TargetLowering.cpp revision 27bfb67d9ac01e9bf33a7b105c7fe842525b7582
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/Target/TargetAsmInfo.h"
16#include "llvm/Target/TargetData.h"
17#include "llvm/Target/TargetLoweringObjectFile.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/Target/TargetSubtarget.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/SelectionDAG.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/Support/MathExtras.h"
29using namespace llvm;
30
31namespace llvm {
32TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
33  bool isLocal = GV->hasLocalLinkage();
34  bool isDeclaration = GV->isDeclaration();
35  // FIXME: what should we do for protected and internal visibility?
36  // For variables, is internal different from hidden?
37  bool isHidden = GV->hasHiddenVisibility();
38
39  if (reloc == Reloc::PIC_) {
40    if (isLocal || isHidden)
41      return TLSModel::LocalDynamic;
42    else
43      return TLSModel::GeneralDynamic;
44  } else {
45    if (!isDeclaration || isHidden)
46      return TLSModel::LocalExec;
47    else
48      return TLSModel::InitialExec;
49  }
50}
51}
52
53/// InitLibcallNames - Set default libcall names.
54///
55static void InitLibcallNames(const char **Names) {
56  Names[RTLIB::SHL_I16] = "__ashlhi3";
57  Names[RTLIB::SHL_I32] = "__ashlsi3";
58  Names[RTLIB::SHL_I64] = "__ashldi3";
59  Names[RTLIB::SHL_I128] = "__ashlti3";
60  Names[RTLIB::SRL_I16] = "__lshrhi3";
61  Names[RTLIB::SRL_I32] = "__lshrsi3";
62  Names[RTLIB::SRL_I64] = "__lshrdi3";
63  Names[RTLIB::SRL_I128] = "__lshrti3";
64  Names[RTLIB::SRA_I16] = "__ashrhi3";
65  Names[RTLIB::SRA_I32] = "__ashrsi3";
66  Names[RTLIB::SRA_I64] = "__ashrdi3";
67  Names[RTLIB::SRA_I128] = "__ashrti3";
68  Names[RTLIB::MUL_I16] = "__mulhi3";
69  Names[RTLIB::MUL_I32] = "__mulsi3";
70  Names[RTLIB::MUL_I64] = "__muldi3";
71  Names[RTLIB::MUL_I128] = "__multi3";
72  Names[RTLIB::SDIV_I16] = "__divhi3";
73  Names[RTLIB::SDIV_I32] = "__divsi3";
74  Names[RTLIB::SDIV_I64] = "__divdi3";
75  Names[RTLIB::SDIV_I128] = "__divti3";
76  Names[RTLIB::UDIV_I16] = "__udivhi3";
77  Names[RTLIB::UDIV_I32] = "__udivsi3";
78  Names[RTLIB::UDIV_I64] = "__udivdi3";
79  Names[RTLIB::UDIV_I128] = "__udivti3";
80  Names[RTLIB::SREM_I16] = "__modhi3";
81  Names[RTLIB::SREM_I32] = "__modsi3";
82  Names[RTLIB::SREM_I64] = "__moddi3";
83  Names[RTLIB::SREM_I128] = "__modti3";
84  Names[RTLIB::UREM_I16] = "__umodhi3";
85  Names[RTLIB::UREM_I32] = "__umodsi3";
86  Names[RTLIB::UREM_I64] = "__umoddi3";
87  Names[RTLIB::UREM_I128] = "__umodti3";
88  Names[RTLIB::NEG_I32] = "__negsi2";
89  Names[RTLIB::NEG_I64] = "__negdi2";
90  Names[RTLIB::ADD_F32] = "__addsf3";
91  Names[RTLIB::ADD_F64] = "__adddf3";
92  Names[RTLIB::ADD_F80] = "__addxf3";
93  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
94  Names[RTLIB::SUB_F32] = "__subsf3";
95  Names[RTLIB::SUB_F64] = "__subdf3";
96  Names[RTLIB::SUB_F80] = "__subxf3";
97  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
98  Names[RTLIB::MUL_F32] = "__mulsf3";
99  Names[RTLIB::MUL_F64] = "__muldf3";
100  Names[RTLIB::MUL_F80] = "__mulxf3";
101  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
102  Names[RTLIB::DIV_F32] = "__divsf3";
103  Names[RTLIB::DIV_F64] = "__divdf3";
104  Names[RTLIB::DIV_F80] = "__divxf3";
105  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
106  Names[RTLIB::REM_F32] = "fmodf";
107  Names[RTLIB::REM_F64] = "fmod";
108  Names[RTLIB::REM_F80] = "fmodl";
109  Names[RTLIB::REM_PPCF128] = "fmodl";
110  Names[RTLIB::POWI_F32] = "__powisf2";
111  Names[RTLIB::POWI_F64] = "__powidf2";
112  Names[RTLIB::POWI_F80] = "__powixf2";
113  Names[RTLIB::POWI_PPCF128] = "__powitf2";
114  Names[RTLIB::SQRT_F32] = "sqrtf";
115  Names[RTLIB::SQRT_F64] = "sqrt";
116  Names[RTLIB::SQRT_F80] = "sqrtl";
117  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
118  Names[RTLIB::LOG_F32] = "logf";
119  Names[RTLIB::LOG_F64] = "log";
120  Names[RTLIB::LOG_F80] = "logl";
121  Names[RTLIB::LOG_PPCF128] = "logl";
122  Names[RTLIB::LOG2_F32] = "log2f";
123  Names[RTLIB::LOG2_F64] = "log2";
124  Names[RTLIB::LOG2_F80] = "log2l";
125  Names[RTLIB::LOG2_PPCF128] = "log2l";
126  Names[RTLIB::LOG10_F32] = "log10f";
127  Names[RTLIB::LOG10_F64] = "log10";
128  Names[RTLIB::LOG10_F80] = "log10l";
129  Names[RTLIB::LOG10_PPCF128] = "log10l";
130  Names[RTLIB::EXP_F32] = "expf";
131  Names[RTLIB::EXP_F64] = "exp";
132  Names[RTLIB::EXP_F80] = "expl";
133  Names[RTLIB::EXP_PPCF128] = "expl";
134  Names[RTLIB::EXP2_F32] = "exp2f";
135  Names[RTLIB::EXP2_F64] = "exp2";
136  Names[RTLIB::EXP2_F80] = "exp2l";
137  Names[RTLIB::EXP2_PPCF128] = "exp2l";
138  Names[RTLIB::SIN_F32] = "sinf";
139  Names[RTLIB::SIN_F64] = "sin";
140  Names[RTLIB::SIN_F80] = "sinl";
141  Names[RTLIB::SIN_PPCF128] = "sinl";
142  Names[RTLIB::COS_F32] = "cosf";
143  Names[RTLIB::COS_F64] = "cos";
144  Names[RTLIB::COS_F80] = "cosl";
145  Names[RTLIB::COS_PPCF128] = "cosl";
146  Names[RTLIB::POW_F32] = "powf";
147  Names[RTLIB::POW_F64] = "pow";
148  Names[RTLIB::POW_F80] = "powl";
149  Names[RTLIB::POW_PPCF128] = "powl";
150  Names[RTLIB::CEIL_F32] = "ceilf";
151  Names[RTLIB::CEIL_F64] = "ceil";
152  Names[RTLIB::CEIL_F80] = "ceill";
153  Names[RTLIB::CEIL_PPCF128] = "ceill";
154  Names[RTLIB::TRUNC_F32] = "truncf";
155  Names[RTLIB::TRUNC_F64] = "trunc";
156  Names[RTLIB::TRUNC_F80] = "truncl";
157  Names[RTLIB::TRUNC_PPCF128] = "truncl";
158  Names[RTLIB::RINT_F32] = "rintf";
159  Names[RTLIB::RINT_F64] = "rint";
160  Names[RTLIB::RINT_F80] = "rintl";
161  Names[RTLIB::RINT_PPCF128] = "rintl";
162  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
163  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
164  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
165  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
166  Names[RTLIB::FLOOR_F32] = "floorf";
167  Names[RTLIB::FLOOR_F64] = "floor";
168  Names[RTLIB::FLOOR_F80] = "floorl";
169  Names[RTLIB::FLOOR_PPCF128] = "floorl";
170  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
171  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
172  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
173  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
174  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
175  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
176  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfi8";
177  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfi16";
178  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
179  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
180  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
181  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
182  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
183  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
184  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
185  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
186  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
187  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
188  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
189  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
190  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfi8";
191  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfi16";
192  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
193  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
194  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
195  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
196  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
197  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
198  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
199  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
200  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
201  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
202  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
203  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
204  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
205  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
206  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
207  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
208  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
209  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
210  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
211  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
212  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
213  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
214  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
215  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
216  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
217  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
218  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
219  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
220  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
221  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
222  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
223  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
224  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
225  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
226  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
227  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
228  Names[RTLIB::OEQ_F32] = "__eqsf2";
229  Names[RTLIB::OEQ_F64] = "__eqdf2";
230  Names[RTLIB::UNE_F32] = "__nesf2";
231  Names[RTLIB::UNE_F64] = "__nedf2";
232  Names[RTLIB::OGE_F32] = "__gesf2";
233  Names[RTLIB::OGE_F64] = "__gedf2";
234  Names[RTLIB::OLT_F32] = "__ltsf2";
235  Names[RTLIB::OLT_F64] = "__ltdf2";
236  Names[RTLIB::OLE_F32] = "__lesf2";
237  Names[RTLIB::OLE_F64] = "__ledf2";
238  Names[RTLIB::OGT_F32] = "__gtsf2";
239  Names[RTLIB::OGT_F64] = "__gtdf2";
240  Names[RTLIB::UO_F32] = "__unordsf2";
241  Names[RTLIB::UO_F64] = "__unorddf2";
242  Names[RTLIB::O_F32] = "__unordsf2";
243  Names[RTLIB::O_F64] = "__unorddf2";
244  Names[RTLIB::MEMCPY] = "memcpy";
245  Names[RTLIB::MEMMOVE] = "memmove";
246  Names[RTLIB::MEMSET] = "memset";
247  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
248}
249
250/// getFPEXT - Return the FPEXT_*_* value for the given types, or
251/// UNKNOWN_LIBCALL if there is none.
252RTLIB::Libcall RTLIB::getFPEXT(MVT OpVT, MVT RetVT) {
253  if (OpVT == MVT::f32) {
254    if (RetVT == MVT::f64)
255      return FPEXT_F32_F64;
256  }
257  return UNKNOWN_LIBCALL;
258}
259
260/// getFPROUND - Return the FPROUND_*_* value for the given types, or
261/// UNKNOWN_LIBCALL if there is none.
262RTLIB::Libcall RTLIB::getFPROUND(MVT OpVT, MVT RetVT) {
263  if (RetVT == MVT::f32) {
264    if (OpVT == MVT::f64)
265      return FPROUND_F64_F32;
266    if (OpVT == MVT::f80)
267      return FPROUND_F80_F32;
268    if (OpVT == MVT::ppcf128)
269      return FPROUND_PPCF128_F32;
270  } else if (RetVT == MVT::f64) {
271    if (OpVT == MVT::f80)
272      return FPROUND_F80_F64;
273    if (OpVT == MVT::ppcf128)
274      return FPROUND_PPCF128_F64;
275  }
276  return UNKNOWN_LIBCALL;
277}
278
279/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
280/// UNKNOWN_LIBCALL if there is none.
281RTLIB::Libcall RTLIB::getFPTOSINT(MVT OpVT, MVT RetVT) {
282  if (OpVT == MVT::f32) {
283    if (RetVT == MVT::i8)
284      return FPTOSINT_F32_I8;
285    if (RetVT == MVT::i16)
286      return FPTOSINT_F32_I16;
287    if (RetVT == MVT::i32)
288      return FPTOSINT_F32_I32;
289    if (RetVT == MVT::i64)
290      return FPTOSINT_F32_I64;
291    if (RetVT == MVT::i128)
292      return FPTOSINT_F32_I128;
293  } else if (OpVT == MVT::f64) {
294    if (RetVT == MVT::i32)
295      return FPTOSINT_F64_I32;
296    if (RetVT == MVT::i64)
297      return FPTOSINT_F64_I64;
298    if (RetVT == MVT::i128)
299      return FPTOSINT_F64_I128;
300  } else if (OpVT == MVT::f80) {
301    if (RetVT == MVT::i32)
302      return FPTOSINT_F80_I32;
303    if (RetVT == MVT::i64)
304      return FPTOSINT_F80_I64;
305    if (RetVT == MVT::i128)
306      return FPTOSINT_F80_I128;
307  } else if (OpVT == MVT::ppcf128) {
308    if (RetVT == MVT::i32)
309      return FPTOSINT_PPCF128_I32;
310    if (RetVT == MVT::i64)
311      return FPTOSINT_PPCF128_I64;
312    if (RetVT == MVT::i128)
313      return FPTOSINT_PPCF128_I128;
314  }
315  return UNKNOWN_LIBCALL;
316}
317
318/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
319/// UNKNOWN_LIBCALL if there is none.
320RTLIB::Libcall RTLIB::getFPTOUINT(MVT OpVT, MVT RetVT) {
321  if (OpVT == MVT::f32) {
322    if (RetVT == MVT::i8)
323      return FPTOUINT_F32_I8;
324    if (RetVT == MVT::i16)
325      return FPTOUINT_F32_I16;
326    if (RetVT == MVT::i32)
327      return FPTOUINT_F32_I32;
328    if (RetVT == MVT::i64)
329      return FPTOUINT_F32_I64;
330    if (RetVT == MVT::i128)
331      return FPTOUINT_F32_I128;
332  } else if (OpVT == MVT::f64) {
333    if (RetVT == MVT::i32)
334      return FPTOUINT_F64_I32;
335    if (RetVT == MVT::i64)
336      return FPTOUINT_F64_I64;
337    if (RetVT == MVT::i128)
338      return FPTOUINT_F64_I128;
339  } else if (OpVT == MVT::f80) {
340    if (RetVT == MVT::i32)
341      return FPTOUINT_F80_I32;
342    if (RetVT == MVT::i64)
343      return FPTOUINT_F80_I64;
344    if (RetVT == MVT::i128)
345      return FPTOUINT_F80_I128;
346  } else if (OpVT == MVT::ppcf128) {
347    if (RetVT == MVT::i32)
348      return FPTOUINT_PPCF128_I32;
349    if (RetVT == MVT::i64)
350      return FPTOUINT_PPCF128_I64;
351    if (RetVT == MVT::i128)
352      return FPTOUINT_PPCF128_I128;
353  }
354  return UNKNOWN_LIBCALL;
355}
356
357/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
358/// UNKNOWN_LIBCALL if there is none.
359RTLIB::Libcall RTLIB::getSINTTOFP(MVT OpVT, MVT RetVT) {
360  if (OpVT == MVT::i32) {
361    if (RetVT == MVT::f32)
362      return SINTTOFP_I32_F32;
363    else if (RetVT == MVT::f64)
364      return SINTTOFP_I32_F64;
365    else if (RetVT == MVT::f80)
366      return SINTTOFP_I32_F80;
367    else if (RetVT == MVT::ppcf128)
368      return SINTTOFP_I32_PPCF128;
369  } else if (OpVT == MVT::i64) {
370    if (RetVT == MVT::f32)
371      return SINTTOFP_I64_F32;
372    else if (RetVT == MVT::f64)
373      return SINTTOFP_I64_F64;
374    else if (RetVT == MVT::f80)
375      return SINTTOFP_I64_F80;
376    else if (RetVT == MVT::ppcf128)
377      return SINTTOFP_I64_PPCF128;
378  } else if (OpVT == MVT::i128) {
379    if (RetVT == MVT::f32)
380      return SINTTOFP_I128_F32;
381    else if (RetVT == MVT::f64)
382      return SINTTOFP_I128_F64;
383    else if (RetVT == MVT::f80)
384      return SINTTOFP_I128_F80;
385    else if (RetVT == MVT::ppcf128)
386      return SINTTOFP_I128_PPCF128;
387  }
388  return UNKNOWN_LIBCALL;
389}
390
391/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
392/// UNKNOWN_LIBCALL if there is none.
393RTLIB::Libcall RTLIB::getUINTTOFP(MVT OpVT, MVT RetVT) {
394  if (OpVT == MVT::i32) {
395    if (RetVT == MVT::f32)
396      return UINTTOFP_I32_F32;
397    else if (RetVT == MVT::f64)
398      return UINTTOFP_I32_F64;
399    else if (RetVT == MVT::f80)
400      return UINTTOFP_I32_F80;
401    else if (RetVT == MVT::ppcf128)
402      return UINTTOFP_I32_PPCF128;
403  } else if (OpVT == MVT::i64) {
404    if (RetVT == MVT::f32)
405      return UINTTOFP_I64_F32;
406    else if (RetVT == MVT::f64)
407      return UINTTOFP_I64_F64;
408    else if (RetVT == MVT::f80)
409      return UINTTOFP_I64_F80;
410    else if (RetVT == MVT::ppcf128)
411      return UINTTOFP_I64_PPCF128;
412  } else if (OpVT == MVT::i128) {
413    if (RetVT == MVT::f32)
414      return UINTTOFP_I128_F32;
415    else if (RetVT == MVT::f64)
416      return UINTTOFP_I128_F64;
417    else if (RetVT == MVT::f80)
418      return UINTTOFP_I128_F80;
419    else if (RetVT == MVT::ppcf128)
420      return UINTTOFP_I128_PPCF128;
421  }
422  return UNKNOWN_LIBCALL;
423}
424
425/// InitCmpLibcallCCs - Set default comparison libcall CC.
426///
427static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
428  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
429  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
430  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
431  CCs[RTLIB::UNE_F32] = ISD::SETNE;
432  CCs[RTLIB::UNE_F64] = ISD::SETNE;
433  CCs[RTLIB::OGE_F32] = ISD::SETGE;
434  CCs[RTLIB::OGE_F64] = ISD::SETGE;
435  CCs[RTLIB::OLT_F32] = ISD::SETLT;
436  CCs[RTLIB::OLT_F64] = ISD::SETLT;
437  CCs[RTLIB::OLE_F32] = ISD::SETLE;
438  CCs[RTLIB::OLE_F64] = ISD::SETLE;
439  CCs[RTLIB::OGT_F32] = ISD::SETGT;
440  CCs[RTLIB::OGT_F64] = ISD::SETGT;
441  CCs[RTLIB::UO_F32] = ISD::SETNE;
442  CCs[RTLIB::UO_F64] = ISD::SETNE;
443  CCs[RTLIB::O_F32] = ISD::SETEQ;
444  CCs[RTLIB::O_F64] = ISD::SETEQ;
445}
446
447/// NOTE: The constructor takes ownership of TLOF.
448TargetLowering::TargetLowering(TargetMachine &tm,TargetLoweringObjectFile *tlof)
449  : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
450  // All operations default to being supported.
451  memset(OpActions, 0, sizeof(OpActions));
452  memset(LoadExtActions, 0, sizeof(LoadExtActions));
453  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
454  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
455  memset(ConvertActions, 0, sizeof(ConvertActions));
456  memset(CondCodeActions, 0, sizeof(CondCodeActions));
457
458  // Set default actions for various operations.
459  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
460    // Default all indexed load / store to expand.
461    for (unsigned IM = (unsigned)ISD::PRE_INC;
462         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
463      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
464      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
465    }
466
467    // These operations default to expand.
468    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
469    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
470  }
471
472  // Most targets ignore the @llvm.prefetch intrinsic.
473  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
474
475  // ConstantFP nodes default to expand.  Targets can either change this to
476  // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
477  // to optimize expansions for certain constants.
478  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
479  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
480  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
481
482  // These library functions default to expand.
483  setOperationAction(ISD::FLOG , MVT::f64, Expand);
484  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
485  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
486  setOperationAction(ISD::FEXP , MVT::f64, Expand);
487  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
488  setOperationAction(ISD::FLOG , MVT::f32, Expand);
489  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
490  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
491  setOperationAction(ISD::FEXP , MVT::f32, Expand);
492  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
493
494  // Default ISD::TRAP to expand (which turns it into abort).
495  setOperationAction(ISD::TRAP, MVT::Other, Expand);
496
497  IsLittleEndian = TD->isLittleEndian();
498  UsesGlobalOffsetTable = false;
499  ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType()).getSimpleVT();
500  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
501  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
502  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
503  allowUnalignedMemoryAccesses = false;
504  benefitFromCodePlacementOpt = false;
505  UseUnderscoreSetJmp = false;
506  UseUnderscoreLongJmp = false;
507  SelectIsExpensive = false;
508  IntDivIsCheap = false;
509  Pow2DivIsCheap = false;
510  StackPointerRegisterToSaveRestore = 0;
511  ExceptionPointerRegister = 0;
512  ExceptionSelectorRegister = 0;
513  BooleanContents = UndefinedBooleanContent;
514  SchedPreferenceInfo = SchedulingForLatency;
515  JumpBufSize = 0;
516  JumpBufAlignment = 0;
517  IfCvtBlockSizeLimit = 2;
518  IfCvtDupBlockSizeLimit = 0;
519  PrefLoopAlignment = 0;
520
521  InitLibcallNames(LibcallRoutineNames);
522  InitCmpLibcallCCs(CmpLibcallCCs);
523
524  // Tell Legalize whether the assembler supports DEBUG_LOC.
525  const TargetAsmInfo *TASM = TM.getTargetAsmInfo();
526  if (!TASM || !TASM->hasDotLocAndDotFile())
527    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
528}
529
530TargetLowering::~TargetLowering() {
531  delete &TLOF;
532}
533
534/// computeRegisterProperties - Once all of the register classes are added,
535/// this allows us to compute derived properties we expose.
536void TargetLowering::computeRegisterProperties() {
537  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
538         "Too many value types for ValueTypeActions to hold!");
539
540  // Everything defaults to needing one register.
541  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
542    NumRegistersForVT[i] = 1;
543    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
544  }
545  // ...except isVoid, which doesn't need any registers.
546  NumRegistersForVT[MVT::isVoid] = 0;
547
548  // Find the largest integer register class.
549  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
550  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
551    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
552
553  // Every integer value type larger than this largest register takes twice as
554  // many registers to represent as the previous ValueType.
555  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
556    MVT EVT = (MVT::SimpleValueType)ExpandedReg;
557    if (!EVT.isInteger())
558      break;
559    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
560    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
561    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
562    ValueTypeActions.setTypeAction(EVT, Expand);
563  }
564
565  // Inspect all of the ValueType's smaller than the largest integer
566  // register to see which ones need promotion.
567  unsigned LegalIntReg = LargestIntReg;
568  for (unsigned IntReg = LargestIntReg - 1;
569       IntReg >= (unsigned)MVT::i1; --IntReg) {
570    MVT IVT = (MVT::SimpleValueType)IntReg;
571    if (isTypeLegal(IVT)) {
572      LegalIntReg = IntReg;
573    } else {
574      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
575        (MVT::SimpleValueType)LegalIntReg;
576      ValueTypeActions.setTypeAction(IVT, Promote);
577    }
578  }
579
580  // ppcf128 type is really two f64's.
581  if (!isTypeLegal(MVT::ppcf128)) {
582    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
583    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
584    TransformToType[MVT::ppcf128] = MVT::f64;
585    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
586  }
587
588  // Decide how to handle f64. If the target does not have native f64 support,
589  // expand it to i64 and we will be generating soft float library calls.
590  if (!isTypeLegal(MVT::f64)) {
591    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
592    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
593    TransformToType[MVT::f64] = MVT::i64;
594    ValueTypeActions.setTypeAction(MVT::f64, Expand);
595  }
596
597  // Decide how to handle f32. If the target does not have native support for
598  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
599  if (!isTypeLegal(MVT::f32)) {
600    if (isTypeLegal(MVT::f64)) {
601      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
602      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
603      TransformToType[MVT::f32] = MVT::f64;
604      ValueTypeActions.setTypeAction(MVT::f32, Promote);
605    } else {
606      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
607      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
608      TransformToType[MVT::f32] = MVT::i32;
609      ValueTypeActions.setTypeAction(MVT::f32, Expand);
610    }
611  }
612
613  // Loop over all of the vector value types to see which need transformations.
614  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
615       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
616    MVT VT = (MVT::SimpleValueType)i;
617    if (!isTypeLegal(VT)) {
618      MVT IntermediateVT, RegisterVT;
619      unsigned NumIntermediates;
620      NumRegistersForVT[i] =
621        getVectorTypeBreakdown(VT,
622                               IntermediateVT, NumIntermediates,
623                               RegisterVT);
624      RegisterTypeForVT[i] = RegisterVT;
625
626      // Determine if there is a legal wider type.
627      bool IsLegalWiderType = false;
628      MVT EltVT = VT.getVectorElementType();
629      unsigned NElts = VT.getVectorNumElements();
630      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
631        MVT SVT = (MVT::SimpleValueType)nVT;
632        if (isTypeLegal(SVT) && SVT.getVectorElementType() == EltVT &&
633            SVT.getVectorNumElements() > NElts) {
634          TransformToType[i] = SVT;
635          ValueTypeActions.setTypeAction(VT, Promote);
636          IsLegalWiderType = true;
637          break;
638        }
639      }
640      if (!IsLegalWiderType) {
641        MVT NVT = VT.getPow2VectorType();
642        if (NVT == VT) {
643          // Type is already a power of 2.  The default action is to split.
644          TransformToType[i] = MVT::Other;
645          ValueTypeActions.setTypeAction(VT, Expand);
646        } else {
647          TransformToType[i] = NVT;
648          ValueTypeActions.setTypeAction(VT, Promote);
649        }
650      }
651    }
652  }
653}
654
655const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
656  return NULL;
657}
658
659
660MVT::SimpleValueType TargetLowering::getSetCCResultType(MVT VT) const {
661  return getValueType(TD->getIntPtrType()).getSimpleVT();
662}
663
664
665/// getVectorTypeBreakdown - Vector types are broken down into some number of
666/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
667/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
668/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
669///
670/// This method returns the number of registers needed, and the VT for each
671/// register.  It also returns the VT and quantity of the intermediate values
672/// before they are promoted/expanded.
673///
674unsigned TargetLowering::getVectorTypeBreakdown(MVT VT,
675                                                MVT &IntermediateVT,
676                                                unsigned &NumIntermediates,
677                                      MVT &RegisterVT) const {
678  // Figure out the right, legal destination reg to copy into.
679  unsigned NumElts = VT.getVectorNumElements();
680  MVT EltTy = VT.getVectorElementType();
681
682  unsigned NumVectorRegs = 1;
683
684  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
685  // could break down into LHS/RHS like LegalizeDAG does.
686  if (!isPowerOf2_32(NumElts)) {
687    NumVectorRegs = NumElts;
688    NumElts = 1;
689  }
690
691  // Divide the input until we get to a supported size.  This will always
692  // end with a scalar if the target doesn't support vectors.
693  while (NumElts > 1 && !isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
694    NumElts >>= 1;
695    NumVectorRegs <<= 1;
696  }
697
698  NumIntermediates = NumVectorRegs;
699
700  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
701  if (!isTypeLegal(NewVT))
702    NewVT = EltTy;
703  IntermediateVT = NewVT;
704
705  MVT DestVT = getRegisterType(NewVT);
706  RegisterVT = DestVT;
707  if (DestVT.bitsLT(NewVT)) {
708    // Value is expanded, e.g. i64 -> i16.
709    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
710  } else {
711    // Otherwise, promotion or legal types use the same number of registers as
712    // the vector decimated to the appropriate level.
713    return NumVectorRegs;
714  }
715
716  return 1;
717}
718
719/// getWidenVectorType: given a vector type, returns the type to widen to
720/// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
721/// If there is no vector type that we want to widen to, returns MVT::Other
722/// When and where to widen is target dependent based on the cost of
723/// scalarizing vs using the wider vector type.
724MVT TargetLowering::getWidenVectorType(MVT VT) const {
725  assert(VT.isVector());
726  if (isTypeLegal(VT))
727    return VT;
728
729  // Default is not to widen until moved to LegalizeTypes
730  return MVT::Other;
731}
732
733/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
734/// function arguments in the caller parameter area.  This is the actual
735/// alignment, not its logarithm.
736unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
737  return TD->getCallFrameTypeAlignment(Ty);
738}
739
740SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
741                                                 SelectionDAG &DAG) const {
742  if (usesGlobalOffsetTable())
743    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
744  return Table;
745}
746
747bool
748TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
749  // Assume that everything is safe in static mode.
750  if (getTargetMachine().getRelocationModel() == Reloc::Static)
751    return true;
752
753  // In dynamic-no-pic mode, assume that known defined values are safe.
754  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
755      GA &&
756      !GA->getGlobal()->isDeclaration() &&
757      !GA->getGlobal()->isWeakForLinker())
758    return true;
759
760  // Otherwise assume nothing is safe.
761  return false;
762}
763
764//===----------------------------------------------------------------------===//
765//  Optimization Methods
766//===----------------------------------------------------------------------===//
767
768/// ShrinkDemandedConstant - Check to see if the specified operand of the
769/// specified instruction is a constant integer.  If so, check to see if there
770/// are any bits set in the constant that are not demanded.  If so, shrink the
771/// constant and return true.
772bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
773                                                        const APInt &Demanded) {
774  DebugLoc dl = Op.getDebugLoc();
775
776  // FIXME: ISD::SELECT, ISD::SELECT_CC
777  switch (Op.getOpcode()) {
778  default: break;
779  case ISD::XOR:
780  case ISD::AND:
781  case ISD::OR: {
782    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
783    if (!C) return false;
784
785    if (Op.getOpcode() == ISD::XOR &&
786        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
787      return false;
788
789    // if we can expand it to have all bits set, do it
790    if (C->getAPIntValue().intersects(~Demanded)) {
791      MVT VT = Op.getValueType();
792      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
793                                DAG.getConstant(Demanded &
794                                                C->getAPIntValue(),
795                                                VT));
796      return CombineTo(Op, New);
797    }
798
799    break;
800  }
801  }
802
803  return false;
804}
805
806/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
807/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
808/// cast, but it could be generalized for targets with other types of
809/// implicit widening casts.
810bool
811TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
812                                                    unsigned BitWidth,
813                                                    const APInt &Demanded,
814                                                    DebugLoc dl) {
815  assert(Op.getNumOperands() == 2 &&
816         "ShrinkDemandedOp only supports binary operators!");
817  assert(Op.getNode()->getNumValues() == 1 &&
818         "ShrinkDemandedOp only supports nodes with one result!");
819
820  // Don't do this if the node has another user, which may require the
821  // full value.
822  if (!Op.getNode()->hasOneUse())
823    return false;
824
825  // Search for the smallest integer type with free casts to and from
826  // Op's type. For expedience, just check power-of-2 integer types.
827  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
828  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
829  if (!isPowerOf2_32(SmallVTBits))
830    SmallVTBits = NextPowerOf2(SmallVTBits);
831  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
832    MVT SmallVT = MVT::getIntegerVT(SmallVTBits);
833    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
834        TLI.isZExtFree(SmallVT, Op.getValueType())) {
835      // We found a type with free casts.
836      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
837                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
838                                          Op.getNode()->getOperand(0)),
839                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
840                                          Op.getNode()->getOperand(1)));
841      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
842      return CombineTo(Op, Z);
843    }
844  }
845  return false;
846}
847
848/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
849/// DemandedMask bits of the result of Op are ever used downstream.  If we can
850/// use this information to simplify Op, create a new simplified DAG node and
851/// return true, returning the original and new nodes in Old and New. Otherwise,
852/// analyze the expression and return a mask of KnownOne and KnownZero bits for
853/// the expression (used to simplify the caller).  The KnownZero/One bits may
854/// only be accurate for those bits in the DemandedMask.
855bool TargetLowering::SimplifyDemandedBits(SDValue Op,
856                                          const APInt &DemandedMask,
857                                          APInt &KnownZero,
858                                          APInt &KnownOne,
859                                          TargetLoweringOpt &TLO,
860                                          unsigned Depth) const {
861  unsigned BitWidth = DemandedMask.getBitWidth();
862  assert(Op.getValueSizeInBits() == BitWidth &&
863         "Mask size mismatches value type size!");
864  APInt NewMask = DemandedMask;
865  DebugLoc dl = Op.getDebugLoc();
866
867  // Don't know anything.
868  KnownZero = KnownOne = APInt(BitWidth, 0);
869
870  // Other users may use these bits.
871  if (!Op.getNode()->hasOneUse()) {
872    if (Depth != 0) {
873      // If not at the root, Just compute the KnownZero/KnownOne bits to
874      // simplify things downstream.
875      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
876      return false;
877    }
878    // If this is the root being simplified, allow it to have multiple uses,
879    // just set the NewMask to all bits.
880    NewMask = APInt::getAllOnesValue(BitWidth);
881  } else if (DemandedMask == 0) {
882    // Not demanding any bits from Op.
883    if (Op.getOpcode() != ISD::UNDEF)
884      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
885    return false;
886  } else if (Depth == 6) {        // Limit search depth.
887    return false;
888  }
889
890  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
891  switch (Op.getOpcode()) {
892  case ISD::Constant:
893    // We know all of the bits for a constant!
894    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
895    KnownZero = ~KnownOne & NewMask;
896    return false;   // Don't fall through, will infinitely loop.
897  case ISD::AND:
898    // If the RHS is a constant, check to see if the LHS would be zero without
899    // using the bits from the RHS.  Below, we use knowledge about the RHS to
900    // simplify the LHS, here we're using information from the LHS to simplify
901    // the RHS.
902    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
903      APInt LHSZero, LHSOne;
904      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
905                                LHSZero, LHSOne, Depth+1);
906      // If the LHS already has zeros where RHSC does, this and is dead.
907      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
908        return TLO.CombineTo(Op, Op.getOperand(0));
909      // If any of the set bits in the RHS are known zero on the LHS, shrink
910      // the constant.
911      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
912        return true;
913    }
914
915    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
916                             KnownOne, TLO, Depth+1))
917      return true;
918    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
919    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
920                             KnownZero2, KnownOne2, TLO, Depth+1))
921      return true;
922    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
923
924    // If all of the demanded bits are known one on one side, return the other.
925    // These bits cannot contribute to the result of the 'and'.
926    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
927      return TLO.CombineTo(Op, Op.getOperand(0));
928    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
929      return TLO.CombineTo(Op, Op.getOperand(1));
930    // If all of the demanded bits in the inputs are known zeros, return zero.
931    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
932      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
933    // If the RHS is a constant, see if we can simplify it.
934    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
935      return true;
936    // If the operation can be done in a smaller type, do so.
937    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
938      return true;
939
940    // Output known-1 bits are only known if set in both the LHS & RHS.
941    KnownOne &= KnownOne2;
942    // Output known-0 are known to be clear if zero in either the LHS | RHS.
943    KnownZero |= KnownZero2;
944    break;
945  case ISD::OR:
946    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
947                             KnownOne, TLO, Depth+1))
948      return true;
949    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
950    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
951                             KnownZero2, KnownOne2, TLO, Depth+1))
952      return true;
953    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
954
955    // If all of the demanded bits are known zero on one side, return the other.
956    // These bits cannot contribute to the result of the 'or'.
957    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
958      return TLO.CombineTo(Op, Op.getOperand(0));
959    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
960      return TLO.CombineTo(Op, Op.getOperand(1));
961    // If all of the potentially set bits on one side are known to be set on
962    // the other side, just use the 'other' side.
963    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
964      return TLO.CombineTo(Op, Op.getOperand(0));
965    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
966      return TLO.CombineTo(Op, Op.getOperand(1));
967    // If the RHS is a constant, see if we can simplify it.
968    if (TLO.ShrinkDemandedConstant(Op, NewMask))
969      return true;
970    // If the operation can be done in a smaller type, do so.
971    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
972      return true;
973
974    // Output known-0 bits are only known if clear in both the LHS & RHS.
975    KnownZero &= KnownZero2;
976    // Output known-1 are known to be set if set in either the LHS | RHS.
977    KnownOne |= KnownOne2;
978    break;
979  case ISD::XOR:
980    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
981                             KnownOne, TLO, Depth+1))
982      return true;
983    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
984    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
985                             KnownOne2, TLO, Depth+1))
986      return true;
987    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
988
989    // If all of the demanded bits are known zero on one side, return the other.
990    // These bits cannot contribute to the result of the 'xor'.
991    if ((KnownZero & NewMask) == NewMask)
992      return TLO.CombineTo(Op, Op.getOperand(0));
993    if ((KnownZero2 & NewMask) == NewMask)
994      return TLO.CombineTo(Op, Op.getOperand(1));
995    // If the operation can be done in a smaller type, do so.
996    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
997      return true;
998
999    // If all of the unknown bits are known to be zero on one side or the other
1000    // (but not both) turn this into an *inclusive* or.
1001    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1002    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1003      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1004                                               Op.getOperand(0),
1005                                               Op.getOperand(1)));
1006
1007    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1008    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1009    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1010    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1011
1012    // If all of the demanded bits on one side are known, and all of the set
1013    // bits on that side are also known to be set on the other side, turn this
1014    // into an AND, as we know the bits will be cleared.
1015    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1016    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1017      if ((KnownOne & KnownOne2) == KnownOne) {
1018        MVT VT = Op.getValueType();
1019        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1020        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1021                                                 Op.getOperand(0), ANDC));
1022      }
1023    }
1024
1025    // If the RHS is a constant, see if we can simplify it.
1026    // for XOR, we prefer to force bits to 1 if they will make a -1.
1027    // if we can't force bits, try to shrink constant
1028    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1029      APInt Expanded = C->getAPIntValue() | (~NewMask);
1030      // if we can expand it to have all bits set, do it
1031      if (Expanded.isAllOnesValue()) {
1032        if (Expanded != C->getAPIntValue()) {
1033          MVT VT = Op.getValueType();
1034          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1035                                          TLO.DAG.getConstant(Expanded, VT));
1036          return TLO.CombineTo(Op, New);
1037        }
1038        // if it already has all the bits set, nothing to change
1039        // but don't shrink either!
1040      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1041        return true;
1042      }
1043    }
1044
1045    KnownZero = KnownZeroOut;
1046    KnownOne  = KnownOneOut;
1047    break;
1048  case ISD::SELECT:
1049    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1050                             KnownOne, TLO, Depth+1))
1051      return true;
1052    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1053                             KnownOne2, TLO, Depth+1))
1054      return true;
1055    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1056    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1057
1058    // If the operands are constants, see if we can simplify them.
1059    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1060      return true;
1061
1062    // Only known if known in both the LHS and RHS.
1063    KnownOne &= KnownOne2;
1064    KnownZero &= KnownZero2;
1065    break;
1066  case ISD::SELECT_CC:
1067    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1068                             KnownOne, TLO, Depth+1))
1069      return true;
1070    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1071                             KnownOne2, TLO, Depth+1))
1072      return true;
1073    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1074    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1075
1076    // If the operands are constants, see if we can simplify them.
1077    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1078      return true;
1079
1080    // Only known if known in both the LHS and RHS.
1081    KnownOne &= KnownOne2;
1082    KnownZero &= KnownZero2;
1083    break;
1084  case ISD::SHL:
1085    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1086      unsigned ShAmt = SA->getZExtValue();
1087      SDValue InOp = Op.getOperand(0);
1088
1089      // If the shift count is an invalid immediate, don't do anything.
1090      if (ShAmt >= BitWidth)
1091        break;
1092
1093      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1094      // single shift.  We can do this if the bottom bits (which are shifted
1095      // out) are never demanded.
1096      if (InOp.getOpcode() == ISD::SRL &&
1097          isa<ConstantSDNode>(InOp.getOperand(1))) {
1098        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1099          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1100          unsigned Opc = ISD::SHL;
1101          int Diff = ShAmt-C1;
1102          if (Diff < 0) {
1103            Diff = -Diff;
1104            Opc = ISD::SRL;
1105          }
1106
1107          SDValue NewSA =
1108            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1109          MVT VT = Op.getValueType();
1110          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1111                                                   InOp.getOperand(0), NewSA));
1112        }
1113      }
1114
1115      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
1116                               KnownZero, KnownOne, TLO, Depth+1))
1117        return true;
1118      KnownZero <<= SA->getZExtValue();
1119      KnownOne  <<= SA->getZExtValue();
1120      // low bits known zero.
1121      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1122    }
1123    break;
1124  case ISD::SRL:
1125    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1126      MVT VT = Op.getValueType();
1127      unsigned ShAmt = SA->getZExtValue();
1128      unsigned VTSize = VT.getSizeInBits();
1129      SDValue InOp = Op.getOperand(0);
1130
1131      // If the shift count is an invalid immediate, don't do anything.
1132      if (ShAmt >= BitWidth)
1133        break;
1134
1135      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1136      // single shift.  We can do this if the top bits (which are shifted out)
1137      // are never demanded.
1138      if (InOp.getOpcode() == ISD::SHL &&
1139          isa<ConstantSDNode>(InOp.getOperand(1))) {
1140        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1141          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1142          unsigned Opc = ISD::SRL;
1143          int Diff = ShAmt-C1;
1144          if (Diff < 0) {
1145            Diff = -Diff;
1146            Opc = ISD::SHL;
1147          }
1148
1149          SDValue NewSA =
1150            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1151          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1152                                                   InOp.getOperand(0), NewSA));
1153        }
1154      }
1155
1156      // Compute the new bits that are at the top now.
1157      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1158                               KnownZero, KnownOne, TLO, Depth+1))
1159        return true;
1160      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1161      KnownZero = KnownZero.lshr(ShAmt);
1162      KnownOne  = KnownOne.lshr(ShAmt);
1163
1164      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1165      KnownZero |= HighBits;  // High bits known zero.
1166    }
1167    break;
1168  case ISD::SRA:
1169    // If this is an arithmetic shift right and only the low-bit is set, we can
1170    // always convert this into a logical shr, even if the shift amount is
1171    // variable.  The low bit of the shift cannot be an input sign bit unless
1172    // the shift amount is >= the size of the datatype, which is undefined.
1173    if (DemandedMask == 1)
1174      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1175                                               Op.getOperand(0), Op.getOperand(1)));
1176
1177    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1178      MVT VT = Op.getValueType();
1179      unsigned ShAmt = SA->getZExtValue();
1180
1181      // If the shift count is an invalid immediate, don't do anything.
1182      if (ShAmt >= BitWidth)
1183        break;
1184
1185      APInt InDemandedMask = (NewMask << ShAmt);
1186
1187      // If any of the demanded bits are produced by the sign extension, we also
1188      // demand the input sign bit.
1189      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1190      if (HighBits.intersects(NewMask))
1191        InDemandedMask |= APInt::getSignBit(VT.getSizeInBits());
1192
1193      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1194                               KnownZero, KnownOne, TLO, Depth+1))
1195        return true;
1196      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1197      KnownZero = KnownZero.lshr(ShAmt);
1198      KnownOne  = KnownOne.lshr(ShAmt);
1199
1200      // Handle the sign bit, adjusted to where it is now in the mask.
1201      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1202
1203      // If the input sign bit is known to be zero, or if none of the top bits
1204      // are demanded, turn this into an unsigned shift right.
1205      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1206        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1207                                                 Op.getOperand(0),
1208                                                 Op.getOperand(1)));
1209      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1210        KnownOne |= HighBits;
1211      }
1212    }
1213    break;
1214  case ISD::SIGN_EXTEND_INREG: {
1215    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1216
1217    // Sign extension.  Compute the demanded bits in the result that are not
1218    // present in the input.
1219    APInt NewBits = APInt::getHighBitsSet(BitWidth,
1220                                          BitWidth - EVT.getSizeInBits()) &
1221                    NewMask;
1222
1223    // If none of the extended bits are demanded, eliminate the sextinreg.
1224    if (NewBits == 0)
1225      return TLO.CombineTo(Op, Op.getOperand(0));
1226
1227    APInt InSignBit = APInt::getSignBit(EVT.getSizeInBits());
1228    InSignBit.zext(BitWidth);
1229    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
1230                                                   EVT.getSizeInBits()) &
1231                              NewMask;
1232
1233    // Since the sign extended bits are demanded, we know that the sign
1234    // bit is demanded.
1235    InputDemandedBits |= InSignBit;
1236
1237    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1238                             KnownZero, KnownOne, TLO, Depth+1))
1239      return true;
1240    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1241
1242    // If the sign bit of the input is known set or clear, then we know the
1243    // top bits of the result.
1244
1245    // If the input sign bit is known zero, convert this into a zero extension.
1246    if (KnownZero.intersects(InSignBit))
1247      return TLO.CombineTo(Op,
1248                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1249
1250    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1251      KnownOne |= NewBits;
1252      KnownZero &= ~NewBits;
1253    } else {                       // Input sign bit unknown
1254      KnownZero &= ~NewBits;
1255      KnownOne &= ~NewBits;
1256    }
1257    break;
1258  }
1259  case ISD::ZERO_EXTEND: {
1260    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1261    APInt InMask = NewMask;
1262    InMask.trunc(OperandBitWidth);
1263
1264    // If none of the top bits are demanded, convert this into an any_extend.
1265    APInt NewBits =
1266      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1267    if (!NewBits.intersects(NewMask))
1268      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1269                                               Op.getValueType(),
1270                                               Op.getOperand(0)));
1271
1272    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1273                             KnownZero, KnownOne, TLO, Depth+1))
1274      return true;
1275    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1276    KnownZero.zext(BitWidth);
1277    KnownOne.zext(BitWidth);
1278    KnownZero |= NewBits;
1279    break;
1280  }
1281  case ISD::SIGN_EXTEND: {
1282    MVT InVT = Op.getOperand(0).getValueType();
1283    unsigned InBits = InVT.getSizeInBits();
1284    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1285    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1286    APInt NewBits   = ~InMask & NewMask;
1287
1288    // If none of the top bits are demanded, convert this into an any_extend.
1289    if (NewBits == 0)
1290      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1291                                              Op.getValueType(),
1292                                              Op.getOperand(0)));
1293
1294    // Since some of the sign extended bits are demanded, we know that the sign
1295    // bit is demanded.
1296    APInt InDemandedBits = InMask & NewMask;
1297    InDemandedBits |= InSignBit;
1298    InDemandedBits.trunc(InBits);
1299
1300    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1301                             KnownOne, TLO, Depth+1))
1302      return true;
1303    KnownZero.zext(BitWidth);
1304    KnownOne.zext(BitWidth);
1305
1306    // If the sign bit is known zero, convert this to a zero extend.
1307    if (KnownZero.intersects(InSignBit))
1308      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1309                                               Op.getValueType(),
1310                                               Op.getOperand(0)));
1311
1312    // If the sign bit is known one, the top bits match.
1313    if (KnownOne.intersects(InSignBit)) {
1314      KnownOne  |= NewBits;
1315      KnownZero &= ~NewBits;
1316    } else {   // Otherwise, top bits aren't known.
1317      KnownOne  &= ~NewBits;
1318      KnownZero &= ~NewBits;
1319    }
1320    break;
1321  }
1322  case ISD::ANY_EXTEND: {
1323    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1324    APInt InMask = NewMask;
1325    InMask.trunc(OperandBitWidth);
1326    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1327                             KnownZero, KnownOne, TLO, Depth+1))
1328      return true;
1329    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1330    KnownZero.zext(BitWidth);
1331    KnownOne.zext(BitWidth);
1332    break;
1333  }
1334  case ISD::TRUNCATE: {
1335    // Simplify the input, using demanded bit information, and compute the known
1336    // zero/one bits live out.
1337    APInt TruncMask = NewMask;
1338    TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
1339    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1340                             KnownZero, KnownOne, TLO, Depth+1))
1341      return true;
1342    KnownZero.trunc(BitWidth);
1343    KnownOne.trunc(BitWidth);
1344
1345    // If the input is only used by this truncate, see if we can shrink it based
1346    // on the known demanded bits.
1347    if (Op.getOperand(0).getNode()->hasOneUse()) {
1348      SDValue In = Op.getOperand(0);
1349      unsigned InBitWidth = In.getValueSizeInBits();
1350      switch (In.getOpcode()) {
1351      default: break;
1352      case ISD::SRL:
1353        // Shrink SRL by a constant if none of the high bits shifted in are
1354        // demanded.
1355        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
1356          APInt HighBits = APInt::getHighBitsSet(InBitWidth,
1357                                                 InBitWidth - BitWidth);
1358          HighBits = HighBits.lshr(ShAmt->getZExtValue());
1359          HighBits.trunc(BitWidth);
1360
1361          if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1362            // None of the shifted in bits are needed.  Add a truncate of the
1363            // shift input, then shift it.
1364            SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1365                                                 Op.getValueType(),
1366                                                 In.getOperand(0));
1367            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1368                                                     Op.getValueType(),
1369                                                     NewTrunc,
1370                                                     In.getOperand(1)));
1371          }
1372        }
1373        break;
1374      }
1375    }
1376
1377    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1378    break;
1379  }
1380  case ISD::AssertZext: {
1381    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1382    APInt InMask = APInt::getLowBitsSet(BitWidth,
1383                                        VT.getSizeInBits());
1384    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
1385                             KnownZero, KnownOne, TLO, Depth+1))
1386      return true;
1387    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1388    KnownZero |= ~InMask & NewMask;
1389    break;
1390  }
1391  case ISD::BIT_CONVERT:
1392#if 0
1393    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1394    // is demanded, turn this into a FGETSIGN.
1395    if (NewMask == MVT::getIntegerVTSignBit(Op.getValueType()) &&
1396        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1397        !MVT::isVector(Op.getOperand(0).getValueType())) {
1398      // Only do this xform if FGETSIGN is valid or if before legalize.
1399      if (!TLO.AfterLegalize ||
1400          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1401        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1402        // place.  We expect the SHL to be eliminated by other optimizations.
1403        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1404                                         Op.getOperand(0));
1405        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1406        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1407        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1408                                                 Sign, ShAmt));
1409      }
1410    }
1411#endif
1412    break;
1413  case ISD::ADD:
1414  case ISD::MUL:
1415  case ISD::SUB: {
1416    // Add, Sub, and Mul don't demand any bits in positions beyond that
1417    // of the highest bit demanded of them.
1418    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1419                                        BitWidth - NewMask.countLeadingZeros());
1420    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1421                             KnownOne2, TLO, Depth+1))
1422      return true;
1423    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1424                             KnownOne2, TLO, Depth+1))
1425      return true;
1426    // See if the operation should be performed at a smaller bit width.
1427    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1428      return true;
1429  }
1430  // FALL THROUGH
1431  default:
1432    // Just use ComputeMaskedBits to compute output bits.
1433    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1434    break;
1435  }
1436
1437  // If we know the value of all of the demanded bits, return this as a
1438  // constant.
1439  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1440    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1441
1442  return false;
1443}
1444
1445/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1446/// in Mask are known to be either zero or one and return them in the
1447/// KnownZero/KnownOne bitsets.
1448void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1449                                                    const APInt &Mask,
1450                                                    APInt &KnownZero,
1451                                                    APInt &KnownOne,
1452                                                    const SelectionDAG &DAG,
1453                                                    unsigned Depth) const {
1454  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1455          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1456          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1457          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1458         "Should use MaskedValueIsZero if you don't know whether Op"
1459         " is a target node!");
1460  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1461}
1462
1463/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1464/// targets that want to expose additional information about sign bits to the
1465/// DAG Combiner.
1466unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1467                                                         unsigned Depth) const {
1468  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1469          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1470          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1471          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1472         "Should use ComputeNumSignBits if you don't know whether Op"
1473         " is a target node!");
1474  return 1;
1475}
1476
1477/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1478/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1479/// determine which bit is set.
1480///
1481static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1482  // A left-shift of a constant one will have exactly one bit set, because
1483  // shifting the bit off the end is undefined.
1484  if (Val.getOpcode() == ISD::SHL)
1485    if (ConstantSDNode *C =
1486         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1487      if (C->getAPIntValue() == 1)
1488        return true;
1489
1490  // Similarly, a right-shift of a constant sign-bit will have exactly
1491  // one bit set.
1492  if (Val.getOpcode() == ISD::SRL)
1493    if (ConstantSDNode *C =
1494         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1495      if (C->getAPIntValue().isSignBit())
1496        return true;
1497
1498  // More could be done here, though the above checks are enough
1499  // to handle some common cases.
1500
1501  // Fall back to ComputeMaskedBits to catch other known cases.
1502  MVT OpVT = Val.getValueType();
1503  unsigned BitWidth = OpVT.getSizeInBits();
1504  APInt Mask = APInt::getAllOnesValue(BitWidth);
1505  APInt KnownZero, KnownOne;
1506  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1507  return (KnownZero.countPopulation() == BitWidth - 1) &&
1508         (KnownOne.countPopulation() == 1);
1509}
1510
1511/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1512/// and cc. If it is unable to simplify it, return a null SDValue.
1513SDValue
1514TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
1515                              ISD::CondCode Cond, bool foldBooleans,
1516                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1517  SelectionDAG &DAG = DCI.DAG;
1518
1519  // These setcc operations always fold.
1520  switch (Cond) {
1521  default: break;
1522  case ISD::SETFALSE:
1523  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1524  case ISD::SETTRUE:
1525  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1526  }
1527
1528  if (isa<ConstantSDNode>(N0.getNode())) {
1529    // Ensure that the constant occurs on the RHS, and fold constant
1530    // comparisons.
1531    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1532  }
1533
1534  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1535    const APInt &C1 = N1C->getAPIntValue();
1536
1537    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1538    // equality comparison, then we're just comparing whether X itself is
1539    // zero.
1540    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1541        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1542        N0.getOperand(1).getOpcode() == ISD::Constant) {
1543      unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1544      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1545          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1546        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1547          // (srl (ctlz x), 5) == 0  -> X != 0
1548          // (srl (ctlz x), 5) != 1  -> X != 0
1549          Cond = ISD::SETNE;
1550        } else {
1551          // (srl (ctlz x), 5) != 0  -> X == 0
1552          // (srl (ctlz x), 5) == 1  -> X == 0
1553          Cond = ISD::SETEQ;
1554        }
1555        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1556        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1557                            Zero, Cond);
1558      }
1559    }
1560
1561    // If the LHS is '(and load, const)', the RHS is 0,
1562    // the test is for equality or unsigned, and all 1 bits of the const are
1563    // in the same partial word, see if we can shorten the load.
1564    if (DCI.isBeforeLegalize() &&
1565        N0.getOpcode() == ISD::AND && C1 == 0 &&
1566        N0.getNode()->hasOneUse() &&
1567        isa<LoadSDNode>(N0.getOperand(0)) &&
1568        N0.getOperand(0).getNode()->hasOneUse() &&
1569        isa<ConstantSDNode>(N0.getOperand(1))) {
1570      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1571      uint64_t bestMask = 0;
1572      unsigned bestWidth = 0, bestOffset = 0;
1573      if (!Lod->isVolatile() && Lod->isUnindexed() &&
1574          // FIXME: This uses getZExtValue() below so it only works on i64 and
1575          // below.
1576          N0.getValueType().getSizeInBits() <= 64) {
1577        unsigned origWidth = N0.getValueType().getSizeInBits();
1578        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1579        // 8 bits, but have to be careful...
1580        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1581          origWidth = Lod->getMemoryVT().getSizeInBits();
1582        uint64_t Mask =cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1583        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1584          uint64_t newMask = (1ULL << width) - 1;
1585          for (unsigned offset=0; offset<origWidth/width; offset++) {
1586            if ((newMask & Mask) == Mask) {
1587              if (!TD->isLittleEndian())
1588                bestOffset = (origWidth/width - offset - 1) * (width/8);
1589              else
1590                bestOffset = (uint64_t)offset * (width/8);
1591              bestMask = Mask >> (offset * (width/8) * 8);
1592              bestWidth = width;
1593              break;
1594            }
1595            newMask = newMask << width;
1596          }
1597        }
1598      }
1599      if (bestWidth) {
1600        MVT newVT = MVT::getIntegerVT(bestWidth);
1601        if (newVT.isRound()) {
1602          MVT PtrType = Lod->getOperand(1).getValueType();
1603          SDValue Ptr = Lod->getBasePtr();
1604          if (bestOffset != 0)
1605            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1606                              DAG.getConstant(bestOffset, PtrType));
1607          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1608          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1609                                        Lod->getSrcValue(),
1610                                        Lod->getSrcValueOffset() + bestOffset,
1611                                        false, NewAlign);
1612          return DAG.getSetCC(dl, VT,
1613                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1614                                          DAG.getConstant(bestMask, newVT)),
1615                              DAG.getConstant(0LL, newVT), Cond);
1616        }
1617      }
1618    }
1619
1620    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1621    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1622      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1623
1624      // If the comparison constant has bits in the upper part, the
1625      // zero-extended value could never match.
1626      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1627                                              C1.getBitWidth() - InSize))) {
1628        switch (Cond) {
1629        case ISD::SETUGT:
1630        case ISD::SETUGE:
1631        case ISD::SETEQ: return DAG.getConstant(0, VT);
1632        case ISD::SETULT:
1633        case ISD::SETULE:
1634        case ISD::SETNE: return DAG.getConstant(1, VT);
1635        case ISD::SETGT:
1636        case ISD::SETGE:
1637          // True if the sign bit of C1 is set.
1638          return DAG.getConstant(C1.isNegative(), VT);
1639        case ISD::SETLT:
1640        case ISD::SETLE:
1641          // True if the sign bit of C1 isn't set.
1642          return DAG.getConstant(C1.isNonNegative(), VT);
1643        default:
1644          break;
1645        }
1646      }
1647
1648      // Otherwise, we can perform the comparison with the low bits.
1649      switch (Cond) {
1650      case ISD::SETEQ:
1651      case ISD::SETNE:
1652      case ISD::SETUGT:
1653      case ISD::SETUGE:
1654      case ISD::SETULT:
1655      case ISD::SETULE: {
1656        MVT newVT = N0.getOperand(0).getValueType();
1657        if (DCI.isBeforeLegalizeOps() ||
1658            (isOperationLegal(ISD::SETCC, newVT) &&
1659              getCondCodeAction(Cond, newVT)==Legal))
1660          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1661                              DAG.getConstant(APInt(C1).trunc(InSize), newVT),
1662                              Cond);
1663        break;
1664      }
1665      default:
1666        break;   // todo, be more careful with signed comparisons
1667      }
1668    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1669                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1670      MVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1671      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1672      MVT ExtDstTy = N0.getValueType();
1673      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1674
1675      // If the extended part has any inconsistent bits, it cannot ever
1676      // compare equal.  In other words, they have to be all ones or all
1677      // zeros.
1678      APInt ExtBits =
1679        APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1680      if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1681        return DAG.getConstant(Cond == ISD::SETNE, VT);
1682
1683      SDValue ZextOp;
1684      MVT Op0Ty = N0.getOperand(0).getValueType();
1685      if (Op0Ty == ExtSrcTy) {
1686        ZextOp = N0.getOperand(0);
1687      } else {
1688        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1689        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1690                              DAG.getConstant(Imm, Op0Ty));
1691      }
1692      if (!DCI.isCalledByLegalizer())
1693        DCI.AddToWorklist(ZextOp.getNode());
1694      // Otherwise, make this a use of a zext.
1695      return DAG.getSetCC(dl, VT, ZextOp,
1696                          DAG.getConstant(C1 & APInt::getLowBitsSet(
1697                                                              ExtDstTyBits,
1698                                                              ExtSrcTyBits),
1699                                          ExtDstTy),
1700                          Cond);
1701    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1702                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1703
1704      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1705      if (N0.getOpcode() == ISD::SETCC) {
1706        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getZExtValue() != 1);
1707        if (TrueWhenTrue)
1708          return N0;
1709
1710        // Invert the condition.
1711        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1712        CC = ISD::getSetCCInverse(CC,
1713                                  N0.getOperand(0).getValueType().isInteger());
1714        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1715      }
1716
1717      if ((N0.getOpcode() == ISD::XOR ||
1718            (N0.getOpcode() == ISD::AND &&
1719            N0.getOperand(0).getOpcode() == ISD::XOR &&
1720            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1721          isa<ConstantSDNode>(N0.getOperand(1)) &&
1722          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1723        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1724        // can only do this if the top bits are known zero.
1725        unsigned BitWidth = N0.getValueSizeInBits();
1726        if (DAG.MaskedValueIsZero(N0,
1727                                  APInt::getHighBitsSet(BitWidth,
1728                                                        BitWidth-1))) {
1729          // Okay, get the un-inverted input value.
1730          SDValue Val;
1731          if (N0.getOpcode() == ISD::XOR)
1732            Val = N0.getOperand(0);
1733          else {
1734            assert(N0.getOpcode() == ISD::AND &&
1735                    N0.getOperand(0).getOpcode() == ISD::XOR);
1736            // ((X^1)&1)^1 -> X & 1
1737            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1738                              N0.getOperand(0).getOperand(0),
1739                              N0.getOperand(1));
1740          }
1741          return DAG.getSetCC(dl, VT, Val, N1,
1742                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1743        }
1744      }
1745    }
1746
1747    APInt MinVal, MaxVal;
1748    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1749    if (ISD::isSignedIntSetCC(Cond)) {
1750      MinVal = APInt::getSignedMinValue(OperandBitSize);
1751      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1752    } else {
1753      MinVal = APInt::getMinValue(OperandBitSize);
1754      MaxVal = APInt::getMaxValue(OperandBitSize);
1755    }
1756
1757    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1758    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1759      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1760      // X >= C0 --> X > (C0-1)
1761      return DAG.getSetCC(dl, VT, N0,
1762                          DAG.getConstant(C1-1, N1.getValueType()),
1763                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1764    }
1765
1766    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1767      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1768      // X <= C0 --> X < (C0+1)
1769      return DAG.getSetCC(dl, VT, N0,
1770                          DAG.getConstant(C1+1, N1.getValueType()),
1771                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1772    }
1773
1774    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1775      return DAG.getConstant(0, VT);      // X < MIN --> false
1776    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1777      return DAG.getConstant(1, VT);      // X >= MIN --> true
1778    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1779      return DAG.getConstant(0, VT);      // X > MAX --> false
1780    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1781      return DAG.getConstant(1, VT);      // X <= MAX --> true
1782
1783    // Canonicalize setgt X, Min --> setne X, Min
1784    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1785      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1786    // Canonicalize setlt X, Max --> setne X, Max
1787    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1788      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1789
1790    // If we have setult X, 1, turn it into seteq X, 0
1791    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1792      return DAG.getSetCC(dl, VT, N0,
1793                          DAG.getConstant(MinVal, N0.getValueType()),
1794                          ISD::SETEQ);
1795    // If we have setugt X, Max-1, turn it into seteq X, Max
1796    else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1797      return DAG.getSetCC(dl, VT, N0,
1798                          DAG.getConstant(MaxVal, N0.getValueType()),
1799                          ISD::SETEQ);
1800
1801    // If we have "setcc X, C0", check to see if we can shrink the immediate
1802    // by changing cc.
1803
1804    // SETUGT X, SINTMAX  -> SETLT X, 0
1805    if (Cond == ISD::SETUGT &&
1806        C1 == APInt::getSignedMaxValue(OperandBitSize))
1807      return DAG.getSetCC(dl, VT, N0,
1808                          DAG.getConstant(0, N1.getValueType()),
1809                          ISD::SETLT);
1810
1811    // SETULT X, SINTMIN  -> SETGT X, -1
1812    if (Cond == ISD::SETULT &&
1813        C1 == APInt::getSignedMinValue(OperandBitSize)) {
1814      SDValue ConstMinusOne =
1815          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
1816                          N1.getValueType());
1817      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1818    }
1819
1820    // Fold bit comparisons when we can.
1821    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1822        VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1823      if (ConstantSDNode *AndRHS =
1824                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1825        MVT ShiftTy = DCI.isBeforeLegalize() ?
1826          getPointerTy() : getShiftAmountTy();
1827        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1828          // Perform the xform if the AND RHS is a single bit.
1829          if (isPowerOf2_64(AndRHS->getZExtValue())) {
1830            return DAG.getNode(ISD::SRL, dl, VT, N0,
1831                                DAG.getConstant(Log2_64(AndRHS->getZExtValue()),
1832                                                ShiftTy));
1833          }
1834        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getZExtValue()) {
1835          // (X & 8) == 8  -->  (X & 8) >> 3
1836          // Perform the xform if C1 is a single bit.
1837          if (C1.isPowerOf2()) {
1838            return DAG.getNode(ISD::SRL, dl, VT, N0,
1839                                DAG.getConstant(C1.logBase2(), ShiftTy));
1840          }
1841        }
1842      }
1843  }
1844
1845  if (isa<ConstantFPSDNode>(N0.getNode())) {
1846    // Constant fold or commute setcc.
1847    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1848    if (O.getNode()) return O;
1849  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1850    // If the RHS of an FP comparison is a constant, simplify it away in
1851    // some cases.
1852    if (CFP->getValueAPF().isNaN()) {
1853      // If an operand is known to be a nan, we can fold it.
1854      switch (ISD::getUnorderedFlavor(Cond)) {
1855      default: llvm_unreachable("Unknown flavor!");
1856      case 0:  // Known false.
1857        return DAG.getConstant(0, VT);
1858      case 1:  // Known true.
1859        return DAG.getConstant(1, VT);
1860      case 2:  // Undefined.
1861        return DAG.getUNDEF(VT);
1862      }
1863    }
1864
1865    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1866    // constant if knowing that the operand is non-nan is enough.  We prefer to
1867    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1868    // materialize 0.0.
1869    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1870      return DAG.getSetCC(dl, VT, N0, N0, Cond);
1871  }
1872
1873  if (N0 == N1) {
1874    // We can always fold X == X for integer setcc's.
1875    if (N0.getValueType().isInteger())
1876      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1877    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1878    if (UOF == 2)   // FP operators that are undefined on NaNs.
1879      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1880    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1881      return DAG.getConstant(UOF, VT);
1882    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1883    // if it is not already.
1884    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1885    if (NewCond != Cond)
1886      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
1887  }
1888
1889  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1890      N0.getValueType().isInteger()) {
1891    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1892        N0.getOpcode() == ISD::XOR) {
1893      // Simplify (X+Y) == (X+Z) -->  Y == Z
1894      if (N0.getOpcode() == N1.getOpcode()) {
1895        if (N0.getOperand(0) == N1.getOperand(0))
1896          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
1897        if (N0.getOperand(1) == N1.getOperand(1))
1898          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
1899        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1900          // If X op Y == Y op X, try other combinations.
1901          if (N0.getOperand(0) == N1.getOperand(1))
1902            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
1903                                Cond);
1904          if (N0.getOperand(1) == N1.getOperand(0))
1905            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
1906                                Cond);
1907        }
1908      }
1909
1910      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1911        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1912          // Turn (X+C1) == C2 --> X == C2-C1
1913          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
1914            return DAG.getSetCC(dl, VT, N0.getOperand(0),
1915                                DAG.getConstant(RHSC->getAPIntValue()-
1916                                                LHSR->getAPIntValue(),
1917                                N0.getValueType()), Cond);
1918          }
1919
1920          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1921          if (N0.getOpcode() == ISD::XOR)
1922            // If we know that all of the inverted bits are zero, don't bother
1923            // performing the inversion.
1924            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1925              return
1926                DAG.getSetCC(dl, VT, N0.getOperand(0),
1927                             DAG.getConstant(LHSR->getAPIntValue() ^
1928                                               RHSC->getAPIntValue(),
1929                                             N0.getValueType()),
1930                             Cond);
1931        }
1932
1933        // Turn (C1-X) == C2 --> X == C1-C2
1934        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1935          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
1936            return
1937              DAG.getSetCC(dl, VT, N0.getOperand(1),
1938                           DAG.getConstant(SUBC->getAPIntValue() -
1939                                             RHSC->getAPIntValue(),
1940                                           N0.getValueType()),
1941                           Cond);
1942          }
1943        }
1944      }
1945
1946      // Simplify (X+Z) == X -->  Z == 0
1947      if (N0.getOperand(0) == N1)
1948        return DAG.getSetCC(dl, VT, N0.getOperand(1),
1949                        DAG.getConstant(0, N0.getValueType()), Cond);
1950      if (N0.getOperand(1) == N1) {
1951        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1952          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1953                          DAG.getConstant(0, N0.getValueType()), Cond);
1954        else if (N0.getNode()->hasOneUse()) {
1955          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1956          // (Z-X) == X  --> Z == X<<1
1957          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
1958                                     N1,
1959                                     DAG.getConstant(1, getShiftAmountTy()));
1960          if (!DCI.isCalledByLegalizer())
1961            DCI.AddToWorklist(SH.getNode());
1962          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
1963        }
1964      }
1965    }
1966
1967    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1968        N1.getOpcode() == ISD::XOR) {
1969      // Simplify  X == (X+Z) -->  Z == 0
1970      if (N1.getOperand(0) == N0) {
1971        return DAG.getSetCC(dl, VT, N1.getOperand(1),
1972                        DAG.getConstant(0, N1.getValueType()), Cond);
1973      } else if (N1.getOperand(1) == N0) {
1974        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1975          return DAG.getSetCC(dl, VT, N1.getOperand(0),
1976                          DAG.getConstant(0, N1.getValueType()), Cond);
1977        } else if (N1.getNode()->hasOneUse()) {
1978          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1979          // X == (Z-X)  --> X<<1 == Z
1980          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
1981                                     DAG.getConstant(1, getShiftAmountTy()));
1982          if (!DCI.isCalledByLegalizer())
1983            DCI.AddToWorklist(SH.getNode());
1984          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
1985        }
1986      }
1987    }
1988
1989    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
1990    // Note that where y is variable and is known to have at most
1991    // one bit set (for example, if it is z&1) we cannot do this;
1992    // the expressions are not equivalent when y==0.
1993    if (N0.getOpcode() == ISD::AND)
1994      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
1995        if (ValueHasExactlyOneBitSet(N1, DAG)) {
1996          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1997          SDValue Zero = DAG.getConstant(0, N1.getValueType());
1998          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
1999        }
2000      }
2001    if (N1.getOpcode() == ISD::AND)
2002      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2003        if (ValueHasExactlyOneBitSet(N0, DAG)) {
2004          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2005          SDValue Zero = DAG.getConstant(0, N0.getValueType());
2006          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2007        }
2008      }
2009  }
2010
2011  // Fold away ALL boolean setcc's.
2012  SDValue Temp;
2013  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2014    switch (Cond) {
2015    default: llvm_unreachable("Unknown integer setcc!");
2016    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2017      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2018      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2019      if (!DCI.isCalledByLegalizer())
2020        DCI.AddToWorklist(Temp.getNode());
2021      break;
2022    case ISD::SETNE:  // X != Y   -->  (X^Y)
2023      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2024      break;
2025    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2026    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2027      Temp = DAG.getNOT(dl, N0, MVT::i1);
2028      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2029      if (!DCI.isCalledByLegalizer())
2030        DCI.AddToWorklist(Temp.getNode());
2031      break;
2032    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2033    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2034      Temp = DAG.getNOT(dl, N1, MVT::i1);
2035      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2036      if (!DCI.isCalledByLegalizer())
2037        DCI.AddToWorklist(Temp.getNode());
2038      break;
2039    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2040    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2041      Temp = DAG.getNOT(dl, N0, MVT::i1);
2042      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2043      if (!DCI.isCalledByLegalizer())
2044        DCI.AddToWorklist(Temp.getNode());
2045      break;
2046    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2047    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2048      Temp = DAG.getNOT(dl, N1, MVT::i1);
2049      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2050      break;
2051    }
2052    if (VT != MVT::i1) {
2053      if (!DCI.isCalledByLegalizer())
2054        DCI.AddToWorklist(N0.getNode());
2055      // FIXME: If running after legalize, we probably can't do this.
2056      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2057    }
2058    return N0;
2059  }
2060
2061  // Could not fold it.
2062  return SDValue();
2063}
2064
2065/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2066/// node is a GlobalAddress + offset.
2067bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
2068                                    int64_t &Offset) const {
2069  if (isa<GlobalAddressSDNode>(N)) {
2070    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2071    GA = GASD->getGlobal();
2072    Offset += GASD->getOffset();
2073    return true;
2074  }
2075
2076  if (N->getOpcode() == ISD::ADD) {
2077    SDValue N1 = N->getOperand(0);
2078    SDValue N2 = N->getOperand(1);
2079    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2080      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2081      if (V) {
2082        Offset += V->getSExtValue();
2083        return true;
2084      }
2085    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2086      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2087      if (V) {
2088        Offset += V->getSExtValue();
2089        return true;
2090      }
2091    }
2092  }
2093  return false;
2094}
2095
2096
2097/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
2098/// location that is 'Dist' units away from the location that the 'Base' load
2099/// is loading from.
2100bool TargetLowering::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
2101                                       unsigned Bytes, int Dist,
2102                                       const MachineFrameInfo *MFI) const {
2103  if (LD->getChain() != Base->getChain())
2104    return false;
2105  MVT VT = LD->getValueType(0);
2106  if (VT.getSizeInBits() / 8 != Bytes)
2107    return false;
2108
2109  SDValue Loc = LD->getOperand(1);
2110  SDValue BaseLoc = Base->getOperand(1);
2111  if (Loc.getOpcode() == ISD::FrameIndex) {
2112    if (BaseLoc.getOpcode() != ISD::FrameIndex)
2113      return false;
2114    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
2115    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
2116    int FS  = MFI->getObjectSize(FI);
2117    int BFS = MFI->getObjectSize(BFI);
2118    if (FS != BFS || FS != (int)Bytes) return false;
2119    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
2120  }
2121  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
2122    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
2123    if (V && (V->getSExtValue() == Dist*Bytes))
2124      return true;
2125  }
2126
2127  GlobalValue *GV1 = NULL;
2128  GlobalValue *GV2 = NULL;
2129  int64_t Offset1 = 0;
2130  int64_t Offset2 = 0;
2131  bool isGA1 = isGAPlusOffset(Loc.getNode(), GV1, Offset1);
2132  bool isGA2 = isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
2133  if (isGA1 && isGA2 && GV1 == GV2)
2134    return Offset1 == (Offset2 + Dist*Bytes);
2135  return false;
2136}
2137
2138
2139SDValue TargetLowering::
2140PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2141  // Default implementation: no optimization.
2142  return SDValue();
2143}
2144
2145//===----------------------------------------------------------------------===//
2146//  Inline Assembler Implementation Methods
2147//===----------------------------------------------------------------------===//
2148
2149
2150TargetLowering::ConstraintType
2151TargetLowering::getConstraintType(const std::string &Constraint) const {
2152  // FIXME: lots more standard ones to handle.
2153  if (Constraint.size() == 1) {
2154    switch (Constraint[0]) {
2155    default: break;
2156    case 'r': return C_RegisterClass;
2157    case 'm':    // memory
2158    case 'o':    // offsetable
2159    case 'V':    // not offsetable
2160      return C_Memory;
2161    case 'i':    // Simple Integer or Relocatable Constant
2162    case 'n':    // Simple Integer
2163    case 's':    // Relocatable Constant
2164    case 'X':    // Allow ANY value.
2165    case 'I':    // Target registers.
2166    case 'J':
2167    case 'K':
2168    case 'L':
2169    case 'M':
2170    case 'N':
2171    case 'O':
2172    case 'P':
2173      return C_Other;
2174    }
2175  }
2176
2177  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2178      Constraint[Constraint.size()-1] == '}')
2179    return C_Register;
2180  return C_Unknown;
2181}
2182
2183/// LowerXConstraint - try to replace an X constraint, which matches anything,
2184/// with another that has more specific requirements based on the type of the
2185/// corresponding operand.
2186const char *TargetLowering::LowerXConstraint(MVT ConstraintVT) const{
2187  if (ConstraintVT.isInteger())
2188    return "r";
2189  if (ConstraintVT.isFloatingPoint())
2190    return "f";      // works for many targets
2191  return 0;
2192}
2193
2194/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2195/// vector.  If it is invalid, don't add anything to Ops.
2196void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2197                                                  char ConstraintLetter,
2198                                                  bool hasMemory,
2199                                                  std::vector<SDValue> &Ops,
2200                                                  SelectionDAG &DAG) const {
2201  switch (ConstraintLetter) {
2202  default: break;
2203  case 'X':     // Allows any operand; labels (basic block) use this.
2204    if (Op.getOpcode() == ISD::BasicBlock) {
2205      Ops.push_back(Op);
2206      return;
2207    }
2208    // fall through
2209  case 'i':    // Simple Integer or Relocatable Constant
2210  case 'n':    // Simple Integer
2211  case 's': {  // Relocatable Constant
2212    // These operands are interested in values of the form (GV+C), where C may
2213    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2214    // is possible and fine if either GV or C are missing.
2215    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2216    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2217
2218    // If we have "(add GV, C)", pull out GV/C
2219    if (Op.getOpcode() == ISD::ADD) {
2220      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2221      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2222      if (C == 0 || GA == 0) {
2223        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2224        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2225      }
2226      if (C == 0 || GA == 0)
2227        C = 0, GA = 0;
2228    }
2229
2230    // If we find a valid operand, map to the TargetXXX version so that the
2231    // value itself doesn't get selected.
2232    if (GA) {   // Either &GV   or   &GV+C
2233      if (ConstraintLetter != 'n') {
2234        int64_t Offs = GA->getOffset();
2235        if (C) Offs += C->getZExtValue();
2236        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2237                                                 Op.getValueType(), Offs));
2238        return;
2239      }
2240    }
2241    if (C) {   // just C, no GV.
2242      // Simple constants are not allowed for 's'.
2243      if (ConstraintLetter != 's') {
2244        // gcc prints these as sign extended.  Sign extend value to 64 bits
2245        // now; without this it would get ZExt'd later in
2246        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2247        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2248                                            MVT::i64));
2249        return;
2250      }
2251    }
2252    break;
2253  }
2254  }
2255}
2256
2257std::vector<unsigned> TargetLowering::
2258getRegClassForInlineAsmConstraint(const std::string &Constraint,
2259                                  MVT VT) const {
2260  return std::vector<unsigned>();
2261}
2262
2263
2264std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2265getRegForInlineAsmConstraint(const std::string &Constraint,
2266                             MVT VT) const {
2267  if (Constraint[0] != '{')
2268    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2269  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2270
2271  // Remove the braces from around the name.
2272  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
2273
2274  // Figure out which register class contains this reg.
2275  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2276  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2277       E = RI->regclass_end(); RCI != E; ++RCI) {
2278    const TargetRegisterClass *RC = *RCI;
2279
2280    // If none of the the value types for this register class are valid, we
2281    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2282    bool isLegal = false;
2283    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2284         I != E; ++I) {
2285      if (isTypeLegal(*I)) {
2286        isLegal = true;
2287        break;
2288      }
2289    }
2290
2291    if (!isLegal) continue;
2292
2293    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2294         I != E; ++I) {
2295      if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
2296        return std::make_pair(*I, RC);
2297    }
2298  }
2299
2300  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2301}
2302
2303//===----------------------------------------------------------------------===//
2304// Constraint Selection.
2305
2306/// isMatchingInputConstraint - Return true of this is an input operand that is
2307/// a matching constraint like "4".
2308bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2309  assert(!ConstraintCode.empty() && "No known constraint!");
2310  return isdigit(ConstraintCode[0]);
2311}
2312
2313/// getMatchedOperand - If this is an input matching constraint, this method
2314/// returns the output operand it matches.
2315unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2316  assert(!ConstraintCode.empty() && "No known constraint!");
2317  return atoi(ConstraintCode.c_str());
2318}
2319
2320
2321/// getConstraintGenerality - Return an integer indicating how general CT
2322/// is.
2323static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2324  switch (CT) {
2325  default: llvm_unreachable("Unknown constraint type!");
2326  case TargetLowering::C_Other:
2327  case TargetLowering::C_Unknown:
2328    return 0;
2329  case TargetLowering::C_Register:
2330    return 1;
2331  case TargetLowering::C_RegisterClass:
2332    return 2;
2333  case TargetLowering::C_Memory:
2334    return 3;
2335  }
2336}
2337
2338/// ChooseConstraint - If there are multiple different constraints that we
2339/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2340/// This is somewhat tricky: constraints fall into four classes:
2341///    Other         -> immediates and magic values
2342///    Register      -> one specific register
2343///    RegisterClass -> a group of regs
2344///    Memory        -> memory
2345/// Ideally, we would pick the most specific constraint possible: if we have
2346/// something that fits into a register, we would pick it.  The problem here
2347/// is that if we have something that could either be in a register or in
2348/// memory that use of the register could cause selection of *other*
2349/// operands to fail: they might only succeed if we pick memory.  Because of
2350/// this the heuristic we use is:
2351///
2352///  1) If there is an 'other' constraint, and if the operand is valid for
2353///     that constraint, use it.  This makes us take advantage of 'i'
2354///     constraints when available.
2355///  2) Otherwise, pick the most general constraint present.  This prefers
2356///     'm' over 'r', for example.
2357///
2358static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2359                             bool hasMemory,  const TargetLowering &TLI,
2360                             SDValue Op, SelectionDAG *DAG) {
2361  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2362  unsigned BestIdx = 0;
2363  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2364  int BestGenerality = -1;
2365
2366  // Loop over the options, keeping track of the most general one.
2367  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2368    TargetLowering::ConstraintType CType =
2369      TLI.getConstraintType(OpInfo.Codes[i]);
2370
2371    // If this is an 'other' constraint, see if the operand is valid for it.
2372    // For example, on X86 we might have an 'rI' constraint.  If the operand
2373    // is an integer in the range [0..31] we want to use I (saving a load
2374    // of a register), otherwise we must use 'r'.
2375    if (CType == TargetLowering::C_Other && Op.getNode()) {
2376      assert(OpInfo.Codes[i].size() == 1 &&
2377             "Unhandled multi-letter 'other' constraint");
2378      std::vector<SDValue> ResultOps;
2379      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
2380                                       ResultOps, *DAG);
2381      if (!ResultOps.empty()) {
2382        BestType = CType;
2383        BestIdx = i;
2384        break;
2385      }
2386    }
2387
2388    // This constraint letter is more general than the previous one, use it.
2389    int Generality = getConstraintGenerality(CType);
2390    if (Generality > BestGenerality) {
2391      BestType = CType;
2392      BestIdx = i;
2393      BestGenerality = Generality;
2394    }
2395  }
2396
2397  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2398  OpInfo.ConstraintType = BestType;
2399}
2400
2401/// ComputeConstraintToUse - Determines the constraint code and constraint
2402/// type to use for the specific AsmOperandInfo, setting
2403/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2404void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2405                                            SDValue Op,
2406                                            bool hasMemory,
2407                                            SelectionDAG *DAG) const {
2408  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2409
2410  // Single-letter constraints ('r') are very common.
2411  if (OpInfo.Codes.size() == 1) {
2412    OpInfo.ConstraintCode = OpInfo.Codes[0];
2413    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2414  } else {
2415    ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
2416  }
2417
2418  // 'X' matches anything.
2419  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2420    // Labels and constants are handled elsewhere ('X' is the only thing
2421    // that matches labels).  For Functions, the type here is the type of
2422    // the result, which is not what we want to look at; leave them alone.
2423    Value *v = OpInfo.CallOperandVal;
2424    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2425      OpInfo.CallOperandVal = v;
2426      return;
2427    }
2428
2429    // Otherwise, try to resolve it to something we know about by looking at
2430    // the actual operand type.
2431    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2432      OpInfo.ConstraintCode = Repl;
2433      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2434    }
2435  }
2436}
2437
2438//===----------------------------------------------------------------------===//
2439//  Loop Strength Reduction hooks
2440//===----------------------------------------------------------------------===//
2441
2442/// isLegalAddressingMode - Return true if the addressing mode represented
2443/// by AM is legal for this target, for a load/store of the specified type.
2444bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2445                                           const Type *Ty) const {
2446  // The default implementation of this implements a conservative RISCy, r+r and
2447  // r+i addr mode.
2448
2449  // Allows a sign-extended 16-bit immediate field.
2450  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2451    return false;
2452
2453  // No global is ever allowed as a base.
2454  if (AM.BaseGV)
2455    return false;
2456
2457  // Only support r+r,
2458  switch (AM.Scale) {
2459  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2460    break;
2461  case 1:
2462    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2463      return false;
2464    // Otherwise we have r+r or r+i.
2465    break;
2466  case 2:
2467    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2468      return false;
2469    // Allow 2*r as r+r.
2470    break;
2471  }
2472
2473  return true;
2474}
2475
2476/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2477/// return a DAG expression to select that will generate the same value by
2478/// multiplying by a magic number.  See:
2479/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2480SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2481                                  std::vector<SDNode*>* Created) const {
2482  MVT VT = N->getValueType(0);
2483  DebugLoc dl= N->getDebugLoc();
2484
2485  // Check to see if we can do this.
2486  // FIXME: We should be more aggressive here.
2487  if (!isTypeLegal(VT))
2488    return SDValue();
2489
2490  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2491  APInt::ms magics = d.magic();
2492
2493  // Multiply the numerator (operand 0) by the magic value
2494  // FIXME: We should support doing a MUL in a wider type
2495  SDValue Q;
2496  if (isOperationLegalOrCustom(ISD::MULHS, VT))
2497    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2498                    DAG.getConstant(magics.m, VT));
2499  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2500    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2501                              N->getOperand(0),
2502                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2503  else
2504    return SDValue();       // No mulhs or equvialent
2505  // If d > 0 and m < 0, add the numerator
2506  if (d.isStrictlyPositive() && magics.m.isNegative()) {
2507    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2508    if (Created)
2509      Created->push_back(Q.getNode());
2510  }
2511  // If d < 0 and m > 0, subtract the numerator.
2512  if (d.isNegative() && magics.m.isStrictlyPositive()) {
2513    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2514    if (Created)
2515      Created->push_back(Q.getNode());
2516  }
2517  // Shift right algebraic if shift value is nonzero
2518  if (magics.s > 0) {
2519    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2520                    DAG.getConstant(magics.s, getShiftAmountTy()));
2521    if (Created)
2522      Created->push_back(Q.getNode());
2523  }
2524  // Extract the sign bit and add it to the quotient
2525  SDValue T =
2526    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2527                                                 getShiftAmountTy()));
2528  if (Created)
2529    Created->push_back(T.getNode());
2530  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2531}
2532
2533/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2534/// return a DAG expression to select that will generate the same value by
2535/// multiplying by a magic number.  See:
2536/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2537SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2538                                  std::vector<SDNode*>* Created) const {
2539  MVT VT = N->getValueType(0);
2540  DebugLoc dl = N->getDebugLoc();
2541
2542  // Check to see if we can do this.
2543  // FIXME: We should be more aggressive here.
2544  if (!isTypeLegal(VT))
2545    return SDValue();
2546
2547  // FIXME: We should use a narrower constant when the upper
2548  // bits are known to be zero.
2549  ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
2550  APInt::mu magics = N1C->getAPIntValue().magicu();
2551
2552  // Multiply the numerator (operand 0) by the magic value
2553  // FIXME: We should support doing a MUL in a wider type
2554  SDValue Q;
2555  if (isOperationLegalOrCustom(ISD::MULHU, VT))
2556    Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
2557                    DAG.getConstant(magics.m, VT));
2558  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2559    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
2560                              N->getOperand(0),
2561                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2562  else
2563    return SDValue();       // No mulhu or equvialent
2564  if (Created)
2565    Created->push_back(Q.getNode());
2566
2567  if (magics.a == 0) {
2568    assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
2569           "We shouldn't generate an undefined shift!");
2570    return DAG.getNode(ISD::SRL, dl, VT, Q,
2571                       DAG.getConstant(magics.s, getShiftAmountTy()));
2572  } else {
2573    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2574    if (Created)
2575      Created->push_back(NPQ.getNode());
2576    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2577                      DAG.getConstant(1, getShiftAmountTy()));
2578    if (Created)
2579      Created->push_back(NPQ.getNode());
2580    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2581    if (Created)
2582      Created->push_back(NPQ.getNode());
2583    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2584                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2585  }
2586}
2587