TargetLowering.cpp revision 41bab0beac2600701af99f63e23a6b65f71468ac
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/Target/TargetSubtarget.h"
16#include "llvm/Target/TargetData.h"
17#include "llvm/Target/TargetMachine.h"
18#include "llvm/Target/MRegisterInfo.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/ADT/StringExtras.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/Support/MathExtras.h"
24#include "llvm/Target/TargetAsmInfo.h"
25#include "llvm/CallingConv.h"
26using namespace llvm;
27
28/// InitLibcallNames - Set default libcall names.
29///
30static void InitLibcallNames(const char **Names) {
31  Names[RTLIB::SHL_I32] = "__ashlsi3";
32  Names[RTLIB::SHL_I64] = "__ashldi3";
33  Names[RTLIB::SRL_I32] = "__lshrsi3";
34  Names[RTLIB::SRL_I64] = "__lshrdi3";
35  Names[RTLIB::SRA_I32] = "__ashrsi3";
36  Names[RTLIB::SRA_I64] = "__ashrdi3";
37  Names[RTLIB::MUL_I32] = "__mulsi3";
38  Names[RTLIB::MUL_I64] = "__muldi3";
39  Names[RTLIB::SDIV_I32] = "__divsi3";
40  Names[RTLIB::SDIV_I64] = "__divdi3";
41  Names[RTLIB::UDIV_I32] = "__udivsi3";
42  Names[RTLIB::UDIV_I64] = "__udivdi3";
43  Names[RTLIB::SREM_I32] = "__modsi3";
44  Names[RTLIB::SREM_I64] = "__moddi3";
45  Names[RTLIB::UREM_I32] = "__umodsi3";
46  Names[RTLIB::UREM_I64] = "__umoddi3";
47  Names[RTLIB::NEG_I32] = "__negsi2";
48  Names[RTLIB::NEG_I64] = "__negdi2";
49  Names[RTLIB::ADD_F32] = "__addsf3";
50  Names[RTLIB::ADD_F64] = "__adddf3";
51  Names[RTLIB::ADD_F80] = "__addxf3";
52  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
53  Names[RTLIB::SUB_F32] = "__subsf3";
54  Names[RTLIB::SUB_F64] = "__subdf3";
55  Names[RTLIB::SUB_F80] = "__subxf3";
56  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
57  Names[RTLIB::MUL_F32] = "__mulsf3";
58  Names[RTLIB::MUL_F64] = "__muldf3";
59  Names[RTLIB::MUL_F80] = "__mulxf3";
60  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
61  Names[RTLIB::DIV_F32] = "__divsf3";
62  Names[RTLIB::DIV_F64] = "__divdf3";
63  Names[RTLIB::DIV_F80] = "__divxf3";
64  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
65  Names[RTLIB::REM_F32] = "fmodf";
66  Names[RTLIB::REM_F64] = "fmod";
67  Names[RTLIB::REM_F80] = "fmodl";
68  Names[RTLIB::REM_PPCF128] = "fmodl";
69  Names[RTLIB::POWI_F32] = "__powisf2";
70  Names[RTLIB::POWI_F64] = "__powidf2";
71  Names[RTLIB::POWI_F80] = "__powixf2";
72  Names[RTLIB::POWI_PPCF128] = "__powitf2";
73  Names[RTLIB::SQRT_F32] = "sqrtf";
74  Names[RTLIB::SQRT_F64] = "sqrt";
75  Names[RTLIB::SQRT_F80] = "sqrtl";
76  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
77  Names[RTLIB::SIN_F32] = "sinf";
78  Names[RTLIB::SIN_F64] = "sin";
79  Names[RTLIB::SIN_F80] = "sinl";
80  Names[RTLIB::SIN_PPCF128] = "sinl";
81  Names[RTLIB::COS_F32] = "cosf";
82  Names[RTLIB::COS_F64] = "cos";
83  Names[RTLIB::COS_F80] = "cosl";
84  Names[RTLIB::COS_PPCF128] = "cosl";
85  Names[RTLIB::POW_F32] = "powf";
86  Names[RTLIB::POW_F64] = "pow";
87  Names[RTLIB::POW_F80] = "powl";
88  Names[RTLIB::POW_PPCF128] = "powl";
89  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
90  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
91  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
92  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
93  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
94  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
95  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
96  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
97  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
98  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
99  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
100  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
101  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
102  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
103  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
104  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
105  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
106  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
107  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
108  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
109  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
110  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
111  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
112  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
113  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
114  Names[RTLIB::OEQ_F32] = "__eqsf2";
115  Names[RTLIB::OEQ_F64] = "__eqdf2";
116  Names[RTLIB::UNE_F32] = "__nesf2";
117  Names[RTLIB::UNE_F64] = "__nedf2";
118  Names[RTLIB::OGE_F32] = "__gesf2";
119  Names[RTLIB::OGE_F64] = "__gedf2";
120  Names[RTLIB::OLT_F32] = "__ltsf2";
121  Names[RTLIB::OLT_F64] = "__ltdf2";
122  Names[RTLIB::OLE_F32] = "__lesf2";
123  Names[RTLIB::OLE_F64] = "__ledf2";
124  Names[RTLIB::OGT_F32] = "__gtsf2";
125  Names[RTLIB::OGT_F64] = "__gtdf2";
126  Names[RTLIB::UO_F32] = "__unordsf2";
127  Names[RTLIB::UO_F64] = "__unorddf2";
128  Names[RTLIB::O_F32] = "__unordsf2";
129  Names[RTLIB::O_F64] = "__unorddf2";
130}
131
132/// InitCmpLibcallCCs - Set default comparison libcall CC.
133///
134static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
135  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
136  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
137  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
138  CCs[RTLIB::UNE_F32] = ISD::SETNE;
139  CCs[RTLIB::UNE_F64] = ISD::SETNE;
140  CCs[RTLIB::OGE_F32] = ISD::SETGE;
141  CCs[RTLIB::OGE_F64] = ISD::SETGE;
142  CCs[RTLIB::OLT_F32] = ISD::SETLT;
143  CCs[RTLIB::OLT_F64] = ISD::SETLT;
144  CCs[RTLIB::OLE_F32] = ISD::SETLE;
145  CCs[RTLIB::OLE_F64] = ISD::SETLE;
146  CCs[RTLIB::OGT_F32] = ISD::SETGT;
147  CCs[RTLIB::OGT_F64] = ISD::SETGT;
148  CCs[RTLIB::UO_F32] = ISD::SETNE;
149  CCs[RTLIB::UO_F64] = ISD::SETNE;
150  CCs[RTLIB::O_F32] = ISD::SETEQ;
151  CCs[RTLIB::O_F64] = ISD::SETEQ;
152}
153
154TargetLowering::TargetLowering(TargetMachine &tm)
155  : TM(tm), TD(TM.getTargetData()) {
156  assert(ISD::BUILTIN_OP_END <= 156 &&
157         "Fixed size array in TargetLowering is not large enough!");
158  // All operations default to being supported.
159  memset(OpActions, 0, sizeof(OpActions));
160  memset(LoadXActions, 0, sizeof(LoadXActions));
161  memset(&StoreXActions, 0, sizeof(StoreXActions));
162  memset(&IndexedModeActions, 0, sizeof(IndexedModeActions));
163  memset(&ConvertActions, 0, sizeof(ConvertActions));
164
165  // Set default actions for various operations.
166  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
167    // Default all indexed load / store to expand.
168    for (unsigned IM = (unsigned)ISD::PRE_INC;
169         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
170      setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand);
171      setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand);
172    }
173
174    // These operations default to expand.
175    setOperationAction(ISD::FGETSIGN, (MVT::ValueType)VT, Expand);
176  }
177
178  // Default ISD::TRAP to expand (which turns it into abort).
179  setOperationAction(ISD::TRAP, MVT::Other, Expand);
180
181  IsLittleEndian = TD->isLittleEndian();
182  UsesGlobalOffsetTable = false;
183  ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType());
184  ShiftAmtHandling = Undefined;
185  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
186  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
187  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
188  allowUnalignedMemoryAccesses = false;
189  UseUnderscoreSetJmp = false;
190  UseUnderscoreLongJmp = false;
191  SelectIsExpensive = false;
192  IntDivIsCheap = false;
193  Pow2DivIsCheap = false;
194  StackPointerRegisterToSaveRestore = 0;
195  ExceptionPointerRegister = 0;
196  ExceptionSelectorRegister = 0;
197  SetCCResultContents = UndefinedSetCCResult;
198  SchedPreferenceInfo = SchedulingForLatency;
199  JumpBufSize = 0;
200  JumpBufAlignment = 0;
201  IfCvtBlockSizeLimit = 2;
202
203  InitLibcallNames(LibcallRoutineNames);
204  InitCmpLibcallCCs(CmpLibcallCCs);
205
206  // Tell Legalize whether the assembler supports DEBUG_LOC.
207  if (!TM.getTargetAsmInfo()->hasDotLocAndDotFile())
208    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
209}
210
211TargetLowering::~TargetLowering() {}
212
213
214SDOperand TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
215  assert(getSubtarget() && "Subtarget not defined");
216  SDOperand ChainOp = Op.getOperand(0);
217  SDOperand DestOp = Op.getOperand(1);
218  SDOperand SourceOp = Op.getOperand(2);
219  SDOperand CountOp = Op.getOperand(3);
220  SDOperand AlignOp = Op.getOperand(4);
221  SDOperand AlwaysInlineOp = Op.getOperand(5);
222
223  bool AlwaysInline = (bool)cast<ConstantSDNode>(AlwaysInlineOp)->getValue();
224  unsigned Align = (unsigned)cast<ConstantSDNode>(AlignOp)->getValue();
225  if (Align == 0) Align = 1;
226
227  // If size is unknown, call memcpy.
228  ConstantSDNode *I = dyn_cast<ConstantSDNode>(CountOp);
229  if (!I) {
230    assert(!AlwaysInline && "Cannot inline copy of unknown size");
231    return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
232  }
233
234  // If not DWORD aligned or if size is more than threshold, then call memcpy.
235  // The libc version is likely to be faster for the following cases. It can
236  // use the address value and run time information about the CPU.
237  // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster
238  unsigned Size = I->getValue();
239  if (AlwaysInline ||
240      (Size <= getSubtarget()->getMaxInlineSizeThreshold() &&
241       (Align & 3) == 0))
242    return LowerMEMCPYInline(ChainOp, DestOp, SourceOp, Size, Align, DAG);
243  return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
244}
245
246
247SDOperand TargetLowering::LowerMEMCPYCall(SDOperand Chain,
248                                          SDOperand Dest,
249                                          SDOperand Source,
250                                          SDOperand Count,
251                                          SelectionDAG &DAG) {
252  MVT::ValueType IntPtr = getPointerTy();
253  TargetLowering::ArgListTy Args;
254  TargetLowering::ArgListEntry Entry;
255  Entry.Ty = getTargetData()->getIntPtrType();
256  Entry.Node = Dest; Args.push_back(Entry);
257  Entry.Node = Source; Args.push_back(Entry);
258  Entry.Node = Count; Args.push_back(Entry);
259  std::pair<SDOperand,SDOperand> CallResult =
260      LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
261                  DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
262  return CallResult.second;
263}
264
265
266/// computeRegisterProperties - Once all of the register classes are added,
267/// this allows us to compute derived properties we expose.
268void TargetLowering::computeRegisterProperties() {
269  assert(MVT::LAST_VALUETYPE <= 32 &&
270         "Too many value types for ValueTypeActions to hold!");
271
272  // Everything defaults to needing one register.
273  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
274    NumRegistersForVT[i] = 1;
275    RegisterTypeForVT[i] = TransformToType[i] = i;
276  }
277  // ...except isVoid, which doesn't need any registers.
278  NumRegistersForVT[MVT::isVoid] = 0;
279
280  // Find the largest integer register class.
281  unsigned LargestIntReg = MVT::i128;
282  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
283    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
284
285  // Every integer value type larger than this largest register takes twice as
286  // many registers to represent as the previous ValueType.
287  for (MVT::ValueType ExpandedReg = LargestIntReg + 1;
288       MVT::isInteger(ExpandedReg); ++ExpandedReg) {
289    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
290    RegisterTypeForVT[ExpandedReg] = LargestIntReg;
291    TransformToType[ExpandedReg] = ExpandedReg - 1;
292    ValueTypeActions.setTypeAction(ExpandedReg, Expand);
293  }
294
295  // Inspect all of the ValueType's smaller than the largest integer
296  // register to see which ones need promotion.
297  MVT::ValueType LegalIntReg = LargestIntReg;
298  for (MVT::ValueType IntReg = LargestIntReg - 1;
299       IntReg >= MVT::i1; --IntReg) {
300    if (isTypeLegal(IntReg)) {
301      LegalIntReg = IntReg;
302    } else {
303      RegisterTypeForVT[IntReg] = TransformToType[IntReg] = LegalIntReg;
304      ValueTypeActions.setTypeAction(IntReg, Promote);
305    }
306  }
307
308  // ppcf128 type is really two f64's.
309  if (!isTypeLegal(MVT::ppcf128)) {
310    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
311    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
312    TransformToType[MVT::ppcf128] = MVT::f64;
313    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
314  }
315
316  // Decide how to handle f64. If the target does not have native f64 support,
317  // expand it to i64 and we will be generating soft float library calls.
318  if (!isTypeLegal(MVT::f64)) {
319    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
320    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
321    TransformToType[MVT::f64] = MVT::i64;
322    ValueTypeActions.setTypeAction(MVT::f64, Expand);
323  }
324
325  // Decide how to handle f32. If the target does not have native support for
326  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
327  if (!isTypeLegal(MVT::f32)) {
328    if (isTypeLegal(MVT::f64)) {
329      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
330      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
331      TransformToType[MVT::f32] = MVT::f64;
332      ValueTypeActions.setTypeAction(MVT::f32, Promote);
333    } else {
334      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
335      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
336      TransformToType[MVT::f32] = MVT::i32;
337      ValueTypeActions.setTypeAction(MVT::f32, Expand);
338    }
339  }
340
341  // Loop over all of the vector value types to see which need transformations.
342  for (MVT::ValueType i = MVT::FIRST_VECTOR_VALUETYPE;
343       i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
344    if (!isTypeLegal(i)) {
345      MVT::ValueType IntermediateVT, RegisterVT;
346      unsigned NumIntermediates;
347      NumRegistersForVT[i] =
348        getVectorTypeBreakdown(i,
349                               IntermediateVT, NumIntermediates,
350                               RegisterVT);
351      RegisterTypeForVT[i] = RegisterVT;
352      TransformToType[i] = MVT::Other; // this isn't actually used
353      ValueTypeActions.setTypeAction(i, Expand);
354    }
355  }
356}
357
358const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
359  return NULL;
360}
361
362/// getVectorTypeBreakdown - Vector types are broken down into some number of
363/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
364/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
365/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
366///
367/// This method returns the number of registers needed, and the VT for each
368/// register.  It also returns the VT and quantity of the intermediate values
369/// before they are promoted/expanded.
370///
371unsigned TargetLowering::getVectorTypeBreakdown(MVT::ValueType VT,
372                                                MVT::ValueType &IntermediateVT,
373                                                unsigned &NumIntermediates,
374                                      MVT::ValueType &RegisterVT) const {
375  // Figure out the right, legal destination reg to copy into.
376  unsigned NumElts = MVT::getVectorNumElements(VT);
377  MVT::ValueType EltTy = MVT::getVectorElementType(VT);
378
379  unsigned NumVectorRegs = 1;
380
381  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
382  // could break down into LHS/RHS like LegalizeDAG does.
383  if (!isPowerOf2_32(NumElts)) {
384    NumVectorRegs = NumElts;
385    NumElts = 1;
386  }
387
388  // Divide the input until we get to a supported size.  This will always
389  // end with a scalar if the target doesn't support vectors.
390  while (NumElts > 1 &&
391         !isTypeLegal(MVT::getVectorType(EltTy, NumElts))) {
392    NumElts >>= 1;
393    NumVectorRegs <<= 1;
394  }
395
396  NumIntermediates = NumVectorRegs;
397
398  MVT::ValueType NewVT = MVT::getVectorType(EltTy, NumElts);
399  if (!isTypeLegal(NewVT))
400    NewVT = EltTy;
401  IntermediateVT = NewVT;
402
403  MVT::ValueType DestVT = getTypeToTransformTo(NewVT);
404  RegisterVT = DestVT;
405  if (DestVT < NewVT) {
406    // Value is expanded, e.g. i64 -> i16.
407    return NumVectorRegs*(MVT::getSizeInBits(NewVT)/MVT::getSizeInBits(DestVT));
408  } else {
409    // Otherwise, promotion or legal types use the same number of registers as
410    // the vector decimated to the appropriate level.
411    return NumVectorRegs;
412  }
413
414  return 1;
415}
416
417SDOperand TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
418                                                   SelectionDAG &DAG) const {
419  if (usesGlobalOffsetTable())
420    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
421  return Table;
422}
423
424//===----------------------------------------------------------------------===//
425//  Optimization Methods
426//===----------------------------------------------------------------------===//
427
428/// ShrinkDemandedConstant - Check to see if the specified operand of the
429/// specified instruction is a constant integer.  If so, check to see if there
430/// are any bits set in the constant that are not demanded.  If so, shrink the
431/// constant and return true.
432bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
433                                                            uint64_t Demanded) {
434  // FIXME: ISD::SELECT, ISD::SELECT_CC
435  switch(Op.getOpcode()) {
436  default: break;
437  case ISD::AND:
438  case ISD::OR:
439  case ISD::XOR:
440    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
441      if ((~Demanded & C->getValue()) != 0) {
442        MVT::ValueType VT = Op.getValueType();
443        SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
444                                    DAG.getConstant(Demanded & C->getValue(),
445                                                    VT));
446        return CombineTo(Op, New);
447      }
448    break;
449  }
450  return false;
451}
452
453/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
454/// DemandedMask bits of the result of Op are ever used downstream.  If we can
455/// use this information to simplify Op, create a new simplified DAG node and
456/// return true, returning the original and new nodes in Old and New. Otherwise,
457/// analyze the expression and return a mask of KnownOne and KnownZero bits for
458/// the expression (used to simplify the caller).  The KnownZero/One bits may
459/// only be accurate for those bits in the DemandedMask.
460bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
461                                          uint64_t &KnownZero,
462                                          uint64_t &KnownOne,
463                                          TargetLoweringOpt &TLO,
464                                          unsigned Depth) const {
465  KnownZero = KnownOne = 0;   // Don't know anything.
466
467  // The masks are not wide enough to represent this type!  Should use APInt.
468  if (Op.getValueType() == MVT::i128)
469    return false;
470
471  // Other users may use these bits.
472  if (!Op.Val->hasOneUse()) {
473    if (Depth != 0) {
474      // If not at the root, Just compute the KnownZero/KnownOne bits to
475      // simplify things downstream.
476      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
477      return false;
478    }
479    // If this is the root being simplified, allow it to have multiple uses,
480    // just set the DemandedMask to all bits.
481    DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
482  } else if (DemandedMask == 0) {
483    // Not demanding any bits from Op.
484    if (Op.getOpcode() != ISD::UNDEF)
485      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
486    return false;
487  } else if (Depth == 6) {        // Limit search depth.
488    return false;
489  }
490
491  uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
492  switch (Op.getOpcode()) {
493  case ISD::Constant:
494    // We know all of the bits for a constant!
495    KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
496    KnownZero = ~KnownOne & DemandedMask;
497    return false;   // Don't fall through, will infinitely loop.
498  case ISD::AND:
499    // If the RHS is a constant, check to see if the LHS would be zero without
500    // using the bits from the RHS.  Below, we use knowledge about the RHS to
501    // simplify the LHS, here we're using information from the LHS to simplify
502    // the RHS.
503    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
504      uint64_t LHSZero, LHSOne;
505      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), DemandedMask,
506                                LHSZero, LHSOne, Depth+1);
507      // If the LHS already has zeros where RHSC does, this and is dead.
508      if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask))
509        return TLO.CombineTo(Op, Op.getOperand(0));
510      // If any of the set bits in the RHS are known zero on the LHS, shrink
511      // the constant.
512      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask))
513        return true;
514    }
515
516    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
517                             KnownOne, TLO, Depth+1))
518      return true;
519    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
520    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
521                             KnownZero2, KnownOne2, TLO, Depth+1))
522      return true;
523    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
524
525    // If all of the demanded bits are known one on one side, return the other.
526    // These bits cannot contribute to the result of the 'and'.
527    if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
528      return TLO.CombineTo(Op, Op.getOperand(0));
529    if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
530      return TLO.CombineTo(Op, Op.getOperand(1));
531    // If all of the demanded bits in the inputs are known zeros, return zero.
532    if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
533      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
534    // If the RHS is a constant, see if we can simplify it.
535    if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
536      return true;
537
538    // Output known-1 bits are only known if set in both the LHS & RHS.
539    KnownOne &= KnownOne2;
540    // Output known-0 are known to be clear if zero in either the LHS | RHS.
541    KnownZero |= KnownZero2;
542    break;
543  case ISD::OR:
544    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
545                             KnownOne, TLO, Depth+1))
546      return true;
547    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
548    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne,
549                             KnownZero2, KnownOne2, TLO, Depth+1))
550      return true;
551    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
552
553    // If all of the demanded bits are known zero on one side, return the other.
554    // These bits cannot contribute to the result of the 'or'.
555    if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2))
556      return TLO.CombineTo(Op, Op.getOperand(0));
557    if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne))
558      return TLO.CombineTo(Op, Op.getOperand(1));
559    // If all of the potentially set bits on one side are known to be set on
560    // the other side, just use the 'other' side.
561    if ((DemandedMask & (~KnownZero) & KnownOne2) ==
562        (DemandedMask & (~KnownZero)))
563      return TLO.CombineTo(Op, Op.getOperand(0));
564    if ((DemandedMask & (~KnownZero2) & KnownOne) ==
565        (DemandedMask & (~KnownZero2)))
566      return TLO.CombineTo(Op, Op.getOperand(1));
567    // If the RHS is a constant, see if we can simplify it.
568    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
569      return true;
570
571    // Output known-0 bits are only known if clear in both the LHS & RHS.
572    KnownZero &= KnownZero2;
573    // Output known-1 are known to be set if set in either the LHS | RHS.
574    KnownOne |= KnownOne2;
575    break;
576  case ISD::XOR:
577    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
578                             KnownOne, TLO, Depth+1))
579      return true;
580    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
581    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
582                             KnownOne2, TLO, Depth+1))
583      return true;
584    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
585
586    // If all of the demanded bits are known zero on one side, return the other.
587    // These bits cannot contribute to the result of the 'xor'.
588    if ((DemandedMask & KnownZero) == DemandedMask)
589      return TLO.CombineTo(Op, Op.getOperand(0));
590    if ((DemandedMask & KnownZero2) == DemandedMask)
591      return TLO.CombineTo(Op, Op.getOperand(1));
592
593    // If all of the unknown bits are known to be zero on one side or the other
594    // (but not both) turn this into an *inclusive* or.
595    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
596    if ((DemandedMask & ~KnownZero & ~KnownZero2) == 0)
597      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
598                                               Op.getOperand(0),
599                                               Op.getOperand(1)));
600
601    // Output known-0 bits are known if clear or set in both the LHS & RHS.
602    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
603    // Output known-1 are known to be set if set in only one of the LHS, RHS.
604    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
605
606    // If all of the demanded bits on one side are known, and all of the set
607    // bits on that side are also known to be set on the other side, turn this
608    // into an AND, as we know the bits will be cleared.
609    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
610    if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
611      if ((KnownOne & KnownOne2) == KnownOne) {
612        MVT::ValueType VT = Op.getValueType();
613        SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
614        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
615                                                 ANDC));
616      }
617    }
618
619    // If the RHS is a constant, see if we can simplify it.
620    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
621    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
622      return true;
623
624    KnownZero = KnownZeroOut;
625    KnownOne  = KnownOneOut;
626    break;
627  case ISD::SETCC:
628    // If we know the result of a setcc has the top bits zero, use this info.
629    if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
630      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
631    break;
632  case ISD::SELECT:
633    if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero,
634                             KnownOne, TLO, Depth+1))
635      return true;
636    if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
637                             KnownOne2, TLO, Depth+1))
638      return true;
639    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
640    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
641
642    // If the operands are constants, see if we can simplify them.
643    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
644      return true;
645
646    // Only known if known in both the LHS and RHS.
647    KnownOne &= KnownOne2;
648    KnownZero &= KnownZero2;
649    break;
650  case ISD::SELECT_CC:
651    if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero,
652                             KnownOne, TLO, Depth+1))
653      return true;
654    if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2,
655                             KnownOne2, TLO, Depth+1))
656      return true;
657    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
658    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
659
660    // If the operands are constants, see if we can simplify them.
661    if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
662      return true;
663
664    // Only known if known in both the LHS and RHS.
665    KnownOne &= KnownOne2;
666    KnownZero &= KnownZero2;
667    break;
668  case ISD::SHL:
669    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
670      unsigned ShAmt = SA->getValue();
671      SDOperand InOp = Op.getOperand(0);
672
673      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
674      // single shift.  We can do this if the bottom bits (which are shifted
675      // out) are never demanded.
676      if (InOp.getOpcode() == ISD::SRL &&
677          isa<ConstantSDNode>(InOp.getOperand(1))) {
678        if (ShAmt && (DemandedMask & ((1ULL << ShAmt)-1)) == 0) {
679          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
680          unsigned Opc = ISD::SHL;
681          int Diff = ShAmt-C1;
682          if (Diff < 0) {
683            Diff = -Diff;
684            Opc = ISD::SRL;
685          }
686
687          SDOperand NewSA =
688            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
689          MVT::ValueType VT = Op.getValueType();
690          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
691                                                   InOp.getOperand(0), NewSA));
692        }
693      }
694
695      if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> ShAmt,
696                               KnownZero, KnownOne, TLO, Depth+1))
697        return true;
698      KnownZero <<= SA->getValue();
699      KnownOne  <<= SA->getValue();
700      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
701    }
702    break;
703  case ISD::SRL:
704    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
705      MVT::ValueType VT = Op.getValueType();
706      unsigned ShAmt = SA->getValue();
707      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
708      unsigned VTSize = MVT::getSizeInBits(VT);
709      SDOperand InOp = Op.getOperand(0);
710
711      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
712      // single shift.  We can do this if the top bits (which are shifted out)
713      // are never demanded.
714      if (InOp.getOpcode() == ISD::SHL &&
715          isa<ConstantSDNode>(InOp.getOperand(1))) {
716        if (ShAmt && (DemandedMask & (~0ULL << (VTSize-ShAmt))) == 0) {
717          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
718          unsigned Opc = ISD::SRL;
719          int Diff = ShAmt-C1;
720          if (Diff < 0) {
721            Diff = -Diff;
722            Opc = ISD::SHL;
723          }
724
725          SDOperand NewSA =
726            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
727          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
728                                                   InOp.getOperand(0), NewSA));
729        }
730      }
731
732      // Compute the new bits that are at the top now.
733      if (SimplifyDemandedBits(InOp, (DemandedMask << ShAmt) & TypeMask,
734                               KnownZero, KnownOne, TLO, Depth+1))
735        return true;
736      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
737      KnownZero &= TypeMask;
738      KnownOne  &= TypeMask;
739      KnownZero >>= ShAmt;
740      KnownOne  >>= ShAmt;
741
742      uint64_t HighBits = (1ULL << ShAmt)-1;
743      HighBits <<= VTSize - ShAmt;
744      KnownZero |= HighBits;  // High bits known zero.
745    }
746    break;
747  case ISD::SRA:
748    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
749      MVT::ValueType VT = Op.getValueType();
750      unsigned ShAmt = SA->getValue();
751
752      // Compute the new bits that are at the top now.
753      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
754
755      uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask;
756
757      // If any of the demanded bits are produced by the sign extension, we also
758      // demand the input sign bit.
759      uint64_t HighBits = (1ULL << ShAmt)-1;
760      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
761      if (HighBits & DemandedMask)
762        InDemandedMask |= MVT::getIntVTSignBit(VT);
763
764      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
765                               KnownZero, KnownOne, TLO, Depth+1))
766        return true;
767      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
768      KnownZero &= TypeMask;
769      KnownOne  &= TypeMask;
770      KnownZero >>= ShAmt;
771      KnownOne  >>= ShAmt;
772
773      // Handle the sign bits.
774      uint64_t SignBit = MVT::getIntVTSignBit(VT);
775      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
776
777      // If the input sign bit is known to be zero, or if none of the top bits
778      // are demanded, turn this into an unsigned shift right.
779      if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
780        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
781                                                 Op.getOperand(1)));
782      } else if (KnownOne & SignBit) { // New bits are known one.
783        KnownOne |= HighBits;
784      }
785    }
786    break;
787  case ISD::SIGN_EXTEND_INREG: {
788    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
789
790    // Sign extension.  Compute the demanded bits in the result that are not
791    // present in the input.
792    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask;
793
794    // If none of the extended bits are demanded, eliminate the sextinreg.
795    if (NewBits == 0)
796      return TLO.CombineTo(Op, Op.getOperand(0));
797
798    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
799    int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
800
801    // Since the sign extended bits are demanded, we know that the sign
802    // bit is demanded.
803    InputDemandedBits |= InSignBit;
804
805    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
806                             KnownZero, KnownOne, TLO, Depth+1))
807      return true;
808    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
809
810    // If the sign bit of the input is known set or clear, then we know the
811    // top bits of the result.
812
813    // If the input sign bit is known zero, convert this into a zero extension.
814    if (KnownZero & InSignBit)
815      return TLO.CombineTo(Op,
816                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
817
818    if (KnownOne & InSignBit) {    // Input sign bit known set
819      KnownOne |= NewBits;
820      KnownZero &= ~NewBits;
821    } else {                       // Input sign bit unknown
822      KnownZero &= ~NewBits;
823      KnownOne &= ~NewBits;
824    }
825    break;
826  }
827  case ISD::CTTZ:
828  case ISD::CTLZ:
829  case ISD::CTPOP: {
830    MVT::ValueType VT = Op.getValueType();
831    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
832    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
833    KnownOne  = 0;
834    break;
835  }
836  case ISD::LOAD: {
837    if (ISD::isZEXTLoad(Op.Val)) {
838      LoadSDNode *LD = cast<LoadSDNode>(Op);
839      MVT::ValueType VT = LD->getLoadedVT();
840      KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask;
841    }
842    break;
843  }
844  case ISD::ZERO_EXTEND: {
845    uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
846
847    // If none of the top bits are demanded, convert this into an any_extend.
848    uint64_t NewBits = (~InMask) & DemandedMask;
849    if (NewBits == 0)
850      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
851                                               Op.getValueType(),
852                                               Op.getOperand(0)));
853
854    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
855                             KnownZero, KnownOne, TLO, Depth+1))
856      return true;
857    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
858    KnownZero |= NewBits;
859    break;
860  }
861  case ISD::SIGN_EXTEND: {
862    MVT::ValueType InVT = Op.getOperand(0).getValueType();
863    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
864    uint64_t InSignBit = MVT::getIntVTSignBit(InVT);
865    uint64_t NewBits   = (~InMask) & DemandedMask;
866
867    // If none of the top bits are demanded, convert this into an any_extend.
868    if (NewBits == 0)
869      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
870                                           Op.getOperand(0)));
871
872    // Since some of the sign extended bits are demanded, we know that the sign
873    // bit is demanded.
874    uint64_t InDemandedBits = DemandedMask & InMask;
875    InDemandedBits |= InSignBit;
876
877    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
878                             KnownOne, TLO, Depth+1))
879      return true;
880
881    // If the sign bit is known zero, convert this to a zero extend.
882    if (KnownZero & InSignBit)
883      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
884                                               Op.getValueType(),
885                                               Op.getOperand(0)));
886
887    // If the sign bit is known one, the top bits match.
888    if (KnownOne & InSignBit) {
889      KnownOne  |= NewBits;
890      KnownZero &= ~NewBits;
891    } else {   // Otherwise, top bits aren't known.
892      KnownOne  &= ~NewBits;
893      KnownZero &= ~NewBits;
894    }
895    break;
896  }
897  case ISD::ANY_EXTEND: {
898    uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
899    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
900                             KnownZero, KnownOne, TLO, Depth+1))
901      return true;
902    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
903    break;
904  }
905  case ISD::TRUNCATE: {
906    // Simplify the input, using demanded bit information, and compute the known
907    // zero/one bits live out.
908    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask,
909                             KnownZero, KnownOne, TLO, Depth+1))
910      return true;
911
912    // If the input is only used by this truncate, see if we can shrink it based
913    // on the known demanded bits.
914    if (Op.getOperand(0).Val->hasOneUse()) {
915      SDOperand In = Op.getOperand(0);
916      switch (In.getOpcode()) {
917      default: break;
918      case ISD::SRL:
919        // Shrink SRL by a constant if none of the high bits shifted in are
920        // demanded.
921        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
922          uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType());
923          HighBits &= ~MVT::getIntVTBitMask(Op.getValueType());
924          HighBits >>= ShAmt->getValue();
925
926          if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) &&
927              (DemandedMask & HighBits) == 0) {
928            // None of the shifted in bits are needed.  Add a truncate of the
929            // shift input, then shift it.
930            SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
931                                                 Op.getValueType(),
932                                                 In.getOperand(0));
933            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
934                                                   NewTrunc, In.getOperand(1)));
935          }
936        }
937        break;
938      }
939    }
940
941    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
942    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
943    KnownZero &= OutMask;
944    KnownOne &= OutMask;
945    break;
946  }
947  case ISD::AssertZext: {
948    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
949    uint64_t InMask = MVT::getIntVTBitMask(VT);
950    if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask,
951                             KnownZero, KnownOne, TLO, Depth+1))
952      return true;
953    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
954    KnownZero |= ~InMask & DemandedMask;
955    break;
956  }
957  case ISD::FGETSIGN:
958    // All bits are zero except the low bit.
959    KnownZero = MVT::getIntVTBitMask(Op.getValueType()) ^ 1;
960    break;
961  case ISD::BIT_CONVERT:
962#if 0
963    // If this is an FP->Int bitcast and if the sign bit is the only thing that
964    // is demanded, turn this into a FGETSIGN.
965    if (DemandedMask == MVT::getIntVTSignBit(Op.getValueType()) &&
966        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
967        !MVT::isVector(Op.getOperand(0).getValueType())) {
968      // Only do this xform if FGETSIGN is valid or if before legalize.
969      if (!TLO.AfterLegalize ||
970          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
971        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
972        // place.  We expect the SHL to be eliminated by other optimizations.
973        SDOperand Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
974                                         Op.getOperand(0));
975        unsigned ShVal = MVT::getSizeInBits(Op.getValueType())-1;
976        SDOperand ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
977        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
978                                                 Sign, ShAmt));
979      }
980    }
981#endif
982    break;
983  case ISD::ADD:
984  case ISD::SUB:
985  case ISD::INTRINSIC_WO_CHAIN:
986  case ISD::INTRINSIC_W_CHAIN:
987  case ISD::INTRINSIC_VOID:
988    // Just use ComputeMaskedBits to compute output bits.
989    TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
990    break;
991  }
992
993  // If we know the value of all of the demanded bits, return this as a
994  // constant.
995  if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask)
996    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
997
998  return false;
999}
1000
1001/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1002/// in Mask are known to be either zero or one and return them in the
1003/// KnownZero/KnownOne bitsets.
1004void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
1005                                                    uint64_t Mask,
1006                                                    uint64_t &KnownZero,
1007                                                    uint64_t &KnownOne,
1008                                                    const SelectionDAG &DAG,
1009                                                    unsigned Depth) const {
1010  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1011          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1012          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1013          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1014         "Should use MaskedValueIsZero if you don't know whether Op"
1015         " is a target node!");
1016  KnownZero = 0;
1017  KnownOne = 0;
1018}
1019
1020/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1021/// targets that want to expose additional information about sign bits to the
1022/// DAG Combiner.
1023unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
1024                                                         unsigned Depth) const {
1025  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1026          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1027          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1028          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1029         "Should use ComputeNumSignBits if you don't know whether Op"
1030         " is a target node!");
1031  return 1;
1032}
1033
1034
1035/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1036/// and cc. If it is unable to simplify it, return a null SDOperand.
1037SDOperand
1038TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
1039                              ISD::CondCode Cond, bool foldBooleans,
1040                              DAGCombinerInfo &DCI) const {
1041  SelectionDAG &DAG = DCI.DAG;
1042
1043  // These setcc operations always fold.
1044  switch (Cond) {
1045  default: break;
1046  case ISD::SETFALSE:
1047  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1048  case ISD::SETTRUE:
1049  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1050  }
1051
1052  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1053    uint64_t C1 = N1C->getValue();
1054    if (isa<ConstantSDNode>(N0.Val)) {
1055      return DAG.FoldSetCC(VT, N0, N1, Cond);
1056    } else {
1057      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1058      // equality comparison, then we're just comparing whether X itself is
1059      // zero.
1060      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1061          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1062          N0.getOperand(1).getOpcode() == ISD::Constant) {
1063        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1064        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1065            ShAmt == Log2_32(MVT::getSizeInBits(N0.getValueType()))) {
1066          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1067            // (srl (ctlz x), 5) == 0  -> X != 0
1068            // (srl (ctlz x), 5) != 1  -> X != 0
1069            Cond = ISD::SETNE;
1070          } else {
1071            // (srl (ctlz x), 5) != 0  -> X == 0
1072            // (srl (ctlz x), 5) == 1  -> X == 0
1073            Cond = ISD::SETEQ;
1074          }
1075          SDOperand Zero = DAG.getConstant(0, N0.getValueType());
1076          return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
1077                              Zero, Cond);
1078        }
1079      }
1080
1081      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1082      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1083        unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType());
1084
1085        // If the comparison constant has bits in the upper part, the
1086        // zero-extended value could never match.
1087        if (C1 & (~0ULL << InSize)) {
1088          unsigned VSize = MVT::getSizeInBits(N0.getValueType());
1089          switch (Cond) {
1090          case ISD::SETUGT:
1091          case ISD::SETUGE:
1092          case ISD::SETEQ: return DAG.getConstant(0, VT);
1093          case ISD::SETULT:
1094          case ISD::SETULE:
1095          case ISD::SETNE: return DAG.getConstant(1, VT);
1096          case ISD::SETGT:
1097          case ISD::SETGE:
1098            // True if the sign bit of C1 is set.
1099            return DAG.getConstant((C1 & (1ULL << (VSize-1))) != 0, VT);
1100          case ISD::SETLT:
1101          case ISD::SETLE:
1102            // True if the sign bit of C1 isn't set.
1103            return DAG.getConstant((C1 & (1ULL << (VSize-1))) == 0, VT);
1104          default:
1105            break;
1106          }
1107        }
1108
1109        // Otherwise, we can perform the comparison with the low bits.
1110        switch (Cond) {
1111        case ISD::SETEQ:
1112        case ISD::SETNE:
1113        case ISD::SETUGT:
1114        case ISD::SETUGE:
1115        case ISD::SETULT:
1116        case ISD::SETULE:
1117          return DAG.getSetCC(VT, N0.getOperand(0),
1118                          DAG.getConstant(C1, N0.getOperand(0).getValueType()),
1119                          Cond);
1120        default:
1121          break;   // todo, be more careful with signed comparisons
1122        }
1123      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1124                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1125        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1126        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
1127        MVT::ValueType ExtDstTy = N0.getValueType();
1128        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
1129
1130        // If the extended part has any inconsistent bits, it cannot ever
1131        // compare equal.  In other words, they have to be all ones or all
1132        // zeros.
1133        uint64_t ExtBits =
1134          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
1135        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1136          return DAG.getConstant(Cond == ISD::SETNE, VT);
1137
1138        SDOperand ZextOp;
1139        MVT::ValueType Op0Ty = N0.getOperand(0).getValueType();
1140        if (Op0Ty == ExtSrcTy) {
1141          ZextOp = N0.getOperand(0);
1142        } else {
1143          int64_t Imm = ~0ULL >> (64-ExtSrcTyBits);
1144          ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1145                               DAG.getConstant(Imm, Op0Ty));
1146        }
1147        if (!DCI.isCalledByLegalizer())
1148          DCI.AddToWorklist(ZextOp.Val);
1149        // Otherwise, make this a use of a zext.
1150        return DAG.getSetCC(VT, ZextOp,
1151                            DAG.getConstant(C1 & (~0ULL>>(64-ExtSrcTyBits)),
1152                                            ExtDstTy),
1153                            Cond);
1154      } else if ((N1C->getValue() == 0 || N1C->getValue() == 1) &&
1155                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1156
1157        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1158        if (N0.getOpcode() == ISD::SETCC) {
1159          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1);
1160          if (TrueWhenTrue)
1161            return N0;
1162
1163          // Invert the condition.
1164          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1165          CC = ISD::getSetCCInverse(CC,
1166                               MVT::isInteger(N0.getOperand(0).getValueType()));
1167          return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1168        }
1169
1170        if ((N0.getOpcode() == ISD::XOR ||
1171             (N0.getOpcode() == ISD::AND &&
1172              N0.getOperand(0).getOpcode() == ISD::XOR &&
1173              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1174            isa<ConstantSDNode>(N0.getOperand(1)) &&
1175            cast<ConstantSDNode>(N0.getOperand(1))->getValue() == 1) {
1176          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1177          // can only do this if the top bits are known zero.
1178          if (DAG.MaskedValueIsZero(N0,
1179                                    MVT::getIntVTBitMask(N0.getValueType())-1)){
1180            // Okay, get the un-inverted input value.
1181            SDOperand Val;
1182            if (N0.getOpcode() == ISD::XOR)
1183              Val = N0.getOperand(0);
1184            else {
1185              assert(N0.getOpcode() == ISD::AND &&
1186                     N0.getOperand(0).getOpcode() == ISD::XOR);
1187              // ((X^1)&1)^1 -> X & 1
1188              Val = DAG.getNode(ISD::AND, N0.getValueType(),
1189                                N0.getOperand(0).getOperand(0),
1190                                N0.getOperand(1));
1191            }
1192            return DAG.getSetCC(VT, Val, N1,
1193                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1194          }
1195        }
1196      }
1197
1198      uint64_t MinVal, MaxVal;
1199      unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0));
1200      if (ISD::isSignedIntSetCC(Cond)) {
1201        MinVal = 1ULL << (OperandBitSize-1);
1202        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
1203          MaxVal = ~0ULL >> (65-OperandBitSize);
1204        else
1205          MaxVal = 0;
1206      } else {
1207        MinVal = 0;
1208        MaxVal = ~0ULL >> (64-OperandBitSize);
1209      }
1210
1211      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1212      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1213        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1214        --C1;                                          // X >= C0 --> X > (C0-1)
1215        return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1216                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1217      }
1218
1219      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1220        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1221        ++C1;                                          // X <= C0 --> X < (C0+1)
1222        return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()),
1223                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1224      }
1225
1226      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1227        return DAG.getConstant(0, VT);      // X < MIN --> false
1228      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1229        return DAG.getConstant(1, VT);      // X >= MIN --> true
1230      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1231        return DAG.getConstant(0, VT);      // X > MAX --> false
1232      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1233        return DAG.getConstant(1, VT);      // X <= MAX --> true
1234
1235      // Canonicalize setgt X, Min --> setne X, Min
1236      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1237        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1238      // Canonicalize setlt X, Max --> setne X, Max
1239      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1240        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1241
1242      // If we have setult X, 1, turn it into seteq X, 0
1243      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1244        return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1245                        ISD::SETEQ);
1246      // If we have setugt X, Max-1, turn it into seteq X, Max
1247      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1248        return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1249                        ISD::SETEQ);
1250
1251      // If we have "setcc X, C0", check to see if we can shrink the immediate
1252      // by changing cc.
1253
1254      // SETUGT X, SINTMAX  -> SETLT X, 0
1255      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1256          C1 == (~0ULL >> (65-OperandBitSize)))
1257        return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1258                            ISD::SETLT);
1259
1260      // FIXME: Implement the rest of these.
1261
1262      // Fold bit comparisons when we can.
1263      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1264          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1265        if (ConstantSDNode *AndRHS =
1266                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1267          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1268            // Perform the xform if the AND RHS is a single bit.
1269            if (isPowerOf2_64(AndRHS->getValue())) {
1270              return DAG.getNode(ISD::SRL, VT, N0,
1271                             DAG.getConstant(Log2_64(AndRHS->getValue()),
1272                                             getShiftAmountTy()));
1273            }
1274          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
1275            // (X & 8) == 8  -->  (X & 8) >> 3
1276            // Perform the xform if C1 is a single bit.
1277            if (isPowerOf2_64(C1)) {
1278              return DAG.getNode(ISD::SRL, VT, N0,
1279                          DAG.getConstant(Log2_64(C1), getShiftAmountTy()));
1280            }
1281          }
1282        }
1283    }
1284  } else if (isa<ConstantSDNode>(N0.Val)) {
1285      // Ensure that the constant occurs on the RHS.
1286    return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1287  }
1288
1289  if (isa<ConstantFPSDNode>(N0.Val)) {
1290    // Constant fold or commute setcc.
1291    SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond);
1292    if (O.Val) return O;
1293  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1294    // If the RHS of an FP comparison is a constant, simplify it away in
1295    // some cases.
1296    if (CFP->getValueAPF().isNaN()) {
1297      // If an operand is known to be a nan, we can fold it.
1298      switch (ISD::getUnorderedFlavor(Cond)) {
1299      default: assert(0 && "Unknown flavor!");
1300      case 0:  // Known false.
1301        return DAG.getConstant(0, VT);
1302      case 1:  // Known true.
1303        return DAG.getConstant(1, VT);
1304      case 2:  // Undefined.
1305        return DAG.getNode(ISD::UNDEF, VT);
1306      }
1307    }
1308
1309    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1310    // constant if knowing that the operand is non-nan is enough.  We prefer to
1311    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1312    // materialize 0.0.
1313    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1314      return DAG.getSetCC(VT, N0, N0, Cond);
1315  }
1316
1317  if (N0 == N1) {
1318    // We can always fold X == X for integer setcc's.
1319    if (MVT::isInteger(N0.getValueType()))
1320      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1321    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1322    if (UOF == 2)   // FP operators that are undefined on NaNs.
1323      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1324    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1325      return DAG.getConstant(UOF, VT);
1326    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1327    // if it is not already.
1328    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1329    if (NewCond != Cond)
1330      return DAG.getSetCC(VT, N0, N1, NewCond);
1331  }
1332
1333  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1334      MVT::isInteger(N0.getValueType())) {
1335    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1336        N0.getOpcode() == ISD::XOR) {
1337      // Simplify (X+Y) == (X+Z) -->  Y == Z
1338      if (N0.getOpcode() == N1.getOpcode()) {
1339        if (N0.getOperand(0) == N1.getOperand(0))
1340          return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1341        if (N0.getOperand(1) == N1.getOperand(1))
1342          return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1343        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1344          // If X op Y == Y op X, try other combinations.
1345          if (N0.getOperand(0) == N1.getOperand(1))
1346            return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1347          if (N0.getOperand(1) == N1.getOperand(0))
1348            return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1349        }
1350      }
1351
1352      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1353        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1354          // Turn (X+C1) == C2 --> X == C2-C1
1355          if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
1356            return DAG.getSetCC(VT, N0.getOperand(0),
1357                              DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
1358                                N0.getValueType()), Cond);
1359          }
1360
1361          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1362          if (N0.getOpcode() == ISD::XOR)
1363            // If we know that all of the inverted bits are zero, don't bother
1364            // performing the inversion.
1365            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getValue()))
1366              return DAG.getSetCC(VT, N0.getOperand(0),
1367                              DAG.getConstant(LHSR->getValue()^RHSC->getValue(),
1368                                              N0.getValueType()), Cond);
1369        }
1370
1371        // Turn (C1-X) == C2 --> X == C1-C2
1372        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1373          if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
1374            return DAG.getSetCC(VT, N0.getOperand(1),
1375                             DAG.getConstant(SUBC->getValue()-RHSC->getValue(),
1376                                             N0.getValueType()), Cond);
1377          }
1378        }
1379      }
1380
1381      // Simplify (X+Z) == X -->  Z == 0
1382      if (N0.getOperand(0) == N1)
1383        return DAG.getSetCC(VT, N0.getOperand(1),
1384                        DAG.getConstant(0, N0.getValueType()), Cond);
1385      if (N0.getOperand(1) == N1) {
1386        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1387          return DAG.getSetCC(VT, N0.getOperand(0),
1388                          DAG.getConstant(0, N0.getValueType()), Cond);
1389        else if (N0.Val->hasOneUse()) {
1390          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1391          // (Z-X) == X  --> Z == X<<1
1392          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1393                                     N1,
1394                                     DAG.getConstant(1, getShiftAmountTy()));
1395          if (!DCI.isCalledByLegalizer())
1396            DCI.AddToWorklist(SH.Val);
1397          return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1398        }
1399      }
1400    }
1401
1402    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1403        N1.getOpcode() == ISD::XOR) {
1404      // Simplify  X == (X+Z) -->  Z == 0
1405      if (N1.getOperand(0) == N0) {
1406        return DAG.getSetCC(VT, N1.getOperand(1),
1407                        DAG.getConstant(0, N1.getValueType()), Cond);
1408      } else if (N1.getOperand(1) == N0) {
1409        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1410          return DAG.getSetCC(VT, N1.getOperand(0),
1411                          DAG.getConstant(0, N1.getValueType()), Cond);
1412        } else if (N1.Val->hasOneUse()) {
1413          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1414          // X == (Z-X)  --> X<<1 == Z
1415          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1416                                     DAG.getConstant(1, getShiftAmountTy()));
1417          if (!DCI.isCalledByLegalizer())
1418            DCI.AddToWorklist(SH.Val);
1419          return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1420        }
1421      }
1422    }
1423  }
1424
1425  // Fold away ALL boolean setcc's.
1426  SDOperand Temp;
1427  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1428    switch (Cond) {
1429    default: assert(0 && "Unknown integer setcc!");
1430    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
1431      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1432      N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1433      if (!DCI.isCalledByLegalizer())
1434        DCI.AddToWorklist(Temp.Val);
1435      break;
1436    case ISD::SETNE:  // X != Y   -->  (X^Y)
1437      N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1438      break;
1439    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1440    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1441      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1442      N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1443      if (!DCI.isCalledByLegalizer())
1444        DCI.AddToWorklist(Temp.Val);
1445      break;
1446    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
1447    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
1448      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1449      N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1450      if (!DCI.isCalledByLegalizer())
1451        DCI.AddToWorklist(Temp.Val);
1452      break;
1453    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
1454    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
1455      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1456      N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1457      if (!DCI.isCalledByLegalizer())
1458        DCI.AddToWorklist(Temp.Val);
1459      break;
1460    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
1461    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
1462      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1463      N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1464      break;
1465    }
1466    if (VT != MVT::i1) {
1467      if (!DCI.isCalledByLegalizer())
1468        DCI.AddToWorklist(N0.Val);
1469      // FIXME: If running after legalize, we probably can't do this.
1470      N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1471    }
1472    return N0;
1473  }
1474
1475  // Could not fold it.
1476  return SDOperand();
1477}
1478
1479SDOperand TargetLowering::
1480PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1481  // Default implementation: no optimization.
1482  return SDOperand();
1483}
1484
1485//===----------------------------------------------------------------------===//
1486//  Inline Assembler Implementation Methods
1487//===----------------------------------------------------------------------===//
1488
1489TargetLowering::ConstraintType
1490TargetLowering::getConstraintType(const std::string &Constraint) const {
1491  // FIXME: lots more standard ones to handle.
1492  if (Constraint.size() == 1) {
1493    switch (Constraint[0]) {
1494    default: break;
1495    case 'r': return C_RegisterClass;
1496    case 'm':    // memory
1497    case 'o':    // offsetable
1498    case 'V':    // not offsetable
1499      return C_Memory;
1500    case 'i':    // Simple Integer or Relocatable Constant
1501    case 'n':    // Simple Integer
1502    case 's':    // Relocatable Constant
1503    case 'X':    // Allow ANY value.
1504    case 'I':    // Target registers.
1505    case 'J':
1506    case 'K':
1507    case 'L':
1508    case 'M':
1509    case 'N':
1510    case 'O':
1511    case 'P':
1512      return C_Other;
1513    }
1514  }
1515
1516  if (Constraint.size() > 1 && Constraint[0] == '{' &&
1517      Constraint[Constraint.size()-1] == '}')
1518    return C_Register;
1519  return C_Unknown;
1520}
1521
1522/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1523/// vector.  If it is invalid, don't add anything to Ops.
1524void TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
1525                                                  char ConstraintLetter,
1526                                                  std::vector<SDOperand> &Ops,
1527                                                  SelectionDAG &DAG) {
1528  switch (ConstraintLetter) {
1529  default: break;
1530  case 'X':     // Allows any operand; labels (basic block) use this.
1531    if (Op.getOpcode() == ISD::BasicBlock) {
1532      Ops.push_back(Op);
1533      return;
1534    }
1535    // fall through
1536  case 'i':    // Simple Integer or Relocatable Constant
1537  case 'n':    // Simple Integer
1538  case 's': {  // Relocatable Constant
1539    // These operands are interested in values of the form (GV+C), where C may
1540    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
1541    // is possible and fine if either GV or C are missing.
1542    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1543    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1544
1545    // If we have "(add GV, C)", pull out GV/C
1546    if (Op.getOpcode() == ISD::ADD) {
1547      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1548      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1549      if (C == 0 || GA == 0) {
1550        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1551        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1552      }
1553      if (C == 0 || GA == 0)
1554        C = 0, GA = 0;
1555    }
1556
1557    // If we find a valid operand, map to the TargetXXX version so that the
1558    // value itself doesn't get selected.
1559    if (GA) {   // Either &GV   or   &GV+C
1560      if (ConstraintLetter != 'n') {
1561        int64_t Offs = GA->getOffset();
1562        if (C) Offs += C->getValue();
1563        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
1564                                                 Op.getValueType(), Offs));
1565        return;
1566      }
1567    }
1568    if (C) {   // just C, no GV.
1569      // Simple constants are not allowed for 's'.
1570      if (ConstraintLetter != 's') {
1571        Ops.push_back(DAG.getTargetConstant(C->getValue(), Op.getValueType()));
1572        return;
1573      }
1574    }
1575    break;
1576  }
1577  }
1578}
1579
1580std::vector<unsigned> TargetLowering::
1581getRegClassForInlineAsmConstraint(const std::string &Constraint,
1582                                  MVT::ValueType VT) const {
1583  return std::vector<unsigned>();
1584}
1585
1586
1587std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
1588getRegForInlineAsmConstraint(const std::string &Constraint,
1589                             MVT::ValueType VT) const {
1590  if (Constraint[0] != '{')
1591    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1592  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1593
1594  // Remove the braces from around the name.
1595  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
1596
1597  // Figure out which register class contains this reg.
1598  const MRegisterInfo *RI = TM.getRegisterInfo();
1599  for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1600       E = RI->regclass_end(); RCI != E; ++RCI) {
1601    const TargetRegisterClass *RC = *RCI;
1602
1603    // If none of the the value types for this register class are valid, we
1604    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1605    bool isLegal = false;
1606    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1607         I != E; ++I) {
1608      if (isTypeLegal(*I)) {
1609        isLegal = true;
1610        break;
1611      }
1612    }
1613
1614    if (!isLegal) continue;
1615
1616    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1617         I != E; ++I) {
1618      if (StringsEqualNoCase(RegName, RI->get(*I).Name))
1619        return std::make_pair(*I, RC);
1620    }
1621  }
1622
1623  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1624}
1625
1626//===----------------------------------------------------------------------===//
1627//  Loop Strength Reduction hooks
1628//===----------------------------------------------------------------------===//
1629
1630/// isLegalAddressingMode - Return true if the addressing mode represented
1631/// by AM is legal for this target, for a load/store of the specified type.
1632bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
1633                                           const Type *Ty) const {
1634  // The default implementation of this implements a conservative RISCy, r+r and
1635  // r+i addr mode.
1636
1637  // Allows a sign-extended 16-bit immediate field.
1638  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1639    return false;
1640
1641  // No global is ever allowed as a base.
1642  if (AM.BaseGV)
1643    return false;
1644
1645  // Only support r+r,
1646  switch (AM.Scale) {
1647  case 0:  // "r+i" or just "i", depending on HasBaseReg.
1648    break;
1649  case 1:
1650    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1651      return false;
1652    // Otherwise we have r+r or r+i.
1653    break;
1654  case 2:
1655    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1656      return false;
1657    // Allow 2*r as r+r.
1658    break;
1659  }
1660
1661  return true;
1662}
1663
1664// Magic for divide replacement
1665
1666struct ms {
1667  int64_t m;  // magic number
1668  int64_t s;  // shift amount
1669};
1670
1671struct mu {
1672  uint64_t m; // magic number
1673  int64_t a;  // add indicator
1674  int64_t s;  // shift amount
1675};
1676
1677/// magic - calculate the magic numbers required to codegen an integer sdiv as
1678/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1679/// or -1.
1680static ms magic32(int32_t d) {
1681  int32_t p;
1682  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
1683  const uint32_t two31 = 0x80000000U;
1684  struct ms mag;
1685
1686  ad = abs(d);
1687  t = two31 + ((uint32_t)d >> 31);
1688  anc = t - 1 - t%ad;   // absolute value of nc
1689  p = 31;               // initialize p
1690  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
1691  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1692  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
1693  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1694  do {
1695    p = p + 1;
1696    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1697    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1698    if (r1 >= anc) {  // must be unsigned comparison
1699      q1 = q1 + 1;
1700      r1 = r1 - anc;
1701    }
1702    q2 = 2*q2;        // update q2 = 2p/abs(d)
1703    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1704    if (r2 >= ad) {   // must be unsigned comparison
1705      q2 = q2 + 1;
1706      r2 = r2 - ad;
1707    }
1708    delta = ad - r2;
1709  } while (q1 < delta || (q1 == delta && r1 == 0));
1710
1711  mag.m = (int32_t)(q2 + 1); // make sure to sign extend
1712  if (d < 0) mag.m = -mag.m; // resulting magic number
1713  mag.s = p - 32;            // resulting shift
1714  return mag;
1715}
1716
1717/// magicu - calculate the magic numbers required to codegen an integer udiv as
1718/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1719static mu magicu32(uint32_t d) {
1720  int32_t p;
1721  uint32_t nc, delta, q1, r1, q2, r2;
1722  struct mu magu;
1723  magu.a = 0;               // initialize "add" indicator
1724  nc = - 1 - (-d)%d;
1725  p = 31;                   // initialize p
1726  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
1727  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
1728  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
1729  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
1730  do {
1731    p = p + 1;
1732    if (r1 >= nc - r1 ) {
1733      q1 = 2*q1 + 1;  // update q1
1734      r1 = 2*r1 - nc; // update r1
1735    }
1736    else {
1737      q1 = 2*q1; // update q1
1738      r1 = 2*r1; // update r1
1739    }
1740    if (r2 + 1 >= d - r2) {
1741      if (q2 >= 0x7FFFFFFF) magu.a = 1;
1742      q2 = 2*q2 + 1;     // update q2
1743      r2 = 2*r2 + 1 - d; // update r2
1744    }
1745    else {
1746      if (q2 >= 0x80000000) magu.a = 1;
1747      q2 = 2*q2;     // update q2
1748      r2 = 2*r2 + 1; // update r2
1749    }
1750    delta = d - 1 - r2;
1751  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
1752  magu.m = q2 + 1; // resulting magic number
1753  magu.s = p - 32;  // resulting shift
1754  return magu;
1755}
1756
1757/// magic - calculate the magic numbers required to codegen an integer sdiv as
1758/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1759/// or -1.
1760static ms magic64(int64_t d) {
1761  int64_t p;
1762  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
1763  const uint64_t two63 = 9223372036854775808ULL; // 2^63
1764  struct ms mag;
1765
1766  ad = d >= 0 ? d : -d;
1767  t = two63 + ((uint64_t)d >> 63);
1768  anc = t - 1 - t%ad;   // absolute value of nc
1769  p = 63;               // initialize p
1770  q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
1771  r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1772  q2 = two63/ad;        // initialize q2 = 2p/abs(d)
1773  r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1774  do {
1775    p = p + 1;
1776    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1777    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1778    if (r1 >= anc) {  // must be unsigned comparison
1779      q1 = q1 + 1;
1780      r1 = r1 - anc;
1781    }
1782    q2 = 2*q2;        // update q2 = 2p/abs(d)
1783    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1784    if (r2 >= ad) {   // must be unsigned comparison
1785      q2 = q2 + 1;
1786      r2 = r2 - ad;
1787    }
1788    delta = ad - r2;
1789  } while (q1 < delta || (q1 == delta && r1 == 0));
1790
1791  mag.m = q2 + 1;
1792  if (d < 0) mag.m = -mag.m; // resulting magic number
1793  mag.s = p - 64;            // resulting shift
1794  return mag;
1795}
1796
1797/// magicu - calculate the magic numbers required to codegen an integer udiv as
1798/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1799static mu magicu64(uint64_t d)
1800{
1801  int64_t p;
1802  uint64_t nc, delta, q1, r1, q2, r2;
1803  struct mu magu;
1804  magu.a = 0;               // initialize "add" indicator
1805  nc = - 1 - (-d)%d;
1806  p = 63;                   // initialize p
1807  q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
1808  r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
1809  q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
1810  r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
1811  do {
1812    p = p + 1;
1813    if (r1 >= nc - r1 ) {
1814      q1 = 2*q1 + 1;  // update q1
1815      r1 = 2*r1 - nc; // update r1
1816    }
1817    else {
1818      q1 = 2*q1; // update q1
1819      r1 = 2*r1; // update r1
1820    }
1821    if (r2 + 1 >= d - r2) {
1822      if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
1823      q2 = 2*q2 + 1;     // update q2
1824      r2 = 2*r2 + 1 - d; // update r2
1825    }
1826    else {
1827      if (q2 >= 0x8000000000000000ull) magu.a = 1;
1828      q2 = 2*q2;     // update q2
1829      r2 = 2*r2 + 1; // update r2
1830    }
1831    delta = d - 1 - r2;
1832  } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
1833  magu.m = q2 + 1; // resulting magic number
1834  magu.s = p - 64;  // resulting shift
1835  return magu;
1836}
1837
1838/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
1839/// return a DAG expression to select that will generate the same value by
1840/// multiplying by a magic number.  See:
1841/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1842SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
1843                                    std::vector<SDNode*>* Created) const {
1844  MVT::ValueType VT = N->getValueType(0);
1845
1846  // Check to see if we can do this.
1847  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1848    return SDOperand();       // BuildSDIV only operates on i32 or i64
1849
1850  int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
1851  ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
1852
1853  // Multiply the numerator (operand 0) by the magic value
1854  SDOperand Q;
1855  if (isOperationLegal(ISD::MULHS, VT))
1856    Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
1857                    DAG.getConstant(magics.m, VT));
1858  else if (isOperationLegal(ISD::SMUL_LOHI, VT))
1859    Q = SDOperand(DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(VT, VT),
1860                              N->getOperand(0),
1861                              DAG.getConstant(magics.m, VT)).Val, 1);
1862  else
1863    return SDOperand();       // No mulhs or equvialent
1864  // If d > 0 and m < 0, add the numerator
1865  if (d > 0 && magics.m < 0) {
1866    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
1867    if (Created)
1868      Created->push_back(Q.Val);
1869  }
1870  // If d < 0 and m > 0, subtract the numerator.
1871  if (d < 0 && magics.m > 0) {
1872    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
1873    if (Created)
1874      Created->push_back(Q.Val);
1875  }
1876  // Shift right algebraic if shift value is nonzero
1877  if (magics.s > 0) {
1878    Q = DAG.getNode(ISD::SRA, VT, Q,
1879                    DAG.getConstant(magics.s, getShiftAmountTy()));
1880    if (Created)
1881      Created->push_back(Q.Val);
1882  }
1883  // Extract the sign bit and add it to the quotient
1884  SDOperand T =
1885    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
1886                                                 getShiftAmountTy()));
1887  if (Created)
1888    Created->push_back(T.Val);
1889  return DAG.getNode(ISD::ADD, VT, Q, T);
1890}
1891
1892/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
1893/// return a DAG expression to select that will generate the same value by
1894/// multiplying by a magic number.  See:
1895/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1896SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
1897                                    std::vector<SDNode*>* Created) const {
1898  MVT::ValueType VT = N->getValueType(0);
1899
1900  // Check to see if we can do this.
1901  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1902    return SDOperand();       // BuildUDIV only operates on i32 or i64
1903
1904  uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
1905  mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
1906
1907  // Multiply the numerator (operand 0) by the magic value
1908  SDOperand Q;
1909  if (isOperationLegal(ISD::MULHU, VT))
1910    Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
1911                    DAG.getConstant(magics.m, VT));
1912  else if (isOperationLegal(ISD::UMUL_LOHI, VT))
1913    Q = SDOperand(DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(VT, VT),
1914                              N->getOperand(0),
1915                              DAG.getConstant(magics.m, VT)).Val, 1);
1916  else
1917    return SDOperand();       // No mulhu or equvialent
1918  if (Created)
1919    Created->push_back(Q.Val);
1920
1921  if (magics.a == 0) {
1922    return DAG.getNode(ISD::SRL, VT, Q,
1923                       DAG.getConstant(magics.s, getShiftAmountTy()));
1924  } else {
1925    SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
1926    if (Created)
1927      Created->push_back(NPQ.Val);
1928    NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
1929                      DAG.getConstant(1, getShiftAmountTy()));
1930    if (Created)
1931      Created->push_back(NPQ.Val);
1932    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
1933    if (Created)
1934      Created->push_back(NPQ.Val);
1935    return DAG.getNode(ISD::SRL, VT, NPQ,
1936                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
1937  }
1938}
1939