TargetLowering.cpp revision 40f8f6264d5af2c38e797e0dc59827cd231e8ff7
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/MC/MCAsmInfo.h"
16#include "llvm/MC/MCExpr.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetLoweringObjectFile.h"
19#include "llvm/Target/TargetMachine.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/CodeGen/Analysis.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineJumpTableInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/SelectionDAG.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/MathExtras.h"
31using namespace llvm;
32
33namespace llvm {
34TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
35  bool isLocal = GV->hasLocalLinkage();
36  bool isDeclaration = GV->isDeclaration();
37  // FIXME: what should we do for protected and internal visibility?
38  // For variables, is internal different from hidden?
39  bool isHidden = GV->hasHiddenVisibility();
40
41  if (reloc == Reloc::PIC_) {
42    if (isLocal || isHidden)
43      return TLSModel::LocalDynamic;
44    else
45      return TLSModel::GeneralDynamic;
46  } else {
47    if (!isDeclaration || isHidden)
48      return TLSModel::LocalExec;
49    else
50      return TLSModel::InitialExec;
51  }
52}
53}
54
55/// InitLibcallNames - Set default libcall names.
56///
57static void InitLibcallNames(const char **Names) {
58  Names[RTLIB::SHL_I16] = "__ashlhi3";
59  Names[RTLIB::SHL_I32] = "__ashlsi3";
60  Names[RTLIB::SHL_I64] = "__ashldi3";
61  Names[RTLIB::SHL_I128] = "__ashlti3";
62  Names[RTLIB::SRL_I16] = "__lshrhi3";
63  Names[RTLIB::SRL_I32] = "__lshrsi3";
64  Names[RTLIB::SRL_I64] = "__lshrdi3";
65  Names[RTLIB::SRL_I128] = "__lshrti3";
66  Names[RTLIB::SRA_I16] = "__ashrhi3";
67  Names[RTLIB::SRA_I32] = "__ashrsi3";
68  Names[RTLIB::SRA_I64] = "__ashrdi3";
69  Names[RTLIB::SRA_I128] = "__ashrti3";
70  Names[RTLIB::MUL_I8] = "__mulqi3";
71  Names[RTLIB::MUL_I16] = "__mulhi3";
72  Names[RTLIB::MUL_I32] = "__mulsi3";
73  Names[RTLIB::MUL_I64] = "__muldi3";
74  Names[RTLIB::MUL_I128] = "__multi3";
75  Names[RTLIB::SDIV_I8] = "__divqi3";
76  Names[RTLIB::SDIV_I16] = "__divhi3";
77  Names[RTLIB::SDIV_I32] = "__divsi3";
78  Names[RTLIB::SDIV_I64] = "__divdi3";
79  Names[RTLIB::SDIV_I128] = "__divti3";
80  Names[RTLIB::UDIV_I8] = "__udivqi3";
81  Names[RTLIB::UDIV_I16] = "__udivhi3";
82  Names[RTLIB::UDIV_I32] = "__udivsi3";
83  Names[RTLIB::UDIV_I64] = "__udivdi3";
84  Names[RTLIB::UDIV_I128] = "__udivti3";
85  Names[RTLIB::SREM_I8] = "__modqi3";
86  Names[RTLIB::SREM_I16] = "__modhi3";
87  Names[RTLIB::SREM_I32] = "__modsi3";
88  Names[RTLIB::SREM_I64] = "__moddi3";
89  Names[RTLIB::SREM_I128] = "__modti3";
90  Names[RTLIB::UREM_I8] = "__umodqi3";
91  Names[RTLIB::UREM_I16] = "__umodhi3";
92  Names[RTLIB::UREM_I32] = "__umodsi3";
93  Names[RTLIB::UREM_I64] = "__umoddi3";
94  Names[RTLIB::UREM_I128] = "__umodti3";
95  Names[RTLIB::NEG_I32] = "__negsi2";
96  Names[RTLIB::NEG_I64] = "__negdi2";
97  Names[RTLIB::ADD_F32] = "__addsf3";
98  Names[RTLIB::ADD_F64] = "__adddf3";
99  Names[RTLIB::ADD_F80] = "__addxf3";
100  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
101  Names[RTLIB::SUB_F32] = "__subsf3";
102  Names[RTLIB::SUB_F64] = "__subdf3";
103  Names[RTLIB::SUB_F80] = "__subxf3";
104  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
105  Names[RTLIB::MUL_F32] = "__mulsf3";
106  Names[RTLIB::MUL_F64] = "__muldf3";
107  Names[RTLIB::MUL_F80] = "__mulxf3";
108  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
109  Names[RTLIB::DIV_F32] = "__divsf3";
110  Names[RTLIB::DIV_F64] = "__divdf3";
111  Names[RTLIB::DIV_F80] = "__divxf3";
112  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
113  Names[RTLIB::REM_F32] = "fmodf";
114  Names[RTLIB::REM_F64] = "fmod";
115  Names[RTLIB::REM_F80] = "fmodl";
116  Names[RTLIB::REM_PPCF128] = "fmodl";
117  Names[RTLIB::POWI_F32] = "__powisf2";
118  Names[RTLIB::POWI_F64] = "__powidf2";
119  Names[RTLIB::POWI_F80] = "__powixf2";
120  Names[RTLIB::POWI_PPCF128] = "__powitf2";
121  Names[RTLIB::SQRT_F32] = "sqrtf";
122  Names[RTLIB::SQRT_F64] = "sqrt";
123  Names[RTLIB::SQRT_F80] = "sqrtl";
124  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
125  Names[RTLIB::LOG_F32] = "logf";
126  Names[RTLIB::LOG_F64] = "log";
127  Names[RTLIB::LOG_F80] = "logl";
128  Names[RTLIB::LOG_PPCF128] = "logl";
129  Names[RTLIB::LOG2_F32] = "log2f";
130  Names[RTLIB::LOG2_F64] = "log2";
131  Names[RTLIB::LOG2_F80] = "log2l";
132  Names[RTLIB::LOG2_PPCF128] = "log2l";
133  Names[RTLIB::LOG10_F32] = "log10f";
134  Names[RTLIB::LOG10_F64] = "log10";
135  Names[RTLIB::LOG10_F80] = "log10l";
136  Names[RTLIB::LOG10_PPCF128] = "log10l";
137  Names[RTLIB::EXP_F32] = "expf";
138  Names[RTLIB::EXP_F64] = "exp";
139  Names[RTLIB::EXP_F80] = "expl";
140  Names[RTLIB::EXP_PPCF128] = "expl";
141  Names[RTLIB::EXP2_F32] = "exp2f";
142  Names[RTLIB::EXP2_F64] = "exp2";
143  Names[RTLIB::EXP2_F80] = "exp2l";
144  Names[RTLIB::EXP2_PPCF128] = "exp2l";
145  Names[RTLIB::SIN_F32] = "sinf";
146  Names[RTLIB::SIN_F64] = "sin";
147  Names[RTLIB::SIN_F80] = "sinl";
148  Names[RTLIB::SIN_PPCF128] = "sinl";
149  Names[RTLIB::COS_F32] = "cosf";
150  Names[RTLIB::COS_F64] = "cos";
151  Names[RTLIB::COS_F80] = "cosl";
152  Names[RTLIB::COS_PPCF128] = "cosl";
153  Names[RTLIB::POW_F32] = "powf";
154  Names[RTLIB::POW_F64] = "pow";
155  Names[RTLIB::POW_F80] = "powl";
156  Names[RTLIB::POW_PPCF128] = "powl";
157  Names[RTLIB::CEIL_F32] = "ceilf";
158  Names[RTLIB::CEIL_F64] = "ceil";
159  Names[RTLIB::CEIL_F80] = "ceill";
160  Names[RTLIB::CEIL_PPCF128] = "ceill";
161  Names[RTLIB::TRUNC_F32] = "truncf";
162  Names[RTLIB::TRUNC_F64] = "trunc";
163  Names[RTLIB::TRUNC_F80] = "truncl";
164  Names[RTLIB::TRUNC_PPCF128] = "truncl";
165  Names[RTLIB::RINT_F32] = "rintf";
166  Names[RTLIB::RINT_F64] = "rint";
167  Names[RTLIB::RINT_F80] = "rintl";
168  Names[RTLIB::RINT_PPCF128] = "rintl";
169  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
170  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
171  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
172  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
173  Names[RTLIB::FLOOR_F32] = "floorf";
174  Names[RTLIB::FLOOR_F64] = "floor";
175  Names[RTLIB::FLOOR_F80] = "floorl";
176  Names[RTLIB::FLOOR_PPCF128] = "floorl";
177  Names[RTLIB::COPYSIGN_F32] = "copysignf";
178  Names[RTLIB::COPYSIGN_F64] = "copysign";
179  Names[RTLIB::COPYSIGN_F80] = "copysignl";
180  Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
181  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
182  Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
183  Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
184  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
185  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
186  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
187  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
188  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
189  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
190  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
191  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
192  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
193  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
194  Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
195  Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
196  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
197  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
198  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
199  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
200  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
201  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
202  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
203  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
204  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
205  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
206  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
207  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
208  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
209  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
210  Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
211  Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
212  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
213  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
214  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
215  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
216  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
217  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
218  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
219  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
220  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
221  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
222  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
223  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
224  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
225  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
226  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
227  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
228  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
229  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
230  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
231  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
232  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
233  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
234  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
235  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
236  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
237  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
238  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
239  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
240  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
241  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
242  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
243  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
244  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
245  Names[RTLIB::OEQ_F32] = "__eqsf2";
246  Names[RTLIB::OEQ_F64] = "__eqdf2";
247  Names[RTLIB::UNE_F32] = "__nesf2";
248  Names[RTLIB::UNE_F64] = "__nedf2";
249  Names[RTLIB::OGE_F32] = "__gesf2";
250  Names[RTLIB::OGE_F64] = "__gedf2";
251  Names[RTLIB::OLT_F32] = "__ltsf2";
252  Names[RTLIB::OLT_F64] = "__ltdf2";
253  Names[RTLIB::OLE_F32] = "__lesf2";
254  Names[RTLIB::OLE_F64] = "__ledf2";
255  Names[RTLIB::OGT_F32] = "__gtsf2";
256  Names[RTLIB::OGT_F64] = "__gtdf2";
257  Names[RTLIB::UO_F32] = "__unordsf2";
258  Names[RTLIB::UO_F64] = "__unorddf2";
259  Names[RTLIB::O_F32] = "__unordsf2";
260  Names[RTLIB::O_F64] = "__unorddf2";
261  Names[RTLIB::MEMCPY] = "memcpy";
262  Names[RTLIB::MEMMOVE] = "memmove";
263  Names[RTLIB::MEMSET] = "memset";
264  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
265  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
266  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
267  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
268  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
269  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
270  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
271  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
272  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
273  Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
274  Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
275  Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
276  Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
277  Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
278  Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
279  Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
280  Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
281  Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
282  Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
283  Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
284  Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
285  Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
286  Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
287  Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
288  Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
289  Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
290  Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
291  Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and-xor_4";
292  Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
293  Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
294  Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
295  Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
296  Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
297}
298
299/// InitLibcallCallingConvs - Set default libcall CallingConvs.
300///
301static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
302  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
303    CCs[i] = CallingConv::C;
304  }
305}
306
307/// getFPEXT - Return the FPEXT_*_* value for the given types, or
308/// UNKNOWN_LIBCALL if there is none.
309RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
310  if (OpVT == MVT::f32) {
311    if (RetVT == MVT::f64)
312      return FPEXT_F32_F64;
313  }
314
315  return UNKNOWN_LIBCALL;
316}
317
318/// getFPROUND - Return the FPROUND_*_* value for the given types, or
319/// UNKNOWN_LIBCALL if there is none.
320RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
321  if (RetVT == MVT::f32) {
322    if (OpVT == MVT::f64)
323      return FPROUND_F64_F32;
324    if (OpVT == MVT::f80)
325      return FPROUND_F80_F32;
326    if (OpVT == MVT::ppcf128)
327      return FPROUND_PPCF128_F32;
328  } else if (RetVT == MVT::f64) {
329    if (OpVT == MVT::f80)
330      return FPROUND_F80_F64;
331    if (OpVT == MVT::ppcf128)
332      return FPROUND_PPCF128_F64;
333  }
334
335  return UNKNOWN_LIBCALL;
336}
337
338/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
339/// UNKNOWN_LIBCALL if there is none.
340RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
341  if (OpVT == MVT::f32) {
342    if (RetVT == MVT::i8)
343      return FPTOSINT_F32_I8;
344    if (RetVT == MVT::i16)
345      return FPTOSINT_F32_I16;
346    if (RetVT == MVT::i32)
347      return FPTOSINT_F32_I32;
348    if (RetVT == MVT::i64)
349      return FPTOSINT_F32_I64;
350    if (RetVT == MVT::i128)
351      return FPTOSINT_F32_I128;
352  } else if (OpVT == MVT::f64) {
353    if (RetVT == MVT::i8)
354      return FPTOSINT_F64_I8;
355    if (RetVT == MVT::i16)
356      return FPTOSINT_F64_I16;
357    if (RetVT == MVT::i32)
358      return FPTOSINT_F64_I32;
359    if (RetVT == MVT::i64)
360      return FPTOSINT_F64_I64;
361    if (RetVT == MVT::i128)
362      return FPTOSINT_F64_I128;
363  } else if (OpVT == MVT::f80) {
364    if (RetVT == MVT::i32)
365      return FPTOSINT_F80_I32;
366    if (RetVT == MVT::i64)
367      return FPTOSINT_F80_I64;
368    if (RetVT == MVT::i128)
369      return FPTOSINT_F80_I128;
370  } else if (OpVT == MVT::ppcf128) {
371    if (RetVT == MVT::i32)
372      return FPTOSINT_PPCF128_I32;
373    if (RetVT == MVT::i64)
374      return FPTOSINT_PPCF128_I64;
375    if (RetVT == MVT::i128)
376      return FPTOSINT_PPCF128_I128;
377  }
378  return UNKNOWN_LIBCALL;
379}
380
381/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
382/// UNKNOWN_LIBCALL if there is none.
383RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
384  if (OpVT == MVT::f32) {
385    if (RetVT == MVT::i8)
386      return FPTOUINT_F32_I8;
387    if (RetVT == MVT::i16)
388      return FPTOUINT_F32_I16;
389    if (RetVT == MVT::i32)
390      return FPTOUINT_F32_I32;
391    if (RetVT == MVT::i64)
392      return FPTOUINT_F32_I64;
393    if (RetVT == MVT::i128)
394      return FPTOUINT_F32_I128;
395  } else if (OpVT == MVT::f64) {
396    if (RetVT == MVT::i8)
397      return FPTOUINT_F64_I8;
398    if (RetVT == MVT::i16)
399      return FPTOUINT_F64_I16;
400    if (RetVT == MVT::i32)
401      return FPTOUINT_F64_I32;
402    if (RetVT == MVT::i64)
403      return FPTOUINT_F64_I64;
404    if (RetVT == MVT::i128)
405      return FPTOUINT_F64_I128;
406  } else if (OpVT == MVT::f80) {
407    if (RetVT == MVT::i32)
408      return FPTOUINT_F80_I32;
409    if (RetVT == MVT::i64)
410      return FPTOUINT_F80_I64;
411    if (RetVT == MVT::i128)
412      return FPTOUINT_F80_I128;
413  } else if (OpVT == MVT::ppcf128) {
414    if (RetVT == MVT::i32)
415      return FPTOUINT_PPCF128_I32;
416    if (RetVT == MVT::i64)
417      return FPTOUINT_PPCF128_I64;
418    if (RetVT == MVT::i128)
419      return FPTOUINT_PPCF128_I128;
420  }
421  return UNKNOWN_LIBCALL;
422}
423
424/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
425/// UNKNOWN_LIBCALL if there is none.
426RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
427  if (OpVT == MVT::i32) {
428    if (RetVT == MVT::f32)
429      return SINTTOFP_I32_F32;
430    else if (RetVT == MVT::f64)
431      return SINTTOFP_I32_F64;
432    else if (RetVT == MVT::f80)
433      return SINTTOFP_I32_F80;
434    else if (RetVT == MVT::ppcf128)
435      return SINTTOFP_I32_PPCF128;
436  } else if (OpVT == MVT::i64) {
437    if (RetVT == MVT::f32)
438      return SINTTOFP_I64_F32;
439    else if (RetVT == MVT::f64)
440      return SINTTOFP_I64_F64;
441    else if (RetVT == MVT::f80)
442      return SINTTOFP_I64_F80;
443    else if (RetVT == MVT::ppcf128)
444      return SINTTOFP_I64_PPCF128;
445  } else if (OpVT == MVT::i128) {
446    if (RetVT == MVT::f32)
447      return SINTTOFP_I128_F32;
448    else if (RetVT == MVT::f64)
449      return SINTTOFP_I128_F64;
450    else if (RetVT == MVT::f80)
451      return SINTTOFP_I128_F80;
452    else if (RetVT == MVT::ppcf128)
453      return SINTTOFP_I128_PPCF128;
454  }
455  return UNKNOWN_LIBCALL;
456}
457
458/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
459/// UNKNOWN_LIBCALL if there is none.
460RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
461  if (OpVT == MVT::i32) {
462    if (RetVT == MVT::f32)
463      return UINTTOFP_I32_F32;
464    else if (RetVT == MVT::f64)
465      return UINTTOFP_I32_F64;
466    else if (RetVT == MVT::f80)
467      return UINTTOFP_I32_F80;
468    else if (RetVT == MVT::ppcf128)
469      return UINTTOFP_I32_PPCF128;
470  } else if (OpVT == MVT::i64) {
471    if (RetVT == MVT::f32)
472      return UINTTOFP_I64_F32;
473    else if (RetVT == MVT::f64)
474      return UINTTOFP_I64_F64;
475    else if (RetVT == MVT::f80)
476      return UINTTOFP_I64_F80;
477    else if (RetVT == MVT::ppcf128)
478      return UINTTOFP_I64_PPCF128;
479  } else if (OpVT == MVT::i128) {
480    if (RetVT == MVT::f32)
481      return UINTTOFP_I128_F32;
482    else if (RetVT == MVT::f64)
483      return UINTTOFP_I128_F64;
484    else if (RetVT == MVT::f80)
485      return UINTTOFP_I128_F80;
486    else if (RetVT == MVT::ppcf128)
487      return UINTTOFP_I128_PPCF128;
488  }
489  return UNKNOWN_LIBCALL;
490}
491
492/// InitCmpLibcallCCs - Set default comparison libcall CC.
493///
494static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
495  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
496  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
497  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
498  CCs[RTLIB::UNE_F32] = ISD::SETNE;
499  CCs[RTLIB::UNE_F64] = ISD::SETNE;
500  CCs[RTLIB::OGE_F32] = ISD::SETGE;
501  CCs[RTLIB::OGE_F64] = ISD::SETGE;
502  CCs[RTLIB::OLT_F32] = ISD::SETLT;
503  CCs[RTLIB::OLT_F64] = ISD::SETLT;
504  CCs[RTLIB::OLE_F32] = ISD::SETLE;
505  CCs[RTLIB::OLE_F64] = ISD::SETLE;
506  CCs[RTLIB::OGT_F32] = ISD::SETGT;
507  CCs[RTLIB::OGT_F64] = ISD::SETGT;
508  CCs[RTLIB::UO_F32] = ISD::SETNE;
509  CCs[RTLIB::UO_F64] = ISD::SETNE;
510  CCs[RTLIB::O_F32] = ISD::SETEQ;
511  CCs[RTLIB::O_F64] = ISD::SETEQ;
512}
513
514/// NOTE: The constructor takes ownership of TLOF.
515TargetLowering::TargetLowering(const TargetMachine &tm,
516                               const TargetLoweringObjectFile *tlof)
517  : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
518  // All operations default to being supported.
519  memset(OpActions, 0, sizeof(OpActions));
520  memset(LoadExtActions, 0, sizeof(LoadExtActions));
521  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
522  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
523  memset(CondCodeActions, 0, sizeof(CondCodeActions));
524
525  // Set default actions for various operations.
526  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
527    // Default all indexed load / store to expand.
528    for (unsigned IM = (unsigned)ISD::PRE_INC;
529         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
530      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
531      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
532    }
533
534    // These operations default to expand.
535    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
536    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
537  }
538
539  // Most targets ignore the @llvm.prefetch intrinsic.
540  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
541
542  // ConstantFP nodes default to expand.  Targets can either change this to
543  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
544  // to optimize expansions for certain constants.
545  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
546  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
547  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
548
549  // These library functions default to expand.
550  setOperationAction(ISD::FLOG , MVT::f64, Expand);
551  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
552  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
553  setOperationAction(ISD::FEXP , MVT::f64, Expand);
554  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
555  setOperationAction(ISD::FLOG , MVT::f32, Expand);
556  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
557  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
558  setOperationAction(ISD::FEXP , MVT::f32, Expand);
559  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
560
561  // Default ISD::TRAP to expand (which turns it into abort).
562  setOperationAction(ISD::TRAP, MVT::Other, Expand);
563
564  IsLittleEndian = TD->isLittleEndian();
565  ShiftAmountTy = PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
566  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
567  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
568  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
569  benefitFromCodePlacementOpt = false;
570  UseUnderscoreSetJmp = false;
571  UseUnderscoreLongJmp = false;
572  SelectIsExpensive = false;
573  IntDivIsCheap = false;
574  Pow2DivIsCheap = false;
575  JumpIsExpensive = false;
576  StackPointerRegisterToSaveRestore = 0;
577  ExceptionPointerRegister = 0;
578  ExceptionSelectorRegister = 0;
579  BooleanContents = UndefinedBooleanContent;
580  SchedPreferenceInfo = Sched::Latency;
581  JumpBufSize = 0;
582  JumpBufAlignment = 0;
583  PrefLoopAlignment = 0;
584  MinStackArgumentAlignment = 1;
585  ShouldFoldAtomicFences = false;
586
587  InitLibcallNames(LibcallRoutineNames);
588  InitCmpLibcallCCs(CmpLibcallCCs);
589  InitLibcallCallingConvs(LibcallCallingConvs);
590}
591
592TargetLowering::~TargetLowering() {
593  delete &TLOF;
594}
595
596/// canOpTrap - Returns true if the operation can trap for the value type.
597/// VT must be a legal type.
598bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
599  assert(isTypeLegal(VT));
600  switch (Op) {
601  default:
602    return false;
603  case ISD::FDIV:
604  case ISD::FREM:
605  case ISD::SDIV:
606  case ISD::UDIV:
607  case ISD::SREM:
608  case ISD::UREM:
609    return true;
610  }
611}
612
613
614static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
615                                          unsigned &NumIntermediates,
616                                          EVT &RegisterVT,
617                                          TargetLowering *TLI) {
618  // Figure out the right, legal destination reg to copy into.
619  unsigned NumElts = VT.getVectorNumElements();
620  MVT EltTy = VT.getVectorElementType();
621
622  unsigned NumVectorRegs = 1;
623
624  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
625  // could break down into LHS/RHS like LegalizeDAG does.
626  if (!isPowerOf2_32(NumElts)) {
627    NumVectorRegs = NumElts;
628    NumElts = 1;
629  }
630
631  // Divide the input until we get to a supported size.  This will always
632  // end with a scalar if the target doesn't support vectors.
633  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
634    NumElts >>= 1;
635    NumVectorRegs <<= 1;
636  }
637
638  NumIntermediates = NumVectorRegs;
639
640  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
641  if (!TLI->isTypeLegal(NewVT))
642    NewVT = EltTy;
643  IntermediateVT = NewVT;
644
645  EVT DestVT = TLI->getRegisterType(NewVT);
646  RegisterVT = DestVT;
647  if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
648    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
649
650  // Otherwise, promotion or legal types use the same number of registers as
651  // the vector decimated to the appropriate level.
652  return NumVectorRegs;
653}
654
655/// isLegalRC - Return true if the value types that can be represented by the
656/// specified register class are all legal.
657bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const {
658  for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
659       I != E; ++I) {
660    if (isTypeLegal(*I))
661      return true;
662  }
663  return false;
664}
665
666/// hasLegalSuperRegRegClasses - Return true if the specified register class
667/// has one or more super-reg register classes that are legal.
668bool
669TargetLowering::hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const{
670  if (*RC->superregclasses_begin() == 0)
671    return false;
672  for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
673         E = RC->superregclasses_end(); I != E; ++I) {
674    const TargetRegisterClass *RRC = *I;
675    if (isLegalRC(RRC))
676      return true;
677  }
678  return false;
679}
680
681/// findRepresentativeClass - Return the largest legal super-reg register class
682/// of the register class for the specified type and its associated "cost".
683std::pair<const TargetRegisterClass*, uint8_t>
684TargetLowering::findRepresentativeClass(EVT VT) const {
685  const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy];
686  if (!RC)
687    return std::make_pair(RC, 0);
688  const TargetRegisterClass *BestRC = RC;
689  for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(),
690         E = RC->superregclasses_end(); I != E; ++I) {
691    const TargetRegisterClass *RRC = *I;
692    if (RRC->isASubClass() || !isLegalRC(RRC))
693      continue;
694    if (!hasLegalSuperRegRegClasses(RRC))
695      return std::make_pair(RRC, 1);
696    BestRC = RRC;
697  }
698  return std::make_pair(BestRC, 1);
699}
700
701
702/// computeRegisterProperties - Once all of the register classes are added,
703/// this allows us to compute derived properties we expose.
704void TargetLowering::computeRegisterProperties() {
705  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
706         "Too many value types for ValueTypeActions to hold!");
707
708  // Everything defaults to needing one register.
709  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
710    NumRegistersForVT[i] = 1;
711    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
712  }
713  // ...except isVoid, which doesn't need any registers.
714  NumRegistersForVT[MVT::isVoid] = 0;
715
716  // Find the largest integer register class.
717  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
718  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
719    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
720
721  // Every integer value type larger than this largest register takes twice as
722  // many registers to represent as the previous ValueType.
723  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
724    EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
725    if (!ExpandedVT.isInteger())
726      break;
727    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
728    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
729    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
730    ValueTypeActions.setTypeAction(ExpandedVT, Expand);
731  }
732
733  // Inspect all of the ValueType's smaller than the largest integer
734  // register to see which ones need promotion.
735  unsigned LegalIntReg = LargestIntReg;
736  for (unsigned IntReg = LargestIntReg - 1;
737       IntReg >= (unsigned)MVT::i1; --IntReg) {
738    EVT IVT = (MVT::SimpleValueType)IntReg;
739    if (isTypeLegal(IVT)) {
740      LegalIntReg = IntReg;
741    } else {
742      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
743        (MVT::SimpleValueType)LegalIntReg;
744      ValueTypeActions.setTypeAction(IVT, Promote);
745    }
746  }
747
748  // ppcf128 type is really two f64's.
749  if (!isTypeLegal(MVT::ppcf128)) {
750    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
751    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
752    TransformToType[MVT::ppcf128] = MVT::f64;
753    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
754  }
755
756  // Decide how to handle f64. If the target does not have native f64 support,
757  // expand it to i64 and we will be generating soft float library calls.
758  if (!isTypeLegal(MVT::f64)) {
759    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
760    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
761    TransformToType[MVT::f64] = MVT::i64;
762    ValueTypeActions.setTypeAction(MVT::f64, Expand);
763  }
764
765  // Decide how to handle f32. If the target does not have native support for
766  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
767  if (!isTypeLegal(MVT::f32)) {
768    if (isTypeLegal(MVT::f64)) {
769      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
770      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
771      TransformToType[MVT::f32] = MVT::f64;
772      ValueTypeActions.setTypeAction(MVT::f32, Promote);
773    } else {
774      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
775      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
776      TransformToType[MVT::f32] = MVT::i32;
777      ValueTypeActions.setTypeAction(MVT::f32, Expand);
778    }
779  }
780
781  // Loop over all of the vector value types to see which need transformations.
782  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
783       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
784    MVT VT = (MVT::SimpleValueType)i;
785    if (isTypeLegal(VT)) continue;
786
787    // Determine if there is a legal wider type.  If so, we should promote to
788    // that wider vector type.
789    EVT EltVT = VT.getVectorElementType();
790    unsigned NElts = VT.getVectorNumElements();
791    if (NElts != 1) {
792      bool IsLegalWiderType = false;
793      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
794        EVT SVT = (MVT::SimpleValueType)nVT;
795        if (SVT.getVectorElementType() == EltVT &&
796            SVT.getVectorNumElements() > NElts &&
797            isTypeLegal(SVT)) {
798          TransformToType[i] = SVT;
799          RegisterTypeForVT[i] = SVT;
800          NumRegistersForVT[i] = 1;
801          ValueTypeActions.setTypeAction(VT, Promote);
802          IsLegalWiderType = true;
803          break;
804        }
805      }
806      if (IsLegalWiderType) continue;
807    }
808
809    MVT IntermediateVT;
810    EVT RegisterVT;
811    unsigned NumIntermediates;
812    NumRegistersForVT[i] =
813      getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
814                                RegisterVT, this);
815    RegisterTypeForVT[i] = RegisterVT;
816
817    EVT NVT = VT.getPow2VectorType();
818    if (NVT == VT) {
819      // Type is already a power of 2.  The default action is to split.
820      TransformToType[i] = MVT::Other;
821      ValueTypeActions.setTypeAction(VT, Expand);
822    } else {
823      TransformToType[i] = NVT;
824      ValueTypeActions.setTypeAction(VT, Promote);
825    }
826  }
827
828  // Determine the 'representative' register class for each value type.
829  // An representative register class is the largest (meaning one which is
830  // not a sub-register class / subreg register class) legal register class for
831  // a group of value types. For example, on i386, i8, i16, and i32
832  // representative would be GR32; while on x86_64 it's GR64.
833  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
834    const TargetRegisterClass* RRC;
835    uint8_t Cost;
836    tie(RRC, Cost) =  findRepresentativeClass((MVT::SimpleValueType)i);
837    RepRegClassForVT[i] = RRC;
838    RepRegClassCostForVT[i] = Cost;
839  }
840}
841
842const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
843  return NULL;
844}
845
846
847MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
848  return PointerTy.SimpleTy;
849}
850
851MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
852  return MVT::i32; // return the default value
853}
854
855/// getVectorTypeBreakdown - Vector types are broken down into some number of
856/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
857/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
858/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
859///
860/// This method returns the number of registers needed, and the VT for each
861/// register.  It also returns the VT and quantity of the intermediate values
862/// before they are promoted/expanded.
863///
864unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
865                                                EVT &IntermediateVT,
866                                                unsigned &NumIntermediates,
867                                                EVT &RegisterVT) const {
868  unsigned NumElts = VT.getVectorNumElements();
869
870  // If there is a wider vector type with the same element type as this one,
871  // we should widen to that legal vector type.  This handles things like
872  // <2 x float> -> <4 x float>.
873  if (NumElts != 1 && getTypeAction(VT) == Promote) {
874    RegisterVT = getTypeToTransformTo(Context, VT);
875    if (isTypeLegal(RegisterVT)) {
876      IntermediateVT = RegisterVT;
877      NumIntermediates = 1;
878      return 1;
879    }
880  }
881
882  // Figure out the right, legal destination reg to copy into.
883  EVT EltTy = VT.getVectorElementType();
884
885  unsigned NumVectorRegs = 1;
886
887  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
888  // could break down into LHS/RHS like LegalizeDAG does.
889  if (!isPowerOf2_32(NumElts)) {
890    NumVectorRegs = NumElts;
891    NumElts = 1;
892  }
893
894  // Divide the input until we get to a supported size.  This will always
895  // end with a scalar if the target doesn't support vectors.
896  while (NumElts > 1 && !isTypeLegal(
897                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
898    NumElts >>= 1;
899    NumVectorRegs <<= 1;
900  }
901
902  NumIntermediates = NumVectorRegs;
903
904  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
905  if (!isTypeLegal(NewVT))
906    NewVT = EltTy;
907  IntermediateVT = NewVT;
908
909  EVT DestVT = getRegisterType(Context, NewVT);
910  RegisterVT = DestVT;
911  if (DestVT.bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
912    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
913
914  // Otherwise, promotion or legal types use the same number of registers as
915  // the vector decimated to the appropriate level.
916  return NumVectorRegs;
917}
918
919/// Get the EVTs and ArgFlags collections that represent the legalized return
920/// type of the given function.  This does not require a DAG or a return value,
921/// and is suitable for use before any DAGs for the function are constructed.
922/// TODO: Move this out of TargetLowering.cpp.
923void llvm::GetReturnInfo(const Type* ReturnType, Attributes attr,
924                         SmallVectorImpl<ISD::OutputArg> &Outs,
925                         const TargetLowering &TLI,
926                         SmallVectorImpl<uint64_t> *Offsets) {
927  SmallVector<EVT, 4> ValueVTs;
928  ComputeValueVTs(TLI, ReturnType, ValueVTs);
929  unsigned NumValues = ValueVTs.size();
930  if (NumValues == 0) return;
931  unsigned Offset = 0;
932
933  for (unsigned j = 0, f = NumValues; j != f; ++j) {
934    EVT VT = ValueVTs[j];
935    ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
936
937    if (attr & Attribute::SExt)
938      ExtendKind = ISD::SIGN_EXTEND;
939    else if (attr & Attribute::ZExt)
940      ExtendKind = ISD::ZERO_EXTEND;
941
942    // FIXME: C calling convention requires the return type to be promoted to
943    // at least 32-bit. But this is not necessary for non-C calling
944    // conventions. The frontend should mark functions whose return values
945    // require promoting with signext or zeroext attributes.
946    if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
947      EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
948      if (VT.bitsLT(MinVT))
949        VT = MinVT;
950    }
951
952    unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
953    EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
954    unsigned PartSize = TLI.getTargetData()->getTypeAllocSize(
955                        PartVT.getTypeForEVT(ReturnType->getContext()));
956
957    // 'inreg' on function refers to return value
958    ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
959    if (attr & Attribute::InReg)
960      Flags.setInReg();
961
962    // Propagate extension type if any
963    if (attr & Attribute::SExt)
964      Flags.setSExt();
965    else if (attr & Attribute::ZExt)
966      Flags.setZExt();
967
968    for (unsigned i = 0; i < NumParts; ++i) {
969      Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true));
970      if (Offsets) {
971        Offsets->push_back(Offset);
972        Offset += PartSize;
973      }
974    }
975  }
976}
977
978/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
979/// function arguments in the caller parameter area.  This is the actual
980/// alignment, not its logarithm.
981unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
982  return TD->getCallFrameTypeAlignment(Ty);
983}
984
985/// getJumpTableEncoding - Return the entry encoding for a jump table in the
986/// current function.  The returned value is a member of the
987/// MachineJumpTableInfo::JTEntryKind enum.
988unsigned TargetLowering::getJumpTableEncoding() const {
989  // In non-pic modes, just use the address of a block.
990  if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
991    return MachineJumpTableInfo::EK_BlockAddress;
992
993  // In PIC mode, if the target supports a GPRel32 directive, use it.
994  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
995    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
996
997  // Otherwise, use a label difference.
998  return MachineJumpTableInfo::EK_LabelDifference32;
999}
1000
1001SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1002                                                 SelectionDAG &DAG) const {
1003  // If our PIC model is GP relative, use the global offset table as the base.
1004  if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
1005    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
1006  return Table;
1007}
1008
1009/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1010/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1011/// MCExpr.
1012const MCExpr *
1013TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
1014                                             unsigned JTI,MCContext &Ctx) const{
1015  // The normal PIC reloc base is the label at the start of the jump table.
1016  return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
1017}
1018
1019bool
1020TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
1021  // Assume that everything is safe in static mode.
1022  if (getTargetMachine().getRelocationModel() == Reloc::Static)
1023    return true;
1024
1025  // In dynamic-no-pic mode, assume that known defined values are safe.
1026  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
1027      GA &&
1028      !GA->getGlobal()->isDeclaration() &&
1029      !GA->getGlobal()->isWeakForLinker())
1030    return true;
1031
1032  // Otherwise assume nothing is safe.
1033  return false;
1034}
1035
1036//===----------------------------------------------------------------------===//
1037//  Optimization Methods
1038//===----------------------------------------------------------------------===//
1039
1040/// ShrinkDemandedConstant - Check to see if the specified operand of the
1041/// specified instruction is a constant integer.  If so, check to see if there
1042/// are any bits set in the constant that are not demanded.  If so, shrink the
1043/// constant and return true.
1044bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
1045                                                        const APInt &Demanded) {
1046  DebugLoc dl = Op.getDebugLoc();
1047
1048  // FIXME: ISD::SELECT, ISD::SELECT_CC
1049  switch (Op.getOpcode()) {
1050  default: break;
1051  case ISD::XOR:
1052  case ISD::AND:
1053  case ISD::OR: {
1054    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1055    if (!C) return false;
1056
1057    if (Op.getOpcode() == ISD::XOR &&
1058        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
1059      return false;
1060
1061    // if we can expand it to have all bits set, do it
1062    if (C->getAPIntValue().intersects(~Demanded)) {
1063      EVT VT = Op.getValueType();
1064      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
1065                                DAG.getConstant(Demanded &
1066                                                C->getAPIntValue(),
1067                                                VT));
1068      return CombineTo(Op, New);
1069    }
1070
1071    break;
1072  }
1073  }
1074
1075  return false;
1076}
1077
1078/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
1079/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
1080/// cast, but it could be generalized for targets with other types of
1081/// implicit widening casts.
1082bool
1083TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
1084                                                    unsigned BitWidth,
1085                                                    const APInt &Demanded,
1086                                                    DebugLoc dl) {
1087  assert(Op.getNumOperands() == 2 &&
1088         "ShrinkDemandedOp only supports binary operators!");
1089  assert(Op.getNode()->getNumValues() == 1 &&
1090         "ShrinkDemandedOp only supports nodes with one result!");
1091
1092  // Don't do this if the node has another user, which may require the
1093  // full value.
1094  if (!Op.getNode()->hasOneUse())
1095    return false;
1096
1097  // Search for the smallest integer type with free casts to and from
1098  // Op's type. For expedience, just check power-of-2 integer types.
1099  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1100  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
1101  if (!isPowerOf2_32(SmallVTBits))
1102    SmallVTBits = NextPowerOf2(SmallVTBits);
1103  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
1104    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
1105    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
1106        TLI.isZExtFree(SmallVT, Op.getValueType())) {
1107      // We found a type with free casts.
1108      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
1109                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1110                                          Op.getNode()->getOperand(0)),
1111                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
1112                                          Op.getNode()->getOperand(1)));
1113      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
1114      return CombineTo(Op, Z);
1115    }
1116  }
1117  return false;
1118}
1119
1120/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
1121/// DemandedMask bits of the result of Op are ever used downstream.  If we can
1122/// use this information to simplify Op, create a new simplified DAG node and
1123/// return true, returning the original and new nodes in Old and New. Otherwise,
1124/// analyze the expression and return a mask of KnownOne and KnownZero bits for
1125/// the expression (used to simplify the caller).  The KnownZero/One bits may
1126/// only be accurate for those bits in the DemandedMask.
1127bool TargetLowering::SimplifyDemandedBits(SDValue Op,
1128                                          const APInt &DemandedMask,
1129                                          APInt &KnownZero,
1130                                          APInt &KnownOne,
1131                                          TargetLoweringOpt &TLO,
1132                                          unsigned Depth) const {
1133  unsigned BitWidth = DemandedMask.getBitWidth();
1134  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
1135         "Mask size mismatches value type size!");
1136  APInt NewMask = DemandedMask;
1137  DebugLoc dl = Op.getDebugLoc();
1138
1139  // Don't know anything.
1140  KnownZero = KnownOne = APInt(BitWidth, 0);
1141
1142  // Other users may use these bits.
1143  if (!Op.getNode()->hasOneUse()) {
1144    if (Depth != 0) {
1145      // If not at the root, Just compute the KnownZero/KnownOne bits to
1146      // simplify things downstream.
1147      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
1148      return false;
1149    }
1150    // If this is the root being simplified, allow it to have multiple uses,
1151    // just set the NewMask to all bits.
1152    NewMask = APInt::getAllOnesValue(BitWidth);
1153  } else if (DemandedMask == 0) {
1154    // Not demanding any bits from Op.
1155    if (Op.getOpcode() != ISD::UNDEF)
1156      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
1157    return false;
1158  } else if (Depth == 6) {        // Limit search depth.
1159    return false;
1160  }
1161
1162  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
1163  switch (Op.getOpcode()) {
1164  case ISD::Constant:
1165    // We know all of the bits for a constant!
1166    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
1167    KnownZero = ~KnownOne & NewMask;
1168    return false;   // Don't fall through, will infinitely loop.
1169  case ISD::AND:
1170    // If the RHS is a constant, check to see if the LHS would be zero without
1171    // using the bits from the RHS.  Below, we use knowledge about the RHS to
1172    // simplify the LHS, here we're using information from the LHS to simplify
1173    // the RHS.
1174    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1175      APInt LHSZero, LHSOne;
1176      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
1177                                LHSZero, LHSOne, Depth+1);
1178      // If the LHS already has zeros where RHSC does, this and is dead.
1179      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1180        return TLO.CombineTo(Op, Op.getOperand(0));
1181      // If any of the set bits in the RHS are known zero on the LHS, shrink
1182      // the constant.
1183      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1184        return true;
1185    }
1186
1187    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1188                             KnownOne, TLO, Depth+1))
1189      return true;
1190    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1191    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1192                             KnownZero2, KnownOne2, TLO, Depth+1))
1193      return true;
1194    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1195
1196    // If all of the demanded bits are known one on one side, return the other.
1197    // These bits cannot contribute to the result of the 'and'.
1198    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1199      return TLO.CombineTo(Op, Op.getOperand(0));
1200    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1201      return TLO.CombineTo(Op, Op.getOperand(1));
1202    // If all of the demanded bits in the inputs are known zeros, return zero.
1203    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1204      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1205    // If the RHS is a constant, see if we can simplify it.
1206    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1207      return true;
1208    // If the operation can be done in a smaller type, do so.
1209    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1210      return true;
1211
1212    // Output known-1 bits are only known if set in both the LHS & RHS.
1213    KnownOne &= KnownOne2;
1214    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1215    KnownZero |= KnownZero2;
1216    break;
1217  case ISD::OR:
1218    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1219                             KnownOne, TLO, Depth+1))
1220      return true;
1221    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1222    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1223                             KnownZero2, KnownOne2, TLO, Depth+1))
1224      return true;
1225    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1226
1227    // If all of the demanded bits are known zero on one side, return the other.
1228    // These bits cannot contribute to the result of the 'or'.
1229    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1230      return TLO.CombineTo(Op, Op.getOperand(0));
1231    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1232      return TLO.CombineTo(Op, Op.getOperand(1));
1233    // If all of the potentially set bits on one side are known to be set on
1234    // the other side, just use the 'other' side.
1235    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1236      return TLO.CombineTo(Op, Op.getOperand(0));
1237    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1238      return TLO.CombineTo(Op, Op.getOperand(1));
1239    // If the RHS is a constant, see if we can simplify it.
1240    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1241      return true;
1242    // If the operation can be done in a smaller type, do so.
1243    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1244      return true;
1245
1246    // Output known-0 bits are only known if clear in both the LHS & RHS.
1247    KnownZero &= KnownZero2;
1248    // Output known-1 are known to be set if set in either the LHS | RHS.
1249    KnownOne |= KnownOne2;
1250    break;
1251  case ISD::XOR:
1252    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1253                             KnownOne, TLO, Depth+1))
1254      return true;
1255    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1256    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1257                             KnownOne2, TLO, Depth+1))
1258      return true;
1259    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1260
1261    // If all of the demanded bits are known zero on one side, return the other.
1262    // These bits cannot contribute to the result of the 'xor'.
1263    if ((KnownZero & NewMask) == NewMask)
1264      return TLO.CombineTo(Op, Op.getOperand(0));
1265    if ((KnownZero2 & NewMask) == NewMask)
1266      return TLO.CombineTo(Op, Op.getOperand(1));
1267    // If the operation can be done in a smaller type, do so.
1268    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1269      return true;
1270
1271    // If all of the unknown bits are known to be zero on one side or the other
1272    // (but not both) turn this into an *inclusive* or.
1273    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1274    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1275      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1276                                               Op.getOperand(0),
1277                                               Op.getOperand(1)));
1278
1279    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1280    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1281    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1282    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1283
1284    // If all of the demanded bits on one side are known, and all of the set
1285    // bits on that side are also known to be set on the other side, turn this
1286    // into an AND, as we know the bits will be cleared.
1287    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1288    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1289      if ((KnownOne & KnownOne2) == KnownOne) {
1290        EVT VT = Op.getValueType();
1291        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1292        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1293                                                 Op.getOperand(0), ANDC));
1294      }
1295    }
1296
1297    // If the RHS is a constant, see if we can simplify it.
1298    // for XOR, we prefer to force bits to 1 if they will make a -1.
1299    // if we can't force bits, try to shrink constant
1300    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1301      APInt Expanded = C->getAPIntValue() | (~NewMask);
1302      // if we can expand it to have all bits set, do it
1303      if (Expanded.isAllOnesValue()) {
1304        if (Expanded != C->getAPIntValue()) {
1305          EVT VT = Op.getValueType();
1306          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1307                                          TLO.DAG.getConstant(Expanded, VT));
1308          return TLO.CombineTo(Op, New);
1309        }
1310        // if it already has all the bits set, nothing to change
1311        // but don't shrink either!
1312      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1313        return true;
1314      }
1315    }
1316
1317    KnownZero = KnownZeroOut;
1318    KnownOne  = KnownOneOut;
1319    break;
1320  case ISD::SELECT:
1321    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1322                             KnownOne, TLO, Depth+1))
1323      return true;
1324    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1325                             KnownOne2, TLO, Depth+1))
1326      return true;
1327    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1328    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1329
1330    // If the operands are constants, see if we can simplify them.
1331    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1332      return true;
1333
1334    // Only known if known in both the LHS and RHS.
1335    KnownOne &= KnownOne2;
1336    KnownZero &= KnownZero2;
1337    break;
1338  case ISD::SELECT_CC:
1339    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1340                             KnownOne, TLO, Depth+1))
1341      return true;
1342    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1343                             KnownOne2, TLO, Depth+1))
1344      return true;
1345    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1346    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1347
1348    // If the operands are constants, see if we can simplify them.
1349    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1350      return true;
1351
1352    // Only known if known in both the LHS and RHS.
1353    KnownOne &= KnownOne2;
1354    KnownZero &= KnownZero2;
1355    break;
1356  case ISD::SHL:
1357    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1358      unsigned ShAmt = SA->getZExtValue();
1359      SDValue InOp = Op.getOperand(0);
1360
1361      // If the shift count is an invalid immediate, don't do anything.
1362      if (ShAmt >= BitWidth)
1363        break;
1364
1365      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1366      // single shift.  We can do this if the bottom bits (which are shifted
1367      // out) are never demanded.
1368      if (InOp.getOpcode() == ISD::SRL &&
1369          isa<ConstantSDNode>(InOp.getOperand(1))) {
1370        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1371          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1372          unsigned Opc = ISD::SHL;
1373          int Diff = ShAmt-C1;
1374          if (Diff < 0) {
1375            Diff = -Diff;
1376            Opc = ISD::SRL;
1377          }
1378
1379          SDValue NewSA =
1380            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1381          EVT VT = Op.getValueType();
1382          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1383                                                   InOp.getOperand(0), NewSA));
1384        }
1385      }
1386
1387      if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
1388                               KnownZero, KnownOne, TLO, Depth+1))
1389        return true;
1390
1391      // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1392      // are not demanded. This will likely allow the anyext to be folded away.
1393      if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
1394        SDValue InnerOp = InOp.getNode()->getOperand(0);
1395        EVT InnerVT = InnerOp.getValueType();
1396        if ((APInt::getHighBitsSet(BitWidth,
1397                                   BitWidth - InnerVT.getSizeInBits()) &
1398               DemandedMask) == 0 &&
1399            isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1400          EVT ShTy = getShiftAmountTy();
1401          if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1402            ShTy = InnerVT;
1403          SDValue NarrowShl =
1404            TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1405                            TLO.DAG.getConstant(ShAmt, ShTy));
1406          return
1407            TLO.CombineTo(Op,
1408                          TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
1409                                          NarrowShl));
1410        }
1411      }
1412
1413      KnownZero <<= SA->getZExtValue();
1414      KnownOne  <<= SA->getZExtValue();
1415      // low bits known zero.
1416      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1417    }
1418    break;
1419  case ISD::SRL:
1420    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1421      EVT VT = Op.getValueType();
1422      unsigned ShAmt = SA->getZExtValue();
1423      unsigned VTSize = VT.getSizeInBits();
1424      SDValue InOp = Op.getOperand(0);
1425
1426      // If the shift count is an invalid immediate, don't do anything.
1427      if (ShAmt >= BitWidth)
1428        break;
1429
1430      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1431      // single shift.  We can do this if the top bits (which are shifted out)
1432      // are never demanded.
1433      if (InOp.getOpcode() == ISD::SHL &&
1434          isa<ConstantSDNode>(InOp.getOperand(1))) {
1435        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1436          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1437          unsigned Opc = ISD::SRL;
1438          int Diff = ShAmt-C1;
1439          if (Diff < 0) {
1440            Diff = -Diff;
1441            Opc = ISD::SHL;
1442          }
1443
1444          SDValue NewSA =
1445            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1446          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1447                                                   InOp.getOperand(0), NewSA));
1448        }
1449      }
1450
1451      // Compute the new bits that are at the top now.
1452      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1453                               KnownZero, KnownOne, TLO, Depth+1))
1454        return true;
1455      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1456      KnownZero = KnownZero.lshr(ShAmt);
1457      KnownOne  = KnownOne.lshr(ShAmt);
1458
1459      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1460      KnownZero |= HighBits;  // High bits known zero.
1461    }
1462    break;
1463  case ISD::SRA:
1464    // If this is an arithmetic shift right and only the low-bit is set, we can
1465    // always convert this into a logical shr, even if the shift amount is
1466    // variable.  The low bit of the shift cannot be an input sign bit unless
1467    // the shift amount is >= the size of the datatype, which is undefined.
1468    if (DemandedMask == 1)
1469      return TLO.CombineTo(Op,
1470                           TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1471                                           Op.getOperand(0), Op.getOperand(1)));
1472
1473    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1474      EVT VT = Op.getValueType();
1475      unsigned ShAmt = SA->getZExtValue();
1476
1477      // If the shift count is an invalid immediate, don't do anything.
1478      if (ShAmt >= BitWidth)
1479        break;
1480
1481      APInt InDemandedMask = (NewMask << ShAmt);
1482
1483      // If any of the demanded bits are produced by the sign extension, we also
1484      // demand the input sign bit.
1485      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1486      if (HighBits.intersects(NewMask))
1487        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1488
1489      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1490                               KnownZero, KnownOne, TLO, Depth+1))
1491        return true;
1492      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1493      KnownZero = KnownZero.lshr(ShAmt);
1494      KnownOne  = KnownOne.lshr(ShAmt);
1495
1496      // Handle the sign bit, adjusted to where it is now in the mask.
1497      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1498
1499      // If the input sign bit is known to be zero, or if none of the top bits
1500      // are demanded, turn this into an unsigned shift right.
1501      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1502        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1503                                                 Op.getOperand(0),
1504                                                 Op.getOperand(1)));
1505      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1506        KnownOne |= HighBits;
1507      }
1508    }
1509    break;
1510  case ISD::SIGN_EXTEND_INREG: {
1511    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1512
1513    // Sign extension.  Compute the demanded bits in the result that are not
1514    // present in the input.
1515    APInt NewBits =
1516      APInt::getHighBitsSet(BitWidth,
1517                            BitWidth - EVT.getScalarType().getSizeInBits());
1518
1519    // If none of the extended bits are demanded, eliminate the sextinreg.
1520    if ((NewBits & NewMask) == 0)
1521      return TLO.CombineTo(Op, Op.getOperand(0));
1522
1523    APInt InSignBit =
1524      APInt::getSignBit(EVT.getScalarType().getSizeInBits()).zext(BitWidth);
1525    APInt InputDemandedBits =
1526      APInt::getLowBitsSet(BitWidth,
1527                           EVT.getScalarType().getSizeInBits()) &
1528      NewMask;
1529
1530    // Since the sign extended bits are demanded, we know that the sign
1531    // bit is demanded.
1532    InputDemandedBits |= InSignBit;
1533
1534    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1535                             KnownZero, KnownOne, TLO, Depth+1))
1536      return true;
1537    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1538
1539    // If the sign bit of the input is known set or clear, then we know the
1540    // top bits of the result.
1541
1542    // If the input sign bit is known zero, convert this into a zero extension.
1543    if (KnownZero.intersects(InSignBit))
1544      return TLO.CombineTo(Op,
1545                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1546
1547    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1548      KnownOne |= NewBits;
1549      KnownZero &= ~NewBits;
1550    } else {                       // Input sign bit unknown
1551      KnownZero &= ~NewBits;
1552      KnownOne &= ~NewBits;
1553    }
1554    break;
1555  }
1556  case ISD::ZERO_EXTEND: {
1557    unsigned OperandBitWidth =
1558      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1559    APInt InMask = NewMask.trunc(OperandBitWidth);
1560
1561    // If none of the top bits are demanded, convert this into an any_extend.
1562    APInt NewBits =
1563      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1564    if (!NewBits.intersects(NewMask))
1565      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1566                                               Op.getValueType(),
1567                                               Op.getOperand(0)));
1568
1569    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1570                             KnownZero, KnownOne, TLO, Depth+1))
1571      return true;
1572    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1573    KnownZero = KnownZero.zext(BitWidth);
1574    KnownOne = KnownOne.zext(BitWidth);
1575    KnownZero |= NewBits;
1576    break;
1577  }
1578  case ISD::SIGN_EXTEND: {
1579    EVT InVT = Op.getOperand(0).getValueType();
1580    unsigned InBits = InVT.getScalarType().getSizeInBits();
1581    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1582    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1583    APInt NewBits   = ~InMask & NewMask;
1584
1585    // If none of the top bits are demanded, convert this into an any_extend.
1586    if (NewBits == 0)
1587      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1588                                              Op.getValueType(),
1589                                              Op.getOperand(0)));
1590
1591    // Since some of the sign extended bits are demanded, we know that the sign
1592    // bit is demanded.
1593    APInt InDemandedBits = InMask & NewMask;
1594    InDemandedBits |= InSignBit;
1595    InDemandedBits = InDemandedBits.trunc(InBits);
1596
1597    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1598                             KnownOne, TLO, Depth+1))
1599      return true;
1600    KnownZero = KnownZero.zext(BitWidth);
1601    KnownOne = KnownOne.zext(BitWidth);
1602
1603    // If the sign bit is known zero, convert this to a zero extend.
1604    if (KnownZero.intersects(InSignBit))
1605      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1606                                               Op.getValueType(),
1607                                               Op.getOperand(0)));
1608
1609    // If the sign bit is known one, the top bits match.
1610    if (KnownOne.intersects(InSignBit)) {
1611      KnownOne  |= NewBits;
1612      KnownZero &= ~NewBits;
1613    } else {   // Otherwise, top bits aren't known.
1614      KnownOne  &= ~NewBits;
1615      KnownZero &= ~NewBits;
1616    }
1617    break;
1618  }
1619  case ISD::ANY_EXTEND: {
1620    unsigned OperandBitWidth =
1621      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1622    APInt InMask = NewMask.trunc(OperandBitWidth);
1623    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1624                             KnownZero, KnownOne, TLO, Depth+1))
1625      return true;
1626    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1627    KnownZero = KnownZero.zext(BitWidth);
1628    KnownOne = KnownOne.zext(BitWidth);
1629    break;
1630  }
1631  case ISD::TRUNCATE: {
1632    // Simplify the input, using demanded bit information, and compute the known
1633    // zero/one bits live out.
1634    unsigned OperandBitWidth =
1635      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1636    APInt TruncMask = NewMask.zext(OperandBitWidth);
1637    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1638                             KnownZero, KnownOne, TLO, Depth+1))
1639      return true;
1640    KnownZero = KnownZero.trunc(BitWidth);
1641    KnownOne = KnownOne.trunc(BitWidth);
1642
1643    // If the input is only used by this truncate, see if we can shrink it based
1644    // on the known demanded bits.
1645    if (Op.getOperand(0).getNode()->hasOneUse()) {
1646      SDValue In = Op.getOperand(0);
1647      switch (In.getOpcode()) {
1648      default: break;
1649      case ISD::SRL:
1650        // Shrink SRL by a constant if none of the high bits shifted in are
1651        // demanded.
1652        if (TLO.LegalTypes() &&
1653            !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1654          // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1655          // undesirable.
1656          break;
1657        ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1658        if (!ShAmt)
1659          break;
1660        APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1661                                               OperandBitWidth - BitWidth);
1662        HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
1663
1664        if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1665          // None of the shifted in bits are needed.  Add a truncate of the
1666          // shift input, then shift it.
1667          SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1668                                             Op.getValueType(),
1669                                             In.getOperand(0));
1670          return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1671                                                   Op.getValueType(),
1672                                                   NewTrunc,
1673                                                   In.getOperand(1)));
1674        }
1675        break;
1676      }
1677    }
1678
1679    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1680    break;
1681  }
1682  case ISD::AssertZext: {
1683    // Demand all the bits of the input that are demanded in the output.
1684    // The low bits are obvious; the high bits are demanded because we're
1685    // asserting that they're zero here.
1686    if (SimplifyDemandedBits(Op.getOperand(0), NewMask,
1687                             KnownZero, KnownOne, TLO, Depth+1))
1688      return true;
1689    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1690
1691    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1692    APInt InMask = APInt::getLowBitsSet(BitWidth,
1693                                        VT.getSizeInBits());
1694    KnownZero |= ~InMask & NewMask;
1695    break;
1696  }
1697  case ISD::BITCAST:
1698#if 0
1699    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1700    // is demanded, turn this into a FGETSIGN.
1701    if (NewMask == EVT::getIntegerVTSignBit(Op.getValueType()) &&
1702        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1703        !MVT::isVector(Op.getOperand(0).getValueType())) {
1704      // Only do this xform if FGETSIGN is valid or if before legalize.
1705      if (!TLO.AfterLegalize ||
1706          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1707        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1708        // place.  We expect the SHL to be eliminated by other optimizations.
1709        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1710                                         Op.getOperand(0));
1711        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1712        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1713        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1714                                                 Sign, ShAmt));
1715      }
1716    }
1717#endif
1718    break;
1719  case ISD::ADD:
1720  case ISD::MUL:
1721  case ISD::SUB: {
1722    // Add, Sub, and Mul don't demand any bits in positions beyond that
1723    // of the highest bit demanded of them.
1724    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1725                                        BitWidth - NewMask.countLeadingZeros());
1726    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1727                             KnownOne2, TLO, Depth+1))
1728      return true;
1729    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1730                             KnownOne2, TLO, Depth+1))
1731      return true;
1732    // See if the operation should be performed at a smaller bit width.
1733    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1734      return true;
1735  }
1736  // FALL THROUGH
1737  default:
1738    // Just use ComputeMaskedBits to compute output bits.
1739    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1740    break;
1741  }
1742
1743  // If we know the value of all of the demanded bits, return this as a
1744  // constant.
1745  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1746    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1747
1748  return false;
1749}
1750
1751/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1752/// in Mask are known to be either zero or one and return them in the
1753/// KnownZero/KnownOne bitsets.
1754void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1755                                                    const APInt &Mask,
1756                                                    APInt &KnownZero,
1757                                                    APInt &KnownOne,
1758                                                    const SelectionDAG &DAG,
1759                                                    unsigned Depth) const {
1760  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1761          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1762          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1763          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1764         "Should use MaskedValueIsZero if you don't know whether Op"
1765         " is a target node!");
1766  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1767}
1768
1769/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1770/// targets that want to expose additional information about sign bits to the
1771/// DAG Combiner.
1772unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1773                                                         unsigned Depth) const {
1774  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1775          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1776          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1777          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1778         "Should use ComputeNumSignBits if you don't know whether Op"
1779         " is a target node!");
1780  return 1;
1781}
1782
1783/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1784/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1785/// determine which bit is set.
1786///
1787static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1788  // A left-shift of a constant one will have exactly one bit set, because
1789  // shifting the bit off the end is undefined.
1790  if (Val.getOpcode() == ISD::SHL)
1791    if (ConstantSDNode *C =
1792         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1793      if (C->getAPIntValue() == 1)
1794        return true;
1795
1796  // Similarly, a right-shift of a constant sign-bit will have exactly
1797  // one bit set.
1798  if (Val.getOpcode() == ISD::SRL)
1799    if (ConstantSDNode *C =
1800         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1801      if (C->getAPIntValue().isSignBit())
1802        return true;
1803
1804  // More could be done here, though the above checks are enough
1805  // to handle some common cases.
1806
1807  // Fall back to ComputeMaskedBits to catch other known cases.
1808  EVT OpVT = Val.getValueType();
1809  unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1810  APInt Mask = APInt::getAllOnesValue(BitWidth);
1811  APInt KnownZero, KnownOne;
1812  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1813  return (KnownZero.countPopulation() == BitWidth - 1) &&
1814         (KnownOne.countPopulation() == 1);
1815}
1816
1817/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1818/// and cc. If it is unable to simplify it, return a null SDValue.
1819SDValue
1820TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1821                              ISD::CondCode Cond, bool foldBooleans,
1822                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1823  SelectionDAG &DAG = DCI.DAG;
1824  LLVMContext &Context = *DAG.getContext();
1825
1826  // These setcc operations always fold.
1827  switch (Cond) {
1828  default: break;
1829  case ISD::SETFALSE:
1830  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1831  case ISD::SETTRUE:
1832  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1833  }
1834
1835  if (isa<ConstantSDNode>(N0.getNode())) {
1836    // Ensure that the constant occurs on the RHS, and fold constant
1837    // comparisons.
1838    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1839  }
1840
1841  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1842    const APInt &C1 = N1C->getAPIntValue();
1843
1844    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1845    // equality comparison, then we're just comparing whether X itself is
1846    // zero.
1847    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1848        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1849        N0.getOperand(1).getOpcode() == ISD::Constant) {
1850      const APInt &ShAmt
1851        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1852      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1853          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1854        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1855          // (srl (ctlz x), 5) == 0  -> X != 0
1856          // (srl (ctlz x), 5) != 1  -> X != 0
1857          Cond = ISD::SETNE;
1858        } else {
1859          // (srl (ctlz x), 5) != 0  -> X == 0
1860          // (srl (ctlz x), 5) == 1  -> X == 0
1861          Cond = ISD::SETEQ;
1862        }
1863        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1864        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1865                            Zero, Cond);
1866      }
1867    }
1868
1869    // If the LHS is '(and load, const)', the RHS is 0,
1870    // the test is for equality or unsigned, and all 1 bits of the const are
1871    // in the same partial word, see if we can shorten the load.
1872    if (DCI.isBeforeLegalize() &&
1873        N0.getOpcode() == ISD::AND && C1 == 0 &&
1874        N0.getNode()->hasOneUse() &&
1875        isa<LoadSDNode>(N0.getOperand(0)) &&
1876        N0.getOperand(0).getNode()->hasOneUse() &&
1877        isa<ConstantSDNode>(N0.getOperand(1))) {
1878      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1879      APInt bestMask;
1880      unsigned bestWidth = 0, bestOffset = 0;
1881      if (!Lod->isVolatile() && Lod->isUnindexed()) {
1882        unsigned origWidth = N0.getValueType().getSizeInBits();
1883        unsigned maskWidth = origWidth;
1884        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1885        // 8 bits, but have to be careful...
1886        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1887          origWidth = Lod->getMemoryVT().getSizeInBits();
1888        const APInt &Mask =
1889          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1890        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1891          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1892          for (unsigned offset=0; offset<origWidth/width; offset++) {
1893            if ((newMask & Mask) == Mask) {
1894              if (!TD->isLittleEndian())
1895                bestOffset = (origWidth/width - offset - 1) * (width/8);
1896              else
1897                bestOffset = (uint64_t)offset * (width/8);
1898              bestMask = Mask.lshr(offset * (width/8) * 8);
1899              bestWidth = width;
1900              break;
1901            }
1902            newMask = newMask << width;
1903          }
1904        }
1905      }
1906      if (bestWidth) {
1907        EVT newVT = EVT::getIntegerVT(Context, bestWidth);
1908        if (newVT.isRound()) {
1909          EVT PtrType = Lod->getOperand(1).getValueType();
1910          SDValue Ptr = Lod->getBasePtr();
1911          if (bestOffset != 0)
1912            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1913                              DAG.getConstant(bestOffset, PtrType));
1914          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1915          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1916                                Lod->getPointerInfo().getWithOffset(bestOffset),
1917                                        false, false, NewAlign);
1918          return DAG.getSetCC(dl, VT,
1919                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1920                                      DAG.getConstant(bestMask.trunc(bestWidth),
1921                                                      newVT)),
1922                              DAG.getConstant(0LL, newVT), Cond);
1923        }
1924      }
1925    }
1926
1927    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1928    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1929      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1930
1931      // If the comparison constant has bits in the upper part, the
1932      // zero-extended value could never match.
1933      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1934                                              C1.getBitWidth() - InSize))) {
1935        switch (Cond) {
1936        case ISD::SETUGT:
1937        case ISD::SETUGE:
1938        case ISD::SETEQ: return DAG.getConstant(0, VT);
1939        case ISD::SETULT:
1940        case ISD::SETULE:
1941        case ISD::SETNE: return DAG.getConstant(1, VT);
1942        case ISD::SETGT:
1943        case ISD::SETGE:
1944          // True if the sign bit of C1 is set.
1945          return DAG.getConstant(C1.isNegative(), VT);
1946        case ISD::SETLT:
1947        case ISD::SETLE:
1948          // True if the sign bit of C1 isn't set.
1949          return DAG.getConstant(C1.isNonNegative(), VT);
1950        default:
1951          break;
1952        }
1953      }
1954
1955      // Otherwise, we can perform the comparison with the low bits.
1956      switch (Cond) {
1957      case ISD::SETEQ:
1958      case ISD::SETNE:
1959      case ISD::SETUGT:
1960      case ISD::SETUGE:
1961      case ISD::SETULT:
1962      case ISD::SETULE: {
1963        EVT newVT = N0.getOperand(0).getValueType();
1964        if (DCI.isBeforeLegalizeOps() ||
1965            (isOperationLegal(ISD::SETCC, newVT) &&
1966              getCondCodeAction(Cond, newVT)==Legal))
1967          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1968                              DAG.getConstant(C1.trunc(InSize), newVT),
1969                              Cond);
1970        break;
1971      }
1972      default:
1973        break;   // todo, be more careful with signed comparisons
1974      }
1975    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1976               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1977      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1978      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1979      EVT ExtDstTy = N0.getValueType();
1980      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1981
1982      // If the constant doesn't fit into the number of bits for the source of
1983      // the sign extension, it is impossible for both sides to be equal.
1984      if (C1.getMinSignedBits() > ExtSrcTyBits)
1985        return DAG.getConstant(Cond == ISD::SETNE, VT);
1986
1987      SDValue ZextOp;
1988      EVT Op0Ty = N0.getOperand(0).getValueType();
1989      if (Op0Ty == ExtSrcTy) {
1990        ZextOp = N0.getOperand(0);
1991      } else {
1992        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1993        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1994                              DAG.getConstant(Imm, Op0Ty));
1995      }
1996      if (!DCI.isCalledByLegalizer())
1997        DCI.AddToWorklist(ZextOp.getNode());
1998      // Otherwise, make this a use of a zext.
1999      return DAG.getSetCC(dl, VT, ZextOp,
2000                          DAG.getConstant(C1 & APInt::getLowBitsSet(
2001                                                              ExtDstTyBits,
2002                                                              ExtSrcTyBits),
2003                                          ExtDstTy),
2004                          Cond);
2005    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
2006                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2007      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
2008      if (N0.getOpcode() == ISD::SETCC &&
2009          isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2010        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
2011        if (TrueWhenTrue)
2012          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2013        // Invert the condition.
2014        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2015        CC = ISD::getSetCCInverse(CC,
2016                                  N0.getOperand(0).getValueType().isInteger());
2017        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2018      }
2019
2020      if ((N0.getOpcode() == ISD::XOR ||
2021           (N0.getOpcode() == ISD::AND &&
2022            N0.getOperand(0).getOpcode() == ISD::XOR &&
2023            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2024          isa<ConstantSDNode>(N0.getOperand(1)) &&
2025          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
2026        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
2027        // can only do this if the top bits are known zero.
2028        unsigned BitWidth = N0.getValueSizeInBits();
2029        if (DAG.MaskedValueIsZero(N0,
2030                                  APInt::getHighBitsSet(BitWidth,
2031                                                        BitWidth-1))) {
2032          // Okay, get the un-inverted input value.
2033          SDValue Val;
2034          if (N0.getOpcode() == ISD::XOR)
2035            Val = N0.getOperand(0);
2036          else {
2037            assert(N0.getOpcode() == ISD::AND &&
2038                    N0.getOperand(0).getOpcode() == ISD::XOR);
2039            // ((X^1)&1)^1 -> X & 1
2040            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2041                              N0.getOperand(0).getOperand(0),
2042                              N0.getOperand(1));
2043          }
2044
2045          return DAG.getSetCC(dl, VT, Val, N1,
2046                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2047        }
2048      } else if (N1C->getAPIntValue() == 1 &&
2049                 (VT == MVT::i1 ||
2050                  getBooleanContents() == ZeroOrOneBooleanContent)) {
2051        SDValue Op0 = N0;
2052        if (Op0.getOpcode() == ISD::TRUNCATE)
2053          Op0 = Op0.getOperand(0);
2054
2055        if ((Op0.getOpcode() == ISD::XOR) &&
2056            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2057            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2058          // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2059          Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2060          return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2061                              Cond);
2062        } else if (Op0.getOpcode() == ISD::AND &&
2063                isa<ConstantSDNode>(Op0.getOperand(1)) &&
2064                cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
2065          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2066          if (Op0.getValueType().bitsGT(VT))
2067            Op0 = DAG.getNode(ISD::AND, dl, VT,
2068                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2069                          DAG.getConstant(1, VT));
2070          else if (Op0.getValueType().bitsLT(VT))
2071            Op0 = DAG.getNode(ISD::AND, dl, VT,
2072                        DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2073                        DAG.getConstant(1, VT));
2074
2075          return DAG.getSetCC(dl, VT, Op0,
2076                              DAG.getConstant(0, Op0.getValueType()),
2077                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2078        }
2079      }
2080    }
2081
2082    APInt MinVal, MaxVal;
2083    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
2084    if (ISD::isSignedIntSetCC(Cond)) {
2085      MinVal = APInt::getSignedMinValue(OperandBitSize);
2086      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2087    } else {
2088      MinVal = APInt::getMinValue(OperandBitSize);
2089      MaxVal = APInt::getMaxValue(OperandBitSize);
2090    }
2091
2092    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2093    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2094      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
2095      // X >= C0 --> X > (C0-1)
2096      return DAG.getSetCC(dl, VT, N0,
2097                          DAG.getConstant(C1-1, N1.getValueType()),
2098                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
2099    }
2100
2101    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2102      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
2103      // X <= C0 --> X < (C0+1)
2104      return DAG.getSetCC(dl, VT, N0,
2105                          DAG.getConstant(C1+1, N1.getValueType()),
2106                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
2107    }
2108
2109    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
2110      return DAG.getConstant(0, VT);      // X < MIN --> false
2111    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
2112      return DAG.getConstant(1, VT);      // X >= MIN --> true
2113    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
2114      return DAG.getConstant(0, VT);      // X > MAX --> false
2115    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
2116      return DAG.getConstant(1, VT);      // X <= MAX --> true
2117
2118    // Canonicalize setgt X, Min --> setne X, Min
2119    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
2120      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2121    // Canonicalize setlt X, Max --> setne X, Max
2122    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
2123      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2124
2125    // If we have setult X, 1, turn it into seteq X, 0
2126    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
2127      return DAG.getSetCC(dl, VT, N0,
2128                          DAG.getConstant(MinVal, N0.getValueType()),
2129                          ISD::SETEQ);
2130    // If we have setugt X, Max-1, turn it into seteq X, Max
2131    else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
2132      return DAG.getSetCC(dl, VT, N0,
2133                          DAG.getConstant(MaxVal, N0.getValueType()),
2134                          ISD::SETEQ);
2135
2136    // If we have "setcc X, C0", check to see if we can shrink the immediate
2137    // by changing cc.
2138
2139    // SETUGT X, SINTMAX  -> SETLT X, 0
2140    if (Cond == ISD::SETUGT &&
2141        C1 == APInt::getSignedMaxValue(OperandBitSize))
2142      return DAG.getSetCC(dl, VT, N0,
2143                          DAG.getConstant(0, N1.getValueType()),
2144                          ISD::SETLT);
2145
2146    // SETULT X, SINTMIN  -> SETGT X, -1
2147    if (Cond == ISD::SETULT &&
2148        C1 == APInt::getSignedMinValue(OperandBitSize)) {
2149      SDValue ConstMinusOne =
2150          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
2151                          N1.getValueType());
2152      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2153    }
2154
2155    // Fold bit comparisons when we can.
2156    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2157        (VT == N0.getValueType() ||
2158         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2159        N0.getOpcode() == ISD::AND)
2160      if (ConstantSDNode *AndRHS =
2161                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2162        EVT ShiftTy = DCI.isBeforeLegalize() ?
2163          getPointerTy() : getShiftAmountTy();
2164        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2165          // Perform the xform if the AND RHS is a single bit.
2166          if (AndRHS->getAPIntValue().isPowerOf2()) {
2167            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2168                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2169                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
2170          }
2171        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2172          // (X & 8) == 8  -->  (X & 8) >> 3
2173          // Perform the xform if C1 is a single bit.
2174          if (C1.isPowerOf2()) {
2175            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2176                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2177                                      DAG.getConstant(C1.logBase2(), ShiftTy)));
2178          }
2179        }
2180      }
2181  }
2182
2183  if (isa<ConstantFPSDNode>(N0.getNode())) {
2184    // Constant fold or commute setcc.
2185    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2186    if (O.getNode()) return O;
2187  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2188    // If the RHS of an FP comparison is a constant, simplify it away in
2189    // some cases.
2190    if (CFP->getValueAPF().isNaN()) {
2191      // If an operand is known to be a nan, we can fold it.
2192      switch (ISD::getUnorderedFlavor(Cond)) {
2193      default: llvm_unreachable("Unknown flavor!");
2194      case 0:  // Known false.
2195        return DAG.getConstant(0, VT);
2196      case 1:  // Known true.
2197        return DAG.getConstant(1, VT);
2198      case 2:  // Undefined.
2199        return DAG.getUNDEF(VT);
2200      }
2201    }
2202
2203    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2204    // constant if knowing that the operand is non-nan is enough.  We prefer to
2205    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2206    // materialize 0.0.
2207    if (Cond == ISD::SETO || Cond == ISD::SETUO)
2208      return DAG.getSetCC(dl, VT, N0, N0, Cond);
2209
2210    // If the condition is not legal, see if we can find an equivalent one
2211    // which is legal.
2212    if (!isCondCodeLegal(Cond, N0.getValueType())) {
2213      // If the comparison was an awkward floating-point == or != and one of
2214      // the comparison operands is infinity or negative infinity, convert the
2215      // condition to a less-awkward <= or >=.
2216      if (CFP->getValueAPF().isInfinity()) {
2217        if (CFP->getValueAPF().isNegative()) {
2218          if (Cond == ISD::SETOEQ &&
2219              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2220            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2221          if (Cond == ISD::SETUEQ &&
2222              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2223            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2224          if (Cond == ISD::SETUNE &&
2225              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2226            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2227          if (Cond == ISD::SETONE &&
2228              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2229            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2230        } else {
2231          if (Cond == ISD::SETOEQ &&
2232              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2233            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2234          if (Cond == ISD::SETUEQ &&
2235              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2236            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2237          if (Cond == ISD::SETUNE &&
2238              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2239            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2240          if (Cond == ISD::SETONE &&
2241              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2242            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2243        }
2244      }
2245    }
2246  }
2247
2248  if (N0 == N1) {
2249    // We can always fold X == X for integer setcc's.
2250    if (N0.getValueType().isInteger())
2251      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2252    unsigned UOF = ISD::getUnorderedFlavor(Cond);
2253    if (UOF == 2)   // FP operators that are undefined on NaNs.
2254      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2255    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2256      return DAG.getConstant(UOF, VT);
2257    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2258    // if it is not already.
2259    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2260    if (NewCond != Cond)
2261      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2262  }
2263
2264  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2265      N0.getValueType().isInteger()) {
2266    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2267        N0.getOpcode() == ISD::XOR) {
2268      // Simplify (X+Y) == (X+Z) -->  Y == Z
2269      if (N0.getOpcode() == N1.getOpcode()) {
2270        if (N0.getOperand(0) == N1.getOperand(0))
2271          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2272        if (N0.getOperand(1) == N1.getOperand(1))
2273          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2274        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2275          // If X op Y == Y op X, try other combinations.
2276          if (N0.getOperand(0) == N1.getOperand(1))
2277            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2278                                Cond);
2279          if (N0.getOperand(1) == N1.getOperand(0))
2280            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2281                                Cond);
2282        }
2283      }
2284
2285      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2286        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2287          // Turn (X+C1) == C2 --> X == C2-C1
2288          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2289            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2290                                DAG.getConstant(RHSC->getAPIntValue()-
2291                                                LHSR->getAPIntValue(),
2292                                N0.getValueType()), Cond);
2293          }
2294
2295          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2296          if (N0.getOpcode() == ISD::XOR)
2297            // If we know that all of the inverted bits are zero, don't bother
2298            // performing the inversion.
2299            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2300              return
2301                DAG.getSetCC(dl, VT, N0.getOperand(0),
2302                             DAG.getConstant(LHSR->getAPIntValue() ^
2303                                               RHSC->getAPIntValue(),
2304                                             N0.getValueType()),
2305                             Cond);
2306        }
2307
2308        // Turn (C1-X) == C2 --> X == C1-C2
2309        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2310          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2311            return
2312              DAG.getSetCC(dl, VT, N0.getOperand(1),
2313                           DAG.getConstant(SUBC->getAPIntValue() -
2314                                             RHSC->getAPIntValue(),
2315                                           N0.getValueType()),
2316                           Cond);
2317          }
2318        }
2319      }
2320
2321      // Simplify (X+Z) == X -->  Z == 0
2322      if (N0.getOperand(0) == N1)
2323        return DAG.getSetCC(dl, VT, N0.getOperand(1),
2324                        DAG.getConstant(0, N0.getValueType()), Cond);
2325      if (N0.getOperand(1) == N1) {
2326        if (DAG.isCommutativeBinOp(N0.getOpcode()))
2327          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2328                          DAG.getConstant(0, N0.getValueType()), Cond);
2329        else if (N0.getNode()->hasOneUse()) {
2330          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2331          // (Z-X) == X  --> Z == X<<1
2332          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
2333                                     N1,
2334                                     DAG.getConstant(1, getShiftAmountTy()));
2335          if (!DCI.isCalledByLegalizer())
2336            DCI.AddToWorklist(SH.getNode());
2337          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2338        }
2339      }
2340    }
2341
2342    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2343        N1.getOpcode() == ISD::XOR) {
2344      // Simplify  X == (X+Z) -->  Z == 0
2345      if (N1.getOperand(0) == N0) {
2346        return DAG.getSetCC(dl, VT, N1.getOperand(1),
2347                        DAG.getConstant(0, N1.getValueType()), Cond);
2348      } else if (N1.getOperand(1) == N0) {
2349        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2350          return DAG.getSetCC(dl, VT, N1.getOperand(0),
2351                          DAG.getConstant(0, N1.getValueType()), Cond);
2352        } else if (N1.getNode()->hasOneUse()) {
2353          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2354          // X == (Z-X)  --> X<<1 == Z
2355          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2356                                     DAG.getConstant(1, getShiftAmountTy()));
2357          if (!DCI.isCalledByLegalizer())
2358            DCI.AddToWorklist(SH.getNode());
2359          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2360        }
2361      }
2362    }
2363
2364    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2365    // Note that where y is variable and is known to have at most
2366    // one bit set (for example, if it is z&1) we cannot do this;
2367    // the expressions are not equivalent when y==0.
2368    if (N0.getOpcode() == ISD::AND)
2369      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2370        if (ValueHasExactlyOneBitSet(N1, DAG)) {
2371          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2372          SDValue Zero = DAG.getConstant(0, N1.getValueType());
2373          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2374        }
2375      }
2376    if (N1.getOpcode() == ISD::AND)
2377      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2378        if (ValueHasExactlyOneBitSet(N0, DAG)) {
2379          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2380          SDValue Zero = DAG.getConstant(0, N0.getValueType());
2381          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2382        }
2383      }
2384  }
2385
2386  // Fold away ALL boolean setcc's.
2387  SDValue Temp;
2388  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2389    switch (Cond) {
2390    default: llvm_unreachable("Unknown integer setcc!");
2391    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2392      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2393      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2394      if (!DCI.isCalledByLegalizer())
2395        DCI.AddToWorklist(Temp.getNode());
2396      break;
2397    case ISD::SETNE:  // X != Y   -->  (X^Y)
2398      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2399      break;
2400    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2401    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2402      Temp = DAG.getNOT(dl, N0, MVT::i1);
2403      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2404      if (!DCI.isCalledByLegalizer())
2405        DCI.AddToWorklist(Temp.getNode());
2406      break;
2407    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2408    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2409      Temp = DAG.getNOT(dl, N1, MVT::i1);
2410      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2411      if (!DCI.isCalledByLegalizer())
2412        DCI.AddToWorklist(Temp.getNode());
2413      break;
2414    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2415    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2416      Temp = DAG.getNOT(dl, N0, MVT::i1);
2417      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2418      if (!DCI.isCalledByLegalizer())
2419        DCI.AddToWorklist(Temp.getNode());
2420      break;
2421    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2422    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2423      Temp = DAG.getNOT(dl, N1, MVT::i1);
2424      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2425      break;
2426    }
2427    if (VT != MVT::i1) {
2428      if (!DCI.isCalledByLegalizer())
2429        DCI.AddToWorklist(N0.getNode());
2430      // FIXME: If running after legalize, we probably can't do this.
2431      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2432    }
2433    return N0;
2434  }
2435
2436  // Could not fold it.
2437  return SDValue();
2438}
2439
2440/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2441/// node is a GlobalAddress + offset.
2442bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue* &GA,
2443                                    int64_t &Offset) const {
2444  if (isa<GlobalAddressSDNode>(N)) {
2445    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2446    GA = GASD->getGlobal();
2447    Offset += GASD->getOffset();
2448    return true;
2449  }
2450
2451  if (N->getOpcode() == ISD::ADD) {
2452    SDValue N1 = N->getOperand(0);
2453    SDValue N2 = N->getOperand(1);
2454    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2455      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2456      if (V) {
2457        Offset += V->getSExtValue();
2458        return true;
2459      }
2460    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2461      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2462      if (V) {
2463        Offset += V->getSExtValue();
2464        return true;
2465      }
2466    }
2467  }
2468  return false;
2469}
2470
2471
2472SDValue TargetLowering::
2473PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2474  // Default implementation: no optimization.
2475  return SDValue();
2476}
2477
2478//===----------------------------------------------------------------------===//
2479//  Inline Assembler Implementation Methods
2480//===----------------------------------------------------------------------===//
2481
2482
2483TargetLowering::ConstraintType
2484TargetLowering::getConstraintType(const std::string &Constraint) const {
2485  // FIXME: lots more standard ones to handle.
2486  if (Constraint.size() == 1) {
2487    switch (Constraint[0]) {
2488    default: break;
2489    case 'r': return C_RegisterClass;
2490    case 'm':    // memory
2491    case 'o':    // offsetable
2492    case 'V':    // not offsetable
2493      return C_Memory;
2494    case 'i':    // Simple Integer or Relocatable Constant
2495    case 'n':    // Simple Integer
2496    case 'E':    // Floating Point Constant
2497    case 'F':    // Floating Point Constant
2498    case 's':    // Relocatable Constant
2499    case 'p':    // Address.
2500    case 'X':    // Allow ANY value.
2501    case 'I':    // Target registers.
2502    case 'J':
2503    case 'K':
2504    case 'L':
2505    case 'M':
2506    case 'N':
2507    case 'O':
2508    case 'P':
2509    case '<':
2510    case '>':
2511      return C_Other;
2512    }
2513  }
2514
2515  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2516      Constraint[Constraint.size()-1] == '}')
2517    return C_Register;
2518  return C_Unknown;
2519}
2520
2521/// LowerXConstraint - try to replace an X constraint, which matches anything,
2522/// with another that has more specific requirements based on the type of the
2523/// corresponding operand.
2524const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2525  if (ConstraintVT.isInteger())
2526    return "r";
2527  if (ConstraintVT.isFloatingPoint())
2528    return "f";      // works for many targets
2529  return 0;
2530}
2531
2532/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2533/// vector.  If it is invalid, don't add anything to Ops.
2534void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2535                                                  char ConstraintLetter,
2536                                                  std::vector<SDValue> &Ops,
2537                                                  SelectionDAG &DAG) const {
2538  switch (ConstraintLetter) {
2539  default: break;
2540  case 'X':     // Allows any operand; labels (basic block) use this.
2541    if (Op.getOpcode() == ISD::BasicBlock) {
2542      Ops.push_back(Op);
2543      return;
2544    }
2545    // fall through
2546  case 'i':    // Simple Integer or Relocatable Constant
2547  case 'n':    // Simple Integer
2548  case 's': {  // Relocatable Constant
2549    // These operands are interested in values of the form (GV+C), where C may
2550    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2551    // is possible and fine if either GV or C are missing.
2552    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2553    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2554
2555    // If we have "(add GV, C)", pull out GV/C
2556    if (Op.getOpcode() == ISD::ADD) {
2557      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2558      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2559      if (C == 0 || GA == 0) {
2560        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2561        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2562      }
2563      if (C == 0 || GA == 0)
2564        C = 0, GA = 0;
2565    }
2566
2567    // If we find a valid operand, map to the TargetXXX version so that the
2568    // value itself doesn't get selected.
2569    if (GA) {   // Either &GV   or   &GV+C
2570      if (ConstraintLetter != 'n') {
2571        int64_t Offs = GA->getOffset();
2572        if (C) Offs += C->getZExtValue();
2573        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2574                                                 C ? C->getDebugLoc() : DebugLoc(),
2575                                                 Op.getValueType(), Offs));
2576        return;
2577      }
2578    }
2579    if (C) {   // just C, no GV.
2580      // Simple constants are not allowed for 's'.
2581      if (ConstraintLetter != 's') {
2582        // gcc prints these as sign extended.  Sign extend value to 64 bits
2583        // now; without this it would get ZExt'd later in
2584        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2585        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2586                                            MVT::i64));
2587        return;
2588      }
2589    }
2590    break;
2591  }
2592  }
2593}
2594
2595std::vector<unsigned> TargetLowering::
2596getRegClassForInlineAsmConstraint(const std::string &Constraint,
2597                                  EVT VT) const {
2598  return std::vector<unsigned>();
2599}
2600
2601
2602std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2603getRegForInlineAsmConstraint(const std::string &Constraint,
2604                             EVT VT) const {
2605  if (Constraint[0] != '{')
2606    return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
2607  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2608
2609  // Remove the braces from around the name.
2610  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2611
2612  // Figure out which register class contains this reg.
2613  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2614  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2615       E = RI->regclass_end(); RCI != E; ++RCI) {
2616    const TargetRegisterClass *RC = *RCI;
2617
2618    // If none of the value types for this register class are valid, we
2619    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2620    bool isLegal = false;
2621    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2622         I != E; ++I) {
2623      if (isTypeLegal(*I)) {
2624        isLegal = true;
2625        break;
2626      }
2627    }
2628
2629    if (!isLegal) continue;
2630
2631    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2632         I != E; ++I) {
2633      if (RegName.equals_lower(RI->getName(*I)))
2634        return std::make_pair(*I, RC);
2635    }
2636  }
2637
2638  return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2639}
2640
2641//===----------------------------------------------------------------------===//
2642// Constraint Selection.
2643
2644/// isMatchingInputConstraint - Return true of this is an input operand that is
2645/// a matching constraint like "4".
2646bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2647  assert(!ConstraintCode.empty() && "No known constraint!");
2648  return isdigit(ConstraintCode[0]);
2649}
2650
2651/// getMatchedOperand - If this is an input matching constraint, this method
2652/// returns the output operand it matches.
2653unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2654  assert(!ConstraintCode.empty() && "No known constraint!");
2655  return atoi(ConstraintCode.c_str());
2656}
2657
2658
2659/// ParseConstraints - Split up the constraint string from the inline
2660/// assembly value into the specific constraints and their prefixes,
2661/// and also tie in the associated operand values.
2662/// If this returns an empty vector, and if the constraint string itself
2663/// isn't empty, there was an error parsing.
2664TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints(
2665    ImmutableCallSite CS) const {
2666  /// ConstraintOperands - Information about all of the constraints.
2667  AsmOperandInfoVector ConstraintOperands;
2668  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2669  unsigned maCount = 0; // Largest number of multiple alternative constraints.
2670
2671  // Do a prepass over the constraints, canonicalizing them, and building up the
2672  // ConstraintOperands list.
2673  InlineAsm::ConstraintInfoVector
2674    ConstraintInfos = IA->ParseConstraints();
2675
2676  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2677  unsigned ResNo = 0;   // ResNo - The result number of the next output.
2678
2679  for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
2680    ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i]));
2681    AsmOperandInfo &OpInfo = ConstraintOperands.back();
2682
2683    // Update multiple alternative constraint count.
2684    if (OpInfo.multipleAlternatives.size() > maCount)
2685      maCount = OpInfo.multipleAlternatives.size();
2686
2687    OpInfo.ConstraintVT = MVT::Other;
2688
2689    // Compute the value type for each operand.
2690    switch (OpInfo.Type) {
2691    case InlineAsm::isOutput:
2692      // Indirect outputs just consume an argument.
2693      if (OpInfo.isIndirect) {
2694        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2695        break;
2696      }
2697
2698      // The return value of the call is this value.  As such, there is no
2699      // corresponding argument.
2700      assert(!CS.getType()->isVoidTy() &&
2701             "Bad inline asm!");
2702      if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
2703        OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo));
2704      } else {
2705        assert(ResNo == 0 && "Asm only has one result!");
2706        OpInfo.ConstraintVT = getValueType(CS.getType());
2707      }
2708      ++ResNo;
2709      break;
2710    case InlineAsm::isInput:
2711      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2712      break;
2713    case InlineAsm::isClobber:
2714      // Nothing to do.
2715      break;
2716    }
2717
2718    if (OpInfo.CallOperandVal) {
2719      const llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2720      if (OpInfo.isIndirect) {
2721        const llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2722        if (!PtrTy)
2723          report_fatal_error("Indirect operand for inline asm not a pointer!");
2724        OpTy = PtrTy->getElementType();
2725      }
2726      // If OpTy is not a single value, it may be a struct/union that we
2727      // can tile with integers.
2728      if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2729        unsigned BitSize = TD->getTypeSizeInBits(OpTy);
2730        switch (BitSize) {
2731        default: break;
2732        case 1:
2733        case 8:
2734        case 16:
2735        case 32:
2736        case 64:
2737        case 128:
2738          OpInfo.ConstraintVT =
2739              EVT::getEVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2740          break;
2741        }
2742      } else if (dyn_cast<PointerType>(OpTy)) {
2743        OpInfo.ConstraintVT = MVT::getIntegerVT(8*TD->getPointerSize());
2744      } else {
2745        OpInfo.ConstraintVT = EVT::getEVT(OpTy, true);
2746      }
2747    }
2748  }
2749
2750  // If we have multiple alternative constraints, select the best alternative.
2751  if (ConstraintInfos.size()) {
2752    if (maCount) {
2753      unsigned bestMAIndex = 0;
2754      int bestWeight = -1;
2755      // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2756      int weight = -1;
2757      unsigned maIndex;
2758      // Compute the sums of the weights for each alternative, keeping track
2759      // of the best (highest weight) one so far.
2760      for (maIndex = 0; maIndex < maCount; ++maIndex) {
2761        int weightSum = 0;
2762        for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2763            cIndex != eIndex; ++cIndex) {
2764          AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2765          if (OpInfo.Type == InlineAsm::isClobber)
2766            continue;
2767
2768          // If this is an output operand with a matching input operand,
2769          // look up the matching input. If their types mismatch, e.g. one
2770          // is an integer, the other is floating point, or their sizes are
2771          // different, flag it as an maCantMatch.
2772          if (OpInfo.hasMatchingInput()) {
2773            AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2774            if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2775              if ((OpInfo.ConstraintVT.isInteger() !=
2776                   Input.ConstraintVT.isInteger()) ||
2777                  (OpInfo.ConstraintVT.getSizeInBits() !=
2778                   Input.ConstraintVT.getSizeInBits())) {
2779                weightSum = -1;  // Can't match.
2780                break;
2781              }
2782            }
2783          }
2784          weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2785          if (weight == -1) {
2786            weightSum = -1;
2787            break;
2788          }
2789          weightSum += weight;
2790        }
2791        // Update best.
2792        if (weightSum > bestWeight) {
2793          bestWeight = weightSum;
2794          bestMAIndex = maIndex;
2795        }
2796      }
2797
2798      // Now select chosen alternative in each constraint.
2799      for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2800          cIndex != eIndex; ++cIndex) {
2801        AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2802        if (cInfo.Type == InlineAsm::isClobber)
2803          continue;
2804        cInfo.selectAlternative(bestMAIndex);
2805      }
2806    }
2807  }
2808
2809  // Check and hook up tied operands, choose constraint code to use.
2810  for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2811      cIndex != eIndex; ++cIndex) {
2812    AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2813
2814    // If this is an output operand with a matching input operand, look up the
2815    // matching input. If their types mismatch, e.g. one is an integer, the
2816    // other is floating point, or their sizes are different, flag it as an
2817    // error.
2818    if (OpInfo.hasMatchingInput()) {
2819      AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2820
2821      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2822        if ((OpInfo.ConstraintVT.isInteger() !=
2823             Input.ConstraintVT.isInteger()) ||
2824            (OpInfo.ConstraintVT.getSizeInBits() !=
2825             Input.ConstraintVT.getSizeInBits())) {
2826          report_fatal_error("Unsupported asm: input constraint"
2827                             " with a matching output constraint of"
2828                             " incompatible type!");
2829        }
2830      }
2831
2832    }
2833  }
2834
2835  return ConstraintOperands;
2836}
2837
2838
2839/// getConstraintGenerality - Return an integer indicating how general CT
2840/// is.
2841static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2842  switch (CT) {
2843  default: llvm_unreachable("Unknown constraint type!");
2844  case TargetLowering::C_Other:
2845  case TargetLowering::C_Unknown:
2846    return 0;
2847  case TargetLowering::C_Register:
2848    return 1;
2849  case TargetLowering::C_RegisterClass:
2850    return 2;
2851  case TargetLowering::C_Memory:
2852    return 3;
2853  }
2854}
2855
2856/// Examine constraint type and operand type and determine a weight value.
2857/// This object must already have been set up with the operand type
2858/// and the current alternative constraint selected.
2859TargetLowering::ConstraintWeight
2860  TargetLowering::getMultipleConstraintMatchWeight(
2861    AsmOperandInfo &info, int maIndex) const {
2862  InlineAsm::ConstraintCodeVector *rCodes;
2863  if (maIndex >= (int)info.multipleAlternatives.size())
2864    rCodes = &info.Codes;
2865  else
2866    rCodes = &info.multipleAlternatives[maIndex].Codes;
2867  ConstraintWeight BestWeight = CW_Invalid;
2868
2869  // Loop over the options, keeping track of the most general one.
2870  for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
2871    ConstraintWeight weight =
2872      getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
2873    if (weight > BestWeight)
2874      BestWeight = weight;
2875  }
2876
2877  return BestWeight;
2878}
2879
2880/// Examine constraint type and operand type and determine a weight value.
2881/// This object must already have been set up with the operand type
2882/// and the current alternative constraint selected.
2883TargetLowering::ConstraintWeight
2884  TargetLowering::getSingleConstraintMatchWeight(
2885    AsmOperandInfo &info, const char *constraint) const {
2886  ConstraintWeight weight = CW_Invalid;
2887  Value *CallOperandVal = info.CallOperandVal;
2888    // If we don't have a value, we can't do a match,
2889    // but allow it at the lowest weight.
2890  if (CallOperandVal == NULL)
2891    return CW_Default;
2892  // Look at the constraint type.
2893  switch (*constraint) {
2894    case 'i': // immediate integer.
2895    case 'n': // immediate integer with a known value.
2896      if (isa<ConstantInt>(CallOperandVal))
2897        weight = CW_Constant;
2898      break;
2899    case 's': // non-explicit intregal immediate.
2900      if (isa<GlobalValue>(CallOperandVal))
2901        weight = CW_Constant;
2902      break;
2903    case 'E': // immediate float if host format.
2904    case 'F': // immediate float.
2905      if (isa<ConstantFP>(CallOperandVal))
2906        weight = CW_Constant;
2907      break;
2908    case '<': // memory operand with autodecrement.
2909    case '>': // memory operand with autoincrement.
2910    case 'm': // memory operand.
2911    case 'o': // offsettable memory operand
2912    case 'V': // non-offsettable memory operand
2913      weight = CW_Memory;
2914      break;
2915    case 'r': // general register.
2916    case 'g': // general register, memory operand or immediate integer.
2917              // note: Clang converts "g" to "imr".
2918      if (CallOperandVal->getType()->isIntegerTy())
2919        weight = CW_Register;
2920      break;
2921    case 'X': // any operand.
2922    default:
2923      weight = CW_Default;
2924      break;
2925  }
2926  return weight;
2927}
2928
2929/// ChooseConstraint - If there are multiple different constraints that we
2930/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2931/// This is somewhat tricky: constraints fall into four classes:
2932///    Other         -> immediates and magic values
2933///    Register      -> one specific register
2934///    RegisterClass -> a group of regs
2935///    Memory        -> memory
2936/// Ideally, we would pick the most specific constraint possible: if we have
2937/// something that fits into a register, we would pick it.  The problem here
2938/// is that if we have something that could either be in a register or in
2939/// memory that use of the register could cause selection of *other*
2940/// operands to fail: they might only succeed if we pick memory.  Because of
2941/// this the heuristic we use is:
2942///
2943///  1) If there is an 'other' constraint, and if the operand is valid for
2944///     that constraint, use it.  This makes us take advantage of 'i'
2945///     constraints when available.
2946///  2) Otherwise, pick the most general constraint present.  This prefers
2947///     'm' over 'r', for example.
2948///
2949static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2950                             const TargetLowering &TLI,
2951                             SDValue Op, SelectionDAG *DAG) {
2952  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2953  unsigned BestIdx = 0;
2954  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2955  int BestGenerality = -1;
2956
2957  // Loop over the options, keeping track of the most general one.
2958  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2959    TargetLowering::ConstraintType CType =
2960      TLI.getConstraintType(OpInfo.Codes[i]);
2961
2962    // If this is an 'other' constraint, see if the operand is valid for it.
2963    // For example, on X86 we might have an 'rI' constraint.  If the operand
2964    // is an integer in the range [0..31] we want to use I (saving a load
2965    // of a register), otherwise we must use 'r'.
2966    if (CType == TargetLowering::C_Other && Op.getNode()) {
2967      assert(OpInfo.Codes[i].size() == 1 &&
2968             "Unhandled multi-letter 'other' constraint");
2969      std::vector<SDValue> ResultOps;
2970      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0],
2971                                       ResultOps, *DAG);
2972      if (!ResultOps.empty()) {
2973        BestType = CType;
2974        BestIdx = i;
2975        break;
2976      }
2977    }
2978
2979    // Things with matching constraints can only be registers, per gcc
2980    // documentation.  This mainly affects "g" constraints.
2981    if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
2982      continue;
2983
2984    // This constraint letter is more general than the previous one, use it.
2985    int Generality = getConstraintGenerality(CType);
2986    if (Generality > BestGenerality) {
2987      BestType = CType;
2988      BestIdx = i;
2989      BestGenerality = Generality;
2990    }
2991  }
2992
2993  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2994  OpInfo.ConstraintType = BestType;
2995}
2996
2997/// ComputeConstraintToUse - Determines the constraint code and constraint
2998/// type to use for the specific AsmOperandInfo, setting
2999/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
3000void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3001                                            SDValue Op,
3002                                            SelectionDAG *DAG) const {
3003  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
3004
3005  // Single-letter constraints ('r') are very common.
3006  if (OpInfo.Codes.size() == 1) {
3007    OpInfo.ConstraintCode = OpInfo.Codes[0];
3008    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3009  } else {
3010    ChooseConstraint(OpInfo, *this, Op, DAG);
3011  }
3012
3013  // 'X' matches anything.
3014  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
3015    // Labels and constants are handled elsewhere ('X' is the only thing
3016    // that matches labels).  For Functions, the type here is the type of
3017    // the result, which is not what we want to look at; leave them alone.
3018    Value *v = OpInfo.CallOperandVal;
3019    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
3020      OpInfo.CallOperandVal = v;
3021      return;
3022    }
3023
3024    // Otherwise, try to resolve it to something we know about by looking at
3025    // the actual operand type.
3026    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
3027      OpInfo.ConstraintCode = Repl;
3028      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3029    }
3030  }
3031}
3032
3033//===----------------------------------------------------------------------===//
3034//  Loop Strength Reduction hooks
3035//===----------------------------------------------------------------------===//
3036
3037/// isLegalAddressingMode - Return true if the addressing mode represented
3038/// by AM is legal for this target, for a load/store of the specified type.
3039bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
3040                                           const Type *Ty) const {
3041  // The default implementation of this implements a conservative RISCy, r+r and
3042  // r+i addr mode.
3043
3044  // Allows a sign-extended 16-bit immediate field.
3045  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3046    return false;
3047
3048  // No global is ever allowed as a base.
3049  if (AM.BaseGV)
3050    return false;
3051
3052  // Only support r+r,
3053  switch (AM.Scale) {
3054  case 0:  // "r+i" or just "i", depending on HasBaseReg.
3055    break;
3056  case 1:
3057    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
3058      return false;
3059    // Otherwise we have r+r or r+i.
3060    break;
3061  case 2:
3062    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
3063      return false;
3064    // Allow 2*r as r+r.
3065    break;
3066  }
3067
3068  return true;
3069}
3070
3071/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
3072/// return a DAG expression to select that will generate the same value by
3073/// multiplying by a magic number.  See:
3074/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3075SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
3076                                  std::vector<SDNode*>* Created) const {
3077  EVT VT = N->getValueType(0);
3078  DebugLoc dl= N->getDebugLoc();
3079
3080  // Check to see if we can do this.
3081  // FIXME: We should be more aggressive here.
3082  if (!isTypeLegal(VT))
3083    return SDValue();
3084
3085  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
3086  APInt::ms magics = d.magic();
3087
3088  // Multiply the numerator (operand 0) by the magic value
3089  // FIXME: We should support doing a MUL in a wider type
3090  SDValue Q;
3091  if (isOperationLegalOrCustom(ISD::MULHS, VT))
3092    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
3093                    DAG.getConstant(magics.m, VT));
3094  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
3095    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
3096                              N->getOperand(0),
3097                              DAG.getConstant(magics.m, VT)).getNode(), 1);
3098  else
3099    return SDValue();       // No mulhs or equvialent
3100  // If d > 0 and m < 0, add the numerator
3101  if (d.isStrictlyPositive() && magics.m.isNegative()) {
3102    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
3103    if (Created)
3104      Created->push_back(Q.getNode());
3105  }
3106  // If d < 0 and m > 0, subtract the numerator.
3107  if (d.isNegative() && magics.m.isStrictlyPositive()) {
3108    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
3109    if (Created)
3110      Created->push_back(Q.getNode());
3111  }
3112  // Shift right algebraic if shift value is nonzero
3113  if (magics.s > 0) {
3114    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
3115                    DAG.getConstant(magics.s, getShiftAmountTy()));
3116    if (Created)
3117      Created->push_back(Q.getNode());
3118  }
3119  // Extract the sign bit and add it to the quotient
3120  SDValue T =
3121    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
3122                                                 getShiftAmountTy()));
3123  if (Created)
3124    Created->push_back(T.getNode());
3125  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3126}
3127
3128/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
3129/// return a DAG expression to select that will generate the same value by
3130/// multiplying by a magic number.  See:
3131/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
3132SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
3133                                  std::vector<SDNode*>* Created) const {
3134  EVT VT = N->getValueType(0);
3135  DebugLoc dl = N->getDebugLoc();
3136
3137  // Check to see if we can do this.
3138  // FIXME: We should be more aggressive here.
3139  if (!isTypeLegal(VT))
3140    return SDValue();
3141
3142  // FIXME: We should use a narrower constant when the upper
3143  // bits are known to be zero.
3144  ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
3145  APInt::mu magics = N1C->getAPIntValue().magicu();
3146
3147  // Multiply the numerator (operand 0) by the magic value
3148  // FIXME: We should support doing a MUL in a wider type
3149  SDValue Q;
3150  if (isOperationLegalOrCustom(ISD::MULHU, VT))
3151    Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
3152                    DAG.getConstant(magics.m, VT));
3153  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
3154    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
3155                              N->getOperand(0),
3156                              DAG.getConstant(magics.m, VT)).getNode(), 1);
3157  else
3158    return SDValue();       // No mulhu or equvialent
3159  if (Created)
3160    Created->push_back(Q.getNode());
3161
3162  if (magics.a == 0) {
3163    assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
3164           "We shouldn't generate an undefined shift!");
3165    return DAG.getNode(ISD::SRL, dl, VT, Q,
3166                       DAG.getConstant(magics.s, getShiftAmountTy()));
3167  } else {
3168    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
3169    if (Created)
3170      Created->push_back(NPQ.getNode());
3171    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
3172                      DAG.getConstant(1, getShiftAmountTy()));
3173    if (Created)
3174      Created->push_back(NPQ.getNode());
3175    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3176    if (Created)
3177      Created->push_back(NPQ.getNode());
3178    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
3179                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
3180  }
3181}
3182