q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
1948  r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
1949  q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
1950  r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
1951  do {
1952    p = p + 1;
1953    if (r1 >= nc - r1 ) {
1954      q1 = 2*q1 + 1;  // update q1
1955      r1 = 2*r1 - nc; // update r1
1956    }
1957    else {
1958      q1 = 2*q1; // update q1
1959      r1 = 2*r1; // update r1
1960    }
1961    if (r2 + 1 >= d - r2) {
1962      if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
1963      q2 = 2*q2 + 1;     // update q2
1964      r2 = 2*r2 + 1 - d; // update r2
1965    }
1966    else {
1967      if (q2 >= 0x8000000000000000ull) magu.a = 1;
1968      q2 = 2*q2;     // update q2
1969      r2 = 2*r2 + 1; // update r2
1970    }
1971    delta = d - 1 - r2;
1972  } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
1973  magu.m = q2 + 1; // resulting magic number
1974  magu.s = p - 64;  // resulting shift
1975  return magu;
1976}
1977
1978/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
1979/// return a DAG expression to select that will generate the same value by
1980/// multiplying by a magic number.  See:
1981/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1982SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
1983                                    std::vector<SDNode*>* Created) const {
1984  MVT::ValueType VT = N->getValueType(0);
1985
1986  // Check to see if we can do this.
1987  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1988    return SDOperand();       // BuildSDIV only operates on i32 or i64
1989
1990  int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
1991  ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
1992
1993  // Multiply the numerator (operand 0) by the magic value
1994  SDOperand Q;
1995  if (isOperationLegal(ISD::MULHS, VT))
1996    Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
1997                    DAG.getConstant(magics.m, VT));
1998  else if (isOperationLegal(ISD::SMUL_LOHI, VT))
1999    Q = SDOperand(DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(VT, VT),
2000                              N->getOperand(0),
2001                              DAG.getConstant(magics.m, VT)).Val, 1);
2002  else
2003    return SDOperand();       // No mulhs or equvialent
2004  // If d > 0 and m < 0, add the numerator
2005  if (d > 0 && magics.m < 0) {
2006    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
2007    if (Created)
2008      Created->push_back(Q.Val);
2009  }
2010  // If d < 0 and m > 0, subtract the numerator.
2011  if (d < 0 && magics.m > 0) {
2012    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
2013    if (Created)
2014      Created->push_back(Q.Val);
2015  }
2016  // Shift right algebraic if shift value is nonzero
2017  if (magics.s > 0) {
2018    Q = DAG.getNode(ISD::SRA, VT, Q,
2019                    DAG.getConstant(magics.s, getShiftAmountTy()));
2020    if (Created)
2021      Created->push_back(Q.Val);
2022  }
2023  // Extract the sign bit and add it to the quotient
2024  SDOperand T =
2025    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
2026                                                 getShiftAmountTy()));
2027  if (Created)
2028    Created->push_back(T.Val);
2029  return DAG.getNode(ISD::ADD, VT, Q, T);
2030}
2031
2032/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2033/// return a DAG expression to select that will generate the same value by
2034/// multiplying by a magic number.  See:
2035/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2036SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2037                                    std::vector<SDNode*>* Created) const {
2038  MVT::ValueType VT = N->getValueType(0);
2039
2040  // Check to see if we can do this.
2041  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
2042    return SDOperand();       // BuildUDIV only operates on i32 or i64
2043
2044  uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
2045  mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
2046
2047  // Multiply the numerator (operand 0) by the magic value
2048  SDOperand Q;
2049  if (isOperationLegal(ISD::MULHU, VT))
2050    Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
2051                    DAG.getConstant(magics.m, VT));
2052  else if (isOperationLegal(ISD::UMUL_LOHI, VT))
2053    Q = SDOperand(DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(VT, VT),
2054                              N->getOperand(0),
2055                              DAG.getConstant(magics.m, VT)).Val, 1);
2056  else
2057    return SDOperand();       // No mulhu or equvialent
2058  if (Created)
2059    Created->push_back(Q.Val);
2060
2061  if (magics.a == 0) {
2062    return DAG.getNode(ISD::SRL, VT, Q,
2063                       DAG.getConstant(magics.s, getShiftAmountTy()));
2064  } else {
2065    SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
2066    if (Created)
2067      Created->push_back(NPQ.Val);
2068    NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
2069                      DAG.getConstant(1, getShiftAmountTy()));
2070    if (Created)
2071      Created->push_back(NPQ.Val);
2072    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
2073    if (Created)
2074      Created->push_back(NPQ.Val);
2075    return DAG.getNode(ISD::SRL, VT, NPQ,
2076                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2077  }
2078}
2079