TargetLowering.cpp revision 4e39e9da0f3a435445261d0f796bb0913f3c2bf0
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetLowering.h"
15#include "llvm/MC/MCAsmInfo.h"
16#include "llvm/MC/MCExpr.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetLoweringObjectFile.h"
19#include "llvm/Target/TargetMachine.h"
20#include "llvm/Target/TargetRegisterInfo.h"
21#include "llvm/GlobalVariable.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineJumpTableInfo.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/SelectionDAG.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Support/MathExtras.h"
30using namespace llvm;
31
32namespace llvm {
33TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
34  bool isLocal = GV->hasLocalLinkage();
35  bool isDeclaration = GV->isDeclaration();
36  // FIXME: what should we do for protected and internal visibility?
37  // For variables, is internal different from hidden?
38  bool isHidden = GV->hasHiddenVisibility();
39
40  if (reloc == Reloc::PIC_) {
41    if (isLocal || isHidden)
42      return TLSModel::LocalDynamic;
43    else
44      return TLSModel::GeneralDynamic;
45  } else {
46    if (!isDeclaration || isHidden)
47      return TLSModel::LocalExec;
48    else
49      return TLSModel::InitialExec;
50  }
51}
52}
53
54/// InitLibcallNames - Set default libcall names.
55///
56static void InitLibcallNames(const char **Names) {
57  Names[RTLIB::SHL_I16] = "__ashlhi3";
58  Names[RTLIB::SHL_I32] = "__ashlsi3";
59  Names[RTLIB::SHL_I64] = "__ashldi3";
60  Names[RTLIB::SHL_I128] = "__ashlti3";
61  Names[RTLIB::SRL_I16] = "__lshrhi3";
62  Names[RTLIB::SRL_I32] = "__lshrsi3";
63  Names[RTLIB::SRL_I64] = "__lshrdi3";
64  Names[RTLIB::SRL_I128] = "__lshrti3";
65  Names[RTLIB::SRA_I16] = "__ashrhi3";
66  Names[RTLIB::SRA_I32] = "__ashrsi3";
67  Names[RTLIB::SRA_I64] = "__ashrdi3";
68  Names[RTLIB::SRA_I128] = "__ashrti3";
69  Names[RTLIB::MUL_I8] = "__mulqi3";
70  Names[RTLIB::MUL_I16] = "__mulhi3";
71  Names[RTLIB::MUL_I32] = "__mulsi3";
72  Names[RTLIB::MUL_I64] = "__muldi3";
73  Names[RTLIB::MUL_I128] = "__multi3";
74  Names[RTLIB::SDIV_I8] = "__divqi3";
75  Names[RTLIB::SDIV_I16] = "__divhi3";
76  Names[RTLIB::SDIV_I32] = "__divsi3";
77  Names[RTLIB::SDIV_I64] = "__divdi3";
78  Names[RTLIB::SDIV_I128] = "__divti3";
79  Names[RTLIB::UDIV_I8] = "__udivqi3";
80  Names[RTLIB::UDIV_I16] = "__udivhi3";
81  Names[RTLIB::UDIV_I32] = "__udivsi3";
82  Names[RTLIB::UDIV_I64] = "__udivdi3";
83  Names[RTLIB::UDIV_I128] = "__udivti3";
84  Names[RTLIB::SREM_I8] = "__modqi3";
85  Names[RTLIB::SREM_I16] = "__modhi3";
86  Names[RTLIB::SREM_I32] = "__modsi3";
87  Names[RTLIB::SREM_I64] = "__moddi3";
88  Names[RTLIB::SREM_I128] = "__modti3";
89  Names[RTLIB::UREM_I8] = "__umodqi3";
90  Names[RTLIB::UREM_I16] = "__umodhi3";
91  Names[RTLIB::UREM_I32] = "__umodsi3";
92  Names[RTLIB::UREM_I64] = "__umoddi3";
93  Names[RTLIB::UREM_I128] = "__umodti3";
94  Names[RTLIB::NEG_I32] = "__negsi2";
95  Names[RTLIB::NEG_I64] = "__negdi2";
96  Names[RTLIB::ADD_F32] = "__addsf3";
97  Names[RTLIB::ADD_F64] = "__adddf3";
98  Names[RTLIB::ADD_F80] = "__addxf3";
99  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
100  Names[RTLIB::SUB_F32] = "__subsf3";
101  Names[RTLIB::SUB_F64] = "__subdf3";
102  Names[RTLIB::SUB_F80] = "__subxf3";
103  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
104  Names[RTLIB::MUL_F32] = "__mulsf3";
105  Names[RTLIB::MUL_F64] = "__muldf3";
106  Names[RTLIB::MUL_F80] = "__mulxf3";
107  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
108  Names[RTLIB::DIV_F32] = "__divsf3";
109  Names[RTLIB::DIV_F64] = "__divdf3";
110  Names[RTLIB::DIV_F80] = "__divxf3";
111  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
112  Names[RTLIB::REM_F32] = "fmodf";
113  Names[RTLIB::REM_F64] = "fmod";
114  Names[RTLIB::REM_F80] = "fmodl";
115  Names[RTLIB::REM_PPCF128] = "fmodl";
116  Names[RTLIB::POWI_F32] = "__powisf2";
117  Names[RTLIB::POWI_F64] = "__powidf2";
118  Names[RTLIB::POWI_F80] = "__powixf2";
119  Names[RTLIB::POWI_PPCF128] = "__powitf2";
120  Names[RTLIB::SQRT_F32] = "sqrtf";
121  Names[RTLIB::SQRT_F64] = "sqrt";
122  Names[RTLIB::SQRT_F80] = "sqrtl";
123  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
124  Names[RTLIB::LOG_F32] = "logf";
125  Names[RTLIB::LOG_F64] = "log";
126  Names[RTLIB::LOG_F80] = "logl";
127  Names[RTLIB::LOG_PPCF128] = "logl";
128  Names[RTLIB::LOG2_F32] = "log2f";
129  Names[RTLIB::LOG2_F64] = "log2";
130  Names[RTLIB::LOG2_F80] = "log2l";
131  Names[RTLIB::LOG2_PPCF128] = "log2l";
132  Names[RTLIB::LOG10_F32] = "log10f";
133  Names[RTLIB::LOG10_F64] = "log10";
134  Names[RTLIB::LOG10_F80] = "log10l";
135  Names[RTLIB::LOG10_PPCF128] = "log10l";
136  Names[RTLIB::EXP_F32] = "expf";
137  Names[RTLIB::EXP_F64] = "exp";
138  Names[RTLIB::EXP_F80] = "expl";
139  Names[RTLIB::EXP_PPCF128] = "expl";
140  Names[RTLIB::EXP2_F32] = "exp2f";
141  Names[RTLIB::EXP2_F64] = "exp2";
142  Names[RTLIB::EXP2_F80] = "exp2l";
143  Names[RTLIB::EXP2_PPCF128] = "exp2l";
144  Names[RTLIB::SIN_F32] = "sinf";
145  Names[RTLIB::SIN_F64] = "sin";
146  Names[RTLIB::SIN_F80] = "sinl";
147  Names[RTLIB::SIN_PPCF128] = "sinl";
148  Names[RTLIB::COS_F32] = "cosf";
149  Names[RTLIB::COS_F64] = "cos";
150  Names[RTLIB::COS_F80] = "cosl";
151  Names[RTLIB::COS_PPCF128] = "cosl";
152  Names[RTLIB::POW_F32] = "powf";
153  Names[RTLIB::POW_F64] = "pow";
154  Names[RTLIB::POW_F80] = "powl";
155  Names[RTLIB::POW_PPCF128] = "powl";
156  Names[RTLIB::CEIL_F32] = "ceilf";
157  Names[RTLIB::CEIL_F64] = "ceil";
158  Names[RTLIB::CEIL_F80] = "ceill";
159  Names[RTLIB::CEIL_PPCF128] = "ceill";
160  Names[RTLIB::TRUNC_F32] = "truncf";
161  Names[RTLIB::TRUNC_F64] = "trunc";
162  Names[RTLIB::TRUNC_F80] = "truncl";
163  Names[RTLIB::TRUNC_PPCF128] = "truncl";
164  Names[RTLIB::RINT_F32] = "rintf";
165  Names[RTLIB::RINT_F64] = "rint";
166  Names[RTLIB::RINT_F80] = "rintl";
167  Names[RTLIB::RINT_PPCF128] = "rintl";
168  Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
169  Names[RTLIB::NEARBYINT_F64] = "nearbyint";
170  Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
171  Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
172  Names[RTLIB::FLOOR_F32] = "floorf";
173  Names[RTLIB::FLOOR_F64] = "floor";
174  Names[RTLIB::FLOOR_F80] = "floorl";
175  Names[RTLIB::FLOOR_PPCF128] = "floorl";
176  Names[RTLIB::COPYSIGN_F32] = "copysignf";
177  Names[RTLIB::COPYSIGN_F64] = "copysign";
178  Names[RTLIB::COPYSIGN_F80] = "copysignl";
179  Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
180  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
181  Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
182  Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
183  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
184  Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
185  Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
186  Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
187  Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
188  Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
189  Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
190  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
191  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
192  Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
193  Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
194  Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
195  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
196  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
197  Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
198  Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
199  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
200  Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
201  Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
202  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
203  Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
204  Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
205  Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
206  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
207  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
208  Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
209  Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
210  Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
211  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
212  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
213  Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
214  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
215  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
216  Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
217  Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
218  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
219  Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
220  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
221  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
222  Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
223  Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
224  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
225  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
226  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
227  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
228  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
229  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
230  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
231  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
232  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
233  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
234  Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
235  Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
236  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
237  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
238  Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
239  Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
240  Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
241  Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
242  Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
243  Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
244  Names[RTLIB::OEQ_F32] = "__eqsf2";
245  Names[RTLIB::OEQ_F64] = "__eqdf2";
246  Names[RTLIB::UNE_F32] = "__nesf2";
247  Names[RTLIB::UNE_F64] = "__nedf2";
248  Names[RTLIB::OGE_F32] = "__gesf2";
249  Names[RTLIB::OGE_F64] = "__gedf2";
250  Names[RTLIB::OLT_F32] = "__ltsf2";
251  Names[RTLIB::OLT_F64] = "__ltdf2";
252  Names[RTLIB::OLE_F32] = "__lesf2";
253  Names[RTLIB::OLE_F64] = "__ledf2";
254  Names[RTLIB::OGT_F32] = "__gtsf2";
255  Names[RTLIB::OGT_F64] = "__gtdf2";
256  Names[RTLIB::UO_F32] = "__unordsf2";
257  Names[RTLIB::UO_F64] = "__unorddf2";
258  Names[RTLIB::O_F32] = "__unordsf2";
259  Names[RTLIB::O_F64] = "__unorddf2";
260  Names[RTLIB::MEMCPY] = "memcpy";
261  Names[RTLIB::MEMMOVE] = "memmove";
262  Names[RTLIB::MEMSET] = "memset";
263  Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
264  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
265  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
266  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
267  Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
268  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
269  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
270  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
271  Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
272  Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
273  Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
274  Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
275  Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
276  Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
277  Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
278  Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
279  Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
280  Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
281  Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
282  Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
283  Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
284  Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
285  Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
286  Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
287  Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
288  Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
289  Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
290  Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and-xor_4";
291  Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
292  Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
293  Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
294  Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
295  Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
296}
297
298/// InitLibcallCallingConvs - Set default libcall CallingConvs.
299///
300static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
301  for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
302    CCs[i] = CallingConv::C;
303  }
304}
305
306/// getFPEXT - Return the FPEXT_*_* value for the given types, or
307/// UNKNOWN_LIBCALL if there is none.
308RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
309  if (OpVT == MVT::f32) {
310    if (RetVT == MVT::f64)
311      return FPEXT_F32_F64;
312  }
313
314  return UNKNOWN_LIBCALL;
315}
316
317/// getFPROUND - Return the FPROUND_*_* value for the given types, or
318/// UNKNOWN_LIBCALL if there is none.
319RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
320  if (RetVT == MVT::f32) {
321    if (OpVT == MVT::f64)
322      return FPROUND_F64_F32;
323    if (OpVT == MVT::f80)
324      return FPROUND_F80_F32;
325    if (OpVT == MVT::ppcf128)
326      return FPROUND_PPCF128_F32;
327  } else if (RetVT == MVT::f64) {
328    if (OpVT == MVT::f80)
329      return FPROUND_F80_F64;
330    if (OpVT == MVT::ppcf128)
331      return FPROUND_PPCF128_F64;
332  }
333
334  return UNKNOWN_LIBCALL;
335}
336
337/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
338/// UNKNOWN_LIBCALL if there is none.
339RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
340  if (OpVT == MVT::f32) {
341    if (RetVT == MVT::i8)
342      return FPTOSINT_F32_I8;
343    if (RetVT == MVT::i16)
344      return FPTOSINT_F32_I16;
345    if (RetVT == MVT::i32)
346      return FPTOSINT_F32_I32;
347    if (RetVT == MVT::i64)
348      return FPTOSINT_F32_I64;
349    if (RetVT == MVT::i128)
350      return FPTOSINT_F32_I128;
351  } else if (OpVT == MVT::f64) {
352    if (RetVT == MVT::i8)
353      return FPTOSINT_F64_I8;
354    if (RetVT == MVT::i16)
355      return FPTOSINT_F64_I16;
356    if (RetVT == MVT::i32)
357      return FPTOSINT_F64_I32;
358    if (RetVT == MVT::i64)
359      return FPTOSINT_F64_I64;
360    if (RetVT == MVT::i128)
361      return FPTOSINT_F64_I128;
362  } else if (OpVT == MVT::f80) {
363    if (RetVT == MVT::i32)
364      return FPTOSINT_F80_I32;
365    if (RetVT == MVT::i64)
366      return FPTOSINT_F80_I64;
367    if (RetVT == MVT::i128)
368      return FPTOSINT_F80_I128;
369  } else if (OpVT == MVT::ppcf128) {
370    if (RetVT == MVT::i32)
371      return FPTOSINT_PPCF128_I32;
372    if (RetVT == MVT::i64)
373      return FPTOSINT_PPCF128_I64;
374    if (RetVT == MVT::i128)
375      return FPTOSINT_PPCF128_I128;
376  }
377  return UNKNOWN_LIBCALL;
378}
379
380/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
381/// UNKNOWN_LIBCALL if there is none.
382RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
383  if (OpVT == MVT::f32) {
384    if (RetVT == MVT::i8)
385      return FPTOUINT_F32_I8;
386    if (RetVT == MVT::i16)
387      return FPTOUINT_F32_I16;
388    if (RetVT == MVT::i32)
389      return FPTOUINT_F32_I32;
390    if (RetVT == MVT::i64)
391      return FPTOUINT_F32_I64;
392    if (RetVT == MVT::i128)
393      return FPTOUINT_F32_I128;
394  } else if (OpVT == MVT::f64) {
395    if (RetVT == MVT::i8)
396      return FPTOUINT_F64_I8;
397    if (RetVT == MVT::i16)
398      return FPTOUINT_F64_I16;
399    if (RetVT == MVT::i32)
400      return FPTOUINT_F64_I32;
401    if (RetVT == MVT::i64)
402      return FPTOUINT_F64_I64;
403    if (RetVT == MVT::i128)
404      return FPTOUINT_F64_I128;
405  } else if (OpVT == MVT::f80) {
406    if (RetVT == MVT::i32)
407      return FPTOUINT_F80_I32;
408    if (RetVT == MVT::i64)
409      return FPTOUINT_F80_I64;
410    if (RetVT == MVT::i128)
411      return FPTOUINT_F80_I128;
412  } else if (OpVT == MVT::ppcf128) {
413    if (RetVT == MVT::i32)
414      return FPTOUINT_PPCF128_I32;
415    if (RetVT == MVT::i64)
416      return FPTOUINT_PPCF128_I64;
417    if (RetVT == MVT::i128)
418      return FPTOUINT_PPCF128_I128;
419  }
420  return UNKNOWN_LIBCALL;
421}
422
423/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
424/// UNKNOWN_LIBCALL if there is none.
425RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
426  if (OpVT == MVT::i32) {
427    if (RetVT == MVT::f32)
428      return SINTTOFP_I32_F32;
429    else if (RetVT == MVT::f64)
430      return SINTTOFP_I32_F64;
431    else if (RetVT == MVT::f80)
432      return SINTTOFP_I32_F80;
433    else if (RetVT == MVT::ppcf128)
434      return SINTTOFP_I32_PPCF128;
435  } else if (OpVT == MVT::i64) {
436    if (RetVT == MVT::f32)
437      return SINTTOFP_I64_F32;
438    else if (RetVT == MVT::f64)
439      return SINTTOFP_I64_F64;
440    else if (RetVT == MVT::f80)
441      return SINTTOFP_I64_F80;
442    else if (RetVT == MVT::ppcf128)
443      return SINTTOFP_I64_PPCF128;
444  } else if (OpVT == MVT::i128) {
445    if (RetVT == MVT::f32)
446      return SINTTOFP_I128_F32;
447    else if (RetVT == MVT::f64)
448      return SINTTOFP_I128_F64;
449    else if (RetVT == MVT::f80)
450      return SINTTOFP_I128_F80;
451    else if (RetVT == MVT::ppcf128)
452      return SINTTOFP_I128_PPCF128;
453  }
454  return UNKNOWN_LIBCALL;
455}
456
457/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
458/// UNKNOWN_LIBCALL if there is none.
459RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
460  if (OpVT == MVT::i32) {
461    if (RetVT == MVT::f32)
462      return UINTTOFP_I32_F32;
463    else if (RetVT == MVT::f64)
464      return UINTTOFP_I32_F64;
465    else if (RetVT == MVT::f80)
466      return UINTTOFP_I32_F80;
467    else if (RetVT == MVT::ppcf128)
468      return UINTTOFP_I32_PPCF128;
469  } else if (OpVT == MVT::i64) {
470    if (RetVT == MVT::f32)
471      return UINTTOFP_I64_F32;
472    else if (RetVT == MVT::f64)
473      return UINTTOFP_I64_F64;
474    else if (RetVT == MVT::f80)
475      return UINTTOFP_I64_F80;
476    else if (RetVT == MVT::ppcf128)
477      return UINTTOFP_I64_PPCF128;
478  } else if (OpVT == MVT::i128) {
479    if (RetVT == MVT::f32)
480      return UINTTOFP_I128_F32;
481    else if (RetVT == MVT::f64)
482      return UINTTOFP_I128_F64;
483    else if (RetVT == MVT::f80)
484      return UINTTOFP_I128_F80;
485    else if (RetVT == MVT::ppcf128)
486      return UINTTOFP_I128_PPCF128;
487  }
488  return UNKNOWN_LIBCALL;
489}
490
491/// InitCmpLibcallCCs - Set default comparison libcall CC.
492///
493static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
494  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
495  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
496  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
497  CCs[RTLIB::UNE_F32] = ISD::SETNE;
498  CCs[RTLIB::UNE_F64] = ISD::SETNE;
499  CCs[RTLIB::OGE_F32] = ISD::SETGE;
500  CCs[RTLIB::OGE_F64] = ISD::SETGE;
501  CCs[RTLIB::OLT_F32] = ISD::SETLT;
502  CCs[RTLIB::OLT_F64] = ISD::SETLT;
503  CCs[RTLIB::OLE_F32] = ISD::SETLE;
504  CCs[RTLIB::OLE_F64] = ISD::SETLE;
505  CCs[RTLIB::OGT_F32] = ISD::SETGT;
506  CCs[RTLIB::OGT_F64] = ISD::SETGT;
507  CCs[RTLIB::UO_F32] = ISD::SETNE;
508  CCs[RTLIB::UO_F64] = ISD::SETNE;
509  CCs[RTLIB::O_F32] = ISD::SETEQ;
510  CCs[RTLIB::O_F64] = ISD::SETEQ;
511}
512
513/// NOTE: The constructor takes ownership of TLOF.
514TargetLowering::TargetLowering(const TargetMachine &tm,
515                               const TargetLoweringObjectFile *tlof)
516  : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
517  // All operations default to being supported.
518  memset(OpActions, 0, sizeof(OpActions));
519  memset(LoadExtActions, 0, sizeof(LoadExtActions));
520  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
521  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
522  memset(CondCodeActions, 0, sizeof(CondCodeActions));
523
524  // Set default actions for various operations.
525  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
526    // Default all indexed load / store to expand.
527    for (unsigned IM = (unsigned)ISD::PRE_INC;
528         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
529      setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
530      setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
531    }
532
533    // These operations default to expand.
534    setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
535    setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
536  }
537
538  // Most targets ignore the @llvm.prefetch intrinsic.
539  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
540
541  // ConstantFP nodes default to expand.  Targets can either change this to
542  // Legal, in which case all fp constants are legal, or use isFPImmLegal()
543  // to optimize expansions for certain constants.
544  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
545  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
546  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
547
548  // These library functions default to expand.
549  setOperationAction(ISD::FLOG , MVT::f64, Expand);
550  setOperationAction(ISD::FLOG2, MVT::f64, Expand);
551  setOperationAction(ISD::FLOG10,MVT::f64, Expand);
552  setOperationAction(ISD::FEXP , MVT::f64, Expand);
553  setOperationAction(ISD::FEXP2, MVT::f64, Expand);
554  setOperationAction(ISD::FLOG , MVT::f32, Expand);
555  setOperationAction(ISD::FLOG2, MVT::f32, Expand);
556  setOperationAction(ISD::FLOG10,MVT::f32, Expand);
557  setOperationAction(ISD::FEXP , MVT::f32, Expand);
558  setOperationAction(ISD::FEXP2, MVT::f32, Expand);
559
560  // Default ISD::TRAP to expand (which turns it into abort).
561  setOperationAction(ISD::TRAP, MVT::Other, Expand);
562
563  IsLittleEndian = TD->isLittleEndian();
564  ShiftAmountTy = PointerTy = MVT::getIntegerVT(8*TD->getPointerSize());
565  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
566  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
567  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
568  benefitFromCodePlacementOpt = false;
569  UseUnderscoreSetJmp = false;
570  UseUnderscoreLongJmp = false;
571  SelectIsExpensive = false;
572  IntDivIsCheap = false;
573  Pow2DivIsCheap = false;
574  StackPointerRegisterToSaveRestore = 0;
575  ExceptionPointerRegister = 0;
576  ExceptionSelectorRegister = 0;
577  BooleanContents = UndefinedBooleanContent;
578  SchedPreferenceInfo = Sched::Latency;
579  JumpBufSize = 0;
580  JumpBufAlignment = 0;
581  IfCvtBlockSizeLimit = 2;
582  IfCvtDupBlockSizeLimit = 0;
583  PrefLoopAlignment = 0;
584  ShouldFoldAtomicFences = false;
585
586  InitLibcallNames(LibcallRoutineNames);
587  InitCmpLibcallCCs(CmpLibcallCCs);
588  InitLibcallCallingConvs(LibcallCallingConvs);
589}
590
591TargetLowering::~TargetLowering() {
592  delete &TLOF;
593}
594
595/// canOpTrap - Returns true if the operation can trap for the value type.
596/// VT must be a legal type.
597bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const {
598  assert(isTypeLegal(VT));
599  switch (Op) {
600  default:
601    return false;
602  case ISD::FDIV:
603  case ISD::FREM:
604  case ISD::SDIV:
605  case ISD::UDIV:
606  case ISD::SREM:
607  case ISD::UREM:
608    return true;
609  }
610}
611
612
613static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
614                                       unsigned &NumIntermediates,
615                                       EVT &RegisterVT,
616                                       TargetLowering* TLI) {
617  // Figure out the right, legal destination reg to copy into.
618  unsigned NumElts = VT.getVectorNumElements();
619  MVT EltTy = VT.getVectorElementType();
620
621  unsigned NumVectorRegs = 1;
622
623  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
624  // could break down into LHS/RHS like LegalizeDAG does.
625  if (!isPowerOf2_32(NumElts)) {
626    NumVectorRegs = NumElts;
627    NumElts = 1;
628  }
629
630  // Divide the input until we get to a supported size.  This will always
631  // end with a scalar if the target doesn't support vectors.
632  while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
633    NumElts >>= 1;
634    NumVectorRegs <<= 1;
635  }
636
637  NumIntermediates = NumVectorRegs;
638
639  MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
640  if (!TLI->isTypeLegal(NewVT))
641    NewVT = EltTy;
642  IntermediateVT = NewVT;
643
644  EVT DestVT = TLI->getRegisterType(NewVT);
645  RegisterVT = DestVT;
646  if (EVT(DestVT).bitsLT(NewVT)) {
647    // Value is expanded, e.g. i64 -> i16.
648    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
649  } else {
650    // Otherwise, promotion or legal types use the same number of registers as
651    // the vector decimated to the appropriate level.
652    return NumVectorRegs;
653  }
654
655  return 1;
656}
657
658/// computeRegisterProperties - Once all of the register classes are added,
659/// this allows us to compute derived properties we expose.
660void TargetLowering::computeRegisterProperties() {
661  assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
662         "Too many value types for ValueTypeActions to hold!");
663
664  // Everything defaults to needing one register.
665  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
666    NumRegistersForVT[i] = 1;
667    RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
668  }
669  // ...except isVoid, which doesn't need any registers.
670  NumRegistersForVT[MVT::isVoid] = 0;
671
672  // Find the largest integer register class.
673  unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
674  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
675    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
676
677  // Every integer value type larger than this largest register takes twice as
678  // many registers to represent as the previous ValueType.
679  for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
680    EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg;
681    if (!ExpandedVT.isInteger())
682      break;
683    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
684    RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
685    TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
686    ValueTypeActions.setTypeAction(ExpandedVT, Expand);
687  }
688
689  // Inspect all of the ValueType's smaller than the largest integer
690  // register to see which ones need promotion.
691  unsigned LegalIntReg = LargestIntReg;
692  for (unsigned IntReg = LargestIntReg - 1;
693       IntReg >= (unsigned)MVT::i1; --IntReg) {
694    EVT IVT = (MVT::SimpleValueType)IntReg;
695    if (isTypeLegal(IVT)) {
696      LegalIntReg = IntReg;
697    } else {
698      RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
699        (MVT::SimpleValueType)LegalIntReg;
700      ValueTypeActions.setTypeAction(IVT, Promote);
701    }
702  }
703
704  // ppcf128 type is really two f64's.
705  if (!isTypeLegal(MVT::ppcf128)) {
706    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
707    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
708    TransformToType[MVT::ppcf128] = MVT::f64;
709    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
710  }
711
712  // Decide how to handle f64. If the target does not have native f64 support,
713  // expand it to i64 and we will be generating soft float library calls.
714  if (!isTypeLegal(MVT::f64)) {
715    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
716    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
717    TransformToType[MVT::f64] = MVT::i64;
718    ValueTypeActions.setTypeAction(MVT::f64, Expand);
719  }
720
721  // Decide how to handle f32. If the target does not have native support for
722  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
723  if (!isTypeLegal(MVT::f32)) {
724    if (isTypeLegal(MVT::f64)) {
725      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
726      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
727      TransformToType[MVT::f32] = MVT::f64;
728      ValueTypeActions.setTypeAction(MVT::f32, Promote);
729    } else {
730      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
731      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
732      TransformToType[MVT::f32] = MVT::i32;
733      ValueTypeActions.setTypeAction(MVT::f32, Expand);
734    }
735  }
736
737  // Loop over all of the vector value types to see which need transformations.
738  for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
739       i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
740    MVT VT = (MVT::SimpleValueType)i;
741    if (!isTypeLegal(VT)) {
742      MVT IntermediateVT;
743      EVT RegisterVT;
744      unsigned NumIntermediates;
745      NumRegistersForVT[i] =
746        getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates,
747                                  RegisterVT, this);
748      RegisterTypeForVT[i] = RegisterVT;
749
750      // Determine if there is a legal wider type.
751      bool IsLegalWiderType = false;
752      EVT EltVT = VT.getVectorElementType();
753      unsigned NElts = VT.getVectorNumElements();
754      for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
755        EVT SVT = (MVT::SimpleValueType)nVT;
756        if (isTypeSynthesizable(SVT) && SVT.getVectorElementType() == EltVT &&
757            SVT.getVectorNumElements() > NElts && NElts != 1) {
758          TransformToType[i] = SVT;
759          ValueTypeActions.setTypeAction(VT, Promote);
760          IsLegalWiderType = true;
761          break;
762        }
763      }
764      if (!IsLegalWiderType) {
765        EVT NVT = VT.getPow2VectorType();
766        if (NVT == VT) {
767          // Type is already a power of 2.  The default action is to split.
768          TransformToType[i] = MVT::Other;
769          ValueTypeActions.setTypeAction(VT, Expand);
770        } else {
771          TransformToType[i] = NVT;
772          ValueTypeActions.setTypeAction(VT, Promote);
773        }
774      }
775    }
776  }
777}
778
779const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
780  return NULL;
781}
782
783
784MVT::SimpleValueType TargetLowering::getSetCCResultType(EVT VT) const {
785  return PointerTy.SimpleTy;
786}
787
788MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const {
789  return MVT::i32; // return the default value
790}
791
792/// getVectorTypeBreakdown - Vector types are broken down into some number of
793/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
794/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
795/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
796///
797/// This method returns the number of registers needed, and the VT for each
798/// register.  It also returns the VT and quantity of the intermediate values
799/// before they are promoted/expanded.
800///
801unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
802                                                EVT &IntermediateVT,
803                                                unsigned &NumIntermediates,
804                                                EVT &RegisterVT) const {
805  // Figure out the right, legal destination reg to copy into.
806  unsigned NumElts = VT.getVectorNumElements();
807  EVT EltTy = VT.getVectorElementType();
808
809  unsigned NumVectorRegs = 1;
810
811  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
812  // could break down into LHS/RHS like LegalizeDAG does.
813  if (!isPowerOf2_32(NumElts)) {
814    NumVectorRegs = NumElts;
815    NumElts = 1;
816  }
817
818  // Divide the input until we get to a supported size.  This will always
819  // end with a scalar if the target doesn't support vectors.
820  while (NumElts > 1 && !isTypeLegal(
821                                   EVT::getVectorVT(Context, EltTy, NumElts))) {
822    NumElts >>= 1;
823    NumVectorRegs <<= 1;
824  }
825
826  NumIntermediates = NumVectorRegs;
827
828  EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
829  if (!isTypeLegal(NewVT))
830    NewVT = EltTy;
831  IntermediateVT = NewVT;
832
833  EVT DestVT = getRegisterType(Context, NewVT);
834  RegisterVT = DestVT;
835  if (DestVT.bitsLT(NewVT)) {
836    // Value is expanded, e.g. i64 -> i16.
837    return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
838  } else {
839    // Otherwise, promotion or legal types use the same number of registers as
840    // the vector decimated to the appropriate level.
841    return NumVectorRegs;
842  }
843
844  return 1;
845}
846
847/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
848/// function arguments in the caller parameter area.  This is the actual
849/// alignment, not its logarithm.
850unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
851  return TD->getCallFrameTypeAlignment(Ty);
852}
853
854/// getJumpTableEncoding - Return the entry encoding for a jump table in the
855/// current function.  The returned value is a member of the
856/// MachineJumpTableInfo::JTEntryKind enum.
857unsigned TargetLowering::getJumpTableEncoding() const {
858  // In non-pic modes, just use the address of a block.
859  if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
860    return MachineJumpTableInfo::EK_BlockAddress;
861
862  // In PIC mode, if the target supports a GPRel32 directive, use it.
863  if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0)
864    return MachineJumpTableInfo::EK_GPRel32BlockAddress;
865
866  // Otherwise, use a label difference.
867  return MachineJumpTableInfo::EK_LabelDifference32;
868}
869
870SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
871                                                 SelectionDAG &DAG) const {
872  // If our PIC model is GP relative, use the global offset table as the base.
873  if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress)
874    return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
875  return Table;
876}
877
878/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
879/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
880/// MCExpr.
881const MCExpr *
882TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
883                                             unsigned JTI,MCContext &Ctx) const{
884  // The normal PIC reloc base is the label at the start of the jump table.
885  return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx);
886}
887
888bool
889TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
890  // Assume that everything is safe in static mode.
891  if (getTargetMachine().getRelocationModel() == Reloc::Static)
892    return true;
893
894  // In dynamic-no-pic mode, assume that known defined values are safe.
895  if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
896      GA &&
897      !GA->getGlobal()->isDeclaration() &&
898      !GA->getGlobal()->isWeakForLinker())
899    return true;
900
901  // Otherwise assume nothing is safe.
902  return false;
903}
904
905//===----------------------------------------------------------------------===//
906//  Optimization Methods
907//===----------------------------------------------------------------------===//
908
909/// ShrinkDemandedConstant - Check to see if the specified operand of the
910/// specified instruction is a constant integer.  If so, check to see if there
911/// are any bits set in the constant that are not demanded.  If so, shrink the
912/// constant and return true.
913bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
914                                                        const APInt &Demanded) {
915  DebugLoc dl = Op.getDebugLoc();
916
917  // FIXME: ISD::SELECT, ISD::SELECT_CC
918  switch (Op.getOpcode()) {
919  default: break;
920  case ISD::XOR:
921  case ISD::AND:
922  case ISD::OR: {
923    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
924    if (!C) return false;
925
926    if (Op.getOpcode() == ISD::XOR &&
927        (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
928      return false;
929
930    // if we can expand it to have all bits set, do it
931    if (C->getAPIntValue().intersects(~Demanded)) {
932      EVT VT = Op.getValueType();
933      SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
934                                DAG.getConstant(Demanded &
935                                                C->getAPIntValue(),
936                                                VT));
937      return CombineTo(Op, New);
938    }
939
940    break;
941  }
942  }
943
944  return false;
945}
946
947/// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
948/// casts are free.  This uses isZExtFree and ZERO_EXTEND for the widening
949/// cast, but it could be generalized for targets with other types of
950/// implicit widening casts.
951bool
952TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
953                                                    unsigned BitWidth,
954                                                    const APInt &Demanded,
955                                                    DebugLoc dl) {
956  assert(Op.getNumOperands() == 2 &&
957         "ShrinkDemandedOp only supports binary operators!");
958  assert(Op.getNode()->getNumValues() == 1 &&
959         "ShrinkDemandedOp only supports nodes with one result!");
960
961  // Don't do this if the node has another user, which may require the
962  // full value.
963  if (!Op.getNode()->hasOneUse())
964    return false;
965
966  // Search for the smallest integer type with free casts to and from
967  // Op's type. For expedience, just check power-of-2 integer types.
968  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
969  unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
970  if (!isPowerOf2_32(SmallVTBits))
971    SmallVTBits = NextPowerOf2(SmallVTBits);
972  for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
973    EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
974    if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
975        TLI.isZExtFree(SmallVT, Op.getValueType())) {
976      // We found a type with free casts.
977      SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
978                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
979                                          Op.getNode()->getOperand(0)),
980                              DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
981                                          Op.getNode()->getOperand(1)));
982      SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
983      return CombineTo(Op, Z);
984    }
985  }
986  return false;
987}
988
989/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
990/// DemandedMask bits of the result of Op are ever used downstream.  If we can
991/// use this information to simplify Op, create a new simplified DAG node and
992/// return true, returning the original and new nodes in Old and New. Otherwise,
993/// analyze the expression and return a mask of KnownOne and KnownZero bits for
994/// the expression (used to simplify the caller).  The KnownZero/One bits may
995/// only be accurate for those bits in the DemandedMask.
996bool TargetLowering::SimplifyDemandedBits(SDValue Op,
997                                          const APInt &DemandedMask,
998                                          APInt &KnownZero,
999                                          APInt &KnownOne,
1000                                          TargetLoweringOpt &TLO,
1001                                          unsigned Depth) const {
1002  unsigned BitWidth = DemandedMask.getBitWidth();
1003  assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
1004         "Mask size mismatches value type size!");
1005  APInt NewMask = DemandedMask;
1006  DebugLoc dl = Op.getDebugLoc();
1007
1008  // Don't know anything.
1009  KnownZero = KnownOne = APInt(BitWidth, 0);
1010
1011  // Other users may use these bits.
1012  if (!Op.getNode()->hasOneUse()) {
1013    if (Depth != 0) {
1014      // If not at the root, Just compute the KnownZero/KnownOne bits to
1015      // simplify things downstream.
1016      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
1017      return false;
1018    }
1019    // If this is the root being simplified, allow it to have multiple uses,
1020    // just set the NewMask to all bits.
1021    NewMask = APInt::getAllOnesValue(BitWidth);
1022  } else if (DemandedMask == 0) {
1023    // Not demanding any bits from Op.
1024    if (Op.getOpcode() != ISD::UNDEF)
1025      return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
1026    return false;
1027  } else if (Depth == 6) {        // Limit search depth.
1028    return false;
1029  }
1030
1031  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
1032  switch (Op.getOpcode()) {
1033  case ISD::Constant:
1034    // We know all of the bits for a constant!
1035    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
1036    KnownZero = ~KnownOne & NewMask;
1037    return false;   // Don't fall through, will infinitely loop.
1038  case ISD::AND:
1039    // If the RHS is a constant, check to see if the LHS would be zero without
1040    // using the bits from the RHS.  Below, we use knowledge about the RHS to
1041    // simplify the LHS, here we're using information from the LHS to simplify
1042    // the RHS.
1043    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1044      APInt LHSZero, LHSOne;
1045      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
1046                                LHSZero, LHSOne, Depth+1);
1047      // If the LHS already has zeros where RHSC does, this and is dead.
1048      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
1049        return TLO.CombineTo(Op, Op.getOperand(0));
1050      // If any of the set bits in the RHS are known zero on the LHS, shrink
1051      // the constant.
1052      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
1053        return true;
1054    }
1055
1056    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1057                             KnownOne, TLO, Depth+1))
1058      return true;
1059    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1060    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
1061                             KnownZero2, KnownOne2, TLO, Depth+1))
1062      return true;
1063    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1064
1065    // If all of the demanded bits are known one on one side, return the other.
1066    // These bits cannot contribute to the result of the 'and'.
1067    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1068      return TLO.CombineTo(Op, Op.getOperand(0));
1069    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1070      return TLO.CombineTo(Op, Op.getOperand(1));
1071    // If all of the demanded bits in the inputs are known zeros, return zero.
1072    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
1073      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
1074    // If the RHS is a constant, see if we can simplify it.
1075    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
1076      return true;
1077    // If the operation can be done in a smaller type, do so.
1078    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1079      return true;
1080
1081    // Output known-1 bits are only known if set in both the LHS & RHS.
1082    KnownOne &= KnownOne2;
1083    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1084    KnownZero |= KnownZero2;
1085    break;
1086  case ISD::OR:
1087    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1088                             KnownOne, TLO, Depth+1))
1089      return true;
1090    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1091    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
1092                             KnownZero2, KnownOne2, TLO, Depth+1))
1093      return true;
1094    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1095
1096    // If all of the demanded bits are known zero on one side, return the other.
1097    // These bits cannot contribute to the result of the 'or'.
1098    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
1099      return TLO.CombineTo(Op, Op.getOperand(0));
1100    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
1101      return TLO.CombineTo(Op, Op.getOperand(1));
1102    // If all of the potentially set bits on one side are known to be set on
1103    // the other side, just use the 'other' side.
1104    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
1105      return TLO.CombineTo(Op, Op.getOperand(0));
1106    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
1107      return TLO.CombineTo(Op, Op.getOperand(1));
1108    // If the RHS is a constant, see if we can simplify it.
1109    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1110      return true;
1111    // If the operation can be done in a smaller type, do so.
1112    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1113      return true;
1114
1115    // Output known-0 bits are only known if clear in both the LHS & RHS.
1116    KnownZero &= KnownZero2;
1117    // Output known-1 are known to be set if set in either the LHS | RHS.
1118    KnownOne |= KnownOne2;
1119    break;
1120  case ISD::XOR:
1121    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
1122                             KnownOne, TLO, Depth+1))
1123      return true;
1124    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1125    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
1126                             KnownOne2, TLO, Depth+1))
1127      return true;
1128    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1129
1130    // If all of the demanded bits are known zero on one side, return the other.
1131    // These bits cannot contribute to the result of the 'xor'.
1132    if ((KnownZero & NewMask) == NewMask)
1133      return TLO.CombineTo(Op, Op.getOperand(0));
1134    if ((KnownZero2 & NewMask) == NewMask)
1135      return TLO.CombineTo(Op, Op.getOperand(1));
1136    // If the operation can be done in a smaller type, do so.
1137    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1138      return true;
1139
1140    // If all of the unknown bits are known to be zero on one side or the other
1141    // (but not both) turn this into an *inclusive* or.
1142    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1143    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1144      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1145                                               Op.getOperand(0),
1146                                               Op.getOperand(1)));
1147
1148    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1149    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1150    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1151    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1152
1153    // If all of the demanded bits on one side are known, and all of the set
1154    // bits on that side are also known to be set on the other side, turn this
1155    // into an AND, as we know the bits will be cleared.
1156    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1157    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1158      if ((KnownOne & KnownOne2) == KnownOne) {
1159        EVT VT = Op.getValueType();
1160        SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1161        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1162                                                 Op.getOperand(0), ANDC));
1163      }
1164    }
1165
1166    // If the RHS is a constant, see if we can simplify it.
1167    // for XOR, we prefer to force bits to 1 if they will make a -1.
1168    // if we can't force bits, try to shrink constant
1169    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1170      APInt Expanded = C->getAPIntValue() | (~NewMask);
1171      // if we can expand it to have all bits set, do it
1172      if (Expanded.isAllOnesValue()) {
1173        if (Expanded != C->getAPIntValue()) {
1174          EVT VT = Op.getValueType();
1175          SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1176                                          TLO.DAG.getConstant(Expanded, VT));
1177          return TLO.CombineTo(Op, New);
1178        }
1179        // if it already has all the bits set, nothing to change
1180        // but don't shrink either!
1181      } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1182        return true;
1183      }
1184    }
1185
1186    KnownZero = KnownZeroOut;
1187    KnownOne  = KnownOneOut;
1188    break;
1189  case ISD::SELECT:
1190    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1191                             KnownOne, TLO, Depth+1))
1192      return true;
1193    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1194                             KnownOne2, TLO, Depth+1))
1195      return true;
1196    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1197    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1198
1199    // If the operands are constants, see if we can simplify them.
1200    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1201      return true;
1202
1203    // Only known if known in both the LHS and RHS.
1204    KnownOne &= KnownOne2;
1205    KnownZero &= KnownZero2;
1206    break;
1207  case ISD::SELECT_CC:
1208    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1209                             KnownOne, TLO, Depth+1))
1210      return true;
1211    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1212                             KnownOne2, TLO, Depth+1))
1213      return true;
1214    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1215    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1216
1217    // If the operands are constants, see if we can simplify them.
1218    if (TLO.ShrinkDemandedConstant(Op, NewMask))
1219      return true;
1220
1221    // Only known if known in both the LHS and RHS.
1222    KnownOne &= KnownOne2;
1223    KnownZero &= KnownZero2;
1224    break;
1225  case ISD::SHL:
1226    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1227      unsigned ShAmt = SA->getZExtValue();
1228      SDValue InOp = Op.getOperand(0);
1229
1230      // If the shift count is an invalid immediate, don't do anything.
1231      if (ShAmt >= BitWidth)
1232        break;
1233
1234      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1235      // single shift.  We can do this if the bottom bits (which are shifted
1236      // out) are never demanded.
1237      if (InOp.getOpcode() == ISD::SRL &&
1238          isa<ConstantSDNode>(InOp.getOperand(1))) {
1239        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1240          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1241          unsigned Opc = ISD::SHL;
1242          int Diff = ShAmt-C1;
1243          if (Diff < 0) {
1244            Diff = -Diff;
1245            Opc = ISD::SRL;
1246          }
1247
1248          SDValue NewSA =
1249            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1250          EVT VT = Op.getValueType();
1251          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1252                                                   InOp.getOperand(0), NewSA));
1253        }
1254      }
1255
1256      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
1257                               KnownZero, KnownOne, TLO, Depth+1))
1258        return true;
1259      KnownZero <<= SA->getZExtValue();
1260      KnownOne  <<= SA->getZExtValue();
1261      // low bits known zero.
1262      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1263    }
1264    break;
1265  case ISD::SRL:
1266    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1267      EVT VT = Op.getValueType();
1268      unsigned ShAmt = SA->getZExtValue();
1269      unsigned VTSize = VT.getSizeInBits();
1270      SDValue InOp = Op.getOperand(0);
1271
1272      // If the shift count is an invalid immediate, don't do anything.
1273      if (ShAmt >= BitWidth)
1274        break;
1275
1276      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1277      // single shift.  We can do this if the top bits (which are shifted out)
1278      // are never demanded.
1279      if (InOp.getOpcode() == ISD::SHL &&
1280          isa<ConstantSDNode>(InOp.getOperand(1))) {
1281        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1282          unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1283          unsigned Opc = ISD::SRL;
1284          int Diff = ShAmt-C1;
1285          if (Diff < 0) {
1286            Diff = -Diff;
1287            Opc = ISD::SHL;
1288          }
1289
1290          SDValue NewSA =
1291            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1292          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1293                                                   InOp.getOperand(0), NewSA));
1294        }
1295      }
1296
1297      // Compute the new bits that are at the top now.
1298      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1299                               KnownZero, KnownOne, TLO, Depth+1))
1300        return true;
1301      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1302      KnownZero = KnownZero.lshr(ShAmt);
1303      KnownOne  = KnownOne.lshr(ShAmt);
1304
1305      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1306      KnownZero |= HighBits;  // High bits known zero.
1307    }
1308    break;
1309  case ISD::SRA:
1310    // If this is an arithmetic shift right and only the low-bit is set, we can
1311    // always convert this into a logical shr, even if the shift amount is
1312    // variable.  The low bit of the shift cannot be an input sign bit unless
1313    // the shift amount is >= the size of the datatype, which is undefined.
1314    if (DemandedMask == 1)
1315      return TLO.CombineTo(Op,
1316                           TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1317                                           Op.getOperand(0), Op.getOperand(1)));
1318
1319    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1320      EVT VT = Op.getValueType();
1321      unsigned ShAmt = SA->getZExtValue();
1322
1323      // If the shift count is an invalid immediate, don't do anything.
1324      if (ShAmt >= BitWidth)
1325        break;
1326
1327      APInt InDemandedMask = (NewMask << ShAmt);
1328
1329      // If any of the demanded bits are produced by the sign extension, we also
1330      // demand the input sign bit.
1331      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1332      if (HighBits.intersects(NewMask))
1333        InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
1334
1335      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1336                               KnownZero, KnownOne, TLO, Depth+1))
1337        return true;
1338      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1339      KnownZero = KnownZero.lshr(ShAmt);
1340      KnownOne  = KnownOne.lshr(ShAmt);
1341
1342      // Handle the sign bit, adjusted to where it is now in the mask.
1343      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1344
1345      // If the input sign bit is known to be zero, or if none of the top bits
1346      // are demanded, turn this into an unsigned shift right.
1347      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1348        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1349                                                 Op.getOperand(0),
1350                                                 Op.getOperand(1)));
1351      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1352        KnownOne |= HighBits;
1353      }
1354    }
1355    break;
1356  case ISD::SIGN_EXTEND_INREG: {
1357    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1358
1359    // Sign extension.  Compute the demanded bits in the result that are not
1360    // present in the input.
1361    APInt NewBits =
1362      APInt::getHighBitsSet(BitWidth,
1363                            BitWidth - EVT.getScalarType().getSizeInBits()) &
1364      NewMask;
1365
1366    // If none of the extended bits are demanded, eliminate the sextinreg.
1367    if (NewBits == 0)
1368      return TLO.CombineTo(Op, Op.getOperand(0));
1369
1370    APInt InSignBit = APInt::getSignBit(EVT.getScalarType().getSizeInBits());
1371    InSignBit.zext(BitWidth);
1372    APInt InputDemandedBits =
1373      APInt::getLowBitsSet(BitWidth,
1374                           EVT.getScalarType().getSizeInBits()) &
1375      NewMask;
1376
1377    // Since the sign extended bits are demanded, we know that the sign
1378    // bit is demanded.
1379    InputDemandedBits |= InSignBit;
1380
1381    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1382                             KnownZero, KnownOne, TLO, Depth+1))
1383      return true;
1384    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1385
1386    // If the sign bit of the input is known set or clear, then we know the
1387    // top bits of the result.
1388
1389    // If the input sign bit is known zero, convert this into a zero extension.
1390    if (KnownZero.intersects(InSignBit))
1391      return TLO.CombineTo(Op,
1392                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1393
1394    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1395      KnownOne |= NewBits;
1396      KnownZero &= ~NewBits;
1397    } else {                       // Input sign bit unknown
1398      KnownZero &= ~NewBits;
1399      KnownOne &= ~NewBits;
1400    }
1401    break;
1402  }
1403  case ISD::ZERO_EXTEND: {
1404    unsigned OperandBitWidth =
1405      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1406    APInt InMask = NewMask;
1407    InMask.trunc(OperandBitWidth);
1408
1409    // If none of the top bits are demanded, convert this into an any_extend.
1410    APInt NewBits =
1411      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1412    if (!NewBits.intersects(NewMask))
1413      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1414                                               Op.getValueType(),
1415                                               Op.getOperand(0)));
1416
1417    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1418                             KnownZero, KnownOne, TLO, Depth+1))
1419      return true;
1420    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1421    KnownZero.zext(BitWidth);
1422    KnownOne.zext(BitWidth);
1423    KnownZero |= NewBits;
1424    break;
1425  }
1426  case ISD::SIGN_EXTEND: {
1427    EVT InVT = Op.getOperand(0).getValueType();
1428    unsigned InBits = InVT.getScalarType().getSizeInBits();
1429    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1430    APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1431    APInt NewBits   = ~InMask & NewMask;
1432
1433    // If none of the top bits are demanded, convert this into an any_extend.
1434    if (NewBits == 0)
1435      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1436                                              Op.getValueType(),
1437                                              Op.getOperand(0)));
1438
1439    // Since some of the sign extended bits are demanded, we know that the sign
1440    // bit is demanded.
1441    APInt InDemandedBits = InMask & NewMask;
1442    InDemandedBits |= InSignBit;
1443    InDemandedBits.trunc(InBits);
1444
1445    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1446                             KnownOne, TLO, Depth+1))
1447      return true;
1448    KnownZero.zext(BitWidth);
1449    KnownOne.zext(BitWidth);
1450
1451    // If the sign bit is known zero, convert this to a zero extend.
1452    if (KnownZero.intersects(InSignBit))
1453      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1454                                               Op.getValueType(),
1455                                               Op.getOperand(0)));
1456
1457    // If the sign bit is known one, the top bits match.
1458    if (KnownOne.intersects(InSignBit)) {
1459      KnownOne  |= NewBits;
1460      KnownZero &= ~NewBits;
1461    } else {   // Otherwise, top bits aren't known.
1462      KnownOne  &= ~NewBits;
1463      KnownZero &= ~NewBits;
1464    }
1465    break;
1466  }
1467  case ISD::ANY_EXTEND: {
1468    unsigned OperandBitWidth =
1469      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1470    APInt InMask = NewMask;
1471    InMask.trunc(OperandBitWidth);
1472    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1473                             KnownZero, KnownOne, TLO, Depth+1))
1474      return true;
1475    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1476    KnownZero.zext(BitWidth);
1477    KnownOne.zext(BitWidth);
1478    break;
1479  }
1480  case ISD::TRUNCATE: {
1481    // Simplify the input, using demanded bit information, and compute the known
1482    // zero/one bits live out.
1483    unsigned OperandBitWidth =
1484      Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1485    APInt TruncMask = NewMask;
1486    TruncMask.zext(OperandBitWidth);
1487    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1488                             KnownZero, KnownOne, TLO, Depth+1))
1489      return true;
1490    KnownZero.trunc(BitWidth);
1491    KnownOne.trunc(BitWidth);
1492
1493    // If the input is only used by this truncate, see if we can shrink it based
1494    // on the known demanded bits.
1495    if (Op.getOperand(0).getNode()->hasOneUse()) {
1496      SDValue In = Op.getOperand(0);
1497      switch (In.getOpcode()) {
1498      default: break;
1499      case ISD::SRL:
1500        // Shrink SRL by a constant if none of the high bits shifted in are
1501        // demanded.
1502        if (TLO.LegalTypes() &&
1503            !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1504          // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1505          // undesirable.
1506          break;
1507        ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1508        if (!ShAmt)
1509          break;
1510        APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1511                                               OperandBitWidth - BitWidth);
1512        HighBits = HighBits.lshr(ShAmt->getZExtValue());
1513        HighBits.trunc(BitWidth);
1514
1515        if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1516          // None of the shifted in bits are needed.  Add a truncate of the
1517          // shift input, then shift it.
1518          SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1519                                             Op.getValueType(),
1520                                             In.getOperand(0));
1521          return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1522                                                   Op.getValueType(),
1523                                                   NewTrunc,
1524                                                   In.getOperand(1)));
1525        }
1526        break;
1527      }
1528    }
1529
1530    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1531    break;
1532  }
1533  case ISD::AssertZext: {
1534    // Demand all the bits of the input that are demanded in the output.
1535    // The low bits are obvious; the high bits are demanded because we're
1536    // asserting that they're zero here.
1537    if (SimplifyDemandedBits(Op.getOperand(0), NewMask,
1538                             KnownZero, KnownOne, TLO, Depth+1))
1539      return true;
1540    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1541
1542    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1543    APInt InMask = APInt::getLowBitsSet(BitWidth,
1544                                        VT.getSizeInBits());
1545    KnownZero |= ~InMask & NewMask;
1546    break;
1547  }
1548  case ISD::BIT_CONVERT:
1549#if 0
1550    // If this is an FP->Int bitcast and if the sign bit is the only thing that
1551    // is demanded, turn this into a FGETSIGN.
1552    if (NewMask == EVT::getIntegerVTSignBit(Op.getValueType()) &&
1553        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1554        !MVT::isVector(Op.getOperand(0).getValueType())) {
1555      // Only do this xform if FGETSIGN is valid or if before legalize.
1556      if (!TLO.AfterLegalize ||
1557          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1558        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1559        // place.  We expect the SHL to be eliminated by other optimizations.
1560        SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1561                                         Op.getOperand(0));
1562        unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1563        SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1564        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1565                                                 Sign, ShAmt));
1566      }
1567    }
1568#endif
1569    break;
1570  case ISD::ADD:
1571  case ISD::MUL:
1572  case ISD::SUB: {
1573    // Add, Sub, and Mul don't demand any bits in positions beyond that
1574    // of the highest bit demanded of them.
1575    APInt LoMask = APInt::getLowBitsSet(BitWidth,
1576                                        BitWidth - NewMask.countLeadingZeros());
1577    if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1578                             KnownOne2, TLO, Depth+1))
1579      return true;
1580    if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1581                             KnownOne2, TLO, Depth+1))
1582      return true;
1583    // See if the operation should be performed at a smaller bit width.
1584    if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1585      return true;
1586  }
1587  // FALL THROUGH
1588  default:
1589    // Just use ComputeMaskedBits to compute output bits.
1590    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1591    break;
1592  }
1593
1594  // If we know the value of all of the demanded bits, return this as a
1595  // constant.
1596  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1597    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1598
1599  return false;
1600}
1601
1602/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1603/// in Mask are known to be either zero or one and return them in the
1604/// KnownZero/KnownOne bitsets.
1605void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1606                                                    const APInt &Mask,
1607                                                    APInt &KnownZero,
1608                                                    APInt &KnownOne,
1609                                                    const SelectionDAG &DAG,
1610                                                    unsigned Depth) const {
1611  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1612          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1613          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1614          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1615         "Should use MaskedValueIsZero if you don't know whether Op"
1616         " is a target node!");
1617  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1618}
1619
1620/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1621/// targets that want to expose additional information about sign bits to the
1622/// DAG Combiner.
1623unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1624                                                         unsigned Depth) const {
1625  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1626          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1627          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1628          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1629         "Should use ComputeNumSignBits if you don't know whether Op"
1630         " is a target node!");
1631  return 1;
1632}
1633
1634/// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1635/// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1636/// determine which bit is set.
1637///
1638static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1639  // A left-shift of a constant one will have exactly one bit set, because
1640  // shifting the bit off the end is undefined.
1641  if (Val.getOpcode() == ISD::SHL)
1642    if (ConstantSDNode *C =
1643         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1644      if (C->getAPIntValue() == 1)
1645        return true;
1646
1647  // Similarly, a right-shift of a constant sign-bit will have exactly
1648  // one bit set.
1649  if (Val.getOpcode() == ISD::SRL)
1650    if (ConstantSDNode *C =
1651         dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1652      if (C->getAPIntValue().isSignBit())
1653        return true;
1654
1655  // More could be done here, though the above checks are enough
1656  // to handle some common cases.
1657
1658  // Fall back to ComputeMaskedBits to catch other known cases.
1659  EVT OpVT = Val.getValueType();
1660  unsigned BitWidth = OpVT.getScalarType().getSizeInBits();
1661  APInt Mask = APInt::getAllOnesValue(BitWidth);
1662  APInt KnownZero, KnownOne;
1663  DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1664  return (KnownZero.countPopulation() == BitWidth - 1) &&
1665         (KnownOne.countPopulation() == 1);
1666}
1667
1668/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1669/// and cc. If it is unable to simplify it, return a null SDValue.
1670SDValue
1671TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1672                              ISD::CondCode Cond, bool foldBooleans,
1673                              DAGCombinerInfo &DCI, DebugLoc dl) const {
1674  SelectionDAG &DAG = DCI.DAG;
1675  LLVMContext &Context = *DAG.getContext();
1676
1677  // These setcc operations always fold.
1678  switch (Cond) {
1679  default: break;
1680  case ISD::SETFALSE:
1681  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1682  case ISD::SETTRUE:
1683  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1684  }
1685
1686  if (isa<ConstantSDNode>(N0.getNode())) {
1687    // Ensure that the constant occurs on the RHS, and fold constant
1688    // comparisons.
1689    return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1690  }
1691
1692  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1693    const APInt &C1 = N1C->getAPIntValue();
1694
1695    // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1696    // equality comparison, then we're just comparing whether X itself is
1697    // zero.
1698    if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1699        N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1700        N0.getOperand(1).getOpcode() == ISD::Constant) {
1701      const APInt &ShAmt
1702        = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1703      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1704          ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1705        if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1706          // (srl (ctlz x), 5) == 0  -> X != 0
1707          // (srl (ctlz x), 5) != 1  -> X != 0
1708          Cond = ISD::SETNE;
1709        } else {
1710          // (srl (ctlz x), 5) != 0  -> X == 0
1711          // (srl (ctlz x), 5) == 1  -> X == 0
1712          Cond = ISD::SETEQ;
1713        }
1714        SDValue Zero = DAG.getConstant(0, N0.getValueType());
1715        return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1716                            Zero, Cond);
1717      }
1718    }
1719
1720    // If the LHS is '(and load, const)', the RHS is 0,
1721    // the test is for equality or unsigned, and all 1 bits of the const are
1722    // in the same partial word, see if we can shorten the load.
1723    if (DCI.isBeforeLegalize() &&
1724        N0.getOpcode() == ISD::AND && C1 == 0 &&
1725        N0.getNode()->hasOneUse() &&
1726        isa<LoadSDNode>(N0.getOperand(0)) &&
1727        N0.getOperand(0).getNode()->hasOneUse() &&
1728        isa<ConstantSDNode>(N0.getOperand(1))) {
1729      LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1730      APInt bestMask;
1731      unsigned bestWidth = 0, bestOffset = 0;
1732      if (!Lod->isVolatile() && Lod->isUnindexed()) {
1733        unsigned origWidth = N0.getValueType().getSizeInBits();
1734        unsigned maskWidth = origWidth;
1735        // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1736        // 8 bits, but have to be careful...
1737        if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1738          origWidth = Lod->getMemoryVT().getSizeInBits();
1739        const APInt &Mask =
1740          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1741        for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1742          APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1743          for (unsigned offset=0; offset<origWidth/width; offset++) {
1744            if ((newMask & Mask) == Mask) {
1745              if (!TD->isLittleEndian())
1746                bestOffset = (origWidth/width - offset - 1) * (width/8);
1747              else
1748                bestOffset = (uint64_t)offset * (width/8);
1749              bestMask = Mask.lshr(offset * (width/8) * 8);
1750              bestWidth = width;
1751              break;
1752            }
1753            newMask = newMask << width;
1754          }
1755        }
1756      }
1757      if (bestWidth) {
1758        EVT newVT = EVT::getIntegerVT(Context, bestWidth);
1759        if (newVT.isRound()) {
1760          EVT PtrType = Lod->getOperand(1).getValueType();
1761          SDValue Ptr = Lod->getBasePtr();
1762          if (bestOffset != 0)
1763            Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1764                              DAG.getConstant(bestOffset, PtrType));
1765          unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1766          SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1767                                        Lod->getSrcValue(),
1768                                        Lod->getSrcValueOffset() + bestOffset,
1769                                        false, false, NewAlign);
1770          return DAG.getSetCC(dl, VT,
1771                              DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1772                                      DAG.getConstant(bestMask.trunc(bestWidth),
1773                                                      newVT)),
1774                              DAG.getConstant(0LL, newVT), Cond);
1775        }
1776      }
1777    }
1778
1779    // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1780    if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1781      unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1782
1783      // If the comparison constant has bits in the upper part, the
1784      // zero-extended value could never match.
1785      if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1786                                              C1.getBitWidth() - InSize))) {
1787        switch (Cond) {
1788        case ISD::SETUGT:
1789        case ISD::SETUGE:
1790        case ISD::SETEQ: return DAG.getConstant(0, VT);
1791        case ISD::SETULT:
1792        case ISD::SETULE:
1793        case ISD::SETNE: return DAG.getConstant(1, VT);
1794        case ISD::SETGT:
1795        case ISD::SETGE:
1796          // True if the sign bit of C1 is set.
1797          return DAG.getConstant(C1.isNegative(), VT);
1798        case ISD::SETLT:
1799        case ISD::SETLE:
1800          // True if the sign bit of C1 isn't set.
1801          return DAG.getConstant(C1.isNonNegative(), VT);
1802        default:
1803          break;
1804        }
1805      }
1806
1807      // Otherwise, we can perform the comparison with the low bits.
1808      switch (Cond) {
1809      case ISD::SETEQ:
1810      case ISD::SETNE:
1811      case ISD::SETUGT:
1812      case ISD::SETUGE:
1813      case ISD::SETULT:
1814      case ISD::SETULE: {
1815        EVT newVT = N0.getOperand(0).getValueType();
1816        if (DCI.isBeforeLegalizeOps() ||
1817            (isOperationLegal(ISD::SETCC, newVT) &&
1818              getCondCodeAction(Cond, newVT)==Legal))
1819          return DAG.getSetCC(dl, VT, N0.getOperand(0),
1820                              DAG.getConstant(APInt(C1).trunc(InSize), newVT),
1821                              Cond);
1822        break;
1823      }
1824      default:
1825        break;   // todo, be more careful with signed comparisons
1826      }
1827    } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1828               (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1829      EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1830      unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1831      EVT ExtDstTy = N0.getValueType();
1832      unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1833
1834      // If the extended part has any inconsistent bits, it cannot ever
1835      // compare equal.  In other words, they have to be all ones or all
1836      // zeros.
1837      APInt ExtBits =
1838        APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1839      if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1840        return DAG.getConstant(Cond == ISD::SETNE, VT);
1841
1842      SDValue ZextOp;
1843      EVT Op0Ty = N0.getOperand(0).getValueType();
1844      if (Op0Ty == ExtSrcTy) {
1845        ZextOp = N0.getOperand(0);
1846      } else {
1847        APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1848        ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1849                              DAG.getConstant(Imm, Op0Ty));
1850      }
1851      if (!DCI.isCalledByLegalizer())
1852        DCI.AddToWorklist(ZextOp.getNode());
1853      // Otherwise, make this a use of a zext.
1854      return DAG.getSetCC(dl, VT, ZextOp,
1855                          DAG.getConstant(C1 & APInt::getLowBitsSet(
1856                                                              ExtDstTyBits,
1857                                                              ExtSrcTyBits),
1858                                          ExtDstTy),
1859                          Cond);
1860    } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1861                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1862      // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1863      if (N0.getOpcode() == ISD::SETCC &&
1864          isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1865        bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
1866        if (TrueWhenTrue)
1867          return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1868        // Invert the condition.
1869        ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1870        CC = ISD::getSetCCInverse(CC,
1871                                  N0.getOperand(0).getValueType().isInteger());
1872        return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1873      }
1874
1875      if ((N0.getOpcode() == ISD::XOR ||
1876           (N0.getOpcode() == ISD::AND &&
1877            N0.getOperand(0).getOpcode() == ISD::XOR &&
1878            N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1879          isa<ConstantSDNode>(N0.getOperand(1)) &&
1880          cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1881        // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1882        // can only do this if the top bits are known zero.
1883        unsigned BitWidth = N0.getValueSizeInBits();
1884        if (DAG.MaskedValueIsZero(N0,
1885                                  APInt::getHighBitsSet(BitWidth,
1886                                                        BitWidth-1))) {
1887          // Okay, get the un-inverted input value.
1888          SDValue Val;
1889          if (N0.getOpcode() == ISD::XOR)
1890            Val = N0.getOperand(0);
1891          else {
1892            assert(N0.getOpcode() == ISD::AND &&
1893                    N0.getOperand(0).getOpcode() == ISD::XOR);
1894            // ((X^1)&1)^1 -> X & 1
1895            Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1896                              N0.getOperand(0).getOperand(0),
1897                              N0.getOperand(1));
1898          }
1899
1900          return DAG.getSetCC(dl, VT, Val, N1,
1901                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1902        }
1903      } else if (N1C->getAPIntValue() == 1 &&
1904                 (VT == MVT::i1 ||
1905                  getBooleanContents() == ZeroOrOneBooleanContent)) {
1906        SDValue Op0 = N0;
1907        if (Op0.getOpcode() == ISD::TRUNCATE)
1908          Op0 = Op0.getOperand(0);
1909
1910        if ((Op0.getOpcode() == ISD::XOR) &&
1911            Op0.getOperand(0).getOpcode() == ISD::SETCC &&
1912            Op0.getOperand(1).getOpcode() == ISD::SETCC) {
1913          // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
1914          Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
1915          return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
1916                              Cond);
1917        } else if (Op0.getOpcode() == ISD::AND &&
1918                isa<ConstantSDNode>(Op0.getOperand(1)) &&
1919                cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
1920          // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
1921          if (Op0.getValueType().bitsGT(VT))
1922            Op0 = DAG.getNode(ISD::AND, dl, VT,
1923                          DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
1924                          DAG.getConstant(1, VT));
1925          else if (Op0.getValueType().bitsLT(VT))
1926            Op0 = DAG.getNode(ISD::AND, dl, VT,
1927                        DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
1928                        DAG.getConstant(1, VT));
1929
1930          return DAG.getSetCC(dl, VT, Op0,
1931                              DAG.getConstant(0, Op0.getValueType()),
1932                              Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1933        }
1934      }
1935    }
1936
1937    APInt MinVal, MaxVal;
1938    unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1939    if (ISD::isSignedIntSetCC(Cond)) {
1940      MinVal = APInt::getSignedMinValue(OperandBitSize);
1941      MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1942    } else {
1943      MinVal = APInt::getMinValue(OperandBitSize);
1944      MaxVal = APInt::getMaxValue(OperandBitSize);
1945    }
1946
1947    // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1948    if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1949      if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1950      // X >= C0 --> X > (C0-1)
1951      return DAG.getSetCC(dl, VT, N0,
1952                          DAG.getConstant(C1-1, N1.getValueType()),
1953                          (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1954    }
1955
1956    if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1957      if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1958      // X <= C0 --> X < (C0+1)
1959      return DAG.getSetCC(dl, VT, N0,
1960                          DAG.getConstant(C1+1, N1.getValueType()),
1961                          (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1962    }
1963
1964    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1965      return DAG.getConstant(0, VT);      // X < MIN --> false
1966    if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1967      return DAG.getConstant(1, VT);      // X >= MIN --> true
1968    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1969      return DAG.getConstant(0, VT);      // X > MAX --> false
1970    if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1971      return DAG.getConstant(1, VT);      // X <= MAX --> true
1972
1973    // Canonicalize setgt X, Min --> setne X, Min
1974    if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1975      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1976    // Canonicalize setlt X, Max --> setne X, Max
1977    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1978      return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1979
1980    // If we have setult X, 1, turn it into seteq X, 0
1981    if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1982      return DAG.getSetCC(dl, VT, N0,
1983                          DAG.getConstant(MinVal, N0.getValueType()),
1984                          ISD::SETEQ);
1985    // If we have setugt X, Max-1, turn it into seteq X, Max
1986    else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1987      return DAG.getSetCC(dl, VT, N0,
1988                          DAG.getConstant(MaxVal, N0.getValueType()),
1989                          ISD::SETEQ);
1990
1991    // If we have "setcc X, C0", check to see if we can shrink the immediate
1992    // by changing cc.
1993
1994    // SETUGT X, SINTMAX  -> SETLT X, 0
1995    if (Cond == ISD::SETUGT &&
1996        C1 == APInt::getSignedMaxValue(OperandBitSize))
1997      return DAG.getSetCC(dl, VT, N0,
1998                          DAG.getConstant(0, N1.getValueType()),
1999                          ISD::SETLT);
2000
2001    // SETULT X, SINTMIN  -> SETGT X, -1
2002    if (Cond == ISD::SETULT &&
2003        C1 == APInt::getSignedMinValue(OperandBitSize)) {
2004      SDValue ConstMinusOne =
2005          DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
2006                          N1.getValueType());
2007      return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2008    }
2009
2010    // Fold bit comparisons when we can.
2011    if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2012        (VT == N0.getValueType() ||
2013         (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2014        N0.getOpcode() == ISD::AND)
2015      if (ConstantSDNode *AndRHS =
2016                  dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2017        EVT ShiftTy = DCI.isBeforeLegalize() ?
2018          getPointerTy() : getShiftAmountTy();
2019        if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2020          // Perform the xform if the AND RHS is a single bit.
2021          if (AndRHS->getAPIntValue().isPowerOf2()) {
2022            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2023                              DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2024                   DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy)));
2025          }
2026        } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2027          // (X & 8) == 8  -->  (X & 8) >> 3
2028          // Perform the xform if C1 is a single bit.
2029          if (C1.isPowerOf2()) {
2030            return DAG.getNode(ISD::TRUNCATE, dl, VT,
2031                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2032                                      DAG.getConstant(C1.logBase2(), ShiftTy)));
2033          }
2034        }
2035      }
2036  }
2037
2038  if (isa<ConstantFPSDNode>(N0.getNode())) {
2039    // Constant fold or commute setcc.
2040    SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2041    if (O.getNode()) return O;
2042  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2043    // If the RHS of an FP comparison is a constant, simplify it away in
2044    // some cases.
2045    if (CFP->getValueAPF().isNaN()) {
2046      // If an operand is known to be a nan, we can fold it.
2047      switch (ISD::getUnorderedFlavor(Cond)) {
2048      default: llvm_unreachable("Unknown flavor!");
2049      case 0:  // Known false.
2050        return DAG.getConstant(0, VT);
2051      case 1:  // Known true.
2052        return DAG.getConstant(1, VT);
2053      case 2:  // Undefined.
2054        return DAG.getUNDEF(VT);
2055      }
2056    }
2057
2058    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2059    // constant if knowing that the operand is non-nan is enough.  We prefer to
2060    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2061    // materialize 0.0.
2062    if (Cond == ISD::SETO || Cond == ISD::SETUO)
2063      return DAG.getSetCC(dl, VT, N0, N0, Cond);
2064
2065    // If the condition is not legal, see if we can find an equivalent one
2066    // which is legal.
2067    if (!isCondCodeLegal(Cond, N0.getValueType())) {
2068      // If the comparison was an awkward floating-point == or != and one of
2069      // the comparison operands is infinity or negative infinity, convert the
2070      // condition to a less-awkward <= or >=.
2071      if (CFP->getValueAPF().isInfinity()) {
2072        if (CFP->getValueAPF().isNegative()) {
2073          if (Cond == ISD::SETOEQ &&
2074              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2075            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2076          if (Cond == ISD::SETUEQ &&
2077              isCondCodeLegal(ISD::SETOLE, N0.getValueType()))
2078            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2079          if (Cond == ISD::SETUNE &&
2080              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2081            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2082          if (Cond == ISD::SETONE &&
2083              isCondCodeLegal(ISD::SETUGT, N0.getValueType()))
2084            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2085        } else {
2086          if (Cond == ISD::SETOEQ &&
2087              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2088            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2089          if (Cond == ISD::SETUEQ &&
2090              isCondCodeLegal(ISD::SETOGE, N0.getValueType()))
2091            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2092          if (Cond == ISD::SETUNE &&
2093              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2094            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2095          if (Cond == ISD::SETONE &&
2096              isCondCodeLegal(ISD::SETULT, N0.getValueType()))
2097            return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2098        }
2099      }
2100    }
2101  }
2102
2103  if (N0 == N1) {
2104    // We can always fold X == X for integer setcc's.
2105    if (N0.getValueType().isInteger())
2106      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2107    unsigned UOF = ISD::getUnorderedFlavor(Cond);
2108    if (UOF == 2)   // FP operators that are undefined on NaNs.
2109      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
2110    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2111      return DAG.getConstant(UOF, VT);
2112    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2113    // if it is not already.
2114    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2115    if (NewCond != Cond)
2116      return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2117  }
2118
2119  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2120      N0.getValueType().isInteger()) {
2121    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2122        N0.getOpcode() == ISD::XOR) {
2123      // Simplify (X+Y) == (X+Z) -->  Y == Z
2124      if (N0.getOpcode() == N1.getOpcode()) {
2125        if (N0.getOperand(0) == N1.getOperand(0))
2126          return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2127        if (N0.getOperand(1) == N1.getOperand(1))
2128          return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2129        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2130          // If X op Y == Y op X, try other combinations.
2131          if (N0.getOperand(0) == N1.getOperand(1))
2132            return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2133                                Cond);
2134          if (N0.getOperand(1) == N1.getOperand(0))
2135            return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2136                                Cond);
2137        }
2138      }
2139
2140      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2141        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2142          // Turn (X+C1) == C2 --> X == C2-C1
2143          if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2144            return DAG.getSetCC(dl, VT, N0.getOperand(0),
2145                                DAG.getConstant(RHSC->getAPIntValue()-
2146                                                LHSR->getAPIntValue(),
2147                                N0.getValueType()), Cond);
2148          }
2149
2150          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2151          if (N0.getOpcode() == ISD::XOR)
2152            // If we know that all of the inverted bits are zero, don't bother
2153            // performing the inversion.
2154            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2155              return
2156                DAG.getSetCC(dl, VT, N0.getOperand(0),
2157                             DAG.getConstant(LHSR->getAPIntValue() ^
2158                                               RHSC->getAPIntValue(),
2159                                             N0.getValueType()),
2160                             Cond);
2161        }
2162
2163        // Turn (C1-X) == C2 --> X == C1-C2
2164        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2165          if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2166            return
2167              DAG.getSetCC(dl, VT, N0.getOperand(1),
2168                           DAG.getConstant(SUBC->getAPIntValue() -
2169                                             RHSC->getAPIntValue(),
2170                                           N0.getValueType()),
2171                           Cond);
2172          }
2173        }
2174      }
2175
2176      // Simplify (X+Z) == X -->  Z == 0
2177      if (N0.getOperand(0) == N1)
2178        return DAG.getSetCC(dl, VT, N0.getOperand(1),
2179                        DAG.getConstant(0, N0.getValueType()), Cond);
2180      if (N0.getOperand(1) == N1) {
2181        if (DAG.isCommutativeBinOp(N0.getOpcode()))
2182          return DAG.getSetCC(dl, VT, N0.getOperand(0),
2183                          DAG.getConstant(0, N0.getValueType()), Cond);
2184        else if (N0.getNode()->hasOneUse()) {
2185          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2186          // (Z-X) == X  --> Z == X<<1
2187          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
2188                                     N1,
2189                                     DAG.getConstant(1, getShiftAmountTy()));
2190          if (!DCI.isCalledByLegalizer())
2191            DCI.AddToWorklist(SH.getNode());
2192          return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2193        }
2194      }
2195    }
2196
2197    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2198        N1.getOpcode() == ISD::XOR) {
2199      // Simplify  X == (X+Z) -->  Z == 0
2200      if (N1.getOperand(0) == N0) {
2201        return DAG.getSetCC(dl, VT, N1.getOperand(1),
2202                        DAG.getConstant(0, N1.getValueType()), Cond);
2203      } else if (N1.getOperand(1) == N0) {
2204        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
2205          return DAG.getSetCC(dl, VT, N1.getOperand(0),
2206                          DAG.getConstant(0, N1.getValueType()), Cond);
2207        } else if (N1.getNode()->hasOneUse()) {
2208          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2209          // X == (Z-X)  --> X<<1 == Z
2210          SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
2211                                     DAG.getConstant(1, getShiftAmountTy()));
2212          if (!DCI.isCalledByLegalizer())
2213            DCI.AddToWorklist(SH.getNode());
2214          return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2215        }
2216      }
2217    }
2218
2219    // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
2220    // Note that where y is variable and is known to have at most
2221    // one bit set (for example, if it is z&1) we cannot do this;
2222    // the expressions are not equivalent when y==0.
2223    if (N0.getOpcode() == ISD::AND)
2224      if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
2225        if (ValueHasExactlyOneBitSet(N1, DAG)) {
2226          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2227          SDValue Zero = DAG.getConstant(0, N1.getValueType());
2228          return DAG.getSetCC(dl, VT, N0, Zero, Cond);
2229        }
2230      }
2231    if (N1.getOpcode() == ISD::AND)
2232      if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2233        if (ValueHasExactlyOneBitSet(N0, DAG)) {
2234          Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2235          SDValue Zero = DAG.getConstant(0, N0.getValueType());
2236          return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2237        }
2238      }
2239  }
2240
2241  // Fold away ALL boolean setcc's.
2242  SDValue Temp;
2243  if (N0.getValueType() == MVT::i1 && foldBooleans) {
2244    switch (Cond) {
2245    default: llvm_unreachable("Unknown integer setcc!");
2246    case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2247      Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2248      N0 = DAG.getNOT(dl, Temp, MVT::i1);
2249      if (!DCI.isCalledByLegalizer())
2250        DCI.AddToWorklist(Temp.getNode());
2251      break;
2252    case ISD::SETNE:  // X != Y   -->  (X^Y)
2253      N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2254      break;
2255    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2256    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2257      Temp = DAG.getNOT(dl, N0, MVT::i1);
2258      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2259      if (!DCI.isCalledByLegalizer())
2260        DCI.AddToWorklist(Temp.getNode());
2261      break;
2262    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2263    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2264      Temp = DAG.getNOT(dl, N1, MVT::i1);
2265      N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2266      if (!DCI.isCalledByLegalizer())
2267        DCI.AddToWorklist(Temp.getNode());
2268      break;
2269    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2270    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2271      Temp = DAG.getNOT(dl, N0, MVT::i1);
2272      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2273      if (!DCI.isCalledByLegalizer())
2274        DCI.AddToWorklist(Temp.getNode());
2275      break;
2276    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2277    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2278      Temp = DAG.getNOT(dl, N1, MVT::i1);
2279      N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2280      break;
2281    }
2282    if (VT != MVT::i1) {
2283      if (!DCI.isCalledByLegalizer())
2284        DCI.AddToWorklist(N0.getNode());
2285      // FIXME: If running after legalize, we probably can't do this.
2286      N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2287    }
2288    return N0;
2289  }
2290
2291  // Could not fold it.
2292  return SDValue();
2293}
2294
2295/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2296/// node is a GlobalAddress + offset.
2297bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue* &GA,
2298                                    int64_t &Offset) const {
2299  if (isa<GlobalAddressSDNode>(N)) {
2300    GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2301    GA = GASD->getGlobal();
2302    Offset += GASD->getOffset();
2303    return true;
2304  }
2305
2306  if (N->getOpcode() == ISD::ADD) {
2307    SDValue N1 = N->getOperand(0);
2308    SDValue N2 = N->getOperand(1);
2309    if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2310      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2311      if (V) {
2312        Offset += V->getSExtValue();
2313        return true;
2314      }
2315    } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2316      ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2317      if (V) {
2318        Offset += V->getSExtValue();
2319        return true;
2320      }
2321    }
2322  }
2323  return false;
2324}
2325
2326
2327SDValue TargetLowering::
2328PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2329  // Default implementation: no optimization.
2330  return SDValue();
2331}
2332
2333//===----------------------------------------------------------------------===//
2334//  Inline Assembler Implementation Methods
2335//===----------------------------------------------------------------------===//
2336
2337
2338TargetLowering::ConstraintType
2339TargetLowering::getConstraintType(const std::string &Constraint) const {
2340  // FIXME: lots more standard ones to handle.
2341  if (Constraint.size() == 1) {
2342    switch (Constraint[0]) {
2343    default: break;
2344    case 'r': return C_RegisterClass;
2345    case 'm':    // memory
2346    case 'o':    // offsetable
2347    case 'V':    // not offsetable
2348      return C_Memory;
2349    case 'i':    // Simple Integer or Relocatable Constant
2350    case 'n':    // Simple Integer
2351    case 's':    // Relocatable Constant
2352    case 'X':    // Allow ANY value.
2353    case 'I':    // Target registers.
2354    case 'J':
2355    case 'K':
2356    case 'L':
2357    case 'M':
2358    case 'N':
2359    case 'O':
2360    case 'P':
2361      return C_Other;
2362    }
2363  }
2364
2365  if (Constraint.size() > 1 && Constraint[0] == '{' &&
2366      Constraint[Constraint.size()-1] == '}')
2367    return C_Register;
2368  return C_Unknown;
2369}
2370
2371/// LowerXConstraint - try to replace an X constraint, which matches anything,
2372/// with another that has more specific requirements based on the type of the
2373/// corresponding operand.
2374const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2375  if (ConstraintVT.isInteger())
2376    return "r";
2377  if (ConstraintVT.isFloatingPoint())
2378    return "f";      // works for many targets
2379  return 0;
2380}
2381
2382/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2383/// vector.  If it is invalid, don't add anything to Ops.
2384void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2385                                                  char ConstraintLetter,
2386                                                  bool hasMemory,
2387                                                  std::vector<SDValue> &Ops,
2388                                                  SelectionDAG &DAG) const {
2389  switch (ConstraintLetter) {
2390  default: break;
2391  case 'X':     // Allows any operand; labels (basic block) use this.
2392    if (Op.getOpcode() == ISD::BasicBlock) {
2393      Ops.push_back(Op);
2394      return;
2395    }
2396    // fall through
2397  case 'i':    // Simple Integer or Relocatable Constant
2398  case 'n':    // Simple Integer
2399  case 's': {  // Relocatable Constant
2400    // These operands are interested in values of the form (GV+C), where C may
2401    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2402    // is possible and fine if either GV or C are missing.
2403    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2404    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2405
2406    // If we have "(add GV, C)", pull out GV/C
2407    if (Op.getOpcode() == ISD::ADD) {
2408      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2409      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2410      if (C == 0 || GA == 0) {
2411        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2412        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2413      }
2414      if (C == 0 || GA == 0)
2415        C = 0, GA = 0;
2416    }
2417
2418    // If we find a valid operand, map to the TargetXXX version so that the
2419    // value itself doesn't get selected.
2420    if (GA) {   // Either &GV   or   &GV+C
2421      if (ConstraintLetter != 'n') {
2422        int64_t Offs = GA->getOffset();
2423        if (C) Offs += C->getZExtValue();
2424        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2425                                                 Op.getValueType(), Offs));
2426        return;
2427      }
2428    }
2429    if (C) {   // just C, no GV.
2430      // Simple constants are not allowed for 's'.
2431      if (ConstraintLetter != 's') {
2432        // gcc prints these as sign extended.  Sign extend value to 64 bits
2433        // now; without this it would get ZExt'd later in
2434        // ScheduleDAGSDNodes::EmitNode, which is very generic.
2435        Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2436                                            MVT::i64));
2437        return;
2438      }
2439    }
2440    break;
2441  }
2442  }
2443}
2444
2445std::vector<unsigned> TargetLowering::
2446getRegClassForInlineAsmConstraint(const std::string &Constraint,
2447                                  EVT VT) const {
2448  return std::vector<unsigned>();
2449}
2450
2451
2452std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2453getRegForInlineAsmConstraint(const std::string &Constraint,
2454                             EVT VT) const {
2455  if (Constraint[0] != '{')
2456    return std::make_pair(0u, static_cast<TargetRegisterClass*>(0));
2457  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2458
2459  // Remove the braces from around the name.
2460  StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2461
2462  // Figure out which register class contains this reg.
2463  const TargetRegisterInfo *RI = TM.getRegisterInfo();
2464  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2465       E = RI->regclass_end(); RCI != E; ++RCI) {
2466    const TargetRegisterClass *RC = *RCI;
2467
2468    // If none of the value types for this register class are valid, we
2469    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2470    bool isLegal = false;
2471    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2472         I != E; ++I) {
2473      if (isTypeLegal(*I)) {
2474        isLegal = true;
2475        break;
2476      }
2477    }
2478
2479    if (!isLegal) continue;
2480
2481    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2482         I != E; ++I) {
2483      if (RegName.equals_lower(RI->getName(*I)))
2484        return std::make_pair(*I, RC);
2485    }
2486  }
2487
2488  return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
2489}
2490
2491//===----------------------------------------------------------------------===//
2492// Constraint Selection.
2493
2494/// isMatchingInputConstraint - Return true of this is an input operand that is
2495/// a matching constraint like "4".
2496bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2497  assert(!ConstraintCode.empty() && "No known constraint!");
2498  return isdigit(ConstraintCode[0]);
2499}
2500
2501/// getMatchedOperand - If this is an input matching constraint, this method
2502/// returns the output operand it matches.
2503unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2504  assert(!ConstraintCode.empty() && "No known constraint!");
2505  return atoi(ConstraintCode.c_str());
2506}
2507
2508
2509/// getConstraintGenerality - Return an integer indicating how general CT
2510/// is.
2511static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2512  switch (CT) {
2513  default: llvm_unreachable("Unknown constraint type!");
2514  case TargetLowering::C_Other:
2515  case TargetLowering::C_Unknown:
2516    return 0;
2517  case TargetLowering::C_Register:
2518    return 1;
2519  case TargetLowering::C_RegisterClass:
2520    return 2;
2521  case TargetLowering::C_Memory:
2522    return 3;
2523  }
2524}
2525
2526/// ChooseConstraint - If there are multiple different constraints that we
2527/// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2528/// This is somewhat tricky: constraints fall into four classes:
2529///    Other         -> immediates and magic values
2530///    Register      -> one specific register
2531///    RegisterClass -> a group of regs
2532///    Memory        -> memory
2533/// Ideally, we would pick the most specific constraint possible: if we have
2534/// something that fits into a register, we would pick it.  The problem here
2535/// is that if we have something that could either be in a register or in
2536/// memory that use of the register could cause selection of *other*
2537/// operands to fail: they might only succeed if we pick memory.  Because of
2538/// this the heuristic we use is:
2539///
2540///  1) If there is an 'other' constraint, and if the operand is valid for
2541///     that constraint, use it.  This makes us take advantage of 'i'
2542///     constraints when available.
2543///  2) Otherwise, pick the most general constraint present.  This prefers
2544///     'm' over 'r', for example.
2545///
2546static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2547                             bool hasMemory,  const TargetLowering &TLI,
2548                             SDValue Op, SelectionDAG *DAG) {
2549  assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2550  unsigned BestIdx = 0;
2551  TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2552  int BestGenerality = -1;
2553
2554  // Loop over the options, keeping track of the most general one.
2555  for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2556    TargetLowering::ConstraintType CType =
2557      TLI.getConstraintType(OpInfo.Codes[i]);
2558
2559    // If this is an 'other' constraint, see if the operand is valid for it.
2560    // For example, on X86 we might have an 'rI' constraint.  If the operand
2561    // is an integer in the range [0..31] we want to use I (saving a load
2562    // of a register), otherwise we must use 'r'.
2563    if (CType == TargetLowering::C_Other && Op.getNode()) {
2564      assert(OpInfo.Codes[i].size() == 1 &&
2565             "Unhandled multi-letter 'other' constraint");
2566      std::vector<SDValue> ResultOps;
2567      TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
2568                                       ResultOps, *DAG);
2569      if (!ResultOps.empty()) {
2570        BestType = CType;
2571        BestIdx = i;
2572        break;
2573      }
2574    }
2575
2576    // This constraint letter is more general than the previous one, use it.
2577    int Generality = getConstraintGenerality(CType);
2578    if (Generality > BestGenerality) {
2579      BestType = CType;
2580      BestIdx = i;
2581      BestGenerality = Generality;
2582    }
2583  }
2584
2585  OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2586  OpInfo.ConstraintType = BestType;
2587}
2588
2589/// ComputeConstraintToUse - Determines the constraint code and constraint
2590/// type to use for the specific AsmOperandInfo, setting
2591/// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2592void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2593                                            SDValue Op,
2594                                            bool hasMemory,
2595                                            SelectionDAG *DAG) const {
2596  assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2597
2598  // Single-letter constraints ('r') are very common.
2599  if (OpInfo.Codes.size() == 1) {
2600    OpInfo.ConstraintCode = OpInfo.Codes[0];
2601    OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2602  } else {
2603    ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
2604  }
2605
2606  // 'X' matches anything.
2607  if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2608    // Labels and constants are handled elsewhere ('X' is the only thing
2609    // that matches labels).  For Functions, the type here is the type of
2610    // the result, which is not what we want to look at; leave them alone.
2611    Value *v = OpInfo.CallOperandVal;
2612    if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2613      OpInfo.CallOperandVal = v;
2614      return;
2615    }
2616
2617    // Otherwise, try to resolve it to something we know about by looking at
2618    // the actual operand type.
2619    if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2620      OpInfo.ConstraintCode = Repl;
2621      OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2622    }
2623  }
2624}
2625
2626//===----------------------------------------------------------------------===//
2627//  Loop Strength Reduction hooks
2628//===----------------------------------------------------------------------===//
2629
2630/// isLegalAddressingMode - Return true if the addressing mode represented
2631/// by AM is legal for this target, for a load/store of the specified type.
2632bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2633                                           const Type *Ty) const {
2634  // The default implementation of this implements a conservative RISCy, r+r and
2635  // r+i addr mode.
2636
2637  // Allows a sign-extended 16-bit immediate field.
2638  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2639    return false;
2640
2641  // No global is ever allowed as a base.
2642  if (AM.BaseGV)
2643    return false;
2644
2645  // Only support r+r,
2646  switch (AM.Scale) {
2647  case 0:  // "r+i" or just "i", depending on HasBaseReg.
2648    break;
2649  case 1:
2650    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2651      return false;
2652    // Otherwise we have r+r or r+i.
2653    break;
2654  case 2:
2655    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2656      return false;
2657    // Allow 2*r as r+r.
2658    break;
2659  }
2660
2661  return true;
2662}
2663
2664/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2665/// return a DAG expression to select that will generate the same value by
2666/// multiplying by a magic number.  See:
2667/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2668SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2669                                  std::vector<SDNode*>* Created) const {
2670  EVT VT = N->getValueType(0);
2671  DebugLoc dl= N->getDebugLoc();
2672
2673  // Check to see if we can do this.
2674  // FIXME: We should be more aggressive here.
2675  if (!isTypeLegal(VT))
2676    return SDValue();
2677
2678  APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2679  APInt::ms magics = d.magic();
2680
2681  // Multiply the numerator (operand 0) by the magic value
2682  // FIXME: We should support doing a MUL in a wider type
2683  SDValue Q;
2684  if (isOperationLegalOrCustom(ISD::MULHS, VT))
2685    Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2686                    DAG.getConstant(magics.m, VT));
2687  else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2688    Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2689                              N->getOperand(0),
2690                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2691  else
2692    return SDValue();       // No mulhs or equvialent
2693  // If d > 0 and m < 0, add the numerator
2694  if (d.isStrictlyPositive() && magics.m.isNegative()) {
2695    Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2696    if (Created)
2697      Created->push_back(Q.getNode());
2698  }
2699  // If d < 0 and m > 0, subtract the numerator.
2700  if (d.isNegative() && magics.m.isStrictlyPositive()) {
2701    Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2702    if (Created)
2703      Created->push_back(Q.getNode());
2704  }
2705  // Shift right algebraic if shift value is nonzero
2706  if (magics.s > 0) {
2707    Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2708                    DAG.getConstant(magics.s, getShiftAmountTy()));
2709    if (Created)
2710      Created->push_back(Q.getNode());
2711  }
2712  // Extract the sign bit and add it to the quotient
2713  SDValue T =
2714    DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2715                                                 getShiftAmountTy()));
2716  if (Created)
2717    Created->push_back(T.getNode());
2718  return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2719}
2720
2721/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2722/// return a DAG expression to select that will generate the same value by
2723/// multiplying by a magic number.  See:
2724/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2725SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2726                                  std::vector<SDNode*>* Created) const {
2727  EVT VT = N->getValueType(0);
2728  DebugLoc dl = N->getDebugLoc();
2729
2730  // Check to see if we can do this.
2731  // FIXME: We should be more aggressive here.
2732  if (!isTypeLegal(VT))
2733    return SDValue();
2734
2735  // FIXME: We should use a narrower constant when the upper
2736  // bits are known to be zero.
2737  ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
2738  APInt::mu magics = N1C->getAPIntValue().magicu();
2739
2740  // Multiply the numerator (operand 0) by the magic value
2741  // FIXME: We should support doing a MUL in a wider type
2742  SDValue Q;
2743  if (isOperationLegalOrCustom(ISD::MULHU, VT))
2744    Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
2745                    DAG.getConstant(magics.m, VT));
2746  else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2747    Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
2748                              N->getOperand(0),
2749                              DAG.getConstant(magics.m, VT)).getNode(), 1);
2750  else
2751    return SDValue();       // No mulhu or equvialent
2752  if (Created)
2753    Created->push_back(Q.getNode());
2754
2755  if (magics.a == 0) {
2756    assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
2757           "We shouldn't generate an undefined shift!");
2758    return DAG.getNode(ISD::SRL, dl, VT, Q,
2759                       DAG.getConstant(magics.s, getShiftAmountTy()));
2760  } else {
2761    SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2762    if (Created)
2763      Created->push_back(NPQ.getNode());
2764    NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2765                      DAG.getConstant(1, getShiftAmountTy()));
2766    if (Created)
2767      Created->push_back(NPQ.getNode());
2768    NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2769    if (Created)
2770      Created->push_back(NPQ.getNode());
2771    return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2772                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
2773  }
2774}
2775