TargetLowering.cpp revision 34797136cb9fa9f450c0e1c47983482083979dd4
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/MC/MCAsmInfo.h"
16#include "llvm/MC/MCExpr.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetLoweringObjectFile.h"
19#include "llvm/Target/TargetMachine.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/CodeGen/Analysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineJumpTableInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/Support/CommandLine.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/MathExtras.h"
32#include <cctype>
33using namespace llvm;
34
35/// We are in the process of implementing a new TypeLegalization action
36/// - the promotion of vector elements. This feature is disabled by default
37/// and only enabled using this flag.
38static cl::opt<bool>
39AllowPromoteIntElem("promote-elements", cl::Hidden, cl::init(true),
40  cl::desc("Allow promotion of integer vector element types"));
41
42/// InitLibcallNames - Set default libcall names.
43///
44static void InitLibcallNames(const char **Names) {
45  Names[RTLIB::SHL_I16] = "__ashlhi3";
46  Names[RTLIB::SHL_I32] = "__ashlsi3";
47  Names[RTLIB::SHL_I64] = "__ashldi3";
48  Names[RTLIB::SHL_I128] = "__ashlti3";
49  Names[RTLIB::SRL_I16] = "__lshrhi3";
50  Names[RTLIB::SRL_I32] = "__lshrsi3";
51  Names[RTLIB::SRL_I64] = "__lshrdi3";
52  Names[RTLIB::SRL_I128] = "__lshrti3";
53  Names[RTLIB::SRA_I16] = "__ashrhi3";
54  Names[RTLIB::SRA_I32] = "__ashrsi3";
55  Names[RTLIB::SRA_I64] = "__ashrdi3";
56  Names[RTLIB::SRA_I128] = "__ashrti3";
57  Names[RTLIB::MUL_I8] = "__mulqi3";
58  Names[RTLIB::MUL_I16] = "__mulhi3";
59  Names[RTLIB::MUL_I32] = "__mulsi3";
60  Names[RTLIB::MUL_I64] = "__muldi3";
61  Names[RTLIB::MUL_I128] = "__multi3";
62  Names[RTLIB::MULO_I32] = "__mulosi4";
63  Names[RTLIB::MULO_I64] = "__mulodi4";
64  Names[RTLIB::MULO_I128] = "__muloti4";
65  Names[RTLIB::SDIV_I8] = "__divqi3";
66  Names[RTLIB::SDIV_I16] = "__divhi3";
67  Names[RTLIB::SDIV_I32] = "__divsi3";
68  Names[RTLIB::SDIV_I64] = "__divdi3";
69  Names[RTLIB::SDIV_I128] = "__divti3";
70  Names[RTLIB::UDIV_I8] = "__udivqi3";
71  Names[RTLIB::UDIV_I16] = "__udivhi3";
72  Names[RTLIB::UDIV_I32] = "__udivsi3";
73  Names[RTLIB::UDIV_I64] = "__udivdi3";
74  Names[RTLIB::UDIV_I128] = "__udivti3";
75  Names[RTLIB::SREM_I8] = "__modqi3";
76  Names[RTLIB::SREM_I16] = "__modhi3";
77  Names[RTLIB::SREM_I32] = "__modsi3";
78  Names[RTLIB::SREM_I64] = "__moddi3";
79  Names[RTLIB::SREM_I128] = "__modti3";
80  Names[RTLIB::UREM_I8] = "__umodqi3";
81  Names[RTLIB::UREM_I16] = "__umodhi3";
82  Names[RTLIB::UREM_I32] = "__umodsi3";
83  Names[RTLIB::UREM_I64] = "__umoddi3";
84  Names[RTLIB::UREM_I128] = "__umodti3";
85
86  // These are generally not available.
87  Names[RTLIB::SDIVREM_I8] = 0;
88  Names[RTLIB::SDIVREM_I16] = 0;
89  Names[RTLIB::SDIVREM_I32] = 0;
90  Names[RTLIB::SDIVREM_I64] = 0;
91  Names[RTLIB::SDIVREM_I128] = 0;
92  Names[RTLIB::UDIVREM_I8] = 0;
93  Names[RTLIB::UDIVREM_I16] = 0;
94  Names[RTLIB::UDIVREM_I32] = 0;
95  Names[RTLIB::UDIVREM_I64] = 0;
96  Names[RTLIB::UDIVREM_I128] = 0;
97
98  Names[RTLIB::NEG_I32] = "__negsi2";
99  Names[RTLIB::NEG_I64] = "__negdi2";
100  Names[RTLIB::ADD_F32] = "__addsf3";
101  Names[RTLIB::ADD_F64] = "__adddf3";
102  Names[RTLIB::ADD_F80] = "__addxf3";
103  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
104  Names[RTLIB::SUB_F32] = "__subsf3";
105  Names[RTLIB::SUB_F64] = "__subdf3";
106  Names[RTLIB::SUB_F80] = "__subxf3";
107  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
108  Names[RTLIB::MUL_F32] = "__mulsf3";
109  Names[RTLIB::MUL_F64] = "__muldf3";
110  Names[RTLIB::MUL_F80] = "__mulxf3";
111  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
112  Names[RTLIB::DIV_F32] = "__divsf3";
113  Names[RTLIB::DIV_F64] = "__divdf3";
114  Names[RTLIB::DIV_F80] = "__divxf3";
115  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
116  Names[RTLIB::REM_F32] = "fmodf";
117  Names[RTLIB::REM_F64] = "fmod";
118  Names[RTLIB::REM_F80] = "fmodl";
119  Names[RTLIB::REM_PPCF128] = "fmodl";
120  Names[RTLIB::FMA_F32] = "fmaf";
121  Names[RTLIB::FMA_F64] = "fma";
122  Names[RTLIB::FMA_F80] = "fmal";
123  Names[RTLIB::FMA_PPCF128] = "fmal";
124  Names[RTLIB::POWI_F32] = "__powisf2";
125  Names[RTLIB::POWI_F64] = "__powidf2";
126  Names[RTLIB::POWI_F80] = "__powixf2";
127  Names[RTLIB::POWI_PPCF128] = "__powitf2";
128  Names[RTLIB::SQRT_F32] = "sqrtf";
129  Names[RTLIB::SQRT_F64] = "sqrt";
130  Names[RTLIB::SQRT_F80] = "sqrtl";
131  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
132  Names[RTLIB::LOG_F32] = "logf";
133  Names[RTLIB::LOG_F64] = "log";
134  Names[RTLIB::LOG_F80] = "logl";
135  Names[RTLIB::LOG_PPCF128] = "logl";
136  Names[RTLIB::LOG2_F32] = "log2f";
137  Names[RTLIB::LOG2_F64] = "log2";
138  Names[RTLIB::LOG2_F80] = "log2l";
139  Names[RTLIB::LOG2_PPCF128] = "log2l";
140  Names[RTLIB::LOG10_F32] = "log10f";
141  Names[RTLIB::LOG10_F64] = "log10";
142  Names[RTLIB::LOG10_F80] = "log10l";
143  Names[RTLIB::LOG10_PPCF128] = "log10l";
144  Names[RTLIB::EXP_F32] = "expf";
145  Names[RTLIB::EXP_F64] = "exp";
146  Names[RTLIB::EXP_F80] = "expl";
147  Names[RTLIB::EXP_PPCF128] = "expl";
148  Names[RTLIB::EXP2_F32] = "exp2f";
149  Names[RTLIB::EXP2_F64] = "exp2";
150  Names[RTLIB::EXP2_F80] = "exp2l";
151  Names[RTLIB::EXP2_PPCF128] = "exp2l";
152  Names[RTLIB::SIN_F32] = "sinf";
153  Names[RTLIB::SIN_F64] = "sin";
154  Names[RTLIB::SIN_F80] = "sinl";
155  Names[RTLIB::SIN_PPCF128] = "sinl";
156  Names[RTLIB::COS_F32] = "cosf";
157  Names[RTLIB::COS_F64] = "cos";
158  Names[RTLIB::COS_F80] = "cosl";
159  Names[RTLIB::COS_PPCF128] = "cosl";
160  Names[RTLIB::POW_F32] = "powf";
161  Names[RTLIB::POW_F64] = "pow";
162  Names[RTLIB::POW_F80] = "powl";
163  Names[RTLIB::POW_PPCF128] = "powl";
164  Names[RTLIB::CEIL_F32] = "ceilf";
165  Names[RTLIB::CEIL_F64] = "ceil";
166  Names[RTLIB::CEIL_F80] = "ceill";
167  Names[RTLIB::CEIL_PPCF128] = "ceill";
168  Names[RTLIB::TRUNC_F32] = "truncf";
169  Names[RTLIB::TRUNC_F64] = "trunc";
170  Names[RTLIB::TRUNC_F80] = "truncl";
171  Names[RTLIB::TRUNC_PPCF128] = "truncl";
172  Names[RTLIB::RINT_F32] = "rintf";
173  Names[RTLIB::RINT_F64] = "rint";
174  Names[RTLIB::RINT_F80] = "rintl";
175  Names[RTLIB::RINT_PPCF128] = "rintl";
176  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
177  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
178  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
179  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
180  Names[RTLIB::FLOOR_F32] = "floorf";
181  Names[RTLIB::FLOOR_F64] = "floor";
182  Names[RTLIB::FLOOR_F80] = "floorl";
183  Names[RTLIB::FLOOR_PPCF128] = "floorl";
184  Names[RTLIB::COPYSIGN_F32] = "copysignf";
185  Names[RTLIB::COPYSIGN_F64] = "copysign";
186  Names[RTLIB::COPYSIGN_F80] = "copysignl";
187  Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
188  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
189  Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
190  Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
191  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
192  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
193  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
194  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
195  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
196  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
197  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
198  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
199  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
200  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
201  Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
202  Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
203  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
204  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
205  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
206  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
207  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
208  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
209  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
210  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
211  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
212  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
213  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
214  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
215  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
216  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
217  Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
218  Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
219  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
220  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
221  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
222  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
223  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
224  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
225  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
226  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
227  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
228  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
229  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
230  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
231  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
232  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
233  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
234  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
235  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
236  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
237  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
238  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
239  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
240  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
241  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
242  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
243  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
244  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
245  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
246  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
247  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
248  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
249  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
250  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
251  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
252  Names[RTLIB::OEQ_F32] = "__eqsf2";
253  Names[RTLIB::OEQ_F64] = "__eqdf2";
254  Names[RTLIB::UNE_F32] = "__nesf2";
255  Names[RTLIB::UNE_F64] = "__nedf2";
256  Names[RTLIB::OGE_F32] = "__gesf2";
257  Names[RTLIB::OGE_F64] = "__gedf2";
258  Names[RTLIB::OLT_F32] = "__ltsf2";
259  Names[RTLIB::OLT_F64] = "__ltdf2";
260  Names[RTLIB::OLE_F32] = "__lesf2";
261  Names[RTLIB::OLE_F64] = "__ledf2";
262  Names[RTLIB::OGT_F32] = "__gtsf2";
263  Names[RTLIB::OGT_F64] = "__gtdf2";
264  Names[RTLIB::UO_F32] = "__unordsf2";
265  Names[RTLIB::UO_F64] = "__unorddf2";
266  Names[RTLIB::O_F32] = "__unordsf2";
267  Names[RTLIB::O_F64] = "__unorddf2";
268  Names[RTLIB::MEMCPY] = "memcpy";
269  Names[RTLIB::MEMMOVE] = "memmove";
270  Names[RTLIB::MEMSET] = "memset";
271  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
272  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
273  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
274  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
275  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
276  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
277  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
278  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
279  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
280  Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
281  Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
282  Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
283  Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
284  Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
285  Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
286  Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
287  Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
288  Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
289  Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
290  Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
291  Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
292  Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
293  Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
294  Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
295  Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
296  Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
297  Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
298  Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
299  Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
300  Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
301  Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
302  Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
303  Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
304}
305
306/// InitLibcallCallingConvs - Set default libcall CallingConvs.
307///
308static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
309  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
310    CCs[i] = CallingConv::C;
311  }
312}
313
314/// getFPEXT - Return the FPEXT_*_* value for the given types, or
315/// UNKNOWN_LIBCALL if there is none.
316RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
317  if (OpVT == MVT::f32) {
318    if (RetVT == MVT::f64)
319      return FPEXT_F32_F64;
320  }
321
322  return UNKNOWN_LIBCALL;
323}
324
325/// getFPROUND - Return the FPROUND_*_* value for the given types, or
326/// UNKNOWN_LIBCALL if there is none.
327RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
328  if (RetVT == MVT::f32) {
329    if (OpVT == MVT::f64)
330      return FPROUND_F64_F32;
331    if (OpVT == MVT::f80)
332      return FPROUND_F80_F32;
333    if (OpVT == MVT::ppcf128)
334      return FPROUND_PPCF128_F32;
335  } else if (RetVT == MVT::f64) {
336    if (OpVT == MVT::f80)
337      return FPROUND_F80_F64;
338    if (OpVT == MVT::ppcf128)
339      return FPROUND_PPCF128_F64;
340  }
341
342  return UNKNOWN_LIBCALL;
343}
344
345/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
346/// UNKNOWN_LIBCALL if there is none.
347RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
348  if (OpVT == MVT::f32) {
349    if (RetVT == MVT::i8)
350      return FPTOSINT_F32_I8;
351    if (RetVT == MVT::i16)
352      return FPTOSINT_F32_I16;
353    if (RetVT == MVT::i32)
354      return FPTOSINT_F32_I32;
355    if (RetVT == MVT::i64)
356      return FPTOSINT_F32_I64;
357    if (RetVT == MVT::i128)
358      return FPTOSINT_F32_I128;
359  } else if (OpVT == MVT::f64) {
360    if (RetVT == MVT::i8)
361      return FPTOSINT_F64_I8;
362    if (RetVT == MVT::i16)
363      return FPTOSINT_F64_I16;
364    if (RetVT == MVT::i32)
365      return FPTOSINT_F64_I32;
366    if (RetVT == MVT::i64)
367      return FPTOSINT_F64_I64;
368    if (RetVT == MVT::i128)
369      return FPTOSINT_F64_I128;
370  } else if (OpVT == MVT::f80) {
371    if (RetVT == MVT::i32)
372      return FPTOSINT_F80_I32;
373    if (RetVT == MVT::i64)
374      return FPTOSINT_F80_I64;
375    if (RetVT == MVT::i128)
376      return FPTOSINT_F80_I128;
377  } else if (OpVT == MVT::ppcf128) {
378    if (RetVT == MVT::i32)
379      return FPTOSINT_PPCF128_I32;
380    if (RetVT == MVT::i64)
381      return FPTOSINT_PPCF128_I64;
382    if (RetVT == MVT::i128)
383      return FPTOSINT_PPCF128_I128;
384  }
385  return UNKNOWN_LIBCALL;
386}
387
388/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
389/// UNKNOWN_LIBCALL if there is none.
390RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
391  if (OpVT == MVT::f32) {
392    if (RetVT == MVT::i8)
393      return FPTOUINT_F32_I8;
394    if (RetVT == MVT::i16)
395      return FPTOUINT_F32_I16;
396    if (RetVT == MVT::i32)
397      return FPTOUINT_F32_I32;
398    if (RetVT == MVT::i64)
399      return FPTOUINT_F32_I64;
400    if (RetVT == MVT::i128)
401      return FPTOUINT_F32_I128;
402  } else if (OpVT == MVT::f64) {
403    if (RetVT == MVT::i8)
404      return FPTOUINT_F64_I8;
405    if (RetVT == MVT::i16)
406      return FPTOUINT_F64_I16;
407    if (RetVT == MVT::i32)
408      return FPTOUINT_F64_I32;
409    if (RetVT == MVT::i64)
410      return FPTOUINT_F64_I64;
411    if (RetVT == MVT::i128)
412      return FPTOUINT_F64_I128;
413  } else if (OpVT == MVT::f80) {
414    if (RetVT == MVT::i32)
415      return FPTOUINT_F80_I32;
416    if (RetVT == MVT::i64)
417      return FPTOUINT_F80_I64;
418    if (RetVT == MVT::i128)
419      return FPTOUINT_F80_I128;
420  } else if (OpVT == MVT::ppcf128) {
421    if (RetVT == MVT::i32)
422      return FPTOUINT_PPCF128_I32;
423    if (RetVT == MVT::i64)
424      return FPTOUINT_PPCF128_I64;
425    if (RetVT == MVT::i128)
426      return FPTOUINT_PPCF128_I128;
427  }
428  return UNKNOWN_LIBCALL;
429}
430
431/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
432/// UNKNOWN_LIBCALL if there is none.
433RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
434  if (OpVT == MVT::i32) {
435    if (RetVT == MVT::f32)
436      return SINTTOFP_I32_F32;
437    else if (RetVT == MVT::f64)
438      return SINTTOFP_I32_F64;
439    else if (RetVT == MVT::f80)
440      return SINTTOFP_I32_F80;
441    else if (RetVT == MVT::ppcf128)
442      return SINTTOFP_I32_PPCF128;
443  } else if (OpVT == MVT::i64) {
444    if (RetVT == MVT::f32)
445      return SINTTOFP_I64_F32;
446    else if (RetVT == MVT::f64)
447      return SINTTOFP_I64_F64;
448    else if (RetVT == MVT::f80)
449      return SINTTOFP_I64_F80;
450    else if (RetVT == MVT::ppcf128)
451      return SINTTOFP_I64_PPCF128;
452  } else if (OpVT == MVT::i128) {
453    if (RetVT == MVT::f32)
454      return SINTTOFP_I128_F32;
455    else if (RetVT == MVT::f64)
456      return SINTTOFP_I128_F64;
457    else if (RetVT == MVT::f80)
458      return SINTTOFP_I128_F80;
459    else if (RetVT == MVT::ppcf128)
460      return SINTTOFP_I128_PPCF128;
461  }
462  return UNKNOWN_LIBCALL;
463}
464
465/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
466/// UNKNOWN_LIBCALL if there is none.
467RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
468  if (OpVT == MVT::i32) {
469    if (RetVT == MVT::f32)
470      return UINTTOFP_I32_F32;
471    else if (RetVT == MVT::f64)
472      return UINTTOFP_I32_F64;
473    else if (RetVT == MVT::f80)
474      return UINTTOFP_I32_F80;
475    else if (RetVT == MVT::ppcf128)
476      return UINTTOFP_I32_PPCF128;
477  } else if (OpVT == MVT::i64) {
478    if (RetVT == MVT::f32)
479      return UINTTOFP_I64_F32;
480    else if (RetVT == MVT::f64)
481      return UINTTOFP_I64_F64;
482    else if (RetVT == MVT::f80)
483      return UINTTOFP_I64_F80;
484    else if (RetVT == MVT::ppcf128)
485      return UINTTOFP_I64_PPCF128;
486  } else if (OpVT == MVT::i128) {
487    if (RetVT == MVT::f32)
488      return UINTTOFP_I128_F32;
489    else if (RetVT == MVT::f64)
490      return UINTTOFP_I128_F64;
491    else if (RetVT == MVT::f80)
492      return UINTTOFP_I128_F80;
493    else if (RetVT == MVT::ppcf128)
494      return UINTTOFP_I128_PPCF128;
495  }
496  return UNKNOWN_LIBCALL;
497}
498
499/// InitCmpLibcallCCs - Set default comparison libcall CC.
500///
501static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
502  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
503  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
504  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
505  CCs[RTLIB::UNE_F32] = ISD::SETNE;
506  CCs[RTLIB::UNE_F64] = ISD::SETNE;
507  CCs[RTLIB::OGE_F32] = ISD::SETGE;
508  CCs[RTLIB::OGE_F64] = ISD::SETGE;
509  CCs[RTLIB::OLT_F32] = ISD::SETLT;
510  CCs[RTLIB::OLT_F64] = ISD::SETLT;
511  CCs[RTLIB::OLE_F32] = ISD::SETLE;
512  CCs[RTLIB::OLE_F64] = ISD::SETLE;
513  CCs[RTLIB::OGT_F32] = ISD::SETGT;
514  CCs[RTLIB::OGT_F64] = ISD::SETGT;
515  CCs[RTLIB::UO_F32] = ISD::SETNE;
516  CCs[RTLIB::UO_F64] = ISD::SETNE;
517  CCs[RTLIB::O_F32] = ISD::SETEQ;
518  CCs[RTLIB::O_F64] = ISD::SETEQ;
519}
520
521/// NOTE: The constructor takes ownership of TLOF.
522TargetLowering::TargetLowering(const TargetMachine &tm,
523                               const TargetLoweringObjectFile *tlof)
524  : TM(tm), TD(TM.getTargetData()), TLOF(*tlof),
525  mayPromoteElements(AllowPromoteIntElem) {
526  // All operations default to being supported.
527  memset(OpActions, 0, sizeof(OpActions));
528  memset(LoadExtActions, 0, sizeof(LoadExtActions));
529  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
530  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
531  memset(CondCodeActions, 0, sizeof(CondCodeActions));
532
533  // Set default actions for various operations.
534  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
535    // Default all indexed load / store to expand.
536    for (unsigned IM = (unsigned)ISD::PRE_INC;
537         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
538      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
539      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
540    }
541
542    // These operations default to expand.
543    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
544    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
545  }
546
547  // Most targets ignore the @llvm.prefetch intrinsic.
548  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
549
550  // ConstantFP nodes default to expand.  Targets can either change this to
551  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
552  // to optimize expansions for certain constants.
553  setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
554  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
555  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
556  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
557
558  // These library functions default to expand.
559  setOperationAction(ISD::FLOG ,  MVT::f16, Expand);
560  setOperationAction(ISD::FLOG2,  MVT::f16, Expand);
561  setOperationAction(ISD::FLOG10, MVT::f16, Expand);
562  setOperationAction(ISD::FEXP ,  MVT::f16, Expand);
563  setOperationAction(ISD::FEXP2,  MVT::f16, Expand);
564  setOperationAction(ISD::FFLOOR, MVT::f16, Expand);
565  setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand);
566  setOperationAction(ISD::FCEIL,  MVT::f16, Expand);
567  setOperationAction(ISD::FRINT,  MVT::f16, Expand);
568  setOperationAction(ISD::FTRUNC, MVT::f16, Expand);
569  setOperationAction(ISD::FLOG ,  MVT::f32, Expand);
570  setOperationAction(ISD::FLOG2,  MVT::f32, Expand);
571  setOperationAction(ISD::FLOG10, MVT::f32, Expand);
572  setOperationAction(ISD::FEXP ,  MVT::f32, Expand);
573  setOperationAction(ISD::FEXP2,  MVT::f32, Expand);
574  setOperationAction(ISD::FFLOOR, MVT::f32, Expand);
575  setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand);
576  setOperationAction(ISD::FCEIL,  MVT::f32, Expand);
577  setOperationAction(ISD::FRINT,  MVT::f32, Expand);
578  setOperationAction(ISD::FTRUNC, MVT::f32, Expand);
579  setOperationAction(ISD::FLOG ,  MVT::f64, Expand);
580  setOperationAction(ISD::FLOG2,  MVT::f64, Expand);
581  setOperationAction(ISD::FLOG10, MVT::f64, Expand);
582  setOperationAction(ISD::FEXP ,  MVT::f64, Expand);
583  setOperationAction(ISD::FEXP2,  MVT::f64, Expand);
584  setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
585  setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
586  setOperationAction(ISD::FCEIL,  MVT::f64, Expand);
587  setOperationAction(ISD::FRINT,  MVT::f64, Expand);
588  setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
589
590  // Default ISD::TRAP to expand (which turns it into abort).
591  setOperationAction(ISD::TRAP, MVT::Other, Expand);
592
593  IsLittleEndian = TD->isLittleEndian();
594  PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
595  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
596  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
597  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
598  maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize
599    = maxStoresPerMemmoveOptSize = 4;
600  benefitFromCodePlacementOpt = false;
601  UseUnderscoreSetJmp = false;
602  UseUnderscoreLongJmp = false;
603  SelectIsExpensive = false;
604  IntDivIsCheap = false;
605  Pow2DivIsCheap = false;
606  JumpIsExpensive = false;
607  StackPointerRegisterToSaveRestore = 0;
608  ExceptionPointerRegister = 0;
609  ExceptionSelectorRegister = 0;
610  BooleanContents = UndefinedBooleanContent;
611  BooleanVectorContents = UndefinedBooleanContent;
612  SchedPreferenceInfo = Sched::ILP;
613  JumpBufSize = 0;
614  JumpBufAlignment = 0;
615  MinFunctionAlignment = 0;
616  PrefFunctionAlignment = 0;
617  PrefLoopAlignment = 0;
618  MinStackArgumentAlignment = 1;
619  ShouldFoldAtomicFences = false;
620  InsertFencesForAtomic = false;
621
622  InitLibcallNames(LibcallRoutineNames);
623  InitCmpLibcallCCs(CmpLibcallCCs);
624  InitLibcallCallingConvs(LibcallCallingConvs);
625}
626
627TargetLowering::~TargetLowering() {
628  delete &TLOF;
629}
630
631MVT TargetLowering::getShiftAmountTy(EVT LHSTy) const {
632  return MVT::getIntegerVT(8*TD->getPointerSize());
633}
634
635/// canOpTrap - Returns true if the operation can trap for the value type.
636/// VT must be a legal type.
637bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
638  assert(isTypeLegal(VT));
639  switch (Op) {
640  default:
641    return false;
642  case ISD::FDIV:
643  case ISD::FREM:
644  case ISD::SDIV:
645  case ISD::UDIV:
646  case ISD::SREM:
647  case ISD::UREM:
648    return true;
649  }
650}
651
652
653static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
654                                          unsigned &NumIntermediates,
655                                          EVT &RegisterVT,
656                                          TargetLowering *TLI) {
657  // Figure out the right, legal destination reg to copy into.
658  unsigned NumElts = VT.getVectorNumElements();
659  MVT EltTy = VT.getVectorElementType();
660
661  unsigned NumVectorRegs = 1;
662
663  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
664  // could break down into LHS/RHS like LegalizeDAG does.
665  if (!isPowerOf2_32(NumElts)) {
666    NumVectorRegs = NumElts;
667    NumElts = 1;
668  }
669
670  // Divide the input until we get to a supported size.  This will always
671  // end with a scalar if the target doesn't support vectors.
672  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
673    NumElts >>= 1;
674    NumVectorRegs <<= 1;
675  }
676
677  NumIntermediates = NumVectorRegs;
678
679  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
680  if (!TLI->isTypeLegal(NewVT))
681    NewVT = EltTy;
682  IntermediateVT = NewVT;
683
684  unsigned NewVTSize = NewVT.getSizeInBits();
685
686  // Convert sizes such as i33 to i64.
687  if (!isPowerOf2_32(NewVTSize))
688    NewVTSize = NextPowerOf2(NewVTSize);
689
690  EVT DestVT = TLI->getRegisterType(NewVT);
691  RegisterVT = DestVT;
692  if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
693    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
694
695  // Otherwise, promotion or legal types use the same number of registers as
696  // the vector decimated to the appropriate level.
697  return NumVectorRegs;
698}
699
700/// isLegalRC - Return true if the value types that can be represented by the
701/// specified register class are all legal.
702bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const {
703  for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
704       I != E; ++I) {
705    if (isTypeLegal(*I))
706      return true;
707  }
708  return false;
709}
710
711/// hasLegalSuperRegRegClasses - Return true if the specified register class
712/// has one or more super-reg register classes that are legal.
713bool
714TargetLowering::hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const{
715  if (*RC->superregclasses_begin() == 0)
716    return false;
717  for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
718         E = RC->superregclasses_end(); I != E; ++I) {
719    const TargetRegisterClass *RRC = *I;
720    if (isLegalRC(RRC))
721      return true;
722  }
723  return false;
724}
725
726/// findRepresentativeClass - Return the largest legal super-reg register class
727/// of the register class for the specified type and its associated "cost".
728std::pair<const TargetRegisterClass*, uint8_t>
729TargetLowering::findRepresentativeClass(EVT VT) const {
730  const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
731  if (!RC)
732    return std::make_pair(RC, 0);
733  const TargetRegisterClass *BestRC = RC;
734  for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
735         E = RC->superregclasses_end(); I != E; ++I) {
736    const TargetRegisterClass *RRC = *I;
737    if (RRC->isASubClass() || !isLegalRC(RRC))
738      continue;
739    if (!hasLegalSuperRegRegClasses(RRC))
740      return std::make_pair(RRC, 1);
741    BestRC = RRC;
742  }
743  return std::make_pair(BestRC, 1);
744}
745
746
747/// computeRegisterProperties - Once all of the register classes are added,
748/// this allows us to compute derived properties we expose.
749void TargetLowering::computeRegisterProperties() {
750  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
751         "Too many value types for ValueTypeActions to hold!");
752
753  // Everything defaults to needing one register.
754  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
755    NumRegistersForVT[i] = 1;
756    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
757  }
758  // ...except isVoid, which doesn't need any registers.
759  NumRegistersForVT[MVT::isVoid] = 0;
760
761  // Find the largest integer register class.
762  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
763  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
764    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
765
766  // Every integer value type larger than this largest register takes twice as
767  // many registers to represent as the previous ValueType.
768  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
769    EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
770    if (!ExpandedVT.isInteger())
771      break;
772    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
773    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
774    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
775    ValueTypeActions.setTypeAction(ExpandedVT, TypeExpandInteger);
776  }
777
778  // Inspect all of the ValueType's smaller than the largest integer
779  // register to see which ones need promotion.
780  unsigned LegalIntReg = LargestIntReg;
781  for (unsigned IntReg = LargestIntReg - 1;
782       IntReg >= (unsigned)MVT::i1; --IntReg) {
783    EVT IVT = (MVT::SimpleValueType)IntReg;
784    if (isTypeLegal(IVT)) {
785      LegalIntReg = IntReg;
786    } else {
787      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
788        (MVT::SimpleValueType)LegalIntReg;
789      ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
790    }
791  }
792
793  // ppcf128 type is really two f64's.
794  if (!isTypeLegal(MVT::ppcf128)) {
795    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
796    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
797    TransformToType[MVT::ppcf128] = MVT::f64;
798    ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
799  }
800
801  // Decide how to handle f64. If the target does not have native f64 support,
802  // expand it to i64 and we will be generating soft float library calls.
803  if (!isTypeLegal(MVT::f64)) {
804    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
805    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
806    TransformToType[MVT::f64] = MVT::i64;
807    ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
808  }
809
810  // Decide how to handle f32. If the target does not have native support for
811  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
812  if (!isTypeLegal(MVT::f32)) {
813    if (isTypeLegal(MVT::f64)) {
814      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
815      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
816      TransformToType[MVT::f32] = MVT::f64;
817      ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
818    } else {
819      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
820      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
821      TransformToType[MVT::f32] = MVT::i32;
822      ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
823    }
824  }
825
826  // Loop over all of the vector value types to see which need transformations.
827  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
828       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
829    MVT VT = (MVT::SimpleValueType)i;
830    if (isTypeLegal(VT)) continue;
831
832    // Determine if there is a legal wider type.  If so, we should promote to
833    // that wider vector type.
834    EVT EltVT = VT.getVectorElementType();
835    unsigned NElts = VT.getVectorNumElements();
836    if (NElts != 1) {
837      bool IsLegalWiderType = false;
838      // If we allow the promotion of vector elements using a flag,
839      // then return TypePromoteInteger on vector elements.
840      // First try to promote the elements of integer vectors. If no legal
841      // promotion was found, fallback to the widen-vector method.
842      if (mayPromoteElements)
843      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
844        EVT SVT = (MVT::SimpleValueType)nVT;
845        // Promote vectors of integers to vectors with the same number
846        // of elements, with a wider element type.
847        if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
848            && SVT.getVectorNumElements() == NElts &&
849            isTypeLegal(SVT) && SVT.getScalarType().isInteger()) {
850          TransformToType[i] = SVT;
851          RegisterTypeForVT[i] = SVT;
852          NumRegistersForVT[i] = 1;
853          ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
854          IsLegalWiderType = true;
855          break;
856        }
857      }
858
859      if (IsLegalWiderType) continue;
860
861      // Try to widen the vector.
862      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
863        EVT SVT = (MVT::SimpleValueType)nVT;
864        if (SVT.getVectorElementType() == EltVT &&
865            SVT.getVectorNumElements() > NElts &&
866            isTypeLegal(SVT)) {
867          TransformToType[i] = SVT;
868          RegisterTypeForVT[i] = SVT;
869          NumRegistersForVT[i] = 1;
870          ValueTypeActions.setTypeAction(VT, TypeWidenVector);
871          IsLegalWiderType = true;
872          break;
873        }
874      }
875      if (IsLegalWiderType) continue;
876    }
877
878    MVT IntermediateVT;
879    EVT RegisterVT;
880    unsigned NumIntermediates;
881    NumRegistersForVT[i] =
882      getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
883                                RegisterVT, this);
884    RegisterTypeForVT[i] = RegisterVT;
885
886    EVT NVT = VT.getPow2VectorType();
887    if (NVT == VT) {
888      // Type is already a power of 2.  The default action is to split.
889      TransformToType[i] = MVT::Other;
890      unsigned NumElts = VT.getVectorNumElements();
891      ValueTypeActions.setTypeAction(VT,
892            NumElts > 1 ? TypeSplitVector : TypeScalarizeVector);
893    } else {
894      TransformToType[i] = NVT;
895      ValueTypeActions.setTypeAction(VT, TypeWidenVector);
896    }
897  }
898
899  // Determine the 'representative' register class for each value type.
900  // An representative register class is the largest (meaning one which is
901  // not a sub-register class / subreg register class) legal register class for
902  // a group of value types. For example, on i386, i8, i16, and i32
903  // representative would be GR32; while on x86_64 it's GR64.
904  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
905    const TargetRegisterClass* RRC;
906    uint8_t Cost;
907    tie(RRC, Cost) =  findRepresentativeClass((MVT::SimpleValueType)i);
908    RepRegClassForVT[i] = RRC;
909    RepRegClassCostForVT[i] = Cost;
910  }
911}
912
913const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
914  return NULL;
915}
916
917
918EVT TargetLowering::getSetCCResultType(EVT VT) const {
919  assert(!VT.isVector() && "No default SetCC type for vectors!");
920  return PointerTy.SimpleTy;
921}
922
923MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
924  return MVT::i32; // return the default value
925}
926
927/// getVectorTypeBreakdown - Vector types are broken down into some number of
928/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
929/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
930/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
931///
932/// This method returns the number of registers needed, and the VT for each
933/// register.  It also returns the VT and quantity of the intermediate values
934/// before they are promoted/expanded.
935///
936unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
937                                                EVT &IntermediateVT,
938                                                unsigned &NumIntermediates,
939                                                EVT &RegisterVT) const {
940  unsigned NumElts = VT.getVectorNumElements();
941
942  // If there is a wider vector type with the same element type as this one,
943  // we should widen to that legal vector type.  This handles things like
944  // <2 x float> -> <4 x float>.
945  if (NumElts != 1 && getTypeAction(Context, VT) == TypeWidenVector) {
946    RegisterVT = getTypeToTransformTo(Context, VT);
947    if (isTypeLegal(RegisterVT)) {
948      IntermediateVT = RegisterVT;
949      NumIntermediates = 1;
950      return 1;
951    }
952  }
953
954  // Figure out the right, legal destination reg to copy into.
955  EVT EltTy = VT.getVectorElementType();
956
957  unsigned NumVectorRegs = 1;
958
959  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
960  // could break down into LHS/RHS like LegalizeDAG does.
961  if (!isPowerOf2_32(NumElts)) {
962    NumVectorRegs = NumElts;
963    NumElts = 1;
964  }
965
966  // Divide the input until we get to a supported size.  This will always
967  // end with a scalar if the target doesn't support vectors.
968  while (NumElts > 1 && !isTypeLegal(
969                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
970    NumElts >>= 1;
971    NumVectorRegs <<= 1;
972  }
973
974  NumIntermediates = NumVectorRegs;
975
976  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
977  if (!isTypeLegal(NewVT))
978    NewVT = EltTy;
979  IntermediateVT = NewVT;
980
981  EVT DestVT = getRegisterType(Context, NewVT);
982  RegisterVT = DestVT;
983  unsigned NewVTSize = NewVT.getSizeInBits();
984
985  // Convert sizes such as i33 to i64.
986  if (!isPowerOf2_32(NewVTSize))
987    NewVTSize = NextPowerOf2(NewVTSize);
988
989  if (DestVT.bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
990    return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
991
992  // Otherwise, promotion or legal types use the same number of registers as
993  // the vector decimated to the appropriate level.
994  return NumVectorRegs;
995}
996
997/// Get the EVTs and ArgFlags collections that represent the legalized return
998/// type of the given function.  This does not require a DAG or a return value,
999/// and is suitable for use before any DAGs for the function are constructed.
1000/// TODO: Move this out of TargetLowering.cpp.
1001void llvm::GetReturnInfo(Type* ReturnType, Attributes attr,
1002                         SmallVectorImpl<ISD::OutputArg> &Outs,
1003                         const TargetLowering &TLI,
1004                         SmallVectorImpl<uint64_t> *Offsets) {
1005  SmallVector<EVT, 4> ValueVTs;
1006  ComputeValueVTs(TLI, ReturnType, ValueVTs);
1007  unsigned NumValues = ValueVTs.size();
1008  if (NumValues == 0) return;
1009  unsigned Offset = 0;
1010
1011  for (unsigned j = 0, f = NumValues; j != f; ++j) {
1012    EVT VT = ValueVTs[j];
1013    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1014
1015    if (attr & Attribute::SExt)
1016      ExtendKind = ISD::SIGN_EXTEND;
1017    else if (attr & Attribute::ZExt)
1018      ExtendKind = ISD::ZERO_EXTEND;
1019
1020    // FIXME: C calling convention requires the return type to be promoted to
1021    // at least 32-bit. But this is not necessary for non-C calling
1022    // conventions. The frontend should mark functions whose return values
1023    // require promoting with signext or zeroext attributes.
1024    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1025      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1026      if (VT.bitsLT(MinVT))
1027        VT = MinVT;
1028    }
1029
1030    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
1031    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
1032    unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
1033                        PartVT.getTypeForEVT(ReturnType->getContext()));
1034
1035    // 'inreg' on function refers to return value
1036    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1037    if (attr & Attribute::InReg)
1038      Flags.setInReg();
1039
1040    // Propagate extension type if any
1041    if (attr & Attribute::SExt)
1042      Flags.setSExt();
1043    else if (attr & Attribute::ZExt)
1044      Flags.setZExt();
1045
1046    for (unsigned i = 0; i < NumParts; ++i) {
1047      Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true));
1048      if (Offsets) {
1049        Offsets->push_back(Offset);
1050        Offset += PartSize;
1051      }
1052    }
1053  }
1054}
1055
1056/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1057/// function arguments in the caller parameter area.  This is the actual
1058/// alignment, not its logarithm.
1059unsigned TargetLowering::getByValTypeAlignment(Type *Ty) const {
1060  return TD->getCallFrameTypeAlignment(Ty);
1061}
1062
1063/// getJumpTableEncoding - Return the entry encoding for a jump table in the
1064/// current function.  The returned value is a member of the
1065/// MachineJumpTableInfo::JTEntryKind enum.
1066unsigned TargetLowering::getJumpTableEncoding() const {
1067  // In non-pic modes, just use the address of a block.
1068  if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
1069    return MachineJumpTableInfo::EK_BlockAddress;
1070
1071  // In PIC mode, if the target supports a GPRel32 directive, use it.
1072  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
1073    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
1074
1075  // Otherwise, use a label difference.
1076  return MachineJumpTableInfo::EK_LabelDifference32;
1077}
1078
1079SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1080                                                 SelectionDAG &DAG) const {
1081  // If our PIC model is GP relative, use the global offset table as the base.
1082  if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
1083    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1084  return Table;
1085}
1086
1087/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1088/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1089/// MCExpr.
1090const MCExpr *
1091TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
1092                                             unsigned JTI,MCContext &Ctx) const{
1093  // The normal PIC reloc base is the label at the start of the jump table.
1094  return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
1095}
1096
1097bool
1098TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
1099  // Assume that everything is safe in static mode.
1100  if (getTargetMachine().getRelocationModel() == Reloc::Static)
1101    return true;
1102
1103  // In dynamic-no-pic mode, assume that known defined values are safe.
1104  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
1105      GA &&
1106      !GA->getGlobal()->isDeclaration() &&
1107      !GA->getGlobal()->isWeakForLinker())
1108    return true;
1109
1110  // Otherwise assume nothing is safe.
1111  return false;
1112}
1113
1114//===----------------------------------------------------------------------===//
1115//  Optimization Methods
1116//===----------------------------------------------------------------------===//
1117
1118/// ShrinkDemandedConstant - Check to see if the specified operand of the
1119/// specified instruction is a constant integer.  If so, check to see if there
1120/// are any bits set in the constant that are not demanded.  If so, shrink the
1121/// constant and return true.
1122bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
1123                                                        const APInt &Demanded) {
1124  DebugLoc dl = Op.getDebugLoc();
1125
1126  // FIXME: ISD::SELECT, ISD::SELECT_CC
1127  switch (Op.getOpcode()) {
1128  default: break;
1129  case ISD::XOR:
1130  case ISD::AND:
1131  case ISD::OR: {
1132    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1133    if (!C) return false;
1134
1135    if (Op.getOpcode() == ISD::XOR &&
1136        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
1137      return false;
1138
1139    // if we can expand it to have all bits set, do it
1140    if (C->getAPIntValue().intersects(~Demanded)) {
1141      EVT VT = Op.getValueType();
1142      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
1143                                DAG.getConstant(Demanded &
1144                                                C->getAPIntValue(),
1145                                                VT));
1146      return CombineTo(Op, New);
1147    }
1148
1149    break;
1150  }
1151  }
1152
1153  return false;
1154}
1155
1156/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
1157/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
1158/// cast, but it could be generalized for targets with other types of
1159/// implicit widening casts.
1160bool
1161TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
1162                                                    unsigned BitWidth,
1163                                                    const APInt &Demanded,
1164                                                    DebugLoc dl) {
1165  assert(Op.getNumOperands() == 2 &&
1166         "ShrinkDemandedOp only supports binary operators!");
1167  assert(Op.getNode()->getNumValues() == 1 &&
1168         "ShrinkDemandedOp only supports nodes with one result!");
1169
1170  // Don't do this if the node has another user, which may require the
1171  // full value.
1172  if (!Op.getNode()->hasOneUse())
1173    return false;
1174
1175  // Search for the smallest integer type with free casts to and from
1176  // Op's type. For expedience, just check power-of-2 integer types.
1177  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1178  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
1179  if (!isPowerOf2_32(SmallVTBits))
1180    SmallVTBits = NextPowerOf2(SmallVTBits);
1181  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1182    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
1183    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
1184        TLI.isZExtFree(SmallVT, Op.getValueType())) {
1185      // We found a type with free casts.
1186      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
1187                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1188                                          Op.getNode()->getOperand(0)),
1189                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1190                                          Op.getNode()->getOperand(1)));
1191      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
1192      return CombineTo(Op, Z);
1193    }
1194  }
1195  return false;
1196}
1197
1198/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
1199/// DemandedMask bits of the result of Op are ever used downstream.  If we can
1200/// use this information to simplify Op, create a new simplified DAG node and
1201/// return true, returning the original and new nodes in Old and New. Otherwise,
1202/// analyze the expression and return a mask of KnownOne and KnownZero bits for
1203/// the expression (used to simplify the caller).  The KnownZero/One bits may
1204/// only be accurate for those bits in the DemandedMask.
1205bool TargetLowering::SimplifyDemandedBits(SDValue Op,
1206                                          const APInt &DemandedMask,
1207                                          APInt &KnownZero,
1208                                          APInt &KnownOne,
1209                                          TargetLoweringOpt &TLO,
1210                                          unsigned Depth) const {
1211  unsigned BitWidth = DemandedMask.getBitWidth();
1212  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
1213         "Mask size mismatches value type size!");
1214  APInt NewMask = DemandedMask;
1215  DebugLoc dl = Op.getDebugLoc();
1216
1217  // Don't know anything.
1218  KnownZero = KnownOne = APInt(BitWidth, 0);
1219
1220  // Other users may use these bits.
1221  if (!Op.getNode()->hasOneUse()) {
1222    if (Depth != 0) {
1223      // If not at the root, Just compute the KnownZero/KnownOne bits to
1224      // simplify things downstream.
1225      TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
1226      return false;
1227    }
1228    // If this is the root being simplified, allow it to have multiple uses,
1229    // just set the NewMask to all bits.
1230    NewMask = APInt::getAllOnesValue(BitWidth);
1231  } else if (DemandedMask == 0) {
1232    // Not demanding any bits from Op.
1233    if (Op.getOpcode() != ISD::UNDEF)
1234      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
1235    return false;
1236  } else if (Depth == 6) {        // Limit search depth.
1237    return false;
1238  }
1239
1240  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
1241  switch (Op.getOpcode()) {
1242  case ISD::Constant:
1243    // We know all of the bits for a constant!
1244    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
1245    KnownZero = ~KnownOne;
1246    return false;   // Don't fall through, will infinitely loop.
1247  case ISD::AND:
1248    // If the RHS is a constant, check to see if the LHS would be zero without
1249    // using the bits from the RHS.  Below, we use knowledge about the RHS to
1250    // simplify the LHS, here we're using information from the LHS to simplify
1251    // the RHS.
1252    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1253      APInt LHSZero, LHSOne;
1254      // Do not increment Depth here; that can cause an infinite loop.
1255      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), LHSZero, LHSOne, Depth);
1256      // If the LHS already has zeros where RHSC does, this and is dead.
1257      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1258        return TLO.CombineTo(Op, Op.getOperand(0));
1259      // If any of the set bits in the RHS are known zero on the LHS, shrink
1260      // the constant.
1261      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1262        return true;
1263    }
1264
1265    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1266                             KnownOne, TLO, Depth+1))
1267      return true;
1268    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1269    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1270                             KnownZero2, KnownOne2, TLO, Depth+1))
1271      return true;
1272    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1273
1274    // If all of the demanded bits are known one on one side, return the other.
1275    // These bits cannot contribute to the result of the 'and'.
1276    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1277      return TLO.CombineTo(Op, Op.getOperand(0));
1278    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1279      return TLO.CombineTo(Op, Op.getOperand(1));
1280    // If all of the demanded bits in the inputs are known zeros, return zero.
1281    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1282      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1283    // If the RHS is a constant, see if we can simplify it.
1284    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1285      return true;
1286    // If the operation can be done in a smaller type, do so.
1287    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1288      return true;
1289
1290    // Output known-1 bits are only known if set in both the LHS & RHS.
1291    KnownOne &= KnownOne2;
1292    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1293    KnownZero |= KnownZero2;
1294    break;
1295  case ISD::OR:
1296    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1297                             KnownOne, TLO, Depth+1))
1298      return true;
1299    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1300    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1301                             KnownZero2, KnownOne2, TLO, Depth+1))
1302      return true;
1303    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1304
1305    // If all of the demanded bits are known zero on one side, return the other.
1306    // These bits cannot contribute to the result of the 'or'.
1307    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1308      return TLO.CombineTo(Op, Op.getOperand(0));
1309    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1310      return TLO.CombineTo(Op, Op.getOperand(1));
1311    // If all of the potentially set bits on one side are known to be set on
1312    // the other side, just use the 'other' side.
1313    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1314      return TLO.CombineTo(Op, Op.getOperand(0));
1315    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1316      return TLO.CombineTo(Op, Op.getOperand(1));
1317    // If the RHS is a constant, see if we can simplify it.
1318    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1319      return true;
1320    // If the operation can be done in a smaller type, do so.
1321    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1322      return true;
1323
1324    // Output known-0 bits are only known if clear in both the LHS & RHS.
1325    KnownZero &= KnownZero2;
1326    // Output known-1 are known to be set if set in either the LHS | RHS.
1327    KnownOne |= KnownOne2;
1328    break;
1329  case ISD::XOR:
1330    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1331                             KnownOne, TLO, Depth+1))
1332      return true;
1333    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1334    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1335                             KnownOne2, TLO, Depth+1))
1336      return true;
1337    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1338
1339    // If all of the demanded bits are known zero on one side, return the other.
1340    // These bits cannot contribute to the result of the 'xor'.
1341    if ((KnownZero & NewMask) == NewMask)
1342      return TLO.CombineTo(Op, Op.getOperand(0));
1343    if ((KnownZero2 & NewMask) == NewMask)
1344      return TLO.CombineTo(Op, Op.getOperand(1));
1345    // If the operation can be done in a smaller type, do so.
1346    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1347      return true;
1348
1349    // If all of the unknown bits are known to be zero on one side or the other
1350    // (but not both) turn this into an *inclusive* or.
1351    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1352    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1353      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1354                                               Op.getOperand(0),
1355                                               Op.getOperand(1)));
1356
1357    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1358    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1359    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1360    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1361
1362    // If all of the demanded bits on one side are known, and all of the set
1363    // bits on that side are also known to be set on the other side, turn this
1364    // into an AND, as we know the bits will be cleared.
1365    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1366    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1367      if ((KnownOne & KnownOne2) == KnownOne) {
1368        EVT VT = Op.getValueType();
1369        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1370        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1371                                                 Op.getOperand(0), ANDC));
1372      }
1373    }
1374
1375    // If the RHS is a constant, see if we can simplify it.
1376    // for XOR, we prefer to force bits to 1 if they will make a -1.
1377    // if we can't force bits, try to shrink constant
1378    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1379      APInt Expanded = C->getAPIntValue() | (~NewMask);
1380      // if we can expand it to have all bits set, do it
1381      if (Expanded.isAllOnesValue()) {
1382        if (Expanded != C->getAPIntValue()) {
1383          EVT VT = Op.getValueType();
1384          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1385                                          TLO.DAG.getConstant(Expanded, VT));
1386          return TLO.CombineTo(Op, New);
1387        }
1388        // if it already has all the bits set, nothing to change
1389        // but don't shrink either!
1390      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1391        return true;
1392      }
1393    }
1394
1395    KnownZero = KnownZeroOut;
1396    KnownOne  = KnownOneOut;
1397    break;
1398  case ISD::SELECT:
1399    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1400                             KnownOne, TLO, Depth+1))
1401      return true;
1402    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1403                             KnownOne2, TLO, Depth+1))
1404      return true;
1405    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1406    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1407
1408    // If the operands are constants, see if we can simplify them.
1409    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1410      return true;
1411
1412    // Only known if known in both the LHS and RHS.
1413    KnownOne &= KnownOne2;
1414    KnownZero &= KnownZero2;
1415    break;
1416  case ISD::SELECT_CC:
1417    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1418                             KnownOne, TLO, Depth+1))
1419      return true;
1420    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1421                             KnownOne2, TLO, Depth+1))
1422      return true;
1423    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1424    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1425
1426    // If the operands are constants, see if we can simplify them.
1427    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1428      return true;
1429
1430    // Only known if known in both the LHS and RHS.
1431    KnownOne &= KnownOne2;
1432    KnownZero &= KnownZero2;
1433    break;
1434  case ISD::SHL:
1435    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1436      unsigned ShAmt = SA->getZExtValue();
1437      SDValue InOp = Op.getOperand(0);
1438
1439      // If the shift count is an invalid immediate, don't do anything.
1440      if (ShAmt >= BitWidth)
1441        break;
1442
1443      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1444      // single shift.  We can do this if the bottom bits (which are shifted
1445      // out) are never demanded.
1446      if (InOp.getOpcode() == ISD::SRL &&
1447          isa<ConstantSDNode>(InOp.getOperand(1))) {
1448        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1449          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1450          unsigned Opc = ISD::SHL;
1451          int Diff = ShAmt-C1;
1452          if (Diff < 0) {
1453            Diff = -Diff;
1454            Opc = ISD::SRL;
1455          }
1456
1457          SDValue NewSA =
1458            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1459          EVT VT = Op.getValueType();
1460          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1461                                                   InOp.getOperand(0), NewSA));
1462        }
1463      }
1464
1465      if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
1466                               KnownZero, KnownOne, TLO, Depth+1))
1467        return true;
1468
1469      // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1470      // are not demanded. This will likely allow the anyext to be folded away.
1471      if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
1472        SDValue InnerOp = InOp.getNode()->getOperand(0);
1473        EVT InnerVT = InnerOp.getValueType();
1474        unsigned InnerBits = InnerVT.getSizeInBits();
1475        if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
1476            isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1477          EVT ShTy = getShiftAmountTy(InnerVT);
1478          if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1479            ShTy = InnerVT;
1480          SDValue NarrowShl =
1481            TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1482                            TLO.DAG.getConstant(ShAmt, ShTy));
1483          return
1484            TLO.CombineTo(Op,
1485                          TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
1486                                          NarrowShl));
1487        }
1488      }
1489
1490      KnownZero <<= SA->getZExtValue();
1491      KnownOne  <<= SA->getZExtValue();
1492      // low bits known zero.
1493      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1494    }
1495    break;
1496  case ISD::SRL:
1497    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1498      EVT VT = Op.getValueType();
1499      unsigned ShAmt = SA->getZExtValue();
1500      unsigned VTSize = VT.getSizeInBits();
1501      SDValue InOp = Op.getOperand(0);
1502
1503      // If the shift count is an invalid immediate, don't do anything.
1504      if (ShAmt >= BitWidth)
1505        break;
1506
1507      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1508      // single shift.  We can do this if the top bits (which are shifted out)
1509      // are never demanded.
1510      if (InOp.getOpcode() == ISD::SHL &&
1511          isa<ConstantSDNode>(InOp.getOperand(1))) {
1512        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1513          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1514          unsigned Opc = ISD::SRL;
1515          int Diff = ShAmt-C1;
1516          if (Diff < 0) {
1517            Diff = -Diff;
1518            Opc = ISD::SHL;
1519          }
1520
1521          SDValue NewSA =
1522            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1523          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1524                                                   InOp.getOperand(0), NewSA));
1525        }
1526      }
1527
1528      // Compute the new bits that are at the top now.
1529      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1530                               KnownZero, KnownOne, TLO, Depth+1))
1531        return true;
1532      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1533      KnownZero = KnownZero.lshr(ShAmt);
1534      KnownOne  = KnownOne.lshr(ShAmt);
1535
1536      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1537      KnownZero |= HighBits;  // High bits known zero.
1538    }
1539    break;
1540  case ISD::SRA:
1541    // If this is an arithmetic shift right and only the low-bit is set, we can
1542    // always convert this into a logical shr, even if the shift amount is
1543    // variable.  The low bit of the shift cannot be an input sign bit unless
1544    // the shift amount is >= the size of the datatype, which is undefined.
1545    if (NewMask == 1)
1546      return TLO.CombineTo(Op,
1547                           TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1548                                           Op.getOperand(0), Op.getOperand(1)));
1549
1550    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1551      EVT VT = Op.getValueType();
1552      unsigned ShAmt = SA->getZExtValue();
1553
1554      // If the shift count is an invalid immediate, don't do anything.
1555      if (ShAmt >= BitWidth)
1556        break;
1557
1558      APInt InDemandedMask = (NewMask << ShAmt);
1559
1560      // If any of the demanded bits are produced by the sign extension, we also
1561      // demand the input sign bit.
1562      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1563      if (HighBits.intersects(NewMask))
1564        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1565
1566      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1567                               KnownZero, KnownOne, TLO, Depth+1))
1568        return true;
1569      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1570      KnownZero = KnownZero.lshr(ShAmt);
1571      KnownOne  = KnownOne.lshr(ShAmt);
1572
1573      // Handle the sign bit, adjusted to where it is now in the mask.
1574      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1575
1576      // If the input sign bit is known to be zero, or if none of the top bits
1577      // are demanded, turn this into an unsigned shift right.
1578      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1579        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1580                                                 Op.getOperand(0),
1581                                                 Op.getOperand(1)));
1582      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1583        KnownOne |= HighBits;
1584      }
1585    }
1586    break;
1587  case ISD::SIGN_EXTEND_INREG: {
1588    EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1589
1590    APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
1591    // If we only care about the highest bit, don't bother shifting right.
1592    if (MsbMask == DemandedMask) {
1593      unsigned ShAmt = ExVT.getScalarType().getSizeInBits();
1594      SDValue InOp = Op.getOperand(0);
1595
1596      // Compute the correct shift amount type, which must be getShiftAmountTy
1597      // for scalar types after legalization.
1598      EVT ShiftAmtTy = Op.getValueType();
1599      if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1600        ShiftAmtTy = getShiftAmountTy(ShiftAmtTy);
1601
1602      SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy);
1603      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1604                                            Op.getValueType(), InOp, ShiftAmt));
1605    }
1606
1607    // Sign extension.  Compute the demanded bits in the result that are not
1608    // present in the input.
1609    APInt NewBits =
1610      APInt::getHighBitsSet(BitWidth,
1611                            BitWidth - ExVT.getScalarType().getSizeInBits());
1612
1613    // If none of the extended bits are demanded, eliminate the sextinreg.
1614    if ((NewBits & NewMask) == 0)
1615      return TLO.CombineTo(Op, Op.getOperand(0));
1616
1617    APInt InSignBit =
1618      APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth);
1619    APInt InputDemandedBits =
1620      APInt::getLowBitsSet(BitWidth,
1621                           ExVT.getScalarType().getSizeInBits()) &
1622      NewMask;
1623
1624    // Since the sign extended bits are demanded, we know that the sign
1625    // bit is demanded.
1626    InputDemandedBits |= InSignBit;
1627
1628    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1629                             KnownZero, KnownOne, TLO, Depth+1))
1630      return true;
1631    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1632
1633    // If the sign bit of the input is known set or clear, then we know the
1634    // top bits of the result.
1635
1636    // If the input sign bit is known zero, convert this into a zero extension.
1637    if (KnownZero.intersects(InSignBit))
1638      return TLO.CombineTo(Op,
1639                          TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT));
1640
1641    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1642      KnownOne |= NewBits;
1643      KnownZero &= ~NewBits;
1644    } else {                       // Input sign bit unknown
1645      KnownZero &= ~NewBits;
1646      KnownOne &= ~NewBits;
1647    }
1648    break;
1649  }
1650  case ISD::ZERO_EXTEND: {
1651    unsigned OperandBitWidth =
1652      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1653    APInt InMask = NewMask.trunc(OperandBitWidth);
1654
1655    // If none of the top bits are demanded, convert this into an any_extend.
1656    APInt NewBits =
1657      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1658    if (!NewBits.intersects(NewMask))
1659      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1660                                               Op.getValueType(),
1661                                               Op.getOperand(0)));
1662
1663    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1664                             KnownZero, KnownOne, TLO, Depth+1))
1665      return true;
1666    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1667    KnownZero = KnownZero.zext(BitWidth);
1668    KnownOne = KnownOne.zext(BitWidth);
1669    KnownZero |= NewBits;
1670    break;
1671  }
1672  case ISD::SIGN_EXTEND: {
1673    EVT InVT = Op.getOperand(0).getValueType();
1674    unsigned InBits = InVT.getScalarType().getSizeInBits();
1675    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1676    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1677    APInt NewBits   = ~InMask & NewMask;
1678
1679    // If none of the top bits are demanded, convert this into an any_extend.
1680    if (NewBits == 0)
1681      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1682                                              Op.getValueType(),
1683                                              Op.getOperand(0)));
1684
1685    // Since some of the sign extended bits are demanded, we know that the sign
1686    // bit is demanded.
1687    APInt InDemandedBits = InMask & NewMask;
1688    InDemandedBits |= InSignBit;
1689    InDemandedBits = InDemandedBits.trunc(InBits);
1690
1691    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1692                             KnownOne, TLO, Depth+1))
1693      return true;
1694    KnownZero = KnownZero.zext(BitWidth);
1695    KnownOne = KnownOne.zext(BitWidth);
1696
1697    // If the sign bit is known zero, convert this to a zero extend.
1698    if (KnownZero.intersects(InSignBit))
1699      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1700                                               Op.getValueType(),
1701                                               Op.getOperand(0)));
1702
1703    // If the sign bit is known one, the top bits match.
1704    if (KnownOne.intersects(InSignBit)) {
1705      KnownOne |= NewBits;
1706      assert((KnownZero & NewBits) == 0);
1707    } else {   // Otherwise, top bits aren't known.
1708      assert((KnownOne & NewBits) == 0);
1709      assert((KnownZero & NewBits) == 0);
1710    }
1711    break;
1712  }
1713  case ISD::ANY_EXTEND: {
1714    unsigned OperandBitWidth =
1715      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1716    APInt InMask = NewMask.trunc(OperandBitWidth);
1717    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1718                             KnownZero, KnownOne, TLO, Depth+1))
1719      return true;
1720    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1721    KnownZero = KnownZero.zext(BitWidth);
1722    KnownOne = KnownOne.zext(BitWidth);
1723    break;
1724  }
1725  case ISD::TRUNCATE: {
1726    // Simplify the input, using demanded bit information, and compute the known
1727    // zero/one bits live out.
1728    unsigned OperandBitWidth =
1729      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1730    APInt TruncMask = NewMask.zext(OperandBitWidth);
1731    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1732                             KnownZero, KnownOne, TLO, Depth+1))
1733      return true;
1734    KnownZero = KnownZero.trunc(BitWidth);
1735    KnownOne = KnownOne.trunc(BitWidth);
1736
1737    // If the input is only used by this truncate, see if we can shrink it based
1738    // on the known demanded bits.
1739    if (Op.getOperand(0).getNode()->hasOneUse()) {
1740      SDValue In = Op.getOperand(0);
1741      switch (In.getOpcode()) {
1742      default: break;
1743      case ISD::SRL:
1744        // Shrink SRL by a constant if none of the high bits shifted in are
1745        // demanded.
1746        if (TLO.LegalTypes() &&
1747            !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1748          // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1749          // undesirable.
1750          break;
1751        ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1752        if (!ShAmt)
1753          break;
1754        SDValue Shift = In.getOperand(1);
1755        if (TLO.LegalTypes()) {
1756          uint64_t ShVal = ShAmt->getZExtValue();
1757          Shift =
1758            TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType()));
1759        }
1760
1761        APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1762                                               OperandBitWidth - BitWidth);
1763        HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
1764
1765        if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1766          // None of the shifted in bits are needed.  Add a truncate of the
1767          // shift input, then shift it.
1768          SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1769                                             Op.getValueType(),
1770                                             In.getOperand(0));
1771          return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1772                                                   Op.getValueType(),
1773                                                   NewTrunc,
1774                                                   Shift));
1775        }
1776        break;
1777      }
1778    }
1779
1780    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1781    break;
1782  }
1783  case ISD::AssertZext: {
1784    // AssertZext demands all of the high bits, plus any of the low bits
1785    // demanded by its users.
1786    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1787    APInt InMask = APInt::getLowBitsSet(BitWidth,
1788                                        VT.getSizeInBits());
1789    if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
1790                             KnownZero, KnownOne, TLO, Depth+1))
1791      return true;
1792    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1793
1794    KnownZero |= ~InMask & NewMask;
1795    break;
1796  }
1797  case ISD::BITCAST:
1798    // If this is an FP->Int bitcast and if the sign bit is the only
1799    // thing demanded, turn this into a FGETSIGN.
1800    if (!TLO.LegalOperations() &&
1801        !Op.getValueType().isVector() &&
1802        !Op.getOperand(0).getValueType().isVector() &&
1803        NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
1804        Op.getOperand(0).getValueType().isFloatingPoint()) {
1805      bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
1806      bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1807      if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) {
1808        EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
1809        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1810        // place.  We expect the SHL to be eliminated by other optimizations.
1811        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
1812        unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
1813        if (!OpVTLegal && OpVTSizeInBits > 32)
1814          Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
1815        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1816        SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType());
1817        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1818                                                 Op.getValueType(),
1819                                                 Sign, ShAmt));
1820      }
1821    }
1822    break;
1823  case ISD::ADD:
1824  case ISD::MUL:
1825  case ISD::SUB: {
1826    // Add, Sub, and Mul don't demand any bits in positions beyond that
1827    // of the highest bit demanded of them.
1828    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1829                                        BitWidth - NewMask.countLeadingZeros());
1830    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1831                             KnownOne2, TLO, Depth+1))
1832      return true;
1833    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1834                             KnownOne2, TLO, Depth+1))
1835      return true;
1836    // See if the operation should be performed at a smaller bit width.
1837    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1838      return true;
1839  }
1840  // FALL THROUGH
1841  default:
1842    // Just use ComputeMaskedBits to compute output bits.
1843    TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
1844    break;
1845  }
1846
1847  // If we know the value of all of the demanded bits, return this as a
1848  // constant.
1849  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1850    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1851
1852  return false;
1853}
1854
1855/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1856/// in Mask are known to be either zero or one and return them in the
1857/// KnownZero/KnownOne bitsets.
1858void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1859                                                    APInt &KnownZero,
1860                                                    APInt &KnownOne,
1861                                                    const SelectionDAG &DAG,
1862                                                    unsigned Depth) const {
1863  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1864          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1865          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1866          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1867         "Should use MaskedValueIsZero if you don't know whether Op"
1868         " is a target node!");
1869  KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
1870}
1871
1872/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1873/// targets that want to expose additional information about sign bits to the
1874/// DAG Combiner.
1875unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1876                                                         unsigned Depth) const {
1877  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1878          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1879          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1880          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1881         "Should use ComputeNumSignBits if you don't know whether Op"
1882         " is a target node!");
1883  return 1;
1884}
1885
1886/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1887/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1888/// determine which bit is set.
1889///
1890static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1891  // A left-shift of a constant one will have exactly one bit set, because
1892  // shifting the bit off the end is undefined.
1893  if (Val.getOpcode() == ISD::SHL)
1894    if (ConstantSDNode *C =
1895         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1896      if (C->getAPIntValue() == 1)
1897        return true;
1898
1899  // Similarly, a right-shift of a constant sign-bit will have exactly
1900  // one bit set.
1901  if (Val.getOpcode() == ISD::SRL)
1902    if (ConstantSDNode *C =
1903         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1904      if (C->getAPIntValue().isSignBit())
1905        return true;
1906
1907  // More could be done here, though the above checks are enough
1908  // to handle some common cases.
1909
1910  // Fall back to ComputeMaskedBits to catch other known cases.
1911  EVT OpVT = Val.getValueType();
1912  unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1913  APInt KnownZero, KnownOne;
1914  DAG.ComputeMaskedBits(Val, KnownZero, KnownOne);
1915  return (KnownZero.countPopulation() == BitWidth - 1) &&
1916         (KnownOne.countPopulation() == 1);
1917}
1918
1919/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1920/// and cc. If it is unable to simplify it, return a null SDValue.
1921SDValue
1922TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1923                              ISD::CondCode Cond, bool foldBooleans,
1924                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1925  SelectionDAG &DAG = DCI.DAG;
1926
1927  // These setcc operations always fold.
1928  switch (Cond) {
1929  default: break;
1930  case ISD::SETFALSE:
1931  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1932  case ISD::SETTRUE:
1933  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1934  }
1935
1936  // Ensure that the constant occurs on the RHS, and fold constant
1937  // comparisons.
1938  if (isa<ConstantSDNode>(N0.getNode()))
1939    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1940
1941  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1942    const APInt &C1 = N1C->getAPIntValue();
1943
1944    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1945    // equality comparison, then we're just comparing whether X itself is
1946    // zero.
1947    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1948        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1949        N0.getOperand(1).getOpcode() == ISD::Constant) {
1950      const APInt &ShAmt
1951        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1952      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1953          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1954        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1955          // (srl (ctlz x), 5) == 0  -> X != 0
1956          // (srl (ctlz x), 5) != 1  -> X != 0
1957          Cond = ISD::SETNE;
1958        } else {
1959          // (srl (ctlz x), 5) != 0  -> X == 0
1960          // (srl (ctlz x), 5) == 1  -> X == 0
1961          Cond = ISD::SETEQ;
1962        }
1963        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1964        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1965                            Zero, Cond);
1966      }
1967    }
1968
1969    SDValue CTPOP = N0;
1970    // Look through truncs that don't change the value of a ctpop.
1971    if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1972      CTPOP = N0.getOperand(0);
1973
1974    if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1975        (N0 == CTPOP || N0.getValueType().getSizeInBits() >
1976                        Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
1977      EVT CTVT = CTPOP.getValueType();
1978      SDValue CTOp = CTPOP.getOperand(0);
1979
1980      // (ctpop x) u< 2 -> (x & x-1) == 0
1981      // (ctpop x) u> 1 -> (x & x-1) != 0
1982      if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1983        SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1984                                  DAG.getConstant(1, CTVT));
1985        SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1986        ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1987        return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC);
1988      }
1989
1990      // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1991    }
1992
1993    // (zext x) == C --> x == (trunc C)
1994    if (DCI.isBeforeLegalize() && N0->hasOneUse() &&
1995        (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1996      unsigned MinBits = N0.getValueSizeInBits();
1997      SDValue PreZExt;
1998      if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1999        // ZExt
2000        MinBits = N0->getOperand(0).getValueSizeInBits();
2001        PreZExt = N0->getOperand(0);
2002      } else if (N0->getOpcode() == ISD::AND) {
2003        // DAGCombine turns costly ZExts into ANDs
2004        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
2005          if ((C->getAPIntValue()+1).isPowerOf2()) {
2006            MinBits = C->getAPIntValue().countTrailingOnes();
2007            PreZExt = N0->getOperand(0);
2008          }
2009      } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) {
2010        // ZEXTLOAD
2011        if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
2012          MinBits = LN0->getMemoryVT().getSizeInBits();
2013          PreZExt = N0;
2014        }
2015      }
2016
2017      // Make sure we're not loosing bits from the constant.
2018      if (MinBits < C1.getBitWidth() && MinBits > C1.getActiveBits()) {
2019        EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
2020        if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
2021          // Will get folded away.
2022          SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt);
2023          SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT);
2024          return DAG.getSetCC(dl, VT, Trunc, C, Cond);
2025        }
2026      }
2027    }
2028
2029    // If the LHS is '(and load, const)', the RHS is 0,
2030    // the test is for equality or unsigned, and all 1 bits of the const are
2031    // in the same partial word, see if we can shorten the load.
2032    if (DCI.isBeforeLegalize() &&
2033        N0.getOpcode() == ISD::AND && C1 == 0 &&
2034        N0.getNode()->hasOneUse() &&
2035        isa<LoadSDNode>(N0.getOperand(0)) &&
2036        N0.getOperand(0).getNode()->hasOneUse() &&
2037        isa<ConstantSDNode>(N0.getOperand(1))) {
2038      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
2039      APInt bestMask;
2040      unsigned bestWidth = 0, bestOffset = 0;
2041      if (!Lod->isVolatile() && Lod->isUnindexed()) {
2042        unsigned origWidth = N0.getValueType().getSizeInBits();
2043        unsigned maskWidth = origWidth;
2044        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
2045        // 8 bits, but have to be careful...
2046        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
2047          origWidth = Lod->getMemoryVT().getSizeInBits();
2048        const APInt &Mask =
2049          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2050        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
2051          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
2052          for (unsigned offset=0; offset<origWidth/width; offset++) {
2053            if ((newMask & Mask) == Mask) {
2054              if (!TD->isLittleEndian())
2055                bestOffset = (origWidth/width - offset - 1) * (width/8);
2056              else
2057                bestOffset = (uint64_t)offset * (width/8);
2058              bestMask = Mask.lshr(offset * (width/8) * 8);
2059              bestWidth = width;
2060              break;
2061            }
2062            newMask = newMask << width;
2063          }
2064        }
2065      }
2066      if (bestWidth) {
2067        EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
2068        if (newVT.isRound()) {
2069          EVT PtrType = Lod->getOperand(1).getValueType();
2070          SDValue Ptr = Lod->getBasePtr();
2071          if (bestOffset != 0)
2072            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
2073                              DAG.getConstant(bestOffset, PtrType));
2074          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
2075          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
2076                                Lod->getPointerInfo().getWithOffset(bestOffset),
2077                                        false, false, false, NewAlign);
2078          return DAG.getSetCC(dl, VT,
2079                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
2080                                      DAG.getConstant(bestMask.trunc(bestWidth),
2081                                                      newVT)),
2082                              DAG.getConstant(0LL, newVT), Cond);
2083        }
2084      }
2085    }
2086
2087    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
2088    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
2089      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
2090
2091      // If the comparison constant has bits in the upper part, the
2092      // zero-extended value could never match.
2093      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
2094                                              C1.getBitWidth() - InSize))) {
2095        switch (Cond) {
2096        case ISD::SETUGT:
2097        case ISD::SETUGE:
2098        case ISD::SETEQ: return DAG.getConstant(0, VT);
2099        case ISD::SETULT:
2100        case ISD::SETULE:
2101        case ISD::SETNE: return DAG.getConstant(1, VT);
2102        case ISD::SETGT:
2103        case ISD::SETGE:
2104          // True if the sign bit of C1 is set.
2105          return DAG.getConstant(C1.isNegative(), VT);
2106        case ISD::SETLT:
2107        case ISD::SETLE:
2108          // True if the sign bit of C1 isn't set.
2109          return DAG.getConstant(C1.isNonNegative(), VT);
2110        default:
2111          break;
2112        }
2113      }
2114
2115      // Otherwise, we can perform the comparison with the low bits.
2116      switch (Cond) {
2117      case ISD::SETEQ:
2118      case ISD::SETNE:
2119      case ISD::SETUGT:
2120      case ISD::SETUGE:
2121      case ISD::SETULT:
2122      case ISD::SETULE: {
2123        EVT newVT = N0.getOperand(0).getValueType();
2124        if (DCI.isBeforeLegalizeOps() ||
2125            (isOperationLegal(ISD::SETCC, newVT) &&
2126              getCondCodeAction(Cond, newVT)==Legal))
2127          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2128                              DAG.getConstant(C1.trunc(InSize), newVT),
2129                              Cond);
2130        break;
2131      }
2132      default:
2133        break;   // todo, be more careful with signed comparisons
2134      }
2135    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2136               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2137      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
2138      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
2139      EVT ExtDstTy = N0.getValueType();
2140      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
2141
2142      // If the constant doesn't fit into the number of bits for the source of
2143      // the sign extension, it is impossible for both sides to be equal.
2144      if (C1.getMinSignedBits() > ExtSrcTyBits)
2145        return DAG.getConstant(Cond == ISD::SETNE, VT);
2146
2147      SDValue ZextOp;
2148      EVT Op0Ty = N0.getOperand(0).getValueType();
2149      if (Op0Ty == ExtSrcTy) {
2150        ZextOp = N0.getOperand(0);
2151      } else {
2152        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
2153        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
2154                              DAG.getConstant(Imm, Op0Ty));
2155      }
2156      if (!DCI.isCalledByLegalizer())
2157        DCI.AddToWorklist(ZextOp.getNode());
2158      // Otherwise, make this a use of a zext.
2159      return DAG.getSetCC(dl, VT, ZextOp,
2160                          DAG.getConstant(C1 & APInt::getLowBitsSet(
2161                                                              ExtDstTyBits,
2162                                                              ExtSrcTyBits),
2163                                          ExtDstTy),
2164                          Cond);
2165    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
2166                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2167      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
2168      if (N0.getOpcode() == ISD::SETCC &&
2169          isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2170        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
2171        if (TrueWhenTrue)
2172          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2173        // Invert the condition.
2174        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2175        CC = ISD::getSetCCInverse(CC,
2176                                  N0.getOperand(0).getValueType().isInteger());
2177        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2178      }
2179
2180      if ((N0.getOpcode() == ISD::XOR ||
2181           (N0.getOpcode() == ISD::AND &&
2182            N0.getOperand(0).getOpcode() == ISD::XOR &&
2183            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2184          isa<ConstantSDNode>(N0.getOperand(1)) &&
2185          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
2186        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
2187        // can only do this if the top bits are known zero.
2188        unsigned BitWidth = N0.getValueSizeInBits();
2189        if (DAG.MaskedValueIsZero(N0,
2190                                  APInt::getHighBitsSet(BitWidth,
2191                                                        BitWidth-1))) {
2192          // Okay, get the un-inverted input value.
2193          SDValue Val;
2194          if (N0.getOpcode() == ISD::XOR)
2195            Val = N0.getOperand(0);
2196          else {
2197            assert(N0.getOpcode() == ISD::AND &&
2198                    N0.getOperand(0).getOpcode() == ISD::XOR);
2199            // ((X^1)&1)^1 -> X & 1
2200            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2201                              N0.getOperand(0).getOperand(0),
2202                              N0.getOperand(1));
2203          }
2204
2205          return DAG.getSetCC(dl, VT, Val, N1,
2206                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2207        }
2208      } else if (N1C->getAPIntValue() == 1 &&
2209                 (VT == MVT::i1 ||
2210                  getBooleanContents(false) == ZeroOrOneBooleanContent)) {
2211        SDValue Op0 = N0;
2212        if (Op0.getOpcode() == ISD::TRUNCATE)
2213          Op0 = Op0.getOperand(0);
2214
2215        if ((Op0.getOpcode() == ISD::XOR) &&
2216            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2217            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2218          // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2219          Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2220          return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2221                              Cond);
2222        } else if (Op0.getOpcode() == ISD::AND &&
2223                isa<ConstantSDNode>(Op0.getOperand(1)) &&
2224                cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
2225          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2226          if (Op0.getValueType().bitsGT(VT))
2227            Op0 = DAG.getNode(ISD::AND, dl, VT,
2228                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2229                          DAG.getConstant(1, VT));
2230          else if (Op0.getValueType().bitsLT(VT))
2231            Op0 = DAG.getNode(ISD::AND, dl, VT,
2232                        DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2233                        DAG.getConstant(1, VT));
2234
2235          return DAG.getSetCC(dl, VT, Op0,
2236                              DAG.getConstant(0, Op0.getValueType()),
2237                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2238        }
2239      }
2240    }
2241
2242    APInt MinVal, MaxVal;
2243    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
2244    if (ISD::isSignedIntSetCC(Cond)) {
2245      MinVal = APInt::getSignedMinValue(OperandBitSize);
2246      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2247    } else {
2248      MinVal = APInt::getMinValue(OperandBitSize);
2249      MaxVal = APInt::getMaxValue(OperandBitSize);
2250    }
2251
2252    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2253    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2254      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
2255      // X >= C0 --> X > (C0-1)
2256      return DAG.getSetCC(dl, VT, N0,
2257                          DAG.getConstant(C1-1, N1.getValueType()),
2258                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
2259    }
2260
2261    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2262      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
2263      // X <= C0 --> X < (C0+1)
2264      return DAG.getSetCC(dl, VT, N0,
2265                          DAG.getConstant(C1+1, N1.getValueType()),
2266                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
2267    }
2268
2269    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
2270      return DAG.getConstant(0, VT);      // X < MIN --> false
2271    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
2272      return DAG.getConstant(1, VT);      // X >= MIN --> true
2273    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
2274      return DAG.getConstant(0, VT);      // X > MAX --> false
2275    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
2276      return DAG.getConstant(1, VT);      // X <= MAX --> true
2277
2278    // Canonicalize setgt X, Min --> setne X, Min
2279    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
2280      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2281    // Canonicalize setlt X, Max --> setne X, Max
2282    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
2283      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2284
2285    // If we have setult X, 1, turn it into seteq X, 0
2286    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
2287      return DAG.getSetCC(dl, VT, N0,
2288                          DAG.getConstant(MinVal, N0.getValueType()),
2289                          ISD::SETEQ);
2290    // If we have setugt X, Max-1, turn it into seteq X, Max
2291    else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
2292      return DAG.getSetCC(dl, VT, N0,
2293                          DAG.getConstant(MaxVal, N0.getValueType()),
2294                          ISD::SETEQ);
2295
2296    // If we have "setcc X, C0", check to see if we can shrink the immediate
2297    // by changing cc.
2298
2299    // SETUGT X, SINTMAX  -> SETLT X, 0
2300    if (Cond == ISD::SETUGT &&
2301        C1 == APInt::getSignedMaxValue(OperandBitSize))
2302      return DAG.getSetCC(dl, VT, N0,
2303                          DAG.getConstant(0, N1.getValueType()),
2304                          ISD::SETLT);
2305
2306    // SETULT X, SINTMIN  -> SETGT X, -1
2307    if (Cond == ISD::SETULT &&
2308        C1 == APInt::getSignedMinValue(OperandBitSize)) {
2309      SDValue ConstMinusOne =
2310          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
2311                          N1.getValueType());
2312      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2313    }
2314
2315    // Fold bit comparisons when we can.
2316    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2317        (VT == N0.getValueType() ||
2318         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2319        N0.getOpcode() == ISD::AND)
2320      if (ConstantSDNode *AndRHS =
2321                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2322        EVT ShiftTy = DCI.isBeforeLegalize() ?
2323          getPointerTy() : getShiftAmountTy(N0.getValueType());
2324        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2325          // Perform the xform if the AND RHS is a single bit.
2326          if (AndRHS->getAPIntValue().isPowerOf2()) {
2327            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2328                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2329                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
2330          }
2331        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2332          // (X & 8) == 8  -->  (X & 8) >> 3
2333          // Perform the xform if C1 is a single bit.
2334          if (C1.isPowerOf2()) {
2335            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2336                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2337                                      DAG.getConstant(C1.logBase2(), ShiftTy)));
2338          }
2339        }
2340      }
2341  }
2342
2343  if (isa<ConstantFPSDNode>(N0.getNode())) {
2344    // Constant fold or commute setcc.
2345    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2346    if (O.getNode()) return O;
2347  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2348    // If the RHS of an FP comparison is a constant, simplify it away in
2349    // some cases.
2350    if (CFP->getValueAPF().isNaN()) {
2351      // If an operand is known to be a nan, we can fold it.
2352      switch (ISD::getUnorderedFlavor(Cond)) {
2353      default: llvm_unreachable("Unknown flavor!");
2354      case 0:  // Known false.
2355        return DAG.getConstant(0, VT);
2356      case 1:  // Known true.
2357        return DAG.getConstant(1, VT);
2358      case 2:  // Undefined.
2359        return DAG.getUNDEF(VT);
2360      }
2361    }
2362
2363    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2364    // constant if knowing that the operand is non-nan is enough.  We prefer to
2365    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2366    // materialize 0.0.
2367    if (Cond == ISD::SETO || Cond == ISD::SETUO)
2368      return DAG.getSetCC(dl, VT, N0, N0, Cond);
2369
2370    // If the condition is not legal, see if we can find an equivalent one
2371    // which is legal.
2372    if (!isCondCodeLegal(Cond, N0.getValueType())) {
2373      // If the comparison was an awkward floating-point == or != and one of
2374      // the comparison operands is infinity or negative infinity, convert the
2375      // condition to a less-awkward <= or >=.
2376      if (CFP->getValueAPF().isInfinity()) {
2377        if (CFP->getValueAPF().isNegative()) {
2378          if (Cond == ISD::SETOEQ &&
2379              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2380            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2381          if (Cond == ISD::SETUEQ &&
2382              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2383            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2384          if (Cond == ISD::SETUNE &&
2385              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2386            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2387          if (Cond == ISD::SETONE &&
2388              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2389            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2390        } else {
2391          if (Cond == ISD::SETOEQ &&
2392              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2393            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2394          if (Cond == ISD::SETUEQ &&
2395              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2396            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2397          if (Cond == ISD::SETUNE &&
2398              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2399            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2400          if (Cond == ISD::SETONE &&
2401              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2402            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2403        }
2404      }
2405    }
2406  }
2407
2408  if (N0 == N1) {
2409    // We can always fold X == X for integer setcc's.
2410    if (N0.getValueType().isInteger()) {
2411      switch (getBooleanContents(N0.getValueType().isVector())) {
2412      case UndefinedBooleanContent:
2413      case ZeroOrOneBooleanContent:
2414        return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2415      case ZeroOrNegativeOneBooleanContent:
2416        return DAG.getConstant(ISD::isTrueWhenEqual(Cond) ? -1 : 0, VT);
2417      }
2418    }
2419    unsigned UOF = ISD::getUnorderedFlavor(Cond);
2420    if (UOF == 2)   // FP operators that are undefined on NaNs.
2421      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2422    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2423      return DAG.getConstant(UOF, VT);
2424    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2425    // if it is not already.
2426    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2427    if (NewCond != Cond)
2428      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2429  }
2430
2431  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2432      N0.getValueType().isInteger()) {
2433    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2434        N0.getOpcode() == ISD::XOR) {
2435      // Simplify (X+Y) == (X+Z) -->  Y == Z
2436      if (N0.getOpcode() == N1.getOpcode()) {
2437        if (N0.getOperand(0) == N1.getOperand(0))
2438          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2439        if (N0.getOperand(1) == N1.getOperand(1))
2440          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2441        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2442          // If X op Y == Y op X, try other combinations.
2443          if (N0.getOperand(0) == N1.getOperand(1))
2444            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2445                                Cond);
2446          if (N0.getOperand(1) == N1.getOperand(0))
2447            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2448                                Cond);
2449        }
2450      }
2451
2452      // If RHS is a legal immediate value for a compare instruction, we need
2453      // to be careful about increasing register pressure needlessly.
2454      bool LegalRHSImm = false;
2455
2456      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2457        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2458          // Turn (X+C1) == C2 --> X == C2-C1
2459          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2460            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2461                                DAG.getConstant(RHSC->getAPIntValue()-
2462                                                LHSR->getAPIntValue(),
2463                                N0.getValueType()), Cond);
2464          }
2465
2466          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2467          if (N0.getOpcode() == ISD::XOR)
2468            // If we know that all of the inverted bits are zero, don't bother
2469            // performing the inversion.
2470            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2471              return
2472                DAG.getSetCC(dl, VT, N0.getOperand(0),
2473                             DAG.getConstant(LHSR->getAPIntValue() ^
2474                                               RHSC->getAPIntValue(),
2475                                             N0.getValueType()),
2476                             Cond);
2477        }
2478
2479        // Turn (C1-X) == C2 --> X == C1-C2
2480        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2481          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2482            return
2483              DAG.getSetCC(dl, VT, N0.getOperand(1),
2484                           DAG.getConstant(SUBC->getAPIntValue() -
2485                                             RHSC->getAPIntValue(),
2486                                           N0.getValueType()),
2487                           Cond);
2488          }
2489        }
2490
2491        // Could RHSC fold directly into a compare?
2492        if (RHSC->getValueType(0).getSizeInBits() <= 64)
2493          LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
2494      }
2495
2496      // Simplify (X+Z) == X -->  Z == 0
2497      // Don't do this if X is an immediate that can fold into a cmp
2498      // instruction and X+Z has other uses. It could be an induction variable
2499      // chain, and the transform would increase register pressure.
2500      if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
2501        if (N0.getOperand(0) == N1)
2502          return DAG.getSetCC(dl, VT, N0.getOperand(1),
2503                              DAG.getConstant(0, N0.getValueType()), Cond);
2504        if (N0.getOperand(1) == N1) {
2505          if (DAG.isCommutativeBinOp(N0.getOpcode()))
2506            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2507                                DAG.getConstant(0, N0.getValueType()), Cond);
2508          else if (N0.getNode()->hasOneUse()) {
2509            assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2510            // (Z-X) == X  --> Z == X<<1
2511            SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N1,
2512                       DAG.getConstant(1, getShiftAmountTy(N1.getValueType())));
2513            if (!DCI.isCalledByLegalizer())
2514              DCI.AddToWorklist(SH.getNode());
2515            return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2516          }
2517        }
2518      }
2519    }
2520
2521    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2522        N1.getOpcode() == ISD::XOR) {
2523      // Simplify  X == (X+Z) -->  Z == 0
2524      if (N1.getOperand(0) == N0) {
2525        return DAG.getSetCC(dl, VT, N1.getOperand(1),
2526                        DAG.getConstant(0, N1.getValueType()), Cond);
2527      } else if (N1.getOperand(1) == N0) {
2528        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2529          return DAG.getSetCC(dl, VT, N1.getOperand(0),
2530                          DAG.getConstant(0, N1.getValueType()), Cond);
2531        } else if (N1.getNode()->hasOneUse()) {
2532          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2533          // X == (Z-X)  --> X<<1 == Z
2534          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2535                       DAG.getConstant(1, getShiftAmountTy(N0.getValueType())));
2536          if (!DCI.isCalledByLegalizer())
2537            DCI.AddToWorklist(SH.getNode());
2538          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2539        }
2540      }
2541    }
2542
2543    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2544    // Note that where y is variable and is known to have at most
2545    // one bit set (for example, if it is z&1) we cannot do this;
2546    // the expressions are not equivalent when y==0.
2547    if (N0.getOpcode() == ISD::AND)
2548      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2549        if (ValueHasExactlyOneBitSet(N1, DAG)) {
2550          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2551          SDValue Zero = DAG.getConstant(0, N1.getValueType());
2552          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2553        }
2554      }
2555    if (N1.getOpcode() == ISD::AND)
2556      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2557        if (ValueHasExactlyOneBitSet(N0, DAG)) {
2558          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2559          SDValue Zero = DAG.getConstant(0, N0.getValueType());
2560          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2561        }
2562      }
2563  }
2564
2565  // Fold away ALL boolean setcc's.
2566  SDValue Temp;
2567  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2568    switch (Cond) {
2569    default: llvm_unreachable("Unknown integer setcc!");
2570    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2571      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2572      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2573      if (!DCI.isCalledByLegalizer())
2574        DCI.AddToWorklist(Temp.getNode());
2575      break;
2576    case ISD::SETNE:  // X != Y   -->  (X^Y)
2577      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2578      break;
2579    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2580    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2581      Temp = DAG.getNOT(dl, N0, MVT::i1);
2582      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2583      if (!DCI.isCalledByLegalizer())
2584        DCI.AddToWorklist(Temp.getNode());
2585      break;
2586    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2587    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2588      Temp = DAG.getNOT(dl, N1, MVT::i1);
2589      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2590      if (!DCI.isCalledByLegalizer())
2591        DCI.AddToWorklist(Temp.getNode());
2592      break;
2593    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2594    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2595      Temp = DAG.getNOT(dl, N0, MVT::i1);
2596      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2597      if (!DCI.isCalledByLegalizer())
2598        DCI.AddToWorklist(Temp.getNode());
2599      break;
2600    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2601    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2602      Temp = DAG.getNOT(dl, N1, MVT::i1);
2603      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2604      break;
2605    }
2606    if (VT != MVT::i1) {
2607      if (!DCI.isCalledByLegalizer())
2608        DCI.AddToWorklist(N0.getNode());
2609      // FIXME: If running after legalize, we probably can't do this.
2610      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2611    }
2612    return N0;
2613  }
2614
2615  // Could not fold it.
2616  return SDValue();
2617}
2618
2619/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2620/// node is a GlobalAddress + offset.
2621bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2622                                    int64_t &Offset) const {
2623  if (isa<GlobalAddressSDNode>(N)) {
2624    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2625    GA = GASD->getGlobal();
2626    Offset += GASD->getOffset();
2627    return true;
2628  }
2629
2630  if (N->getOpcode() == ISD::ADD) {
2631    SDValue N1 = N->getOperand(0);
2632    SDValue N2 = N->getOperand(1);
2633    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2634      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2635      if (V) {
2636        Offset += V->getSExtValue();
2637        return true;
2638      }
2639    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2640      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2641      if (V) {
2642        Offset += V->getSExtValue();
2643        return true;
2644      }
2645    }
2646  }
2647
2648  return false;
2649}
2650
2651
2652SDValue TargetLowering::
2653PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2654  // Default implementation: no optimization.
2655  return SDValue();
2656}
2657
2658//===----------------------------------------------------------------------===//
2659//  Inline Assembler Implementation Methods
2660//===----------------------------------------------------------------------===//
2661
2662
2663TargetLowering::ConstraintType
2664TargetLowering::getConstraintType(const std::string &Constraint) const {
2665  if (Constraint.size() == 1) {
2666    switch (Constraint[0]) {
2667    default: break;
2668    case 'r': return C_RegisterClass;
2669    case 'm':    // memory
2670    case 'o':    // offsetable
2671    case 'V':    // not offsetable
2672      return C_Memory;
2673    case 'i':    // Simple Integer or Relocatable Constant
2674    case 'n':    // Simple Integer
2675    case 'E':    // Floating Point Constant
2676    case 'F':    // Floating Point Constant
2677    case 's':    // Relocatable Constant
2678    case 'p':    // Address.
2679    case 'X':    // Allow ANY value.
2680    case 'I':    // Target registers.
2681    case 'J':
2682    case 'K':
2683    case 'L':
2684    case 'M':
2685    case 'N':
2686    case 'O':
2687    case 'P':
2688    case '<':
2689    case '>':
2690      return C_Other;
2691    }
2692  }
2693
2694  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2695      Constraint[Constraint.size()-1] == '}')
2696    return C_Register;
2697  return C_Unknown;
2698}
2699
2700/// LowerXConstraint - try to replace an X constraint, which matches anything,
2701/// with another that has more specific requirements based on the type of the
2702/// corresponding operand.
2703const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2704  if (ConstraintVT.isInteger())
2705    return "r";
2706  if (ConstraintVT.isFloatingPoint())
2707    return "f";      // works for many targets
2708  return 0;
2709}
2710
2711/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2712/// vector.  If it is invalid, don't add anything to Ops.
2713void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2714                                                  std::string &Constraint,
2715                                                  std::vector<SDValue> &Ops,
2716                                                  SelectionDAG &DAG) const {
2717
2718  if (Constraint.length() > 1) return;
2719
2720  char ConstraintLetter = Constraint[0];
2721  switch (ConstraintLetter) {
2722  default: break;
2723  case 'X':     // Allows any operand; labels (basic block) use this.
2724    if (Op.getOpcode() == ISD::BasicBlock) {
2725      Ops.push_back(Op);
2726      return;
2727    }
2728    // fall through
2729  case 'i':    // Simple Integer or Relocatable Constant
2730  case 'n':    // Simple Integer
2731  case 's': {  // Relocatable Constant
2732    // These operands are interested in values of the form (GV+C), where C may
2733    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2734    // is possible and fine if either GV or C are missing.
2735    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2736    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2737
2738    // If we have "(add GV, C)", pull out GV/C
2739    if (Op.getOpcode() == ISD::ADD) {
2740      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2741      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2742      if (C == 0 || GA == 0) {
2743        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2744        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2745      }
2746      if (C == 0 || GA == 0)
2747        C = 0, GA = 0;
2748    }
2749
2750    // If we find a valid operand, map to the TargetXXX version so that the
2751    // value itself doesn't get selected.
2752    if (GA) {   // Either &GV   or   &GV+C
2753      if (ConstraintLetter != 'n') {
2754        int64_t Offs = GA->getOffset();
2755        if (C) Offs += C->getZExtValue();
2756        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2757                                                 C ? C->getDebugLoc() : DebugLoc(),
2758                                                 Op.getValueType(), Offs));
2759        return;
2760      }
2761    }
2762    if (C) {   // just C, no GV.
2763      // Simple constants are not allowed for 's'.
2764      if (ConstraintLetter != 's') {
2765        // gcc prints these as sign extended.  Sign extend value to 64 bits
2766        // now; without this it would get ZExt'd later in
2767        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2768        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2769                                            MVT::i64));
2770        return;
2771      }
2772    }
2773    break;
2774  }
2775  }
2776}
2777
2778std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2779getRegForInlineAsmConstraint(const std::string &Constraint,
2780                             EVT VT) const {
2781  if (Constraint[0] != '{')
2782    return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
2783  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2784
2785  // Remove the braces from around the name.
2786  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2787
2788  // Figure out which register class contains this reg.
2789  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2790  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2791       E = RI->regclass_end(); RCI != E; ++RCI) {
2792    const TargetRegisterClass *RC = *RCI;
2793
2794    // If none of the value types for this register class are valid, we
2795    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2796    if (!isLegalRC(RC))
2797      continue;
2798
2799    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2800         I != E; ++I) {
2801      if (RegName.equals_lower(RI->getName(*I)))
2802        return std::make_pair(*I, RC);
2803    }
2804  }
2805
2806  return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2807}
2808
2809//===----------------------------------------------------------------------===//
2810// Constraint Selection.
2811
2812/// isMatchingInputConstraint - Return true of this is an input operand that is
2813/// a matching constraint like "4".
2814bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2815  assert(!ConstraintCode.empty() && "No known constraint!");
2816  return isdigit(ConstraintCode[0]);
2817}
2818
2819/// getMatchedOperand - If this is an input matching constraint, this method
2820/// returns the output operand it matches.
2821unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2822  assert(!ConstraintCode.empty() && "No known constraint!");
2823  return atoi(ConstraintCode.c_str());
2824}
2825
2826
2827/// ParseConstraints - Split up the constraint string from the inline
2828/// assembly value into the specific constraints and their prefixes,
2829/// and also tie in the associated operand values.
2830/// If this returns an empty vector, and if the constraint string itself
2831/// isn't empty, there was an error parsing.
2832TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
2833    ImmutableCallSite CS) const {
2834  /// ConstraintOperands - Information about all of the constraints.
2835  AsmOperandInfoVector ConstraintOperands;
2836  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2837  unsigned maCount = 0; // Largest number of multiple alternative constraints.
2838
2839  // Do a prepass over the constraints, canonicalizing them, and building up the
2840  // ConstraintOperands list.
2841  InlineAsm::ConstraintInfoVector
2842    ConstraintInfos = IA->ParseConstraints();
2843
2844  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2845  unsigned ResNo = 0;   // ResNo - The result number of the next output.
2846
2847  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
2848    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
2849    AsmOperandInfo &OpInfo = ConstraintOperands.back();
2850
2851    // Update multiple alternative constraint count.
2852    if (OpInfo.multipleAlternatives.size() > maCount)
2853      maCount = OpInfo.multipleAlternatives.size();
2854
2855    OpInfo.ConstraintVT = MVT::Other;
2856
2857    // Compute the value type for each operand.
2858    switch (OpInfo.Type) {
2859    case InlineAsm::isOutput:
2860      // Indirect outputs just consume an argument.
2861      if (OpInfo.isIndirect) {
2862        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2863        break;
2864      }
2865
2866      // The return value of the call is this value.  As such, there is no
2867      // corresponding argument.
2868      assert(!CS.getType()->isVoidTy() &&
2869             "Bad inline asm!");
2870      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
2871        OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo));
2872      } else {
2873        assert(ResNo == 0 && "Asm only has one result!");
2874        OpInfo.ConstraintVT = getValueType(CS.getType());
2875      }
2876      ++ResNo;
2877      break;
2878    case InlineAsm::isInput:
2879      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2880      break;
2881    case InlineAsm::isClobber:
2882      // Nothing to do.
2883      break;
2884    }
2885
2886    if (OpInfo.CallOperandVal) {
2887      llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2888      if (OpInfo.isIndirect) {
2889        llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2890        if (!PtrTy)
2891          report_fatal_error("Indirect operand for inline asm not a pointer!");
2892        OpTy = PtrTy->getElementType();
2893      }
2894
2895      // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2896      if (StructType *STy = dyn_cast<StructType>(OpTy))
2897        if (STy->getNumElements() == 1)
2898          OpTy = STy->getElementType(0);
2899
2900      // If OpTy is not a single value, it may be a struct/union that we
2901      // can tile with integers.
2902      if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2903        unsigned BitSize = TD->getTypeSizeInBits(OpTy);
2904        switch (BitSize) {
2905        default: break;
2906        case 1:
2907        case 8:
2908        case 16:
2909        case 32:
2910        case 64:
2911        case 128:
2912          OpInfo.ConstraintVT =
2913              EVT::getEVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2914          break;
2915        }
2916      } else if (dyn_cast<PointerType>(OpTy)) {
2917        OpInfo.ConstraintVT = MVT::getIntegerVT(8*TD->getPointerSize());
2918      } else {
2919        OpInfo.ConstraintVT = EVT::getEVT(OpTy, true);
2920      }
2921    }
2922  }
2923
2924  // If we have multiple alternative constraints, select the best alternative.
2925  if (ConstraintInfos.size()) {
2926    if (maCount) {
2927      unsigned bestMAIndex = 0;
2928      int bestWeight = -1;
2929      // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2930      int weight = -1;
2931      unsigned maIndex;
2932      // Compute the sums of the weights for each alternative, keeping track
2933      // of the best (highest weight) one so far.
2934      for (maIndex = 0; maIndex < maCount; ++maIndex) {
2935        int weightSum = 0;
2936        for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2937            cIndex != eIndex; ++cIndex) {
2938          AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2939          if (OpInfo.Type == InlineAsm::isClobber)
2940            continue;
2941
2942          // If this is an output operand with a matching input operand,
2943          // look up the matching input. If their types mismatch, e.g. one
2944          // is an integer, the other is floating point, or their sizes are
2945          // different, flag it as an maCantMatch.
2946          if (OpInfo.hasMatchingInput()) {
2947            AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2948            if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2949              if ((OpInfo.ConstraintVT.isInteger() !=
2950                   Input.ConstraintVT.isInteger()) ||
2951                  (OpInfo.ConstraintVT.getSizeInBits() !=
2952                   Input.ConstraintVT.getSizeInBits())) {
2953                weightSum = -1;  // Can't match.
2954                break;
2955              }
2956            }
2957          }
2958          weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2959          if (weight == -1) {
2960            weightSum = -1;
2961            break;
2962          }
2963          weightSum += weight;
2964        }
2965        // Update best.
2966        if (weightSum > bestWeight) {
2967          bestWeight = weightSum;
2968          bestMAIndex = maIndex;
2969        }
2970      }
2971
2972      // Now select chosen alternative in each constraint.
2973      for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2974          cIndex != eIndex; ++cIndex) {
2975        AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2976        if (cInfo.Type == InlineAsm::isClobber)
2977          continue;
2978        cInfo.selectAlternative(bestMAIndex);
2979      }
2980    }
2981  }
2982
2983  // Check and hook up tied operands, choose constraint code to use.
2984  for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2985      cIndex != eIndex; ++cIndex) {
2986    AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2987
2988    // If this is an output operand with a matching input operand, look up the
2989    // matching input. If their types mismatch, e.g. one is an integer, the
2990    // other is floating point, or their sizes are different, flag it as an
2991    // error.
2992    if (OpInfo.hasMatchingInput()) {
2993      AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2994
2995      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2996	std::pair<unsigned, const TargetRegisterClass*> MatchRC =
2997	  getRegForInlineAsmConstraint(OpInfo.ConstraintCode, OpInfo.ConstraintVT);
2998	std::pair<unsigned, const TargetRegisterClass*> InputRC =
2999	  getRegForInlineAsmConstraint(Input.ConstraintCode, Input.ConstraintVT);
3000        if ((OpInfo.ConstraintVT.isInteger() !=
3001             Input.ConstraintVT.isInteger()) ||
3002            (MatchRC.second != InputRC.second)) {
3003          report_fatal_error("Unsupported asm: input constraint"
3004                             " with a matching output constraint of"
3005                             " incompatible type!");
3006        }
3007      }
3008
3009    }
3010  }
3011
3012  return ConstraintOperands;
3013}
3014
3015
3016/// getConstraintGenerality - Return an integer indicating how general CT
3017/// is.
3018static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3019  switch (CT) {
3020  case TargetLowering::C_Other:
3021  case TargetLowering::C_Unknown:
3022    return 0;
3023  case TargetLowering::C_Register:
3024    return 1;
3025  case TargetLowering::C_RegisterClass:
3026    return 2;
3027  case TargetLowering::C_Memory:
3028    return 3;
3029  }
3030  llvm_unreachable("Invalid constraint type");
3031}
3032
3033/// Examine constraint type and operand type and determine a weight value.
3034/// This object must already have been set up with the operand type
3035/// and the current alternative constraint selected.
3036TargetLowering::ConstraintWeight
3037  TargetLowering::getMultipleConstraintMatchWeight(
3038    AsmOperandInfo &info, int maIndex) const {
3039  InlineAsm::ConstraintCodeVector *rCodes;
3040  if (maIndex >= (int)info.multipleAlternatives.size())
3041    rCodes = &info.Codes;
3042  else
3043    rCodes = &info.multipleAlternatives[maIndex].Codes;
3044  ConstraintWeight BestWeight = CW_Invalid;
3045
3046  // Loop over the options, keeping track of the most general one.
3047  for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
3048    ConstraintWeight weight =
3049      getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
3050    if (weight > BestWeight)
3051      BestWeight = weight;
3052  }
3053
3054  return BestWeight;
3055}
3056
3057/// Examine constraint type and operand type and determine a weight value.
3058/// This object must already have been set up with the operand type
3059/// and the current alternative constraint selected.
3060TargetLowering::ConstraintWeight
3061  TargetLowering::getSingleConstraintMatchWeight(
3062    AsmOperandInfo &info, const char *constraint) const {
3063  ConstraintWeight weight = CW_Invalid;
3064  Value *CallOperandVal = info.CallOperandVal;
3065    // If we don't have a value, we can't do a match,
3066    // but allow it at the lowest weight.
3067  if (CallOperandVal == NULL)
3068    return CW_Default;
3069  // Look at the constraint type.
3070  switch (*constraint) {
3071    case 'i': // immediate integer.
3072    case 'n': // immediate integer with a known value.
3073      if (isa<ConstantInt>(CallOperandVal))
3074        weight = CW_Constant;
3075      break;
3076    case 's': // non-explicit intregal immediate.
3077      if (isa<GlobalValue>(CallOperandVal))
3078        weight = CW_Constant;
3079      break;
3080    case 'E': // immediate float if host format.
3081    case 'F': // immediate float.
3082      if (isa<ConstantFP>(CallOperandVal))
3083        weight = CW_Constant;
3084      break;
3085    case '<': // memory operand with autodecrement.
3086    case '>': // memory operand with autoincrement.
3087    case 'm': // memory operand.
3088    case 'o': // offsettable memory operand
3089    case 'V': // non-offsettable memory operand
3090      weight = CW_Memory;
3091      break;
3092    case 'r': // general register.
3093    case 'g': // general register, memory operand or immediate integer.
3094              // note: Clang converts "g" to "imr".
3095      if (CallOperandVal->getType()->isIntegerTy())
3096        weight = CW_Register;
3097      break;
3098    case 'X': // any operand.
3099    default:
3100      weight = CW_Default;
3101      break;
3102  }
3103  return weight;
3104}
3105
3106/// ChooseConstraint - If there are multiple different constraints that we
3107/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
3108/// This is somewhat tricky: constraints fall into four classes:
3109///    Other         -> immediates and magic values
3110///    Register      -> one specific register
3111///    RegisterClass -> a group of regs
3112///    Memory        -> memory
3113/// Ideally, we would pick the most specific constraint possible: if we have
3114/// something that fits into a register, we would pick it.  The problem here
3115/// is that if we have something that could either be in a register or in
3116/// memory that use of the register could cause selection of *other*
3117/// operands to fail: they might only succeed if we pick memory.  Because of
3118/// this the heuristic we use is:
3119///
3120///  1) If there is an 'other' constraint, and if the operand is valid for
3121///     that constraint, use it.  This makes us take advantage of 'i'
3122///     constraints when available.
3123///  2) Otherwise, pick the most general constraint present.  This prefers
3124///     'm' over 'r', for example.
3125///
3126static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
3127                             const TargetLowering &TLI,
3128                             SDValue Op, SelectionDAG *DAG) {
3129  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
3130  unsigned BestIdx = 0;
3131  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
3132  int BestGenerality = -1;
3133
3134  // Loop over the options, keeping track of the most general one.
3135  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
3136    TargetLowering::ConstraintType CType =
3137      TLI.getConstraintType(OpInfo.Codes[i]);
3138
3139    // If this is an 'other' constraint, see if the operand is valid for it.
3140    // For example, on X86 we might have an 'rI' constraint.  If the operand
3141    // is an integer in the range [0..31] we want to use I (saving a load
3142    // of a register), otherwise we must use 'r'.
3143    if (CType == TargetLowering::C_Other && Op.getNode()) {
3144      assert(OpInfo.Codes[i].size() == 1 &&
3145             "Unhandled multi-letter 'other' constraint");
3146      std::vector<SDValue> ResultOps;
3147      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
3148                                       ResultOps, *DAG);
3149      if (!ResultOps.empty()) {
3150        BestType = CType;
3151        BestIdx = i;
3152        break;
3153      }
3154    }
3155
3156    // Things with matching constraints can only be registers, per gcc
3157    // documentation.  This mainly affects "g" constraints.
3158    if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
3159      continue;
3160
3161    // This constraint letter is more general than the previous one, use it.
3162    int Generality = getConstraintGenerality(CType);
3163    if (Generality > BestGenerality) {
3164      BestType = CType;
3165      BestIdx = i;
3166      BestGenerality = Generality;
3167    }
3168  }
3169
3170  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
3171  OpInfo.ConstraintType = BestType;
3172}
3173
3174/// ComputeConstraintToUse - Determines the constraint code and constraint
3175/// type to use for the specific AsmOperandInfo, setting
3176/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
3177void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3178                                            SDValue Op,
3179                                            SelectionDAG *DAG) const {
3180  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
3181
3182  // Single-letter constraints ('r') are very common.
3183  if (OpInfo.Codes.size() == 1) {
3184    OpInfo.ConstraintCode = OpInfo.Codes[0];
3185    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3186  } else {
3187    ChooseConstraint(OpInfo, *this, Op, DAG);
3188  }
3189
3190  // 'X' matches anything.
3191  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
3192    // Labels and constants are handled elsewhere ('X' is the only thing
3193    // that matches labels).  For Functions, the type here is the type of
3194    // the result, which is not what we want to look at; leave them alone.
3195    Value *v = OpInfo.CallOperandVal;
3196    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
3197      OpInfo.CallOperandVal = v;
3198      return;
3199    }
3200
3201    // Otherwise, try to resolve it to something we know about by looking at
3202    // the actual operand type.
3203    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
3204      OpInfo.ConstraintCode = Repl;
3205      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3206    }
3207  }
3208}
3209
3210//===----------------------------------------------------------------------===//
3211//  Loop Strength Reduction hooks
3212//===----------------------------------------------------------------------===//
3213
3214/// isLegalAddressingMode - Return true if the addressing mode represented
3215/// by AM is legal for this target, for a load/store of the specified type.
3216bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
3217                                           Type *Ty) const {
3218  // The default implementation of this implements a conservative RISCy, r+r and
3219  // r+i addr mode.
3220
3221  // Allows a sign-extended 16-bit immediate field.
3222  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3223    return false;
3224
3225  // No global is ever allowed as a base.
3226  if (AM.BaseGV)
3227    return false;
3228
3229  // Only support r+r,
3230  switch (AM.Scale) {
3231  case 0:  // "r+i" or just "i", depending on HasBaseReg.
3232    break;
3233  case 1:
3234    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
3235      return false;
3236    // Otherwise we have r+r or r+i.
3237    break;
3238  case 2:
3239    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
3240      return false;
3241    // Allow 2*r as r+r.
3242    break;
3243  }
3244
3245  return true;
3246}
3247
3248/// BuildExactDiv - Given an exact SDIV by a constant, create a multiplication
3249/// with the multiplicative inverse of the constant.
3250SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl,
3251                                       SelectionDAG &DAG) const {
3252  ConstantSDNode *C = cast<ConstantSDNode>(Op2);
3253  APInt d = C->getAPIntValue();
3254  assert(d != 0 && "Division by zero!");
3255
3256  // Shift the value upfront if it is even, so the LSB is one.
3257  unsigned ShAmt = d.countTrailingZeros();
3258  if (ShAmt) {
3259    // TODO: For UDIV use SRL instead of SRA.
3260    SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType()));
3261    Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt);
3262    d = d.ashr(ShAmt);
3263  }
3264
3265  // Calculate the multiplicative inverse, using Newton's method.
3266  APInt t, xn = d;
3267  while ((t = d*xn) != 1)
3268    xn *= APInt(d.getBitWidth(), 2) - t;
3269
3270  Op2 = DAG.getConstant(xn, Op1.getValueType());
3271  return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
3272}
3273
3274/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
3275/// return a DAG expression to select that will generate the same value by
3276/// multiplying by a magic number.  See:
3277/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3278SDValue TargetLowering::
3279BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
3280          std::vector<SDNode*>* Created) const {
3281  EVT VT = N->getValueType(0);
3282  DebugLoc dl= N->getDebugLoc();
3283
3284  // Check to see if we can do this.
3285  // FIXME: We should be more aggressive here.
3286  if (!isTypeLegal(VT))
3287    return SDValue();
3288
3289  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3290  APInt::ms magics = d.magic();
3291
3292  // Multiply the numerator (operand 0) by the magic value
3293  // FIXME: We should support doing a MUL in a wider type
3294  SDValue Q;
3295  if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
3296                            isOperationLegalOrCustom(ISD::MULHS, VT))
3297    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
3298                    DAG.getConstant(magics.m, VT));
3299  else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
3300                                 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
3301    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
3302                              N->getOperand(0),
3303                              DAG.getConstant(magics.m, VT)).getNode(), 1);
3304  else
3305    return SDValue();       // No mulhs or equvialent
3306  // If d > 0 and m < 0, add the numerator
3307  if (d.isStrictlyPositive() && magics.m.isNegative()) {
3308    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
3309    if (Created)
3310      Created->push_back(Q.getNode());
3311  }
3312  // If d < 0 and m > 0, subtract the numerator.
3313  if (d.isNegative() && magics.m.isStrictlyPositive()) {
3314    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
3315    if (Created)
3316      Created->push_back(Q.getNode());
3317  }
3318  // Shift right algebraic if shift value is nonzero
3319  if (magics.s > 0) {
3320    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
3321                 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3322    if (Created)
3323      Created->push_back(Q.getNode());
3324  }
3325  // Extract the sign bit and add it to the quotient
3326  SDValue T =
3327    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
3328                                           getShiftAmountTy(Q.getValueType())));
3329  if (Created)
3330    Created->push_back(T.getNode());
3331  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3332}
3333
3334/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
3335/// return a DAG expression to select that will generate the same value by
3336/// multiplying by a magic number.  See:
3337/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3338SDValue TargetLowering::
3339BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
3340          std::vector<SDNode*>* Created) const {
3341  EVT VT = N->getValueType(0);
3342  DebugLoc dl = N->getDebugLoc();
3343
3344  // Check to see if we can do this.
3345  // FIXME: We should be more aggressive here.
3346  if (!isTypeLegal(VT))
3347    return SDValue();
3348
3349  // FIXME: We should use a narrower constant when the upper
3350  // bits are known to be zero.
3351  const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3352  APInt::mu magics = N1C.magicu();
3353
3354  SDValue Q = N->getOperand(0);
3355
3356  // If the divisor is even, we can avoid using the expensive fixup by shifting
3357  // the divided value upfront.
3358  if (magics.a != 0 && !N1C[0]) {
3359    unsigned Shift = N1C.countTrailingZeros();
3360    Q = DAG.getNode(ISD::SRL, dl, VT, Q,
3361                    DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType())));
3362    if (Created)
3363      Created->push_back(Q.getNode());
3364
3365    // Get magic number for the shifted divisor.
3366    magics = N1C.lshr(Shift).magicu(Shift);
3367    assert(magics.a == 0 && "Should use cheap fixup now");
3368  }
3369
3370  // Multiply the numerator (operand 0) by the magic value
3371  // FIXME: We should support doing a MUL in a wider type
3372  if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
3373                            isOperationLegalOrCustom(ISD::MULHU, VT))
3374    Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT));
3375  else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
3376                                 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
3377    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
3378                            DAG.getConstant(magics.m, VT)).getNode(), 1);
3379  else
3380    return SDValue();       // No mulhu or equvialent
3381  if (Created)
3382    Created->push_back(Q.getNode());
3383
3384  if (magics.a == 0) {
3385    assert(magics.s < N1C.getBitWidth() &&
3386           "We shouldn't generate an undefined shift!");
3387    return DAG.getNode(ISD::SRL, dl, VT, Q,
3388                 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType())));
3389  } else {
3390    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
3391    if (Created)
3392      Created->push_back(NPQ.getNode());
3393    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
3394                      DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType())));
3395    if (Created)
3396      Created->push_back(NPQ.getNode());
3397    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3398    if (Created)
3399      Created->push_back(NPQ.getNode());
3400    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
3401             DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType())));
3402  }
3403}
3404