TargetLowering.cpp revision 3d83c3fd5cbc8b2268bd2ec46879cd4c04b9d32c
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/Target/TargetSubtarget.h"
16#include "llvm/Target/TargetData.h"
17#include "llvm/Target/TargetMachine.h"
18#include "llvm/Target/MRegisterInfo.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/Support/MathExtras.h"
24#include "llvm/Target/TargetAsmInfo.h"
25#include "llvm/CallingConv.h"
26using namespace llvm;
27
28/// InitLibcallNames - Set default libcall names.
29///
30static void InitLibcallNames(const char **Names) {
31  Names[RTLIB::SHL_I32] = "__ashlsi3";
32  Names[RTLIB::SHL_I64] = "__ashldi3";
33  Names[RTLIB::SRL_I32] = "__lshrsi3";
34  Names[RTLIB::SRL_I64] = "__lshrdi3";
35  Names[RTLIB::SRA_I32] = "__ashrsi3";
36  Names[RTLIB::SRA_I64] = "__ashrdi3";
37  Names[RTLIB::MUL_I32] = "__mulsi3";
38  Names[RTLIB::MUL_I64] = "__muldi3";
39  Names[RTLIB::SDIV_I32] = "__divsi3";
40  Names[RTLIB::SDIV_I64] = "__divdi3";
41  Names[RTLIB::UDIV_I32] = "__udivsi3";
42  Names[RTLIB::UDIV_I64] = "__udivdi3";
43  Names[RTLIB::SREM_I32] = "__modsi3";
44  Names[RTLIB::SREM_I64] = "__moddi3";
45  Names[RTLIB::UREM_I32] = "__umodsi3";
46  Names[RTLIB::UREM_I64] = "__umoddi3";
47  Names[RTLIB::NEG_I32] = "__negsi2";
48  Names[RTLIB::NEG_I64] = "__negdi2";
49  Names[RTLIB::ADD_F32] = "__addsf3";
50  Names[RTLIB::ADD_F64] = "__adddf3";
51  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
52  Names[RTLIB::SUB_F32] = "__subsf3";
53  Names[RTLIB::SUB_F64] = "__subdf3";
54  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
55  Names[RTLIB::MUL_F32] = "__mulsf3";
56  Names[RTLIB::MUL_F64] = "__muldf3";
57  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
58  Names[RTLIB::DIV_F32] = "__divsf3";
59  Names[RTLIB::DIV_F64] = "__divdf3";
60  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
61  Names[RTLIB::REM_F32] = "fmodf";
62  Names[RTLIB::REM_F64] = "fmod";
63  Names[RTLIB::REM_PPCF128] = "fmodl";
64  Names[RTLIB::NEG_F32] = "__negsf2";
65  Names[RTLIB::NEG_F64] = "__negdf2";
66  Names[RTLIB::POWI_F32] = "__powisf2";
67  Names[RTLIB::POWI_F64] = "__powidf2";
68  Names[RTLIB::POWI_F80] = "__powixf2";
69  Names[RTLIB::POWI_PPCF128] = "__powitf2";
70  Names[RTLIB::SQRT_F32] = "sqrtf";
71  Names[RTLIB::SQRT_F64] = "sqrt";
72  Names[RTLIB::SQRT_F80] = "sqrtl";
73  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
74  Names[RTLIB::SIN_F32] = "sinf";
75  Names[RTLIB::SIN_F64] = "sin";
76  Names[RTLIB::COS_F32] = "cosf";
77  Names[RTLIB::COS_F64] = "cos";
78  Names[RTLIB::POW_F32] = "powf";
79  Names[RTLIB::POW_F64] = "pow";
80  Names[RTLIB::POW_F80] = "powl";
81  Names[RTLIB::POW_PPCF128] = "powl";
82  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
83  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
84  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
85  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
86  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
87  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
88  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
89  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
90  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
91  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
92  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
93  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
94  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
95  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
96  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
97  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
98  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
99  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
100  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
101  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
102  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
103  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
104  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
105  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
106  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
107  Names[RTLIB::OEQ_F32] = "__eqsf2";
108  Names[RTLIB::OEQ_F64] = "__eqdf2";
109  Names[RTLIB::UNE_F32] = "__nesf2";
110  Names[RTLIB::UNE_F64] = "__nedf2";
111  Names[RTLIB::OGE_F32] = "__gesf2";
112  Names[RTLIB::OGE_F64] = "__gedf2";
113  Names[RTLIB::OLT_F32] = "__ltsf2";
114  Names[RTLIB::OLT_F64] = "__ltdf2";
115  Names[RTLIB::OLE_F32] = "__lesf2";
116  Names[RTLIB::OLE_F64] = "__ledf2";
117  Names[RTLIB::OGT_F32] = "__gtsf2";
118  Names[RTLIB::OGT_F64] = "__gtdf2";
119  Names[RTLIB::UO_F32] = "__unordsf2";
120  Names[RTLIB::UO_F64] = "__unorddf2";
121  Names[RTLIB::O_F32] = "__unordsf2";
122  Names[RTLIB::O_F64] = "__unorddf2";
123}
124
125/// InitCmpLibcallCCs - Set default comparison libcall CC.
126///
127static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
128  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
129  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
130  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
131  CCs[RTLIB::UNE_F32] = ISD::SETNE;
132  CCs[RTLIB::UNE_F64] = ISD::SETNE;
133  CCs[RTLIB::OGE_F32] = ISD::SETGE;
134  CCs[RTLIB::OGE_F64] = ISD::SETGE;
135  CCs[RTLIB::OLT_F32] = ISD::SETLT;
136  CCs[RTLIB::OLT_F64] = ISD::SETLT;
137  CCs[RTLIB::OLE_F32] = ISD::SETLE;
138  CCs[RTLIB::OLE_F64] = ISD::SETLE;
139  CCs[RTLIB::OGT_F32] = ISD::SETGT;
140  CCs[RTLIB::OGT_F64] = ISD::SETGT;
141  CCs[RTLIB::UO_F32] = ISD::SETNE;
142  CCs[RTLIB::UO_F64] = ISD::SETNE;
143  CCs[RTLIB::O_F32] = ISD::SETEQ;
144  CCs[RTLIB::O_F64] = ISD::SETEQ;
145}
146
147TargetLowering::TargetLowering(TargetMachine &tm)
148  : TM(tm), TD(TM.getTargetData()) {
149  assert(ISD::BUILTIN_OP_END <= 156 &&
150         "Fixed size array in TargetLowering is not large enough!");
151  // All operations default to being supported.
152  memset(OpActions, 0, sizeof(OpActions));
153  memset(LoadXActions, 0, sizeof(LoadXActions));
154  memset(&StoreXActions, 0, sizeof(StoreXActions));
155  memset(&IndexedModeActions, 0, sizeof(IndexedModeActions));
156  memset(&ConvertActions, 0, sizeof(ConvertActions));
157
158  // Set all indexed load / store to expand.
159  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
160    for (unsigned IM = (unsigned)ISD::PRE_INC;
161         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
162      setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand);
163      setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand);
164    }
165  }
166
167  IsLittleEndian = TD->isLittleEndian();
168  UsesGlobalOffsetTable = false;
169  ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType());
170  ShiftAmtHandling = Undefined;
171  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
172  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
173  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
174  allowUnalignedMemoryAccesses = false;
175  UseUnderscoreSetJmp = false;
176  UseUnderscoreLongJmp = false;
177  SelectIsExpensive = false;
178  IntDivIsCheap = false;
179  Pow2DivIsCheap = false;
180  StackPointerRegisterToSaveRestore = 0;
181  ExceptionPointerRegister = 0;
182  ExceptionSelectorRegister = 0;
183  SetCCResultContents = UndefinedSetCCResult;
184  SchedPreferenceInfo = SchedulingForLatency;
185  JumpBufSize = 0;
186  JumpBufAlignment = 0;
187  IfCvtBlockSizeLimit = 2;
188
189  InitLibcallNames(LibcallRoutineNames);
190  InitCmpLibcallCCs(CmpLibcallCCs);
191
192  // Tell Legalize whether the assembler supports DEBUG_LOC.
193  if (!TM.getTargetAsmInfo()->hasDotLocAndDotFile())
194    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
195}
196
197TargetLowering::~TargetLowering() {}
198
199
200SDOperand TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
201  assert(getSubtarget() && "Subtarget not defined");
202  SDOperand ChainOp = Op.getOperand(0);
203  SDOperand DestOp = Op.getOperand(1);
204  SDOperand SourceOp = Op.getOperand(2);
205  SDOperand CountOp = Op.getOperand(3);
206  SDOperand AlignOp = Op.getOperand(4);
207  SDOperand AlwaysInlineOp = Op.getOperand(5);
208
209  bool AlwaysInline = (bool)cast<ConstantSDNode>(AlwaysInlineOp)->getValue();
210  unsigned Align = (unsigned)cast<ConstantSDNode>(AlignOp)->getValue();
211  if (Align == 0) Align = 1;
212
213  // If size is unknown, call memcpy.
214  ConstantSDNode *I = dyn_cast<ConstantSDNode>(CountOp);
215  if (!I) {
216    assert(!AlwaysInline && "Cannot inline copy of unknown size");
217    return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
218  }
219
220  // If not DWORD aligned or if size is more than threshold, then call memcpy.
221  // The libc version is likely to be faster for the following cases. It can
222  // use the address value and run time information about the CPU.
223  // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster
224  unsigned Size = I->getValue();
225  if (AlwaysInline ||
226      (Size <= getSubtarget()->getMaxInlineSizeThreshold() &&
227       (Align & 3) == 0))
228    return LowerMEMCPYInline(ChainOp, DestOp, SourceOp, Size, Align, DAG);
229  return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
230}
231
232
233SDOperand TargetLowering::LowerMEMCPYCall(SDOperand Chain,
234                                          SDOperand Dest,
235                                          SDOperand Source,
236                                          SDOperand Count,
237                                          SelectionDAG &DAG) {
238  MVT::ValueType IntPtr = getPointerTy();
239  TargetLowering::ArgListTy Args;
240  TargetLowering::ArgListEntry Entry;
241  Entry.Ty = getTargetData()->getIntPtrType();
242  Entry.Node = Dest; Args.push_back(Entry);
243  Entry.Node = Source; Args.push_back(Entry);
244  Entry.Node = Count; Args.push_back(Entry);
245  std::pair<SDOperand,SDOperand> CallResult =
246      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
247                  DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
248  return CallResult.second;
249}
250
251
252/// computeRegisterProperties - Once all of the register classes are added,
253/// this allows us to compute derived properties we expose.
254void TargetLowering::computeRegisterProperties() {
255  assert(MVT::LAST_VALUETYPE <= 32 &&
256         "Too many value types for ValueTypeActions to hold!");
257
258  // Everything defaults to needing one register.
259  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
260    NumRegistersForVT[i] = 1;
261    RegisterTypeForVT[i] = TransformToType[i] = i;
262  }
263  // ...except isVoid, which doesn't need any registers.
264  NumRegistersForVT[MVT::isVoid] = 0;
265
266  // Find the largest integer register class.
267  unsigned LargestIntReg = MVT::i128;
268  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
269    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
270
271  // Every integer value type larger than this largest register takes twice as
272  // many registers to represent as the previous ValueType.
273  for (MVT::ValueType ExpandedReg = LargestIntReg + 1;
274       MVT::isInteger(ExpandedReg); ++ExpandedReg) {
275    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
276    RegisterTypeForVT[ExpandedReg] = LargestIntReg;
277    TransformToType[ExpandedReg] = ExpandedReg - 1;
278    ValueTypeActions.setTypeAction(ExpandedReg, Expand);
279  }
280
281  // Inspect all of the ValueType's smaller than the largest integer
282  // register to see which ones need promotion.
283  MVT::ValueType LegalIntReg = LargestIntReg;
284  for (MVT::ValueType IntReg = LargestIntReg - 1;
285       IntReg >= MVT::i1; --IntReg) {
286    if (isTypeLegal(IntReg)) {
287      LegalIntReg = IntReg;
288    } else {
289      RegisterTypeForVT[IntReg] = TransformToType[IntReg] = LegalIntReg;
290      ValueTypeActions.setTypeAction(IntReg, Promote);
291    }
292  }
293
294  // ppcf128 type is really two f64's.
295  if (!isTypeLegal(MVT::ppcf128)) {
296    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
297    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
298    TransformToType[MVT::ppcf128] = MVT::f64;
299    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
300  }
301
302  // Decide how to handle f64. If the target does not have native f64 support,
303  // expand it to i64 and we will be generating soft float library calls.
304  if (!isTypeLegal(MVT::f64)) {
305    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
306    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
307    TransformToType[MVT::f64] = MVT::i64;
308    ValueTypeActions.setTypeAction(MVT::f64, Expand);
309  }
310
311  // Decide how to handle f32. If the target does not have native support for
312  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
313  if (!isTypeLegal(MVT::f32)) {
314    if (isTypeLegal(MVT::f64)) {
315      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
316      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
317      TransformToType[MVT::f32] = MVT::f64;
318      ValueTypeActions.setTypeAction(MVT::f32, Promote);
319    } else {
320      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
321      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
322      TransformToType[MVT::f32] = MVT::i32;
323      ValueTypeActions.setTypeAction(MVT::f32, Expand);
324    }
325  }
326
327  // Loop over all of the vector value types to see which need transformations.
328  for (MVT::ValueType i = MVT::FIRST_VECTOR_VALUETYPE;
329       i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
330    if (!isTypeLegal(i)) {
331      MVT::ValueType IntermediateVT, RegisterVT;
332      unsigned NumIntermediates;
333      NumRegistersForVT[i] =
334        getVectorTypeBreakdown(i,
335                               IntermediateVT, NumIntermediates,
336                               RegisterVT);
337      RegisterTypeForVT[i] = RegisterVT;
338      TransformToType[i] = MVT::Other; // this isn't actually used
339      ValueTypeActions.setTypeAction(i, Expand);
340    }
341  }
342}
343
344const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
345  return NULL;
346}
347
348/// getVectorTypeBreakdown - Vector types are broken down into some number of
349/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
350/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
351/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
352///
353/// This method returns the number of registers needed, and the VT for each
354/// register.  It also returns the VT and quantity of the intermediate values
355/// before they are promoted/expanded.
356///
357unsigned TargetLowering::getVectorTypeBreakdown(MVT::ValueType VT,
358                                                MVT::ValueType &IntermediateVT,
359                                                unsigned &NumIntermediates,
360                                      MVT::ValueType &RegisterVT) const {
361  // Figure out the right, legal destination reg to copy into.
362  unsigned NumElts = MVT::getVectorNumElements(VT);
363  MVT::ValueType EltTy = MVT::getVectorElementType(VT);
364
365  unsigned NumVectorRegs = 1;
366
367  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
368  // could break down into LHS/RHS like LegalizeDAG does.
369  if (!isPowerOf2_32(NumElts)) {
370    NumVectorRegs = NumElts;
371    NumElts = 1;
372  }
373
374  // Divide the input until we get to a supported size.  This will always
375  // end with a scalar if the target doesn't support vectors.
376  while (NumElts > 1 &&
377         !isTypeLegal(MVT::getVectorType(EltTy, NumElts))) {
378    NumElts >>= 1;
379    NumVectorRegs <<= 1;
380  }
381
382  NumIntermediates = NumVectorRegs;
383
384  MVT::ValueType NewVT = MVT::getVectorType(EltTy, NumElts);
385  if (!isTypeLegal(NewVT))
386    NewVT = EltTy;
387  IntermediateVT = NewVT;
388
389  MVT::ValueType DestVT = getTypeToTransformTo(NewVT);
390  RegisterVT = DestVT;
391  if (DestVT < NewVT) {
392    // Value is expanded, e.g. i64 -> i16.
393    return NumVectorRegs*(MVT::getSizeInBits(NewVT)/MVT::getSizeInBits(DestVT));
394  } else {
395    // Otherwise, promotion or legal types use the same number of registers as
396    // the vector decimated to the appropriate level.
397    return NumVectorRegs;
398  }
399
400  return 1;
401}
402
403SDOperand TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
404                                                   SelectionDAG &DAG) const {
405  if (usesGlobalOffsetTable())
406    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
407  return Table;
408}
409
410//===----------------------------------------------------------------------===//
411//  Optimization Methods
412//===----------------------------------------------------------------------===//
413
414/// ShrinkDemandedConstant - Check to see if the specified operand of the
415/// specified instruction is a constant integer.  If so, check to see if there
416/// are any bits set in the constant that are not demanded.  If so, shrink the
417/// constant and return true.
418bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
419                                                            uint64_t Demanded) {
420  // FIXME: ISD::SELECT, ISD::SELECT_CC
421  switch(Op.getOpcode()) {
422  default: break;
423  case ISD::AND:
424  case ISD::OR:
425  case ISD::XOR:
426    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
427      if ((~Demanded & C->getValue()) != 0) {
428        MVT::ValueType VT = Op.getValueType();
429        SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
430                                    DAG.getConstant(Demanded & C->getValue(),
431                                                    VT));
432        return CombineTo(Op, New);
433      }
434    break;
435  }
436  return false;
437}
438
439/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
440/// DemandedMask bits of the result of Op are ever used downstream.  If we can
441/// use this information to simplify Op, create a new simplified DAG node and
442/// return true, returning the original and new nodes in Old and New. Otherwise,
443/// analyze the expression and return a mask of KnownOne and KnownZero bits for
444/// the expression (used to simplify the caller).  The KnownZero/One bits may
445/// only be accurate for those bits in the DemandedMask.
446bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
447                                          uint64_t &KnownZero,
448                                          uint64_t &KnownOne,
449                                          TargetLoweringOpt &TLO,
450                                          unsigned Depth) const {
451  KnownZero = KnownOne = 0;   // Don't know anything.
452
453  // The masks are not wide enough to represent this type!  Should use APInt.
454  if (Op.getValueType() == MVT::i128)
455    return false;
456
457  // Other users may use these bits.
458  if (!Op.Val->hasOneUse()) {
459    if (Depth != 0) {
460      // If not at the root, Just compute the KnownZero/KnownOne bits to
461      // simplify things downstream.
462      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
463      return false;
464    }
465    // If this is the root being simplified, allow it to have multiple uses,
466    // just set the DemandedMask to all bits.
467    DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
468  } else if (DemandedMask == 0) {
469    // Not demanding any bits from Op.
470    if (Op.getOpcode() != ISD::UNDEF)
471      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
472    return false;
473  } else if (Depth == 6) {        // Limit search depth.
474    return false;
475  }
476
477  uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
478  switch (Op.getOpcode()) {
479  case ISD::Constant:
480    // We know all of the bits for a constant!
481    KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
482    KnownZero = ~KnownOne & DemandedMask;
483    return false;   // Don't fall through, will infinitely loop.
484  case ISD::AND:
485    // If the RHS is a constant, check to see if the LHS would be zero without
486    // using the bits from the RHS.  Below, we use knowledge about the RHS to
487    // simplify the LHS, here we're using information from the LHS to simplify
488    // the RHS.
489    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
490      uint64_t LHSZero, LHSOne;
491      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), DemandedMask,
492                                LHSZero, LHSOne, Depth+1);
493      // If the LHS already has zeros where RHSC does, this and is dead.
494      if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
495        return TLO.CombineTo(Op, Op.getOperand(0));
496      // If any of the set bits in the RHS are known zero on the LHS, shrink
497      // the constant.
498      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask))
499        return true;
500    }
501
502    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
503                             KnownOne, TLO, Depth+1))
504      return true;
505    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
506    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
507                             KnownZero2, KnownOne2, TLO, Depth+1))
508      return true;
509    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
510
511    // If all of the demanded bits are known one on one side, return the other.
512    // These bits cannot contribute to the result of the 'and'.
513    if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
514      return TLO.CombineTo(Op, Op.getOperand(0));
515    if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
516      return TLO.CombineTo(Op, Op.getOperand(1));
517    // If all of the demanded bits in the inputs are known zeros, return zero.
518    if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
519      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
520    // If the RHS is a constant, see if we can simplify it.
521    if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
522      return true;
523
524    // Output known-1 bits are only known if set in both the LHS & RHS.
525    KnownOne &= KnownOne2;
526    // Output known-0 are known to be clear if zero in either the LHS | RHS.
527    KnownZero |= KnownZero2;
528    break;
529  case ISD::OR:
530    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
531                             KnownOne, TLO, Depth+1))
532      return true;
533    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
534    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne,
535                             KnownZero2, KnownOne2, TLO, Depth+1))
536      return true;
537    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
538
539    // If all of the demanded bits are known zero on one side, return the other.
540    // These bits cannot contribute to the result of the 'or'.
541    if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
542      return TLO.CombineTo(Op, Op.getOperand(0));
543    if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
544      return TLO.CombineTo(Op, Op.getOperand(1));
545    // If all of the potentially set bits on one side are known to be set on
546    // the other side, just use the 'other' side.
547    if ((DemandedMask & (~KnownZero) & KnownOne2) ==
548        (DemandedMask & (~KnownZero)))
549      return TLO.CombineTo(Op, Op.getOperand(0));
550    if ((DemandedMask & (~KnownZero2) & KnownOne) ==
551        (DemandedMask & (~KnownZero2)))
552      return TLO.CombineTo(Op, Op.getOperand(1));
553    // If the RHS is a constant, see if we can simplify it.
554    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
555      return true;
556
557    // Output known-0 bits are only known if clear in both the LHS & RHS.
558    KnownZero &= KnownZero2;
559    // Output known-1 are known to be set if set in either the LHS | RHS.
560    KnownOne |= KnownOne2;
561    break;
562  case ISD::XOR:
563    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
564                             KnownOne, TLO, Depth+1))
565      return true;
566    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
567    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
568                             KnownOne2, TLO, Depth+1))
569      return true;
570    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
571
572    // If all of the demanded bits are known zero on one side, return the other.
573    // These bits cannot contribute to the result of the 'xor'.
574    if ((DemandedMask & KnownZero) == DemandedMask)
575      return TLO.CombineTo(Op, Op.getOperand(0));
576    if ((DemandedMask & KnownZero2) == DemandedMask)
577      return TLO.CombineTo(Op, Op.getOperand(1));
578
579    // If all of the unknown bits are known to be zero on one side or the other
580    // (but not both) turn this into an *inclusive* or.
581    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
582    if ((DemandedMask & ~KnownZero & ~KnownZero2) == 0)
583      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
584                                               Op.getOperand(0),
585                                               Op.getOperand(1)));
586
587    // Output known-0 bits are known if clear or set in both the LHS & RHS.
588    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
589    // Output known-1 are known to be set if set in only one of the LHS, RHS.
590    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
591
592    // If all of the demanded bits on one side are known, and all of the set
593    // bits on that side are also known to be set on the other side, turn this
594    // into an AND, as we know the bits will be cleared.
595    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
596    if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
597      if ((KnownOne & KnownOne2) == KnownOne) {
598        MVT::ValueType VT = Op.getValueType();
599        SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
600        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
601                                                 ANDC));
602      }
603    }
604
605    // If the RHS is a constant, see if we can simplify it.
606    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
607    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
608      return true;
609
610    KnownZero = KnownZeroOut;
611    KnownOne  = KnownOneOut;
612    break;
613  case ISD::SETCC:
614    // If we know the result of a setcc has the top bits zero, use this info.
615    if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
616      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
617    break;
618  case ISD::SELECT:
619    if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero,
620                             KnownOne, TLO, Depth+1))
621      return true;
622    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
623                             KnownOne2, TLO, Depth+1))
624      return true;
625    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
626    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
627
628    // If the operands are constants, see if we can simplify them.
629    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
630      return true;
631
632    // Only known if known in both the LHS and RHS.
633    KnownOne &= KnownOne2;
634    KnownZero &= KnownZero2;
635    break;
636  case ISD::SELECT_CC:
637    if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero,
638                             KnownOne, TLO, Depth+1))
639      return true;
640    if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2,
641                             KnownOne2, TLO, Depth+1))
642      return true;
643    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
644    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
645
646    // If the operands are constants, see if we can simplify them.
647    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
648      return true;
649
650    // Only known if known in both the LHS and RHS.
651    KnownOne &= KnownOne2;
652    KnownZero &= KnownZero2;
653    break;
654  case ISD::SHL:
655    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
656      unsigned ShAmt = SA->getValue();
657      SDOperand InOp = Op.getOperand(0);
658
659      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
660      // single shift.  We can do this if the bottom bits (which are shifted
661      // out) are never demanded.
662      if (InOp.getOpcode() == ISD::SRL &&
663          isa<ConstantSDNode>(InOp.getOperand(1))) {
664        if (ShAmt && (DemandedMask & ((1ULL << ShAmt)-1)) == 0) {
665          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
666          unsigned Opc = ISD::SHL;
667          int Diff = ShAmt-C1;
668          if (Diff < 0) {
669            Diff = -Diff;
670            Opc = ISD::SRL;
671          }
672
673          SDOperand NewSA =
674            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
675          MVT::ValueType VT = Op.getValueType();
676          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
677                                                   InOp.getOperand(0), NewSA));
678        }
679      }
680
681      if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> ShAmt,
682                               KnownZero, KnownOne, TLO, Depth+1))
683        return true;
684      KnownZero <<= SA->getValue();
685      KnownOne  <<= SA->getValue();
686      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
687    }
688    break;
689  case ISD::SRL:
690    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
691      MVT::ValueType VT = Op.getValueType();
692      unsigned ShAmt = SA->getValue();
693      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
694      unsigned VTSize = MVT::getSizeInBits(VT);
695      SDOperand InOp = Op.getOperand(0);
696
697      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
698      // single shift.  We can do this if the top bits (which are shifted out)
699      // are never demanded.
700      if (InOp.getOpcode() == ISD::SHL &&
701          isa<ConstantSDNode>(InOp.getOperand(1))) {
702        if (ShAmt && (DemandedMask & (~0ULL << (VTSize-ShAmt))) == 0) {
703          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
704          unsigned Opc = ISD::SRL;
705          int Diff = ShAmt-C1;
706          if (Diff < 0) {
707            Diff = -Diff;
708            Opc = ISD::SHL;
709          }
710
711          SDOperand NewSA =
712            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
713          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
714                                                   InOp.getOperand(0), NewSA));
715        }
716      }
717
718      // Compute the new bits that are at the top now.
719      if (SimplifyDemandedBits(InOp, (DemandedMask << ShAmt) & TypeMask,
720                               KnownZero, KnownOne, TLO, Depth+1))
721        return true;
722      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
723      KnownZero &= TypeMask;
724      KnownOne  &= TypeMask;
725      KnownZero >>= ShAmt;
726      KnownOne  >>= ShAmt;
727
728      uint64_t HighBits = (1ULL << ShAmt)-1;
729      HighBits <<= VTSize - ShAmt;
730      KnownZero |= HighBits;  // High bits known zero.
731    }
732    break;
733  case ISD::SRA:
734    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
735      MVT::ValueType VT = Op.getValueType();
736      unsigned ShAmt = SA->getValue();
737
738      // Compute the new bits that are at the top now.
739      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
740
741      uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask;
742
743      // If any of the demanded bits are produced by the sign extension, we also
744      // demand the input sign bit.
745      uint64_t HighBits = (1ULL << ShAmt)-1;
746      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
747      if (HighBits & DemandedMask)
748        InDemandedMask |= MVT::getIntVTSignBit(VT);
749
750      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
751                               KnownZero, KnownOne, TLO, Depth+1))
752        return true;
753      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
754      KnownZero &= TypeMask;
755      KnownOne  &= TypeMask;
756      KnownZero >>= ShAmt;
757      KnownOne  >>= ShAmt;
758
759      // Handle the sign bits.
760      uint64_t SignBit = MVT::getIntVTSignBit(VT);
761      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
762
763      // If the input sign bit is known to be zero, or if none of the top bits
764      // are demanded, turn this into an unsigned shift right.
765      if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
766        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
767                                                 Op.getOperand(1)));
768      } else if (KnownOne & SignBit) { // New bits are known one.
769        KnownOne |= HighBits;
770      }
771    }
772    break;
773  case ISD::SIGN_EXTEND_INREG: {
774    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
775
776    // Sign extension.  Compute the demanded bits in the result that are not
777    // present in the input.
778    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask;
779
780    // If none of the extended bits are demanded, eliminate the sextinreg.
781    if (NewBits == 0)
782      return TLO.CombineTo(Op, Op.getOperand(0));
783
784    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
785    int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
786
787    // Since the sign extended bits are demanded, we know that the sign
788    // bit is demanded.
789    InputDemandedBits |= InSignBit;
790
791    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
792                             KnownZero, KnownOne, TLO, Depth+1))
793      return true;
794    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
795
796    // If the sign bit of the input is known set or clear, then we know the
797    // top bits of the result.
798
799    // If the input sign bit is known zero, convert this into a zero extension.
800    if (KnownZero & InSignBit)
801      return TLO.CombineTo(Op,
802                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
803
804    if (KnownOne & InSignBit) {    // Input sign bit known set
805      KnownOne |= NewBits;
806      KnownZero &= ~NewBits;
807    } else {                       // Input sign bit unknown
808      KnownZero &= ~NewBits;
809      KnownOne &= ~NewBits;
810    }
811    break;
812  }
813  case ISD::CTTZ:
814  case ISD::CTLZ:
815  case ISD::CTPOP: {
816    MVT::ValueType VT = Op.getValueType();
817    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
818    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
819    KnownOne  = 0;
820    break;
821  }
822  case ISD::LOAD: {
823    if (ISD::isZEXTLoad(Op.Val)) {
824      LoadSDNode *LD = cast<LoadSDNode>(Op);
825      MVT::ValueType VT = LD->getLoadedVT();
826      KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
827    }
828    break;
829  }
830  case ISD::ZERO_EXTEND: {
831    uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
832
833    // If none of the top bits are demanded, convert this into an any_extend.
834    uint64_t NewBits = (~InMask) & DemandedMask;
835    if (NewBits == 0)
836      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
837                                               Op.getValueType(),
838                                               Op.getOperand(0)));
839
840    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
841                             KnownZero, KnownOne, TLO, Depth+1))
842      return true;
843    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
844    KnownZero |= NewBits;
845    break;
846  }
847  case ISD::SIGN_EXTEND: {
848    MVT::ValueType InVT = Op.getOperand(0).getValueType();
849    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
850    uint64_t InSignBit = MVT::getIntVTSignBit(InVT);
851    uint64_t NewBits   = (~InMask) & DemandedMask;
852
853    // If none of the top bits are demanded, convert this into an any_extend.
854    if (NewBits == 0)
855      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
856                                           Op.getOperand(0)));
857
858    // Since some of the sign extended bits are demanded, we know that the sign
859    // bit is demanded.
860    uint64_t InDemandedBits = DemandedMask & InMask;
861    InDemandedBits |= InSignBit;
862
863    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
864                             KnownOne, TLO, Depth+1))
865      return true;
866
867    // If the sign bit is known zero, convert this to a zero extend.
868    if (KnownZero & InSignBit)
869      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
870                                               Op.getValueType(),
871                                               Op.getOperand(0)));
872
873    // If the sign bit is known one, the top bits match.
874    if (KnownOne & InSignBit) {
875      KnownOne  |= NewBits;
876      KnownZero &= ~NewBits;
877    } else {   // Otherwise, top bits aren't known.
878      KnownOne  &= ~NewBits;
879      KnownZero &= ~NewBits;
880    }
881    break;
882  }
883  case ISD::ANY_EXTEND: {
884    uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
885    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
886                             KnownZero, KnownOne, TLO, Depth+1))
887      return true;
888    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
889    break;
890  }
891  case ISD::TRUNCATE: {
892    // Simplify the input, using demanded bit information, and compute the known
893    // zero/one bits live out.
894    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask,
895                             KnownZero, KnownOne, TLO, Depth+1))
896      return true;
897
898    // If the input is only used by this truncate, see if we can shrink it based
899    // on the known demanded bits.
900    if (Op.getOperand(0).Val->hasOneUse()) {
901      SDOperand In = Op.getOperand(0);
902      switch (In.getOpcode()) {
903      default: break;
904      case ISD::SRL:
905        // Shrink SRL by a constant if none of the high bits shifted in are
906        // demanded.
907        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
908          uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType());
909          HighBits &= ~MVT::getIntVTBitMask(Op.getValueType());
910          HighBits >>= ShAmt->getValue();
911
912          if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) &&
913              (DemandedMask & HighBits) == 0) {
914            // None of the shifted in bits are needed.  Add a truncate of the
915            // shift input, then shift it.
916            SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
917                                                 Op.getValueType(),
918                                                 In.getOperand(0));
919            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
920                                                   NewTrunc, In.getOperand(1)));
921          }
922        }
923        break;
924      }
925    }
926
927    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
928    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
929    KnownZero &= OutMask;
930    KnownOne &= OutMask;
931    break;
932  }
933  case ISD::AssertZext: {
934    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
935    uint64_t InMask = MVT::getIntVTBitMask(VT);
936    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
937                             KnownZero, KnownOne, TLO, Depth+1))
938      return true;
939    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
940    KnownZero |= ~InMask & DemandedMask;
941    break;
942  }
943  case ISD::ADD:
944  case ISD::SUB:
945  case ISD::INTRINSIC_WO_CHAIN:
946  case ISD::INTRINSIC_W_CHAIN:
947  case ISD::INTRINSIC_VOID:
948    // Just use ComputeMaskedBits to compute output bits.
949    TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
950    break;
951  }
952
953  // If we know the value of all of the demanded bits, return this as a
954  // constant.
955  if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
956    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
957
958  return false;
959}
960
961/// computeMaskedBitsForTargetNode - Determine which of the bits specified
962/// in Mask are known to be either zero or one and return them in the
963/// KnownZero/KnownOne bitsets.
964void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
965                                                    uint64_t Mask,
966                                                    uint64_t &KnownZero,
967                                                    uint64_t &KnownOne,
968                                                    const SelectionDAG &DAG,
969                                                    unsigned Depth) const {
970  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
971          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
972          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
973          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
974         "Should use MaskedValueIsZero if you don't know whether Op"
975         " is a target node!");
976  KnownZero = 0;
977  KnownOne = 0;
978}
979
980/// ComputeNumSignBitsForTargetNode - This method can be implemented by
981/// targets that want to expose additional information about sign bits to the
982/// DAG Combiner.
983unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
984                                                         unsigned Depth) const {
985  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
986          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
987          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
988          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
989         "Should use ComputeNumSignBits if you don't know whether Op"
990         " is a target node!");
991  return 1;
992}
993
994
995/// SimplifySetCC - Try to simplify a setcc built with the specified operands
996/// and cc. If it is unable to simplify it, return a null SDOperand.
997SDOperand
998TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
999                              ISD::CondCode Cond, bool foldBooleans,
1000                              DAGCombinerInfo &DCI) const {
1001  SelectionDAG &DAG = DCI.DAG;
1002
1003  // These setcc operations always fold.
1004  switch (Cond) {
1005  default: break;
1006  case ISD::SETFALSE:
1007  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1008  case ISD::SETTRUE:
1009  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1010  }
1011
1012  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1013    uint64_t C1 = N1C->getValue();
1014    if (isa<ConstantSDNode>(N0.Val)) {
1015      return DAG.FoldSetCC(VT, N0, N1, Cond);
1016    } else {
1017      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1018      // equality comparison, then we're just comparing whether X itself is
1019      // zero.
1020      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1021          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1022          N0.getOperand(1).getOpcode() == ISD::Constant) {
1023        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1024        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1025            ShAmt == Log2_32(MVT::getSizeInBits(N0.getValueType()))) {
1026          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1027            // (srl (ctlz x), 5) == 0  -> X != 0
1028            // (srl (ctlz x), 5) != 1  -> X != 0
1029            Cond = ISD::SETNE;
1030          } else {
1031            // (srl (ctlz x), 5) != 0  -> X == 0
1032            // (srl (ctlz x), 5) == 1  -> X == 0
1033            Cond = ISD::SETEQ;
1034          }
1035          SDOperand Zero = DAG.getConstant(0, N0.getValueType());
1036          return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
1037                              Zero, Cond);
1038        }
1039      }
1040
1041      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1042      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1043        unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType());
1044
1045        // If the comparison constant has bits in the upper part, the
1046        // zero-extended value could never match.
1047        if (C1 & (~0ULL << InSize)) {
1048          unsigned VSize = MVT::getSizeInBits(N0.getValueType());
1049          switch (Cond) {
1050          case ISD::SETUGT:
1051          case ISD::SETUGE:
1052          case ISD::SETEQ: return DAG.getConstant(0, VT);
1053          case ISD::SETULT:
1054          case ISD::SETULE:
1055          case ISD::SETNE: return DAG.getConstant(1, VT);
1056          case ISD::SETGT:
1057          case ISD::SETGE:
1058            // True if the sign bit of C1 is set.
1059            return DAG.getConstant((C1 & (1ULL << (VSize-1))) != 0, VT);
1060          case ISD::SETLT:
1061          case ISD::SETLE:
1062            // True if the sign bit of C1 isn't set.
1063            return DAG.getConstant((C1 & (1ULL << (VSize-1))) == 0, VT);
1064          default:
1065            break;
1066          }
1067        }
1068
1069        // Otherwise, we can perform the comparison with the low bits.
1070        switch (Cond) {
1071        case ISD::SETEQ:
1072        case ISD::SETNE:
1073        case ISD::SETUGT:
1074        case ISD::SETUGE:
1075        case ISD::SETULT:
1076        case ISD::SETULE:
1077          return DAG.getSetCC(VT, N0.getOperand(0),
1078                          DAG.getConstant(C1, N0.getOperand(0).getValueType()),
1079                          Cond);
1080        default:
1081          break;   // todo, be more careful with signed comparisons
1082        }
1083      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1084                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1085        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1086        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
1087        MVT::ValueType ExtDstTy = N0.getValueType();
1088        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
1089
1090        // If the extended part has any inconsistent bits, it cannot ever
1091        // compare equal.  In other words, they have to be all ones or all
1092        // zeros.
1093        uint64_t ExtBits =
1094          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
1095        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1096          return DAG.getConstant(Cond == ISD::SETNE, VT);
1097
1098        SDOperand ZextOp;
1099        MVT::ValueType Op0Ty = N0.getOperand(0).getValueType();
1100        if (Op0Ty == ExtSrcTy) {
1101          ZextOp = N0.getOperand(0);
1102        } else {
1103          int64_t Imm = ~0ULL >> (64-ExtSrcTyBits);
1104          ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1105                               DAG.getConstant(Imm, Op0Ty));
1106        }
1107        if (!DCI.isCalledByLegalizer())
1108          DCI.AddToWorklist(ZextOp.Val);
1109        // Otherwise, make this a use of a zext.
1110        return DAG.getSetCC(VT, ZextOp,
1111                            DAG.getConstant(C1 & (~0ULL>>(64-ExtSrcTyBits)),
1112                                            ExtDstTy),
1113                            Cond);
1114      } else if ((N1C->getValue() == 0 || N1C->getValue() == 1) &&
1115                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1116
1117        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1118        if (N0.getOpcode() == ISD::SETCC) {
1119          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1);
1120          if (TrueWhenTrue)
1121            return N0;
1122
1123          // Invert the condition.
1124          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1125          CC = ISD::getSetCCInverse(CC,
1126                               MVT::isInteger(N0.getOperand(0).getValueType()));
1127          return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1128        }
1129
1130        if ((N0.getOpcode() == ISD::XOR ||
1131             (N0.getOpcode() == ISD::AND &&
1132              N0.getOperand(0).getOpcode() == ISD::XOR &&
1133              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1134            isa<ConstantSDNode>(N0.getOperand(1)) &&
1135            cast<ConstantSDNode>(N0.getOperand(1))->getValue() == 1) {
1136          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1137          // can only do this if the top bits are known zero.
1138          if (DAG.MaskedValueIsZero(N0,
1139                                    MVT::getIntVTBitMask(N0.getValueType())-1)){
1140            // Okay, get the un-inverted input value.
1141            SDOperand Val;
1142            if (N0.getOpcode() == ISD::XOR)
1143              Val = N0.getOperand(0);
1144            else {
1145              assert(N0.getOpcode() == ISD::AND &&
1146                     N0.getOperand(0).getOpcode() == ISD::XOR);
1147              // ((X^1)&1)^1 -> X & 1
1148              Val = DAG.getNode(ISD::AND, N0.getValueType(),
1149                                N0.getOperand(0).getOperand(0),
1150                                N0.getOperand(1));
1151            }
1152            return DAG.getSetCC(VT, Val, N1,
1153                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1154          }
1155        }
1156      }
1157
1158      uint64_t MinVal, MaxVal;
1159      unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0));
1160      if (ISD::isSignedIntSetCC(Cond)) {
1161        MinVal = 1ULL << (OperandBitSize-1);
1162        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
1163          MaxVal = ~0ULL >> (65-OperandBitSize);
1164        else
1165          MaxVal = 0;
1166      } else {
1167        MinVal = 0;
1168        MaxVal = ~0ULL >> (64-OperandBitSize);
1169      }
1170
1171      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1172      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1173        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1174        --C1;                                          // X >= C0 --> X > (C0-1)
1175        return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1176                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1177      }
1178
1179      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1180        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1181        ++C1;                                          // X <= C0 --> X < (C0+1)
1182        return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1183                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1184      }
1185
1186      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1187        return DAG.getConstant(0, VT);      // X < MIN --> false
1188      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1189        return DAG.getConstant(1, VT);      // X >= MIN --> true
1190      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1191        return DAG.getConstant(0, VT);      // X > MAX --> false
1192      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1193        return DAG.getConstant(1, VT);      // X <= MAX --> true
1194
1195      // Canonicalize setgt X, Min --> setne X, Min
1196      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1197        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1198      // Canonicalize setlt X, Max --> setne X, Max
1199      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1200        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1201
1202      // If we have setult X, 1, turn it into seteq X, 0
1203      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1204        return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1205                        ISD::SETEQ);
1206      // If we have setugt X, Max-1, turn it into seteq X, Max
1207      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1208        return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1209                        ISD::SETEQ);
1210
1211      // If we have "setcc X, C0", check to see if we can shrink the immediate
1212      // by changing cc.
1213
1214      // SETUGT X, SINTMAX  -> SETLT X, 0
1215      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1216          C1 == (~0ULL >> (65-OperandBitSize)))
1217        return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1218                            ISD::SETLT);
1219
1220      // FIXME: Implement the rest of these.
1221
1222      // Fold bit comparisons when we can.
1223      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1224          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1225        if (ConstantSDNode *AndRHS =
1226                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1227          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1228            // Perform the xform if the AND RHS is a single bit.
1229            if (isPowerOf2_64(AndRHS->getValue())) {
1230              return DAG.getNode(ISD::SRL, VT, N0,
1231                             DAG.getConstant(Log2_64(AndRHS->getValue()),
1232                                             getShiftAmountTy()));
1233            }
1234          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
1235            // (X & 8) == 8  -->  (X & 8) >> 3
1236            // Perform the xform if C1 is a single bit.
1237            if (isPowerOf2_64(C1)) {
1238              return DAG.getNode(ISD::SRL, VT, N0,
1239                          DAG.getConstant(Log2_64(C1), getShiftAmountTy()));
1240            }
1241          }
1242        }
1243    }
1244  } else if (isa<ConstantSDNode>(N0.Val)) {
1245      // Ensure that the constant occurs on the RHS.
1246    return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1247  }
1248
1249  if (isa<ConstantFPSDNode>(N0.Val)) {
1250    // Constant fold or commute setcc.
1251    SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond);
1252    if (O.Val) return O;
1253  }
1254
1255  if (N0 == N1) {
1256    // We can always fold X == X for integer setcc's.
1257    if (MVT::isInteger(N0.getValueType()))
1258      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1259    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1260    if (UOF == 2)   // FP operators that are undefined on NaNs.
1261      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1262    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1263      return DAG.getConstant(UOF, VT);
1264    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1265    // if it is not already.
1266    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1267    if (NewCond != Cond)
1268      return DAG.getSetCC(VT, N0, N1, NewCond);
1269  }
1270
1271  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1272      MVT::isInteger(N0.getValueType())) {
1273    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1274        N0.getOpcode() == ISD::XOR) {
1275      // Simplify (X+Y) == (X+Z) -->  Y == Z
1276      if (N0.getOpcode() == N1.getOpcode()) {
1277        if (N0.getOperand(0) == N1.getOperand(0))
1278          return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1279        if (N0.getOperand(1) == N1.getOperand(1))
1280          return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1281        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1282          // If X op Y == Y op X, try other combinations.
1283          if (N0.getOperand(0) == N1.getOperand(1))
1284            return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1285          if (N0.getOperand(1) == N1.getOperand(0))
1286            return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1287        }
1288      }
1289
1290      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1291        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1292          // Turn (X+C1) == C2 --> X == C2-C1
1293          if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
1294            return DAG.getSetCC(VT, N0.getOperand(0),
1295                              DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
1296                                N0.getValueType()), Cond);
1297          }
1298
1299          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1300          if (N0.getOpcode() == ISD::XOR)
1301            // If we know that all of the inverted bits are zero, don't bother
1302            // performing the inversion.
1303            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getValue()))
1304              return DAG.getSetCC(VT, N0.getOperand(0),
1305                              DAG.getConstant(LHSR->getValue()^RHSC->getValue(),
1306                                              N0.getValueType()), Cond);
1307        }
1308
1309        // Turn (C1-X) == C2 --> X == C1-C2
1310        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1311          if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
1312            return DAG.getSetCC(VT, N0.getOperand(1),
1313                             DAG.getConstant(SUBC->getValue()-RHSC->getValue(),
1314                                             N0.getValueType()), Cond);
1315          }
1316        }
1317      }
1318
1319      // Simplify (X+Z) == X -->  Z == 0
1320      if (N0.getOperand(0) == N1)
1321        return DAG.getSetCC(VT, N0.getOperand(1),
1322                        DAG.getConstant(0, N0.getValueType()), Cond);
1323      if (N0.getOperand(1) == N1) {
1324        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1325          return DAG.getSetCC(VT, N0.getOperand(0),
1326                          DAG.getConstant(0, N0.getValueType()), Cond);
1327        else if (N0.Val->hasOneUse()) {
1328          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1329          // (Z-X) == X  --> Z == X<<1
1330          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1331                                     N1,
1332                                     DAG.getConstant(1, getShiftAmountTy()));
1333          if (!DCI.isCalledByLegalizer())
1334            DCI.AddToWorklist(SH.Val);
1335          return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1336        }
1337      }
1338    }
1339
1340    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1341        N1.getOpcode() == ISD::XOR) {
1342      // Simplify  X == (X+Z) -->  Z == 0
1343      if (N1.getOperand(0) == N0) {
1344        return DAG.getSetCC(VT, N1.getOperand(1),
1345                        DAG.getConstant(0, N1.getValueType()), Cond);
1346      } else if (N1.getOperand(1) == N0) {
1347        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1348          return DAG.getSetCC(VT, N1.getOperand(0),
1349                          DAG.getConstant(0, N1.getValueType()), Cond);
1350        } else if (N1.Val->hasOneUse()) {
1351          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1352          // X == (Z-X)  --> X<<1 == Z
1353          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1354                                     DAG.getConstant(1, getShiftAmountTy()));
1355          if (!DCI.isCalledByLegalizer())
1356            DCI.AddToWorklist(SH.Val);
1357          return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1358        }
1359      }
1360    }
1361  }
1362
1363  // Fold away ALL boolean setcc's.
1364  SDOperand Temp;
1365  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1366    switch (Cond) {
1367    default: assert(0 && "Unknown integer setcc!");
1368    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
1369      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1370      N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1371      if (!DCI.isCalledByLegalizer())
1372        DCI.AddToWorklist(Temp.Val);
1373      break;
1374    case ISD::SETNE:  // X != Y   -->  (X^Y)
1375      N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1376      break;
1377    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1378    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1379      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1380      N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1381      if (!DCI.isCalledByLegalizer())
1382        DCI.AddToWorklist(Temp.Val);
1383      break;
1384    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
1385    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
1386      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1387      N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1388      if (!DCI.isCalledByLegalizer())
1389        DCI.AddToWorklist(Temp.Val);
1390      break;
1391    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
1392    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
1393      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1394      N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1395      if (!DCI.isCalledByLegalizer())
1396        DCI.AddToWorklist(Temp.Val);
1397      break;
1398    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
1399    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
1400      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1401      N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1402      break;
1403    }
1404    if (VT != MVT::i1) {
1405      if (!DCI.isCalledByLegalizer())
1406        DCI.AddToWorklist(N0.Val);
1407      // FIXME: If running after legalize, we probably can't do this.
1408      N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1409    }
1410    return N0;
1411  }
1412
1413  // Could not fold it.
1414  return SDOperand();
1415}
1416
1417SDOperand TargetLowering::
1418PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1419  // Default implementation: no optimization.
1420  return SDOperand();
1421}
1422
1423//===----------------------------------------------------------------------===//
1424//  Inline Assembler Implementation Methods
1425//===----------------------------------------------------------------------===//
1426
1427TargetLowering::ConstraintType
1428TargetLowering::getConstraintType(const std::string &Constraint) const {
1429  // FIXME: lots more standard ones to handle.
1430  if (Constraint.size() == 1) {
1431    switch (Constraint[0]) {
1432    default: break;
1433    case 'r': return C_RegisterClass;
1434    case 'm':    // memory
1435    case 'o':    // offsetable
1436    case 'V':    // not offsetable
1437      return C_Memory;
1438    case 'i':    // Simple Integer or Relocatable Constant
1439    case 'n':    // Simple Integer
1440    case 's':    // Relocatable Constant
1441    case 'X':    // Allow ANY value.
1442    case 'I':    // Target registers.
1443    case 'J':
1444    case 'K':
1445    case 'L':
1446    case 'M':
1447    case 'N':
1448    case 'O':
1449    case 'P':
1450      return C_Other;
1451    }
1452  }
1453
1454  if (Constraint.size() > 1 && Constraint[0] == '{' &&
1455      Constraint[Constraint.size()-1] == '}')
1456    return C_Register;
1457  return C_Unknown;
1458}
1459
1460/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1461/// vector.  If it is invalid, don't add anything to Ops.
1462void TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
1463                                                  char ConstraintLetter,
1464                                                  std::vector<SDOperand> &Ops,
1465                                                  SelectionDAG &DAG) {
1466  switch (ConstraintLetter) {
1467  default: break;
1468  case 'X':     // Allows any operand; labels (basic block) use this.
1469    if (Op.getOpcode() == ISD::BasicBlock) {
1470      Ops.push_back(Op);
1471      return;
1472    }
1473    // fall through
1474  case 'i':    // Simple Integer or Relocatable Constant
1475  case 'n':    // Simple Integer
1476  case 's': {  // Relocatable Constant
1477    // These operands are interested in values of the form (GV+C), where C may
1478    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
1479    // is possible and fine if either GV or C are missing.
1480    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1481    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1482
1483    // If we have "(add GV, C)", pull out GV/C
1484    if (Op.getOpcode() == ISD::ADD) {
1485      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1486      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1487      if (C == 0 || GA == 0) {
1488        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1489        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1490      }
1491      if (C == 0 || GA == 0)
1492        C = 0, GA = 0;
1493    }
1494
1495    // If we find a valid operand, map to the TargetXXX version so that the
1496    // value itself doesn't get selected.
1497    if (GA) {   // Either &GV   or   &GV+C
1498      if (ConstraintLetter != 'n') {
1499        int64_t Offs = GA->getOffset();
1500        if (C) Offs += C->getValue();
1501        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
1502                                                 Op.getValueType(), Offs));
1503        return;
1504      }
1505    }
1506    if (C) {   // just C, no GV.
1507      // Simple constants are not allowed for 's'.
1508      if (ConstraintLetter != 's') {
1509        Ops.push_back(DAG.getTargetConstant(C->getValue(), Op.getValueType()));
1510        return;
1511      }
1512    }
1513    break;
1514  }
1515  }
1516}
1517
1518std::vector<unsigned> TargetLowering::
1519getRegClassForInlineAsmConstraint(const std::string &Constraint,
1520                                  MVT::ValueType VT) const {
1521  return std::vector<unsigned>();
1522}
1523
1524
1525std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
1526getRegForInlineAsmConstraint(const std::string &Constraint,
1527                             MVT::ValueType VT) const {
1528  if (Constraint[0] != '{')
1529    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1530  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1531
1532  // Remove the braces from around the name.
1533  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
1534
1535  // Figure out which register class contains this reg.
1536  const MRegisterInfo *RI = TM.getRegisterInfo();
1537  for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1538       E = RI->regclass_end(); RCI != E; ++RCI) {
1539    const TargetRegisterClass *RC = *RCI;
1540
1541    // If none of the the value types for this register class are valid, we
1542    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1543    bool isLegal = false;
1544    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1545         I != E; ++I) {
1546      if (isTypeLegal(*I)) {
1547        isLegal = true;
1548        break;
1549      }
1550    }
1551
1552    if (!isLegal) continue;
1553
1554    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1555         I != E; ++I) {
1556      if (StringsEqualNoCase(RegName, RI->get(*I).Name))
1557        return std::make_pair(*I, RC);
1558    }
1559  }
1560
1561  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1562}
1563
1564//===----------------------------------------------------------------------===//
1565//  Loop Strength Reduction hooks
1566//===----------------------------------------------------------------------===//
1567
1568/// isLegalAddressingMode - Return true if the addressing mode represented
1569/// by AM is legal for this target, for a load/store of the specified type.
1570bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
1571                                           const Type *Ty) const {
1572  // The default implementation of this implements a conservative RISCy, r+r and
1573  // r+i addr mode.
1574
1575  // Allows a sign-extended 16-bit immediate field.
1576  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1577    return false;
1578
1579  // No global is ever allowed as a base.
1580  if (AM.BaseGV)
1581    return false;
1582
1583  // Only support r+r,
1584  switch (AM.Scale) {
1585  case 0:  // "r+i" or just "i", depending on HasBaseReg.
1586    break;
1587  case 1:
1588    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1589      return false;
1590    // Otherwise we have r+r or r+i.
1591    break;
1592  case 2:
1593    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1594      return false;
1595    // Allow 2*r as r+r.
1596    break;
1597  }
1598
1599  return true;
1600}
1601
1602// Magic for divide replacement
1603
1604struct ms {
1605  int64_t m;  // magic number
1606  int64_t s;  // shift amount
1607};
1608
1609struct mu {
1610  uint64_t m; // magic number
1611  int64_t a;  // add indicator
1612  int64_t s;  // shift amount
1613};
1614
1615/// magic - calculate the magic numbers required to codegen an integer sdiv as
1616/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1617/// or -1.
1618static ms magic32(int32_t d) {
1619  int32_t p;
1620  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
1621  const uint32_t two31 = 0x80000000U;
1622  struct ms mag;
1623
1624  ad = abs(d);
1625  t = two31 + ((uint32_t)d >> 31);
1626  anc = t - 1 - t%ad;   // absolute value of nc
1627  p = 31;               // initialize p
1628  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
1629  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1630  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
1631  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1632  do {
1633    p = p + 1;
1634    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1635    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1636    if (r1 >= anc) {  // must be unsigned comparison
1637      q1 = q1 + 1;
1638      r1 = r1 - anc;
1639    }
1640    q2 = 2*q2;        // update q2 = 2p/abs(d)
1641    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1642    if (r2 >= ad) {   // must be unsigned comparison
1643      q2 = q2 + 1;
1644      r2 = r2 - ad;
1645    }
1646    delta = ad - r2;
1647  } while (q1 < delta || (q1 == delta && r1 == 0));
1648
1649  mag.m = (int32_t)(q2 + 1); // make sure to sign extend
1650  if (d < 0) mag.m = -mag.m; // resulting magic number
1651  mag.s = p - 32;            // resulting shift
1652  return mag;
1653}
1654
1655/// magicu - calculate the magic numbers required to codegen an integer udiv as
1656/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1657static mu magicu32(uint32_t d) {
1658  int32_t p;
1659  uint32_t nc, delta, q1, r1, q2, r2;
1660  struct mu magu;
1661  magu.a = 0;               // initialize "add" indicator
1662  nc = - 1 - (-d)%d;
1663  p = 31;                   // initialize p
1664  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
1665  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
1666  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
1667  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
1668  do {
1669    p = p + 1;
1670    if (r1 >= nc - r1 ) {
1671      q1 = 2*q1 + 1;  // update q1
1672      r1 = 2*r1 - nc; // update r1
1673    }
1674    else {
1675      q1 = 2*q1; // update q1
1676      r1 = 2*r1; // update r1
1677    }
1678    if (r2 + 1 >= d - r2) {
1679      if (q2 >= 0x7FFFFFFF) magu.a = 1;
1680      q2 = 2*q2 + 1;     // update q2
1681      r2 = 2*r2 + 1 - d; // update r2
1682    }
1683    else {
1684      if (q2 >= 0x80000000) magu.a = 1;
1685      q2 = 2*q2;     // update q2
1686      r2 = 2*r2 + 1; // update r2
1687    }
1688    delta = d - 1 - r2;
1689  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
1690  magu.m = q2 + 1; // resulting magic number
1691  magu.s = p - 32;  // resulting shift
1692  return magu;
1693}
1694
1695/// magic - calculate the magic numbers required to codegen an integer sdiv as
1696/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1697/// or -1.
1698static ms magic64(int64_t d) {
1699  int64_t p;
1700  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
1701  const uint64_t two63 = 9223372036854775808ULL; // 2^63
1702  struct ms mag;
1703
1704  ad = d >= 0 ? d : -d;
1705  t = two63 + ((uint64_t)d >> 63);
1706  anc = t - 1 - t%ad;   // absolute value of nc
1707  p = 63;               // initialize p
1708  q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
1709  r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1710  q2 = two63/ad;        // initialize q2 = 2p/abs(d)
1711  r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1712  do {
1713    p = p + 1;
1714    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1715    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1716    if (r1 >= anc) {  // must be unsigned comparison
1717      q1 = q1 + 1;
1718      r1 = r1 - anc;
1719    }
1720    q2 = 2*q2;        // update q2 = 2p/abs(d)
1721    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1722    if (r2 >= ad) {   // must be unsigned comparison
1723      q2 = q2 + 1;
1724      r2 = r2 - ad;
1725    }
1726    delta = ad - r2;
1727  } while (q1 < delta || (q1 == delta && r1 == 0));
1728
1729  mag.m = q2 + 1;
1730  if (d < 0) mag.m = -mag.m; // resulting magic number
1731  mag.s = p - 64;            // resulting shift
1732  return mag;
1733}
1734
1735/// magicu - calculate the magic numbers required to codegen an integer udiv as
1736/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1737static mu magicu64(uint64_t d)
1738{
1739  int64_t p;
1740  uint64_t nc, delta, q1, r1, q2, r2;
1741  struct mu magu;
1742  magu.a = 0;               // initialize "add" indicator
1743  nc = - 1 - (-d)%d;
1744  p = 63;                   // initialize p
1745  q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
1746  r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
1747  q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
1748  r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
1749  do {
1750    p = p + 1;
1751    if (r1 >= nc - r1 ) {
1752      q1 = 2*q1 + 1;  // update q1
1753      r1 = 2*r1 - nc; // update r1
1754    }
1755    else {
1756      q1 = 2*q1; // update q1
1757      r1 = 2*r1; // update r1
1758    }
1759    if (r2 + 1 >= d - r2) {
1760      if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
1761      q2 = 2*q2 + 1;     // update q2
1762      r2 = 2*r2 + 1 - d; // update r2
1763    }
1764    else {
1765      if (q2 >= 0x8000000000000000ull) magu.a = 1;
1766      q2 = 2*q2;     // update q2
1767      r2 = 2*r2 + 1; // update r2
1768    }
1769    delta = d - 1 - r2;
1770  } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
1771  magu.m = q2 + 1; // resulting magic number
1772  magu.s = p - 64;  // resulting shift
1773  return magu;
1774}
1775
1776/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
1777/// return a DAG expression to select that will generate the same value by
1778/// multiplying by a magic number.  See:
1779/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1780SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
1781                                    std::vector<SDNode*>* Created) const {
1782  MVT::ValueType VT = N->getValueType(0);
1783
1784  // Check to see if we can do this.
1785  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1786    return SDOperand();       // BuildSDIV only operates on i32 or i64
1787
1788  int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
1789  ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
1790
1791  // Multiply the numerator (operand 0) by the magic value
1792  SDOperand Q;
1793  if (isOperationLegal(ISD::MULHS, VT))
1794    Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
1795                    DAG.getConstant(magics.m, VT));
1796  else if (isOperationLegal(ISD::SMUL_LOHI, VT))
1797    Q = SDOperand(DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(VT, VT),
1798                              N->getOperand(0),
1799                              DAG.getConstant(magics.m, VT)).Val, 1);
1800  else
1801    return SDOperand();       // No mulhs or equvialent
1802  // If d > 0 and m < 0, add the numerator
1803  if (d > 0 && magics.m < 0) {
1804    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
1805    if (Created)
1806      Created->push_back(Q.Val);
1807  }
1808  // If d < 0 and m > 0, subtract the numerator.
1809  if (d < 0 && magics.m > 0) {
1810    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
1811    if (Created)
1812      Created->push_back(Q.Val);
1813  }
1814  // Shift right algebraic if shift value is nonzero
1815  if (magics.s > 0) {
1816    Q = DAG.getNode(ISD::SRA, VT, Q,
1817                    DAG.getConstant(magics.s, getShiftAmountTy()));
1818    if (Created)
1819      Created->push_back(Q.Val);
1820  }
1821  // Extract the sign bit and add it to the quotient
1822  SDOperand T =
1823    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
1824                                                 getShiftAmountTy()));
1825  if (Created)
1826    Created->push_back(T.Val);
1827  return DAG.getNode(ISD::ADD, VT, Q, T);
1828}
1829
1830/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
1831/// return a DAG expression to select that will generate the same value by
1832/// multiplying by a magic number.  See:
1833/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1834SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
1835                                    std::vector<SDNode*>* Created) const {
1836  MVT::ValueType VT = N->getValueType(0);
1837
1838  // Check to see if we can do this.
1839  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1840    return SDOperand();       // BuildUDIV only operates on i32 or i64
1841
1842  uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
1843  mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
1844
1845  // Multiply the numerator (operand 0) by the magic value
1846  SDOperand Q;
1847  if (isOperationLegal(ISD::MULHU, VT))
1848    Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
1849                    DAG.getConstant(magics.m, VT));
1850  else if (isOperationLegal(ISD::UMUL_LOHI, VT))
1851    Q = SDOperand(DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(VT, VT),
1852                              N->getOperand(0),
1853                              DAG.getConstant(magics.m, VT)).Val, 1);
1854  else
1855    return SDOperand();       // No mulhu or equvialent
1856  if (Created)
1857    Created->push_back(Q.Val);
1858
1859  if (magics.a == 0) {
1860    return DAG.getNode(ISD::SRL, VT, Q,
1861                       DAG.getConstant(magics.s, getShiftAmountTy()));
1862  } else {
1863    SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
1864    if (Created)
1865      Created->push_back(NPQ.Val);
1866    NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
1867                      DAG.getConstant(1, getShiftAmountTy()));
1868    if (Created)
1869      Created->push_back(NPQ.Val);
1870    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
1871    if (Created)
1872      Created->push_back(NPQ.Val);
1873    return DAG.getNode(ISD::SRL, VT, NPQ,
1874                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
1875  }
1876}
1877