TargetLowering.cpp revision 2dfdefd282a04785c4d7b43e37782ace65af2ba6
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/Target/TargetSubtarget.h"
16#include "llvm/Target/TargetData.h"
17#include "llvm/Target/TargetMachine.h"
18#include "llvm/Target/MRegisterInfo.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/Support/MathExtras.h"
24#include "llvm/Target/TargetAsmInfo.h"
25#include "llvm/CallingConv.h"
26using namespace llvm;
27
28/// InitLibcallNames - Set default libcall names.
29///
30static void InitLibcallNames(const char **Names) {
31  Names[RTLIB::SHL_I32] = "__ashlsi3";
32  Names[RTLIB::SHL_I64] = "__ashldi3";
33  Names[RTLIB::SRL_I32] = "__lshrsi3";
34  Names[RTLIB::SRL_I64] = "__lshrdi3";
35  Names[RTLIB::SRA_I32] = "__ashrsi3";
36  Names[RTLIB::SRA_I64] = "__ashrdi3";
37  Names[RTLIB::MUL_I32] = "__mulsi3";
38  Names[RTLIB::MUL_I64] = "__muldi3";
39  Names[RTLIB::SDIV_I32] = "__divsi3";
40  Names[RTLIB::SDIV_I64] = "__divdi3";
41  Names[RTLIB::UDIV_I32] = "__udivsi3";
42  Names[RTLIB::UDIV_I64] = "__udivdi3";
43  Names[RTLIB::SREM_I32] = "__modsi3";
44  Names[RTLIB::SREM_I64] = "__moddi3";
45  Names[RTLIB::UREM_I32] = "__umodsi3";
46  Names[RTLIB::UREM_I64] = "__umoddi3";
47  Names[RTLIB::NEG_I32] = "__negsi2";
48  Names[RTLIB::NEG_I64] = "__negdi2";
49  Names[RTLIB::ADD_F32] = "__addsf3";
50  Names[RTLIB::ADD_F64] = "__adddf3";
51  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
52  Names[RTLIB::SUB_F32] = "__subsf3";
53  Names[RTLIB::SUB_F64] = "__subdf3";
54  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
55  Names[RTLIB::MUL_F32] = "__mulsf3";
56  Names[RTLIB::MUL_F64] = "__muldf3";
57  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
58  Names[RTLIB::DIV_F32] = "__divsf3";
59  Names[RTLIB::DIV_F64] = "__divdf3";
60  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
61  Names[RTLIB::REM_F32] = "fmodf";
62  Names[RTLIB::REM_F64] = "fmod";
63  Names[RTLIB::REM_PPCF128] = "fmodl";
64  Names[RTLIB::NEG_F32] = "__negsf2";
65  Names[RTLIB::NEG_F64] = "__negdf2";
66  Names[RTLIB::POWI_F32] = "__powisf2";
67  Names[RTLIB::POWI_F64] = "__powidf2";
68  Names[RTLIB::POWI_F80] = "__powixf2";
69  Names[RTLIB::POWI_PPCF128] = "__powitf2";
70  Names[RTLIB::SQRT_F32] = "sqrtf";
71  Names[RTLIB::SQRT_F64] = "sqrt";
72  Names[RTLIB::SQRT_F80] = "sqrtl";
73  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
74  Names[RTLIB::SIN_F32] = "sinf";
75  Names[RTLIB::SIN_F64] = "sin";
76  Names[RTLIB::COS_F32] = "cosf";
77  Names[RTLIB::COS_F64] = "cos";
78  Names[RTLIB::POW_F32] = "powf";
79  Names[RTLIB::POW_F64] = "pow";
80  Names[RTLIB::POW_F80] = "powl";
81  Names[RTLIB::POW_PPCF128] = "powl";
82  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
83  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
84  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
85  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
86  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
87  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
88  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
89  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
90  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
91  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
92  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
93  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
94  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
95  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
96  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
97  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
98  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
99  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
100  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
101  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
102  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
103  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
104  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
105  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
106  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
107  Names[RTLIB::OEQ_F32] = "__eqsf2";
108  Names[RTLIB::OEQ_F64] = "__eqdf2";
109  Names[RTLIB::UNE_F32] = "__nesf2";
110  Names[RTLIB::UNE_F64] = "__nedf2";
111  Names[RTLIB::OGE_F32] = "__gesf2";
112  Names[RTLIB::OGE_F64] = "__gedf2";
113  Names[RTLIB::OLT_F32] = "__ltsf2";
114  Names[RTLIB::OLT_F64] = "__ltdf2";
115  Names[RTLIB::OLE_F32] = "__lesf2";
116  Names[RTLIB::OLE_F64] = "__ledf2";
117  Names[RTLIB::OGT_F32] = "__gtsf2";
118  Names[RTLIB::OGT_F64] = "__gtdf2";
119  Names[RTLIB::UO_F32] = "__unordsf2";
120  Names[RTLIB::UO_F64] = "__unorddf2";
121  Names[RTLIB::O_F32] = "__unordsf2";
122  Names[RTLIB::O_F64] = "__unorddf2";
123}
124
125/// InitCmpLibcallCCs - Set default comparison libcall CC.
126///
127static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
128  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
129  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
130  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
131  CCs[RTLIB::UNE_F32] = ISD::SETNE;
132  CCs[RTLIB::UNE_F64] = ISD::SETNE;
133  CCs[RTLIB::OGE_F32] = ISD::SETGE;
134  CCs[RTLIB::OGE_F64] = ISD::SETGE;
135  CCs[RTLIB::OLT_F32] = ISD::SETLT;
136  CCs[RTLIB::OLT_F64] = ISD::SETLT;
137  CCs[RTLIB::OLE_F32] = ISD::SETLE;
138  CCs[RTLIB::OLE_F64] = ISD::SETLE;
139  CCs[RTLIB::OGT_F32] = ISD::SETGT;
140  CCs[RTLIB::OGT_F64] = ISD::SETGT;
141  CCs[RTLIB::UO_F32] = ISD::SETNE;
142  CCs[RTLIB::UO_F64] = ISD::SETNE;
143  CCs[RTLIB::O_F32] = ISD::SETEQ;
144  CCs[RTLIB::O_F64] = ISD::SETEQ;
145}
146
147TargetLowering::TargetLowering(TargetMachine &tm)
148  : TM(tm), TD(TM.getTargetData()) {
149  assert(ISD::BUILTIN_OP_END <= 156 &&
150         "Fixed size array in TargetLowering is not large enough!");
151  // All operations default to being supported.
152  memset(OpActions, 0, sizeof(OpActions));
153  memset(LoadXActions, 0, sizeof(LoadXActions));
154  memset(&StoreXActions, 0, sizeof(StoreXActions));
155  memset(&IndexedModeActions, 0, sizeof(IndexedModeActions));
156  memset(&ConvertActions, 0, sizeof(ConvertActions));
157
158  // Set all indexed load / store to expand.
159  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
160    for (unsigned IM = (unsigned)ISD::PRE_INC;
161         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
162      setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand);
163      setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand);
164    }
165  }
166
167  IsLittleEndian = TD->isLittleEndian();
168  UsesGlobalOffsetTable = false;
169  ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType());
170  ShiftAmtHandling = Undefined;
171  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
172  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
173  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
174  allowUnalignedMemoryAccesses = false;
175  UseUnderscoreSetJmp = false;
176  UseUnderscoreLongJmp = false;
177  SelectIsExpensive = false;
178  IntDivIsCheap = false;
179  Pow2DivIsCheap = false;
180  StackPointerRegisterToSaveRestore = 0;
181  ExceptionPointerRegister = 0;
182  ExceptionSelectorRegister = 0;
183  SetCCResultContents = UndefinedSetCCResult;
184  SchedPreferenceInfo = SchedulingForLatency;
185  JumpBufSize = 0;
186  JumpBufAlignment = 0;
187  IfCvtBlockSizeLimit = 2;
188
189  InitLibcallNames(LibcallRoutineNames);
190  InitCmpLibcallCCs(CmpLibcallCCs);
191
192  // Tell Legalize whether the assembler supports DEBUG_LOC.
193  if (!TM.getTargetAsmInfo()->hasDotLocAndDotFile())
194    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
195}
196
197TargetLowering::~TargetLowering() {}
198
199
200SDOperand TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
201  assert(getSubtarget() && "Subtarget not defined");
202  SDOperand ChainOp = Op.getOperand(0);
203  SDOperand DestOp = Op.getOperand(1);
204  SDOperand SourceOp = Op.getOperand(2);
205  SDOperand CountOp = Op.getOperand(3);
206  SDOperand AlignOp = Op.getOperand(4);
207  SDOperand AlwaysInlineOp = Op.getOperand(5);
208
209  bool AlwaysInline = (bool)cast<ConstantSDNode>(AlwaysInlineOp)->getValue();
210  unsigned Align = (unsigned)cast<ConstantSDNode>(AlignOp)->getValue();
211  if (Align == 0) Align = 1;
212
213  // If size is unknown, call memcpy.
214  ConstantSDNode *I = dyn_cast<ConstantSDNode>(CountOp);
215  if (!I) {
216    assert(!AlwaysInline && "Cannot inline copy of unknown size");
217    return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
218  }
219
220  // If not DWORD aligned or if size is more than threshold, then call memcpy.
221  // The libc version is likely to be faster for the following cases. It can
222  // use the address value and run time information about the CPU.
223  // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster
224  unsigned Size = I->getValue();
225  if (AlwaysInline ||
226      (Size <= getSubtarget()->getMaxInlineSizeThreshold() &&
227       (Align & 3) == 0))
228    return LowerMEMCPYInline(ChainOp, DestOp, SourceOp, Size, Align, DAG);
229  return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
230}
231
232
233SDOperand TargetLowering::LowerMEMCPYCall(SDOperand Chain,
234                                          SDOperand Dest,
235                                          SDOperand Source,
236                                          SDOperand Count,
237                                          SelectionDAG &DAG) {
238  MVT::ValueType IntPtr = getPointerTy();
239  TargetLowering::ArgListTy Args;
240  TargetLowering::ArgListEntry Entry;
241  Entry.Ty = getTargetData()->getIntPtrType();
242  Entry.Node = Dest; Args.push_back(Entry);
243  Entry.Node = Source; Args.push_back(Entry);
244  Entry.Node = Count; Args.push_back(Entry);
245  std::pair<SDOperand,SDOperand> CallResult =
246      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
247                  DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
248  return CallResult.second;
249}
250
251
252/// computeRegisterProperties - Once all of the register classes are added,
253/// this allows us to compute derived properties we expose.
254void TargetLowering::computeRegisterProperties() {
255  assert(MVT::LAST_VALUETYPE <= 32 &&
256         "Too many value types for ValueTypeActions to hold!");
257
258  // Everything defaults to needing one register.
259  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
260    NumRegistersForVT[i] = 1;
261    RegisterTypeForVT[i] = TransformToType[i] = i;
262  }
263  // ...except isVoid, which doesn't need any registers.
264  NumRegistersForVT[MVT::isVoid] = 0;
265
266  // Find the largest integer register class.
267  unsigned LargestIntReg = MVT::i128;
268  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
269    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
270
271  // Every integer value type larger than this largest register takes twice as
272  // many registers to represent as the previous ValueType.
273  for (MVT::ValueType ExpandedReg = LargestIntReg + 1;
274       MVT::isInteger(ExpandedReg); ++ExpandedReg) {
275    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
276    RegisterTypeForVT[ExpandedReg] = LargestIntReg;
277    TransformToType[ExpandedReg] = ExpandedReg - 1;
278    ValueTypeActions.setTypeAction(ExpandedReg, Expand);
279  }
280
281  // Inspect all of the ValueType's smaller than the largest integer
282  // register to see which ones need promotion.
283  MVT::ValueType LegalIntReg = LargestIntReg;
284  for (MVT::ValueType IntReg = LargestIntReg - 1;
285       IntReg >= MVT::i1; --IntReg) {
286    if (isTypeLegal(IntReg)) {
287      LegalIntReg = IntReg;
288    } else {
289      RegisterTypeForVT[IntReg] = TransformToType[IntReg] = LegalIntReg;
290      ValueTypeActions.setTypeAction(IntReg, Promote);
291    }
292  }
293
294  // ppcf128 type is really two f64's.
295  if (!isTypeLegal(MVT::ppcf128)) {
296    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
297    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
298    TransformToType[MVT::ppcf128] = MVT::f64;
299    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
300  }
301
302  // Decide how to handle f64. If the target does not have native f64 support,
303  // expand it to i64 and we will be generating soft float library calls.
304  if (!isTypeLegal(MVT::f64)) {
305    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
306    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
307    TransformToType[MVT::f64] = MVT::i64;
308    ValueTypeActions.setTypeAction(MVT::f64, Expand);
309  }
310
311  // Decide how to handle f32. If the target does not have native support for
312  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
313  if (!isTypeLegal(MVT::f32)) {
314    if (isTypeLegal(MVT::f64)) {
315      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
316      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
317      TransformToType[MVT::f32] = MVT::f64;
318      ValueTypeActions.setTypeAction(MVT::f32, Promote);
319    } else {
320      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
321      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
322      TransformToType[MVT::f32] = MVT::i32;
323      ValueTypeActions.setTypeAction(MVT::f32, Expand);
324    }
325  }
326
327  // Loop over all of the vector value types to see which need transformations.
328  for (MVT::ValueType i = MVT::FIRST_VECTOR_VALUETYPE;
329       i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
330    if (!isTypeLegal(i)) {
331      MVT::ValueType IntermediateVT, RegisterVT;
332      unsigned NumIntermediates;
333      NumRegistersForVT[i] =
334        getVectorTypeBreakdown(i,
335                               IntermediateVT, NumIntermediates,
336                               RegisterVT);
337      RegisterTypeForVT[i] = RegisterVT;
338      TransformToType[i] = MVT::Other; // this isn't actually used
339      ValueTypeActions.setTypeAction(i, Expand);
340    }
341  }
342}
343
344const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
345  return NULL;
346}
347
348/// getVectorTypeBreakdown - Vector types are broken down into some number of
349/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
350/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
351/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
352///
353/// This method returns the number of registers needed, and the VT for each
354/// register.  It also returns the VT and quantity of the intermediate values
355/// before they are promoted/expanded.
356///
357unsigned TargetLowering::getVectorTypeBreakdown(MVT::ValueType VT,
358                                                MVT::ValueType &IntermediateVT,
359                                                unsigned &NumIntermediates,
360                                      MVT::ValueType &RegisterVT) const {
361  // Figure out the right, legal destination reg to copy into.
362  unsigned NumElts = MVT::getVectorNumElements(VT);
363  MVT::ValueType EltTy = MVT::getVectorElementType(VT);
364
365  unsigned NumVectorRegs = 1;
366
367  // Divide the input until we get to a supported size.  This will always
368  // end with a scalar if the target doesn't support vectors.
369  while (NumElts > 1 &&
370         !isTypeLegal(MVT::getVectorType(EltTy, NumElts))) {
371    NumElts >>= 1;
372    NumVectorRegs <<= 1;
373  }
374
375  NumIntermediates = NumVectorRegs;
376
377  MVT::ValueType NewVT = MVT::getVectorType(EltTy, NumElts);
378  if (!isTypeLegal(NewVT))
379    NewVT = EltTy;
380  IntermediateVT = NewVT;
381
382  MVT::ValueType DestVT = getTypeToTransformTo(NewVT);
383  RegisterVT = DestVT;
384  if (DestVT < NewVT) {
385    // Value is expanded, e.g. i64 -> i16.
386    return NumVectorRegs*(MVT::getSizeInBits(NewVT)/MVT::getSizeInBits(DestVT));
387  } else {
388    // Otherwise, promotion or legal types use the same number of registers as
389    // the vector decimated to the appropriate level.
390    return NumVectorRegs;
391  }
392
393  return 1;
394}
395
396//===----------------------------------------------------------------------===//
397//  Optimization Methods
398//===----------------------------------------------------------------------===//
399
400/// ShrinkDemandedConstant - Check to see if the specified operand of the
401/// specified instruction is a constant integer.  If so, check to see if there
402/// are any bits set in the constant that are not demanded.  If so, shrink the
403/// constant and return true.
404bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
405                                                            uint64_t Demanded) {
406  // FIXME: ISD::SELECT, ISD::SELECT_CC
407  switch(Op.getOpcode()) {
408  default: break;
409  case ISD::AND:
410  case ISD::OR:
411  case ISD::XOR:
412    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
413      if ((~Demanded & C->getValue()) != 0) {
414        MVT::ValueType VT = Op.getValueType();
415        SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
416                                    DAG.getConstant(Demanded & C->getValue(),
417                                                    VT));
418        return CombineTo(Op, New);
419      }
420    break;
421  }
422  return false;
423}
424
425/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
426/// DemandedMask bits of the result of Op are ever used downstream.  If we can
427/// use this information to simplify Op, create a new simplified DAG node and
428/// return true, returning the original and new nodes in Old and New. Otherwise,
429/// analyze the expression and return a mask of KnownOne and KnownZero bits for
430/// the expression (used to simplify the caller).  The KnownZero/One bits may
431/// only be accurate for those bits in the DemandedMask.
432bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
433                                          uint64_t &KnownZero,
434                                          uint64_t &KnownOne,
435                                          TargetLoweringOpt &TLO,
436                                          unsigned Depth) const {
437  KnownZero = KnownOne = 0;   // Don't know anything.
438
439  // The masks are not wide enough to represent this type!  Should use APInt.
440  if (Op.getValueType() == MVT::i128)
441    return false;
442
443  // Other users may use these bits.
444  if (!Op.Val->hasOneUse()) {
445    if (Depth != 0) {
446      // If not at the root, Just compute the KnownZero/KnownOne bits to
447      // simplify things downstream.
448      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
449      return false;
450    }
451    // If this is the root being simplified, allow it to have multiple uses,
452    // just set the DemandedMask to all bits.
453    DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
454  } else if (DemandedMask == 0) {
455    // Not demanding any bits from Op.
456    if (Op.getOpcode() != ISD::UNDEF)
457      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
458    return false;
459  } else if (Depth == 6) {        // Limit search depth.
460    return false;
461  }
462
463  uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
464  switch (Op.getOpcode()) {
465  case ISD::Constant:
466    // We know all of the bits for a constant!
467    KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
468    KnownZero = ~KnownOne & DemandedMask;
469    return false;   // Don't fall through, will infinitely loop.
470  case ISD::AND:
471    // If the RHS is a constant, check to see if the LHS would be zero without
472    // using the bits from the RHS.  Below, we use knowledge about the RHS to
473    // simplify the LHS, here we're using information from the LHS to simplify
474    // the RHS.
475    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
476      uint64_t LHSZero, LHSOne;
477      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), DemandedMask,
478                                LHSZero, LHSOne, Depth+1);
479      // If the LHS already has zeros where RHSC does, this and is dead.
480      if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
481        return TLO.CombineTo(Op, Op.getOperand(0));
482      // If any of the set bits in the RHS are known zero on the LHS, shrink
483      // the constant.
484      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask))
485        return true;
486    }
487
488    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
489                             KnownOne, TLO, Depth+1))
490      return true;
491    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
492    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
493                             KnownZero2, KnownOne2, TLO, Depth+1))
494      return true;
495    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
496
497    // If all of the demanded bits are known one on one side, return the other.
498    // These bits cannot contribute to the result of the 'and'.
499    if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
500      return TLO.CombineTo(Op, Op.getOperand(0));
501    if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
502      return TLO.CombineTo(Op, Op.getOperand(1));
503    // If all of the demanded bits in the inputs are known zeros, return zero.
504    if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
505      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
506    // If the RHS is a constant, see if we can simplify it.
507    if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
508      return true;
509
510    // Output known-1 bits are only known if set in both the LHS & RHS.
511    KnownOne &= KnownOne2;
512    // Output known-0 are known to be clear if zero in either the LHS | RHS.
513    KnownZero |= KnownZero2;
514    break;
515  case ISD::OR:
516    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
517                             KnownOne, TLO, Depth+1))
518      return true;
519    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
520    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne,
521                             KnownZero2, KnownOne2, TLO, Depth+1))
522      return true;
523    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
524
525    // If all of the demanded bits are known zero on one side, return the other.
526    // These bits cannot contribute to the result of the 'or'.
527    if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
528      return TLO.CombineTo(Op, Op.getOperand(0));
529    if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
530      return TLO.CombineTo(Op, Op.getOperand(1));
531    // If all of the potentially set bits on one side are known to be set on
532    // the other side, just use the 'other' side.
533    if ((DemandedMask & (~KnownZero) & KnownOne2) ==
534        (DemandedMask & (~KnownZero)))
535      return TLO.CombineTo(Op, Op.getOperand(0));
536    if ((DemandedMask & (~KnownZero2) & KnownOne) ==
537        (DemandedMask & (~KnownZero2)))
538      return TLO.CombineTo(Op, Op.getOperand(1));
539    // If the RHS is a constant, see if we can simplify it.
540    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
541      return true;
542
543    // Output known-0 bits are only known if clear in both the LHS & RHS.
544    KnownZero &= KnownZero2;
545    // Output known-1 are known to be set if set in either the LHS | RHS.
546    KnownOne |= KnownOne2;
547    break;
548  case ISD::XOR:
549    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
550                             KnownOne, TLO, Depth+1))
551      return true;
552    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
553    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
554                             KnownOne2, TLO, Depth+1))
555      return true;
556    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
557
558    // If all of the demanded bits are known zero on one side, return the other.
559    // These bits cannot contribute to the result of the 'xor'.
560    if ((DemandedMask & KnownZero) == DemandedMask)
561      return TLO.CombineTo(Op, Op.getOperand(0));
562    if ((DemandedMask & KnownZero2) == DemandedMask)
563      return TLO.CombineTo(Op, Op.getOperand(1));
564
565    // If all of the unknown bits are known to be zero on one side or the other
566    // (but not both) turn this into an *inclusive* or.
567    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
568    if ((DemandedMask & ~KnownZero & ~KnownZero2) == 0)
569      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
570                                               Op.getOperand(0),
571                                               Op.getOperand(1)));
572
573    // Output known-0 bits are known if clear or set in both the LHS & RHS.
574    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
575    // Output known-1 are known to be set if set in only one of the LHS, RHS.
576    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
577
578    // If all of the demanded bits on one side are known, and all of the set
579    // bits on that side are also known to be set on the other side, turn this
580    // into an AND, as we know the bits will be cleared.
581    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
582    if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
583      if ((KnownOne & KnownOne2) == KnownOne) {
584        MVT::ValueType VT = Op.getValueType();
585        SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
586        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
587                                                 ANDC));
588      }
589    }
590
591    // If the RHS is a constant, see if we can simplify it.
592    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
593    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
594      return true;
595
596    KnownZero = KnownZeroOut;
597    KnownOne  = KnownOneOut;
598    break;
599  case ISD::SETCC:
600    // If we know the result of a setcc has the top bits zero, use this info.
601    if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
602      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
603    break;
604  case ISD::SELECT:
605    if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero,
606                             KnownOne, TLO, Depth+1))
607      return true;
608    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
609                             KnownOne2, TLO, Depth+1))
610      return true;
611    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
612    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
613
614    // If the operands are constants, see if we can simplify them.
615    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
616      return true;
617
618    // Only known if known in both the LHS and RHS.
619    KnownOne &= KnownOne2;
620    KnownZero &= KnownZero2;
621    break;
622  case ISD::SELECT_CC:
623    if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero,
624                             KnownOne, TLO, Depth+1))
625      return true;
626    if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2,
627                             KnownOne2, TLO, Depth+1))
628      return true;
629    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
630    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
631
632    // If the operands are constants, see if we can simplify them.
633    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
634      return true;
635
636    // Only known if known in both the LHS and RHS.
637    KnownOne &= KnownOne2;
638    KnownZero &= KnownZero2;
639    break;
640  case ISD::SHL:
641    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
642      unsigned ShAmt = SA->getValue();
643      SDOperand InOp = Op.getOperand(0);
644
645      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
646      // single shift.  We can do this if the bottom bits (which are shifted
647      // out) are never demanded.
648      if (InOp.getOpcode() == ISD::SRL &&
649          isa<ConstantSDNode>(InOp.getOperand(1))) {
650        if (ShAmt && (DemandedMask & ((1ULL << ShAmt)-1)) == 0) {
651          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
652          unsigned Opc = ISD::SHL;
653          int Diff = ShAmt-C1;
654          if (Diff < 0) {
655            Diff = -Diff;
656            Opc = ISD::SRL;
657          }
658
659          SDOperand NewSA =
660            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
661          MVT::ValueType VT = Op.getValueType();
662          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
663                                                   InOp.getOperand(0), NewSA));
664        }
665      }
666
667      if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> ShAmt,
668                               KnownZero, KnownOne, TLO, Depth+1))
669        return true;
670      KnownZero <<= SA->getValue();
671      KnownOne  <<= SA->getValue();
672      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
673    }
674    break;
675  case ISD::SRL:
676    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
677      MVT::ValueType VT = Op.getValueType();
678      unsigned ShAmt = SA->getValue();
679      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
680      unsigned VTSize = MVT::getSizeInBits(VT);
681      SDOperand InOp = Op.getOperand(0);
682
683      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
684      // single shift.  We can do this if the top bits (which are shifted out)
685      // are never demanded.
686      if (InOp.getOpcode() == ISD::SHL &&
687          isa<ConstantSDNode>(InOp.getOperand(1))) {
688        if (ShAmt && (DemandedMask & (~0ULL << (VTSize-ShAmt))) == 0) {
689          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
690          unsigned Opc = ISD::SRL;
691          int Diff = ShAmt-C1;
692          if (Diff < 0) {
693            Diff = -Diff;
694            Opc = ISD::SHL;
695          }
696
697          SDOperand NewSA =
698            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
699          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
700                                                   InOp.getOperand(0), NewSA));
701        }
702      }
703
704      // Compute the new bits that are at the top now.
705      if (SimplifyDemandedBits(InOp, (DemandedMask << ShAmt) & TypeMask,
706                               KnownZero, KnownOne, TLO, Depth+1))
707        return true;
708      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
709      KnownZero &= TypeMask;
710      KnownOne  &= TypeMask;
711      KnownZero >>= ShAmt;
712      KnownOne  >>= ShAmt;
713
714      uint64_t HighBits = (1ULL << ShAmt)-1;
715      HighBits <<= VTSize - ShAmt;
716      KnownZero |= HighBits;  // High bits known zero.
717    }
718    break;
719  case ISD::SRA:
720    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
721      MVT::ValueType VT = Op.getValueType();
722      unsigned ShAmt = SA->getValue();
723
724      // Compute the new bits that are at the top now.
725      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
726
727      uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask;
728
729      // If any of the demanded bits are produced by the sign extension, we also
730      // demand the input sign bit.
731      uint64_t HighBits = (1ULL << ShAmt)-1;
732      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
733      if (HighBits & DemandedMask)
734        InDemandedMask |= MVT::getIntVTSignBit(VT);
735
736      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
737                               KnownZero, KnownOne, TLO, Depth+1))
738        return true;
739      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
740      KnownZero &= TypeMask;
741      KnownOne  &= TypeMask;
742      KnownZero >>= ShAmt;
743      KnownOne  >>= ShAmt;
744
745      // Handle the sign bits.
746      uint64_t SignBit = MVT::getIntVTSignBit(VT);
747      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
748
749      // If the input sign bit is known to be zero, or if none of the top bits
750      // are demanded, turn this into an unsigned shift right.
751      if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
752        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
753                                                 Op.getOperand(1)));
754      } else if (KnownOne & SignBit) { // New bits are known one.
755        KnownOne |= HighBits;
756      }
757    }
758    break;
759  case ISD::SIGN_EXTEND_INREG: {
760    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
761
762    // Sign extension.  Compute the demanded bits in the result that are not
763    // present in the input.
764    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask;
765
766    // If none of the extended bits are demanded, eliminate the sextinreg.
767    if (NewBits == 0)
768      return TLO.CombineTo(Op, Op.getOperand(0));
769
770    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
771    int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
772
773    // Since the sign extended bits are demanded, we know that the sign
774    // bit is demanded.
775    InputDemandedBits |= InSignBit;
776
777    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
778                             KnownZero, KnownOne, TLO, Depth+1))
779      return true;
780    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
781
782    // If the sign bit of the input is known set or clear, then we know the
783    // top bits of the result.
784
785    // If the input sign bit is known zero, convert this into a zero extension.
786    if (KnownZero & InSignBit)
787      return TLO.CombineTo(Op,
788                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
789
790    if (KnownOne & InSignBit) {    // Input sign bit known set
791      KnownOne |= NewBits;
792      KnownZero &= ~NewBits;
793    } else {                       // Input sign bit unknown
794      KnownZero &= ~NewBits;
795      KnownOne &= ~NewBits;
796    }
797    break;
798  }
799  case ISD::CTTZ:
800  case ISD::CTLZ:
801  case ISD::CTPOP: {
802    MVT::ValueType VT = Op.getValueType();
803    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
804    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
805    KnownOne  = 0;
806    break;
807  }
808  case ISD::LOAD: {
809    if (ISD::isZEXTLoad(Op.Val)) {
810      LoadSDNode *LD = cast<LoadSDNode>(Op);
811      MVT::ValueType VT = LD->getLoadedVT();
812      KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
813    }
814    break;
815  }
816  case ISD::ZERO_EXTEND: {
817    uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
818
819    // If none of the top bits are demanded, convert this into an any_extend.
820    uint64_t NewBits = (~InMask) & DemandedMask;
821    if (NewBits == 0)
822      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
823                                               Op.getValueType(),
824                                               Op.getOperand(0)));
825
826    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
827                             KnownZero, KnownOne, TLO, Depth+1))
828      return true;
829    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
830    KnownZero |= NewBits;
831    break;
832  }
833  case ISD::SIGN_EXTEND: {
834    MVT::ValueType InVT = Op.getOperand(0).getValueType();
835    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
836    uint64_t InSignBit = MVT::getIntVTSignBit(InVT);
837    uint64_t NewBits   = (~InMask) & DemandedMask;
838
839    // If none of the top bits are demanded, convert this into an any_extend.
840    if (NewBits == 0)
841      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
842                                           Op.getOperand(0)));
843
844    // Since some of the sign extended bits are demanded, we know that the sign
845    // bit is demanded.
846    uint64_t InDemandedBits = DemandedMask & InMask;
847    InDemandedBits |= InSignBit;
848
849    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
850                             KnownOne, TLO, Depth+1))
851      return true;
852
853    // If the sign bit is known zero, convert this to a zero extend.
854    if (KnownZero & InSignBit)
855      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
856                                               Op.getValueType(),
857                                               Op.getOperand(0)));
858
859    // If the sign bit is known one, the top bits match.
860    if (KnownOne & InSignBit) {
861      KnownOne  |= NewBits;
862      KnownZero &= ~NewBits;
863    } else {   // Otherwise, top bits aren't known.
864      KnownOne  &= ~NewBits;
865      KnownZero &= ~NewBits;
866    }
867    break;
868  }
869  case ISD::ANY_EXTEND: {
870    uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
871    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
872                             KnownZero, KnownOne, TLO, Depth+1))
873      return true;
874    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
875    break;
876  }
877  case ISD::TRUNCATE: {
878    // Simplify the input, using demanded bit information, and compute the known
879    // zero/one bits live out.
880    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask,
881                             KnownZero, KnownOne, TLO, Depth+1))
882      return true;
883
884    // If the input is only used by this truncate, see if we can shrink it based
885    // on the known demanded bits.
886    if (Op.getOperand(0).Val->hasOneUse()) {
887      SDOperand In = Op.getOperand(0);
888      switch (In.getOpcode()) {
889      default: break;
890      case ISD::SRL:
891        // Shrink SRL by a constant if none of the high bits shifted in are
892        // demanded.
893        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
894          uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType());
895          HighBits &= ~MVT::getIntVTBitMask(Op.getValueType());
896          HighBits >>= ShAmt->getValue();
897
898          if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) &&
899              (DemandedMask & HighBits) == 0) {
900            // None of the shifted in bits are needed.  Add a truncate of the
901            // shift input, then shift it.
902            SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
903                                                 Op.getValueType(),
904                                                 In.getOperand(0));
905            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
906                                                   NewTrunc, In.getOperand(1)));
907          }
908        }
909        break;
910      }
911    }
912
913    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
914    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
915    KnownZero &= OutMask;
916    KnownOne &= OutMask;
917    break;
918  }
919  case ISD::AssertZext: {
920    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
921    uint64_t InMask = MVT::getIntVTBitMask(VT);
922    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
923                             KnownZero, KnownOne, TLO, Depth+1))
924      return true;
925    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
926    KnownZero |= ~InMask & DemandedMask;
927    break;
928  }
929  case ISD::ADD:
930  case ISD::SUB:
931  case ISD::INTRINSIC_WO_CHAIN:
932  case ISD::INTRINSIC_W_CHAIN:
933  case ISD::INTRINSIC_VOID:
934    // Just use ComputeMaskedBits to compute output bits.
935    TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
936    break;
937  }
938
939  // If we know the value of all of the demanded bits, return this as a
940  // constant.
941  if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
942    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
943
944  return false;
945}
946
947/// computeMaskedBitsForTargetNode - Determine which of the bits specified
948/// in Mask are known to be either zero or one and return them in the
949/// KnownZero/KnownOne bitsets.
950void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
951                                                    uint64_t Mask,
952                                                    uint64_t &KnownZero,
953                                                    uint64_t &KnownOne,
954                                                    const SelectionDAG &DAG,
955                                                    unsigned Depth) const {
956  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
957          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
958          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
959          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
960         "Should use MaskedValueIsZero if you don't know whether Op"
961         " is a target node!");
962  KnownZero = 0;
963  KnownOne = 0;
964}
965
966/// ComputeNumSignBitsForTargetNode - This method can be implemented by
967/// targets that want to expose additional information about sign bits to the
968/// DAG Combiner.
969unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
970                                                         unsigned Depth) const {
971  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
972          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
973          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
974          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
975         "Should use ComputeNumSignBits if you don't know whether Op"
976         " is a target node!");
977  return 1;
978}
979
980
981/// SimplifySetCC - Try to simplify a setcc built with the specified operands
982/// and cc. If it is unable to simplify it, return a null SDOperand.
983SDOperand
984TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
985                              ISD::CondCode Cond, bool foldBooleans,
986                              DAGCombinerInfo &DCI) const {
987  SelectionDAG &DAG = DCI.DAG;
988
989  // These setcc operations always fold.
990  switch (Cond) {
991  default: break;
992  case ISD::SETFALSE:
993  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
994  case ISD::SETTRUE:
995  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
996  }
997
998  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
999    uint64_t C1 = N1C->getValue();
1000    if (isa<ConstantSDNode>(N0.Val)) {
1001      return DAG.FoldSetCC(VT, N0, N1, Cond);
1002    } else {
1003      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1004      // equality comparison, then we're just comparing whether X itself is
1005      // zero.
1006      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1007          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1008          N0.getOperand(1).getOpcode() == ISD::Constant) {
1009        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1010        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1011            ShAmt == Log2_32(MVT::getSizeInBits(N0.getValueType()))) {
1012          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1013            // (srl (ctlz x), 5) == 0  -> X != 0
1014            // (srl (ctlz x), 5) != 1  -> X != 0
1015            Cond = ISD::SETNE;
1016          } else {
1017            // (srl (ctlz x), 5) != 0  -> X == 0
1018            // (srl (ctlz x), 5) == 1  -> X == 0
1019            Cond = ISD::SETEQ;
1020          }
1021          SDOperand Zero = DAG.getConstant(0, N0.getValueType());
1022          return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
1023                              Zero, Cond);
1024        }
1025      }
1026
1027      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1028      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1029        unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType());
1030
1031        // If the comparison constant has bits in the upper part, the
1032        // zero-extended value could never match.
1033        if (C1 & (~0ULL << InSize)) {
1034          unsigned VSize = MVT::getSizeInBits(N0.getValueType());
1035          switch (Cond) {
1036          case ISD::SETUGT:
1037          case ISD::SETUGE:
1038          case ISD::SETEQ: return DAG.getConstant(0, VT);
1039          case ISD::SETULT:
1040          case ISD::SETULE:
1041          case ISD::SETNE: return DAG.getConstant(1, VT);
1042          case ISD::SETGT:
1043          case ISD::SETGE:
1044            // True if the sign bit of C1 is set.
1045            return DAG.getConstant((C1 & (1ULL << (VSize-1))) != 0, VT);
1046          case ISD::SETLT:
1047          case ISD::SETLE:
1048            // True if the sign bit of C1 isn't set.
1049            return DAG.getConstant((C1 & (1ULL << (VSize-1))) == 0, VT);
1050          default:
1051            break;
1052          }
1053        }
1054
1055        // Otherwise, we can perform the comparison with the low bits.
1056        switch (Cond) {
1057        case ISD::SETEQ:
1058        case ISD::SETNE:
1059        case ISD::SETUGT:
1060        case ISD::SETUGE:
1061        case ISD::SETULT:
1062        case ISD::SETULE:
1063          return DAG.getSetCC(VT, N0.getOperand(0),
1064                          DAG.getConstant(C1, N0.getOperand(0).getValueType()),
1065                          Cond);
1066        default:
1067          break;   // todo, be more careful with signed comparisons
1068        }
1069      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1070                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1071        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1072        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
1073        MVT::ValueType ExtDstTy = N0.getValueType();
1074        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
1075
1076        // If the extended part has any inconsistent bits, it cannot ever
1077        // compare equal.  In other words, they have to be all ones or all
1078        // zeros.
1079        uint64_t ExtBits =
1080          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
1081        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1082          return DAG.getConstant(Cond == ISD::SETNE, VT);
1083
1084        SDOperand ZextOp;
1085        MVT::ValueType Op0Ty = N0.getOperand(0).getValueType();
1086        if (Op0Ty == ExtSrcTy) {
1087          ZextOp = N0.getOperand(0);
1088        } else {
1089          int64_t Imm = ~0ULL >> (64-ExtSrcTyBits);
1090          ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1091                               DAG.getConstant(Imm, Op0Ty));
1092        }
1093        if (!DCI.isCalledByLegalizer())
1094          DCI.AddToWorklist(ZextOp.Val);
1095        // Otherwise, make this a use of a zext.
1096        return DAG.getSetCC(VT, ZextOp,
1097                            DAG.getConstant(C1 & (~0ULL>>(64-ExtSrcTyBits)),
1098                                            ExtDstTy),
1099                            Cond);
1100      } else if ((N1C->getValue() == 0 || N1C->getValue() == 1) &&
1101                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1102
1103        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1104        if (N0.getOpcode() == ISD::SETCC) {
1105          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1);
1106          if (TrueWhenTrue)
1107            return N0;
1108
1109          // Invert the condition.
1110          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1111          CC = ISD::getSetCCInverse(CC,
1112                               MVT::isInteger(N0.getOperand(0).getValueType()));
1113          return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1114        }
1115
1116        if ((N0.getOpcode() == ISD::XOR ||
1117             (N0.getOpcode() == ISD::AND &&
1118              N0.getOperand(0).getOpcode() == ISD::XOR &&
1119              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1120            isa<ConstantSDNode>(N0.getOperand(1)) &&
1121            cast<ConstantSDNode>(N0.getOperand(1))->getValue() == 1) {
1122          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1123          // can only do this if the top bits are known zero.
1124          if (DAG.MaskedValueIsZero(N0,
1125                                    MVT::getIntVTBitMask(N0.getValueType())-1)){
1126            // Okay, get the un-inverted input value.
1127            SDOperand Val;
1128            if (N0.getOpcode() == ISD::XOR)
1129              Val = N0.getOperand(0);
1130            else {
1131              assert(N0.getOpcode() == ISD::AND &&
1132                     N0.getOperand(0).getOpcode() == ISD::XOR);
1133              // ((X^1)&1)^1 -> X & 1
1134              Val = DAG.getNode(ISD::AND, N0.getValueType(),
1135                                N0.getOperand(0).getOperand(0),
1136                                N0.getOperand(1));
1137            }
1138            return DAG.getSetCC(VT, Val, N1,
1139                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1140          }
1141        }
1142      }
1143
1144      uint64_t MinVal, MaxVal;
1145      unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0));
1146      if (ISD::isSignedIntSetCC(Cond)) {
1147        MinVal = 1ULL << (OperandBitSize-1);
1148        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
1149          MaxVal = ~0ULL >> (65-OperandBitSize);
1150        else
1151          MaxVal = 0;
1152      } else {
1153        MinVal = 0;
1154        MaxVal = ~0ULL >> (64-OperandBitSize);
1155      }
1156
1157      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1158      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1159        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1160        --C1;                                          // X >= C0 --> X > (C0-1)
1161        return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1162                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1163      }
1164
1165      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1166        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1167        ++C1;                                          // X <= C0 --> X < (C0+1)
1168        return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1169                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1170      }
1171
1172      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1173        return DAG.getConstant(0, VT);      // X < MIN --> false
1174      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1175        return DAG.getConstant(1, VT);      // X >= MIN --> true
1176      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1177        return DAG.getConstant(0, VT);      // X > MAX --> false
1178      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1179        return DAG.getConstant(1, VT);      // X <= MAX --> true
1180
1181      // Canonicalize setgt X, Min --> setne X, Min
1182      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1183        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1184      // Canonicalize setlt X, Max --> setne X, Max
1185      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1186        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1187
1188      // If we have setult X, 1, turn it into seteq X, 0
1189      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1190        return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1191                        ISD::SETEQ);
1192      // If we have setugt X, Max-1, turn it into seteq X, Max
1193      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1194        return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1195                        ISD::SETEQ);
1196
1197      // If we have "setcc X, C0", check to see if we can shrink the immediate
1198      // by changing cc.
1199
1200      // SETUGT X, SINTMAX  -> SETLT X, 0
1201      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1202          C1 == (~0ULL >> (65-OperandBitSize)))
1203        return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1204                            ISD::SETLT);
1205
1206      // FIXME: Implement the rest of these.
1207
1208      // Fold bit comparisons when we can.
1209      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1210          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1211        if (ConstantSDNode *AndRHS =
1212                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1213          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1214            // Perform the xform if the AND RHS is a single bit.
1215            if (isPowerOf2_64(AndRHS->getValue())) {
1216              return DAG.getNode(ISD::SRL, VT, N0,
1217                             DAG.getConstant(Log2_64(AndRHS->getValue()),
1218                                             getShiftAmountTy()));
1219            }
1220          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
1221            // (X & 8) == 8  -->  (X & 8) >> 3
1222            // Perform the xform if C1 is a single bit.
1223            if (isPowerOf2_64(C1)) {
1224              return DAG.getNode(ISD::SRL, VT, N0,
1225                          DAG.getConstant(Log2_64(C1), getShiftAmountTy()));
1226            }
1227          }
1228        }
1229    }
1230  } else if (isa<ConstantSDNode>(N0.Val)) {
1231      // Ensure that the constant occurs on the RHS.
1232    return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1233  }
1234
1235  if (isa<ConstantFPSDNode>(N0.Val)) {
1236    // Constant fold or commute setcc.
1237    SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond);
1238    if (O.Val) return O;
1239  }
1240
1241  if (N0 == N1) {
1242    // We can always fold X == X for integer setcc's.
1243    if (MVT::isInteger(N0.getValueType()))
1244      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1245    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1246    if (UOF == 2)   // FP operators that are undefined on NaNs.
1247      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1248    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1249      return DAG.getConstant(UOF, VT);
1250    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1251    // if it is not already.
1252    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1253    if (NewCond != Cond)
1254      return DAG.getSetCC(VT, N0, N1, NewCond);
1255  }
1256
1257  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1258      MVT::isInteger(N0.getValueType())) {
1259    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1260        N0.getOpcode() == ISD::XOR) {
1261      // Simplify (X+Y) == (X+Z) -->  Y == Z
1262      if (N0.getOpcode() == N1.getOpcode()) {
1263        if (N0.getOperand(0) == N1.getOperand(0))
1264          return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1265        if (N0.getOperand(1) == N1.getOperand(1))
1266          return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1267        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1268          // If X op Y == Y op X, try other combinations.
1269          if (N0.getOperand(0) == N1.getOperand(1))
1270            return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1271          if (N0.getOperand(1) == N1.getOperand(0))
1272            return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1273        }
1274      }
1275
1276      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1277        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1278          // Turn (X+C1) == C2 --> X == C2-C1
1279          if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
1280            return DAG.getSetCC(VT, N0.getOperand(0),
1281                              DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
1282                                N0.getValueType()), Cond);
1283          }
1284
1285          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1286          if (N0.getOpcode() == ISD::XOR)
1287            // If we know that all of the inverted bits are zero, don't bother
1288            // performing the inversion.
1289            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getValue()))
1290              return DAG.getSetCC(VT, N0.getOperand(0),
1291                              DAG.getConstant(LHSR->getValue()^RHSC->getValue(),
1292                                              N0.getValueType()), Cond);
1293        }
1294
1295        // Turn (C1-X) == C2 --> X == C1-C2
1296        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1297          if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
1298            return DAG.getSetCC(VT, N0.getOperand(1),
1299                             DAG.getConstant(SUBC->getValue()-RHSC->getValue(),
1300                                             N0.getValueType()), Cond);
1301          }
1302        }
1303      }
1304
1305      // Simplify (X+Z) == X -->  Z == 0
1306      if (N0.getOperand(0) == N1)
1307        return DAG.getSetCC(VT, N0.getOperand(1),
1308                        DAG.getConstant(0, N0.getValueType()), Cond);
1309      if (N0.getOperand(1) == N1) {
1310        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1311          return DAG.getSetCC(VT, N0.getOperand(0),
1312                          DAG.getConstant(0, N0.getValueType()), Cond);
1313        else if (N0.Val->hasOneUse()) {
1314          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1315          // (Z-X) == X  --> Z == X<<1
1316          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1317                                     N1,
1318                                     DAG.getConstant(1, getShiftAmountTy()));
1319          if (!DCI.isCalledByLegalizer())
1320            DCI.AddToWorklist(SH.Val);
1321          return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1322        }
1323      }
1324    }
1325
1326    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1327        N1.getOpcode() == ISD::XOR) {
1328      // Simplify  X == (X+Z) -->  Z == 0
1329      if (N1.getOperand(0) == N0) {
1330        return DAG.getSetCC(VT, N1.getOperand(1),
1331                        DAG.getConstant(0, N1.getValueType()), Cond);
1332      } else if (N1.getOperand(1) == N0) {
1333        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1334          return DAG.getSetCC(VT, N1.getOperand(0),
1335                          DAG.getConstant(0, N1.getValueType()), Cond);
1336        } else if (N1.Val->hasOneUse()) {
1337          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1338          // X == (Z-X)  --> X<<1 == Z
1339          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1340                                     DAG.getConstant(1, getShiftAmountTy()));
1341          if (!DCI.isCalledByLegalizer())
1342            DCI.AddToWorklist(SH.Val);
1343          return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1344        }
1345      }
1346    }
1347  }
1348
1349  // Fold away ALL boolean setcc's.
1350  SDOperand Temp;
1351  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1352    switch (Cond) {
1353    default: assert(0 && "Unknown integer setcc!");
1354    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
1355      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1356      N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1357      if (!DCI.isCalledByLegalizer())
1358        DCI.AddToWorklist(Temp.Val);
1359      break;
1360    case ISD::SETNE:  // X != Y   -->  (X^Y)
1361      N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1362      break;
1363    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1364    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1365      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1366      N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1367      if (!DCI.isCalledByLegalizer())
1368        DCI.AddToWorklist(Temp.Val);
1369      break;
1370    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
1371    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
1372      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1373      N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1374      if (!DCI.isCalledByLegalizer())
1375        DCI.AddToWorklist(Temp.Val);
1376      break;
1377    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
1378    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
1379      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1380      N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1381      if (!DCI.isCalledByLegalizer())
1382        DCI.AddToWorklist(Temp.Val);
1383      break;
1384    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
1385    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
1386      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1387      N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1388      break;
1389    }
1390    if (VT != MVT::i1) {
1391      if (!DCI.isCalledByLegalizer())
1392        DCI.AddToWorklist(N0.Val);
1393      // FIXME: If running after legalize, we probably can't do this.
1394      N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1395    }
1396    return N0;
1397  }
1398
1399  // Could not fold it.
1400  return SDOperand();
1401}
1402
1403SDOperand TargetLowering::
1404PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1405  // Default implementation: no optimization.
1406  return SDOperand();
1407}
1408
1409//===----------------------------------------------------------------------===//
1410//  Inline Assembler Implementation Methods
1411//===----------------------------------------------------------------------===//
1412
1413TargetLowering::ConstraintType
1414TargetLowering::getConstraintType(const std::string &Constraint) const {
1415  // FIXME: lots more standard ones to handle.
1416  if (Constraint.size() == 1) {
1417    switch (Constraint[0]) {
1418    default: break;
1419    case 'r': return C_RegisterClass;
1420    case 'm':    // memory
1421    case 'o':    // offsetable
1422    case 'V':    // not offsetable
1423      return C_Memory;
1424    case 'i':    // Simple Integer or Relocatable Constant
1425    case 'n':    // Simple Integer
1426    case 's':    // Relocatable Constant
1427    case 'X':    // Allow ANY value.
1428    case 'I':    // Target registers.
1429    case 'J':
1430    case 'K':
1431    case 'L':
1432    case 'M':
1433    case 'N':
1434    case 'O':
1435    case 'P':
1436      return C_Other;
1437    }
1438  }
1439
1440  if (Constraint.size() > 1 && Constraint[0] == '{' &&
1441      Constraint[Constraint.size()-1] == '}')
1442    return C_Register;
1443  return C_Unknown;
1444}
1445
1446/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1447/// vector.  If it is invalid, don't add anything to Ops.
1448void TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
1449                                                  char ConstraintLetter,
1450                                                  std::vector<SDOperand> &Ops,
1451                                                  SelectionDAG &DAG) {
1452  switch (ConstraintLetter) {
1453  default: break;
1454  case 'X':     // Allows any operand; labels (basic block) use this.
1455    if (Op.getOpcode() == ISD::BasicBlock) {
1456      Ops.push_back(Op);
1457      return;
1458    }
1459    // fall through
1460  case 'i':    // Simple Integer or Relocatable Constant
1461  case 'n':    // Simple Integer
1462  case 's': {  // Relocatable Constant
1463    // These operands are interested in values of the form (GV+C), where C may
1464    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
1465    // is possible and fine if either GV or C are missing.
1466    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1467    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1468
1469    // If we have "(add GV, C)", pull out GV/C
1470    if (Op.getOpcode() == ISD::ADD) {
1471      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1472      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1473      if (C == 0 || GA == 0) {
1474        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1475        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1476      }
1477      if (C == 0 || GA == 0)
1478        C = 0, GA = 0;
1479    }
1480
1481    // If we find a valid operand, map to the TargetXXX version so that the
1482    // value itself doesn't get selected.
1483    if (GA) {   // Either &GV   or   &GV+C
1484      if (ConstraintLetter != 'n') {
1485        int64_t Offs = GA->getOffset();
1486        if (C) Offs += C->getValue();
1487        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
1488                                                 Op.getValueType(), Offs));
1489        return;
1490      }
1491    }
1492    if (C) {   // just C, no GV.
1493      // Simple constants are not allowed for 's'.
1494      if (ConstraintLetter != 's') {
1495        Ops.push_back(DAG.getTargetConstant(C->getValue(), Op.getValueType()));
1496        return;
1497      }
1498    }
1499    break;
1500  }
1501  }
1502}
1503
1504std::vector<unsigned> TargetLowering::
1505getRegClassForInlineAsmConstraint(const std::string &Constraint,
1506                                  MVT::ValueType VT) const {
1507  return std::vector<unsigned>();
1508}
1509
1510
1511std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
1512getRegForInlineAsmConstraint(const std::string &Constraint,
1513                             MVT::ValueType VT) const {
1514  if (Constraint[0] != '{')
1515    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1516  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1517
1518  // Remove the braces from around the name.
1519  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
1520
1521  // Figure out which register class contains this reg.
1522  const MRegisterInfo *RI = TM.getRegisterInfo();
1523  for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1524       E = RI->regclass_end(); RCI != E; ++RCI) {
1525    const TargetRegisterClass *RC = *RCI;
1526
1527    // If none of the the value types for this register class are valid, we
1528    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1529    bool isLegal = false;
1530    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1531         I != E; ++I) {
1532      if (isTypeLegal(*I)) {
1533        isLegal = true;
1534        break;
1535      }
1536    }
1537
1538    if (!isLegal) continue;
1539
1540    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1541         I != E; ++I) {
1542      if (StringsEqualNoCase(RegName, RI->get(*I).Name))
1543        return std::make_pair(*I, RC);
1544    }
1545  }
1546
1547  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1548}
1549
1550//===----------------------------------------------------------------------===//
1551//  Loop Strength Reduction hooks
1552//===----------------------------------------------------------------------===//
1553
1554/// isLegalAddressingMode - Return true if the addressing mode represented
1555/// by AM is legal for this target, for a load/store of the specified type.
1556bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
1557                                           const Type *Ty) const {
1558  // The default implementation of this implements a conservative RISCy, r+r and
1559  // r+i addr mode.
1560
1561  // Allows a sign-extended 16-bit immediate field.
1562  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1563    return false;
1564
1565  // No global is ever allowed as a base.
1566  if (AM.BaseGV)
1567    return false;
1568
1569  // Only support r+r,
1570  switch (AM.Scale) {
1571  case 0:  // "r+i" or just "i", depending on HasBaseReg.
1572    break;
1573  case 1:
1574    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1575      return false;
1576    // Otherwise we have r+r or r+i.
1577    break;
1578  case 2:
1579    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1580      return false;
1581    // Allow 2*r as r+r.
1582    break;
1583  }
1584
1585  return true;
1586}
1587
1588// Magic for divide replacement
1589
1590struct ms {
1591  int64_t m;  // magic number
1592  int64_t s;  // shift amount
1593};
1594
1595struct mu {
1596  uint64_t m; // magic number
1597  int64_t a;  // add indicator
1598  int64_t s;  // shift amount
1599};
1600
1601/// magic - calculate the magic numbers required to codegen an integer sdiv as
1602/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1603/// or -1.
1604static ms magic32(int32_t d) {
1605  int32_t p;
1606  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
1607  const uint32_t two31 = 0x80000000U;
1608  struct ms mag;
1609
1610  ad = abs(d);
1611  t = two31 + ((uint32_t)d >> 31);
1612  anc = t - 1 - t%ad;   // absolute value of nc
1613  p = 31;               // initialize p
1614  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
1615  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1616  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
1617  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1618  do {
1619    p = p + 1;
1620    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1621    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1622    if (r1 >= anc) {  // must be unsigned comparison
1623      q1 = q1 + 1;
1624      r1 = r1 - anc;
1625    }
1626    q2 = 2*q2;        // update q2 = 2p/abs(d)
1627    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1628    if (r2 >= ad) {   // must be unsigned comparison
1629      q2 = q2 + 1;
1630      r2 = r2 - ad;
1631    }
1632    delta = ad - r2;
1633  } while (q1 < delta || (q1 == delta && r1 == 0));
1634
1635  mag.m = (int32_t)(q2 + 1); // make sure to sign extend
1636  if (d < 0) mag.m = -mag.m; // resulting magic number
1637  mag.s = p - 32;            // resulting shift
1638  return mag;
1639}
1640
1641/// magicu - calculate the magic numbers required to codegen an integer udiv as
1642/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1643static mu magicu32(uint32_t d) {
1644  int32_t p;
1645  uint32_t nc, delta, q1, r1, q2, r2;
1646  struct mu magu;
1647  magu.a = 0;               // initialize "add" indicator
1648  nc = - 1 - (-d)%d;
1649  p = 31;                   // initialize p
1650  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
1651  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
1652  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
1653  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
1654  do {
1655    p = p + 1;
1656    if (r1 >= nc - r1 ) {
1657      q1 = 2*q1 + 1;  // update q1
1658      r1 = 2*r1 - nc; // update r1
1659    }
1660    else {
1661      q1 = 2*q1; // update q1
1662      r1 = 2*r1; // update r1
1663    }
1664    if (r2 + 1 >= d - r2) {
1665      if (q2 >= 0x7FFFFFFF) magu.a = 1;
1666      q2 = 2*q2 + 1;     // update q2
1667      r2 = 2*r2 + 1 - d; // update r2
1668    }
1669    else {
1670      if (q2 >= 0x80000000) magu.a = 1;
1671      q2 = 2*q2;     // update q2
1672      r2 = 2*r2 + 1; // update r2
1673    }
1674    delta = d - 1 - r2;
1675  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
1676  magu.m = q2 + 1; // resulting magic number
1677  magu.s = p - 32;  // resulting shift
1678  return magu;
1679}
1680
1681/// magic - calculate the magic numbers required to codegen an integer sdiv as
1682/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1683/// or -1.
1684static ms magic64(int64_t d) {
1685  int64_t p;
1686  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
1687  const uint64_t two63 = 9223372036854775808ULL; // 2^63
1688  struct ms mag;
1689
1690  ad = d >= 0 ? d : -d;
1691  t = two63 + ((uint64_t)d >> 63);
1692  anc = t - 1 - t%ad;   // absolute value of nc
1693  p = 63;               // initialize p
1694  q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
1695  r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1696  q2 = two63/ad;        // initialize q2 = 2p/abs(d)
1697  r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1698  do {
1699    p = p + 1;
1700    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1701    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1702    if (r1 >= anc) {  // must be unsigned comparison
1703      q1 = q1 + 1;
1704      r1 = r1 - anc;
1705    }
1706    q2 = 2*q2;        // update q2 = 2p/abs(d)
1707    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1708    if (r2 >= ad) {   // must be unsigned comparison
1709      q2 = q2 + 1;
1710      r2 = r2 - ad;
1711    }
1712    delta = ad - r2;
1713  } while (q1 < delta || (q1 == delta && r1 == 0));
1714
1715  mag.m = q2 + 1;
1716  if (d < 0) mag.m = -mag.m; // resulting magic number
1717  mag.s = p - 64;            // resulting shift
1718  return mag;
1719}
1720
1721/// magicu - calculate the magic numbers required to codegen an integer udiv as
1722/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1723static mu magicu64(uint64_t d)
1724{
1725  int64_t p;
1726  uint64_t nc, delta, q1, r1, q2, r2;
1727  struct mu magu;
1728  magu.a = 0;               // initialize "add" indicator
1729  nc = - 1 - (-d)%d;
1730  p = 63;                   // initialize p
1731  q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
1732  r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
1733  q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
1734  r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
1735  do {
1736    p = p + 1;
1737    if (r1 >= nc - r1 ) {
1738      q1 = 2*q1 + 1;  // update q1
1739      r1 = 2*r1 - nc; // update r1
1740    }
1741    else {
1742      q1 = 2*q1; // update q1
1743      r1 = 2*r1; // update r1
1744    }
1745    if (r2 + 1 >= d - r2) {
1746      if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
1747      q2 = 2*q2 + 1;     // update q2
1748      r2 = 2*r2 + 1 - d; // update r2
1749    }
1750    else {
1751      if (q2 >= 0x8000000000000000ull) magu.a = 1;
1752      q2 = 2*q2;     // update q2
1753      r2 = 2*r2 + 1; // update r2
1754    }
1755    delta = d - 1 - r2;
1756  } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
1757  magu.m = q2 + 1; // resulting magic number
1758  magu.s = p - 64;  // resulting shift
1759  return magu;
1760}
1761
1762/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
1763/// return a DAG expression to select that will generate the same value by
1764/// multiplying by a magic number.  See:
1765/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1766SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
1767                                    std::vector<SDNode*>* Created) const {
1768  MVT::ValueType VT = N->getValueType(0);
1769
1770  // Check to see if we can do this.
1771  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1772    return SDOperand();       // BuildSDIV only operates on i32 or i64
1773
1774  int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
1775  ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
1776
1777  // Multiply the numerator (operand 0) by the magic value
1778  SDOperand Q;
1779  if (isOperationLegal(ISD::MULHS, VT))
1780    Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
1781                    DAG.getConstant(magics.m, VT));
1782  else if (isOperationLegal(ISD::SMUL_LOHI, VT))
1783    Q = SDOperand(DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(VT, VT),
1784                              N->getOperand(0),
1785                              DAG.getConstant(magics.m, VT)).Val, 1);
1786  else
1787    return SDOperand();       // No mulhs or equvialent
1788  // If d > 0 and m < 0, add the numerator
1789  if (d > 0 && magics.m < 0) {
1790    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
1791    if (Created)
1792      Created->push_back(Q.Val);
1793  }
1794  // If d < 0 and m > 0, subtract the numerator.
1795  if (d < 0 && magics.m > 0) {
1796    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
1797    if (Created)
1798      Created->push_back(Q.Val);
1799  }
1800  // Shift right algebraic if shift value is nonzero
1801  if (magics.s > 0) {
1802    Q = DAG.getNode(ISD::SRA, VT, Q,
1803                    DAG.getConstant(magics.s, getShiftAmountTy()));
1804    if (Created)
1805      Created->push_back(Q.Val);
1806  }
1807  // Extract the sign bit and add it to the quotient
1808  SDOperand T =
1809    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
1810                                                 getShiftAmountTy()));
1811  if (Created)
1812    Created->push_back(T.Val);
1813  return DAG.getNode(ISD::ADD, VT, Q, T);
1814}
1815
1816/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
1817/// return a DAG expression to select that will generate the same value by
1818/// multiplying by a magic number.  See:
1819/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1820SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
1821                                    std::vector<SDNode*>* Created) const {
1822  MVT::ValueType VT = N->getValueType(0);
1823
1824  // Check to see if we can do this.
1825  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1826    return SDOperand();       // BuildUDIV only operates on i32 or i64
1827
1828  uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
1829  mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
1830
1831  // Multiply the numerator (operand 0) by the magic value
1832  SDOperand Q;
1833  if (isOperationLegal(ISD::MULHU, VT))
1834    Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
1835                    DAG.getConstant(magics.m, VT));
1836  else if (isOperationLegal(ISD::UMUL_LOHI, VT))
1837    Q = SDOperand(DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(VT, VT),
1838                              N->getOperand(0),
1839                              DAG.getConstant(magics.m, VT)).Val, 1);
1840  else
1841    return SDOperand();       // No mulhu or equvialent
1842  if (Created)
1843    Created->push_back(Q.Val);
1844
1845  if (magics.a == 0) {
1846    return DAG.getNode(ISD::SRL, VT, Q,
1847                       DAG.getConstant(magics.s, getShiftAmountTy()));
1848  } else {
1849    SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
1850    if (Created)
1851      Created->push_back(NPQ.Val);
1852    NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
1853                      DAG.getConstant(1, getShiftAmountTy()));
1854    if (Created)
1855      Created->push_back(NPQ.Val);
1856    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
1857    if (Created)
1858      Created->push_back(NPQ.Val);
1859    return DAG.getNode(ISD::SRL, VT, NPQ,
1860                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
1861  }
1862}
1863